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Abstract

Hardware/software co-design is a design technologythat
supports the integrated development of hardware and soft
ware components ofa system. A specialfocus of the work
described here is the application domain of safety-critical
embedded systems. In addition to the raised abstraction
levelandshorteneddesign timeofferedby co-design relative
to conventional design methods, we are therefore particu
larly interested in paradigms based onformal models.

This paper gives a brief overview of a co-design case
study based on an application typicalfor safety-critical ap
plications. We compared two ways ofdesigning embedded
systems: STATEMATE, a commercial system design tool
based on Statecharts, and POUS/Ptolemy, with ESTEREL
as a specification language. We describe our design experi
ences and give preliminary experimental results.

1. Introduction

Hardware/software co-design is a design methodology—
or rather, a collection thereof—that has become increasingly
popular in the design of embedded systems. A particular
class of embedded system applications are safety critical
applications, which are the focus of the work described in
this paper. Some requirements of this class of applications
are shared with other applications' requirements, such as
short design times or low costs of the final product. Other
requirements appear in slightly different guise; e.g., perfor
mance is critical, but typically only in that certain deadlines
have to be met, beyond which there is no benefit from im
proving performance further. Requirements that are partic
ularly important whenever safety is an issue are for example
simplicity and formality—both critical not only for a proper
design itselfbut also for certificationpurposes. Finally, there
are requirements that are very specific to safety-critical ap
plications, such as the ability to specify fault-containment
regions.

As a first step in assessing the state of the field with

respect to safety-critical applications, we are performing a
case study based on an application typical for this field.
In this paper, we present a high-level comparison of the
design methodology followed using STATEMATE, a com
mercial system design tool based on Statecharts, and PO
US/Ptolemy, with ESTEREL as a specification language.
We describe our design experiences and give preliminary
experimental results.

The POLISmodelof computationis basedon Co-design
Finite-State Machines, i.e. FSMs that communicate asyn
chronously. The global asynchrony is stressed to be able
to mix hardware and software components since they have
widely different reaction times and the communication
among different tasks does take a finite amount of time. The
STATEMATE semantic is based on synchronously commu
nicating FSMs and hence it does not allow to mix hardware
and software components. To compare the methodologies
we had to restrict the capabilities of POLIS and to explore
only two extremesof the hardware-softwaretrade-off: fully
software implementation and fully hardware implementa
tion. Nevertheless this experiment allowed us to draw some
interestingconclusionsabout the specificationmethodsused
by the two systems as well as their relative power.

2. The application: PROSA

PROSA (Protocol for Safety-Critical Applications) is
a reliable communication protocol for safety-critical dis
tributed systemscurrently developedat Daimler-Benz. Such
communication systems are the backbone of applications
such as fly-by-wire, steer-by-wire, or brake-by-wire, and
naturally not only their performance but also their robust
ness has to meet particularly high standards. We chose
PROSA as the application driving the co-design case study,
motivated by the overall relevance of the application for
Daimler-Benz, the suitable size and complexity, and the
local availability of expertise. From a natural language de
scription of the protocol we derived a simplified version of
PROSA as a starting point for the case study.
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Figure 1. Traversing the hierarchy of the
STATEMATE specification of PROSA.

3. The baseline: STATEMATE

STATEMATE, the "olficial" implementation of State-
charts [5], is a commercial tool that allows high-level sys
tem design and offers synthesis paths to both hardware and
software, STATEMATE uses Statecharts to describe the be

havior of a component within the system to be specified.
In addition, Activitycharts describe which components a
system consists ofand what the signal and data paths are be
tween the components. Finally, Module Charts describe the
structure of the system (as opposed to the functionality—
Activitycharts—and behavior—Statecharts).

Figure 1 shows a subset of the total of 15 State- and Ac
tivitycharts that describe PROSA. The abstract timing model
uses time-outs as provided by STATEMATE. A watchdog
simulates the bus traffic and randomly sends frames and veto
signals.

3.1. Positive Aspects

Overall the implementation of STATEMATE appears to
be quite complete and robust; even the novice can specify
and simulate simple applications fairly quickly. During the
simulation the current states and transitions are highlighted
in the Statecharts with different colors. The animation of

input and output signals and conditions with graphical "pan
els" is simple. One can check properties such as potential
deadlock and reachability of certain states. (An example
of this within a traffic signal application would be to check
whether a state with the simultaneous sub-states "pedestrian

signal green"and "car signal green" is reachable.)

3.2. Drawbacks

A weak point of STATEMATE was the archaic and not
always consistent graphical user interface—this has some
what improved with the Motif-based GUI of STATEMATE
MAGNUM. Another problem is replicating and instantiat
ing modules, which is difficult at best. It is possible to
synthesize C or VHDL; however, due to the so far pre
vailing inefficiency of the resulting code, this feature seems
better suited forjust testingor prototyping, rather than actual
development. Related issues are the openness and compat
ibility to other tools, which are limited. Other aspects of
the tool that are of potential interest are the possibility to
incorporate external C-code and the generation of detailed
reports with the aid of a Document Generation Language.

A well-recognized problem that hampers not only effi
cient automatic code synthesis but also the general clarity
of a design is the sheer richness of the Statecharts dialect
implemented by STATEMATE. For example, the undisci
plined use of event broadcast and Statechart-parallelism at
lower levels can make it arbitrarily difficult to understand
the flow of causality in a design. History connectors and
real-time time-outs can introduce non-determinism that is

not statically detectable.

Furthermore, STATEMATE is a powerful tool, but does
not come with a methodology. As a consequence, "style
guides" have been developed by the user community to
guide the designers towards clear specifications—one such
guide has also been developed at Daimler-Benz. It would
be desirable to get tool-support for this as well, for exam
ple by automatically checking whether a design conforms
to certain rules.

3.3. Summary of STATEMATE

STATEMATE can be a very useful aid in describ
ing and specifying control-driven applications, if used in
a disciplined manner. However, depending on the ac
tual requirements on the end result, it may be better to
view STATEMATE as just the beginning of an engineer
ing chain, where for example a separate synthesis step
turns the STATEMATE-specification into a quality proto
type. STATEMATE is not a full co-design tool in that it does
not allow a mixing of hardware and software components—
it is either all C or all VHDL. However, it is an interesting
candidate as a front-end embedded into a co-design envi
ronment.



4. The POLIS System

The POLIS co-design environment is targeted towards
real-time control systems composed ofsoftware on a micro
controller and semi-custom hardware [3, 4]. The POLIS
system translates a formal specification of a reactive real
time system written as an asynchronous interconnectionof
synchronous modules. Asynchronicity is necessary in or
der to accommodate heterogeneous implementations from a
relatively "neutral" extended FSM specification.

Since the semantics ofSTATEMATE do not allow to mix

hardwarewithsoftwarecomponents,we usedPOLIStosyn
thesizetwo differentversions froman ESTEREL specifica
tionof PROSA, a puresoftwareversion(C) anda pure hard
ware version (VHDL), and simulated both ofthem within the
POLISsystem. Due to the different targets, the semanticsof
the different versions vary slightly at the low level—which
turnedout to be rarelya problemin practice,but is still some
thing that an engineer should be aware of when designing
a system. As described above, the model of synchronicity
postulates reactions to be instantaneous. This hypothesis
is fairly expensive to implement in a homogeneous archi
tecture (e.g., all in software or all in hardware), and almost
impossible in a heterogeneous architecture. Moreover, it is
valid only insofar as the embedded controllercan react much
faster than the minimum time constant in the environment
to all inputs, while it may be often more efficient to check
the speed of such reaction times only on an input-by-input
basis.

In POLIS, hence, only single FSM transitions are con
sideredatomicoperations, whilecommunication (including
the manifestation of the results of a transition) takes an a
priori non-deterministic time. This non-determinism can
cause some problems, especially when a signal propagates
along two distinct, reconvergent paths, and those paths can
have widely different timings under different implementa
tion choices. While it would theoretically be possible to
detect when these delays can critically affect the overall
behaviorof the system, the POLIS design environmentcur
rently provides only means to estimate and simulate this
timed behavior. This high-level timed co-simulation can be
carried out once a set of choices about the implementation
of each FSM, about the scheduling of software FSMs, and
about the CPU type and speed has been made.

4.1. The ESTEREL specification language

A designer working with the POLIS co-design system
has the choicebetween a graphical input language, which is
basically a Finite State Machine (FSM) editor, and a text-
based one, which is ESTEREL [1]. The graphical input
language is similar to Statecharts but without the capabil
ities for hierarchy and parallelism; we therefore chose the

ESTEREL front-end.

ESTEREL and STATEMATE use approximately the
sameunderlying model of reactivity and synchronicity; this
and the interest in a comparison of the languages sug
gested to attempt a direct mapping of the STATEMATE-
specification of PROSA into an ESTEREL version. How
ever, this approach turned out to be sensible only up to a
certain point; there are some concepts in both languages
that are unique to either and whose direct emulation in the
other wouldresult in a ratherclumsyspecification. Further
more, finding a satisfying, natural decomposition and de
scription of the requirements on the protocolengine turned
out to be fairly demanding. However, this reiteration also
gavea chance tosimplify the existingspecification. Overall,
the process of understanding and summarizing the existing
specification, decomposing it again, and filling in the mod
ules one by one was still quite straightforward. Another
nice facet of working withESTEREL is the availability of
an Emacs ESTEREL-mode, whichhighlightskeywords and
comments, indents properly, closes blocks, etc. A simula
tion scriptof about 1300lines stepped the system success
fully through various scenarios of stations initializing and
integrating themselves with and without transmission errors
anddisconnecting themselves again; a fragment of thescript
is shown in Figure 2. Afterabout two weeks the specifica
tion reached a steady state, consisting of 18 modules with
about 1100 lines total.

At first glance, ESTEREL appears to be at a some
what lower level and "pickier" than STATEMATE. Unlike
STATEMATE, whichaccepts incomplete and even non-de
terministic specifications and allows simulation and syn
thesis with only dynamic checks, an ESTEREL specifica
tion has—by default—to be statically proven to be sound
("causal") beforeit can be furtherprocessed. This approach
has to be inherently conservative; that is, certain programs
may be rejected even though they would never result in
problems at run time.

There is also a temptation to write ESTEREL-programs
with a sequential, data-driven, von-Neumann machine
model in mind. It does require some re-thinking to pro
ducean ESTEREL program thatis trulyin thespiritof syn
chronous languages—and does not look like a C-program.
Forexample, states in ESTEREL arepreferably represented
as halting points in the program, rather than by explicit
variables; this concept is notcompletely obvious, but quite
intuitive once understood.

4.2. The POLIS-Ptolemy interaction

The Ptolemy system is a software environment for sim
ulation and prototyping of heterogeneous systems [2, 6].
It uses object-oriented software technology to model each
subsystem in a natural and efficient manner, and it has mech-



My_TICK !

%emi 11ed: GATE_OPEN(true)

MY_TICK ;

%emi tted: IN_FRAME_WINDOW(true)

MY_TICK ;

%eiiiitted:

%%

%% The beginning of a frame is encoded as "lOO".
%%

BUS_IN(99) ;

%emitted:

%%

%% Receive the beginning of a frame!

%%

BUS_IN(100) ;

%emitted: RECV_BEGIN_FRAME_OK START_RECV_INIT \

IN_ACK_WINDOW(false) IN_FRAME_WINDOW (true) \
START_RECV_FRAME(false) START_WINDOW(false) \

TRAP_BEGIN_FRAME

%%

%% The initialization information is "1" (ie, we

%% are listening to a signal from station 1).
%%

BUS_IN(1) ;

%emitted: INIT_INFO_IN(1)

Figure 2. Fragment of an ESTEREL simulation
script. Comments are prefixed with re
actions of the system are prefixed with

anisms to integrate subsystems hierarchically. This versatil
ity together with their nice graphical user interface and rich
library ofpre-defined components makes it a good candidate
for a host system to POLIS. A collection of POLIS mod
ules can be incorporated into a Ptolemy schematic, shown in
Figure 3, that links the individual modules together. From
this schematic Ptolemy generates the topology that POLIS
in turn can use for synthesis.

5. Experimental results

5.1. Software synthesis—Accuracy ofsize and speed
estimates

A critical component of a co-design environment is per
formance prediction, which can guide the developer in de
riving a good partitioning between hardware and software.
Furthermore, tight bounds on the worst case execution time
are of particular interest to safety-crittical applications. To
measure the prediction qualities of POLIS, we estimated
both code size and speeds and compared these data with the
actual results.

The total actual number of clock cycles on a DECstation
5000 executed by the scheduler, the I/O drivers and the
user tasks was 1106325. The total actual number of clock

— - - H

ISSSSSHJ'

I Ml I

Figure 3. Ptolemy schematic of PROSA. The
"stars" represent different modules, one of
which (RECV.VETO) is enlarged on the lower
right. There are additional inputs (on the left)
and outputs (right).

cycles executed by the user tasks is 344185. The POLIS
timing estimator reported an estimated 345614 clock cycles
for the user tasks only. (The Real-Time Operating System
synthesized by POLIS has not yet been characterized for the
R3000, so no estimates for the other cycles are available.)

Table 1 compares the estimated and actual code speeds
and sizes for each task. The speed comparison is based
on the 510 simulation cycles that have also been used for
functional validation. The estimates are from a dynamic
simulation, the actual values are obtained with pixie. The
estimation parameters were obtained without compiler op
timizations (-00), so the fairest comparison is between the
columns labeled "Estimated avg." and "Actual average -
OO". The estimator tries to take into account the cost of

some RTOS operations, and that explains part of the dis
crepancy between the columns. A quantitative comparison
(column "A") lists the ratio between the differences between
actual and estimated timings and the actual timing. This
gives an estimate of the error due to ignoring the effects of
an aggressive optimizing compiler (the MIPS cc). Such
effects are impossible to take into account by using the cur
rent estimation technique in POLIS, because it uses only
local information. Note, however, that at least for mod
est effort (-00), the optimizations decrease the accuracy of
the estimator (summarized in the line labeled "Average esti
mation error"), but are not hampering predictability (given
by the variance). In other words, the effect of optimiza
tion can be statistically estimated with good accuracy by
uniformly dividing by 1.4 all the figures obtained without



Number Code Speed (clock cycles) Code Size (Bytes)
Task of Estimated Actual average Estimated Actual

calls min max avg. -OO A(%) -02 A(%) -00 A(%) -02 A(%)

CRC 18 44 90 80 50 60.0 46 73.9 295 304 -3.0 272 8.5

INIT 35 48 105 79 60 31.7 48 64.6 1056 1040 1.5 784 34.7

MODE 88 56 125 95 71 33.8 56 69.6 958 960 -0.2 736 30.2

NORMAL-ERROR 46 52 90 79 58 36.2 45 75.6 512 528 -3.0 352 45.5

RECV 128 46 97 81 64 26.6 48 68.8 1256 928 35.3 640 96.2

RECVJBEGIN-FRAME 513 39 117 70 52 34.6 41 70.7 628 608 3.3 432 45.4

RECVJRAME 113 79 139 106 79 34.2 57 86.0 1256 1120 12.1 752 67.0

RECV-VETO 137 49 129 83 63 31.7 44 88.6 825 816 1.1 560 47.3

SEND 43 39 90 78 58 34.5 42 85.7 763 752 1.5 496 53.8

SENDJRAME 634 71 146 86 69 24.6 60 43.3 1295 1232 5.1 800 61.9

SEND.VETO 620 55 106 90 70 28.6 45 100.0 666 656 1.5 400 66.5

SLICE 21 45 136 113 70 61.4 55 105.5 473 464 1.9 368 28.5

STATE-VECTOR 31 96 218 170 99 71.7 76 123.7 2841 2240 26.8 1712 65.9

STATION 21 54 75 74 50 48.0 42 76.2 208 256 -18.8 208 0.0

SYNCH 31 55 96 68 52 30.8 43 58.1 379 400 -5.2 320 18.4

TSC 486 95 160 143 95 50.5 70 104.3 2041 1664 22.7 1136 79.7

WINDOW 466 82 166 137 92 48.9 67 104.5 1901 1664 14.2 1104 72.2

Average estimation error 40.5 82.3 5.7 48.3

Variance 252.2 785.4 157.8 679.0

Table 1. Comparison of estimated and actual code speeds and sizes for each task.

taking optimization into account. With full optimization
(-02), predictability suffers as well.

Table 1 also reports a comparison between estimated and
actual code size (in bytes) for each task on the MIPS R3000.
The estimation parameters were obtained without compiler
optimizations (-GO), so the fairest comparison is between
the first two columns, as for the code speed.

A first conclusion that can be drawn from these figures is
that the overhead due to the synthesized RTOS is fairly high.
This is mostly due to the fact that the RTOS is optimized for
size rather than speed. It requires 19 Kbytes out of a total
of 45952 Kbytes for the complete synthesized system on a
MIPS R3000.

For the sake ofcomparison, the total code size (including
a simple simulation interface) was 63.3Kbytes for POLIS
and 86.2Kbytes for ESTEREL (version 5.0). The total ex
ecution times were 866K clock cycles and 242IK clock
cycles, on a DECstation 5000 respectively.

5.2. Hardware synthesis

An all-hardware synthesis of PROSA resulted in 392
latches eindabout 88k literals for a plain RTL synthesis. An
optimization step had little effect on the number of latches
(391), but could significantly decrease the number of liter
als (6.6k). We are estimating that on an actual FPGA, this
translates to about 1200 CLBs (without merging). We are

currently in the process of validating these data experimen
tally.

6. Conclusion and outlook

Wechose hardware/software co-design as a guiding prin
ciple for prototyping a controller implementing PROSA, a
communication protocol specifically designed for safety-
critical applications. We have completed the specification
of a first version of PROSA in ESTEREL; the process of
specifying and simulating the protocol with co-design tools
has already been very valuable for understanding and refin
ing it. We are now in the process of building a first physical
prototype based on the Motorola 68332 in the context of a
Brake-by-Wire demonstrator.

Overall it appears that the field of co-design has pro
gressed fairly well in general, in particular as far as process-
integration and automation are concerned; it is possible to
start at a high level of specification and arrive at an efficient
prototype design in a largely automated fashion. For safety
critical applications particularly beneficial are easy accessi
bility and understandability of the specification, offered by a
tool such as STATEMATE, and the formality, simplicity, and
efficiency provided by ESTEREL/POLIS. What appears to
be lacking so far, however, is a combination of these proper
ties. Other aspects of a co-design environment that would be
desirable from a safety-critical application's point of view



are for example the ability to specify fault-containment re
gions, within for example a hardware partition, or the ability
to annotate the specification with non-functional require
ments, such as a desired degree of reliability.
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