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Abstract

Shape Synthesis for Assembly-Centric Design

by

Steve Robert Burgett

Doctor of Philosophy in Engineering—^Electrical Engineering

and Computer Sciences

University of California at Berkeley

S. Shankar Sastry, Chair

In this dissertation I present a newparadigm for CAD whichaims to support the early stages

of mechanical design well enough that designers are motivated to use the workstation as

a conceptual design tool. This approach is foimded on the concept of Assembly-Centric

Design, wherein the design process focuses on the assembly as a whole rather than on

individual parts. The parts themselvesare designedlargely automatically by the software.

The opportunity for such design automation arises from the fact that many me

chanical parts can be defined by two kinds of geometry: features that are critical to a

part's function {application features)^ and the material that merely fieshes out the rest of

its shape {hulk shape). Application features are most often associated with contact surfaces

of the part, for example, a bore for a bearing or a mounting surface for a motor. These

features are the portals through which the part interacts with other parts in the assembly.

At the assembly level, application features come in groups. For example, a bore

and its mating shaft always occur together in the assembly. During the design process

the pair may be moved to another location within the assembly, but they are always kept

together. Other common feature groups include the nut, bolt, and hole group, and the

pair of mating surfaces group. It is these groups that form the high-level entities in terms

of which the designer reasons about the design. Since these groups are properties of the

assembly rather than individual parts, we term the technique Assembly-Centric Design.

There are many software technologies to be developed to support convenient

assembly-centric design. This dissertation focuses on just one: the computer generation



of part shapes. A part's geometry is made up of application features and bulk shape.

Application features are defined and manipulated in groups at the assembly level. The

bulk shape of a part must obey certain constraints, such as noninterference with other

paurts, miniTniim allowable thickness of the part, etc., but is otherwise somewhat arbitrary.

This presents an opportunity for automation. Using the application features as input, the

software can define a shape for the material that holds them together.

The advantages of assembly-centric design are ultimately economic: the amount

of input required from the designer is dramatically reduced because application-feature-

groups tend to have simple parametric descriptions, and the bulk shapes of parts are

synthesized automatically. More complete exploration of the design space is facilitated be

cause feature groups are treated as groups and can be conveniently moved around within

the assembly. Such movement implies changes to the bulk shapes of the parts, but these

changes are made automatically. Manufacturability of the component parts can be en

hanced because the shape-synthesis software has the freedom to tailor part shapes for

particular manufacturing processes.

S. Shankar Sastry
Dissertation Committee Chair
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Chapter 1

Assembly-Centric Design

Today's mechanical CAD programs require a user to specify a design using mostly

explicit geometry. However, a CAD application that relies on explicit geometric input is

not well matched to the design process and thus is usually relegated to the task of design

documentation rather than a true aid to designers [?]. In the early stages of design, only

a £r£u;tion of the geometric elements is known, yet solid modeling software requires models

to have physically realizable shapes, even for simple visualization. At any stage of design,

routine changes such as resolving interference between two parts may require extensive

alteration to the geometric database—a laborious process for the designer.

Not only is it time-consuming to edit explicit geometry, it has been noted that

geometry alone is incomplete as a design specification language [?]. After a design is

complete, much valuable information is not represented. It is difficult to decide what can

be changed, what parts of the design are crucial, and why certain decisions were made in

the first place. In fact, a major impetus for feature recognition research is the inference

of knowledge lost during the design process [?]. A method of specification that facilitates

the design process and is richer in information is necessary as a foundation for futme

mechanical CAD systems. Further, if it is to be useful, this method of specification must

have a way of automatically resolving itself into a consistent design that is expressed in

explicit geometry.

Approaches to better specification paradigms can be roughly grouped into

geometry-based and artificial intelligence (AI) based. The geometry-based approaches

combine pieces of geometry into groups and augment them with higher level information.

These axe generally classed as Feature Based Design methods. The term feature is subject
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to a variety of interpretations. In its broadest definition, "a feature is an element used

in generating, analyzing, or evaluating a design." [?] Design-with-featiures approaches are

similar to solid modelers in the level of automation they provide. They still require that

parts be explicitlydefined by a combinationof features—theemphasis is on recordingmore

information than just geometry. In contrast, Al-based paradigms usually seek to provide

automation by reasoning in terms of higher-level entities like machine components. They

include constraint satisfaction systems and knowledge-based systems. These methods tend

to be domain dependent (e.g. for designinghelical gears), and do not handle the geometric

design well, if at all [?]. For example, an AI system might determine the required size of

a bearing, or select an appropriate motor, but rarely is consideration given to designing

appropriately shaped parts to hold that bearing or motor in place.

1.1 Assembly-Centric Design

A new approach that holds promise is based on the realization that any mechan

ical part is defined by two kinds of geometry: features that are critical to its function

(application features)^ and the material that merely fleshes out the rest of the part (bulk

shape). Several authors have made this observation [?, ?, ?]. Shapiro and Voelker [?] in

troduce a new view to interpret mechanical function in terms of energy exchanges and to

considersomekey portions of geometryas energy ports. These are the discrete subsets of a

system's physicalboundary through which it interacts with its environment. Energy ports

on a mechanical part exist at contact surfaces, such as the internal surface of a bearing

bore. Their shape is usually dictated by the nature of the contact (e.g. once a specific

bearing has been selected, the dimensions of the bore are implied). Thus, the geometries

of the energyports are fully specified, and can be considered to be the application features

of the part to be designed. In other words, an application feature is a known geometric

solution to a local problem.

The second important realization is that application featmes arise in groups.

These groupsare not properties of any one part, but rather are properties of the assembly.

Figure 1.1 shows a typical feature group in cross-section. This is a hole-bolt-hole group,

which contains three application features: two holes and a bolt. One hole is a feature of

something called part X, the other is a feature ofpart Y. The bolt is a feature that defines

an entire part.
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Hole Features

Bolt
Feature

PartX Part 7

Figure 1.1: A typical feature group, hole-bolt-hole, is shown in cross section. The hole on
the left is a feature of part and the hole on the right is a feature of part Y. The bolt is
a feature unto itself.

Groups are atomic, parametric, and functional. By atomic we mean that the

features belonging to a group are inseparable. For example, you can't have a bolt without

two holes. If the designer moves the bolt a centimeter to the left (relative to the rest of the

assembly), the holes must move too. Groups are parametric, meaning a group can be fully

specified by its type (e.g. it's a hole-bolt-hole group) plus a finite set of scalar parameters

such as lengths, diameters, etc. We say that groups are functional because the function of

the assembly is fully defined by the set of feature groups. Groups are the entities in terms

of which the designer reasons about the design.

Because of this, in a typical design cycle, the geometries of the application features

of the parts are known by the designer before that of the bulk shape. A missing link in

current approaches to design automation is the automatic synthesis of bulk geometry.

Since a part's function is determined by its application features, it is possible to automate

the synthesis of the bulk shape, using the application features as a design specification. A

few authors have begun to explore shape synthesis on these terms. Dufiey and Dixon [?]

automate the design of cross sections for extruded beams given load and support points

and forbidden areas. Graham and Ulrich [?] automate the design of 2-D bending patterns

for sheet metal parts using path planning and iterative refinement. Given application



4 CHAPTER 1. ASSEMBLY-CENTRIC DESIGN

features and paths, Shimada and Gossard [?] generate skinning boundaries by solving for

the shape of a deformable curve in a potential energy field.

This dissertation proposes a design environment wherein the designer manipu

lates assembly-level feature groups, and the bulk shapes of the parts are generated auto

matically. In the system we envision, user input takes the form of interactively specified

application featiure groups, design constraints, manufacturing process information, prefab

ricated vendor parts, and ranges of motion. Higher-level information, such as the kinds

associated with design-with-features, is not required by the shape synthesis engine. It

requires only that a geometric representation be extractable fi*om each feature, that each

feature's membership in a specific part be indicated, and that the relative motions of those

parts be available. Pait geometry need not be completely specified by the user. Much of

the geometry of the design is then synthesized automatically by the program.

In contrast to currently available CAD modelers, this approach will strongly sup

port the early stages of design (conceptual design), where widely varying concepts are

explored. There are several advantages of such a system over a conventional solid mod

eler:

• Far less tedium is imposed on the designer because the need for explicit detailed

geometric specification is greatly reduced.

• Rapid design space e3q>loration is facilitated and thus can be much more thorough.

• Manufacturing process knowledge can be applied at the part synthesis stage to yield

parts that are cheaper and faster to manufacture.

• Design of the assembly sequence can influence the shape synthesis process and vice

versa.

• The design is "live." If a subdesign is dropped into a larger context or assembly,

interferences and conflicts can be automatically resolved.

• A measure of design intent is implicitly encoded. Less documentation and explana

tion is needed to pass a design from one designer to another because the design is

represented in a more functional way.
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1.1.1 Feature Groups

In the system we envision, application feature groups would live in a repository

as parametric models, or, they may be attached to geometry provided in on-line catalogs.

A group editor would provide the user with the ability to add new group types to the

repository. In Figure 1.1, dimensions of the hole diameters, depth, thread pitch, etc., are

all parameterized. The group also carries with it the stipulation that one hole must be

assigned to one part, while the other hole must be assigned to a differentpart. The bolt is

its own part. To instantiate the group, the designer provides numbers for the parameters

and assigns the features to appropriate parts.

Feature groups may also be hierarchical. For example, a bolt pattern could consist

of four hole-bolt-hole groups located at the comers of a rectangle. The foiu: groups would

use the same values for corresponding parameters, and two additional parameters would

specify the dimensions of the rectangle. The hole-bolt-hole groups are subgroups of the

bolt-pattern group.

Often, vendors offer on-line catalogs containing CAD models of off-the-shelf parts

they supply. Ideally, these models will have been built using assembly-centric technology.

For example, a gearbox may have a flat bottom and a bolt pattern for mounting. To

include the gearbox in an assembly, some other part must provide an appropriate mating

surface and four threaded holes in a matching bolt pattern.

When the model of the gearbox is created by the vendor, a bolt-pattera group

and a mating-faces group are instantiated to define the geometry of the gearbox. Some of

the features in those groups are assigned to the gearbox {i.e. one hole from each hole-bolt-

hole subgroup). However, the rest of the features remain unassigned. This is the state in

which the model exists in the catalog. When the designer instantiates the gearbox in his

assembly, the gearboxmodelbristles with unassigned features (i.e. holesand mating faces).

A new part must be created in the assembly to which these features can be assigned. The

shape of this part may then be automatically generated such that it provides the required

geometry for mounting the gearbox.

1.1.2 A Design Example

In this dissertation, the user interface is not studied in detail. The substantive

work to be presented will focus on shape synthesis. However, it is important to have a
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Glue Part "A*' Linear Bearing

Tool Motion

>N GluePaifB"

Baseplate

Figure 1.2: A design example.

context to guide our research. We envision a shape synthesis engine^ which can generate

the bulk shape of a part that is defined by application features. One could imagine this

being used as an agent in a system of collaborating software agents (an AI approach).
Alternatively, a feature-based design environment could require the user to manipulate

feature groups directly. All reasoning about the design would be provided by the user.

Synthesis of bulk shapes is then provided by the shape synthesis engine. We will assume

this latter model.

To illustrate the utility of this manifestation of assembly-centric design, we de

scribe a design example: Suppose a design specification requires that a tool have a linear

motion along a given axis over a given range (see Figure 1.2). This is the only design

requirement; any other parts introduced will exist solely to support this single function.

The designer knows that there must be a linear bearing with its axis parallel to

the tool's. Further, she knows that certain connectivity relationships exist: one side of

the bearing must be rigidly coupled to the tool, the other side to the machine baseplate.

These relationships imply the existence of glue parts (shown in dashed lines in the figure),

whose sole function is4;o hold the primary parts fixed in proper orientation to each other.
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In the design system we envision, the designer would proceed as follows: Since she

knows there must be a linear bearing, she selects one from a cdrom catalog supplied by the

bearing vendor. She then interactively positions it in three-dimensional space relative to

the baseplate. Since the bearing was modeled with assembly-centric technology, it bristles

with unassigned features from the groups it comprises. These features must be assigned

to other parts in the assembly.

She creates a new part {B in the figure). At this point it is a null part because it

has no features assigned to it, and no geometry. She selects all of the unassigned bolt hole

features from one side of the bearing and assigns them to part B. Next she instantiates a

bolt-pattern feature group. She assigns some of the hole featmres to part B and the rest

to the baseplate. Bulk geometry for part B is then automatically synthesized as shown in

Figure 1.2. The shape synthesizer takes care that this geometry does not interfere with

the bearing throughout its range of motion. Further, it is manufacturable by the currently

selected process, say milling with a three-axis, numerically controlled milling machine.

If she decides that the part should be a little more rugged, she increases the minimiun

allowable thickness for the part and it is automatically resynthesized.

The designer next chooses a tool from the on-line catalog and positions it in

space. This tool contains an imassigned hole feature necessary for its moimting. She creates

another null part {Ain the figure), and assigns to it the hole plus the remaining unassigned

bolt-hole features from the bearing. Bulk geometry is automatically synthesized for part

A such that it doesn't interfere with other moving parts, obeys the minimum thidcness

constraint, and is manufacturable. If she decides that the tool must be repositioned, the

designer simply drags it to the correct place. As she does so the glue part is resynthesized

to accommodate the new position while satisfying all the other design requirements.

With this design stage completed, this subassembly can be imported into a higher-

level assembly. As it is positioned in the assembly, there may be several points of interfer

ence that must be resolved. Synthesized portions of parts in the assembly and subassembly

can be automatically adjusted to eliminate many of these, minimizing the burden on the

designer.

A basic tenet of our research is that the CAD system and the user should work

in concert, and the link between them should be a highly interactive interface. Essential

to this vision is that the system be capable of very rapid synthesis of shapes, and support

interactive 3D editing. The application is intended to nm on high-performance 3D graphics
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workstations. By continuously resynthesizingshapes at or near frame rate, we create the

illusion that the bulk shapes of the parts are malleable. For example, when the designer

interactively moves a feature, the part willseem to stretch to accommodate. When a new

part is added to a crowded assembly, all of the parts give a little where they can to make

room.

Further, westrive to minimize the volume of information requiredfrom the user,

particularly during conceptual design. Forexample, we donot want to require the designer

to specify all of the loads that will be applied to each part. In many cases this would be

inappropriate. Designers often don't know what the loaids will be beyond the points of

application and a general feeling of "large" or "small." Further, it is often desirable to

design a part to withstand not just service loads, but general loads from all directions,

to make it robust to unmodeled loads, assembly, and accident. This is especially true

when designing prototypes, tooling, and other applications where parts are traditionally

designed "by eye." Our approach will be to synthesize designs that look reasonable, and

present them to the designer for assessment. If the part looks too weak, she may choose a

different style, or may issue commands like "fatten it up here," until the part is satisfactory.

In other words, the system we envision is not so much one of design automation, but one

of designer facilitation.

Since the shape synthesizer will decide on the specific part geometry, manufac

turing process knowledge can be applied at the part synthesis stage to yield parts that

are cheap and easy to manufacture. If geometric operations that correspond to actual

manufacturing operations are used (e.g. mill, turn, drill, etc.), a construction plan is im

plicitly generated with thepart. This simulates thedestructive solid geometry approach [?]
.without requiring the designer to work in terms of these low-level primitives. Global part

properties, such as manufacturing process or style of construction, may be changed with

•relative ease because the shape synthesizer is responsible for the details of the geometry

and the manufacturing plan.

1.1.3 Observations

Several observations support the viability of this paradigm:

r • During conceptual design exploration, only the application features are interesting,

e.g. bearing bores, bolt patterns, and load contact points.
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Figure 1.3: A specification and seven conforming designs.

(d)

• The bulk shape of a part determines much about the manufacture of the part and

vice versa.

• Every part design starts with an initial guess. The refinement of this design depends

on the relative importance of manufacturing costs, part performance, etc.

The first observation, as Shapiro and Voelker [?] point out, is that in a typical

design cycle the geometries of the application features are known by the designer before

that of the bulk shape. In other words, during conceptual design exploration, only certain

details of each part are interesting—^the application features. The rest of the shape of the

part, the bulk shape^ is much more arbitrary. It must obey geometric constraints such as

connectivity and noninterference with other parts, but this allows an infinite variety of

actual shapes.

Consider the example in Figure 1.3, which shows specification for a 2-D mechan

ical part and several conforming designs. In this example, a part is needed with several

holes and a curved edge (the application featmes). For the purposes of designing a single

part, we may ignore the assembly-level feature groups and focus on just those application

featmes assigned to this part.

Strength requirements dictate a minimum thickness of material around each hole

and behind the curved edge (dark shading). The curved edge contacts some object during

operation, which gives rise to an illegal region that the part must avoid (light shading).
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There axe infinitely many part designs that satisfy this specification, and seven such so

lutions are shown. They aU share the same application features, yet differ in their bulk

shapes. (See also Figure 1.7.)

The second observation is that the bulk shape of a part determines much about

the manufacture of the part and vice versa. In many cases, a designer will choose the bulk

shape of a part based on knowledge of manufacturing considerations. A shortcoming of

using a conventional solid modeler (or even sketching on the back of an envelope) is that

since the designer is forced to give some shape to each part, she introduces a bias about

how that part is likely to be manufactured long before it is desirable to do so. For example,

if a part is initially modeled as though it will be milled, it becomes difficult to alter the

CAD model to show the part as it would be if stamped and bent from sheet metal.

Another fundamental manufacturing issue is the choice of stock firom which the

part will be made. There might be an alternative between hogging the part out of a

single block versus welding it from bars and plates. Even the simple flat-plate part in

Figure 1.3 can be manufactured in many different ways. Design (b) could be made easily

on a three-axis milling machine with mostly x and y cuts. If the scale of the problem

is larger, design (h) would make more efficient use of stock. Designs (e) and (f) might

be appropriate for stamping or if weight is to be minimized. At very large scades, design

(g) could be made from bent and welded bars or box-section beam. Ideally, the designer

would be able to browse through various manufacturing options at any point in the design

process, thus freeing the conceptual phase from such concerns. Conventional CAD systems

offer no support for exploring the design variations necessary to accommodate this.

Our final observation is that all part designs require am initial guess. Depending

upon the domain, this guess will get refined in different ways. A component in the landing

gear of am aircraft, for example, will be subject to iterations of finite element analysis

amd shape revisions until a satisfactory strength to weight ratio is achieved. In some

other domauns manufactiuring amd assembly concerns dominate. In high-volume products,

only the most cost-efficient processes are practical, like injection molding amd sheet metal

stamping. The nature of the chosen process will have a strong influence on the bulk shape

of the parts.

On the other hand, a large class of design problems are best satisfied by parts

with simple shapes because these are quick to manufacture with processes like milling.

Examples include prototypes, custom laboratory equipment, tooling, jigs, fixtures amd
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even low-volume for-maxket products. Such parts are traditionally designed by intuition

and rules of thumb. Mechanical requirements, like strength and stifihess, are met simply

by oversizing the parts by a large margin. The primary consideration for such parts is the

ability to quickly design and manufacture them.

In all of these cases the bulk shape of the part must obey geometric constraints.

In the latter cases, design criteria such as ease of milling can be translated to geometric

constraints as well, such that satisfactory shapes could be generated automatically. In the

case of more highly engineered parts, like aircraft parts, the synthesizer can generate a

sensible initial guess for input to the refinement process.

1.2 Shape Synthesis

Conjecture: Shape synthesis is really not that difficult.

Some of the original motivation to do this research was the impression that the

designs of simple parts are often "obvious." In other words, perhaps shape synthesis for

simple parts can be automated using relatively simple and fast algorithms. To find out if

this is so, we embark on this research to find out what it takes to formulate part designs.

We begin by asking the question, what should synthesized part shapes look like?

To answer this, we start by categorizing the kinds of requirements that mechanical parts

must meet. Though not comprehensive, the following list includes the most common and

most important categories;

1. Connectivity: A part must be a single, connected, physical body.

2. Noninterference: The part must not interfere with any other parts in the assembly,

their paths of motion, nor with illegal regions arising in any other way.

3. Strength and Stiffness: The part must be strong enough not to fail in service or

during assembly, and it must be stiff enough to perform its function correctly.

4. Manufacturability and Assemblability: The part design must be able to be fabri

cated by cost-effective means, and the assembly itself must be able to be assembled

efficiently.

5. Dynamics: A movingpart must meet acceptable ranges for mass, moments of inertia,

resonant modes, etc., as defined by its function.
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6. Electromagnetic characteristics, aerodynamics, hydrodynamics, aesthetic styling,

thermal expansion, etc.

This list is shown in an approximate order. Those requirements near the top

must be met by all parts, regardless of the application. As we move down the list, the

requirements become progressively more specialized, and may or may not be important

for a given part.

1.2.1 Division of Labor

We have chosen to divide the synthesis problem into two steps. In the first step

we will generate a skeleton which abstracts the structure of the part. That is followed by

a material synthesis step which fieshes out the actual shape of the part using the skeleton

.as a guide. This is identical to the procedure of Shimada and Gossard [?], who apply
the term skeleton to the energy paths of Shapiro and Voelker [?]. We also note that the

skeleton is analogous to the STICKS diagram [?] used in CAD for integrated circuit design.

There are alternatives to this two step approach. For example, Duffey and

Dixon [?] use recursive application of topological operators to generate designs for extru
sions. In figmes 1.3and 1.7, thereare examples which could besynthesized in a single step.

Design 1.3(b) is a modification ofa rectilinear boimding box. Designs 1.3(c) and 1.7(b)
are modifications of the convex hull of the features. In these cases the modification is

essentially the removal of illegal regions.

In more complex cases however, these simple design styles will need some help.

For example, if an illegal region completely divides the bounding box or convex hull, it

becomes unclear where material must be added to make a connected part. Further, the

.more refined design styles are much easier to generate if we first abstract their structure

with a skeleton. Designs 1.3(d), (e), (h), and 1.7(d), (g), and (h) are based on tree-type

.skeletons. Designs 1.3(f), (g) and 1.7(b), (e), and (f) are based on triangulations.

The skeleton also has the advantage of being an intuitive intermediate abstrac

tion. If the designer feels the need to make minor modifications to the synthesized skeleton,

it would be natural to add or delete paths to change its overall character—a process much

faster than editing explicit geometry. In this way, the skeleton can be seen as a tool to

.manage the vast complexity ofthe design space. It is a representation ofan infinite family
of parts with the same topology, but different geometry.
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Skeletons (which have zero width), will be synthesized so that they can be

widened by some amount without interfering with illegal regions. This amount will be

dictated by the current design rules. The first action of the material synthesizer is to

perform this widening, yielding a thick skeleton. This thick skeleton is essentially the

minimally sufficient part, satisfying the required connectivity and providing at least the

Tninirmim allowable material thickness everywhere. The remainder of material synthe

sis adds material to the thick skeleton to improve manufacturability, reworkability, and

assemblability. Figure 1.7(a) and (c) depicts two styles of thick skeleton for the same

specification.

A further advantage of separating the synthesis process into two steps is that it

allows us to mix and matdi skeleton stnd material synthesis algorithms and thus multiply

the number of design styles we are capable of generating. Some combinations may not be

as useful as others, of course, but we should still realize a rich selection.

1.3 Program Structure

For completeness we outline the software architectiure of the complete assembly-

centric design environment. Subsequent chapters will be concerned only with those aspects

relevant to shape synthesis. Figure 1.4 depicts the program fiow schematically. A strength

of this paradigm is that it separates into fairly independent components, and it allows a

single-pass program flow (complications are discussed in Section 1.3.6). In the diagram

all information flows down. The user inputs a functional description of the assembly by

instantiating feature groups. These are groups of application features, which are assigned

to various parts in the assembly. To instantiate feature groups, the designerspecifies their

relative positions in space, and provides values for the parameters specific to each group

type.

Much of the kinematic behavior of the assembly will be implicit from the instan

tiation and placement of the groups and assignment of their features to specificparts. For

example, a bore-shaft-bearing-bore group implicitly defines a revolute joint. When one

bore is assigned to (say) part A and the other bore is assigned to part B, the two parts

are constrained to have one revolute degree of freedom between them.

The designer must also be able to stipulate arbitrary motion constraints when the

implied constraints do not sufficiently define the assembly's function. There may also be
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Figure 1.4: Program Flow.

station£u:y or moving illegal regions that the designer wishes to reserve so that no material

will be synthesized in them. This information is preprocessed to yield a set of required

and illegal regions. The set is then passed to the shape synthesizer, which consists of the

skeleton and material synthesizers. In the following sections, we look at eadi of these in

more detail.

1.3.1 Input

As stated above, the input to our hypothetical system includes appUcation featiure

groups, external part positions and motions, and reserved illegal regions. In an ideal



1.3. PROGRAM STRUCTURE

Aimular
Regions

W^M

PartA^ Party

Bolt
Region

Cylindrical
Region

Feature Region

~a\b c \d
left hole + - —

right hole — — +

Figure 1.5: A feature groups is composed of required and illegal regions. Features are lists
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implementation the user would select feature groups from a repository. Off-the-shelf parts

would be modeled using assembly-centric technology and would be available from an online

catalog. The individual features in each group must then be assigned to specific parts,

thus defining the specification for each part.

Figure 1.5 shows the hole-bolt-hole feature group, which contains three features.

To instantiate this group, the user supplies values for the various parameters (<, di, ^2? ^2>

thread pitch, etc.), and assign each feature to a different part. In Figure 1.4, the informa

tion yielded by the input process includes application feature group instantiations, their

relative positions, general illegal regions, and motion descriptions.

1.3.2 Feature Group Decomposition

In practice, application feature groups or even individual features are too high-

level to use as input to a shape synthesizer. The shape synthesizer developed in this

dissertation will operate on more primitive input: systems of required regions and illegal

regions. (These may also be thought of as positive and negative volumes of material.)

Figure 1.5 shows a number of regions that make up the three application features of the
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hole-bolt-hole group. The true nature of an application feature is that it is simply a list

-of some of the regions from the group, plus a polarity for each region on the list.

For example, in Figure 1.5 there is a region (volume of material) exactly the size

and shape of the bolt. The bolt feature lists this as its only region, whose polarity is

positive: the region is required for the bolt. Each hole feature also lists this region, but

with a negative polarity: the bolt region is illegal for the hole features. In other words, the

-:part (A) must have a hole the right size for the bolt^. The bolt feature will be assigned to

the bolt part, and it will be the part's only feature. That being the case, the bolt part is

fully defined and requires no shape synthesis.

The table in Figure 1.5 depicts-the features in the hole-bolt-hole group. In ad

dition to listing region B, the left hole featme also lists the annular region A as required,

and the a-nniila-r region D as illegal. In Figure 1.5, the left hole featmre is assigned to part

X; the right hole feature is assigned to part Y.

The featmre group in Figmre 1.5 also contains a semi-infinite cylindrical region

(C) that reserves a path for the bolt to be inserted during assembly. The hole features

both list this region with a negative polarity: the region is illegal for parts X and Y. In

addition, this illegal region must be propagated to all other parts in the assembly, or at

least to those whose position in the assembly sequence is earlier than that of the bolt. This

assures that the bolt will indeed be able to be inserted when the parts are assembled.^

In Figmre 1.4 the output firom the feature group decomposition step is a system

of required and illegal regions for each part. This is the form of input suitable for the

shape synthesizer.

1.3.3 Obstacle Computation

Let us use the term target part to refer to the one currently being synthesized.

As described above, illegal regions are generated by feature group decomposition, and may

also be input explicitly by the user. In addition, illegal regions arise because, firom the

j>oint of view of the target part, all other parts define illegal regions. By extension, if a

^This is somewhat of a simplification. In practice there would probably be two bolt-shaped regions, one
slightly larger than the other, but occupjdng roughly the same position in space. The inner region would

^^e the required region for the bolt feature. The outer one would be the illegal region for the hole features.
The difference in their sizes would allow clearance between the bolt and the holes.

^FVom this it becomes clear that assembly-centric design should also involve planning the order in which
parts are assembled. See Chapter 5 for some thoughts on further research in this area.
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paxt moves relative to the target part, the entire space it sweeps out, as viewed from the

coordinate fraime of the target part, is an illegal region. Note that our whole approach

of starting with illegal regions and synthesizing noninterfering parts contrasts with the

method supported by traditional CAD systems. There the designer models all of the parts,

then has the software check for interference. If any is found, she edits the offending

geometry.

In our proposed system, all applicable illegal regions must be computed so that

they can be used as input to the shape synthesizer. In the case of parts that are stationary

relative to the target part, this is trivial. For parts that move relative to the target part,

we must do some work. Though it may at first appear difficult to synthesize shapes in

the presence of moving obstacles, it tmns out that the problem of synthesis is separable

from the motion if we make one assumption: we must have full descriptions of the relative

motions of all parts in the assembly. As noted in Section 1.3, this will be easy for the

designer to input, in manycases, because degrees of freedom are encoded in feature groups.

In addition, catalog models, such as the bearing in Section 1.1.2, would encode degrees of

freedom that they provide.

With this information in hand, we can compute static illegal regions for all parts

in the assembly. This is important: shape synthesis for the target part can always

be done in a static environment. The illegal regions that populate this environment

are the swept volumes of the other parts in the assembly. Each part is swept along its

degrees of freedom, as viewed from the frame of reference of the target part. If a part

has multiple degrees of freedom relative to the target part, it must be swept recursively,

starting with the axis most distal from the target part along the kinematic chain. The

process is similar to the computation of the work envelope of a robot [?, ?].

An example is shown in Figure 1.6. At (a) the target part, a clamp, is shown

as a set of desired features. It is to have one revolute degree of freedom relative to the

base plate, with joint limits at +45 and —30 degrees. At the left is a stage which has a

prismatic degree of freedom relative to the base. The stage and the clamp thus have two

degrees of freedom relative to each other. To compute all the illegal regions that apply

to the clamp, we first attach ourselves to its frame of reference. Starting with the part

farthest down the kinematic chadn (the stage), we sweep along its axis through its complete

range of motion. This gives rise to an intermediate illegal region, shown (shaded) at (b).

Proceeding along the kinematic chain toward the target part, we sweep these intermediate
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Figure 1.6: Generating illegal regions by sweeping.

regions, plus other parts, along their degrees of freedom. The final illegal region applicable

to this target part is shown at (c), along with a possible design.

In this example, we have assumed that the individual degrees of freedom are fully

independent. This is the most conservative assumption, yieldingthe largest illegalregions,

but it inay not always be appropriate. There could be mechanical stops, or the actuation

could be imder software control, such that, say, the clamp only moves when the stage is

at one specific position. To handle this we need only modify the sweeping process slightly.

Rather than sweeping the intermediate region recursively, the stage would be swept along

both axes separately, and the union of the two resulting regions would be used as the

illegal region.

Any kind of interdependence between part motions can be handled similarly, as

long as we are provided with an accurate description of the rules governing these depen

dencies. Note that if the dependencies are imposed by software control, it is worthwhile to

discard them wherever possible and use the most conservative illegal regions. This guar

antees that no software error can ever cause a physical machine crash. We also note that

linkages do not represent dependent degrees of freedom between their links, just complex

degrees of freedom. Computation of the swept areas of planar links has been studied by



L3. PROGRAM STRUCTURE 19

Ling and Chase [?].

Readers familiar with configuration space approaches used in robotics literature

for path planning may worry about the "curse of dimensionality," which makes problems

intractable when they must be solved in high-dimensional spaces. We point out that there

is a subtle difference between the robotics problem and the shape synthesis problem. This

difference is crucial: in robotics, we are given the shapes of all the parts and the motion

is unknown. In shape synthesis, we assume that all motions are known and we must find

the shapes of the parts. The dimension of the space in which the shape synthesis problem

must be solved is the same as that of the physical space in which the part will live (2 or

3).3

1.3.4 Skeleton Synthesis

Once the user input has been preprocessed to yield primitive input in the form of

required and illegal regions, shape synthesis can begin. As described in Section 1.2.1, we

have chosen to divide this into two steps: skeleton synthesis and material sjmthesis. This

section outlines skeleton synthesis, and the following section outlines material synthesis.

We reiterate that shape synthesis is the primary focus of this dissertation. This

description of the design environment is purely to provide a concrete context in which to

fi:ame the shape synthesis problem. In the remaining chapters of this dissertation, we will

plax:e proportionally more weight on skeleton synthesis, but that is only because there is

not time to study all these areas in detail.

We represent a skeleton as a graph plus a Euclidean embedding (sometimes called

a diagram), where the embedding may have non-straight edges. Graphs include several

specializations, such as triangulations and spaxming trees, and there are two broad cate

gories of approach: computational geometry and numerical optimization. Of interest to

us is a class of definitions that require the graph to meet some cost based on geometric

characteristics of the edge set, such as length of edges or stiffness of node-to-node paths.

Many such graphs are treated in the literature, including the Euclidean minimum spanning

tree, Steiner minimumspanning tree [?], t-spanners [?, ?], and Delaunay triangulations [?].

The differences between these are the nature of the cost function that the graph must sat

isfy, and whether the algorithm can add nodes. The investigation of skeleton-generating

^Exceptions to this may arise ifwewishto parameterizesomeaspect of a part's shape (seeSection 5.1.2),
but they do not -arise from degrees of freedom of moving parts.
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algorithms is the topic of Chapter 2.

Regardless of the algorithm we use to create the skeleton, we must ensure that

it can be widened appropriately to create the thick skeleton without interfering with any

illegal regions. In its simplest form, the problem is analogous to finding a path for a

mobile robot through a roomfiil of obstacles, and we can borrow the algorithms used to

solve those problems. This technique was investigated by Graham and Ulrich [?]. Most

techniques account for the size of the robot by transforming the problem to configuration

space (cspace) [?, ?]. In the case of a circular robot moving through a two-dimensional

field of obstacles, cspace is parameterized by the coordinates of the center of the robot.

For skeleton synthesis, CSPACE is parameterized by the coordinates of a point on the

skeleton. Obstacles in cspace are sets that must not contain any point on the skeleton,

lest the thick skeleton interfere with an illegal region in physical space. If the thick skeleton

is to be of uniform width, CSPACE is computed simply by growing the illegal regions by

one-half the width of the thick skeleton. The skeleton synthesis algorithm can then operate

in this transformed space to plan the skeleton, and we will be assured of being able to

grow the thick skeleton without interference. In fact, clearance can be added by growing

the obstacles an extra amount.

If the thick skeleton is to have varying widths, e.g. tapered struts, CSPACE must

acquire an extra dimension to account for the half-width of the skeleton. For a 2-D design

problem, CSPACE becomes three-dimensional and obstacles are generalized firustums whose

tops are the physical illegal regions, and whose sides have a slope of unity. See Chapter 5

.for a discussion of this idea.

In all of the skeletonizing algorithms we will consider, there are two general

*appro£udies to avoiding illegal regions. The first implementation generates a connectivity

-^aph without regard for the illegal regions, then uses path planning to route the edges.

The second implementation directly generates a skeleton in CSPACE that respects the illegal

iregions. In most cases this produces a superior skeleton, but many of the algorithms

studied in the literature have not been extended to handle obstacles. Chapter 4 discusses

the former technique. Chapter 5 suggests some ways to implement the latter.
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Figure 1.7: Two thick skeletons (A & C) and six designs, all satisfying the same specifica
tion (not shown).

1.3.5 Material Synthesis

The material synthesizer has the responsibility of generating the final shape of

the part. As it does so, it follows design rules relating to minimum material width, manu

facturing methods, assemblability, etc. The material synthesizer must guarantee that the

finished shape completely contains the skeleton, and that no portion violates any design

rules or illegal regions. The output of the material synthesizer is the actual part design.

Shimada's and Gossaxd's [?] elegant method of generating skinning boundaries by placing

a deformable curve in a potential field represents one possible material synthesis style.

Our goal is to be able to generate a wide selection of part styles, some similar to those

shown in figures 1.3 and 1.7.'*

The simplest synthesis technique is to approximate the thick skeleton using the

^It is worth noting that the parts illustrated in fig 1.7 took over 30 hours to model interactively in
Pro/ENGINEER [?]. This highlights the difficulty of using solid modelers to explore design space.
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selected manufacturing process. For example, if the selected process is milling, material is

added to the thick skeleton imtil the part is composed of flat faces and fillets. Examples

are seen in Figure 1.7 (e), (g) and 4.1. An interesting problem to be solved then is how to

synthesize skeletons that ensure suflicient clearance for fillets to be added without creating

interferences.

Perhaps the next simplest technique is to conceptually wrap a skin around the

thick skeleton and pull it tight, letting it drape around the illegal regions. Figure 1.3(c)

shows one such design in two dimensions. This can be thought of as a modification of the

convex hull of the application features.

More sophisticated material synthesis will add more knowledge about the se

lected manufacturing process. We envision a planner that reasons in terms of subtractive

operations that correspond to milling, turning, drilling, etc., and additive operations that

correspond to bolting and welding. This knowledge will be used to add material strate

gically to yield an easily-manufacturable part. This raises the specter of the well-known

difficulties of automatically generating manufacturing plans for a given design. In this case

the problem is easier because the synthesizer has the freedom to choose the shape of the

part.

In most cases it will be desirable for the material synthesizer to generate axis-

aligned geometry wherever possible. This will yield parts that are easier to machine,

inspect, and assemble than those with freeform geometry. Figure 1.3(h) displays an exam

ple with almost exclusively rectilinear geometry, typical of built-up parts in a prototype.

In Figure 1.7, all six designs exhibit geometry that is aligned to one or more principal

axes. Solutions (e) through (h) have all geometry restricted to axis-aligned slabs.

In the case of prototyping, evolution of the design often requires part designs

^to be modified. When possible, it is often faster and more economical to re-machine the

..same physical part than to make a new part from scratch. It may be desirable for the

..synthesizer to add excess material judiciously to improve reworkability of the parts.

For this dissertation only the simplest material sjmthesis techniques were imple-

--mented: approximating the thick skeleton. One variation is to construct uniform width

spars along each edge of the skeleton. A slightly more advanced technique is to use spars

of nonuniform width. These implementations are presented in Chapter 2. See Chapter 5

for further meditations on material synthesis.
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1.3.6 Complications

There axeseveral issues which complicate using the single-pass approadi we have

outlined. The most important complication is the simultaneous design of multiple parts.

In this single-pass model, a problem arises when we must synthesize designs for all the

parts in am assembly: illegad regions camnot be computed for parts whose shape is not yet

known. Our first approach to solving this problem is to use prioritization amd iteration.

The application features of a part should provide a good placeholder for the space that it

will ultimately occupy. The designer first inputs all feature groups, assigns features, then

to each part she assigns a priority. The synthesizer begins with the highest-priority part,

using the application featmres of all other parts ais illegad regions. One by one, each of the

parts are synthesized in order of descending priority.

Clearly, prioritization will not always work. It may happen that the part

cannot be synthesized at all because of the way a higher-priority part was synthesized.

Sometimes a reordering of the part priorities will solve this, but not always. In some

cases, each part must give a little so that they can coexist. Another approach is to try to

carve up space amd apportion a regionto each part beforeany synthesisbegins. A Voronoi

partitioning based on application features is one possibility. In this scheme space is divided

into cells, each belonging to a particular part. The shape of each cell is determined so

that at any point inside the cell, the nearest appUcation feature is one belonging to the

same part as the cell. In other words, the cell walls appear "halfway" between the nearest

features of adjacent parts. This may be modified to a weighted Voronoi partition if it is

necessary to give some parts proportionally more space.

A further complication is that the two stages of shape sjmthesis may have to

become more tightly integrated than we have described. For example, the material syn

thesizer may be able to recognize potential improvements to the design that require mod

ification of the skeleton it was passed. For instance, it might be that a simpler machining

operation would be usable if some portion of the skeleton were moved a bit. In three

dimensions, there are many ways to thicken the skeleton. Iteration between the skeleton

and material synthesizers is a possible approach to try first, and can be viewed as a form

of optimization.

Finally, it remains to be seen how natural it will be for designers to input designs

as systems of feature groups. For small assemblies it seems straightforward, but it may
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require considerable imagination on the part of the designer for complex systems. We are

hopeful that rapid shape synthesis will come to the rescue. If a designer is able to see

representative solid bodies for the parts, it should greatly facilitate her understanding of

the design she is constructing.

1.4 Conclusion

We have presented a blueprint for what we believe will be a genuinely useful new

kind of CAD system. Such a system will have clear economic advantages. Assembly-centric

design is analogous to standard-cell based CAD for integrated circuit design. Feature groups

are analogs of the standard cells, and shape synthesis is analogous to automatic placement

and routing of interconnects. It would be inconceivable today to attempt a VLSI design

without such tools. We imagine that assembly-centric CAD could be just as indispensable

in the future. Minimizing the stream of input required from the designer will not only

speed up the design cycle, it will also facilitate vastly more thorough exploration of the

design space than is possible with ciurent CAD systems.

In this design paradigm, conceptual design is more naturally supported because

arbitrary geometric details are not hard coded into the design. A measure of functional

intent is encoded by modeling only application featmes and augmenting them with re

lationship information. This functional level requires less information to unambiguously

specify than does explicit geometric construction, and is less subject to change over the

life of the design. The representation of the design can be thought of as "live," i.e. that

the design represents an infinite family of designs that satisfy the design criteria. Further,

since it is the computer that designs the specific part geometry, manufacturing process

knowledge can be applied at the part synthesis stage to yield parts that are cheap and

easy to manufacture. Global part properties, such as manufacturing process or style of

construction, may be changed with relative ease at any time during the design cycle.

As far as this dissertation is concerned, the salient aspect of assembly-centric

design is that the shape synthesis step is separable from most other concerns. First, it can

be decoupled from the choice of data structure used to specify application features. We

need only that required and illegal regions be extractable. Shape synthesis is also separable

from issues of motion if we assume that complete descriptions of assembly kinematics are

available. The important result is that shape synthesis of an individual part can proceed
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in a static environment. Thus we can imagine shape synthesis fitting into a variety of

software paradigms. It could provide support to an interactive design system wherein the

user manipulates assembly-level feature groups (the psiradigm sketched in this chapter).

In a more automated scheme, a system of collaborating software agents could reason in

terms of feature groups, with a shape synthesis engine providing background services.

We conjecture that shape synthesis is not diflScult for simple parts, and the re

mainder of this dissertation will be spent showing that this is true. Chapters 2 and 3

discuss the generation and optimization of skeletons. Chapter 4 examines issues arising

firom obstacles. Chapter 5 is devoted entirely to research directions and future work.

Finally, the appendix provides user documentation for the software.
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Chapter 2

Part Skeletons for Shape Synthesis

In Chapter 1 we conjecture that reasonable part shapes can be synthesized by

fairly simple and cheap algorithms. Since we have chosen to divide the process into skeleton

synthesis and material synthesis, one piupose of this research is to examine a wide range

of skeleton-generating algorithms and assess their suitability.

As stated in Chapter 1, the skeleton abstracts the structure of the part. It is

a connected set of zero-width paths that describe where material will go to connect the

application features. The skeleton is a graphs in that it represents information about the

connectivity of the application features. In graph-theoretic terminology, the application

features are nodes. Pairs of nodes are connected by edges\ each edge connects two nodes.

The skeleton also has an embedding^ which gives it a concrete existence in three-dimensional

space. This embedding describes the path through space that each edge takes to connect

its two nodes.

There are a vast number of ways to compute skeletons. Many of these come

from graph theory and computational geometry. In this chapter, we present a sampling of

skeleton-generating algorithms, all of which have been implemented in one or more soft

ware prototypes.^ The particular algorithms wereselected through a process of sequential

discovery: at first, the simplest were implemented £Lnd used to generate a large number

of skeletons. Typically, there would be obvious fiaws, so new algorithms were sought or

devised to correct these fiaws. The best algorithms that are currently implemented in the

software are a result of several iterations of this process.

When synthesizing a skeleton, we must consider the list of requirements that the

^See AppendixA for the user manual for the graphlab program.
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part must meet. In Section 1.2 we put forth the following list of categories:

1. Connectivity.

2. Noninterference.

3. Strength and Stiffness.

4. Manufacturability and Assemblability.

5. Dynamics.

6. Electromagnetic characteristics, aerodynamics, hydrodynamics, aesthetic styling,

thermal expansion, etc.

Accordingly, in our search for algorithms, we begin by ensuring that the first requirement,

connectivity, is always satisfied. This is not particularly difficult—any graph that spans

- the input set guarantees a connected part. The second requirement, however, is a large

and challenging issue unto itself. It will be saved for Chapter 4. In the present chapter we

concentrate on formulating parts in uncluttered space.

The third requirement. Strength and Stiflfeess, is one of the gray-area require-

' ments. Its importance and satisfaction depend on the application. However, we believe

that even in the absence of any knowledge of the application, some parts are clearly su

perior to others. For example, two designs for the same part may use the same amount

of material, but one is much stiffer. For this research, we assume that stiffer design is

always better.^ While it is true that the computation of part stiffness requires application

knowledge, it is possible to qualitatively assess that some designs will almost always be

stiffer than others, even in the absence of application information. We will seek to generate

skeletons that have high likelihood of being close to the stiffest possible.

Because there is only so much that can be done in the scope of this dissertation,

^we will neglect the remaining items in the list. Thus, in this chapter and the next, we seek

j>art designs that are connected and stiff.

.2.1 A Note About The Prototype Software

Much of the resesirch effort for this dissertation has been spent on the imple

mentation of two prototype computer programs. The first, called racerx, is a testbed

^Obviously some parts are required to be compliant. For now, such design is outside the scope of our
research.
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Figiire 2.1: A part being designed in the graphlab program.

for obstacle avoidance using path pleinning. The second, called graphlab, is a testbed

for skeleton-generating algorithms. Both are interactive programs designed to simulate

some of the features of the system proposed in Chapter 1. A screen shot of the graphlab

progreim is shown in Figure 2.1.

Neither of these programs attempts to support assembly-centric design using fea

ture groups. Their purpose is to provide an environment for studying the shape synthesis

problem in two dimensions. Furthermore, they only provide for the design of a single part.

As such, the user inputs application features and illegal regions directly, and only one

feature type is supported: the hole.

The input features and regions, as well as the synthesized part, are all rendered

in three dimensions. A variety of parameters can be modified interactively, including

hole diameters, minimum material thickness, and so-on. The hole features and illegsd
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regions can be dragged with the moxise, and the part is automaticallyresynthesized. The

algorithms are currently fast enough to resynthesize a reasonably complex part several

times per second. Thus, when the user interactively drags a feature or edits an illegal

region, the part appears to stretch.

In this research, we have given only limited treatment to the material sjmthesis

aspect of shapesynthesis. In the software, two kinds of material synthesis are employed,

both based on the thick skeleton. The simplest constructs spars of a uniform width along

all the edges of the skeleton. The second technique embellishes this slightly when the

skeleton is a tree: tapered spars are are constructed, the narrowest being at the terminal

nodes of the tree.

2.2 Skeleton Types

A niunber of simple skeletons can be generated using familiar algorithms. The

Euclidean Minimum Spanning Tree (EMST), for exjunple, is a graphthat connects (spans)

all the nodes in the input set. When used as a skeleton, the result is a connected part.

However, such skeletons are unlikely to be stiflF except in special circumstances. We have

found that some of best skeletons are generated by a two-step process: first choose a

topology, then optimize the embedding, possibly altering the topology in the process.

In this chapter, we present algorithms that generate a topology. Some of these

may be suitable for skeletons as is. Most, however, are mainly useful as starting points

for the optimizer, which is covered in Chapter 3. Several topology-generating algorithms

are examined, including the Euclidean Minimum Spanning Tree, Centroid Star Tree, the

-Principal Axis Tree, the Hierarchical Nearest-Neighbor Tee, two kinds of t-Spanners, and

the Delaunay Tiangulation.

Much of the work presented here focuses on trees. Many of the algorithms ex-

.amined need to be fully understood in the context of trees before they are generalized to

^aphs. In addition, for many mechanical parts, a tree-type skeleton is appropriate. Note

..that for such parts, the material synthesizer has the discretion to construct the sparswith

voids in them. This may includebars with drilled holes, or each spar may be a truss, for

example. We will still consider the skeleton of the part to be tree-based.
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Figure 2.2: Euclidean Minimum Spsmning Trees for three example point sets.

2.2.1 Euclidean Minimum Spanning Tree

The first spanning tree we implemented is the Euclidean Minimum Spanning

l^ee. For a set of points, V, a minimuin spanning tree is defined to be a spanning tree

whose weight (sum of weights of all edges in the tree) is less than or equal to the weights of

all other possible spanning trees over the same set V. If we define the weight of an edge to

be its Euclidean length, then the tree is said to be a Euclidean Minimum Spanning Tree of

V. Thisrequires that V be embedded in R^, i.e., every vertex v eV hasd coordinates that

define its position in d-space. The graphlab software employs a simple' implementation
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Figure 2.3: Parts generated from the skeletons in Figure 2.2.

of Kruskal's algorithm [?] to generate the Euclidean Minimum Spanning TVee of the set

of nodes input by the user. Figure 2.2 shows the EMST's for three input sets. Figure 2.3

shows pELTts generated from those skeletons. These same three point sets will be used for

all examples in this chapter and the next.

It can be seen that the minimum spsmning tree skeleton may not be the most

•desirable way to design a part. This is because all emphasis has been placed on conserving

material, and no emphasis has been placed on designing a part that is stiff. Further, the

algorithm only considers edges whose endpoints are in V. For the purposes of synthesizing

part skeletons, it is perfectly £icceptable for generated edges to have junctions that are

not members of V. Thus we should consider algorithms that add nodes not in V when it
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serves to improve the skeleton.

2.2.2 Principal Axis Tree

We have implemented several algorithms that may add nodes to the graph. The

first such we call a principal axis tree. It is a simple spanning tree whose embedding is

based on the inertia tensor of the node set. It has the characteristic that all its edges are

parallel or perpendicular to each other. Nodes are added by the algorithm to make this

possible.

For the remainder of this chapter, we will use the term Steiner node to distinguish

a node not in V that is added to G by the algorithm. When necessary, we will refer to

non-Steiner nodes as V-nodes to emphasize that they belong to the original set V.

Conceptually, the inertia tensor of the node set is computed, and a diagonalizing

transform is found. This transform moves the set V so that its centroid is at the origin,

and rotates the set so that its principal axis of inertia lies on the x-axis. Each node in V

is projected to the transformed x-axis and a Steiner node is added at that location. An

edge is constructed to connect each V-node to its Steiner node, and edges are added along

the X axis to connect all the Steiner nodes together. Figure 2.4 shows the principal-axis

trees for the example point sets. Figure 2.5 shows parts generated firom those skeletons.

Tofind the diagonalizing transform in R^, we needonly compute the centroid of

V and the angle of the rotation. The centroid is computed as

=—yit/i
(2.1)

' I vev

where v is thevector [x^, yv]^i the coordinates ofthe point v inR^. The angle iscomputed
as

atan2 ( Xt,!/,,, 1??)
e= —L (2.2)

2

where Xy and are the coordinates of each point, v, measured firom the centroid of the

set, Veen.

This type of skeleton could be a starting point in the synthesis of parts with

mostly rectilinear geometry. However, this simplistic algorithm optimizes neither material

use nor stifihess, and would probably not be useful without some enhancements. We
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•—a

Figure 2.4: Principal Axis Trees for the example point sets. The white nodes axe Steiner
nodes.

imagine that optimization schemes could be devised that would improve upon the output

of this algorithm. For example, a material optimizer could identify peripheral spars that

are near each other and coalesce them.

We assume that the motivation for using a skeleton of this type is that rectilinear

^geometry is desired. Optimization in this context is markedly different from that which

-willbe presented in the Chapter 3. When using this tree as an initisd graph, that optimizer

often produces very bad geometry, with many undesirable zigzags in the skeleton. Pre

serving rectilinearity represents an additional constraint that the optimizer must observe.

We feel that the optimization process must first be understood without such additional
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Figiire 2.5: Parts generated from the skeletons in Figure 2.4.

constraints, so no additional study of the principal axis approach has been conducted.

2.2.3 Centroid Star Tree

The first two tree skeletons, above, are both suboptimal in terms of material use

and stiffness. This leads us to investigate numerical optimization approaches for generating

skeletons, which will be presented in Chapter 3. These approaches require an initial graph,

which will then be modified to improve its stiffness, material usage, or both.

As will be seen in that section, the optimizer often drastically modifies the initial

graph. Therefore, we should not limit our consideration of initial-graph algorithms to just
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those we expect to produce good skeletons. It wiU be seen that even very crude initial

graphs can be transformed into a reasonable skeleton by the optimizer. We may wish to

use as an initial graph something that is cheap to compute. A feature of the optimizer

presented in Chapter 3 is that it will not transform an unconnected graph into a connected

one. Thus, when we choose an initial graph, we must at least guarantee that it is connected

and that it spans V.

One very simple spanning graph is the star graph. Such a graph can be easily

constructed by choosing (or adding) a node and constructing n —1 (or n) edges to connect

that node to all the other nodes in V. We will find it expedient to insert a Steiner node,

Vcenj at the centroid of the set F, as computed in Equation 2.1. We will call this a Centroid

Star Tree. Figure 2.6 shows the Centroid Star Trees for the example point sets.

In many cases the optimizer transforms the Centroid Star Tree into a reasonable

skeleton. However, its worst-case performance is poor, and it requires more effort than

necessary on the part of the optimizer. This leads us to devise the Hierarchical Nearest

Neighbor Trees.

2.2.4 Hierarchical Nearest Neighbor Trees

The optimizer in Chapter 3 uses graph weight and compliance as cost criteria.

Our experiences using the optimizer with the above algorithms have lead us to an in

sight: the best topologies have edges between nodes that are near each other. Of coiurse,

this should have been obvious in the first place. It leads us to devise what we call the

Hierarchical Nearest Neighbor Trees.

In these graphs, each node in F is paired with one nearby. Each pair-group then

^ets a Steiner node added midway between the pair. Two edges are constructed from

^the Steiner node to connect it to its two F-nodes. Call the set of Steiner nodes 5i, and

repeat the process on iSi, pairing nearby Steiner nodes. This yields a second set of Steiner

nodes, 52- It is easy to see that each successive set of Steiner nodes is half the size of its

predecessor (ignoring, for now, that some of these will have odd numbers of nodes). The

process is repeated until only one pair of Steiner nodes remains. An edge is constructed

to connect these two, yielding a balanced binary tree that spans F. Figure 2.7 shows the

Hierarchical Nearest Neighbor Trees for the example point sets.

The formal algorithm is shown in Algorithm 2.1. Note that just before line 14
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Figure 2.6: Centroid Star Trees for the example point sets.

is executed, the set Si is either empty, or contains only one node. In the latter case. Si

began the inner loop with an odd number of nodes. In line 18, we are guaranteed that

|5t_i| = 2. This can be seen from the fact that

(2.3)

Hence, after line 14 is executed, |5't| will never equal 1, and the test in line 5 will always

terminate the loop with |Si| = 2.

The complexity analysis is as follows. Rrom computational geometry, we know
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Figure 2.7: Hierarchical Nearest Neighbor IVees for the example point sets. The Steiner
Nodes marked with a have been moved slightly for clarity. The actual position of each
is at the asterisk.

that the best time complexity of line 7 is

T7 = O (logni), (2.4)

where nj = IS'il. To support this requires that line 11 also have time complexity

Til =0(logni), (2.5)

because we must remove two items from a heap. Lines 8, 9, 10, and 12 each execute in

constant time. Thus lines 7 and 11 dominate the inner loop.



2.2. SKELETON TYPES 39

Algorithm 2.1 HNNl(V')

Takes a set V and computes a Hierarchical Nearest Neighbor Tree, G.
1: G<=(v;{}).

2: 5o ^ V.

3: Si {}.

4: « 4= 0.

5: while |5i| > 2 do

6: while ISi I > 1 do

7: Find the closest pair p = {n, v}, u, t; G Si.

8: Create Steiner node, s, midway between u and v.

9: Add s to G.

10: Add edges ei = [s,u] and 62 = [s,v] to G.

11: Si Si \ {u, v}.

12: 5i+i 4= 5i+i U{s}.

13: end while

14: iSi "4= Si U Si+i-

15: Si+i 4= {}.

16: 2 4= 2 + 1.

17: end while

18: Si_i contains two vertices, call them u and v.

19: Add edge e = [it,v] to G

20: return G.

Because line 11 removes two elements from Sj, the inner loop iterates times

for one iteration of the outer loop. Thus the complexity of the inner loop for one iteration

of the outer loop is O {rii log ni).

Line 14 requires 0(ni logrii) time because a data structure must be built to

support the query in line 7. Lines 15 and 16 each take constant time, so one iteration of

the outer loop requires O (rii lognj) time.

On the first iteration of the outer loop, rii = \V\. On each subsequent iteration

rii is halved, so the total time complexity is

^HNNi = ^ 5 (2.6)
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Algorithm 2.2 HNN2(y)

:Takes a set V and computes a Hierarchical Nearest Neighbor Tree, G.
1: {¥,{]).

2; So ^ V.

3:

4: while |5o| > 2 do

5: Find the closest pair p = {it,v},u,v 6 Sq.

6: Create Steiner node, s, midway between u and v.

7: Add s to G.

8: Add edges ei = [s,n] and 62 = [s,v] to G.

9: So <= So\{u,v}.

10: So -4= So o {s}.

11: end while

12: Si-i contains two vertices, call them u and v.

13: Add edge e = [n,u] to G

14: return G.

where n = |F| and r = logn. This can be rearranged as

THNNi=nlogn
i=0->r *=0-fr

SO we conclude that

Thnni = O (n logn). (2.8)

This is certainly good news. The algorithm is as efficient as we could hope for,

and reasonably simple.^ The only hidden complexity in this algorithm is that it requires

an efficient computation of the Delaunay Triangulation to support the query in line 7. We

will see below that we need the Delaunay IViangulation to support other algorithms, as

well as for its own sake as a skeleton algorithm.

A variation of this algorithm is possible, which we will call HNN2. It is shown in

Algorithm 2.2. The difference is that the Steiner nodes are added to the working set So

when they are created, rather than being saved in a separate set until So is exhausted, as

HNNl does. The complexity analysis is similar, and gives Thnn2 = O (nlogn)

®The current implementation isactually simpler, but less efficient. Its complexity isO(n^)
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We will see in Chapter 3 that the Hierarchical Nearest Neighbor Trees gives

reasonably consistent results when used as initial graphs for the optimizer. However, there

does not seem to be a clear choice between HNNl and HNN2.

2.2.5 t-Spanners

In addition to the tree-type skeletons above, we have also investigated several

algorithms that yield general graphs. These include the t-Spanners and the Delaunay

TViangulation. In some cases we will find that these graphs provide a stifier skeleton than

do the trees presented above.

These graphs can be used as initial graphs for the optimizer. However, we will

see that the optimizer we have implemented is really trying to drive the graph to be a tree.

If it terminates before doing so, it is only because it has gotten stuck in a local minimum.

If we desire to optimize general graphs, we will probably need to devise a more specific

optimizer.

For designing mechanical parts, a promising class of graphs is the t-Spanners.

Given a set of points V in. d dimensional space, a graph G = is said to be a

Euclidean t-Spanner if for every u, u € V the distance from u to v in G is at most t times

longer than the Euclidean distance between those points.

Numerous constructions for such graphs are given in the literature. In our soft

ware we have implemented two of them (specialized to R^). The first is based on a

modification of Kruskal's algorithm for finding the Euchdean minimum spanning tree. It

generates a graph with O edges and weight that is O(logn) times the weight

of the minimum spanning tree; where n = \V\. The algorithm takes O(n^logn) time

(though in our current implementation it takes O (n^) time.'̂ ) The second is based on

an algorithm for the all-nearest-neighbors problem. It generates a graph with O

edges in O(nlogn^^^pg-) time.
The formal definition of a spanner is as follows. Let V be a set of points in R''

and G = (V, jE?) is a connected graph that spans V and has Euclidean edge weights. G is

^It is not yet clear whether high-order complexities such as these would pose a problem in practice. We
have observed that many real-world parts have only a small number of application features (from which
the nodes are derived). Alternatively, we could modify the algorithm to compute a graph-spanner of the
Delaunay TViangulation.
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said to be a Euclidean t-Spanner of V if

d(j(ujV^
max — ^ < t, (2.9)
«,u€V a(w, v)

wheredaiu^ v) is the length of a shortest path from it to v in C? and d(it,u) is the Euclidean

distance from it to u in R''. The value of t is called the stretch factor of G. Note that

the Euclidean t-spanner is a special case of a graph spanner. Peleg and Shaffer [?] define

a t-spanner for a graph G' = (V, E') to be a subgraph G = {V, E) such that

v) /o
max r < t. (z.lU)
u,t;€V dc (u, v)

A Euclidean spanner can be thought of as a graph spanner of the complete Euclidean graph

of F, Kv' The two algorithms that we have implemented in the software differfrom each

other in that the first generates spanners of arbitrary graphs, whilethe secondapplies only

to Euclidean spanners. Both algorithms can generate graphs in arbitrary dimensions, but

we have implemented themonly for R^. Furthermore, we have applied the first algorithm

only to generating Euclidean spanners, that is, the algorithm is passed Ky and asked to

compute a spanner of that.

Spanners have been studied extensively in the literature. Most authors present

algorithms for spanner construction and then derive bounds on various resulting measures

such as the size of the graph, its weight, maximum vertex degree, and cost of construction.

Spanners for arbitrary positive-edge-weighted graphs were considered by Althofer et al. [?,

?], and it was shown that a Greedy algorithm (one of the two we implemented) constructs

t-spanners with size O weight less than ^1 4- •weight(MST) and runs in
time O (n^logn); n = |F|. Chandra et al. [?] improve the weight bound to O(logn) •

weight(MST) for the same algorithm using an improved andysis. The constant implicit

•iin the big O depends on d and t. They go on to present an algorithm which constructs in

rrO (filogn) time a f-spanner with O (n) edges and weight O(logn) •weight(MST).

Other authors present algorithms with similar bounds on size, weight, and run

ningtime. Some consider only a specific value of t [?], or a limited range ofvalues [?, ?, ?],

-while others consider arbitrary values of t greater than some minimum, usually 1 [?, ?,

=-?, ?, ?]. Salowe [?] presents an algorithm (the second we implemented) which generates

a graph with O edges in O(n log time. Another approach has been to
consider specific classes ofgraphs, show that they are spanners, and determine (or bound)

their stretch factor [?, ?]. Several authors have done this for the Delaunay triangulation.
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Algorithm 2.3 Greedy(G' = (V,E'),t)

Takes a graph G' and computes a t-spanner, G.
Sort E' by non-decreasing weight.

G^(V,{}).

for each edge e = [u,v] in E' do

Compute P(u,v), the shortest path from u to v in G.

if t •weight(e) < weight (P(u,u)) then

Add e to G.

end if

end for

return G.

with the best stretch factor of « 2.42 reported in [?]. Some of these authors are addition

ally interested in Ending spanners with bounded vertex degree, with bounds as low as 4

(reported in [?]) and 3 (reported in [?]).

2.2.6 The Greedy t-Spanner

The first t-spanner algorithm we implemented is the Greedy algorithm of Althofer

et al. [?]. It is a modification of Kruskal's algorithm for finding the minimum spanning

tree. The second is the algorithm of Salowe [?] and is discussed in Section 2.2.7. Both are

incorporated into the graphlab software.

The Greedy algorithm is elegant in its simplicity, if not in its efficiency. It is

shown in Algorithm 2.3. Implementing this algorithm is straightforward since we already

have an implementation of Kruskal's algorithm. Support for it requires an implementation

of Dijkstra's algorithm for shortest path (line 5), which we will also use in Chapter 4 to

avoid obstacles. Figure 2.8 shows Greedy t-Spanners for the example point sets. The

stretch factor, t, is 1.2 in the left colunm, 1.5 in the right. Figure 2.9 shows an example of

parts generated from the skeletons in the right column of Figure 2.8.

We tested the algorithm on a large number of interactively constructed point sets

with n as large as 50. The sizes and weights of the resulting graphs appear to follow the

bounds presented in [?] and [?]. The required CPU time is more like O (n^) due to our
crude implementation of Dijkstra's algorithm which requires O (n^) time to compute a

shortest path. Precise benchmark tests were not conducted.
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Figure 2.8: Greedy ^-Spanners for the example point sets. In the left column t = 1.2, in
the right column t = 1.5.
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Figure 2.9: Parts generated from the skeletons in the right column of Figure 2.8.

Discussion

We have observed some interesting characteristics of the generated spanners. In

general, G is non-pljinar, and it is possible to contrive point sets that will require non-

planar spanners for arbitrarily large values of t. Random point sets, however, almost

always seem to have planetr spanners for t as low as 1.5. It is also interesting to note (and

easy to see by inspection) that this algorithm produces the complete graph at t = 1 and

the minimum spanning tree at t = oo. Note for both the example point sets, a stretch

factor of 5.0 is sufficient to admit the EMST result.

The algorithm exhibits a seemingly curious behavior when the value of t is varied

inter£ictively. Sometimes, as t increases above a particular threshold value, a single edge
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'will disappear, to be replaced somewliere else in the graph by a single, longer, edge. Both

frversions of the graph have the same sizeand both satisfy the larger stretch factor. Yet the

graph generated for the larger value of t has greater weight. Clearly this is not optimal.

The reason for this behavior is easily explained. Call the two edges in question Cj

and Cj, where Cj is considered for addition to Gi-i in step i and ej is considered in step j,
H < j. Consider a value oft, say<i, just small enough to force ej*s addition instep i. At step

jj the algorithm will look for the shortest path through Gj—i that connects the endpoints

ofCj. If that pathisshort enough, ej need not be added. Suppose, though, that that this
shortest path includes Cj, and that the shortest path through Cj_i\{ej} is significantly

longer. Now increase t is slightly and re-run the algorithm. Assume that except for Cj, all

the edges considered fi:om eo through ej_i are not sensitive to this particular At. Because

t is larger than before, Cj will not get added at step i. At step j the shortest path through

Gj-i that connects the endpoints ofej is now the longer one. If At was not sufficient to
admit this path, ej must be added at this step.

This is, in fact, a specific example of a general behavior of this algorithm. As

t is decreased from a' large value, we do not simply see edges being added to the graph.

Multiple edges sometimes disappear, to be replaced by others elsewhere in the graph.

Experimentally, wewere able to construct graphs that would exhibit this behavior around

values of t as large as 4.4, but it became increasingly difficult to construct graphs that

would force this behavior at larger values of t. For random graphs, this behavior ceased

above values of t greater than about 2.

It would be interesting to try to improve this algorithm so that the lower-weight

solution would always be generated. Consider the following modification: At step i, edge

Ci is always added, but it is marked as either required or not-required. At a later step, j,

iiwhen a shortest path is searched for, three possible cases exist:

1. A shortest path search is performed in which only required edges in Gj-i are con

sidered. If a short enough path connecting the endpoints of ej is found, the edge is

added to the graph and marked as not-required.

= 2. If no such path is found, a second search is performed in which both required and

not-required edges in Gj-\ are considered. If a short enough path is found this time,

the edges along the path are re-marked as required. Then ej is added and marked

as not-required.
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3. Finally, if no sufficiently sort path is found in either search, ej is added and marked

as required. After the algorithm is run, a post-processing step removes all edges from

G that are still marked as not-required.

This modification has an obvious fault: If ej is added to Gj-i under case 2,

some edges in Gj-i will have their marks changed from not-required to required. Suppose

that in some later step. A;, it becomes necessary to change e^'s mark from not-required to

required. The edges whose marks were changed in step j are no longer required because

Cj now is. The resulting graph would clearly have larger weight and size than necessary.

A solution to this problem is to attach to Cj a list of pointers to the edges in Gj-i whose

marks were changed in order that Cj could be added as not-required. At step k, if e '̂s

mark must be changed to required, the edges pointed to by e^'s list get their marks set

back to not-required.

So far this looks like a promising modification, but we must still make one ad

dition. In step k, we can not simply change the marks of the edges on e^'s list back to

not-required, because they might also be required by edges considered at steps between

j and k. What we must do is use a requirement-counter rather than a marker. At step

j (if Cj is added under case 2) we increment the requirement-coimters of all the edges on

the path connecting e '̂s endpoints, and we place pointers to all of those edges on ej's

list. At step fe, if Ck is added under case 2, we increment e^'s counter, and decrement the

counters of all edges on e '̂s list. Furthermore, we must look at the pointer lists of these

edges, increment the counters of all edges pointed to, and so on. In general, every edge in

Gi at some step i forms the root of a subtree. Whenever an edge's requirement-counter

is modified, all of the edges in its subtree must have their coimters modified as well. If

counters are incremented at level £ in the subtree, then at level £ -f 1 the counters are

decremented and vice versa.

Clearly there are some details of this modified algorithm that would have to

be worked out. It should be straightforward to show that the size and weight of the

generated graphs are no larger than for graphs generated by the Greedy algorithm. The

time complexity of the modified algorithm is obviously greater, except for point sets where

the algorithm does not add any edges under case 2. However when edges are added imder

case 2, the cost of that step of the algorithm becomes proportional to size of the subtree of

edges rooted at the new edge. Clearly this can not be greater than n^, so the complexity
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of the modified algorithm is Q(n® logn). We conjecture that the expected time cost might

be smaller because we can't see any reason that the subtree of every edge added would

necessarily include all previously added edges in G. It should be interesting to implement

this algorithm and observe the kind of graphs it generates.

2,2.7 Salowe's t-Spanner

The secondalgorithm we have implemented is due to Salowe [?]. It is a modifica

tion of a solution to the all-nearest-neighbors problem [?], and is mudi more efficient than

the Greedy Algorithm. It constructs Euchdean spanners in arbitrary dimensions, but for

simplicity it is presented here for two dimensions. First define the following concepts:

• A boXj 6, is a square region of R^, with the following attributes:

1. contents(6) is a set of points in R^. The box b maintains the property that
it always has the smallest possible side length to contain contents (6) while

remaining square.

2. diameter(6) is the diagonal measure of b. Note that if |contents(6)| = 1 then

diameter(6) = 0.

3. neighbors(6) is a list of boxes such that the distance firom b to one of its neighbors

is less than diameter(6) AND neighbors(6) is maintained to be a subset of the

active list (see below).

4. attractors(&) is a list of boxes such that if 6 is a neighborof b', b' is an attractor

of b AND attractors(6) is maintained to be a subset of the active list.

• A box tree^ T, is a tree of boxes in whidi each box has from zero to four descendants.

Each box bin R^ is a subset ofone of the quadrants of its parent, 6, and contents(6) =

b n contents(6)

The algorithm is shown in Algorithm 2.4. The subroutine SuBDivroE(6) takes a

box b and subdivides its contents by passing orthogonal lines through its center to form

four quadrants. Children of b are created corresponding to each quadrant, and contents(6)

are doled out to the children accordingly. Nonempty children are then added to T, b

is removed from the active list and its children in T are added to the active list. In the
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Algorithm 2.4 SALOWE(V,m)

Takes a set V of points in and an integer m greater or equal to 3, and returns G, a

Euclidean t-Spanner of V, where t =

Common Variables:

• active list: The list of boxes that are the current leaves of T as T is being built.

• deleted list: A list of pairs of box that are to be connected by some edges. It is built

up by the SUBDIVIDE subroutine.

1: active list^ {}.

2: deleted list<= {}.

3: C?<=(V,{})

4: contents(6o) ^ V.

5: T bo

6: call SUBDIVIDE(6o).

7: while there is a box on the active list with nonzero diameter do

8: 6 the largest box on the active list.

9: call Subdivide(6).

10: end while

11: for each pair of boxes (61,62) on the deleted list do

12: call CONNECT-SUBTREES(6i,62,m).

13: end for

14: return G.

process, neighbors() and attractors() must be updated for6and its children. A by-product

of this is that certain pairs of boxes get added to the deleted list.

The subroutine CONNECT-SUBTREES(6i,62,m) takes a pair of boxes, 61 and 62

and considers them as the roots of subtrees in T. Its job is to join these subtrees by adding

edges to G. To do this it descends both subtrees as far as it can to a depth at most m

and connects pairwise all of the leaves it finds in one to all of the leaves in the other.

Connectinga pair of boxes with an edge means choosing an arbitrary point firom each box

and constructing an edge between those two points.
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Figure 2.10: Salowe's ^-Spanners for the example point sets.

The results of running Salowe's algorithm on the example point sets is shown in

.Figure 2.10. For small point sets like these, this algorithm constructs the complete graph,

or nearly so.

Discussion

This algorithm is considerably more difficult to implement than the Greedy al

gorithm, in spite of the fact that many of the data structures and support routines can

be reused. One of the hardest problems we had was satisfying ourselves that the code to

maintain neighbors and attractors was correct. For debugging, we draw the tree of boxes
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on the graphics screen and show lines connecting each box to its neighbors. Using a de

bugger we can step through the code a lineat a time and watch the relationships change.

Using a ruler to measure distances on the screen we can be reasonably confident that the

code is doing the right thing.

Another problem that plagued us for quite a while was that the paper is not

explicit that when a box is taken off the active list its neighbors must be made to take it

off their attractor lists. If this is not done there will be problems later on when one of these

neighbors is subdivided. The SUBDIVIDE subroutine tries to do the proper maintenance

on neighbor and attractor lists. Part of this involves visiting all of attractors of the box

being subdivided and updating their neighbor lists.

In our implementation, we adlow the parameter m to take on any positive integer

value, even though the size bound and stretch factor given in Salowe's paper only hold for

m > 3. Prom the algorithm it is easy to see that the size of G is O (2^"*n), so that for
m = 3 we do not expect G to be any sparser than the complete graph until n is in the range

of 4096. In our implementation such large graphs turn the the entire screen to a single

solid color. For shape generation, we are primarily interested in smaller problem sizes

and very sparse solutions. When m is allowed to go to zero the algorithm still generates

some interesting graphs which appear (though we haven't proved this) to have spanner

properties.

One observation we have made is that the computed graphs seem to have larger

size and weight than they really need. This is partly due to the fact that the Connect-

SUBTREES subroutine chooses arbitrary points to construct edges between. The weight of

the graph could be reduced by simply choosing the closest pair of points from indicated

boxes. Further, the size of the graph could be reduced by sorting the deleted list so that

the lowest-level boxes are connected first. Constructing an edge between a box bi and a

box 62 has the side effect of also connecting pairs of all the boxes on paths from bi and

62 to their least common ancestor. If these pairs are marked as already connected, it will

obviate later connections as the rest of the deleted list is processed.

We have implemented the first of these improvements (choose the closest pair

of points)—^with disappointing results. At least subjectively, the generated graphs are no

lighter than before. The real problem is that this algorithm generates graphs that are

much too highly connected for our purposes.

It is difficult to compare these two algorithms as we have implemented them.
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because the Greedy algorithm is only suitable for small problems and Salowe's algorithm

is more appropriate for large problems. For our purposes, the Greedy algorithm produces

graphs with better characteristics because we require sparse solutions for problems with

small(e.g. n less than 100) point sets. Forthesereasons, nofurtherexamination ofSalowe's

algorithm has been conducted.

2.2.8 Other Spanner Algorithms

In addition to the improvements mentioned above for the two implementations,

we should continue to investigate other algorithms, particularly those that give small size

bounds and fast execution times. The Mgorithm of Ruppert and Seidel [?] is one such

algorithm. For any integer A; > 6 the algorithm produces a graph with at most kn edges

and runs in O (nlogn) time. It also appears to be reasonably easy to implement.

Also, we must keep in mind that we are primarily interested in producing interac

tive programs. Assuchit is not so important that the algorithms be fast when constructing

a spanner from scratch, but they must be able to support fast editing operations. These

operations include inserting, deleting, and, most importantly, moving the points in V.

Also, the stretch factor parameter should be able to be varied interactively.

We estimate that a large amount of bookkeeping would be required to support

fast point editing in the Greedy algorithm. In the fraimeworks of both Salowe's algorithm

and Ruppert and Seidel's algorithm it appears that a data structure could be maintained

that would support point editing in logn time. In the case of Salowe's algorithm this

would be the box tree, and in Ruppert and Seidel's it would be an augmentation of the

graph itself.

2.2.9 Delaunay Triangulation
it

? For a very stiff part, a highly connected skeleton may be used. The most highly

^jconnected planar graphs are the triangulations. One triangulation that we think holds

-promise for the generation of part designs is the Delaunay Triangulation [?]. Figure 2.11

shows the Delaimay ITiangulations for the example point sets. The parts generated from

those skeletons are shown in Figure 2.12.

Given n two-dimensional (2-D) points, the Delaunay Triangulation problem is

to connect them into non-overlapping triangles which fill the convex hull of the points
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Figure 2.11: Delaunay TViangulations for the example point sets.

such that the circle criterion is satisfied, i.e., the circumcircle of the three vertices of any

triangle of the triangulation contains none of the given n points in its interior. A Delamiay

TViangulation is imique if no four of the n given points are co-circular [?]. It is canonical

with respect to rigid body transformations, i.e., we can apply any rigid body transformation

to the set of points and we will still get the "same" Delaunay Triangulation, appropriately

transformed. The same is true of scaling transformations. The circle criterion discourages

the triangulation firom having long skinny triangles, wherever there is a choice. This is

what makes the Delaunay Triangulation likely to generate stiff skeletons.

There are a variety of efficient algorithms for computing the Delaunay Triangu-
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Figure 2.12: Parts generated from the skeletons in Figure 2.11.

lation, most of which run in O (n log n) expected time, including the one implemented for

this research [?].

2.3 Conclusion

We are well on our way to confirming the conjecture of Chapter 1. In this chapter

we have seen that reasonable skeletons can be generated by relatively simple and fast

Eilgorithms. Of those presented in this chapter, the Greedy t-Spanner and the Delaunay

Tfriangulation will be directly useful as part skeletons. The Hierarchical Nearest Neighbor

Graph also looks promising, but will benefit from some optimization of the embedding
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of its Steiner nodes. The Euclidean Minimiun Spanning Tree may be useful for some

applications.

Some of the graphs we have studied are less promising for use as skeletons. By

itself, the Centroid Star Tree is unlikely to produce reasonable parts. And in Chapter 3

we will see that as an initial graph for the optimizer, the Hierarchical Nearest Neighbor

Graph is almost always better. The t-spanner generated by Salowe's algorithm does not

appear to be useful to us at all because it is too highly connected except with very large

node sets.

The Principal Axis Tree is probably too simplistic for applications that demand

rectilinear parts, though it may be useful as an initial graph for optimization. The op

timizer presented in the next chapter does not preserve rectilinearity, however. It will

be worthwhile to investigate other rectilinear algorithms, and to devise optimizers that

preserve rectilinearity.

Of the algorithms we have studied during the course of this research, the only

ones that add Steiner nodes are tree algorithms. It seems reasonable that good skeletons

could have general graph topologies that include Steiner nodes. It will be worthwhile to

investigate general graph generating algorithms that add Steiner nodes.

It may also be worthwhile to use the Greedy <-Spanner algorithm to decimate

a Delaunay Triangulation. Recall that the Greedy algorithm computes graph spanners,

i.e., it must be given an initial graph of which it then computes a spanner. By adjusting

the stretch factor, we can select from a spectrum of graphs that range from the Delaunay

Triangulation (< = 1) to the EMST (< = oo). This will also be more efficient than starting

the Greedy algorithm with the complete graph, because the Delaunay Triangulation has

only O(n) edges, whereas the complete graph has O (n^) edges.
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Chapter 3

Optimization of Skeletons

As noted in Chapter 2, many of our graph-generating algorithms need some help

to create skeletons worthy of mechanical parts. In this section, we present one kind of

help: optimization of material use and part stiffness.

Early in this research we took note of the Steiner Minimum Tree (SMT), thinking

that it might yieldgood skeletons. The SMT Problem has received extensive study, dating

back to the 17''̂ century [?]. It was first studied in the plane using the Euclidean distance

metric: Given a set of points, V, in the Euclidean Steiner Minimum Tree problem is

to find the lowest-weight graph, G, that spans V [?]. The nodes of G are {ViS"}, where S

is the set of Steiner nodes. There is no other graph in the plane that spans V and has a

lower weight than the Steiner Minimum Tree.

Unfortunately, computation of the Steiner Minimum Tree is NP-complete. An

early technique for solvingthe Steiner Minimum Tree problem was mechanically based. It

used nails in a board to represent the set of nodes V, and soap films to find the edges amd

Steiner nodes. Himdreds of papers have been written on the subject (and related Steiner

Tree problems). Hwang and Richards [?] present a survey of 310 papers through 1989.

Sincecomputing the Steiner MinimumTree is NP-complete, most of the literatiure

concerns algorithms for approximating it. This is also the approach we have taken. The

literature contains a variety of heuristics, some computational, and others with more of an

optimization fiavor. We will ultimately want to define the weight (or cost) of generated

skeletons in more sophisticated ways than just the sum of the Euclidean edge weights, so

we choose to focus our attention on optimization-based schemes.

There really are two problems to be solved when seeking an optimal graph to
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span a set of nodes. A topology must be chosen, and for that topology, an embedding in

must be chosen. The latter can be addressed using continuous optimization techniques,

however the former cannot be. Solutions studied in the literature employ both simulated

annealing [?, ?], and genetic algorithms [?].

Since we are striving for interactive speeds, we have implemented our own tech

nique for addressing the discrete optimization problem. It is based on the observation

that two topologies can be considered adjacent when their embeddings are degenerate.

For example, when an edge has length zero (its end vertices axe coincident), the graph

appears the same as if the edge were removed and the two vertices were instead just one

vertex. We say that these two topologies are adjacent at this embedding. In section 3.2.2

we describe our algorithm for exploiting this observation.

3.1 Local Continuous Optimization

In all our approaches, we will employ a continuous optimizer to find the best

embedding for a chosen topology. We have implemented two continuous optimizers in

the graphlab software: a simplerelaxation method, and a robust and efficient conjugate

gradient optimizer. The latter converges rapidly for all test inputs that we have tried. We

thus feel confident that at least this portion of the global optimization problem is easily

handled.

In both optimizers, we assume that we are not allowed to move the V-nodes,

since they arise firom application features input by the user. The optimization process will

move only Steiner Nodes, possibly adding and deleting some. The optimization process

may also add and delete edges.

3.1.1 Relaxation

The first continuous optimizer we have implemented is a simple relaxation tech

nique. This technique treats graph edges as applying a fictitious force on the nodes. It is

easy to show that when the objective function is the Euclidean graph weight, the appro

priate edge force is a constant (independent of edge length) tension. For the relaxation

process, a constant gain must be chosen that maps these fictitious forces to displacements.

For each Steiner vertex in the graph the applied edge forces are summed. The resulting

vector is multiplied by the relaxation gain and the node is moved by that amount.
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Algorithm 3.1 Relax-Graph(G = /(•),/:)

Takes a graph 0 andfinds an embedding in "B? that minimizes f{G). The gain, k, controls

the rate of convergence and the stability.
"T

2

repeat

for each Steiner vertex v G V do

Let Wy be a vector stored with v.

Wy "<= the vector sum of fictitious forces applied to v by D{f{G)).

end for

for each Steiner vertex v G V do

Move V to new location v + k- Wy.

end for

until forever

The algorithm is shown in Algorithm 3.1. Note that no termination condition is

indicated. In our implementation, the Relaxation Optimizer is allowed to run during idle

CPU cycles. The rate of convergence is very slow, and gives rise to a rather interesting

"rubber bamd" animation as nodes are interactively dragged and others respond to the

new forces. The gain k can be specified in the user interface. Values above 0.8 tend to

introduce instability, and values above 1.0 cause the graph to explode immediately. Since

this optimizer was really just a quick-and-dirty implementation to get something running,

no further development of it was done.

3.1.2 Conjugate Gradient Optimization

The Relaxation Optimizer made it clear to us that optimization was a viable

techniqueforgeneratingskeletons. Wethereforespent our efforton implementing a robust,

efficient continuous optimizer that could be generally applied to improve the embedding

of a given graph.

The core optimizer was taken firom Press et al. [?]. It is a Polak-Ribiere conjugate

gradient optimizer that works in arbitrary dimension, either with or without gradient

information. The objective function we implemented is described below. It can compute

gradient information, and a user-interface option selects whether the gradient is used by

the optimizer. As one would expect, convergence is much faster when gradients are used.

This optimizer is not global. In general, techniques which seek global optima are
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dramatically more expensive than those that operate locally. After having experimented

with this optimizer, our subjective assessment is that the local optima that it finds are not

terribly difierent firom the global ones. Ultimately it may be desirable to provide a fast

local optimizer for interactive use, and a global optimizer for offline use. The latter could

be based on Adaptive Partitioned Random Search [?], Simulated Annealing, or Genetic

Algorithms.

Objective Functions

The first objective function we implemented is a simple generalization of the

Euclidean weight. f{(G = (VjE)) is defined to be the sum of the individual costs of the

edges in E, where these costs are computed as a quadratic polynomial in the Euclidean

length of each edge e:

/{(G)=i:»rf+«'iNi+<=iNi^ (3-1)
eeE

where a, 6 and c are constant coefficients.

The term c||e|| i is worthy of comment: it is included for the purpose ofsmoothing
out fi(G) when the length of an edge becomes zero. Without this, /{(G) is undefined at

such points, and the CO optimizer gets stuck. A graphical interpretation of this term is

to imagine that, though we are solving the problem in R^, the two endpoints of an edge

always have z-coordinates that difier by some constant, i.e., one end is lifted out of the

plane slightly. Thus, the length of an edge can never be zero. It is interesting to note

that this discourages the actual (R^) length from ever being zero. Theoptimizer has little

motivation to drive the in-plane length of the edge shorter than the fictitious z-ofiiset. If

c is kept small, the resulting graphs are only slightly different than if c were zero.

The quadratic term, a||e|p, has a similar effect, but for the opposite reason: it

penalizes long edges, so the optimizer spends less effort trying to shorten already-short

edges. Thus the presence of the quadratic term also tends to smooth our f{(G) so that

the CO optimizer is less likely to get stuck.

It turns out, however, that when we apply our global optimization techniques

in Section 3.2.2, we will actually depend on edges being driven to zero length. Further,

except for their ability to smooth /{(G), these two terms in Equation 3.1 are not very
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useful for part skeletons. So, in practice we use only the linear term:

MG) = £ llell (3.2)
e£E

Network Weight

The second objective function we implemented is an augmentation of the first.

It occurred to us that it may be desirable to penalize some edges differently than others

depending on the role they play in the graph. In particular, some edges are elements of

many node-to-node paths, while others may be contained in only a few paths. For a tree,

it is easy to count the number of paths that contain a given edge by cutting the tree at

that edge. The number of paths is the product of the numbers of F-nodes in each of the

two resulting subgraphs.^ We call this the network weight of the edge c, and define an

objective function

/2(G) = Y. "-I|e|l (3-3)
e€E

where Ug is the network weight of e. This objective function penalizes edges that participate

in many paths more heavily than those that participate in just a few.

The results of this experiment are inconclusive. For some inputs, the resulting

graphs appear to be stiffer than when network weights are turned off, but for other inputs

the opposite is true. In fact, we can see a case for inverting the network term so as to

favor edges that participate in many paths, then make spars in the part corresponding to

those proportionally heavier. The second material synthesis technique implemented in the

graphlab software uses this approach. For each edge of the skeleton, a spar is constructed

with width proportional to its network weight. Figmre 3.1 shows the results of running

the optimizer on the example point sets. In the left column, the objective function is as

in Equation 3.2, the total weight of the graph. The skeletons in the right column are

optimized for the objective in Equation 3.3.

Stiffness Criterion

Ultimately, the introduction of network weights is really just a kludge to try to

make the optimizer compute graphs that will yield stiff parts. A more reasonable approach

^This only works for trees, not for general graphs. A more elaborate definition is necessary if we want
to use network weights with all of om skeleton generation algorithms.
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Figure 3.1: Skeletons optimized for the functions fi{G) (left column) and f2{G) (right
colunm).
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Figure 3.2: Beam elements along the path from node a to node b.

is to construct an objective function that directly measures the stiffiiess ofthe part. What

is required is to come up with some scalar-valued function that characterizes the stiffness
ofa given skeleton. In stress analysis we would sunply apply the loads and compute the
deflections. But remember that a basic goal ofour research is to obviate this kind of input

from the designer during the early stages. Thus we must contrive some way to estimate

the goodness of a skeleton without knowing the loads.

We will assmne that loads are only applied at the features. An example metric

would be to compute a generalized compliance matrix and flnd its largest singular value

(or sum of them). In this matrix has dimension 3n x 3n, where n = \V\ is the
number ofnodes arising from application features. Computing this requires flmte element

analysis, soobviously it isgoing to be more expensive than the sunpler objective functions
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h

Figure 3.3: Free-body diagram of the edge along the path from node a to node b.

in Equations 3.2 and 3.3.

We have implemented a somewhat simpler measure of compliance for tree skele

tons wherein the (2) scalar node-to-node compliances are computed and summed. Fig

ure 3.2 shows the skeleton for a hypothetical part. The black nodes are the F-nodes; the

white are the Steiner nodes. We imagine applying equal and opposite forces, F, at two

nodes a and b, and computing the resulting deflection. The compliance contributed by

this node pair is the ratio of the deflection to the applied force. This calculation is repeated

for all (2) pairs of V-nodes in the skeleton and the results are summed. We call this the

generalized compliance of the skeleton.

While considering the pair ab, we assume that no other loads are applied to the

part. For static equilibrium, the force F in Figure 3.2 must be collinear with the vector

Vqh,. Define the deflection to be the change in length of Vqh,. To compute the compliance

of this path through the skeleton, we must find the compliance contributed by each edge

element along it. For each such element, we consider a free-body diagram, as shown in

Figure 3.3.
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Neglecting axial deflection of the element,

Si = Syisin (3.4)

FVom simple beam equations we know that

3EI 2EI' ^ ^
and

_ F„lJ Mik
+-W'

were E is the Young's modulus of the material and I is the beam's cross-sectional moment

of inertia.

Substitute Fn = Fsinaj, M,- = Fdi, combine and rearrange to get

^sin^ttj if +sinai dilf -H dfli. (3.7)
F 3

Call the term on the right hand side the normalized compliance for this element. Next

apply the identity k sinoj = di —ck-i and rearrange to get

^ =l{dl +dick-i +dU)li. (3.8)
This is the normalized compliance contributed by the edge element along the path ah.^

To correctly traverse the tree skeleton and compute all the necessary edge com

pliances we must do some bookkeeping. The total compliance of the graph is

f^(G) = ^ SUBTREE-COMPLIANCE(G,V,null). (3.9)
vev

The Subtree-ComplianceO algorithm is shown in Algorithm 3.2. The function Path-

Compliange(L) evaluates Equation 3.8 for eeudi edge in the list L and returns the sum.

Note that, as shown. Equation 3.9 and Algorithm 3.2 would actually compute every path

compliance twice, once coming and once going. The actual implementation adds some

bookkeeping to make sure that each gets computed only once.

^Interestingly, this also happens to be the second momentof inertia of the edge element measured
relative to theaxis ah: ^

lab- f [d(x)fdx
Jo
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Algorithm 3.2 Subtree-Compliance(G = (V;£?), v,L)

Takes a vertex v in graph G and computes the compliance of all paths in the subtree rooted

at V. L is the orderedset of edges leading up from v.
local comp 0.

for each edge e incident to t; do

Let u be the other endpoint of e.

if u is terminal in G then

comp comp + PATH-COMPLIANCE({L,e}).

else

comp comp + SUBTREE-COMPLlANCE(G,n,{Lye]).

end if

end for

return comp.

Multicriterion Optimization Ultimatelywe willwant to optimize formultiplecriteria;

Equations 3.2 and 3.9 are two perfect examples: We wamt to trade offmaterial use and

stiffness. But these two metrics exhibit a classic problem in multicriterion optimization.

Their measurements are not in the same units, and they do not scale the same when

the size of the input set changes. Equation 3.2 computes a cost in imits of length, while

Equation 3.9 returns units of length cubed. If the scale of the input set is doubled (i.e.

multiply every coordinate of every node in V by 2), the cost computed by Equation 3.2

doubles, but that computed by Equation 3.9 is multiplied by eight. We certainly don't

wanta change of imits from inches to centimeters to suddenly shift nearlyall the emphasis

to stiffness. To offset this we will normalize the stiffness objective by the scale of the

input set squared. For that measurement we will need some length that is representative

of the scale of the input set. We will choose the graph's diametery the maximum distance

between any two nodes in V.

A second difference between these two cost functions appears when a new V-

node is added to the input set. The skeleton generator must add at least one edge to

connect this to the rest of G, so the sum-of-lengths cost in Equation 3.2 increases by the

length of this edge. The compliance measured by Equation 3.9, on the other hand, varies
proportionally to n(n —1), which againshifts the emphasis to stiffness. To oflfeet this we
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will normalize by n —1. The normalized measure of compliance is thus

where n = IF], and ^(G) is the diameter of G.

With this modification, the objectives for material use and part compliance can

be linearly mixed with reasonably consistent results:

/(G) = (1-A)/j(G) + A/3(G) (3.11)

Figure 3.4 shows the results of running the optimizer on the example point sets

using Equation 3.11. In the left column, A = 0.5; in the right column A = 1.0. Figure 3.5

shows parts generated firom those skeletons.

3.2 Global Optimization

The other half of the optimization problem is to find a topology. This is a discrete

optimization problem, though we have found that local minima can be found using a

sequence of continuous optimizations, with topology switching operations in between.

3.2.1 Collapsing Optimizer

The first discrete problem is somewhat of a gray area. A problem occurs with

many continuous optimizers, including the conjugate greulient optimizer that we use: they

get stuck if the gradient of the objective function becomes undefined. With many objective

functions, this happens whenever an edge is driven to zero length.

One technique we have considered is to optimize once with nonzero a and c in

equation 3.1, then smoothly decrease them on repeated optimization runs until they are

negligible. This will allow the optimizer to reach a solution for the Euclidean weight

problem without getting stuck on zero-length edges. We observe, however, that this may

not be what is desired. A graph with many zero-length edges is really trying to be a

different topology.

The approach we implement is to abort the CG optimizer whenever an edge's

length is driven to zero. We then make the assumption that in the optimal solution

this edge's length will still be zero. In other words, the optimal solution is actually on

the topology that doesn't include this edge. We remove the null edge and merge its
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Figure 3.4: Skeletons optimized for the function f(G) with A= 0.5 (left column) and
A= 1.0 (right column). The Hierarchical Nearest Neighbor 'Lree was used as an initial
graph.
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Algorithm 3.3 Collapsing-Optimizer(G = (V, £?),/(•))

Takes a graph G embedded in and moves its Steiner vertices to a local minimum of the

objective function f(G).
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

repeat

S«CCe5S?'̂ C0NJUGATE-GRADIENT-0PTIMIZER(G, /).

if success? and jB e ^ E such that le2igth(jEr) = 0 then

return G.

else

for each edge e = [ui,V2] in E such that length(e) = 0 do

if neither vi nor V2 is a Steiner vertex then

continue

else if v\ is a Steiner vertex then

Let V be v\ and let it be V2.

else

Let V be i;2 and let it be ui.

end if

Let E' be the set of edges incident to v, e ^ E'.

Reassign the edges in E' to it.

Delete e and v from G.

end for

end if

until forever

two vertices. Edges incident to the original two are now incident to the resulting single

vertex. The CG optimizer is then restarted. This process continues in a loop until the CG

optimizer converges without getting stuck. The algorithm is shown in Algorithm 3.3.

3.2.2 Topology Switching Optimizer

The above technique can be viewed as an augmented continuous optimizer that

is able to get itselfover bumps in the gradient by "fixing" the topology as it goes along.

The result is that the graph is driven to an embedding where the objective is at local

minimum.

It is often possible at this point to choose a new topology for the graph whose
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Algorithm 3.4 Switch-Topology(G = (V,£7),/(-))

Takes a graph G embedded in and finds a topology G' that may be driven to a lower

cost, f{G'), by the continuous optimizer.
1

2

3

4

5

6

7

8

9

10

11

12

13

while 3 a Steiner vertex v G V such that degree(u) 3 do

call Collapsing-Optimizer(G).

for each Steiner vertex v €V such that degree(v) = 2 do

Let ei = [u, vi], 62 = [v,V2] be the edges incident to v.

Delete v,ei, and 62 from G.

Create new edge e = [t;i,V2] in G.

end for

call Collapsing-Optimizer(G).

for each Steiner vertex v eV such that degree(v) > 3 do

call Split-Vertex(u).

end for

end while

return G.

objective can be further lowered by the above methods. The technique is based on the

observation that two topologies can be considered adjacent when their embeddings are

degenerate. The simplestkind ofdegeneracy is a vertex ofdegree two (two incidentedges).

This is really just one edge with a bend in it (at the vertex). In the absence of obstacles,

any objective function that seeks to minimizematerial use or maximizestiffness will never

choose a bent edge over a straight edge. In other words, the continuous optimizer will

always drive degree-two vertices to have their edges incident at 180 degree angles. Such

vertices can always be removed and their edges replaced with one.®

The main opportunity for re-wiring the graph occmrs at vertices with large degree

(many incident edges). Such a vertex can be viewed as a kind of degeneracy: it looks

just like two coincident vertices with a zero-length edge between them. Under certain

conditions, we can replace the vertex with exactly that configuration, dividing the incident

^Note however that this does have implications when the objective function includes terms that are
nonlinear in the lengths of the individual edges (e.g., sum of squares). Consider the design of a six-inch
long straight bar. The simplest graph is two vertices with one six-inch edge between them. Equivalently,
this design could be represented by a graph with seven vertices and six one-inch edges all in a straight row.
A sum-of-squares objective function would assign a lower cost to the later representation even though the
resulting part is clearly equivalent. We must keep this in mind when we design objective functions.
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edges among the two new vertices. The continuousoptimizer cam then drive these vertices

apart in a way that lowers the overadl cost of the graph. The algorithm is shown in

Algorithm 3.4. The function SPLiT-VERTEx(t;) is discussed in Section 3.2.3, below.

This algorithm depends on topologies being adjacent. In other words, the

Collapsing-Optimizer must drive edges to zero length or very few topologies will be

explored. Because of this, the type of objective function we choose is limited. In par

ticular, the square-root term in Equation 3.1 prevents edges from ever being driven to

zero length. The quaidratic term is not quite as severe, but it does discourage edges from

gettingtoo short. For this reason we usethe costfunction in Equation 3.2 in preference to

Equation 3.1. Figures 3.6, 3.7 and 3.8 shqwthe results of running the Switch-Topology

optimizer on each, of the example point sets with a variety of initial graphs. The objective

is as in Equation 3.2.

3.2.3 Vertex Splitting

One of the more involved aspects of the above algorithm is the Split-VERTEX(n)

function. In this routine we are asked to split a vertex to create a topology that can be

driven to a lowercost than the present cost. The result is to be two vertices, and the set of

incident edges is divided between the two. A new edge is created to join the two vertices.

The job of this function is to decide how the original edge set should be divided.

The idea is to divide the edge set in such a wayas to maximize the gradient of the

objective in the resulting topology. Ideally this is done by examining partial derivatives

of the contribution that each incident edge makes to the objective. This we implemented,

but first we implemented a simpler heuristic.

Largest and second largest angle

The heuristic is to look at the angles of the incident edges and find the two

edges that form the largest angle. The set is then divided by a cut that falls within this

angle such that each set includes edges that fall within a 180-degree segment. This still

leaves some ambiguity, so we choose to look for the second-largest angle and use that for

the opposite side of the cut. If the graph was previously optimized then this angle will

usually fall roughly opposite the largest angle. None of this is very scientific, but it works

reasonably well in practice. This is because when using a Euclidean objective and the
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EMST Principal Axis

Centroid Star Tree Hierarchical Nearest Neighbor

Greedy i-Spanner Delaunay IViangulation

Figure 3.6: Skeletons optimized by Switch-Topology() for the function fi(G) and a
variety of initial graphs.
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EMST Principal Axis

Centroid Star Tree Hierarchical Nearest Neighbor

Greedy ^-Spanner Delaunay 'Priangulation

Figure 3.7: Skeletons optimized by Switch-Topology() for the function fi(G) and a
variety of initial graphs.
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r'^

EMST Principal Axis

Centroid Star Tree Hierarchical Nearest Neighbor

Greedy t-Spanner Delaunay IViangulation

Figure 3.8: Skeletons optimized by Switch-Topology() for the function fi{G) and a
variety of initial graphs.
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graph has been locally optimized, for many nodes this division does indeed maximize the

resulting gradient.

At this point we should explain that it is not productive to divide a vertex such

that one of the resulting edge sets has only one edge. When divided, the vertex will be

replaced by two, and a new edge will be created between them. If one of the two vertices

is assigned only one of the original edges, then it will end up with degree equal to two.

As such this vertex will be removed in a subsequent iteration of Switch-T0P0L0GY(). A

corollary to this is that we cannot split vertices of degree less than four.

Principal axes of stress

The simple heuristic served us well for some time, but it became apparent that

it was not correct in all cases. We thus decided to implement a splitting algorithm that

was based on actual gradient information. Subject to a few assumptions, it can be shown

that this technique always computes the split that maximizes the resulting gradient of the

objective. The method is based on the concept of the "internal stress" in the vertex.

Consider the gradient vector of the objective function. It is a 2n vector of partial

derivatives. Each vertex contributes two elements to this vector (for problems in R^). One

element describes the rate of change of the objective fimction as the vertex moves in the x

direction (the partial with respect to re). The other element does the same for movement

in the y direction.

For the objective functions described by Equations 3.2 and 3.10, the partial

derivatives at a vertex can be decomposed as the sum of contributions from each of the

edges attached to that vertex. Thus each edge can be viewed as applying a force (vector)

to the vertex. In the case of Equation 3.2, this force will be tensile and aligned with the

edge. For the objective defined by Equation 3.10 the force may be in any direction. If the

graph has been optimized prior to calling this splitting routine, then the gradient of the

objective function should be zero. In other words, the forces applied to a vertex should

sum to zero—^the graph is in static equilibrium.

From stress analysis we know that the internal stress of an infinitesimal element

can be measured relative to any coordinate direction, and that there is a direction that

maximizes the value of tensile stress. We seek to split the vertex perpendicular to that

direction. Note that this is a fictitious stress, not a physical one.
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The method we use is to imagine a line through the vertex that divides the edges

into two sets: a cut. A force vector is computed as the sum of the partial derivative

vectors of all the edges in one set. (If we know that the vertex is in static equilibrium, we

can assume that the force produced by the set on the other side of the cut must be equal

and opp(^ite. It turns out not to be practical to make this assmnption, however, so we

compute the force for each set.)

The cutting line may be oriented at any angle between zero and 27r. We are

looking for the cut that produces the force with the largest magnitude. Thus we imagine

rotating the line through this range and examining all the possible divisions into two sets.

During this rotation of the line, we compute the force vector for each orientation of the cut.

To facilitate this, we establish a queue to contain those edges in one of the sets. As the

line rotates, an edge not currently in the queue is added at the front when the line crosses

over its partial derivative vector. Likewise, when the line crosses the vector corresponding

to an edge currently in the queue it is removed from the end. Each such crossing is deemed

an event.

We must remember the above restriction that the two resulting edge sets must

both have at least two edges. Thus we seek the cut angle that produces the largest force

subject to this restriction. To support this, we allow the head and tail of the queue to lag

or precede the cutting line by one edge when necessary to ensure that enough edges are in

each set at all times.

Limitations

The current implementation of the graphlab software does not include gradient

computations for the objective of Equation 3.9. This information is necessary for the

Split-Vertex() function, so wecannot yet use the Switch-Topology() (Algorithm 3.4)

optimizer with that objective or the one in Equation 3.11.

We can, however, use the Collapsing-Optimizer() algorithm, followed by a

cleanup step to remove any degree-2 Steiner nodes. This is equivalent to executing lines

2 through 8 of Algorithm 3.4. We must choose an initial graph that has plenty of Steiner

nodes, because this approach can only remove them, not add them. The skeletons in

Figure 3.4 are optimized this way, using the Hierarchical Nearest Neighbor Tree as an

initial graph. The objective is Equation 3.11 with A = 0.5 for the left column and A= 1.0
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for the right column. In that figurie wesee that all the Steiner nodes have degree three. If

we were trying to optimize this with Algorithm 3.4, lines 9 through 11 would not execute

because of this, and the algorithm would terminate. Thus, for the three example problems,

the Hierarchical Nearest Neighbor Tree provides an initial graph that does not require the

servicesof the Switch-Topology() optimizer. We have observed that this is not always

true for arbitrary problem sets, but it does happen frequently.

Figure 3.9 shows the results of applying the same technique to Principal Axis

Trees. In that figure wesee a number of higher-degree Steiner nodes, indicating that these

graphs could probably be further optimized if we were able to apply the Split-Vertex()

function. The other four initial-graph algorithms do not generate enough Steiner nodes, so

we cannot use those at all as initial graphs until gradient computations are implemented

for Equation 3.9.

3.3 Conclusion

The research presented in this chapter has demonstrated that numerical opti

mization is a viable approach to generating part skeletons. Of the skeleton algorithms

presented in Chapter 2, those that add Steiner nodes can all benefit from an application

of the optimizer to improve the position of those nodes.

The Switch-Topology optimizer makes fairly drastic changes to the topology

of the skeleton such that, for many problem sets, the selection of initial graph has little

infiuence on the final skeleton. This choice does, however, affect the amount of work that

the Switch-Topology optimizer must do. The Hierarchical Nearest Neighbor Tree seems

to be the best all-around choice of initial graph. It consistently provides an initial graph

that requires little effort on the part of the Switch-Topology optimizer. In cases where

the resulting graph differs markedly from what would result from other initial graphs,

the skeleton optimized from the the Hierarchical Nearest Neighbor Tree usually appears

(qualitatively) to be the most reasonable. For cost functions where we can not yet use the

Split-Vertex step of the Switch-Topology optimizer, we still find that high-quality

skeletons can be produced from the Hierarchical Nearest Neighbor Tree.

It seems clear that a cleanup step in the material synthesizer will be an important

aiddition. Lookingat Figure 3.5 wesee numerous bumps and gouges that are artifacts from

the skeletonalgorithms. If the part is to be cut on a millingmachine, filletsmust be added.
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Figure 3.9: The same optimization as in Figure 3.4, but using the Principal Axis Tree as
the initial graph.
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This will naturally have the eflfect of smoothing some of the deeper gouges.

It also appears that some sort of clustering should be done. For example, the

third point set in all the examples is composed of three sets of holes, each with four holes

arranged in a rectangle. A good shape for this part might be similar to that shown at

bottom-left of Figure 3.5, but with solid rectangles of material aroimd each group of four

holes. One approach might be to do this in the material synthesizer using an alpha-hull.

The computation is nearly identical to finding the fillets that would be produced by a
milliTig cutter. The larger the diameter of cutter, the more concavities that are removed.

The actual alpha hull computation doesn't produce the scallops that would have been

caused by the imaginary cutter. Instead, straight edges and fiat surfaces cover over the

former concavities.

More sophisticated objective functions may be less likely to drive edge lengths

to zero. It may be useful to generalize the Collapsing-Optimizer and the Split-Vertex

functions to switch between topologies that are nearly adjacent. In other words, mstead of

only collapsing zero-length edges, some criterionwould select edges that are short enough

and evaluate whether there is a better way to reapportion the edges incident to its two

end nodes.
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Chapter 4

Avoiding Obstacles

It is essential that synthesized part shapes not interfere with other parts in the

assembly. One approach to ensuring this is to treat shape synthesis as a path-planning

problem and borrow techniques from the field of robotics. As stated in Chapter 1, we will

preprocess the information about other parts to yield a set of illegal regions, or obstacles,

that pertain to the part being synthesized.

Most robotics path-planning techniques account for the size of the robot by trans

forming the problem to configuration space (cspace) [?,?]. In the case of a circular robot

moving through a two-dimensional field of obstacles, CSPACE is parameterized by the co

ordinates of the center of the robot. For skeleton synthesis, CSPACE is parameterized by

the coordinates of a point on the skeleton. Obstacles in CSPACE are sets that must not

contain any point on the skeleton, lest the thick skeleton interfere with an illegal region in

physical space. If the thick skeleton is to be of uniform width, CSPACE is computed simply

by growing the illegal regions by one-half the width of the thick skeleton, plus any required

clearance distance. The skeleton synthesis algorithm can then operate in this transformed

space to plan the skeleton, and we will be assured of being able to grow the thick skeleton

without interference.

We have implemented this approach in the racers program. Figure 4.1 shows a

part being designed in the presence of four polygonal obstacles. In the program, features

(holes) and illegal regions (polygons) are positioned with the mouse. Both can be modified

interactively by dragging. A thick skeleton is generated that connects the features and

avoids the illegal regions. The resulting design is rendered by extruding the part into the

third dimension, and resembles a physical part that could be made by bending and welding
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Figure 4.1: A 2-D part synthesized by the racerz softwfire.

bars, or by milling.

In addition to specifying local features (application features) the racerx program

supports global attributes for parts. Two such part attributes are spar width and illegal

region clearance. The user cein modify these attributes for the part via an on-screen slider,

and see the part dynamically resynthesize. The algorithms are currently fast enough

to resynthesize a reasonably complex part several times per second, thus when the user

interactively drags a feature or edits an illegal region, the part appears to stretch.

This program implements only one skeleton edgorithm, the Delaunay Triangu-

lation, which is computed without regard for illegal regions. Then, for each edge of the

triangulation, a path is plarmed through the field of obstacles. This is done by first com

puting CSPACE (illegal regions are grown by half the spar width plus the clearance), and

its visibility graph [?]. Dijkstra's algorithm [?] is then used to find the shortest path for

each connectivity edge.
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Figure 4.2: CSPACE and the Reduced Visibility Graph for a circular robot.

4.1 Configuration Space

The conventional definition of CSPACE for a mobile robot (with no rotation al

lowed) is the Minkowski sum of the environment with the robot. For a circular robot,

the CSPACE obstgicles axe made up of straight edges and arcs of radius r, the radius of the

robot. This can be computed by offsetting the edges of the obstacles by r and constructing

an arc of radius r at each vertex.

Figure 4.2 shows an example path-planning problem. There are three polygonal

obstacles (in physical space), and the robot is to be moved from the start location, ^init

to the finish, Qgodit via the shortest possible path. The CSPACE obstacles are computed by

enlarging the physiczil obstacles by r on all sides.

To find the shortest path from ginit to ggoah we begin by computing the reduced

visibility graph [?]. The edges of this graph include (most of) the straight edges and arcs

that outline the CSPACE obstacles. In addition, this graph contains all line segments that
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Figure 4.3: Chgimfered approximation to a CSPACE vertex arc.

are tangent to two arcs, and do not intersect any CSPACE obsteicles. Similarly included

are all line segments that are tangent to one arc, incident to either ginit or ggoah And do

not intersect any CSPACE obstacles. The reduced visibility graph is then searched using

Dijkstra's algorithm to find the shortest path between two points in a weighted graph.

This technique also solves the problem of routing an edge of a part skeleton. The

points 9inii and ^goai represent the locations of two application features that are to be

connected with a spar of solid material. The width of the spar is to be 2r, cind the shape

of the resulting spar is identical to the path that would be swept out by the robot. To

synthesize a part as in Figure 4.1, CSPACE and its vgraph are computed once. For each

edge of the Delaunay Ttiangulation, one endpoint is arbitrarily deemed ginit? the other is

deemed q^oaiy And the shortest path through the VGRAPH is found. This is repeated for all

edges of the Delaunay Triangulation, and the union of all these paths comprises the thick

skeleton.

4.1.1 Chamfered CSPACE

In the racerx program, we have implemented an approximation of the above

technique. When computing the configuration space obstacles, a conservative approxima

tion is used so that CSPACE remains polygonal. For each vertex of a physical obstacle, the

racerx program computes a chamfer of width r rather than an arc of radius r. Figure 4.3

illustrates a chamfer for one vertex. It is computed so that the CSPACE obstacle has one

edge for each edge of the physical obstacle, plus one additional edge for each vertex of the

physical obsteicle. The chamfer edge is perpendicular to the line that bisects the physical
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Figure 4.4: Chamfered CSPACE and Reduced Visibility Graph.

vertex, and lies at a distance r from the vertex.

Figure 4.4 shows the cheimfered CSPACE for the same path planning problem

as in Figure 4.2. Since the chamfer circumscribes the true CSPACE circ at a vertex, this

technique is conservative. Further, this technique has some sidvantages over the true

CSPACE computation:

• The resulting configuration space is simpler because it is polygonal. Eliminating arcs

from the visibility graph simplifies a number of computations.

• The visibility graph has fewer vertices than when CSPACE obstacles include £ircs in

their boundaries. When several VGRAPH edges are tangent to the S2ime arc, their

points of tangency will eJl be different (except in the case of coUinear edges). Each

point of tangency results in a vertex in the visibility graph.

There are also some slight diseidvantages to this technique:
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CSPACE
passage

Figure 4.5: Chamfered CSPACE may in some cases erroneously show a passage to be too
narrow.

• The computed path is a bit longer than the path that would be found by a true

CSPACE computation. It also has kinks where it follows a chamfer around the vertex

of an obstacle.

• Because it is conservative, the technique is not complete: there are cases where the

shortest-path solution will be erroneously discarded. A longer path may be found

instead, or the algorithm may decide that no solution exists. Figme 4.5 shows that

the worst case error is r(l —\/2)) i-e« that as a goes to zero, a passage ofwidth 2ry/2
may exist but be considered too narrow to admit a path.

At this point we have no way to judge whether these disadvantages would be important in

any given application. If they are, onesolution is to increase the number ofchamfer edges

at vertices with small a. In this case, we may also wish to eliminate the chamfer edge at

vertices for which a is large.

4.2 The Parametric Visibility Graph

When designing real parts, it is likely that we willwant spars of diflFering widths.

This arises when each spar in the part must have its own width, and when the user

interactively varies the width of some spars. In the latter case, a large number of spar

widths must be computed and displayed, because the part is synthesized several times a

second. In path planning, this would be analogous to solving the problem for diflFerent

sized robots.
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I = [cy+ c,r + cj

Figiire 4.6: The Paxametric Visibility Graph.

The direct way to do this is to recompute CSPACE and its VGRAPH for each new

value of r. But this potentially requires a great deal of computation because of all the

different values of r that may be required. The interactive speeds we are trying to achieve

may be compromised. We have developed a data structure which represents all possible

configuration spaces and their visibility graphs as a function of a single parameter, r.

We call this the Parametric Visibility Graph (pvgraph).^ It is based on the chamfered

approximation of csPACE.

Figure 4.6 illustrates the pvgraph. The data structure is a graph, with a vertex

corresponding to eachvertex of the chamfered CSPACE obstacles, and a vertexcorrespond

ingto each application feature. The set of edges of this graph include eachedge that could

possibly belong to the visibility graph for some positive value of r. To each such edge in

the PVGRAPH data structure is attached information about that edge, parameterized by

^This has not been implemented in the racerz software.
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Figure 4.7: Computing the length of a visibility edge in the Parametric Visibility Graph.

r. As shown in Figmre 4.6, this includes the length of the edge as a function of r, and the

ranges of r for which this edge actually appears in the reduced visibility graph.

The computation of this data is straightforward when the chamfered CSPACE

approximation is used. Figure 4.7 depicts a typical visibility edge. The directed edge, u,

is the vector sum

u = d + r(n2 —ni). (4.1)

where ni and n2 are vectors that define the locations of the chamfer vertices. They range

in length firom unity to y/2. Define

6 = n2 —ni. (4.2)

and substitute into Equation 4.1 to get

u = d + r6 (4.3)

When one of the vertices corresponds to an application feature, its position in CSPACE is

fixed, independent of r, so its n vector is zero. In such cases, S is either n2 or —ni as

appropriate. When both vertices correspond to application features, 5 = 0 and u is fixed,

independent of r.

4.2.1 Length of an Edge

The length of u is defined by

II u11= [C2r + cir + CO (4.4)
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where

Figure 4.8: Tangency of a Visibility Edge

C2 = 5^5

ci = 2d^6

Co = (Fd

4.2.2 Tangency of an Edge

An edge between two vertices in CSPACE will exist in the reduced visibility graph

when it is tangent at both ends and is not occluded by any CSPACE obstacle along its

length. For each edge, there are certain values of r at which an end changes from being

tangent to being not teingent, or vice versa, as r increases. At other values of r the edge

may change from being not occluded to being occluded, or vice versa, as r increases. We

term these tangency events and occlusion events, respectively; visibility events collectively.

Figure 4.8 illustrates the tangency of an edge for two different values of r. For

small r neither end of ui is tangent to its CSPACE obstacle (a). For larger r, both ends
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are tangent (b). At even larger values of r, the edge will no longer appear in the VGRAPH

because the two cspace obstacles will overlap.

For the head of iti in the figure, tangency occurswhenei and 62 axe both on the

same side of ui, unless the vertex is concave. The vector ei is a unit vector in the direction

of the chaunfer edge, 62 is a unit vector in the direction of the edge of the obstacle. For

tangency

(ei Xtil)(til X62) > 0 (4.5)

where the "x" represents the scalar-valued two-dimensional cross product. Tangency

events occur when an edge e, becomes collinear with the visibility edge tii:

n = (4.6)
Cj X Oj

For each edge between CSPACE obstacle vertices there are four such events (two events at

each end of the visibility edge).^ The edge appears in the reduced visibility graph onlyfor

those values of r where it is tangent at both ends. In particular, we are only interested in

those ranges where r is positive.

If eitherendpoint ofa visibility edge occurs at a concave vertex (e.g. ei x 62 < 0),

the edge is never tangent and will never appear in the reduced visibility graph. When one

endpoint of a visibility edge corresponds to an application feature (e.g. ftnit or ^goai)?
tangency at that endpoint is not an issue. Such an edge will have only two tangency

events, and those will determine the tangency of the edge in the PVGRAPH. When both

endpoints correspond to application features, then an edge has no tangency events. Its

appearance in the reduced visibility graph is governed only by occlusion.

4.2.3 Occlusion of an Edge

An edge cannot appear in the reduced visibility graph if it intersects a CSPACE

obstacle along its length. For the parametric visibility graph, we need to determine the

values of r for which an edge becomes occluded by an obstacle. Figure 4.9 depicts the

computation of occlusion events. In the general case, three CSPACE vertices are involved,

and form a triangle. Occlusion events occur when this triangle collapses. As r is increased

^Note also that in general, because of the chamfer, there are two cspace vertices corresponding to one
vertexon the physical obstacle. This gives rise to a total of four visibility edges between the twoobstacles,
each of which has four tangency events.
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r=1.00

Figure 4.9: Occlusion Triangle for Three Visibility Edges

through the event, one of the edges' state changes from unoccluded to occluded, or vice

versa. At the occlusion event, the edges ui, U2, and U3 become colUnear, so we can express

the event as a cross product:

til X «2 = 0,

which can also be written as

(di + r^i) X (^2 + 7*^2) —0

where 61 = ni— nz and S2 = n2 —ni. The values of r for which this happens are the roots

of the quadratic

where

C2r^ + cir + co = 0

C2 = (5i X <52

ci = di X 62 d2 X ^1

Co = d\ X d2
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r,= 2.24

Figure 4.10: Occlusion Events for the Triangle of Figure 4.9.

Thus, for each such triangle there are two occlusion events, rp, and ri. We are only

interested in those that are positive and real. Figure 4.10 depicts the two occlusion events

for the triangle of Figure 4.9.

When an occlusion event occurs, the three CSPACE vertices are coUinear. The

one that is in the middle is the one doing the occluding. Which vertex this is can be

determined by inner products:

> 0 ^ U3 occluded by obstacle 1

U2U3 > 0 ^ til occluded by obstacle 2

tiftii > 0 ^ ti2 occluded by obstacle 3

(4.10)

(4.11)

(4.12)

Clearly, only one of the above inequalities can be true when r = rp or r = ri. This test

must be performed for each of these two values to determine which edge is occluded at

each event. For a particular event, if the occluded edge belongs to the cspace obstsicle,

then we must also consider this an occlusion event for all the visibility edges incident to

the occluding vertex.

It is tempting to assume that as r increases through rp (or n), the edge becomes

occluded. However, because we use the chcimfered representation of CSPACE, there are
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r= 2.75

Figure 4.11: Testing the Sign of an Occlusion Event.

cases when an edge can become unoccluded as r increases through this value. Thus, for

each occlusion event, e.g. tq, we must calculate whether the edge is occluded for r > tq or

for r < tq. To this end we must inspect another cross product.

Figure 4.11 shows the relevant vectors for the ro caseof Figure 4.10. In the figure,

r > tq. It is clear that the edge ui is occluded for such values and not occluded for r < tq.

For r > ro, the vector^ rna intersects u\. In general, we will check for intersection of the

directed edge, Uj, with the vector rrij to test when the edge Ui is occluded by obstacle j.

These vectors intersect when the vectors —us and —/123 are on opposite sides of ui'.

(ui XU3)(h23 X ui) > 0 ^ ui is occluded for r > tq. (4.13)

We use this formulation for this example because Equation 4.11 is true. Without loss of

generality, analogous formulations for the other two cases can be found by renumbering

the vertices.

®In the interest of readability, we abuse notation here and refer to the edge from Vi to Vi + rni as the
Tooted vector rni, or simply the vector rm.
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We know that at ro (and ri), the cross product ui x U3 is zero. Thus we must

differentiate Equation 4.13 with respect to r, and evaluate the derivative at tq (or ri). If

the derivative is positive then we know that ui is occluded by obstacle 2 for r > ro. If it

is negative then «i is occluded for r < ro.

Since we must account for the possibility that the derivative is zero at ro (or ri),

wemust be prepared to evaluate higherderivatives in somecases. The first four derivatives

are as follows:

•T- [(«1 XtX3)(/l23 Xtil)] = («1 Xti3)(/l23 X<5i + n3 Xtii)
or (4.14)

4- {Si Xii3 + til X^3)^^23 Xtil)

cP [(til Xti3)(/i23 Xtil)] = 2(tii Xti3)(n3 XSi)

+ 2{Si Xti3 + til XSz){h2Z XJi + 713 X'^l)

+ 2(^1 XSz){h2i Xtil)
(4.15)

[(til Xuz)(h2z Xtil)] = 6(<Ji Xti3 + til X<53)(713 X^i) (4.16)

4-6(<5i XSz){h2z X^1 4-713 X^1)

^ [(til XUz){h2z Xtil)] = 24((Ji XSz){nz xSi)
Higher-orderderivativesof this expressionaxe zero. Sincewe willevaluate these derivatives

only at ro or ri, we can simplify the above by noting that (tii x 143) = 0 whenever r equals

either of those two values:

4- [(«1 ^t3)(^23 Xtil)] = ((5i Xti3 4- til XSz){h2z Xtil) (4-18)
ar

(P^ [(til Xti3)(h23 Xtil)] = 2(Ji Xti3 4- til XSz)(h2Z X(5i 4- 713 X«i)

+ 2(<JiX(J3)(/l23Xtii) (4.19)

[(til Xti3)(h23 Xtil)] = 6(^1 Xti3 4- «1 X<y3)(7l3 X̂ i) (4.20)

4- Q{Si X Sz)(h2z X <5i 4- 713 X til)

^ [(til XUz)(h2z Xtil)] =24{Si X(53)(n3 x^i)
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Computation of these derivatives requires knowing derivatives of the terms ui x 1*3 and

h23 X «i, which we note here for reference:

•^(ui X113) ={Si X«3 +til X<53) (4.22)
ar

^(tii Xti3) =2{6i X53) (4.23)

^(tii X1x3) =0 (4.24)

—(^23 Xtil) = (/l23 XJi + 723 Xtil) (4.25)
ar

^(h23 Xui) =2(n3 X5i) (4.26)

^(ft23Xtxi) =0 (4.27)
A further point can be made about occlusionevents. In the left half of Figure 4.10,

we see the occlusion event corresponding to tq. Note that the edge tii is tangent to all three

obstacles at this value of r. Since this is an occlusion event, tii, ti2, and ti3 are coUinear

and thus all are tangent to all three obstacles. If ui were not tangent to obstacle 1 or not

tangent to obstacle 3, then this would not be an interesting occlusionevent for this edge,

because we would already know that iti does not appear in the reduced visibility graph at

this value of r. If ui were not tangent to obstacle 2, then, by the definition of tangency, lii

would already intersect one of the edges of obstacle 2, since it presently intersects a vertex

of obstacle 2. Again this would not be an interesting occlusion event.

Thus, when enumerating occlusion events for the scene, it is safe (with one ex

ception) to omit visibihty edges that are never tangent for r > 0. It is also safe to skip

characterization of an occlusion event unless all three edges are tangent to all three obsta

cles at that value of r.

The exception to this tangency rule applies to edges of CSPACE obstacles them

selves. As noted above, when a CSPACE edge crosses a vertex, all visibility edges incident

to that vertex become occluded. This is true even if the CSPACE edge is not tangent to its

obstacle at both endpoints (i.e., one or both of those vertices are concave). Thus, we can

reduce the computational burden of finding occlusion events by skiping non-tangent visi-
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Algorithm 4.1 PVGRAPH(V:4,0 = (Vb,£?o))

Takes a set of application-feature vertices Va, o set ofparametric polygonal obstacles O =

{Vo,Eo), and computes the Parametric Visibility Graph P = (Vp,£?p).
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Vp^VA\fVo.

Ep 4= (^). {All edges in the complete graph.}
for each edge u in Ep do

Tu 4= It's tangency as a function of r (Equation 4.6).

Ru Txi.

if T« = 0 AND ugLEo then

Ep ^ Ep \ u

end if

end for

for each triangle t = (ui,U2,U3) in do

Compute ro and ri, the occlusion events for r (Equation 4.9).

for each rj 6 {ro,ri} do

if ^ n^2 n^3 then

Characterize this event per Equations 4.10-4.12 and 4.18-4.21.

Modify ilui, Rvl2 »Ruz as appropriate,

end if

end for

end for

for each edge u in Ep do

if = 0 then

Ep 4= Ep \ u

else

Compute length(u) (Equation 4.4).

end if

end for

return P 4= (Vp,Ep).

bility edges, but we must consider all edges that belong to the boimdaries of the CSPACE

obstacles regardless of their tangency.

The computation of the PVGRAPH is shown in Algorithm 4.1. Note that vertices
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in the input set Vq are parameterized by r. In general, they are equal to u+rn, where v is

a vertex of the physical obstacle, and n is a vector. The Parametric Visibility Graph is a

data structure consisting of vertices and edges. To each edge u is attached two additional

pieces of information. The jfirst is the length of u as a function of r (Equation 4.4). The

second is a set ilu C R such that it appears in the reduced visibility graph for r 6 Ru.

The set Ru can be represented as a list of real numbers denoting the endpoints of ranges

that comprise the set.

In line 4, tangency events are computed for the edge it. If both endpoints of it

are in Vb, fom values of r result. If one endpoint is in V^, two values of r result. If both

endpoints are in Va then tangency is irrelevant for it (Ti, is assigned all of R). Each of

these values of r can be considered to divide the reals into two semi-infinite sets: those

values for which it is not tangent, and those for which it may be tangent. We seek the

intersection of these two or four sets. The result is a range of values in R for which it is

tangent at both ends. Because this is an intersection of semi-infinite sets, the range cannot

be disjoint. Thus it is representable by two numbers. We assign to be this range. (In

some cases the resulting intersection is semi-infinite. We represent this by setting one of

the numbers to -1.)

In line 14 we characterize an occlusion event. First, we determine which of ui, U2,

or U3 this event applies to. We then find a semi-infinite set R for which that edge (call

it It) may be unoccluded. That set is intersected with the appropriate Ru and we replace

Ru with iiu n -R ill fine 15.

Finally, in line 23, for those edges having nonempty Ruy we compute C2,ci and

Co, the coefficients of the length function in Equation 4.4. These three numbers are also

attached to the edge it so that its length can be calculated for arbitrary values of r.

The PVGRAPH can be searched in the same way as a static graph. A value for

r is chosen before the search, and remains in effect throughout. Dming the search, when

information about an edge is required, i.e. its existence or length, the data structure is

evaluated for the current value of r and the required information is returned.

4.3 Conclusion

It is clear that shape synthesis must observe the presence of other parts so as

not to create interference. This problem shares a great deal with the problem of path
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planning in robotics, so many techniques can be adapted from that discipline. In this

research we have chosen to examine visibility graph technique, and have shown that they

are useful in synthesizingnoninterferingparts. Other techniques, such as potential fields,

and roadmaps, may also be useful.

A significant difference betweenshape synthesisand robotic path planning is that,

while the shape synthesis problem may have fewer degreesof freedom, it has an eidditional

variable representing the width of the path. The Parametric Visibilitygraph may be useful

for finding paths of varying widths through a field of obstacles. It is little more difiScult

to compute than the static visibility graph, and it holds for all positive values of width.

The PVGRAPH, however, does have an important shortcoming. It can only plan

paths that have uniform width along their entire length. In general, it will be useful to

find paths with nonuniform with, such as tapered paths. In Chapter 5, we will suggest

some ideas for for solving this problem.
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Chapter 5

Research Directions

This dissertation has presented a visionfor a new paradigm for mechanicaldesign.

It has described in broad strokes the various elements required to realize this vision. Be

cause of this breadth, only a few topics have been treated in detail. This chapter presents

a summary of topics that need further study.

5.1 Skeleton Generation in the Presence of Obstacles

Ofprimary importance to our efforts at shape synthesisis the ability ofalgorithms

to construct skeletons in the presence of obstacles. None of the algorithms presented

in Chapter 2 address this, so it will be important to determine which methods can be

augmented to handle obstacles and how it should be done.

One approach that works with any skeleton that doesn't contain Steiner nodes

is to handle obstacles after the fact. This is the only approach that we have implemented

in the racerx software. The technique is to first ignore obstacles and construct a graph

using one of the above (non Steiner) methods like EMST, Spanner, or Delaimay. Following

that, the configuration space (cspace) of the scene and its visibility graph are computed.

Then, for each edge in the graph, we find the shortest path through the visibility graph

and add that path to the skeleton.

We have observed (and it is easy to show) that this technique is far from ideal. It

sometimes produces absurd looking parts, because the initial graph specifies connectivities

that require the path planner to find long, circuitous paths. It is clear that it will be desir

able to incorporate obstacle avoidance into the graph construction algorithms themselves
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if we £u:e to generate sensible part designs.

5.1.1 Graph Generation Algorithms

Of the algorithms studied in Chapter 2, we believe that some can be modified to

operate in the presence of obstacles. These include the EMST, the Greedy t-Spanner, and

the Delaunay IViangulation.

The Euclidean Minimum Spanning Tree, It may be possible to redefine the Eu

clidean Minimum Spanning Tree to accoimt for the presence of obstacles. The EMST can

be thought of as a specialization of the Minimiun Spanning IVee, which in general is a sub

graph G' = (VjE') of some graph G = {V^E). E' is chosen so that V is spanned and the

weight of G' is minimal. We can say that the EMST is the MST of the Euclidean-embedded

complete graph.

When obstacles are introduced, many edges of the complete graph become oc

cluded. The relevant graph in this case is the visibility graph of the scene. If we compute

a Minimum Spanning Tree of the visibility graph, we will have a spanning tree that avoids

the obstacles. This tree also spans every vertex of every obstacle in the scene, so it is really

more than we want.

What we want is a tree that spans some of the vertices of the visibility graph

(the set V to be precise) and optionally any of the vertices of the obstau:les. We would

additionally like the tree to have minimum weight. This is know as the Graphical Steiner

Minimum Tree Profe/em(GSMT) [?], and, though it really has little in common with the

Euclidean Steiner Minimum l^ee Problem, it is also known to be NP-complete. Hence,

we must seek solutions that are approximate. Several heuristic algorithms are presented

in the literature [?, ?, ?, ?, ?].

t-Spanners. To augment t-spaimer algorithms to handle obstacles, we will follow the

same reasoning as we do with the EMST. Call the set of points V together with the set

of obstacles O the scene. Define the complete visible graph to be the union of all n(n —1)

pairwise shortest paths through the visibility graph of the scene. It seems reasonably

straightforward to extend the Greedy algorithm to solve this problem: define a graph

G' = (VjE') where there is an edge inE' for each pair of points in (^) and its weight is
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the length of the corresponding shortest path in the complete visible graph. Given G' as

input, the Greedy algorithm will produce the desired spanner.

It is not clear to us if either Salowe's or Ruppert and Seidel's algorithms can be

extended in a similar way, because those algorithms do not construct graph spanners but

rather Euclidean spanners. It may be possible to redefine the distance metric to be the

length of a visiblepath between two points, or, alternatively, the distance metric might be

redefined to be infinite whenever the two points can not see each other.

The Delaunay Triangulation. The DelaunayTriangulation is one of the most promis

ing skeletons for our purposes because it it efficiently computes sparse, stiff skeletons.

These skeletons may be used as-is, or may be used as the starting point for further refine

ment using one of the optimization techniques discussed in Chapter 3. In many ways the

DT is an approximation of the complete graph [?], yet its complexity is 0{n) rather than

0(n^). We believe that we can invent a definition that describes a triangulation that is

similar in spirit to the Delaimay Triangulation, but that avoids obstacles.

Our first hope was that the Constrained Delaunay Triangulation (CDT) would

provide this. The CDT modifies the DT problem by adding edges to the problem specifi

cation. The constructed triangulation is required to utilize these edges. The remainder of

the constructed triangulation must obey the circle criterion.

At first glance it appears that we can set up a Constrained Delaimay Triangu

lation problem by defining the constraint set to be all of the edges of all the obstacles.

The CDT will essentially triangulate the insides of the obstacles independently firom the

surrounding fi:ee space. We simply discard those portions of the result that lie inside

obstacles. The shortcoming of this approach is much like the one we encounter with the

VisibilityGraph/Spanning TVee approach discussedabove: the result contains all the edges

and vertices of all the obstacles. This is clearly more than we want. In both cases, we can

imagine pruning this result by throwing away as many edges as possible while ensuring

that V is still spanned.

It is easy, however, to construct an example that shows this to be non-ideal.

Figure 5.1(a) shows such a result. It is obvious that the edge we would want is simply the

straight line connecting the two nodes (Figure 5.1(b)). This edge is not a member of the

CDT, however. What we get instead is a zigzag line that spans several obstacle vertices

along the way.- This may, however, be suitable as a starting point for an optimization-
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Figure 5.1: Computing a Delaunay Triangulation in the Presence of Obstacles

based strategy. It is easy to imagine "tightening" the result in (a) so the the zigzag path

straightens out. This would be a natural result of applying a continuous optimization. We

will call the result the Delaunay Triangulation with Obstacles (DTO).

We also note that the standard way of efficiently computing the Euclidean Mini

mum Spanning Tree is to first compute the Delaunay Triangulation and then find the MST

of that. (It is a fact that the EMST is a subgraph of the DT.) If we can find a suitable

way of generating the DTO, then we merely need to find its MST to have an "EMSTO."

5.1.2 Adding a dimension to CSPACE for the width parameter

In Chapter 4 we noted that the Parametric Visibility Graph is of no use for

planning paths whose width is nonuniform. If, for example, tapered spars are desired, we

must find another method. One possible approach is to add a dimension to Configuration

Space to represent the width of the path. For a 2-D design problem, CSPACE becomes 3-D.

Figure 5.2 illustrates such a configuration space for the path planning problem

of Figure 4.4. The obstacles in this generalized spcice are firustums, whose tops cire the
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Figure 5.2: Configuration Space With a Third Dimension Parmneterized by Path Width.

polygoned physical-space obstacles. The "vertical" dimension represents the width param

eter, r. Higher elevations correspond to smaller vsilues of r. Lower elevations correspond

to larger values of r. Accordingly, the slope of the obstacle sides is imity.

Path planning in this CSPACE is analogous to designing a road that winds through

a mountain range. We want to find the shortest road that will connect two cities, each of

which is at a different elevation. We are not allowed to cut into the mountain, but we are

allowed to fly through open space. Thus, some sections of the road lie £ilong the sides of

the mountain and other sections jump zicross valleys as though supported by a bridge.

Is there such a thing as a vgraph? We can imagine a variety of techniques for solving

the spar synthesis problem, depending on how it is posed. If the path pleinner is given a

value of r to be used at ^init and another valueto be used at ggoaij then wecan assign these

values as the third coordinate in CSPACE, giving ginit and ggoai concrete 3-D locations. A

crude way of finding a path would be to define a plane that intersects these two points in

CSPACE, Etnd is otherwise "as horizontal as it can be." In other words, the angle that this

plane makes with the r = 0 plane is the same as the angle between the line joining q-mit to

ggoai and the r = 0 plane. If we then intersect this plane with the 3-D CSPACE obstacles,
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dr^cds ^

Figure 5.3: Configuration Space Cone Representing Constant Taper.

we get a 2-D configuration space, in which we can use visibility graph techniques.

The problem with this approach is that any resulting path will not have constant

taper. In fact, if any segments of the path axe perpendicular to the line from ginit to ^goai^

they will have constant width. The closer a segment is to being parallel to the line from

9init to ggoaii the greater its taper.

The Constant Slope (Initial Value) Problem. In other cases the path planner may

be given a value of r for ^init and a desired value of where s is distance along the path.

The problem is to find a path from gjnit to ggoai that has the constant taper dictated by

Clearly, a given problem may have no solution if ^ is too large. The length of the
path may cause r to shrink to zero or to grow too large before ^goai is reached.

Assuming that a solution does exist, we can represent the set of straight path

segments emanating from ^init by the surface of a cone, as in Figure 5.3. The tip of the

cone is at the 3-D location of ginit- If the Isirge end of the path is to be at gjnit) then the

cone opens upward. The cone is intersected with the 3-D cspace obstacles sind trimmed

to the innermost boundary (heavy outline) defined by this intersection. Trimming forces

the cone to represent only those line segments that do not interfere with any obstacles.

Vertices are defined wherever the trimmed cone intersects an obstacle edge and the line

from ginit is tangent (white circles). The first segment of the path will have one of these
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vertices as its endpoint, thus we have a finite number of possible first segments for the

solution.

Each vertex is labeled with its (2-D) distance from qinn. The process is repeated

by defining a similar cone at each of the new vertices, which is then intersected with the

CSPACE obstacles to yield an additional set of vertices. These vertices are labeled with their

distances from ^jnit* The algorithm is a modification of Dijkstra's algorithm for finding

the shortest path through a graph. In this case, we construct the graph as we go along.

At each step the algorithm focuses its attention on the vertices whose cost is the lowest

found thus far. Eventually, cones would intersect ggoai, yielding paths and corresponding

total lengths. As each new solution is found, the label on ^goai is updated to refiect the

shortest solution found thus far. All possible paths must pursued until they either reach

9goai or their length exceeds the current shortest solution.
The act of "relaxing" a vertex's cost must be modified. When Dijkstra's algorithm

is applied to a 2-D graph, a vertex of the graph is, in general, reachable by multiple paths.

As the algorithm traverses the graph, it labels each vertex with the length of the path to

that vertex. If a vertex is visited via more than one path, it's length is always updated to

reflect the length of the shortest such path. This is called relaxing the vertex's cost.

For the algorithm we are proposing here, vertices are 3-D points that lie on the

downward-sloping ridges of the 3-D CSPACE obstacles. When two difierent cones intersect

the same ridge, they will, in general, do so at two distinct elevations. Thus, in general, a

given 3-D vertex is reachable usually by only one path. The elevation of each is proportional

to its cost because all path segments have the same slope (^)- Dijkstra's algorithm must
be modified as follows: Call two vertices compatible if they lie on the same ridge. A set

of compatible vertices is relaxed by discarding all but the lowest cost vertex. Only that

vertex (and its corresponding path) will be considered as a possible part of the solution

during the remaining processing of the algorithm.

Specified Begin And End Widths (Boundary Value) Problem. Finally, if the

problem is posed as in the first example, above, but with the additional stipulation that

the taper must be constant over the length of the path, we have a boundary-value problem.

The path planner is given a value of r to be used at another value to be used at ggoai)

and ^ must be constant. This is the problem that most closely mirrors the problem of
planning a road through the mountains.
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We can imagine using shooting techniques, wherein a candidate value of ^ is
chosen, then the solution to the initial-value problem is foimd with the above technique.

With iteration, a solution to the boundary-valueproblem may evolve. This will,in general,

•have convergence problems, because different values of^ may cause topologically different
routes between the obstacles to be taken. Even when convergence is obtained, efficiency

may be poor. It would be interesting to discover an exact (non-iterative) solution to this

problem.

5.2 Material Synthesis

For this dissertation, little study of material synthesis techniques has been con

ducted. In the two software implementations, graphlab and racerx, only two techniques

have been coded, uniform-width spars and tapered spars, so there are plenty of methods

that remain to be explored. Some simple ideas, such as the bounding box and the convex

hull, were mentioned in Chapter 1. It is likely that numerous approaches exist for comput

ing tapered spars and other nonuniform-width paths. Finally, perhaps the most important

topic wehave left unexamined is the incorporation of manufacturing process knowledge in

the material synthesis step.

5.2.1 The Simple Techniques

Modified Rectilinear Bounding Box. The modified rectilinear boimding box, as

shown in Figmre 1.3(b), is actually rather interesting. There are two issues to be ad

dressed: what are the principal axes, and what is to be done about obstacles? Given

an orientation, it is easy to find the boimding box of the application features. Then we

must subtract material to make room for the obstacles. In the spirit of rectilinearity, the

material subtracted should be the union of rectangles wherever possible.

To choose an orientation for the axial directions, we can imagine several criteria

that may be useful. A simple one would be to minimize the area of the resulting part.

Another would be to minimize the number of edges so that the part cam be made with

few cuts. This corresponds to finding an angle such that the obstacles cam be covered by

a small number of rectangles without interfering with the thick skeleton.

To do this well may require tighter integration between the skeletonamd material

synthesis processes. For examaple, the visibility-graph planner will often place the thick
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skeleton so that it hugs obstacles. This will likely preclude cutting a large rectangular

notch to accommodate an obstacle. As has been suggested, iteration is one way to address

this problem. A circumscribing rectangle could be substituted for the obstacle, and the

skeleton synthesizer nm again. If a solution is found, then the material synthesizer can

use the bounding box of the new thick skeleton, and can accommodate the obstacle by

subtracting the rectangle. In general, however, weare not guaranteed of finding a solution

this way. Some clever ideas will be needed to solve this problemin an optimal way.

Modified Convex Hull The modified convex hull, as shown in Figure 1.3(c), is another

potentially useful design style. Really the onlyissue hereis what to do about obstacles. A

simple solution is to find the convex hull of the thick skeletonand subtract the obstacles,

but this will, in general, leave excess material.

A better solution is illustrated by envisioning the convex hull as the boundary

defined by wrappinga rubber band around the the thickskeleton. We then let the obstacles

push in the rubber band so that the boundarydoesnot interferewith them. Sucha solution

is probably a straightforwardmodification of existingalgorithmsfor computingthe convex

hull of a 2-D set.

5.2.2 Manufacturing in Two Dimensions

We have repeatedly opined that perhaps the most important topic relating to

material synthesis is the incorporation of manufacturing process knowledge. In two di

mensions the machining problem is fairly easy because there are few limitations to the

shape of a plate that can be cut on a three-axis milling machine. Three manufactur

ing constraints that can be applied in 2-D and have some real-world relevance are fillets,

roundness and rectilinearity.

Make Room for Fillets An interesting problem to be solved is how to synthesize skele

tons that ensure sufficient clearance for fillets to be added without creating interferences.

Obviously, we can add clearance equal to the tool radius when we compute the configu

ration space, but this is conservative. In many cases this clearance may be unacceptably

large.

The challenge of finding solutions without specifying a large clearance is illus

trated by a simple example. The problem is that we are given a rectangle of dimensions
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I xw, and we are asked to find a rounded-corner rectangle that just fits around it. The

radius for the rounded corners is r. There are infinitely many solutions, ranging from

lx{w + 2r) to (/ + 2r) x w. An interesting question is whether CSPACE techniques can be

adapted to include a representation of this continuum of fillet solutions at each obstacle

vertex.

Maximize Roundness The roundness of a 2-D shape can be defined to be the ratio of

its area to the square of its perimeter. For a 2-D part, this estimates the complexity of

marhiTiiTig as a dimensionless number. A lower valueof roundness indicates that the part

has a large perimeter. Sincethe perimeter of the part is defined by cutting, this translates

into higher cost to manufacture the part. For convenience, we can add a coefficient of 47r,

i.e.:

R = (5.1)

where A is the area of the shape, and P is its perimeter. Thus a circle has a roundness

value of 1. If we use an optimization framework to synthesize material for the part, we

can thus use R as a term in the objective function to favor designs that are cheap to

manufacture.

Maximize Rectilinearity Rectilinearity expresses the quality that many or all of the

part's edgesare straight and axis-aligned. This improves handling, assembly and inspection

of the part. For example, straight, parallel surfaces can be clamped in a vice to hold the

part for further machining.

The rectilinear bounding box is one possibledesign, but there are infinitely many

more. Figme 1.3(h) illustrates a rectilinear solution. It is likely that all methods incor

porated by the the shape synthesizer will have to be modified. Completely new skeleton

synthesis, and obstacle avoidance techniques may be required.

5.2.3 Manufacturing in Three Dimensions

The Holy Grail of this research is to be able to design three dimensional parts

that are, among other things, cheap to manufacture. In this dissertation, we have repeat

edly stressed that an advantage of assembly-centric design is that the software can apply

manufacturing process knowledge during shape synthesis. For this dissertation, we have
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not even begun to investigate how this can be done, but it seems clear that the material

S3mthesizer will have to reason in terms of the kinds of operations used in the selected

manufacturing process. If a subtractive process such as machining is to be used, the ma

terial synthesizer must reason in terms of subtractive geometric boolean operations. This

would be essentially automation of the technique known as Destructive Solid Geometry

(DSG) [?].

In the DSG method, a designer interactively creates a part design using spe

cialized software. The modeling operations he uses directly correspond to manufacturing

operations appropriate to the chosen process. At each step, he is limited to only those

operations that could physically be carried out by a real machine. If we can program an

automatic material synthesizer to obey these same rules, we will be guaranteed of yielding

part designs that are manufacturable.

5.3 Conclusion

This dissertation has presented a vision for what we believe will be genuinely

useful new paradigm for mechanical design. It has described in broad strokes the various

elements required to realize this vision. Some of this research has been devoted to ap

plying existing techniques to this new domain. These include graph algorithms such as

the Steiner Minimum Tree, t-Spanners, Delaunay TViangulation, and Conjugate-Gradient

optimization. A few new techniques have been presented, including Hierarchical Nearest

Neighbor TVees, the Switch-Topology optimizer, chamfered CSPACE, and the Parametric

Visibility Graph.

In Chapter 1 we show that shape synthesis of a single part can proceed in a static

environment. We conjecture that the shape synthesis problem is not difficult for simple

parts. In Chapter 2 we show several simple algorithms that generate reasonable skeletons.

Some of these benefit from applying numerical optimization, and an efficient method for

doing this is presented in Chapter 3. It is also feasible to guarantee that synthesized part

shapes do not interfere with other parts in the assembly. Chapter 4 describes the approach

we use in the racerx software, and presents a data structure that may be useful when

planning for paths of varying widths.

Many fascinating topics remain to be studied. A few have been mentioned

in this chapter, including skeleton generation in the presence of obstacles, planning for
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nonunifoim-width paths, and material synthesis.
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Appendix A

Graphlab

The graphlab program is invoked by typing lab at the UNIX command prompt.

There are no options or arguments to be typed on the command line. All options and

actions are invoked via the graphical user interface when the program is running. When

started, the program presents a large main window in which part skeletons can be built

and tested. User interaction is provided via menus, dialog boxes, and the mouse.

A.l Keyboard and Mouse

Keyboard and mouse buttons are given user-defined functions by commands listed

in an initialization file (see Section A.4). There are no default assignments—^without an

initialization file, the keyboard and mouse do nothing. The commands listed in

the following sections of this appendix are all accesible via menus or dialog-box buttons.

Assigning keyboard keys to them provides shortcuts, but is not required to be able to

invoke the actions. Each command is listed with its unique identifier in parentheses,

which is used in the initialization file when assigning the conunand to a key sequence.

There is a special set of actions that must be assigned to keys: the ones intended

to be associated with the mouse. If these actions are not bound to keys by the initialization

file, they will not be available. Though there is no restriction on the keys to which

they can be assigned, the user will likely want to bind these actions to the three mouse

buttons. Since there are more than three actions, some should be boimd with modifier

keys, e.g. (bind-key "M-rmouse" 'window-pan). See Section A.4 for a suggested minimal

initialization file.
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The mouse commands are as follows:

• Delete Edge (edge-delete): Interactively delete an edge from the Edit graph.

• Delete Point (point-delete): Interactively delete a point.

• Drag Point (point-drag): Interactively drag a point.

• Make Edge (edge-make-steiner): Interactively make a new edge in theEdit graph

between two points. First click on a point. It will be highlighted. Cliddngon a second

pointaddsan edge between those two points. Clicking on free space oron an existing

edge creates a new Steiner vertex. .

• Make Edge (edge-make-edit): Interactively make a new edge in the Edit graph

between two points. First click on a point. It will be highlighted. Clicking on a

second point adds an edge between those two points. Chcking on free space or on

an existing edge creates a new Edit vertex.

• Make Steiner Point (point-make-steiner): Interactively make a new steiner

point in the Edit graph.

• Make Point (point-make): Interactively make a new point.

. • Pan. Window (window-pan): Pan the view in the current window.

• Rotate Window (window-rotate): Rotate the view in the current window.

• Zoom Window (window-zoom): Zoom the view in the current window.

A.2 Menus

The Main Window of the graphlab program conains a menu bar along its top

edge. On that there are five menus, labeled File, Window^ Debug^ Tools, and Help. These
menus contain the following commands:

A.2.1 File Menu

• Quit (quit-program): Quit the program.
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• Dump Key Bindings (diunp-keybindings): Dump the current key bindings in a

format (almost) suitable as an initializationfile. This file is called 'keybindings' and

lists all programactions, includingthose that are not bound to keys (see Section A.4).

The unbound actions are listed as

(bind-key "" *command)

With no key sequence specified between the two double-quotes, this line will cause

the graphlab programto complain. Therefore, the dumpedfile is not quite usableas

an initialization file. To bind such a command to a key sequence, copy the line firom

the 'keybindings' file and add it to your actual initialization file. Add the desired

key sequence between the two double-quotes.

• Dump Help (dump-help): Dump the help blurbs for all user interface items. This

includes menu items, buttons, mouse clicks, etc. Output is dumped to two files:

'Help.txt,' and 'Help.tex.' The latter is (almost) suitable for inclusion in LaTeX

documents (such as this one).

• Save As... (graph-file-save-as): Save the Edit Graph under a newfilename.

• Open... (graph-file-open): Open a graph file.

• Export IGES... (graph-export-iges): Export the Edit Graph as an IGES file.

A.2.2 Window Menu

• Lights... (show-lights): Adjust the lights. This command displays a dialog that

allows you to adjust the color and position of the lights. See Section A.3.1.

• Window Controls... (show-window-controls): Set window options. This com

mand displays a dialog that allows you to adjust various aspects of the cmrent

window. See Section A.3.2.

• Zoom All (window-zoom-all): Zoom the scene to fill the current window.

• Screen Dump... (window-screendump): Save a copy of the screen to a .rgb file.

The image is saved using *scrsave(6D)'. The coordinates of the corners of the viewport

are passed as the region to save. An exact copy of the screen within that region is
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saved. Thus, for a clean screen dump, make sure that no other windows on the screen

overlap the program window.

• Export Idraw... (graph-export-idraw): Export the Edit Graph as an Idraw

(PostScript) file.

A.2.3 Debug Menu

• Lists Debug Submenu

- Before (debug-lists-before): Toggle consistency checks on lists. When en

abled, checks are made at the entry of each operation.

- After (debug-lists-after): Toggle consistency checks on lists. When en

abled, checks are made at the exit of each operation.

- Data (debug-lists-data): Toggle consistency checks on lists. When enabled,

checks are made for null data pointers.

• Mem Manager Debug Submenu

- Alloc (debug-mem-alloc): Toggle memory manager debugging output. When

enabled, calls to allocate and free are reported.

- Blocks (debug-mem-blocks): Toggle memory manager debugging output.

When enabled, construction of MemBlocks objects are reported.

- Header (debug-mem-header): Toggle memory manager debugging output.

When enabled, calls to HeaderBlock new and delete are reported.

• Window Debug Submenu

- Clear: Print (debug-winclear-print): Toggle printing of debugging infor

mation during window clear. When enabled, the clear operation prints the scene

and clear rectangles, as well as the vertices of the clear rectangle.

- Clear: Inset 1 (debug-winclear-insetl): Toggle insetting of the 'clear*rect

angle of all windows. When enabled, the cleared rectangle of the windowis inset

by one pixel on all foiu: sides, leaving the outer pixels unerased during each win

dow refresh. (Does not apply if window background is black or white.)
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—Clear: Inset 2 (debug-winclear-inset2): Toggles insetting of the *clear^

rectangle of all windows. When enabled, the cleared rectangle of the window

is inset by two pixels on atU four sides, leaving the outer pixels unerased diuring

each window refresh. (Does not apply if window background is black or white.)

—Clear: Border (debug-winclear-border): Toggle bordering of the 'clear'

rectangle of all windows. When enabled, the cleared rectangle of a window is

outlined by a one-pixel-widered border. (Does not apply if window backgroimd

is black or white.)

—Clear: Don't (debug-winclear-dont): Toggle clearing of all windows. When

enabled, windows are not cleared during refresh.

—Clear: White First (debug-winclear-whitefirst): Toggle pre-clearing of

all windows. When enabled, windows axe first cleared to white, then cleared

again using the currently selected clear.

—BBox: Draw (debug-winbbox-draw): Toggle display of the scene hounding

box. When enabled, the bounding box that surrounds the objects in the scene

is displayed. This bounding box is used to set the clipping planes.

—Late Mouse (debug-win-late-mouse): Toggle late sampling of the mouse

position. When enabled, the mouse position is read as late as possible prior to

redrawing the window. Otherwise, the most recent mouse event from the Forms

Library queue is used.

—Output Profile (window-profile): Output profiling information to standard

out. This information shows the time required for various operations involved

in redrawing the window.

• Graph Debug Submenu

—Print Optimization (graphopt-print): Toggle printing of debug information

during optimization.

—Print Compliance (graphopt-debug-con5)liance): Toggle printing of debug

information during compliance calculation.

—Display Super (graphopt-debug-display): Update display after each step

during Super Optimize.
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A.2.4 Tools Menu

• Rendering Options... (show-rendering-options): Set rendering options. This

command displays a dialog that allows you to adjust various aspects of how parts

are rendered, including, thickness and edge rounding. SeeSection A.3.3.

• Graph Controls... (show-graph-controls): Control graph options. This com

mand displays a dialog allows that you to adjust various aspectsof graphs, spanners,

and optimization. See Section A.3.4.

• GraphOpt Status... (show-graph-optstat): Display graph optimization statis

tics. This command displays a dialog that displays the number of iterations of the

most recent run of the optimizer, as well as the weight of the resulting graph.

A.2.5 Help Menu

• What is... (what-is): Display help about an input. Select from a menu, tjrpe a key

sequence, or click the mouse in a window. The terminal window will display help

information about the action that is currently bound to that input.

A.3 Dialogs

Much of the graphlab program is controlled via dialog boxes (forms). These

include Lights, Window Controls, Rendering Options, Graph Controls, and Relaxation

Controls dialogs:

A.3.1 Lights Dialog

The Lights Dialog is accessed by the Lights... command on the Window menu.

Figure A.l shows the dialog. It contains the following controls:

1. Activate: The eight lights can be turned on and offindividually with this group of

buttons:

• Light 1 On (light-1-on): Turn light number 1 on and off.

• Light 2 On (light-2-on): Turn light number 2 on and off.

• Light 3 On (light-3-on): Turn light number 3 on and off.
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Figure A.l: The Lights Dietlog.

• Light 4 On (light-4-on): Turn light number 4 on and off.

• Light 5 On (light-S-on): Turn light number 5 on and off.

• Light 6 On (light-6-oii): 2hm light number 6 on and off.

• Light 7 On (light-7-on): Ihm light number 7 on and off.

• Light 8 On (light-S-on): Ihm light number 8 on and off.

2. Adjust: To adjust a light's position and color, it must first be selected by pressing

one of the buttons in this group:

• Light 1 (light-1): Select light number 1 for adjusting color and position.

• Light 2 (light-2): Select light number 2 for adjusting color and position.

• Light 3 (light-3); Select light number 3 for adjusting color and position.

• Light 4 (light-4): Select light number 4 for adjusting color and position.

• Light 5 (light-5): Select light number 5 for adjusting color and position.
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• Light 6 (light-6): Select light number 6 for adjusting color and position.

• Light 7 (light-7): Select light number 7for adjusting color and position.

• Light 8 (light-8): Select light number 8 for adjusting color and position.

3. X Coordinate (light-x): Set the x coordinate of the current light.

4. y Coordinate (light-y): Set the y coordinate of the current light.

5. z Coordinate (light-z): Set the z coordinate of the current light.

6. BLed Directional Component (light-red): Set the RED directional component

ofythe current light.

7. Green Directional Component (light-green): Set the GREEN directional com

ponent of the current light.

8. Blue Directional Component (light-blue): Set the BLUE directional compo

nent of the current light.

9. Red Ambient Component (light-ambient-red): Set the RED ambient compo

nent of the current light.

10. Green Ambient Component (light-ambient-green): Set the GREEN ambient

component of the current light.

11. Blue Ambient Component (light-ambient-blue): Set the BLUE ambient com

ponent of the current light.

12. Load Lights A (lights-load-a): Load light colors and positions from file

*lights.a.h\ The file must be in the same format as the file 'lights.h' created by

the 'Save Lights' command.

13. Load Lights B (lights-load-b): Load light colors and positions from file

'lightsJ).h\ The file must be in the same format as the file 'lights.h' created by

the 'Save Lights' command.

14. Load Lights C (lights-load-c): Load light colors and positions from file

'lights-c.h'. The file must be in the same format as the file 'lights.h' created by

the 'Save Lights' command.
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15. Save Lights (dump-lights): Save the current light colors and positions. A filecalled

'lights.h' is created containing the lighting data. If this file is renamed to 'lights_a.h',

'lights-b.h', or 'lights.c.h', then it can be loaded by the respective 'Load Lights'

command at any time. Alternately, this file can be moved to the skel directory and

neimed 'deflights.h'. The values will be integrated into the program the next time

'lighting.cc' is recompiled.

16. Done (hide-lights): Close the Lights form.

A.3.2 Window Controls Dialog

The Window Controls Dialog is accessed by the Window Controls... command

on the Window menu. Figure A.2 shows the dialog. It contains the following controls:

1. Double Buffer (window-double-buffer): Toggle the current window between sin

gle and double buffering. Double bufiering makes animation smooth, but degrades

display quality. Single buffering makes display quality as good as it can be, but

animation will flicker.
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2. Video Window (vindov-video): Toggle the window configuration between 'large'

and 'video'. The *large' window is 950 x 925 pixels. The 'video' window is 605 x

479, and positioned in the lower left corner of the display.

3. Client Area (vindov-8creendunq)-client): Set the modefor saving screendumps

to Client. In this mode, the client area of the window is saved. This includes the

viewport area and menu bar, but not the title bar or frame of the window.

4. Grayscale (window-screenduii5)-gray): Toggle saving of screendumps in grayscale

format. When enabled, the Grayscale option will cause the Screen Dump command

to save the screen data as a Black and White (1 bjrte per pixel deep) image rather

than as an RGB (3 b3rtes per pixel deep) image.

5. Whole Window (vindov-screenduinp-'VindGv): Set the mode for saving screen-

dumps to Window. In this mode, the entire window is saved. This includes the

viewport area, menu bar, and the title bar and frame of the window.

6. Viewport Area (window-screendump-viewport): Set the mode for saving screen-

dumps to Viewport. In this mode, only the viewport area of the window is saved.

No menus, title bars, window frames, etc., are included in the image file.

7. White (vindov-background-vhite): Set the background of the current window to

white.

8. Black (vindov-background-black): Set the background of the current window to

black.

9. Blue Wash (window-background-blue): Set the background of the current window

to a wash from black to dark blue.

10. Red Wash (window-background-red): Set the background of the current window

to a wash from black to dark red.

11. Red Component (window-conp-red): Set the RED component of the current win

dow's background color.

12. Green Component (window-comp-green): Set the GREEN component of the cur

rent window's background color.
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Figure A.3: The Rendering Options Dialog.

13. Blue Component (window-comp-blue): Set the BLUE component of the current

window's background color.

14. Done (hide-window-controls); Close the Window Controls form.

A.3.3 Rendering Options Dialog

The Rendering Options Dialog is accessed by the Rendering Options... com

mand on the Tools menu. Figure A.3 shows the dialog. It contains the following controls:

1. Spars (graph-display-spars): Toggle display of spars.
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2. Taper (graph-taper-spars): Toggle tapering ofspars. When enabled, sparsections

are tapered so that their widths at each end match the diameters of the associated

nodes.

3. Sharp (graph-spar-render-sharp): Render spar edges sharp, with no chamfer or
rounding.

4. Chamfer (graph-spar-render-chamfer): Render spar edges chamfered.

5. Round (graph-spar-render-round): Render spar edges rounded.

6. Spar Width (graph-spar-width): Set the width of the spars.

7. Spar Depth (graph-spar-depth): Set the depth of the spars.

8. Spar Chamfer (graph-spar-chamfer): Set the edge chamfer of the spars.

9. Fillet Extra (graph-fillet-extra): Set the width of the spar fillets.

10. Net Wt Power (graph-spar-netweight-power): Set the exponent of influence

that network weights have on spar thickness.

11. Net Wt Coeff. (graph-spar-netweight-factor): Set the coefficient of influence

that network weights have on spar thickness.

12. Hole Radius (graph-spar-radius): Set the radius of the holes.

13. Hole Thickness (graph-spar-hole-thickness): Set the thickness of the material

around the holes.

14. Hole Chamfer (graph-hole-chamfer): Set the edge chamfer of the holes.

15. Smooth Lines (graph-display-smooth): Toggle smoothing of lines.

16. Line Width (graph-line-width): Set the width that lines will be drawn in the
current window.

17. Vertices (graph-display-edit-verts): Toggle display of Vertices in the Graph.

18. Vertex Labels (graph-display-vertex-labels): Toggle display of Vertex Labels

in the Graph. When enabled, vertices will be labeled with the address of the vertex

object in memory.
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19. Edges (graph-display-edit-graph): Toggle display of the graph edges.

20. Network Weights (graph-display-network-weights): Toggle display ofNetwork

Weights of the graph edges. This only works if the graph is a tree. If it isn't, no

weights are displayed.

21. Done (hide-rendering-options): Close the Rendering Options form.

A.3.4 Graph Controls Dialog

The Graph Controls Dialog is accessed by the Graph Controls... command on

the Tools menu. Figure A.4 shows the dialog. It contains the following controls:

1. Delete All Edges (graphed-del-edges): Delete all edges in the Edit Graph.

2. Delete Vertices (graphed-del-ad.l-verts): Delete all vertices in the Edit Graph.

3. Delete Steiner (graphed-del-steiner): Delete oil Steiner vertices in the Edit

Graph.

4. N (graphed-random-n): Set the number of vertices for the ^Random Vertices* com

mand.

5. Random Vertices (graphed-random-verts): Generate a random set of vertices.

The number of vertices generated is determined by the 'N' input field.

6. Once (graph-compute-once): Compute a new initial graph based on the selected

type. Any existing graph will be replaced. The available types are Centroid, Near

est Neighbor, Principle Axis, Spanner, Delaunay lYiangulation, and the Complete

Graph.

7. Continuous (graph-coiq>ute-contin): Continuously compute the initial graph

based on the selected type. The initial graph is recomputed after every change that

is made to the input set or parameters. The available types are Centroid, Near

est Neighbor, Principle Axis, Spanner, Delaunay THangulation, and the Complete

Graph.

8. Group Centroids (graph-neighbor-group): Toggle centroid grouping for Nearest

Neighbor and Heirarchical initial graphs. This setting affects where new steiner nodes
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are placed during thegraph-generation process. When disabled, a new node is placed

midway between the two nodes it connects. When this setting is enabled, a new

node is placed at the centroid of the new connected component that it creates.

9. t (graph-addj-t): Set the value of 'Vfor the ADDJ Spanner algorithm.

10. Complete Graph (graphtype-complete): Use a Complete Graph as the initial

graph for the skeleton. The Complete Graph has an edge between every pair of

vertices in the set.

11. Centroid (grapht3rpe-centroid): Use a Centroid graph as the initial graph for the

skeleton. This graph is a spanning tree created by adding a single vertex at the

centroid of the vertex set.

12. Nearest Neighbor (graphtype-nearest): Use a Recursive NearestNeighbor graph

as the initial graphfor the skeleton. This graph is created by repeatedly finding the

closest pair of unconnected vertices and creating a Steiner vertex between them.

13. Heirarchical (graphtype-heirarchical): Use a Heirarchical Recursive Nearest

Neighbor graph as the initial graph. This graph is created by repeatedly finding the

closest pair of imconnected vertices and creating a Steiner vertex between them.

14. Principle Axis (graphtype-principle): Use a Principle Axis graph as the initial

graphfor the skeleton. This graph is based on the principleaxis of the vertex set.

15. ADDJ Spanner (graphtype-addj): Use an ADDJ Spanner as the initial graph for

the skeleton.

16. Delaunay IViangulation (graphtype-delaunay): Use a Delaunay Triangulation

as the initial graph for the skeleton.

17. Relaxation Controls... (show-relaxation-controls): Control graph Relaxation

options. This dialogallows you to control the relaxation engine for graph optimiza

tion.

18. Once (graphopt-locally-once): Optimize the Edit Graph once, by Conjugate-

Gradient method.
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19. Continuous (graphopt-locally): Toggle optimization of the Edit Graph. When

enabled, the Edit Graph is continuously driven to a local minimum by Conjugate-

Gradient optimization.

20. Linear Coefficient (graphopt-lin-coef): Set the linear coefficient for computing

the cost of an edge. The cost of an edge is computed by the function c = al + bl^
where 1is the length of the edge. This input sets the coefiBicient a.

21. Quadratic Coefficient (graphopt-quad-coef): Set the quadratic coefficient for

computing the cost of an edge. The cost of an edge is computed by the function

c = al + bl^ where 1is the length of the edge. This input sets the coefficient b.

22. Use Gradient (graphopt-use-gradient): Toggle use of gradient information in

the Conjugate-Gradient optimizer.

23. Ttucate Optimization (graphopt-truncate): Toggle trunctation of optimizer

runs. When truncation is on, the optimizer is aborted whenever the gradient be

comes imdefined, e.g., when the length of an edge becomes zero. This seems to be

useful. When the gradient becomes imdefined, the optimizer can bum up a lot of

iterations while making little progress.

24. Collapsing (graphopt-collapsing): Toggle use of collapsing in the localoptimizer.

When enabled, the local optimizer may change the topology of the graph by removing

. edges whose length becomes zero. Vertices at the ends of such edges are coalesced

into a single vertex.

25. Network Weights Quadratic (graphopt-use-network-quadratic): Toggle use

of network weighting of graph edges in the optimizer. When enabled, the quadratic

term in the edge-weight cost function is multiplied by the number of node-to-node

paths that include that edge. This setting is ignored if the graph contains loops.

26. Network Weights Linear (graphopt-use-network-linear): Toggle use of net

work weighting of graph edges in the optimizer. When enabled, the linear term in the

edge-weight cost function is multiplied by the number of node-to-node paths that

include that edge. This setting is ignored if the graph contains loops.
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27. Optimize for (graph-opt-lambda): Choose the relative importance of weight and

compliance in the optimization.

28. Super (graphopt-super): Toggle super optimization of the Edit Graph. When

enabled, the Edit Graph is optiniized using continuous and discrete methods. At

each step a local minimum is found for the continuous optimization problem, then

topology switching is applied and the process repeated.

29. Super Once (graphopt-super-once): Super-optimize the Edit Graph once. The

Edit Graph is optimized using continuous and discrete methods. At each step a local

minimum is found for the continuous optimization problem, then topology switching

is applied and the process repeated. The process terminates when no topology

switching is possible.

30. One Iter (graphopt-super-one-iter): Perform one iteration of the super-

optimization algorithm.

31. Maximum Steiner Degree (graphopt-steiner-degree): Set the Super

Optimizer's maximum allowable degree for Steiner nodes. The Super Optimizer will

not split Steiner nodes having this many or fewer incident edges.

32. Split Vertices (graphopt-split-tens-verts): Split all vertices in the edit graph

that are under tension.

33. Weld Vertices (graphopt-collapse-edges): Find all edges in the edit graph of

length zero and collapse them.

34. Delete Null Vertices (graphopt-delete-null-verts): Delete all degree-two

Steiner vertices in the Edit graph.

35. Split Vertices By Angles (graphopt-splitting-byangles): Set the Super Opti

mizer's Vertex Splitting Method to 'Angles.'

36. Split Vertices By Force (graphopt-splitting-bjrforce): Set the Super Opti

mizer's Vertex Splitting Method to 'Force.' Note that this only effects Steiner ver

tices. Other vertices are still split by angles.
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37. Maximum Steiner Degree = 4 (grapliopt-steiner-degree-4): Set the Super

Optimizer's maximum degree for Steiner nodes to 4- The Super Optimizer will not

split Steiner nodes having this many or fewer incident edges.

38. Maximum Steiner Degree = 3 (graphopt-steiner-degree-3): Set the Super

Optimizer's maximum degree for Steiner nodes to 3. The Super Optimizer will not

split Steiner nodes having this many or fewer incident edges.

39. Done (hide-graph-controls): Close the Graph Controls form.

A.4 Initialization File

When the graphlab program starts up, it reads an initialization file called

'.racerxrc'. It looks for this file first in the user's home directory, then in the cur

rent directory. The syntax of this file is Lisp, and there are two commands that may be

used, load-file^ and hind-key. Comments may be added to any line. A comment begins

with a semicolon (;), and continues to the end of the line. All text in the comment is

ignored by the program.

• Load File (load-file): Load an additional initialization file.

Syntax: (load-file "otherfile")

This command loads the additional initialization file named "otherfile". The file will

be searched for in the same way as was .racerxrc. First the user's home directory

is checked, then, if the file is not found there, the current directory is checked. The

load-file command can be used as many times as necessary, and may also appear

in the additional files that are loaded. Any depth of nesting is allowed.

• Bind Key (bind-key): Bind a key sequence to a program action.

Syntax: (bind-key "sequence" *command)

This command binds a keyboard or mouse key sequence to a program action so that

the action will be carried out whenever the user presses that sequence. There are no

default bindings in the program; all bindings must be specified in the initialization

files.
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The "sequence" argument must be a string denoting a sequenceof key names and

modifiers. For example, the string "C-d" denotes the sequence control-d. That is,

when the user holds down the control key and presses the d key, the bound program

action will be invoked. The string "c a" denotes the sequence of pressing the c key

followed by pressing the a key. The string "M-x C-c" denotes holding down the

meta (oralt) key and pressing the x key, followed byholding down the control key

and pressing the c key.

The *comntand argument must be the unique lispidentifier denoting the action to be

bound to the sequence. These identifiers are shown in parentheses for every program

action in this appendix.

Exannple: (bind-key "M-w w" 'window-backgroimd-white)

As noted in Section A.l, the mouse functions must be boimd to keys (preferably

mouse buttons), for them to be available when the program is run. Asuggested niininniTn
initialization file is as follows:

(bind-key "M-nnouse" 'window-pan)
(bind-key "M-mmouse" 'window-rotate)
(bind-key "M-lmouse" 'window-zoom)
(bind-key "Imouse" 'point-make)
(bind-key "S-lmouse" 'edge-make-edit)
(bind-key "S-rmouse" 'edge-make-steiner)
(bind-key "rmouse" 'point-make-steiner)
(bind-key "mmouse" 'point-drag)
(bind-key "C-rmouse" 'point-delete)
(bind-key "C-mmouse" 'edge-delete)

This file should be named .racerxrc and kept in the user's home directory.

A.5 Graphlab Implementation Notes

The graphlab program's user interface is supported by a centralized event pro

cessing model. This minimizes modality and provides some user-configurability, while at

the same time requiring minimal work on the part of the programmer. User-configurable

key bindings are modeled after the user interface of GNU Emacs—^bindings of key se

quences to program actions are not hardcoded. Assignment of key sequences to actions is
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defined in an ASCII text file that is read at program startup. The result is that all user

functions can be available at all times (except where it doesn't make sense). For example,

viewpoint navigation with the mouse can be performed at amy time by holding down the

alt key. Switching to a navigation mode is not required. Further, the assignment of the

alt key to this behavior is not hardcoded, but is defined in the text file.

In addition to the advantage of user convenience, development efibrt is reduced

because key-assignment collisions are eliminated: programmers do not define key-assig-

ments in code, so conflicts do not arise. The syntax of the user key-assignment file is Lisp,

and may be extended in a regular way in the future to support additional user options.

The programmer's interface to this system is an object-oriented library written

in C++. Programmers expose a program option or action by creating an instance of a

user-interface class object in the source code. This tjrpically requires six lines of code for

one object. All relevant information is thus maintained in a single location in the code,

including help strings that explain the use of the user feature. A help menu is available

to the user and provides a Whqtis command. The user can click any menu, button, entry

field, slider, or other interface object, and receive online help to explain its function. This

programming model encourages the developers to evolve the documentation along with

the software, rather than after the fact.

A large portion of this C++ library is dedicated to interfacing with the Forms

Library [?]. Programmers create user interface screens using the fdesign program pro

vided with the Forms Library distribution. In the source code, programmers instantiate

one user-interface object for each Forms Library widget, using the same C++ interface as

above. The connection is made by initializing the C++ object with a pointer to the Forms

Library widget. The C++ object is also initialized with help strings, so that the same

online help services are available with widgets drawn by the Forms Library. Further, the

C++ object automatically makes itself available for key-sequence binding, so that the user

can create a keyboard shortcut for any button, menu, text field, or any other user-interface

widget drawn by the Forms Library. Thus the user interface event processing model is

uniform from both the programmer's smd user's points of view.
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