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Abstract

Relay Ladder Logic (RLL) [4] is a programming language widely used for complex embedded control
applications such as manufacturing and amusement park rides. The cost of bugs in RLL programs is

extremely high, often measured in millions of dollars (for shutting down a factory) or human safety (for

rides). In this paper, we describe our experience in applying constraint-based program analysis techniques
to analyze production RLL programs. We demonstrate that our analyses are useful in detecting some

common programming mistakes and can be easily extended to perform other kinds of analysis for RLL

programs such as some of the analyses described in [6].

1 Introduction

Programming logic controllers (PLC's) are control development systems used extensively in manufacturing
industries for complex embedded control applications such as factory control and for entertainment equipment
such as amusement park rides. Relay Ladder Logic (RLL) is the most widely used PLC programming
language; approximately 50% of the manufacturing capacity in the United States is programmed in RLL [5].

RLL has long been criticized for its low level design, which makes it di�cult to write correct RLL pro-
grams [19]. Moreover, validation of RLL programs is extremely expensive, often measured in millions of
dollars (for shutting down a factory) or human safety (for rides). One solution is to replace RLL with a
higher-level, safer programming language. An alternative is to provide direct programming support for RLL.
Since there are many existing RLL applications, and many more will be written in this language, we consider
this latter approach in this paper.

We have designed and implemented a tool for analyzing RLL programs. Our analyzer automatically detects
some commonprogrammingmistakes that are di�cult, if not impossible, to detect manually. The information
inferred by the analyzer can be used by RLL programmers to identify and correct these errors.

Our most interesting result is an analysis to detect certain race conditions in RLL programs. Tested on real
RLL programs, the analysis found several such races, including one known bug that originally cost several
million dollars measured in factory down-time [5].

Our analyses are constraint-based, meaning that the information we wish to know about a program is
expressed as constraints [17, 2, 3]. The solutions of these constraints yield the desired information. Our
analyses are built using a generic constraint resolution engine, which allows our analyses to be expressed
very directly. Constraint-based program analysis is discussed further in Section 2.
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XIC (A) TON
PR: 50
AR: xx
TB: 0.01 sec

EN

DN

XIC (B)

XIO (C) OTE (B)

OTE (C)

OTE (X)XIO (A)XIC (A)

OTE (Y)XIC (DN)

Figure 1: An example RLL program.

RLL programs are represented as ladder diagrams, which are a stylized form of a circuit or data 
ow diagram.
A ladder diagram consists of a set of ladder rungs with each rung having a set of input instructions and
output instructions. We explain this terminology in the context of the example RLL program in Figure 1.
In the example, there are two vertical rails. The one on the left supplies power to all crossing rungs of
the ladder. The �ve horizontal lines are the ladder rungs of this program. This example has four kinds of
RLL instructions: input (two kinds), outputs, and timer instructions. The small vertical parallel bars j j
and j=j represent input instructions, which have a single bit associated with them. The bit is named in the
instruction. For example, the j j instruction (an XIC for \Normally Closed Contact" instruction) in the
upper-left corner of the diagram reads from the bit named A, and the j=j instruction (an XIO for \Normally
Opened Contact" instruction) in the lower-left corner of the diagram reads from the bit named C. The small
circles represent output instructions that update the value of their labeled bits. The bits named in input
and output instructions are classi�ed into external bits, which are connected to inputs or outputs external
to the program, and internal bits, which are local to the program for temporarily storing program states.
External inputs are generally connected to sensors, while external outputs are used to control actuators. The
rectangular box represents a timer instruction (a TON for \Timer On-Delay" instruction), where PR (preset)
is an integer representing a time interval in seconds, AR (accumulator) keeps the accumulated value, and
TB (time base) is the step of each increment of the AR. The timer instructions are used to turn an output
on or o� after the timer has been on for a preset time interval (the PR value). Instructions are connected
by wires, the horizontal lines between instructions. We say a wire is true (or on) if power is supplied to the
wire, and the wire is false (or o�) otherwise.

An RLL program operates by �rst reading in all the values of the external input bits and executing the
rungs in sequence from top to bottom and left to right. Program control instructions may cause portions of
the program be skipped or repeatedly executed. After the last rung is evaluated, all the real output devices
connected to the external output bits are updated. Such a three step execution (read inputs, evaluate rungs,
update outputs) of the program is called a scan. Programs are executed scan after scan until interrupted.
Between scans, the input bit values might be changed, either because the inputs were modi�ed by the
previous scan (bits can be inputs, outputs, or both) or because of state changes in external sensors attached
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to the inputs. Subsequent scans use the new input values.

RLL has many types of instructions: relay instructions, timer and counter instructions, data transfer instruc-
tions, arithmetic operations, data comparison operations, and program control instructions. A grammar for
the subset of RLL discussed in this report is in Figure 2.

Examples of relay instructions are XIC, XIO, and OTE. We brie
y describe how these three instructions
work for the explanation of our analyses. Let w1 and w2 be the wires before an instruction and after an
instruction respectively. Further, let b be the bit referenced by an instruction.

XIC: if w1 and b are true, w2 is true; otherwise, w2 is false.

XIO: if w1 is true, and b is false, w2 is true; otherwise, w2 is false.

OTE: the bit b is true if and only if w1 is true.

In this paper, we describe the design and implementation of our RLL program analyzer. Currently the
analyzer performs two di�erent analyses. One is constant wire analysis, in which the analyzer detects if
there is any wire in a given program that is always true or always false during the execution of a program.
Constant wires indicate possible programming mistakes, because it is unlikely that a programmer would
intentionally write constant-valued circuits. If a wire is always true or always false, there is no reason to put
any instructions before these wires. For example, in the program in Figure 1, if we know that the wire after
the XIO(A) instruction in the second rung is always false, then the two instructions XIC(A) and XIO(A)
are super
uous.

Our second analysis detects relay races. In RLL programs, it is desirable if the values of outputs depend
solely on the values of inputs and the internal states of timers and counters. If under �xed inputs and timer
and counter states, an output x changes from scan to scan, then there is a relay-race on x. For example,
in the program in Figure 1, we will see later that the bit B changes value each scan regardless of its initial
value. Relay races are particularly di�cult to detect by traditional testing techniques, as races can depend
on the timing of external events and the scan rate.

Our analyses are a generalization of traditional data 
ow analyses [1]. Instead of data 
ow equations,
set constraints [17, 2, 3] are used. Set constraints are more expressive than data 
ow equations since the
constraints can model not only the data 
ow but also the control 
ow of a program.

Our analyses consist of two steps. In the �rst step, we generate constraints that describe the data and
control 
ow dependences of an RLL program. The constraints are generated in a top-down traversal of the
abstract syntax tree (AST) of the program. According to a set of constraint generation rules (see Section 4),
appropriate constraints are generated for each AST nodes. These data and control 
ow constraints are solved
to yield another set of simpli�ed constraints. We call the set of resulting constraints the base system. The
base system models where and how a value 
ows in the program. For example, the constraints in Figure 3
are produced for the third rung of the example program in Figure 1.

The constraints in Figure 3 are solved and reduce to the constraints shown in Figure 4. The base system is a
conservative approximation of the program: if during program execution, a wire or a bit can be true (false),
then true (false) is in the set that denotes the values of the wire or the bit in the base system; however, false
(true) may be a value in that set, too.

The second step is analysis-speci�c. For constant wire analysis, we use two di�erent approaches. In the
�rst approach, we constrain every input by both true and false and add the corresponding constraints to
the base system. The resulting system is then solved, and the minimum solution is extracted. If in the
minimum solution a wire x is not both true and false, we are sure that x is constant since the base system
is a conservative approximation of the program. In the second approach, we use random sampling of input
assignments to detect constant wires. This approach gives a probabilistic guarantee that a wire is constant.
The basic idea is to generate random input assignments and add corresponding constraints to the base
system and solve. If a wire x takes on di�erent values in di�erent solutions of the respective systems, we
consider that wire as \non-constant." If after some number of samples, a wire x still remains single-valued,

3



program ::= ladder files

ladder files ::= ladder files ladder file

j ladder file (* at least one ladder �le *)

ladder file ::= rungs

rungs ::= rungs rung

j (* empty *)

rung ::= input list output list

input list ::= instruction input list

j input branch input list

j (* empty *)

input branch ::= input level input list

input level ::= input level input list

j input list

output list ::= instruction

j output branch

output branch ::= output branch input list output list

j (* empty*)

instruction ::= XIC (* a partial list*)

j XIO

j OTE

j OTL

j OTU

j TON

j CTU

j MOV

j JSR

j
...

Figure 2: Grammar of the ladder language.
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(true 2 w1)

(true 2 w1)) (true 2 bDN ) ) (true 2 w2)

(false 2 w1) ) (false 2 w2)

(false 2 bDN ) ) (false 2 w2)

(true 2 w3) ) (true 2 bY )

(false 2 w3) ) (false 2 bY )

(true 2 w2) ) (true 2 w3)

(false 2 w2) ) (false 2 w3)

where

w1 : set variable denotes the wire before the instruction XIC (DN);

w2 : set variable denotes the wire after the instruction XIC (DN);

w3 : set variable denotes the wire before the instruction OTE (Y);

bDN : set variable denotes the bit DN, a status bit of the TON instruction;

bY : set variable denotes the bit Y:

Figure 3: Constraint system for a fragment of the example program in Figure 1.

(true 2 w1)

(true 2 bDN ) ) (true 2 w2)

(false 2 bDN ) ) (false 2 w2)

(true 2 w3) ) (true 2 bY )

(false 2 w3) ) (false 2 bY )

(true 2 w2) ) (true 2 w3)

(false 2 w2) ) (false 2 w3)

Figure 4: Base system for a fragment of the example program in Figure 1.
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then x is considered \constant." For example, consider again the example program of Figure 1. Since the
second rung does not interfere with the other rungs, we can consider it in isolation. For this rung, whatever
the value of the bit A is, the wire after the XIO (A) instruction is always false, since it requires that A to
be at the same time both true and false for the wire to be true.

Relay race analysis works by simulatingmultiple scans and looking for racing outputs. Similar to the constant
wire analysis, we choose a random assignment of inputs and add the corresponding constraints to the base
system. The resulting system is solved; its minimum solution describes the values of the outputs at the end
of the scan. Since some of the output bits are also inputs, in the next scan, the input assignment is updated
using the minimum solution from the previous scan. Again, we add the resulting system to the base system
and solve to obtain the new minimum solution of the outputs. This process repeats. If an output changes
value across scans, a relay race is detected. For example, consider the example program in Figure 1. Since
the bottom two rungs do not interfere with the other three, let us consider these two rungs only. Let us
assume that B has initial value true. Then C also is true, and so in the last rung, B becomes false. Thus,
in the next scan, B is initially false. Thus, C becomes false, which makes B true at the end of this scan.
Consequently, we have detected a relay race on B: after the �rst scan B is false, and after the second scan B
is true.

The two analyses are conservative in the sense that they cannot detect all of the constant wires or relay races
in a program. However, any constant wire detected by the �rst constant wire analysis are indeed constant
wires, and any constant wire reported by the second constant wire analysis are constant wires with provably
high probability. As to the relay race analysis, any relay races the analyzer detects are indeed relay races,
and we can prove that a large class of relay races are detected with high probability.

We have implemented the two analyses described in this paper in Standard ML of New Jersey (SML) [21].
Our analyzer is accurate and fast enough to be practical | production RLL programs can be analyzed in
a few minutes. The relay race analysis not only detected a known bug in a program that took an RLL
programmer four hours of factory down-time to uncover, it also detected many previously unknown relay
races in our benchmark programs.

The rest of the paper is structured as follows. First, we describe the constraint language used for our analyses
(Section 2). The rules for generating the base system come next (Section 3), followed by a description of
our analyses (Section 4). We then discuss some techniques of using constraints to provide support for the
analyses (Section 5). Finally, we present some experimental results (Section 6), followed by a discussion of
related work (Section 7) and the conclusion (Section 8).

2 Set Constraints

In this section, we describe the constraint language we use for expressing our analyses. We give its syntax
and semantics.

Set constraints [17, 2, 3] are inclusion constraints between sets of terms. A set constraint is of the form
x � y, where x and y are set expressions. Our expression language consists of set variables, a least value ?,
a greatest value >, constant constructors true and false, intersections, unions, and conditional expressions.
The syntax of the expression language is given by the following grammar:

E ::= � j ? j > j c j E1 [E2 j E1 \E2j E1 ) E2;

where c is a constant (either true or false) and � 2 V is a variable.

The abstract domain consists of four elements: fg (represented by ?), ftrueg (represented by true), ffalseg
(represented by false), ftrue; falseg (represented by >) with the partial order on these elements given in
Figure 5. The domain is a �nite lattice with \ and [ being the meet and join respectively. The semantics
of the expression language is given in Figure 6.

Conditional expressions deserve some discussion. Conditional expressions are proposed in [3] for accurately
modeling of 
ow-of-control. In the context of RLL, they can be used to express boolean relations very
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{true} {false}

{true, false}

{ }

Figure 5: Our working abstract domain.

�(?) = fg

�(>) = ftrue; falseg

�(true) = ftrueg

�(false) = ffalseg

�(E1 \E2) = �(E1) \ �(E2)

�(E1 [E2) = �(E1) [ �(E2)

�(E1 ) E2) =

�
�(E2) if �(E1) 6= fg

fg otherwise

Figure 6: Semantics of set expression in the expression language.
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directly. For example, we can express the boolean expression v1 and v2 with the following conditional
expression:

((v1 \ true)) (v2 \ true)) true) [ ((v1 \ false)) false) [ ((v2 \ false)) false)

To see this expression does model the operator, notice that if v1 = true and v2 = true, the above expression
simpli�es to

((true\ true)) (true\ true)) true) = (true) true)) true

= true:

One can easily check that the other three cases are also correct.

Most of the RLL instructions can be expressed naturally with boolean expressions. Therefore, the semantics
of RLL programs can be very directly modeled by our constraint language. We use set constraints to model
RLL programs instead of, for example, boolean logic for the following reason. Although the core of RLL is
boolean logic, other instructions such as program control 
ow and arithmetic instructions also exist. These
instructions could, in principle, be expressed using boolean logic. However, the use of boolean logic increases
the complexity of modeling RLL programs substantially. On the other hand, set constraints give us the

exibility to model certain instructions less accurately and less expensively than others, thus, making the
analysis of RLL programs more manageable.

3 Constraint Generation

In this section, we describe how we use inclusion constraints to model RLL programs. We give the constraint
generation rules used to express RLL programs in our constraint language.

Because of the scan evaluation model of RLL programs, it is natural to express the meaning of a program
in terms of the meaning of a single scan. The constraint generation rules we present model the meaning of
a single scan of RLL programs.

In the constraint generation rules, we use set variables to denote the values of bits and wires in RLL programs.
Thus, a bit or wire may be assigned the abstract values fg (meaning no value), ftrueg (de�nitely true),
ffalseg (de�nitely false) or ftrue; falseg (meaning either true or false, i.e., no information). Constraints
between these set variables are used to express the data and control 
ow of a program in one scan.

The rules are of the form
E; I ! E0; S; v1; v2

where:

� E and E0 are mappings of bits and wires to their corresponding set variables;

� I is the current instruction;

� S is the set of constraints generated for this instruction;

� v1 and v2 are set variables linking the instructions together.

In this section, let w1 and w2 denote the wires preceding and following an instruction respectively. Further,
let b be the bit referenced by an instruction unless speci�ed otherwise.

Figure 7, Figure 8 and Figure 9 give the rules for generating the constraints describing the data and control

ow of RLL programs.

Contacts

The instruction XIC is called \Normally Closed Contact." If w1 is true, then b is examined. If b is
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true, then w2 is true. Otherwise, w2 is false. In the rule [XIC], we use two fresh set variables v1 and
v2 to represent the two wires w1 and w2. The set variable vct represents the referenced bit b. The
constraints express that w2 is true if and only if both w1 and b are true.

The instruction XIO, called \Normally Opened Contact," is the dual of XIC. The wire w2 is true if
and only if w1 is true and the referenced bit b is false. The rule [XIO] is similar to the rule [XIC].

Energise Coil

The instruction OTE is called \Energise Coil." It is programmed to control either an output connected
to the controller or an internal output bit. If the wire w1 is true, then the referenced bit b is set to
true. Otherwise, b is set to false. Rule [OTE] models this instruction. The set variables v1 and v2 are
the same as in rules [XIC] and [XIO]. The set variable vct is fresh, representing a new instance of the
referenced bit b. Any later references to b use this instance. The constraints express that b is true if
and only w1 is true.

Latches

The instructions OTL and OTU are similar to OTE. OTL is \Latch Coil," and OTU is \Unlatch
Coil." These two instructions appear in pairs. In latch coil, the bit b remains true even though the
bits that caused this output to be true have changed (i.e., it is a latch). The bit b is true if w1 is true
or it is true before the instruction executes. Otherwise, b is false. The unlatch coil (OTU) instruction
is symmetric. In both the rules [OTL] and [OTU], the set variable v0ct represents the value of the b
prior to the instruction, while the variable vct denotes the new instance of b. In the rule [OTL], the
constraints express that b is true if and only the wire w1 is true or b is true before evaluating this
instruction. The rule [OTU] is similar.

Timers

Timers (TON) and counters (CTU) are output instructions that control a device after an elapsed period
of time or an expired count. They are normally internal output instructions with some associated status
bits that may cause other outputs to be on (true) or o� (false).

Three status bits are associated with a timer: the done bit (DN), the timing bit (TT), and the on bit

(EN). The DN bit is true if the wire w1 has remained true for a preset period of time. The bit remains
true unless w1 becomes false. The TT bit is true if the wire w1 is true and the DN bit is false. It is
false otherwise, i.e., it is false if the wire w1 is false or the DN bit is true. The EN bit is true if and
only if the wire w1 is true. In the rule [TON], vdn; vtt and ven are fresh set variables representing new
instances of the corresponding bits. The constraint for the DN bit is

((v1 \ true)) true) [ false � vdn:

The constraint says that if the wire w1 is true, then the DN bit is either true or false, i.e., we do not
have any information of whether it is true or of whether it is false. If the wire w1 is false, then the DN
bit is de�nitely false. Notice that in this constraint, we over-estimate the value of the DN bit, meaning
that additional values may be assumed for the bit besides its actual value. The constraints for the TT
and EN bits are straight forward.

Counters

A counter instruction has two associated status bits: the done bit (DN) as in timers and the on bit

(CU). The DN bit becomes true if the wire w1 has made a preset number of false to true transitions
across scans. The CU bit is true if and only if the wire w1 is true. In the rule [CTU], vdn and vcu are
fresh set variables representing new instances of the corresponding status bits. The constraint for the
CU bit is the same as that for a timer's EN bit. The constraint for the DN bit is

((v1 \ true)) (v1 \ false)) true) [ false � vdn:

Notice that for the DN bit to be true, the wire w1 must have made at least one false to true transition.
The variable that models the wire w1 is v1. The constraint says that if v1 has both true and false, the
DN bit could be either true or false. If v1 does not have both true and false, the DN bit is de�nitely
false. Again, we over-estimate the value of the DN bit.
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v1 and v2 are fresh variables
E0 = E + f(XICwb; v1); (XICwa; v2)g)
vct = E(XICct)

S =
f ((v1 \ true)) (vct \ true)) true) [
((v1 \ false)) false) [
((vct \ false)) false) � v2 g

E;XIC ! E0; S; v1; v2
[XIC]

v1 and v2 are fresh variables
E0 = E + f(XIOwb; v1); (XIOwa; v2)g)
vct = E(XIOct)

S =
f ((v1 \ true)) (vct \ false)) true) [
((v1 \ false)) false) [
((vct \ true)) false) � v2 g

E;XIO ! E0; S; v1; v2
[XIO]

v1, v2, and vct are fresh variables
E0 = E + f(OTEwb; v1); (OTEwa; v2); (OTEct; vct)g

S =
f ((v1 \ true)) true) [
((v1 \ false)) false) � vct g

E;OTE! E0; S; v1; v2 [OTE]

v1, v2, and vct are fresh variables
E0 = E + f(OTLwb; v1); (OTLwa; v2); (OTLct; vct)g
v0ct = E(OTLct)

S =
f ((v0ct \ true)) true) [
((v1 \ true)) true) [
((v1 \ false)) (v0ct \ false)) false) � vct g

E;OTL! E0; S; v
1
; v

2 [OTL]

v
1
, v

2
, and vct are fresh variables

E0 = E + f(OTUwb; v1); (OTUwa; v2); (OTUct; vct)g
v0ct = E(OTUct)

S =
f ((v0ct \ false)) false) [
((v

1
\ true)) false) [

((v
1
\ false)) (v0ct \ true)) true) � vct g

E;OTU ! E0; S; v1; v2 [OTU]

Figure 7: Part one of rules for generating constraints.
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Data Transfers

The MOV instruction is used for bit transfers. If the wire w1 is true, the source (a word of 16 bits)
is moved into the destination (also a word of 16 bits). If w1 is false, no action is taken. The fresh
variables dvi; 0 � i � 15 are new instances for the 16 bits of the destination. dv0i are the variables that
represents the old values of the bits in the destination. The set variables svi represent the 16 bits of
the source. The constraints are

(v1 \ true)) svi [ (v1 \ false)) dv0i � dvi; 0 � i � 15:

The constraints simply say that if the wire before is true then the source is moved to the destination,
otherwise there is no transfer of bits.

Subroutines

JSR is the subroutine call instruction. If the wire w1 evaluates to true, the subroutine (a portion
of ladder rungs) with the same label as speci�ed in the JSR instruction is evaluated until a return
is evaluated, after which execution continues with the rung after the JSR instruction. If w1 is false,
execution continues immediately with the rung after the JSR instruction being evaluated. In the
rule [JSR], we let B denote the set of all bits in a program. Further, let S be a set of constraints and
� a set expression. We use

� ) S

to represent the set of constraints

f� ) �0 � �1 j (�0 � �1) 2 Sg

The fresh variables nvb; 8b 2 B represent new instances of the bits in B. Constraints S are generated
for the subroutine with the same label as speci�ed in the JSR instruction together with a modi�ed
mapping E0. The variables nv0b and nv00b represent the instances of the bits in E and E0 respectively.
The constraint

(v1 \ true)) nv00b [ (v1 \ false)) nv0b � nvb; 8b 2 B

is similar to the constraint in rule [MOV] for merging the bit variables. It says if the wire w1 is true,
then nv00b should be the value of the current instance, otherwise, nv

0

b is the value of the current instance.

The rules in Figure 9 specify the order of evaluation of RLL programs. Constraints are generated in this
same order. The order of generating constraints is important because the correct instances of wires and bits
should be used.

The rule [RUNG] speci�es that the constraints are generated rung by rung in order. The rule [NORUNG] is
straight forward, simply saying that no constraints need to be generated.

The rule [IO] describes the generation of constraints for a single rung. The constraints for the input instruc-
tions are generated and then the constraints for the output instructions are generated. Notice that, in the
rule, the constraint

true � v1:

The constraint says that, in a rung, the wire before the �rst instruction is always true. The constraint

v2 � v0
1

is for connecting inputs and outputs.

Rules [INO] and [IBRANCH] are similar to the rule [IO], except that v1 is not always true. The rule
[NOINPUT] is straight forward. Similar to the rule [NORUNG], it says that no constraint is generated.

11



v1 v2 vdn, ven, and vtt are fresh variables

E0 = E +
f (TONwb; v1); (TONwa; v2);
(TONdn; vdn); (TONen; ven);
(TONtt; vtt) g

S =

f ((v1 \ true)) true [ false) � vdn;

((v1 \ true)) (vdn \ false)) true) [
((v1 \ false)) false) [
((vdn \ true)) false) � vtt;

((v1 \ true)) true) [
((v1 \ false)) false) � ven g

E; TON ! E0; S; v1; v2
[TON]

v1 v2 vdn, and vcu are fresh variables

E0 = E +
f (CTUwb; v1); (CTUwa; v2);
(CTUdn; vdn); (CTUcu; ven) g

S =

f ((v1 \ true)) (v1 \ false)) true) [
false � vdn;

((v1 \ true)) true) [
((v1 \ false)) false) � vcu

E;CTU ! E0; S; v1; v2
[CTU]

v1 v2 dvi; 0 � i � 15, are fresh variables

E0 = E +
f (MOVwb; v1); (MOVwa; v2);
(MOVswi

; dvi); 0 � i � 15 g
dv0i = E(MOVswi

); 0 � i � 15
svi = E(MOVdwi

); 0 � i � 15

S =
f ((v1 \ true)) svi [

(v1 \ false)) dv0i) � dvi; 0 � i � 15 g

E;MOV ! E0; S; v1; v2
[MOV]

B = the set of bits in a program
v1 v2 nvb (where b 2 B) are fresh variables
E; JSRfile ! E0; S0

E00 = E0 +
f (JSRwb; v1); (JSRwa; v2);
(b; nvb); 8b 2 B g

nv0b = E(b) 8b 2 B

nv00b = E0(b) 8b 2 B

S = ((v1 \ true)) S0) [
f (v1 \ true)) nv00b [

(v
1
\ false)) nv0b � nvb; 8b 2 B g

E; JSRfile ! E0; S; v
1
; v

2 [JSR]

Figure 8: Part two of rules for generating constraints.
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The rule [ILEVEL] describes the generation of constraints for parallel inputs | inputs of the form:

In the rule
v1 = v0

1

is an abbreviation for the two constraints

v1 � v0
1
and v0

1
� v1:

The fresh variable v is used to model the wire after the parallel wires. The constraint

(v2 \ true)) true [ (v0
2
\ true)) true [ (v2 \ false)) (v0

2
\ false)) false � v

says that the wire after the parallel wires is true if one of the parallel wires is true.

The rule [OBRANCH] describes the generation of constraints for parallel outputs | outputs of the form:

The rule says that the parallel levels of outputs are evaluated from top to bottom. Note that Figure 7
and Figure 8 only give a partial list of all the instructions in RLL. The rules for most other instructions
are straightforward. We now present a theorem which states that the constraints generated from an RLL
program together with constraints for restricting the inputs has a least solution.

Theorem 1 (Existence of Least Solution) For any RLL program P, let S be the constraint system gen-

erated by the rules given in Figure 7, Figure 8 and Figure 9. Further let c be an input con�guration for P.

The constraint system S together with the corresponding constraints of c has a least solution, Solleast.

Theorem 1 is proven in Appendix A.

Next, we state a soundness theorem of our model of RLL programs, namely that our model is a safe
approximation of RLL.

Theorem 2 (Soundness) Let P be an RLL program and S be the constraint system generated by the rules

given in Figure 7, Figure 8 and Figure 9. Further let c be an input con�guration for P. The least solution

Solleast to the constraint system S together with the constraints restricting the inputs safely approximates
the values of the wires and bits in one scan, meaning that if an instance of a bit or a wire is true (false),

then true (false) is a value in the set representing this instance.

This theorem is proven in Appendix B.

4 Analyses

In this section, we describe our analyses for detecting constant wires and relay races in RLL programs. The
general strategy for each analysis is

1. generate the base system using the constraint generation rules presented in the previous section.

2. add constraints that restrict the inputs to the base system to express the desired information.

In both analyses, we make the assumption that all input assignments are possible. Our analyses can be
made more accurate if additional information about the possible input values are available.
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rungs

E; rungs! E0; S0
E0; rung! E00; S1

E; rungs rung! E00; S0 [ S1
[RUNG]

E; �! E; ;
[NORUNG]

rung

E; input list ! E0; S0; v1; v2
E0; output list ! E00; S1; v

0

1
; v0

2

E; input list output list! E00; S0 [ S1 [ fv2 � v0
1
; true � v1g; v1; v

0

2

[IO]

input list

E; instruction! E0; S0; v1; v2
E0; output list ! E00; S1; v

0

1
; v0

2

E; instruction output list ! E00; S0 [ S1 [ fv2 � v0
1
g; v1; v

0

2

[INO]

E; input branch! E0; S0; v1; v2
E0; input list! E00; S1; v

0

1
; v0

2

E; input branch input list! E00; S0 [ S1 [ fv2 � v0
1
g; v1; v

0

2 [IBRANCH]

v fresh

E; �! E; ;; v; v
[NOINPUT]

input level

v is a fresh variable
E; input level ! E0; S0; v1; v2
E0; input list! E00; S1; v

0

1
; v0

2

S =
f (v2 \ true)) true [ (v0

2
\ true)) true [

(v2 \ false)) (v0
2
\ false)) false � vg

E; input level input list ! E00; S [ S0 [ S1 [ fv1 = v0
1
g; v1; v [ILEVEL]

output branch

E; output branch! E0; S0; v1; v2
E0; input list ! E00; S1; v

0

1
; v0

2

E00; output list ! E00; S2; v
00

1
; v00

2

S = S0 [ S1 [ S2 [ fv1 = v0
1
; v0

2
� v00

1
g

E; output branch input list output list! E000; S; v1; v2 [OBRANCH]

Figure 9: Part three of rules for generating constraints.
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XIO (A)

XIC (A) OTE (B)

Figure 10: An example RLL program.

4.1 Constant Wire Analysis

We �rst describe the analysis for detecting constant wires in an RLL program. Recall that the problem is
detecting wires that are constant over all possible program executions. Since such a wire contributes nothing
to any run of the program, the existence of such a wire usually indicates a programming mistake.

Our approach is to compute both an upper and a lower bound on the set of constant wires. For the lower
bound, we constrain every input variable v by

true [ false � v:

These constraints are added to the base system. The least solution for the resulting constraint system is
then computed. If a variable v is not true[ false in the least solution, then we know that the variable must

only have one value: either true; false or ? (unde�ned). We call this analysis LB.

The drawback of LB is that it is very inaccurate in the sense that most wires are considered non-constant;
in practice, it is a very coarse approximation. Consider the example in Figure 10. It is clear that the wire
before the instruction OTE(B) is always true. However, this simple analysis cannot detect this fact. The
inaccuracy of LB results from its inability to capture interdependencies between quantities, for example
between a variable and its negation. The base system for this program is given in Figure 11.

Since bit A is the only input bit, we add the constraint

true[ false � bA

to the base system. The minimum solution of the resulting system is presented in Figure 12. We see that
LB does not detect the constant wire before OTE(B).

Any constant wires that are computed by LB are guaranteed to be constant. Thus, it gives a lower bound on
the number of constant wires in an RLL program. To get more accurate information, we must model concrete
inputs as closely as possible. One possibility is to exhaustively test each possible input con�guration, which is
just a true or false assignment for each input variable. Since the number of input variables are usually large,
and there are 2n input con�gurations of n inputs, exhaustive testing is impractical. However, exhaustive
testing is not necessary because we are interested not in what the system computes but whether there are
any constant wires. Thus, we can choose input con�gurations uniformly at random, compute the value for
each wire under this input con�guration, and union the values of the same wire over all con�gurations. If
the union for a wire turns to be true[ false, the wire is not constant.

The intuition behind this analysis is that after a relatively small number of samples, there are few single-
valued wires remaining, and they are likely to be constant wires. Since there are only a small number of
them, a programmer should be able to check each individual wire. The constraint solver can compute a
backward slice [22] for a wire to tell what inputs a�ect it, along with a boolean function of the wire in terms
of these inputs. This information can help the programmer to determine whether a wire is constant and, if
it is, the reason it is constant. We call this analysis UB.
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true � w0

true � w1

((true\ bA)) true) [ ((false\ bA)) false) � w2

((true\ bA)) false) [ ((false\ bA)) true) � w3

((true\w2)) true) [ ((true\w3)) true) [ (((false\w2)) (false\w3))) false) � w4

w4 � w5

((true\w5)) true) [ ((false \w5)) false) � bB

where

w0 : the wire before XIC(A)

w1 : the wire before XIO(A)

w2 : the wire after XIC(A)

w3 : the wire after XIO(A)

w4 : the wire after the joint

w5 : the wire before OTE(B)

bA : the bit A

bB : the bit B

Figure 11: Base system for the example in Figure 10.

w0 = true

w1 = true

w2 = true[ false

w3 = true[ false

w4 = true[ false

w5 = true[ false

bA = true[ false

bB = true[ false

Figure 12: Results from LB for program in Figure 10.
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For the example in Figure 10, the analysis UB will include the wire before the instruction OTE(B) as
possibly constant, since whatever value (either true or false) the bit A assumes, the wire before OTE(B)
is always true. The base system is the same as that for LB. The bit A is the only input bit. There are
two input con�gurations: A is true, or A is false. For the input con�guration that A is true, we add the
following constraint to the base system:

true � bA

In the minimum solution of these constraints, we know that w5 is true. For the input con�guration that A
is false, the following constraint is added to the base system:

false � bA

We now see that w5 is true in the new minimum solution, too. Therefore, the wire before OTE(B) is
considered constant by UB.

The number of wires that are considered possibly constant by UB gives an upper bound on the number of
constant wires under our model of RLL programs.

4.2 The E�ectiveness of Random Sampling

In RLL programs, a bit or a wire usually only depends on a small number of inputs, typically around
10 1. This fact makes random sampling in UB more e�ective than one might expect. After a relatively
small number of samples of input assignments, we are con�dent that almost all possible input assignments
a�ecting each input are covered.

To be more precise, assume N is the number of inputs and

M = max
v2VAR

jDEP(v)j;

where VAR is the set of variables and DEP(v) of a variable v is the set of inputs that v depends on. In
other words, for all variable v, it depends on no more than M variables. Let k = 2M .

Theorem 3 For any variable v, the expected number of samples to draw to get all the possible truth assign-

ments of the inputs in DEP(v) is no more than k lnk +O(k).

Proof: Notice this problem is just a variation of the Coupon Collector's Problem (See Appendix C).

We know from the analysis of the Coupon Collector's Problem that the actual value is sharply concentrated
around this expected value.

Theorem 4 For any variable v and c > 0, the probability that after k(lnk + c) random samples that there

are truth assignments missing from the samples is approximately 1� e�e
�c

.

We also present some empirical measurements of the e�ectiveness of random sampling in Section 6.2.

4.3 Relay Race Analysis

Our second analysis detects relay races. In RLL programs, it is desirable if the values of outputs depend
solely on the values of inputs and the internal states of timers and counters. If under �xed inputs and timer
and counter states, an output x changes from scan to scan, then there is a relay-race on x.

Before describing our analysis, we give a more formal de�nition of the problem. Consider an RLL program
P . Let IN denote the set of inputs, and let OUT denote the set of outputs. Let C be the set of all possible
input con�gurations. Further, let

Vi : OUT ! ftrue; falseg

be the mapping from the set of outputs to their corresponding values at the end of the ith scan.

1This information is obtained from experiments with a few production size RLL programs.

17



De�nition 1 An RLL program P is race-free if for all input con�gurations c 2 C, by �xing c, the following

holds:

Vi = Vj ; 8j � i � 1:

Otherwise, the program has a race.

De�nition 1 states under what conditions a program exhibits a race.

De�nition 2 Let P be an RLL program. An approximation A of P is an abstraction of the RLL program

which satis�es that for any input con�guration c and any quantity v of P , Pc(v) (the value of v in the

program P with input c) at the end of one scan is contained in Ac(v) (the value of v in the abstraction A

with input c), i.e., Pc(v) � Ac(v).

Let A be an approximation of S. Let

V0i : OUT ! f?; true; false;>g

be the mapping from the set of outputs to their corresponding values at the end of the ith scan.

De�nition 3 An approximation A of an RLL program S is race-free if for all input con�gurations c 2 C,

by �xing c, for the in�nite sequence of scans S1; S2; S3; : : : , there exists V� : OUT ! ftrue; falseg such

that

V� � V0j ; 8j � 1;

where V � V0 i�

V(v) v V0(v); 8v 2 OUT:

Claim 1 Let P be an RLL program and A be an approximation of P . If P is race free, then so is A. In

other words, if A exhibits a race, so does P .

Proof:

Since P is race free, by De�nition 1, we have

Vi = Vj ; 8j � i � 1:

Since A is an approximation of P , by De�nition 2,

Vi � V0i 8i � 1:

Let V� = V(1). We have
V� � V0i; 8i � 1:

Now, by De�nition 3, we see that A is also race free.

From Claim 1, we see that if our analysis detects a race under some input, then the program also races
under the same input. We now need to deal with the problem of detecting races in our approximation of
RLL programs.

Theorem 5 For any approximation A of an RLL program P and input c 2 C, the approximation A races

under c if and only if there exists v 2 OUT such that:

\
i>0

V0i(v) � ?:
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Proof:

((): Let v 2 OUT be an output such that

\
i>0

V0i(v) � ?:

Since A is an approximation of the program P , we have that

V0i(v) 6= ?:

Thus, there exists positive integers i 6= j such that

V0i(v) = true and

V0j(v) = false:

Therefore, there is no V� : OUT ! ftrue; falseg such that

V� � V0j ; 8j � 1:

Hence, A has a race under c.
()): Suppose for all v 2 OUT, we have \

i>0

V0i(v) * ?:

Then, let

V =
\
i>0

V0i:

It is easy to see that there exists a V� : OUT ! ftrue; falseg such that

V� � V:

Also we have:
V� � V0i

for all i > 0. Therefore, A does not race under input c.

Theorem 5 leads naturally to the algorithm in Figure 13 for detecting relay races.

We use the example in Figure 1 to demonstrate how the race detection algorithm works. Consider the
last two rungs in the example RLL program in isolation. The base system for these two rungs is given in
Figure 14.

Assume the bit B is initially true. Adding the constraint

true � bB0

to the base system and solving the resulting system, we obtain its least solution in Figure 15.

We see that at the end of the �rst scan, the bit B is false. In the second scan, we add the constraint

false � bB0

to the base system in Figure 4. The resulting system is solved, and its least solution is shown in Figure 16.

We intersect the values of the output bits, i.e., bits B and C, in the least solutions from the �rst two scans.
The intersection is shown in Figure 17. Since the intersections are both ?, we have detected a race.

The algorithm in Figure 13 detects whether an output races or not under a given input. To help the RLL
programmers to �nd the cause of a race, it is important also to report the relevant inputs. For each input
v, we add the constraint

true [ false � v
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Stotal: the number of scans to perform
Cbase: the base system
Cinput: the input con�guration as constraints
Scurrent: the current number of scans
Bsum: the cumulative intersection of the bounds
Bcurrent: the current bound

Scurrent = 0;

(* set every output to be true or false *)
for every output v
do

Bsum(v) = ftrue; falseg;
od

while Scurrent � Stotal
do

Bcurrent = Solleast(Cbase [Cinput);
Cinput = GetInput(Bcurrent);
Bsum = Bsum \Bcurrent;
if Bsum(v) = fg for some output v

The output v is racing.
�

od

Figure 13: Algorithm for detecting races.
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true � w0

((true\ bB0
)) true) [ ((false\ bB0

)) false) � w1

((true\w1)) true) [ ((false\w1)) false) � w2

((true\w2)) true) [ ((false\w2)) false) � bC

true � w3

((true\ bB0
)) false) [ ((false\ bB0

)) true) � w4

((true\w4)) true) [ ((false\w4)) false) � w5

((true\w5)) true) [ ((false\w5)) false) � bB1

where

w0 : the wire before XIC(B)

w1 : the wire after XIC(B)

w2 : the wire before OTE(C)

w3 : the wire before XIO(C)

w4 : the wire after XIO(C)

w5 : the wire before OTE(B)

bB0
: the initial value of bit B

bB1
: the �nal value of bit B

bC : the bit C

Figure 14: Base system for the last two rungs of the example program in Figure 1.

w0 = true

w1 = true

w2 = true

w3 = true

w4 = false

w5 = false

bB0
= true

bB1
= false

bC = true

Figure 15: Least solution at the end of �rst scan.
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w0 = true

w1 = false

w2 = false

w3 = true

w4 = true

w5 = true

bB0
= false

bB1
= true

bC = false

Figure 16: Least solution at the end of second scan.

T
bB1

= ?T
bC = ?

Figure 17: Intersection of least solutions from the �rst two scans.

Rinput: an input con�guration under which the program races
Icurrent: the current input as constraints

Icurrent = Rinput;

while 9 input v that is not checked
do

I = Icurrent [ f(true[ false) � vg;
run relay race analysis with I as the input;
if the same races are observed

Icurrent = I;
else

The input v contributes to the races;
�

od

Figure 18: Algorithm for computing the set of inputs causing a race.
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Bracing: the set of racing bits
Cbase: the base system
I: the set of inputs that a�ect the bits in Bracing transitively

(* compute the set of inputs that a�ect the bits in Bracing in a scan *)
I = SLICEbackward(Bracing; Cbase)

repeat

(* C is the set of the last instances of the bits in B *)
C = LAST (I);
I = I [ SLICEbackward(C;Cbase);

until I does not change

Figure 19: A more e�cient algorithm for computing the inputs that cause a race.

to the base constraint system and leave the other inputs unchanged. We run the algorithm in Figure 13
with this modi�ed input con�guration. If the same race is observed, we know that v is not one of the inputs
causing the race. Otherwise, the input v does contribute to the race. This process repeats until all inputs
have been checked. The algorithm is given in Figure 18.

While simple, the algorithm in Figure 18 is an expensive way to compute the inputs that cause a race.
Another way of getting the information is presented in Figure 19. The input to the algorithm is the base
constraint system and a set of bits that are racing. The algorithm outputs a set of inputs that a�ect the
set of racing bits. The algorithm �rst computes the inputs that a�ect Bracing in one scan using the facility
provided by the constraint solver. Since some of the inputs might be internal, these bits may be a�ected by
other inputs from previous scans. We need to compute what inputs a�ect these bits by another backward
slice. This process repeats until the set I does not grow.

For the relay race analysis, we need to modify the rules [TON] since the status bits of the timers are assumed
to be the same for all scans under a given input. This assumption is reasonable since the scan time, compared
with the timer increments, is in�nitesimal. Figure 20 gives the new rule.

By the analysis of the Coupon Collector's Problem, after approximately 2k ln(2k) = 2k � k ln 2 < k � 2k scans,
we have detected, in our approximation, all races of k inputs with high probability. These are actual races
in the original RLL program.

5 Implementation Techniques

In this section, we discuss some ways in which we use constraints either to limit the size of the information
one needs to examine or to obtain useful information from the constraint system. This illustrates that
constraints are useful for providing programming support not directly related to the analyses, such as freeing
programmers from examining irrelevant information and providing explanation for the causes of certain
behaviors of the programs.
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v1 v2 ven, and vtt are fresh variables

E0 = E +
f (TONwb; v1); (TONwa; v2);
(TONen; ven); (TONtt; vtt) g

vdn = E(TONdn)

S =

f ((v1 \ true)) (vdn \ false)) true) [
((v1 \ false)) false) [
((vdn \ true)) false) � vtt;

((v1 \ true)) true) [
((v1 \ false)) false) � ven g

E; TON ! E0; S; v1; v2
[TON]

Figure 20: Modi�ed rule for timers.

5.1 Filter Values

Recall in the constant wire analysis, after the least solution is computed, we need to determine which wires
or bits have only values either fg, ftrueg, or ffalseg. In order to obtain this information, we test whether

(true[ false) �
[

Solleast(v);

where v ranges over the instances of a wire w or a bit b. If the subset relation holds, we know that w or b
can be both true and false. On the other hand, if the relation does not hold, w or b has one of the other
three possible values. With the simple test above, some irrelevant wires or bits may be left for inspection by
the programmer. These wires or bits consist of two kinds: the inputs and the left-most wire of each rung.

With random sampling, each input bit is either true or false. To avoid examining these bits, we add a
special set constructor input to our expression language with semantic value finputg. Each input bit has
the value input [ true or input [ false. Similarly for the beginning wires, we add another special set
constructor initial to our expression language with semantic value finitialg. Each start wire has the value
initial[ true. Again to determine the wires and bits to inspect, we perform the following test:

true[ false � V or

input � V or

initial � V;

where V denotes
S
Solleast(v). If the test fails, we need to inspect the corresponding bit or wire. Since in

the constraint generation rules input or initial are not propagated from the inputs or the beginning wires,
only the inputs have the value input and the beginning wires have the value initial. Thus, if an input has
the value input, we know it must be an input, and if a wire has the value initial, it must be a beginning
wire.

5.2 Counter Wires

In this section, we describe another method to reduce the number of irrelevant wires to be inspected by a
programmer.

Recall that a counter (CTU) counts how many times the wire preceding the instruction makes false to true
transitions. The done bit (DN) associated with a counter becomes true if the preceding wire has made a
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preset number of false to true transitions across scans. The constraint for the done bit is given by

((v1 \ true)) (v1 \ false)) true) [ false � vdn;

where v1 and vdn are the set variables for the wire preceding the counter instruction and the done bit
respectively.

Notice that for vdn to have the value true, v1 must be both true and false in some samples. Suppose
in the program, the wire corresponds to v1 can be true and false, then the done bit can be true in some
execution sequence of the program. Assume, however, in our approximation of the program, for all samples,
v1 is always true or false, but not both, then vdn only has the value false. Thus, the done bit is considered
constant. In addition, many wires and bits a�ected by this done bit may be considered constant as well
because the done bit is always false. To remove these irrelevant wires and bits, we keep a record of counter
wires, wires that immediately precede counter instructions. We add not only the constraints corresponding
to a sample con�guration to the base system, but also the constraints

Vunion(w) � w; for all counter wires w

where Vunion(w) gives the union of the values of w up to the current sample. With the addition of these
constraints, the problem with the done bit is readily solved.

5.3 Backward Slicing

Let v be a given variable. It is desirable to know the set of inputs that a�ect v. This set of inputs is
called a backward slice for v [22]. The constraint solver we are using can provide us with this information
by computing a backward slice. The solver not only provides us with the set of inputs that a�ect v, but
also a boolean formula that describes how v depends on these inputs. This information can help an RLL
programmer to determine whether a wire is indeed constant, if the wire is constant, possible causes of the
problem. The slice of a variable v can be simply computed by recursively replacing the intermediate variables
by their lower bounds until all the variables in the lower bound of v are inputs. This lower bound can be
simpli�ed, and the inputs left are the slice of v and the simpli�ed lower bound is e�ectively a boolean formula
describing how these inputs a�ect v.

6 Experimental Results

We have implemented our analyses using a general constraint solver [14]. The analyses are implemented in
SML. Inputs to our analyses are abstract syntax tree (AST) representations of RLL programs. The ASTs
are parsed into internal representations, and constraints are generated using the rules in Figure 7, Figure 8,
and Figure 9. The resulting constraints are solved to obtain the base system.

6.1 Benchmarks

Four RLL programs were made available to us in AST form for evaluating our analyses.

� Mini Factory

This program is an example program that has been studied and tested by RLL programmers and
researchers working on program analysis for RLL programs.

� Big Bak

This is a production RLL program.

� Wdsd
t(1)

Another production application, this program has a known race.
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Program Size Num. of Vars. Secs / Scan

Mini Factory 9,267 4,227 0.5

Big Bak 32,005 21,596 4

Wdsd
t(1) 58,561 22,860 3

Wdsd
t(2) 58,561 22,860 3

Figure 21: Benchmark programs for evaluating our analyses.

Program Lower Bound Upper Bound Number of samples

Mini Factory 0 0 500

Big Bak 0 0 30

Wdsd
t(1) 32 868 1000

Wdsd
t(2) 32 868 1000

Figure 22: Results from the constant wire analysis.

� Wdsd
t(2)

This program is a modi�ed version of Wdsd
t(1) with the known race eliminated. The program is
included for comparing its results with the results from the original program.

Figure 21 gives a table showing the size of each program in terms of number of lines in abstract syntax tree
form, number of variables that are in its base system, and the time it takes our analyses to analyze one scan.
All measurements reported here were done on a Ultra Sparc with 512MB of main memory.

6.2 Constant Wire Analysis

We performed the two kinds of constant wire analyses on the four benchmark programs. The results from
the analyses are given in Figure 22. In the table, we give, for each program, the number of constant wires
from LB the number of constant wires from UB and the number of samples that UB used.

For Mini Factory and Big Bak, both LB and UB do not detect any constant wires. In one run of Mini
Factory, after around 500 samples, there were no \constant" wires left. In one run of Big Bak, after 30
random samples, there were no \constant" wires left. This is because there are many arithmetic instructions
in Big Bak, which are not easily modeled accurately without drastically increasing the number of constraints.
As a result, the inaccurate modeling of arithmetic operations resulted in most wires being inferred to be
both true and false rather quickly. Thus, UB terminated much earlier on Big Bak than on Mini Factory.
For the two Wdsd
t programs, LB detected some constant wires. However, these were not bugs, but rather
an artifact of some debugging code in the program that is normally turned o�. Because of this debugging
code, UB reported many wires as possibly constant, as shown in the table.

Figure 23 shows the e�ectiveness of the idea of random sampling in reducing the number of wires to examine
in Mini Factory. The x-axis is the number of random samples. The y-axis shows the number of wires that
are still possibly constant. After about 200 samples, the number of possibly constant wires drops to 20.
Initially there are approximately 2600 wires.

6.3 Relay Race Analysis

We also performed our relay race analysis on the four benchmarks. This analysis produced more interesting
results than the constant wire analysis. It discovered many relay races in our benchmark programs. The
results from the analysis are presented in Figure 24. In the table, for each program, we show the number of
external racing bits | bits that are connected to external outputs, and the number of internal racing bits |
bits that are internal to the program, and the number of total samples run. The analysis were run for 1000
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Figure 23: E�ectiveness of random sampling.

Program External Races Internal Races Number of samples

Mini Factory 55 186 1000

Big Bak 4 6 1000

Wdsd
t(1) 7 156 1000

Wdsd
t(2) 8 163 1000

Figure 24: Results from the relay race analysis.

samples for all the programs. By the analysis of the Coupon Collector's Problem, 1000 trials are su�cient
to uncover all races involves 7 or fewer inputs.

For the Mini Factory program, there were no known relay races in the program, but our analysis detected
many such races. Some of the races were subsequently veri�ed by running the program. From the 1000
samples, 55 external races and 186 internal races were reported. For Big Bak, 4 external races and 6 internal
races were reported. Although Big Bak is a much bigger program than Mini Factory, the inaccuracy in
modeling of arithmetic operations may be one reason why fewer races were found. For Wdsd
t(1), there
were 7 external races and 156 internal races reported. The Wdsd
t(2) program has a known relay race,
which took the programmer who developed this program four hours to �nd [5]. Our analysis discovered this
bug among 8 external and 163 internal races. Notice that some reported races may be unrealizable if the
corresponding input con�guration cannot be realized. There is no way without additional information about
the possible inputs to characterize which relay races may actually happen.

7 Related Work

In this section, we discuss the similarity and di�erences of our analyses from work in data 
ow analysis,
model checking, and testing.
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Data Flow Analysis Data 
ow analysis has been traditionally used in optimizing compilers to collect
variables usage information for optimizations such as dead code elimination and e�cient register alloca-
tion [1]. It has also been applied for ensuring software reliability [15, 16]. There are two main distinctions
of our approach from data 
ow analysis. One is the use of conditional constraints [3], which are essential
for modeling both the boolean instructions and control 
ow instructions. The other one is the 
exibility of
our analyses to add additional constraints to the base system to get desired information, instead of solving
the whole constraint system repeatedly. Our approach is more e�cient because we work with an initially
simpli�ed constraint system.

Model Checking Model checking [10, 11] is a branch of formal veri�cation that can be fully automated.
Model checking has been used successfully for verifying �nite state systems such as hardware and commu-
nication protocols [7, 8, 13, 18, 12]. Model checkers exploit the �nite nature of these systems by performing
exhaustive state space searches. Because even these �nite state spaces may be huge, model checking is
usually applied to some abstract models of the actual system. Our analyses for RLL programs use simi-
lar techniques. Although RLL programs in general are in�nite state systems, our abstract models of RLL
programs are �nite-state. These abstract systems are symbolically executed to obtain information about
the actual systems. In this sense, our analyses are similar to model checking. However, there are some
di�erences. The main di�erence of our analyses from model checking lies in the way abstract models are
obtained and how accurate these systems correspond to the actual system. In model checking, an abstract
model of a concrete system is often obtained manually, while our analyses automatically generate the model.
With respect to the modeling accuracy, model checking strives to produce an model which has no observ-
able di�erence from the concrete system from the point of the properties to be checked, i.e., the model is a
complete characterization of the actual system. However set constraints (because the use of sets) give us the

exibility to model certain parts of the system more accurately than others for analyzing large scale systems.

Testing Testing is one of the most commonly used methods for assuring hardware and software quality.
It is the process of running instance experiments on the system to be checked. The I/O behaviors of the
system on these instances are used to deduce whether the given system is faulty or not [20]. Testing is
non-exhaustive in most cases due to the in�nite or large number of test cases. In addition, testing assumes
some kind of distribution of the test cases such as uniform, which is often non-realistic. One distinction of
our approach from testing is that we work with an abstract model of the actual system. There are advantages
and disadvantages of using an abstract model. An advantage of using the actual system is that there is no
loss of information, meaning that if the system shows incorrect I/O behavior under a given input, we can
detect this error by running the test with this input; if an abstract model is used, under this same input,
we might not detect any error due to the approximation. An advantage of using an abstract model in our
system is that we can guarantee that all cases are covered with high probability, while testing fails to cover
all the test cases. [9] discusses some other tradeo�s of using the actual system and abstract models of the
system for testing.

8 Conclusions

In this paper, we have described two analyses | the constant wire and relay race analyses | for RLL
programs using set constraints to help RLL programmers to detect some common programming mistakes.
We have demonstrated that these analyses are useful in statically catching some kinds of programming errors.
Our implementation of the analyses is accurate and fast enough to be practical | production RLL programs
can be analyzed in a few minutes. The relay race analysis not only detected a known bug in a program
that took an RLL programmer four hours of factory down-time to uncover, it also detected many previously
unknown relay races in our benchmark programs.
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A Existence of the Least Solution

In this section, we prove Theorem 1.

Proof: Notice that every constraint is of the form e � v, where e is a set expression and v is a variable.
Thus we can obtain a solution of the constraint system by assigning each variable ftrue; falseg. To see that
there is a least solution, we show that if S1 and S2 are two solutions, then S1 \ S2 is also a solution, where
S1 \ S2 = fS1(v) \ S2(v) j for all variable vg. First we show by induction that for any set expression e and
any two variable assignments S1 and S2 the following holds:

(S1 \ S2)(e) � (S1(e) \ S2(e)):

� Base cases:

{ e = ?: straight forward.

{ e = >: straight forward.

{ e = true: straight forward.

{ e = false: straight forward.

{ e = v0, where v0 is a variable:
(S1 \ S2)(v0) = S1(v0) \ S2(v0) by the de�nition of S1 \ S2.

� Inductive cases:

{ e = (e1 \ e2):
We have

(S1 \ S2)(e1) � (S1(e1) \ S2(e1))

and
(S1 \ S2)(e2) � (S1(e2) \ S2(e2)):

Thus, we have

(S1 \ S2)(e1 \ e2) = (S1 \ S2)(e1) \ (S1 \ S2)(e2)

� (S1(e1) \ S2(e1)) \ (S1(e2) \ S2(e2))

= (S1(e1 \ e2) \ S2(e1 \ e2)):

{ e = (e1 [ e2):
We have

(S1 \ S2)(e1) � (S1(e1) \ S2(e1))

and
(S1 \ S2)(e2) � (S1(e2) \ S2(e2)):

Thus, we have

(S1 \ S2)(e1 [ e2) = (S1 \ S2)(e1) [ (S1 \ S2)(e2)

� (S1(e1) \ S2(e1)) [ (S1(e2) \ S2(e2))

� (S1(e1 [ e2) \ S2(e1 [ e2)):

{ e = (e1 ) e2):
We have

(S1 \ S2)(e1) � (S1(e1) \ S2(e1))

and
(S1 \ S2)(e2) � (S1(e2) \ S2(e2)):
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Thus, we have

(S1 \ S2)(e1 ) e2) = (S1 \ S2)(e1)) (S1 \ S2)(e2)

� (S1(e1) \ S2(e1))) (S1(e2) \ S2(e2))

� (S1(e1)) S1(e2)) \ (S2(e1)) S2(e2))

= (S1(e1 ) e2) \ S2(e1 ) e2)):

Now, let S1 and S2 be two solutions to the constraint system S [ c. For each constraint e � v, we have

(S1 \ S2)(e) � (S1(e) \ S2(e)) � (S1(v) \ S2(v)) = (S1 \ S2)(v):

Thus, S1\S2 is also a solution to the constraint system S[c. Therefore there exists a least solution, namely
the intersection of all solutions.

B Soundness

In this section, we prove Theorem 2.

Proof: Notice that the constraint system can be represented as a directed, acyclic constraint graph 2. Thus
we can prove the theorem with an induction on this graph from its sources to its sinks.

� Base case:
The input variables have the same values as the wires or the bits that they model.

� Inductive case:
Consider the constraint e � v, assuming all the variables in e approximate their corresponding instances
of bits or wires. Suppose the constraint e � v is generated by an application of the rule [XIC]. The
proof for the other rules is similar. We thus have v1 and vct approximate the values of XICwb and
XICct. There are four cases:

{ If XICwb = true and XICct = true, then true 2 v1 and true 2 vct. Thus, simplifying the set
expression that restricts v2, we have true 2 v2.

{ If XICwb = true and XICct = false, then true 2 v1 and false 2 vct. Thus, simplifying the set
expression that restricts v2, we have false 2 v2.

{ If XICwb = false and XICct = true, then false 2 v1 and true 2 vct. Thus, simplifying the set
expression that restricts v2, we have false 2 v2.

{ If XICwb = false and XICct = false, then false 2 v
1
and false 2 vct. Thus, simplifying the

set expression that restricts v
2
, we have false 2 v

2
.

C Coupon Collector's Problem

In the Coupon Collector's Problem, there are n di�erent coupons. At each trial a coupon is drawn uniformly
at random. The selected coupon is put back with the rest of the coupons after it has been examined. We
are interested in the expected number of trials needed to select all of the n coupons.

Theorem 6 The expected number trials to select all the n coupons is n lnn +O(n).

2This is not true if there are backward jump instructions in an RLL program. In that case, we can do a similar induction

on the strongly connected component graph of the constraint graph representing the constraint system.
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Proof: Let X be a random variable de�ned to be the number of trials needed to collect all of the n coupons.
De�ne a success to be a trial in which a new coupon is collected. De�ne the random variables Xi, for
0 � i � n� 1, to be the number of trials that follows the i-th success and ends on the trial that collects the
(i + 1)-th coupon. Thus, we have

X =
n�1X
i=0

Xi:

Let pi be the probability of success on any trial after the i-th coupon has been collected. This is the
probability of drawing one of n� i coupons from a pool of n coupons, so that

pi =
n� i

n
:

The random variable Xi is geometrically distributed with parameter pi. Thus, its expectation

E[Xi] =
1

pi
=

n

n� i
:

By linearity of expectation, we have that

E[X] = E[
n�1X
i=0

Xi] =
n�1X
i=0

E[Xi] =
n�1X
i=0

n

n� i
= n

nX
i=1

1

i
= nHn;

where Hn is the n-th Harmonic number. Since Hn = lnn+ �(1), we have

E[X] = n lnn+ O(n):
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