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• Of a group of parallel connections, ones with small outstanding windows could experience a larger number of losses than
their share of the total outstanding window would warrant. This means that it may be harder to initiate a new connection
than to keep an existing connection going.

We then proposed sender-side TCP modifications that improve the performance of TCP loss recovery and the use of parallel
connections from individual clients. To reduce the occurrence of timeouts, we present an enhanced loss recovery scheme that
improves performance when window sizes are small and when insufficient duplicate acknowledgments arrive for multiple
losses in a window. Analysis of the trace data shows that over 25% of the coarse timeouts could be avoided by this scheme,
resulting in significant performance improvements. Simulation results shows that under test circumstances this can lead to a
dramatic reduction in the number of coarse timeouts. To address the problem of parallel connections from individual clients,
we presented anintegrated connection approach to congestion control and loss recovery that allows a TCP sender to aggregate
simultaneous connections from individual clients and treat them as a single unit. Simulation results show that our approach
achieves much-improved start-up behavior, loss recovery, and bandwidth sharing amongst the parallel connections from a
number of hosts.

In future work, we plan to implement our enhanced loss recovery and integrated connection improvements and examine their
performance in real-world busy server environments. In addition, as a part of our data collection, we also used traceroute to
collect network topology information for a large fraction of the clients that visited the Web server. We plan to use this topology
information to examine the possibility of extending the integrated congestion control and loss recovery methods to share infor-
mation across connections from nearby hosts as well as from connections originating from the same host, expanding on the
results presented in [3].
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mately half the bandwidth of the transfer on node R1. This is because eachhost independently performs the same congestion
control algorithm. Therefore, each host receives an equal portion of the bottleneck link. However, as discussed in Section 5.5,
there are often situations where a host should acquire a greater portion of the link bandwidth. The sequence plot of connections
using the congestion control policy described in that section are shown in Figure 19. The plot shows that the integrated conges-
tion control algorithm can be adjusted to provide equal shares to each of the connections, while still maintaining the benefits of
integrated loss recovery for the two connections, B and C, between nodes S and R2.

6. Conclusions

In this paper, we have presented a detailed analysis of TCP behavior from a busy Web server. Our analysis has focused on two
main areas: examining the performance of individual TCP connections that carry HTTP payloads, and examining the detri-
mental effects of how Web browsers use parallel TCP connections on overall network performance. We found that:

• Existing loss recovery techniques are not effective in dealing with packet losses and new techniques must be developed to
handle them. Over 50% of all losses require a coarse timeout to recover. Fast retransmissions recover from less than 45% of
all losses. The remainder of losses are during slow start following a timeout.

• Future network implementations should increase their default socket buffer size to avoid the receiver window from becom-
ing a bottleneck. The socket buffer size limited the throughput of approximately 14% of all observed connections.

• Ack compression is an observed phenomenon and can be correlated with subsequent packet losses.Our analysis indicates
that a dynamic comparison of data and acks bandwidths is an effective indicator of ack compression, and is also easy to
implement in the TCP layer. One area of future work is the investigation of mechanisms, such as traffic shaping, to combat
the adverse effects of ack compression.

• A client using a collection of parallel connections between a client and server is a more aggressive user of the network than
an application that uses a single TCP connection.Throughput is positively correlated with the number of active connec-
tions. When multiple connections are concurrently active and one of them experiences a loss, only half of the remaining
ones on average experience a loss. The combined congestion window of a group of parallel connections does not decrease
as much as the congestion window of a single connection after a loss epoch.
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Figure 18. Three TCP-INT transfers from two hosts
through a single bottleneck router. Connection A
originates from the first host and starts at time 0.

Connections B & C originate at the second host and start
at time 0 and 15 sec respectively.
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Figure 19. Three TCP-INT transfers using the congestion
control algorithm for proxies from two hosts through a
single bottleneck router. Connection A originates from
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However, unlike the case of independent TCP connections, the penalty, which is equal to half the window of the affected con-
nection, is spread across all the connections. Given the prevalence of FIFO queuing in the network, which can lead to cases
where a burst of traffic in one connection causes losses in another connection, there is no reason to single out the connection
that experienced a loss for all the penalty. Therefore, we spread the penalty across all the connections between the proxy and
the server, to the same end host, while effecting the same decrease in the combined congestion window as when only one of
the connections is penalized. Spreading the penalty also smooths out the performance observed by the individual connections.
Note that round-robin scheduling described in Section 5.3 automatically achieves the desired spreading.

As an illustration of the ideas in the previous paragraph, suppose that there are two connections between the proxy host and the
server, one each on behalf of two end clients. Further, suppose that when the total congestion window is 8 KB (4 KB for each
connection in logical terms), connection #1 suffers a loss. As a result, the combined congestion window decreased by half of 4
KB, yielding a total of 6 KB. With the penalty spread out, each connection ends up with an effective congestion window of
3KB. In contrast, if the connections had operated independently, they would have ended up with the unequal congestion win-
dows of 2 KB and 4 KB, respectively.

We note that none of the above alters the integrated data-driven loss recovery algorithm described in Section 5.3

In terms of a practical implementation, there are two requirements. First, the sender (often the Web server) should be able to
distinguish between connections on behalf of different end client hosts (or perhaps even users). Different flows could be
marked by using IPv6 flow identifiers or by creating a new TCP option type. Our focus is not on the mechanism to define pri-
orities or the policy to assign priorities, but rather on techniques for enforcement of a policy once it has been determined and
communicated to a TCP sender.

5.6  Simulation Results: Multiple Client Hosts Case

We now investigate how the bottleneck link bandwidth is shared by connections initiated from more than one host. Our test
uses the network topology shown in Figure 16. At time 0, a single TCP transfer is started from node S to each of nodes R1 and
R2. Some time later (in this case, fifteen seconds), a second transfer is started between node S and R2. In addition, several
cross traffic connection are maintained between nodes CT1 and CT2. This is intended to make the simulation more realistic.

Figure 17 shows the sequence plot for a test where node S uses TCP with selective acknowledgments. This graph shows that
each connection receives approximately the same share of the bottleneck link bandwidth. As a result, node R2 receives
approximately twice the bandwidth of node R1 after the second connection starts up. This is because eachconnection indepen-
dently performs the same congestion control algorithms and are each equally likely to experience congestion. Figure 18 shows
the same test using TCP-INT. After the second connection from node R2 starts, each of the transfers from R2 receive approxi-

Figure 16. Topology for simulation tests.
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unpredictability is undesirable because it may happen that connections carrying critical data get slowed down while others car-
rying less important data do better.

Figure 15 shows the sequence plot for the same test with the senders using TCP-INT. Integrated loss recovery helps this TCP
variant avoid coarse timeouts. Integrated congestion control allows the different connections to each obtain an equal share of
the total bandwidth. Although the total number of bytes transferred here is actually slightly less than in the case with the TCP-
SACK protocol, the performance of the transfers is much more consistent and predictable. Also note that since the slow-start
window growth happens in an integrated manner for the ensemble of connections, later connections can build on the window
size attained by earlier connections rather than initiate slow start with an initial window size of one segment (which happens
with vanilla TCP). This can greatly help reduce the connection start-up latency for Web clients with short overlapping parallel
connections.

In the second test, we investigated how the bottleneck link bandwidth is shared when there are competing connections from
more than one host. Before discussing the results, we describe an extension to the integrated congestion control algorithm to
handle connections from proxy hosts.

5.5  Adapting Integrated Congestion Control to Proxy Hosts

Treating simultaneous connections from single hosts as a single unit with respect to loss recovery and congestion control
reduces any advantage that individual applications may gain from using multiple TCP connections. All IP hosts that connect to
the TCP sender are treated equally. There are situations, however, where IP hosts should not be treated equally. Many clients
today connect to the Web using proxy or caching hosts. Although seen as a single host, these proxies represent a much larger
number of end client hosts (and consequently a larger number of people). By reducing the advantage that comes about from
multiple connections, we may be penalizing clients that connect via proxies. Therefore, we investigated mechanisms that allow
unequal treatment of hosts receiving data from the TCP sender.

We adapt our algorithm for integrating congestion control to address this problem. For simplicity, suppose that the desired pol-
icy is that allend client hosts be treated as equal. Then the combined congestion control window for the set of connections
between a proxy host and server would be apportioned equally to the connections initiated on behalf of each end client host
involved. So again for simplicity, suppose that there is only one connection between the proxy host and the server on behalf of
each end client.

The basic idea now is that congestion control for the set of connections from the proxy is done in such a way as to mimic the
case when the connections are independent (because each connection is on behalf of a different end client). In the slow start
phase, the combined congestion window is increased by 1 segment for each ack received. In the congestion avoidance phase,
the congestion window is increased by 1 segment per RTT foreach connection. If one of the connection’s experiences a loss,
only the corresponding portion of the congestion control window is halved; the window apportioned to the other connection
remains unchanged.
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Figure 14. Four TCP-SACK transfers through a router
with buffer size 3. Transfers start at 0, 2, 4 and 6 seconds.
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to be sent by adding an entry to the tail of the list of outstanding packets. This entry contains the sequence number size and
timestamp of the transmitted packet. When the packet is sent, the connection increments theownd by the size of the packet.

New recv ack routine: When a new ack arrives, the sender increases thecwnd variable as appropriate. We experimented with
a variety of congestion window increase algorithms to support different bottleneck link sharing goals. These algorithms are
described in Section 5.5. Also upon the arrival of a new ack, the sender removes any packets from thepkts[] list that have
reached the receiver. The sender decrements theownd variable by the size of packets removed from the list.

Upon arrival of any ack, new or duplicate, the sender uses the ack timestamp2 to increment thelater_acks field of any packet
that was transmitted earlier than the one just acknowledged. The sender then traverses the list of packets in the “pipe” from
oldest to most recent to identify any candidates for retransmission. In a simple situation where the delayed acknowledgment
algorithm is not being used, a retransmission candidate can be identified by the following rules:

1. Thelater_acks field is greater than 3. This is used to avoid unnecessary retransmission as a result of network reordering
of packets,and

2. The packet is the lowest sequence number, unacknowledged packet on a connection,and

3. The connection associated with the packet does not have a pending retransmission.

The presence of delayed acknowledgments complicates these rules by effectively reordering the transmission of acknowledg-
ments. Receivers implementing delayed acknowledgments must acknowledge the receipt of at least every other packet or at
most 200 ms after the receipt of a packet. This necessitates the following additional rules to identify lost packets:

4. A candidate for retransmission must also have one other packet on the same connection with 3 or more later acks. This
compensates for the requirement of only acknowledging every other packet,or

5. The packet being acknowledged is well over 200ms more recent than the possibly lost packet. In our simulation, we use
200 * 2 ms to provide a conservative bound. This is based on the requirement to acknowledge a packet at least 200 ms
after its reception.

The sender retransmits the single oldest lost packet and marks the connection as having a retransmission pending. The sender
then adjusts the congestion window,cwnd, to perform the appropriate congestion control following a loss.

Finally, the sender uses theownd andcwnd variables to identify if additional packets can be introduced into the “pipe”. If there
is space for new packets, the sender chooses a connection to transmit packets. The choice of connection is done via a round-
robin algorithm across all connections to the same host.

5.4  Simulation Results: One Client Host Case

In this section, we describe results from anns simulation designed to examine integrated congestion control and loss recovery
across simultaneous TCP connections.

The first test used the topology in Figure 11. The router’s buffer size was set to 3 packets. This is small enough to force trans-
fers to have small congestion windows and experience frequent losses. Once again, the topology and parameters were chosen
to recreate situations that frequently occur in our traces, and not to mimic an actual network. In this test, the transmitting node
performs 4 TCP transfers to the receiver. The transfers start at 0, 2, 4 and 6 seconds and all end at 10 seconds. The actual
choices of the values 0, 2, 4, and 6 are not important, just that the start times of each connection are slightly shifted in time.

Figure 14 shows the sequence plot for the test using a SACK-based transmitter. It shows that typically only one connection
performs satisfactorily at any one time. For example, at time 2 seconds, the connection starting up experiences several early
losses and is forced to recover them via coarse timeouts. In fact, this connection does not send a significant amount of data
until 4 seconds later (at time 6 sec). Similarly, the first connection experiences many losses at time 4 seconds and spends sev-
eral seconds recovering from these losses. Over the 10 second period, the connection starting at time 2 sec. and time 6 sec.
account for a minuscule (<10%) fraction of the total bytes transferred. Although the combination of the four connections trans-
mit data at a reasonable rate, the bandwidth is clearly not evenly split among the active connections. In addition, the numerous
coarse timeouts make the performance of individual connections unpredictable. From an application’s point of view, such

2.  In absence of the timestamp option, the ACK sequence number combined with transmission order of all packets can be used to perform
the same actions.
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5.2.1  HTTP/1.1 with Persistent Connections

The HTTP/1.1 protocol [6], which has recently been standardized, recommends the use of persistent connections. So it seems
likely that persistent connections will find wide support in future client and server software. Therefore, the first point made in
Section 5.2 about applications having to be rewritten is not an issue. However, the other two drawbacks remain valid.

The new HTTP protocol doesnot integrate other applications’ TCP connections (such as FTP or other TCP connections initi-
ated by Netscape plug-ins). We believe that this is symptomatic of a larger problem. If in the future HTTP is replaced by a dif-
ferent protocol, special efforts would have to be made again (in terms of framing format, etc.) to ensure that the same
drawbacks do not recur. In contrast, our approach has been to identify the fundamental problem, namely the lack of efficient
support for numerous short data transfers between a pair of hosts, and then provide a solution at the transport layer that pro-
vides efficient support for short connections regardless of the application-level protocol.

The third drawback mentioned in Section 5.2 also affects persistent connections in HTTP/1.1. Consider the simultaneous
transfer of several images over a persistent connection. Suppose that one of the images is of particular interest to the user.
Because of the ordered byte-stream abstraction that TCP provides, the rendering of this image gets held up wheneverany
packet gets dropped and requires retransmission. In contrast, with our solution, only the loss of a packet on the connection cor-
responding to the image of interest (which is clearly only a subset of all packet loss events) can stall the rendering of the
image.

We advocate that TCP connections already provide a perfectly useful abstraction to applications, and rather than making the
application or socket library more complex by adding the concept of a “session”, the transport level should maintain the same
abstractions with a more efficientintegrated connection implementation.

5.3  TCP-INT Implementation

We now describe an the implementation of integrated congestion control and loss recovery scheme that only modifies the TCP
at the sender. For each host with which a single machine is corresponding with, the TCP/IP stack creates a structure
(Figure 13) to store information about any communication. This new structure enables the desired shared congestion control
and loss recovery by providing a single point of coordination for all connections to a particular host. Thechost structure con-
tains the standard TCP variables associated with the maintenance of TCP congestion windows (cwnd, ssthresh andcount). The
structure also introduces some new variables to aid in congestion control (ownd, decr_ts) and other variables to support inte-
grated loss recovery (pkts[]). In the following subsections, we describe how the various TCP routines use and update this new
information.

New send data routine: When a connection desires to send a packet, it checks to see if the number of bytes already in the
“pipe” from the sender (ownd) is greater than the desired size of the “pipe” (cwnd). If not, the connection prepares the packet

struct chost {
Address addr // address of host
int cwnd; // congestion window for host
int ownd; // total bytes in pipe to host
int ssthresh; // slow start thresh for host
int count; // count of pkts for cwnd increase
Time decr_ts; // time of last window decrease
Packet pkts[]; // pkts sent in order of xmission

// these are pkts in the “pipe”
TCPConn conn[];// set of tcp connections to host

}

struct packet {
TcpConn *conn; // connection that sent pkt
int seqno; // seqno
int size; // size of pkt
Time sent_ts; // time sent
int later_acks;// # of acks for later

// pkts on any conn
}

Figure 13. New structures necessary for shared
congestion windows and shared error recovery.
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By using a separate TCP connection for each transfer, an application can avoid unnecessary coupling between parallel trans-
fers multiplexed on the same connection. Each connection provides a reliable, ordered byte-stream abstraction independently
of the others. The flow control for each connection happens independently of the others, so the delivery of data to the receiving
application also happens independently for each connection.

At the same time, congestion control is integrated across the TCP connections. There is a single congestion window for the set
of TCP connections between a client and a server that determines the total amount of outstanding data the set of connections
can have in the network. When a loss occurs on any of the connections, the combined congestion window is halved, thereby
achieving the same effect as when a single, persistent TCP connection is used.

Data-driven loss recovery is also integrated across the set of TCP connections. When a packet is lost on one connection, the
successful delivery of later packets on other connections allows the sender to reliably detect the packet loss without resorting
to a timeout, thereby improving performance.

With such a transport-layer solution, existing unchanged applications can set up as many TCP connections as they wish with-
out having an adverse effect on either congestion control or loss recovery. We call the TCP resulting from this set of modifica-
tions,TCP-INT.

Before describing our implementation and simulation results, we discuss alternative solutions that have been proposed by
other researchers and point out their shortcomings vis-a-vis our solution. A majority of these solutions operate at the applica-
tion level; we discuss these in Section 5.2. One notable exception is [18], which proposes that information, such as the conges-
tion window size and the round-trip time estimate, be shared across TCP connections. This proposal is similar to our integrated
congestion control and loss recovery scheme in some respects. However, [18] does not describe how such a scheme may be
implemented nor does it evaluate the potential improvement in performance.

5.2  Alternative Solution: Application-level Multiplexing

In contrast to our solution which involves changes only to the network stack, alternative solutions typically operate at the
application level. The main goal of application-level solutions is to multiplex several logically-separate data streams onto a
single TCP connection, thereby avoiding the use of multiple, parallel TCP connections. Application-level solutions fall into
two categories: those implemented as part of applications and those that are application-independent. An example of the
former in the context of Web applications is Persistent-connection HTTP (P-HTTP) [15]. Examples of the latter include the
Session Control Protocol (SCP) [16] and the MUX protocol [7].

In P-HTTP, each of the Web client and the server open a single TCP connection between them and multiplex several transfers
one after another onto it. Separate transfers are demarcated using content-length prefixes. The TCP connection between the
server and the client is persistent so that the same connection can be used for transfers initiated at a later point in time. The use
of persistent connections results in a significant decrease in latency of Web accesses, especially when the individual transfers
are short and the bandwidth-delay product of the server-client path is large [15].

The SCP and MUX protocols also allow multiplexing multiple transfers, but in an application protocol-independent way. They
define framing schemes that can be used to demarcate multiple transfers multiplexed onto a single TCP connection. The fram-
ing scheme has a low overhead in terms of bytes, so fine grained multiplexing is possible.

In spite of the benefits, application-level solutions have their drawbacks:

1. They require existing applications to be rewritten or at least relinked. Moreover, this is necessary both at the server and
the client.

2. They do not allow multiplexing of transfers initiated by more than one application.

3. Since the transfers are multiplexed over a TCP connection which provides an ordered byte-stream abstraction, there may
be undesirable coupling between the transfers. For example, the loss of a packet carrying data for one transfer could hold
up the delivery of data belonging to entirely different transfers.

We discuss these in more detail in the context of HTTP/1.1.
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and not to simulate any existing or typical network topology. The simulation tests consisted of a single TCP transfer from node
S to node R for a duration of 10 seconds. Each test used a different variant of TCP sender protocol on node S.

Figure 12 shows the simulated sequence plots for TCP with SACK and our enhancement to TCP-NewReno (TCP-Reno with
certain bug fixes described in [8]) with right-edge recovery. As indicated by the large gaps in the sequence plot, the SACK
transfer experiences many more coarse timeouts than the transfer using right-edge recovery. These coarse timeouts are a result
of frequent losses that generate two or fewer duplicate acknowledgments. These duplicates are not sufficient to trigger the fast
retransmission algorithm. Therefore, in a traditional TCP implementation the loss is only retransmitted after a coarse timeout
occurs. When the right-edge recovery algorithm is used, the sender transmits a new packet when each these duplicate acknowl-
edgments arrive. These new packets trigger the transmission of additional duplicate acknowledgments from receiver. These
additional duplicates allow the sender to use fast retransmissions to recover from the losses. By eliminating the coarse time-
outs, the sender using right-edge recovery performs the transfer more than twice as fast as a standard transmitter.

5. Improving the Performance of Multiple TCP Connections

Current applications often use multiple logically separate data streams between a Web server and client. We showed in
Section 3.2 that the use of independent TCP connections for each transfer has a significant impact on network behavior. In this
section, we present the design and implementation of a scheme that eliminates the adverse effects of concurrent TCP connec-
tions and actually improves TCP loss recovery in such situations. This modified TCP uses integrated congestion control and
loss recovery that exploits temporal parallelism and shares state across concurrent connections.

5.1  Integrated Congestion Control/Loss Recovery

The motivation behind transport-layer, kernel-level integrated congestion control and loss recovery is to allow applications to
use a separate TCP connection for each transfer (just as they do today), but to avoid the problems mentioned in Section 3.2 by
making appropriate modifications to the network stack. We divide TCP functionality into two categories: that having to do
with the reliable, ordered byte-stream abstraction of TCP, and that pertaining to congestion control and data-driven loss recov-
ery.

Figure 11. Topology for simulation tests.
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4.1  Enhanced Loss Recovery

As mentioned in Section 3.1, over 55% of all retransmissions on the Olympic Web server happened after one or more coarse
timeouts kept the link to the client idle for periods from hundreds of milliseconds to seconds. Our analysis showed two main
reasons for the occurrence of these timeouts:

1. Fast retransmit followed by a timeout: The TCP Reno sender was unable to recover from multiple losses within the same
transmission window. This situation can be recognized by the occurrence of a fast retransmission shortly before the
coarse timeout.

2. Insufficient duplicate acknowledgments: Either the number of outstanding packets was too small, or most of the packets
in the window were lost, preventing the sender from receiving enough acknowledgment information to trigger a retrans-
mission.

The use of TCP selective acknowledgments (SACKs) has often been suggested as a technique to improve loss recovery and
avoid timeouts unless there is genuine persistent congestion in the network [5]. However, windows are often too small for this
alone to help. A detailed analysis of the trace data showed that out of the 422,025 coarse timeouts over a 3-hour period,
SACKs could have helped avoid at most 18,713 (4.43%) of them.In other words, current approaches to TCP Reno enhanced
with SACKs do not really avoid most timeouts. It is clear that an alternative technique is needed to recover from the bulk of
these losses.

During the same 3-hour period, approximately 403,312 (95.6%) coarse timeouts occurred as a result of insufficient acknowl-
edgment information (i.e., an insufficient number of duplicate acknowledgments arrived to trigger a retransmission). Of these
timeouts, no duplicate acknowledgments arrived at all for 70% of them. In these situations the network is most likely experi-
encing severe congestion. The best solution is for the sender to wait for a coarse timeout to occur before transmitting any pack-
ets. For the remaining timeouts (about 25% of them, in which at least a single duplicate acknowledgment arrives), we propose
that a single new segment, with a sequence number higher than any outstanding packet, be sent when each duplicate acknowl-
edgment arrives. When this packet arrives at the receiver, it will generate an additional duplicate acknowledgment. When this
acknowledgment later arrives at the sender, it can be assured that the appropriate segment has been lost and can be retransmit-
ted. We call this form of loss recoveryenhanced or “right-edge”  recovery. This scheme can also be effectively combined with
SACK information from the receiver.

4.1.1  Simulation Results

An ns [13] based simulation, using the topology shown in Figure 11, was performed to test the enhanced loss recovery algo-
rithm. A significant amount of additional cross traffic was generated to force the transfers through the router to cope with fre-
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Thus, the throughput and congestion control analyses show thata client using several parallel connections to connect to a
server is a more aggressive user of the network than one that uses a single TCP connection.This increases the chances that the
network gets into a congested state and stays there, which adversely affects overall network performance.

3.2.3  Loss distribution analysis

We now analyze the pattern of losses in greater detail to determine how losses are distributed across parallel connections with
different window sizes. If we found that during a loss epoch, connections with small outstanding windows were more likely to
experience losses than connections with large outstanding windows, then that would indicate some bias in the network for or
against connections with small or large window sizes. Our results show that the actual probability of a loss in a window is
close to the expected probability of loss (proportional to the size of the window), with the exception that connections with a
small share of the total window suffer a disproportionate number of losses.

To see this, we analyze the distribution of losses across the connections in a loss epoch. For each connection, we record its out-
standing window size (ownd) at the start of the loss epoch and count the number of packet losses it suffered during the epoch.
Since the absolute value of the outstanding window could depend on the characteristics of the network path from the server to
the specific client in question, we normalize it by dividing by the total outstanding window of all the simultaneous connections
put together. For plotting the graphs discussed below, we quantize the normalized ownd values into multiples of 0.05.

In Figure 9, we plot the probability density function (PDF) of the normalized ownds of all connections and that of the subset
that experience a loss during a loss epoch. We observe that the latter is skewed to the right with respect to the former, which is
what we would expect because having a larger outstanding window should increase a connection’s chances of experiencing a
loss.

To analyze the situation in more detail, we do a simple calculation. Suppose there are a total ofk packet losses across all con-
nections during a loss epoch. Then, if the network does not discriminate against or favor any connection,the probability that a
connection having a normalized owndx experiences a loss during that epoch is(1-(1-x)k).

Figure 10 shows the number of connections with specific values of normalized ownd that experience a loss during a loss
epoch. These numbers are obtained by aggregating over about 100,000 loss epochs in an 4-hour long trace. We plot both the
actual numbers from the trace and the ideal ones computed using the formula mentioned above.

We observe that the actual and the ideal curves match each other quite well. However, the main discrepancies are that connec-
tions with a small share of the total window suffer losses significantly more often than they should, and the total number of
connections (summed over all values of normalized ownd) that experienced a loss is about 5% smaller than that predicted by
the ideal model. The former means that a new connection that starts up while other connections are going strong might suffer
an unfairly large number of losses. The latter implies that loss events have a tendency to be concentrated in a subset of the con-
nections.

From this analysis, we see thatof a group of parallel connections, ones with small outstanding windows could experience a
larger number of losses than their share of the total outstanding window would warrant.

3.3  Key Results of Trace Analysis

Our analysis of the behavior of individual and parallel connection behavior has led to the following important results:

• Existing loss recovery techniques are not effective in avoiding timeouts when packet losses occur and new techniques must
be developed to handle them.

• A client using a collection of parallel connections between a client and server is a more aggressive user of the network than
an application that uses a single TCP connection.

In the remainder of the paper, we present sender-side modifications to TCP to solve these problems. In Section 4, we present
an enhanced loss recovery scheme to improve the performance of individual connections. In Section 5, we present a newinte-
grated connection approach to congestion control and loss recovery to improve the performance of parallel connections.

4. Improving Single Connection Performance

In this section, we describe techniques designed to improve the loss recovery performance of TCP transfers.
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that each of the connections has at this point in time. The time when the outstanding data of all the connections has been
acknowledged marks the end of the loss epoch. For each loss epoch, we record the number of simultaneously open connec-
tions, the outstanding window size of each connection and the distribution of packet loss events across the connections. We
aggregate this data across all hosts.

Suppose that of then simultaneously open connections, the average number that sees a loss during a loss epoch ism. If m is on
average less thann, then an application that has multiple open connections is more aggressive than if the connections were
treated as a single unit with respect to congestion control. Since packets belonging to all the connections are very likely to
traverse the same network path, a loss on any one connections should cause the entire stream of data flowing towards the client
host to be slowed down. Assuming that all the TCP connections have the same congestion window size at the start of the epoch
and that each TCP connection that experiences a loss halves its window, the effective multiplicative decrease in a host’s total
transmission window is(1 - m/2n), which is no less than the factor 1/2 for a single connection. From Figure 7, we see that typ-
ically half the total number of open connections see a loss during a loss epoch, i.e.,m is approximatelyn/2 — the slope of the
best-fit line through the set of points is 0.50 and the intercept is 0.1. So, the effective multiplicative decrease factor is3/4,
which represents much more aggressive behavior than halving the window.

The above analysis makes two assumptions that may not be true in practice — that each connection has the same congestion
window size, and that each halves its window in response to a loss. Them connections that experience losses may have had
larger windows than the others. Furthermore, the loss of a packet may cause a connection to drop its window down to 1 seg-
ment (due to a retransmission timeout) rather than just halve it. Therefore, it is still possible that the congestion behavior is not
as aggressive as the factor3/4 indicates.

We determine the actual combined congestion window size after a loss by using the traces and the TCP emulation engine. We
make one of two extreme assumptions about the way in which the set of connections that experience a loss during a loss epoch
respond: either all do fast retransmissions (window halved) or all undergo a retransmission timeout (window dropped to 1).
For each case, we compute the ratio of the combined congestion window after and before the loss event. The two cases give us
bounds on the effective multiplicative decrease factor, which is shown as a function of the degree of parallelism in Figure 8
(the curves labelled “Parallel Fast Recovery” and “Parallel Coarse Timeouts”). As a baseline comparison, we also compute the
congestion window size ratio that would result if the connections were treated as a single unit and (a) a fast retransmission, or
(b) a coarse timeout occurred. These are shown by the “TCP Fast Recovery” and “TCP Coarse Timeouts” curves in the figure.
The effective multiplicative decrease factor (backoff in response to congestion) of a system using parallel connections is typi-
cally in the range 0.6 to 0.75 for various degrees of parallelism. This is clearly much more aggressive than normal TCP which
backs off by a factor of 0.5 or less.

In addition to the effective multiplicative decrease in the face of congestion losses being much milder than that of a single TCP
connection, we also note that the rate at which a set of parallel connections increase their aggregate window isn times that of a
single connection. A single connection in the congestion avoidance phase increases its congestion window by 1 segment per
round trip time, so a collection ofn parallel connections increase their combined congestion window byn segments per round
trip time.

Figure 8. Effect of Parallelism on Outstanding Window
size
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3.2  Parallel Connection Behavior

In this section, we study the effect that multiple, simultaneous connections (parallel connections) have on end-to-end perfor-
mance and the network. We first investigate how throughput varies with the number of parallel connections (thedegree of par-
allelism). We then investigate how a group of parallel connections react to a loss. We look at the number of parallel
connections that experience a loss when one of the parallel connections experiences a loss, and the resulting combined conges-
tion window size after a loss. We look at how losses are spread (in time) across parallel connections and how they are spread
out as a function of the number of unacknowledged bytes (theoutstanding window), over all parallel connections.

3.2.1  Throughput analysis

We analyze the traces to determine if there is any significant correlation between the throughput seen by a client host and the
number of simultaneous connections (n) it has open to the server. This is important because if there is a positive correlation,
then it provides a mechanism that allows applications to obtain more than their “fair share” of bandwidth on a network path’s
bottleneck link.

For each host, we divide the entire duration of its interactions with the server into periods during whichn is constant. A transi-
tion from one period to the next happens either when a connection terminates (n decreases by 1) or when a new connection
starts up (n increases by 1). During each such period, we compute the throughput as the ratio of the total number of useful
bytes transferred during the period by all the connections put together to the duration of the period. We only consider periods
with at least 5 KB transferred so that the throughput numbers are more meaningful. After considering at all such periods, we
compute the coefficient of correlation between throughput and the number of simultaneous connections. We only compute this
for hosts for which we have at least 10 pairs of (throughput,n) samples.

By aggregating the coefficients of correlation for all hosts, we obtain the cumulative distribution function (CDF), which is
shown in Figure 6. It is clear from the figure that there is a substantial positive correlation. There is a positive correlation for
about 90% of the hosts and a coefficient of correlation larger than 0.5 for about 45% of the hosts. Thus, clients do help them-
selves by opening more simultaneous connections.

3.2.2  Congestion control analysis

The apparent benefit that an individual client derives by launching many simultaneous connections in parallel comes at the
cost of global network performance. To demonstrate this, we analyze the pattern of losses seen across the connections from
each individual client.

Consider a period of time when a client host hasn simultaneously open connections. Suppose that one of then connections
experiences a packet loss. We use this event to mark the beginning of aloss epoch. We record the amount of outstanding data
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A significant fraction of ratios seem large enough to cause excessive burstiness at the sender. To quantify this effect, we also
calculate the probability that there is a loss in the subsequent window. If this excessive burstiness is indeed bad, we would
expect that higher ack bandwidth ratios lead to an increased probability of packet losses. Figure 4 shows the results of this
analysis. Thex-axis is the (quantized) ack bandwidth ratio, and they-axis is the probability that the next window contained a
packet loss. Two things are important to observe from this graph:

• Even small degrees of burstiness (ack bandwidth ratio > 3) lead to a dramatic increase in the probability of a loss.

• After a threshold amount, however, additional burstiness does not lead to increased probability of packet loss, as the net-
work has already been placed into a state of congestion.

We now discuss an alternative way of characterizing the adverse effects of ack compression, and then compare the two meth-
ods.

Method 2: Dynamic Comparison of Data and Ack Bandwidths

The second method takes into consideration the flow of both data and acks. Consider a window of data transmitted by the
sender. (The window ends when an acknowledgment covering the start sequence number of the window is received.) Thedata
bandwidth during the window is computed by dividing the amount of data sent by the time to transmit the window1. Similarly,
we compute theack bandwidth by dividing amount of data acknowledged by the time difference between the first and last
acks. We define theack compression factor as the ratio of the ack bandwidth to the data bandwidth during the same window.
Note that this ratio is the same as the ratio of the ack bandwidths of consecutive windows.

A large ack compression factor during a window would cause data to be sent out at a much higher rate during the next window.
As a consequence, we would expect an increase in the probability of packet loss during the next window. Figure 5 shows the
probability of packet loss in the next window versus the ack compression factor in the current window. We only compute the
data and ack bandwidths when the amount of data sent and acked is more than 5 KB. From the figure, we observe that the loss
probability goes up while the ack compression factor increases up to about 3, and then levels off.

One advantage of this different way of defining ack compression is that the ack compression factor can easily be computed in
a real TCP implementation. Unlike the first method described above and in [11], no median computation is required. When it
detects a high enough level of ack compression, a TCP sender could choose to slow down its data transmission rate to decrease
the chances of packet loss.

From this analysis, we see thatack compression is an observed phenomenon and can be correlated with subsequent packet
losses. Future work should investigate mechanisms for traffic shaping and sender adaptation in the presence of ack compres-
sion.

1.  Note that the data bandwidth could well exceed the quantity window size/RTT if the data is sent out as a burst.
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3.1.2  Receiver-advertised window

Assuming that the source always has data to send, the amount of data transmitted by TCP at any time is primarily governed by
the minimum of two parameters: the sender’s congestion window, which tries to track the available bandwidth in the network,
and the receiver’s advertised window, which handles flow control. The maximum possible value for the latter parameter is
equal to the socket buffer size chosen by the application when the connection is established. An excessively small value of this
parameter could result in sub-optimal end-to-end performance if the receiver’s advertised window is consistently smaller than
the sender’s congestion window.

Figure 2 shows the cumulative distribution function of receiver advertised window for transfers to 32000 hosts (over 1650103
connections) during a 3-hour period. The CDF shows distinct upswings at window sizes of 4 KB, 8 KB, 16 KB, etc., values
that are commonly used by receivers.

For each connection, we compared the receiver advertised window with the congestion window size (as computed by the TCP
engine), and determined that in approximately 14% (233906 connections) of all connections the latter grew to be larger than
the former, i.e., the receiver advertised window limited the amount of data the TCP sender could have outstanding. In these
cases, the Web client (the receiver) could potentially have obtained a higher throughput had it employed a larger socket buffer
(and consequently advertised a larger window).

From this analysis, we make the following recommendation. Future network implementations should increase their default
socket buffer size to avoid the receiver window from becoming a bottleneck.Default values of 4 KB are often too small.

3.1.3  Ack Compression

Ack compression [20] occurs when the spacing between successive acknowledgments is compressed while they are in transit
between the receiver and sender. The acknowledgments then arrive at the sender at a higher rate than they were generated by
the receiver. This disturbs the ack-clocking nature of TCP [9], causing the sender to transmit a burst of packets. This burst of
packets is undesirable as it increases the likelihood of overflowing a queue at a network router, leading to packet loss. We
wanted to determine the degree to which acknowledgments are compressed in the network and to quantify the negative effect
that this has on TCP senders. We did this analysis in two different ways.

Method 1: Ack Bandwidth Ratio [11]

In this method, we calculate theack bandwidth for TCP windows for all connections in the trace. The ack bandwidth with
respect to a starting acknowledgmentA is defined as the number of outstanding bytes at the timeA was received divided by the
time to receive the ack for the last outstanding byte. Each individual ack bandwidth sample is then compared to the median ack
bandwidth for all windows in the connection. This ratio (ack bandwidth)/(median ack bandwidth) allows us to quantify the
degree to which acks are compressed.

Figure 3 shows the histogram of ack compression ratios for the trace on a log-log scale. Thex-axis is the (quantized) ack band-
width ratio, and they-axis is the frequency with which that ratio was observed in the trace. The ack bandwidth ratio crosses
several orders of magnitude, but the probability of large ratios decreases as the ratio increases.
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3.1 Single Connection Behavior

Table 3 summarizes the results of the analysis of single connection behavior. In the rest of this section, we discuss the perfor-
mance and behavior of retransmissions, loss recovery, receiver-advertised window sizes, and ack compression.

3.1.1  Retransmissions and Loss Recovery

We classify the retransmissions of lost segments in TCP Reno into three categories —fast retransmissions, which are trig-
gered when a threshold number of duplicate acknowledgments (three in TCP Reno) are received by the sender,timeouts,
which are retransmissions triggered by the expiration of a timer before the arrival of an acknowledgment for the missing seg-
ment, andslow-start retransmissions, which are retransmissions performed by the sender immediately after a timeout, for sub-
sequent packets that were presumed lost in the window. There are typically two situations that result in coarse timeouts. In
TCP Reno, the loss of multiple segments in a window usually leads to a coarse timeout. Coarse timeouts also occur when the
number of duplicate acknowledgments is insufficient to trigger a fast retransmission.

Running the TCP emulation engine against the observed acknowledgment trace showed that timeouts and the subsequent
slow-start retransmissions are the predominant mechanism for loss recovery in TCP Reno. Specifically, over a 3 hour trace
involving 1,650,103 connections and 285,979 individual retransmission events, we found that 49.3% of all retransmissions
were due to timeouts, 43.8% were the result of a TCP fast retransmission, and 6.9% were the result of slow start retransmis-
sions. That is, 56.2% of all retransmissions occurred soon after a coarse timeout.

We also characterized the state of the sender at the time a loss occurred into slow-start periods and congestion avoidance peri-
ods, to determine if either mode shows inherently different behavior from the other. Both congestion avoidance and slow-start
have similar frequencies of loss: 82,181 (7%) out of 1159588 packets were lost in congestion avoidance and 354566 (5%) out
of 6662050 packets were lost in slow-start.

From this analysis, we can see thatexisting loss recovery techniques are not effective in dealing with packet losses and new
techniques must be developed to handle them. This result is somewhat disappointing, because it implies that in practice, the
more sophisticated data-driven loss recovery mechanisms are not being used and that there is a heavy dependence on the time-
outs for loss recovery. In Section 4.1, we discuss the effectiveness of the standard TCP Selective Acknowledgment (SACK)
option in reducing the number of timeouts, and describe an enhancement to the loss recovery procedure to significantly
improve its performance.

Trace Statistic Value %

Total connections 1650103

With packet re-ordering 97036 6

With receiver window as bottleneck 233906 14

Total packets 7821638

During slow-start 6662050 85

# of slow-start pkts lost 354566 5

During congestion avoidance 1159588 15

# of congestion avoidance pkts lost 82181 7

Total retransmissions 857142

Fast retransmissions 375306 44

Slow-start retransmissions 59811 7

Coarse timeouts retransmissions 422025 49

Avoidable with SACKs 18713 4

Avoidable with enhanced recovery 104287 25

TABLE 3. Summary of Analysis Results (percentages
are relative to the category above it)
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In order to faithfully reproduce the state of the sender-side TCP implementation, we wrote aTCP emulation engine that took
the captured acknowledgments as input and reproduced the evolution of the sender-side state variables (e.g., congestion win-
dow, round-trip time estimate, maximum packet sequence transmitted, etc.). The captured acknowledgments are sufficient for
this because the change in any sender-side state variable is triggered by the reception of an acknowledgment or the expiration
of a timer.

In essence, the engine is an implementation of a subset of the functions of a TCP sender at user-level, driven by the sequence
of acknowledgment traces. If the evolution of the sender’s state were completely driven by the arrival of acks (as is usually the
case if a connection experiences no losses), it is possible to reconstruct it with complete accuracy. We handled the complica-
tions due to timer events by using a number of heuristics, in addition to estimating the round-trip time as faithfully as done by
the real TCP sender.

We validated our engine by comparing the times at which it predicted a retransmission event with the actual times that retrans-
missions occurred, as reported by the modified server nodes and captured by the trace collector. When completed, the engine
predicted the number of coarse timeouts, fast retransmissions, and slow-start retransmissions to within 0.75% of the correct
number (even assuming that no retransmission notifications were lost by the packet capture process). As a result, all the win-
dow size calculations are also accurate to within this bound plus the underlying loss rate in the packet capture process (about
0.5% on average).

In summary, the TCP emulation engine is a tool that emulates the evolution of a TCP sender’s state with a very high degree of
accuracy. The emulation engine, combined with the collected traces, allow us to analyze how TCP connections as used by Web
browsers behave in today’s Internet.

3. Analysis

In this section, we present the results from our analysis of the real-world behavior of TCP connections. We first consider sin-
gle-connection behavior (analyzing TCP connections independent of each other), analyzing how well the different TCP loss
recovery mechanisms work in practice and looking for the presence of receiver bottlenecks and ack compression. We then ana-
lyze the effects that multiple simultaneous connections have on the network, focusing on the loss recovery behavior and con-
gestion window evolution of parallel connections. In all the graphs that have error bars, the error bars represent a confidence
interval of plus or minus one standard error.
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we collected approximately 1 GB of compressed packet headers per hour. Periodically, the packet trace files were dumped onto
tape. While dumping the trace files to tape, however, there were occasional periods during which the traffic was not monitored.

Due to the location of the trace collection machine and the asymmetric path of request and response data, we could only cap-
ture packets coming from the clientsinto the Web server complex. These packets include the initial TCP SYN packet from the
client, the HTTP request packets, as well as all TCP acknowledgments for data sent from the server. In particular, this implies
that we did not explicitly capture any data packets from the server to the client. However, this does not prevent us from deter-
mining the packet sequence trace as a function of time, since we can estimate this from the sequence of TCP acknowledg-
ments. In addition, we modified the TCP stack on a subset of the servers. These modified server nodes transmit the TCP/IP
header, together with information on the current sender congestion window size, smoothed round-trip time estimate, and num-
ber of duplicate acknowledgments causing the retransmission, of any retransmitted packet on the token ring interface to our
trace collection machine. This retransmission information combined with the acknowledgement traces and the knowledge of
the sender’s TCP algorithms at the server allow us to reconstruct the outgoing data stream with high accuracy.

The following tables and figures summarize a variety of interesting information about the data collected. Table 1 describes var-
ious statistics about our trace data while Table 2 contains data about activity at the site during the Olympics. More details
about these traces and a study of the stability of wide-area network performance based on them can be found in [3].

2.3  TCP Emulation Engine

We post-processed the packet traces to generate a one-record summary of the progress of each TCP connection, including the
times and sequence numbers of acknowledgments as well as the server-side retransmission notifications. We then organized
the connection summaries into a database that allowed us to cluster together connections from a single client and compare the
TCP performance of different clients at different times.

Figure 1. WWW Server and Monitoring Setup
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Trace Statistic Value

Packets captured 1,540,312,422

Packets dropped 7,677,854

Average packet drop percentage 0.498%

Distinct client addresses 721,417

Total Bytes Collected ~189 GB

TABLE 1.  Trace Statistics

Site Statistic Value

Total server hits during Olympics 190,000,000

Max hits/day 16,955,000

TABLE 2.  Site Statistics



3

• Ack compression is an observed phenomenon and can be correlated with subsequent packet losses.Future work should
investigate mechanisms for traffic shaping and sender adaptation in the presence of ack compression.

• A client using a collection of parallel connections to connect to a server is a more aggressive user of the network than one
that uses a single TCP connection.Throughput is positively correlated with the number of active connections. When multi-
ple connections are concurrently active and one of them experiences a loss, only half of the remaining ones experience a
loss on average. The combined congestion window of a group of parallel connections does not decrease as much as the
congestion window of a single connection after a packet loss.

• Of a group of parallel connections, ones with small outstanding windows could experience a larger number of losses than
their share of the total outstanding window would warrant. This means that it may be harder to initiate a new connection
than to keep an existing connection going.

Based on these results, we propose several modifications and improvements to TCP to overcome or eliminate these observed
problems. Our proposed modifications are completely compatible with existing TCP implementations and can be incorporated
with little effort. Furthermore, we consider solutions that only modify the sender-side TCP implementation. In this way, cur-
rent Web servers (and TCP senders) can benefit from these modifications while leaving Web clients untouched; this facilitates
incremental deployment in the Internet. Our modifications fall into two classes — ones designed to improve the performance
of individual TCP connections and ones designed to improve the performance of multiple concurrent TCP connections. The
major enhancements we propose are:

• Enhanced TCP loss recovery: An improved loss recovery technique which improves the effectiveness of TCP fast retrans-
mission when window sizes are small. With this modification, 25% of the timeout events observed in the trace could have
been avoided.

• Integration across concurrent connections: An integrated approach to congestion control and loss recovery across multiple
simultaneous TCP connections between a pair of hosts. This allows (unmodified) applications to open as many TCP con-
nections as they wish to another host without adversely affecting either their own performance or that of others.

The rest of this paper is organized as follows. Section 2 describes the details of the traffic collection site, data collection, and
post-processing. Section 3 presents the results of the traffic analysis. Section 4 presents our modifications to TCP to improve
the performance of individual connections, and Section 5 presents our modifications to improve the performance of concurrent
TCP connections. Section 6 presents our conclusions and pointers to future work.

2. Data Collection and Web Server Setup

This section describes the details of the trace collection and the post-processing we performed on the packet traces. We start
with a brief description of the Web server location and configuration.

2.1  Data Collection Site

The Web traces used in this paper come from the primary Web site (in Southbury, CT) for the Atlanta Olympic games, ran by
IBM (http://www.atlanta.olympic.org). Figure 1 shows the topology of the Web site’s network and the hardware used at the site.
During the Olympics, the Web site was connected via a T3 link to each of the 4 U.S. Network Access Points (NAPs), located
in Chicago (Bellcore and Ameritech), the San Francisco Bay Area (Bellcore and Pacific Bell), New York (Sprint), and Wash-
ington, D.C. (MFS Datanet). In addition, there were mirror sites at Cornell (N.Y.), Keio (Japan), Karlsruhe (Germany) and
Hursley (U.K.), for which we did not collect data. More details about the site structure and software are available from[14].

Requests for data from any client arrive at the web site after being routed through the appropriate Internet NAP. These requests
are passed to a load-balancing connection router [1, 19], that distributes them across several server nodes. These nodes retrieve
the appropriate Web objects and transmit them across an internal ATM network and through the Internet to the clients.

2.2  Data Collection Methodology

We monitored all the traffic coming into the site and obtained packet-level traces of this traffic by running thetcpdump [10]
utility on a machine placed on the token ring connecting the load-balancing router to the server nodes (Figure 1). This machine
was an IBM 150Mhz Pentium Pro PC running BSD/OS 2.1 from BSDI. We extracted and stored the first 350 bytes of every
packet destined to TCP port 80 (the HTTP port), compressing this data on-the-fly using thegzip utility. In addition, the server
also transmitted other data (such as streaming audio) on other ports. We did not capture this data due to limited storage space
of our setup and the high data packet capture rates. Even while restricting ourselves to traffic on port 80, during peak periods
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The majority of solutions that have been proposed to address these problems involve the use of persistent connections. Exam-
ples include persistent-connection HTTP (P-HTTP) [15], Session Control Protocol (SCP) [16] and persistent connections in
HTTP/1.1 [6]. The main idea in these is to multiplex several logical connections onto a single, persistent TCP connection
between a server and a client.

While persistent connections certainly help, they have the drawback that they are specifically tied to HTTP. This means that
TCP connections initiated by other non-HTTP applications running on the same machine (such as FTP applications or
Netscape plug-ins [12]) would not be able to share the persistent connection with HTTP. Moreover, if HTTP were to be
replaced by a different protocol in the future, special effort would have to be undertaken again to ensure that the same draw-
backs do not recur. Also, the ordered byte-stream abstraction of TCP could result in an undesirable coupling between the logi-
cal connections that are multiplexed onto a persistent connection.

In contrast, our approach is to identify the basic issue — providing efficient support for numerous, short logically different
transfers — and to provide a solution at the transport layer that operates independently of the application and the application-
level protocol. Applications are not required to be modified in any way; any application that uses TCP connections (not neces-
sarily persistent connections) can benefit from our transport-level solution.

In the remainder of this section, we present a brief overview of the paper. In the first part, we present a detailed analysis of the
behavior and performance of TCP as currently used by HTTP. The results of this analysis highlight several problems that lead
to reduced end-to-end performance. In the second part, we use these results to motivate and design a set of TCP improvements
that alleviate many of these problems.

The goal of our analysis is to answer the following questions. We divide them into two categories: those concerning the behav-
ior of individual TCP connections, and those concerning the combined behavior of concurrent connections used by Web
browsers.

Single Connection Behavior:

1. Loss recovery: Do current TCP senders recover from packet losses using data-driven loss recovery mechanisms such as
fast retransmission and recovery, or do they tend to depend on coarse timeouts when losses occur? What would be the
potential benefits of using more sophisticated loss recovery mechanisms such as selective acknowledgments (SACKs)?

2. Receiver bottleneck: How often do receiver-advertised windows restrict the performance of a connection? Are typical
receiver advertised window sizes large enough to utilize the more sophisticated loss recovery mechanisms? Are the effec-
tive window sizes available to senders limited by small receiver-advertised window sizes?

3. Ack compression:Ack compression [11,20] occurs when the spacing of acknowledgments is compressed, disrupting the
ack-clocking nature of TCP. How often does this phenomenon occur? How is it correlated with congestion-related phe-
nomena such as packet losses?

Parallel Connection Behavior:

1. Throughput: How does the throughput seen by a client vary with the number of connections?

2. Congestion control: When one of a group of concurrent connections experiences a loss, how many other connections of
the group experience a loss around the same time? What is the effective decrease in congestion window size after a packet
loss?

3. Loss behavior: When an application uses concurrent connections, are these connections treated equally by the network
with respect to packet losses?

To answer these questions, we analyze a very large data set — packet-level traces of millions of TCP connections collected
from the official Web server for the 1996 Atlanta Olympic games. Over a 3-week period, the traces included approximately 1.5
billion TCP packets from 700,000 distinct hosts from all over the world.

Our analysis of the traces yield the following answers to the questions raised above:

• Existing loss recovery techniques are not effective in dealing with packet losses and new techniques must be developed to
handle them. Over 50% of all losses require a coarse timeout to recover. Fast retransmissions recover from less than 45% of
all losses. The remainder of losses are recovered during slow start following a timeout.

• Future network implementations should increase their default socket buffer size to avoid the receiver window from becom-
ing a bottleneck. The socket buffer size limited the throughput of approximately 14% of all observed connections.
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Abstract

The rapid growth of the World Wide Web in recent years has caused a significant shift in the composition of Internet traffic.
Although past work has studied the behavior of TCP dynamics in the context of bulk-transfer applications and some studies
have begun to investigate the interactions of TCP and HTTP, few have used extensive real-world traffic traces to examine the
problem. This interaction is interesting because of the way in which current Web browsers use TCP connections: multiple par-
allel short connections from a single host.

In this paper, we analyze the way in which Web browsers use TCP connections based on extensive traffic traces obtained from
a busy Web server (the official Web server of the 1996 Atlanta Olympic games). At the time of operation, this Web server was
one of the busiest on the Internet, handling tens of millions of requests per day from hundreds of thousands of clients. We first
describe the techniques used to gather these traces and reconstruct the behavior of TCP on the server. We then present a
detailed analysis of TCP’s loss recovery and congestion control behavior from the recorded transfers. The two most important
results are that: (1) short Web transfers lead to poor loss recovery performance for TCP, and (2) concurrent connections cause
an overly aggressive use of the network. We then discuss techniques designed to solve these problems. To improve the loss
recovery performance of short transfers, we present a new technique for TCP loss recovery. To improve the congestion control
and loss recovery performance of multiple parallel connections, we present a new transport-level integrated connection
approach to congestion control and loss recovery. Simulation and trace analysis results show that our enhanced loss recovery
scheme could have eliminated 25% of all timeout events, and our integrated connection approach provides greater fairness and
improved startup performance for parallel connections. Our solutions are more general than a specific protocol enhancement
such as the use of persistent connection in P-HTTP [15] and HTTP/1.1 [6], and include techniques, such as improved TCP loss
recovery, that are not addressed by these protocols.

1. Introduction

The rapid growth of the World Wide Web in recent years has caused a significant shift in the composition of Internet traffic.
Today, Web traffic forms the dominant component of Internet backbone traffic. For example, [2] reports that Web traffic consti-
tuted 50% of the packets and bytes traversing a busy backbone link. Therefore, there is significant value in understanding Web
traffic characteristics and its implications for network performance and protocol design.

Web data is disseminated to clients using the HyperText Transfer Protocol (HTTP) [4], which uses TCP [17] as the underlying
reliable transport protocol. The characteristics of Web traffic are significantly different from those generated by traditional
TCP applications such as FTP and Telnet. Current Web transfers are typically shorter than FTP transfers, and often several log-
ically separate transfers are active at any given time (for example, separate transfers for the text and the inlined images consti-
tuting a Web page). This, coupled with the single, reliable byte-stream abstraction provided by TCP, has resulted in two
distinctive characteristics of HTTP: (i) each TCP connection initiated by HTTP tends to be short because a separate connection
is used to transfer each component of a page, and (ii) Web browsers often launch multiple simultaneous TCP connections to a
given server to reduce user-perceived latency.

Unfortunately, these transfer characteristics are poorly suited to current TCP mechanisms. The short duration of connections
gives TCP limited opportunity to probe the network and adapt its congestion control parameters to the characteristics of the
network. The use of multiple, concurrent connections by Web clients causes overall network performance to degrade and is
detrimental to the performance seen by other hosts.


