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Abstract

Impulsive control of a chaotic s\'steni is ideal for designing digital control schemes

where the control laws are generated by digital devices which are discrete in time. In this

paper, several theorems on thestability ofimpulsive control systems arepresented. These

theorems are then used to find the conditions under which the chaotic systems can be

a.symptotically controlled to the origin by using impulsive control. Given the parameters

of the chaotic system and the impulsive control law, an estimation of the upper bound of

the impulse interval isgiven. We also present a theoryofimpulsive synchronization oftwo

chaotic systems. A promising application of impulsivesynchronization of chaotic systems

to a secure communication scheme is presented. In this secure communication scheme,

the transmitted signals are divided into small time frames. In each time frame, the

synchronization impulses and the .scrambled message signal are embedded. Conventional

cryptographic methods are used to scramble the me.ssage signal. .Simulation results ba.sed

on a typical chaotic .system; namely, Chua's oscillator, are provided



1 Introduction

Since the seminal paper of Ott, Grebogi and Yorke(0GY)[2], several methods for control and

stabilization of chaotic motions have recently been presented[3, 4, 5, 6]. In view of the rich

dynamics of chaotic systems, there exists a large variety of approaches for controlling such

systems. Some of these approaches include adaptive control [4, 5], error-feedback control[7].

time-delay feedback control[7], 0GY[2], predictive Poincare control[8], occasional proportional

feedback control[9] and impulsive control[6].

In fact, the predictive Poincare control and the occasional proportional feedback control are

two impulsive control schemes with varying impulse intervals. Impulsive control is attractive

because it allows the stabilization of a chaotic system using only small control impulses, and

it offers a direct method for modulating digital information onto a chaotic carrier signal for

spread spectrum applications. However, due to a lack ofeffective tools for analyzing impulsive

differential equations[I], most impulse control schemes had been designed mainly by trial-and-

error. The study of the stability of an impulsive differential equation is much more difficult

than that of its "corresponding" differential equation[10]. For example, consider the impulsive

system

x=.4x,

Ax|<=r. = Bx

where A and B are two constant matrices, and Ax|t=T, = —x(r^~), x(rj ) and x(t,^)

being the left and right limit ofx(t) at f = r,-. The solution of the above system is given by

x(<,Xo) = X(f,Xo)xo (2)

where

X(f,Xo) = n To = to, Ti < t < t,-+i (3)
<0<Tj<T,

As can be seen from this formula, it is not possible in the general case to give necessary and



sufficient conditions for stability of solutions of the above system in terms of the eigenvalues

of the matrix of this system, which is possible for systems of ordinary differential equations

with constant coefficients.

In this paper, we investigate the stability ofimpulsively controlled chaotic systems. First,

the stability ofthe trivial solution of a kind of impulsive differential equation is studied. Then

the theoretical results are used to study the conditions under which an impulsive control of

Chua's oscillator is asymptotically stable. An estimate of the upper bound of the impulsive

interval is also presented.

Then, an impulsive control theory is used to study the impulsive synchronization of two

chaotic systems. We first show that the impulsive synchronization problem is an impulsive

control problem. Then a theorem is given for guaranteeing the asymptotic stability of impul

sive synchronization. Since only the synchronization impulses are sent to the driven system in

an impulsive synchronization scheme, the information redundancy in the transmitted signal is

reduced. In this sense, even low-dimensional chaotic systems can provide high security. In this

paper, we will use impulsive synchronization to develop a new framework for chaotic secure

communication.

The organization of this paper is as follows. In section 2, a theory on the stability of

impulsive differential equations is given. In section 3, a stability criterion for impulsive control

of Chua's oscillator is presented. In section 4, simulation results on the impulsive control

of Chua's oscillator are provided. In section 5, the theory and simulation results of impulsive

synchronization of (Uiua's oscillators are presented. In section 6, application of impulsive

synchronization to secure communication is presented. In section 7, some concluding remarks

are given.

2 Basic Theory of Impulsive Differential Equations

Consider the general nonlinear system

x = f(f,x) (4)



where f : R+ x R" R" is continuous, x G R" is the state variable, and

. A
X =

dx

dt

Consider a discrete set {r, } of time instants, where

Let

0 < Ti < T2 < ... < T, < Ti+i < ...,

r," oo as i -4 oc

f (i,x) = Ax|,„, = x(Tt) _ x(r( ) (5)

be the "jump" in the state variable at the time instant r,. Then this impulsive system is

described by

x = f(t,x), i^Ti

Ax=(/(z,x). t = Ti

x(io ) = Xo,^o > 0,?" = 1,2,...

(6)

This is called an impulsive differential equation[1]. To study the stability of the impulsive

differential equation (6) we use the following definitions and theorems[l].

Definition 1: Let V'' : R+ x R" R+, then V is said to belong to class Vo if

1. V is continuous in (r,_i,r,] x R" and for each x G R", i = 1,2,...,

lim V{t,y) = V(t;^,x)
(t,y)-^(T+,x)

exists;

2. V is locally Lipschitzian in x

Definition 2: For (f,x) G (T,_i,r,] x R", we define

1
D'^V(t,x) = lim sup j[V(t + /i,x + hf(t,x)) —V'(i,x)]

h—¥0 h

(7)

(«)



Definition 3: Comparison system

Let V'' € Vo and assume that

D+V'(/,x) < g(t,V(t,x)), t j^Ti

V(t,x-\-U(i,x)) <ipi(V(t,x)), t = Ti
(9)

where g : R+ x R+ R is continuous and ipi : R+ R+ is nondecreasing. Then the system

w = g{i,w), ti'Ti

w{t^) = xl^i(w{ri))

lu(to) = wo>0

is called the comparison system of Eq.(6).

Definition 4:

5, = {x€R»| ||x||<,9}

(10)

(11)

where || • || denotes the Euclidean norm on R".

Definition 5: A function o is said to belong to class k. if q € C[R+^ R+], a(0) = 0 and

a(x) is strictly increasing in x.

Assumptions: f(<,0) = 0, = 0 and g{t,0) = 0 for all i.

Remark: With the above assumptions we find that the trivial solutions of Eqs. (6) and

(10) are identical for all times except at the discrete set {r,}.

Theorem l(Theorem 3.2.1, page 139, [1]): Assume that thefollowing three conditions are

satisfied:

1. 1/ : R+ X5p R+, p > 0, V € Vo, D^V{t,x) < g{t, V{t,x)), t ^ r,-.

2. there exists a po > 0 such that x € implies that x + (/(z,x) € for all i and

V(t,x-\-U{i,x)) < tfi(V(t,x)), t = Ti, X G 5po.

3. ^(||x||) < V(f,x) < a(||x||) on R+ x Sp,

where a(-),/^(*) 6 fC-

The?} the stability properties of the trivial solution of the comparison system (10) imply the

corresponding stability properties of the trivial solution of (6).



Theorem 2(Corollary 3.2.1., page 142, [1]): Let g{t,u}) = 'X(i)w, A G C^[R+,R+],
Pi(w) = diW, di > 0 for all i. Then the origin of system (6) is asymptotically stable if

the conditions

A(Ti+i) + ln(^di) < X{Ti)Jor all i, where 7 > 1 (12)

and

X(t) > 0 (13)

are satisfied.

3 stabilization of Chua's oscillator using impulsive con

trol

111 this section, we study the impulsive control of Chua's oscillators[ll] by using the theory

presented in the previous section. The dimensionless form of a Chua's oscillator is given by[l 1]

x = a{y-x- f(x))

y = X—y z (14)

i = -l^y-'yz

where f{x) is the piecewise-linear characteristics of the Chua s diode, which is given by

f(x) =6a: +^(a - 6)(|a: +1] - |x - 1|) (15)

where a < 6 < 0 are two constants.

Let = (x 2/ 2), then we can rewrite the Chua's oscillator equation into the form

X = .4x + 4>(x) (16)



where

/
—a a 0 ^ ( f( \ \-af(x)

A = 1 -1 1 ,4>(x) = 0

. 0 -13 -7 j

The impulsive control of a Chua's oscillator is then given by

i

x = Ax-\- ^(x), t ^ Ti

Bx

(17)

(18)

We use the following theorem in order to guarantee the asymptotic stability of the origin

of the controlled Chua's oscillator.

Theorem 3: Let d\ be the largest eigenvalue o/(/ + B^)(l + B), where B is a symmetric

matrix, p{I B) < 1, where p(-) denotes the spectral radius of I B. Let q be the largest

eigenvalue of (A A'̂ ) and let the impulses be equidistant from each other and separated by

interval A. If

0<q+2\aa\ <--^Ini^di). where {>1

them the origin of the impulsively controlled Chua's oscillator is asymptotically stable.

Proof:

Let us construct the Lyapunov function V''(i,x) = x^x. For t ^ r,, we have

D'̂ V{t,x) = x^.4x + x^.4^x + x^4>(x) + <^^(x)x

< 9X^x + 2|aa|x^x

= (g + 2|aa|)V(/,x)

(19)

(20)

Hence, condition 1 of Theorem 1 is satisfied with g(t.,w) = (q 2|Q:a|)it;.

Since B is symmetric we know (I B) is also symmetric. By using Euclidean norm we



have

p{I + B) = \\I + B\\

Given any po > 0 and x € Sp^, we have

||x + Bx|l < 11/ + Bjjllxil = p{l + B)l|x|| < ||x||

The last inequality follows from p{l B) < I. Consequently, x + Bx E SpQ.

For t = we have

V(Ti,x + Bx) = (x +Bx)^(x+5x)

= x^(/ + B^)(/ + B)x

< (iiV{T,,x)

(21)

(22)

(23)

Hence condition 2 of Theorem 1 is satisfied with ^,(iy) = diw. We can see that condition

3 of Theorem 1 is also satisfied. It follows from Theorem 1 that the asymptotic stability

of the impulsively controlled Chua's oscillator in Eq.(18) is implied by that of the following

comparison system

From Eq.(19), we have

. <7^ T,-uJ —(^/ d" 2|ou|)ix.'

u;(Ti) = diUj{Ti)

U/(to) = ^0 ^ fi

f ^(q-\- 2|aa|)dt +ln(^di) <0, ^>1
Jt,

(24)

(25)

and X(t) = 9+ 2laa| > 0. It follows from Theorem 2 that the trivial solution of Eq.(18) is

asymptotically stable. •



Theorem 3 also gives an estimate for the upper bound A^ax of A: namely,

= (26)q l\aa\

Observe that the upper bound given by Eq.(26) is sufficient but not necessary. Consequently,

we can only say that we have a predicted stable region, which is usually smaller than the

actual stable region because we can not assert that all other regions are unstable.

4 Simulation results of impulsive control

In the following simulations, we choose the parameters ofChua s oscillator as o = 15, = 20,

-) = 0.5. a = —h ——y. A fourth-order Runge-Kutta with step size 10"^ is used.
The initial condition is given by (x(0), t/(0), c(0)) = (—2.121304,-0.066170,2.881090). The

uncontrolled trajectories are shown in Fig.l, which is the Chua's double scroll attractor.

-0.2 -

figure 1: The Chua's double sa^oll attractor.



4.1 Simulation 1: strong control

In this simulation, we choose the matrix B as

k 0 0

0-10

0 0-1

(27)

where the impulsive control is "strong". It follows from Theorem 3 that p{I + ^) < 1 should

be satisfied, which implies that —2 < A: < 0. By using this B matrix, it is easy to see that

We have

A =

dj = (A: -j- 1)'

' -15 15 0
1 -1 1

0 -20 -0.5

,A + A^ =

-30 16 0

16 -2 -19

0 -19 -1

(28)

(29)

from which we find q = 20.162180. Then an estimate of the boundaries of the stable region is

given by

(hiE "t* Itiik -|- 1)^)
0 < A < - ^ ^ . T >-2 < A.- < 0

q + 2|of/l
(30)

Figure 2 shows the stable region for different f's. The entire region below the curve

corresponding to ^ = 1 is the predicted stable region. When ^ —> oc, the stable region

shrinks to a line k = —1.

The simulation results are shown in Fig.3. Figure 3(a) shows instability for k = —1.5 and

A = 1. The solid waveform, the dcish-dotted waveform and the dotted waveform correspond

to x{t), y{t) and z{t), respectively. Figure 3(b) shows stable results within the stable region

for k = —1.5 and A = 0.002. One can see that the system asymptotically approaches the

origin with a settling time of about 0.05. However, the true stable region is larger than that

predicted in Fig. 2. In order to demonstrate this fact, we show in Fig.3(c) the stable results

10
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Figure 2: EstimaU of the boundaries ofstable regions with different ('s used in simulation 1.

for fc = -1.5 and A = 0.05. We can also see that the system asymptotically approaches the

origin with a settling time of about 1.4 which is much larger than that shown in Fig.3(b).

4.2 Simulation 2: weak control

In this simulation, we choose the matrix B as

B =

k 0 0

0 -0.1 0

0 0 -0.1

where the impulsive control is much weaker than that chosen in simulation 1

It is easy to see that

d-i = <
(A-+1)2, (/c +1)2 >0.81

0.81. elsewhere

11
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Figure S: Simulation results, (a) Unstable results outside the stable region, (b) Stable results
inside the predicted stable region, (c) Stable results outside the predicted stable region.

An estimate of the boundaries of the stable region is given by

0 < A < < _/n^+/n(o.8i) elsewhere , -2 < A; < 0 (33)

9+2|Qra|

Figure 4 shows the stable region. The entire region below the curve corresponding to

f = 1 is the predicted stable region. In this case, A is always bounded. It seems that we

can't control the system to the origin with an arbitrarily prescribed speed because ^ has to

satisfy 1 < ^ < ^. This is different from the case shown in Fig.2, where any value of ^ > 1

is possible.

12
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Figure 4' Estimate of the boundaries of stable region used in simulation 2.

The simulation results are shown in Fig.5. Again, the solid waveform, the dash-dotted

waveform and the dotted waveform correspond to x{t), y(t) and z(t)^ respectively. Figure

5(a) shows the instability results for ^* = —1 and A = 0.4. Figure 5(b) shows the stable

results in the stable region for k = —I and A = 3 x 10"'̂ . The control system asymptotically

approaches the origin with a settling time of about 0.05. Also, the true stable region is larger

than that predicted in Fig.4. To demonstrate this fact, we show in Fig.5(c) the stable results

for k = -\ and A = 0.01. We can also see that the system asymptotically approaches the

origin with a settling time equal approximately to 1, which is much larger than that shown in

Fig.5(b).

5 Synchronization of Chua's oscillators using impul

sive control

In this section, we study the impulsive synchronization of two Chua's oscillators. One of the

Chua's oscillators is called the driving system, and the other is called the driven system. In an

13
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time
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Figure 5: Simulation results, (a) Unstable results outside the. stable region, (b) Stable results
in the stable region, (c) Stable results outside the stable region.

impulsive synchronization configuration, the driving system is given by Eq.(14). The driven

system is given by

X = i4x + 4>(x) (34)

where x = (i,y, 2) is the state variables of the driven system.

At discrete instants, r,, i = 1,2,.... the state variables of the driving system are transmitted

to the driven system and then the state variables of driven system are subject to jumps at

these instants. In this sense, the driven system is described by the impulsive differential

14



equation

X = Ax+ ^(x), i ^ Ti

Ax|<=t. = -Be,i = 1,2,...
(35)

where jB is a 3 x 3 matrix, and = (cx,Cy,e^) = [x —x^y —y^z —z) is the synchronization

error. If we define

^ -oif(x) - Qf{x) ^
^(x,x) = <i>(x) - $(x) =

\

then the error system of the impulsive synchronization is given by

e =/4e + ^(x,x), t ^ Ti

Ae|t=ri = Be,i = 1,2,...

(36)

(37)

We use the following theorem to guarantee that our impulsive synchronization is asymp

totically stable.

Theorem 4: Lei di be the. largest eigenvalue, of{J B^)(/ B). where B is a symmetric

matrix. Assume the spectral radius p of1 B satisfies p{l B) < 1. Let q be the largest

eigenvalue of(A-^A'̂ ) and assume the impulses are equidistant from each other and separated

by an interval A. If

0 < q-\-2\aa\ < ~—ln{^di), (>\ (38)

then the impulsive synchronization of two Chua's oscillators is asymptotically stable.

Proof:

Observe that the error system in Eq.(37) is almost the same as the system in Eq.(18)

except for ^(x,x). Similarly, let us construct the Lyapunov function V(te) = e^e. For
t ^ Ti. we have

D+\/(t,e) = e^.4e-f e^.4^e-t-e'vl'(e)-l-^'(e)e

15



< ge^e+2|q:|1/(x) -/(x)|ex

< qe^e2\aa\el

< {q + 2\aa\)e^e

= (9 + 2|Qa|)V'(/,e) (39)

Hence, condition 1 ofTheorem 1 is satisfied with g{t,w) = ((/ + 2|aa|)iiJ. The rest of this proof

is the same as that of Theorem 3. •

For the rest of this section, we present the simulation results. We choose the matrix B cis

B =

' -1.5 0 0
0-10

0 0-1

(40)

The initial conditions are given by (a:(0), j/(0),2(0)) = (—2.121304,—0.066170,2.881090) and

(i(0),y(0),2(0)) = (0,0,0). The other parameters are the same as those used in Section 4.

Since the stability boundary estimates are the same as those in Section 4, we do not repeat

them here. Figure 6 shows the simulation results. Figure 6(a) shows the stable results within

our predicted stable region with k = —1.5 and A = 0.002. The solid line, the dash-dotted

line and the dotted line show ex{t), ey(t) and ej(f), respectively. We can see that impulsive

synchronization was achieved rapidly. Figure 6(b) shows that if A = 5 then our impulsive

synchronization is unstable.

6 Application of impulsive synchronization to secure

communication

Since the publication of several chaotic cryptanalysis results of low-dimensional chaos-based

secure communication systems[12, 13], there existed an illusion that such communication

schemes were not secure enough. It may be reasonable to exploit hyper-chaos bcised secure

communication systems, but such systems may introduce more difficulties to synchronization.

On the other hand, we can enhance the security of low-dimensional chaos-based secure

16
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Figure 6: Simulation results of impulsive synchronization, (a) Stable synchronization results
inside our predicted stable region, (b) Synchronization can not be achieved when A is too

large.

communication schemes by combining conventional cryptographic schemes with a chaotic

system[14]. To overcome the low security objections against low-dimensional continuous chaos-

based schemes, we should overcome the following problems: 1) make the transmitted signal

more complex, and 2) reduce the redundancy in the transmitted signal. To achieve the

first goal, it is not necessary to use hyper-chaos. In [14] we have presented a method to

combine a conventional cryptographic scheme with low-dimensional chaos to obtain a very

complex transmitted signal. To achieve the second goal, impulsive synchronization offers a

very promising approach.

In this section, we combine the results in [14] and impulsive synchronization to give a new

chaotic secure communication scheme. The block diagram of this scheme is shown in Fig.7.

From Fig.7 we can see that this chaotic secure communication system consists of a trans

mitter and a receiver. In both the transmitter and the receiver, there exist two identical

chaotic systems. Also, two identical conventional cryptographic schemes are embedded in

both the transmitter and the receiver. Let us now consider details of each block in Fig. 7.

The transmitted signal consists of a sequence of time frames. Every frame has a length of

T seconds and consists of two regions. In Fig. 8 we show the concept of a time frame and

its components. The first region of the time frame is a synchronization region consisting of

17
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Figure 7: Block diagram of the impulsive-synchronization based chaotic secure
communication system.

synchronization impulses. The synchronization impulses are used to impulsively synchronize

the chaotic systems in both transmitter and receiver. The second region is the scrambled

signal region where the scrambled signal is contained. To ensure synchronization, we have

T < Amax- Within every time frame, the synchronization region has a length of Q and the

remaining time interval T —Q \s the scrambled signal region.

Frame
Number

Time 0 2T

Synchronization
Impulses V
(sychronlzationX
region) ^

iQj
(n-l)T

T-Q

3T

Scrambled
^signal
region

nl

41

Figure 8: Illustration of the concept of a time-frame and its components.

51

The composition block in Fig.7 is used to combine the synchronization impulses and the

18



scrambled signal into the time frame structure shown in Fig.8. The simplest combination

method is to substitute the beginning Q seconds of every time frame with synchronization

impulses. Since Q is usually very small compared with T, the lost of time for packing a message

signal is neglectable. The decomposition block is used to separate the synchronization region

and the scrambled signal region within each frame at the receiver end. Then the separated

synchronization impulses are used to make the chaotic system in the receiver to synchronize

with that in the transmitter. The stability of this impulsive synchronization is guaranteed by

our results in Section 5.

In the transmitter and the receiver, we use the same cryptographic scheme block for

purposes of bi-directional communication. In a bi-directional communication scheme, every

cellular phone should function both as a receiver and a transmitter. Here, the key signal is

generated by the chaotic system. The cryptographic scheme is as follows[14]:

We use a continuous n-shift cipher to encrypt the plain signal (message signal). The n-shift

cipher is given by

c{p(t)] =/i (-/i (/i (mo. m) -Ht)),-,m) =yit) (41)
n 'I

where h is chosen such that p{t) and k{t) lie within (—/i,/?). Here, p{i) and k{t) denote the

plain signal and the key signal, respectively, and y{t) denotes the encrypted signal. The key

signal k(t) is chosen as a state variable of the chaotic system. The notation denotes a

scalar nonlinear function of two variables defined as follow:

fi{x,k) = <

(x -|- k) + 2/i, —2h < (x k) < —h

(a: -f k), —h < {x k) < h (^2)

(a; -h k) —2/i, h < {x -{• k) < 2h

This function is shown in Fig.9.

The corresponding decryption rule is the same as the encryption rule

p(t) =d(y{i)) =e{y(t)) =h{...h{h{y{t),-k(t)),-k{t)),...,-k(i)^ (43)

19



(x+k)

Figure 9 Nonlinear function used in the continuous shift cipher.

To decode the encrypted signal, the same key signal should be used.

The simulation results are as follows. We use an FM scheme to modulate the synchroniza

tion impulses such that the synchronization region is located in the initial 1% of every time

frame. We choose the frame length as T = Is. In the synchronization region of every time

frame, we transmit the impulses of the three state-variables of the Chua's oscillators. The

parameter of the encrypted signal is chosen as h = 0.4. A continuous 10-shift cipher was used.

We choose x and x as the key signals and normalized them to fall within the amplitude range

[-0.4,0.4].

Figure 10 shows the simulation results of the above proposed secure communication system

for transmitting a speech signal. Figure 10(a) shows the waveforms of the sampled speech of

four Chinese digits "NING"(zero)—"Yl"(one)—"ER"(two)—"SANG"(three). The sampling

rate is 8K. Figure 10(b) shows the spectrograms of the original speech signal in Fig. 10(a),

from which we can see the structure of the speech signal. Figure 10(c) shows the waveforms of

the received scrambled speech signal and the additive channel noise with SNR = 16dB. This

additive noise can not change the value of the synchronization impulses which are modulated

by FM. Figure 10(d) shows the spectrograms for the scrambled speech signal and the additive

channel noise. We can see that the structure of the signal in Fig. 10(b) was totally covered

by an almost uniformly distributed noise-like spectrum. Figure 10(e) shows the waveforms

of the descrambled speech signal. Figure 10(f) shows the spectrograms of the descrambled

20



speech signal. We can see that some noises were introduced into the recovered results due to

the channel noise, and that the spectrograms became a little blur. But the structure of the

speech signal was perfectly recovered.

Figure 10 The simulation results, (a) The time-domain waveform of the speech signal, (b)
The spectrogram for the original speech signal, (c) The time-domain waveform of the
scrambled speech signal. (d)The spectrogram of the scrambled speech signal. (e)The
time-domain waveform of the descrambled speech signal, (f) The spectrogram of the

descrambled speech signal.

7 Concluding Remarks

In this paper we have presented a theory of impulsive control of chaotic dynamical systems.

An estimate of the upper bound of the impulse interval A is also presented. Since all of our

results are based on solid theoretical analysis and proofs, the results in this paper provide a

framework and foundation for future works. We then use this theory to impulsively control

and synchronize Chua's oscillators. .'\n application of impulsive chaotic synchronization to

secure communication is presented. The chaotic secure communication scheme presented here

is a combination of a conventional cryptographic method and impulsive synchronization.
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