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Abstract. In temporal-logic model checking, we verify the correctness of a pro
gram with respect to a desired behavior by checking whether a structure that mod-
els the program satisfies a temporal-logic formula that specifies the behavior. The
model-checking problem for the branching-time temporal logic CTL can be solved
in linear running time, and model-checking tools for CTL are used successfully in in
dustrial applications. The development of programs that must meet rigid real-time
constraints has brought with it a need for real-time temporal logics that enable
quantitative reference to time. Early research on reed-time tempered logics uses the
discrete domedn of the integers to model time. Present research on real-time tem
pered logics focuses on continuous time emd uses the dense domain of the reals to
model time. There, model checking becomes significantly more complicated. For ex
ample, the model-checking problem for TCTL, a continuous-time extension of the
logic CTL, is PSPACE-complete.
In this paper we suggest a reduction from TCTL model checking to CTL model
checking. The contribution of such a reduction is twofold. TheoreticaUy, while it
has long been known that model-checking methods for untimed temporal logics
can be extended quite easily to handle discrete time, it was not clear whether cmd
how imtimed methods can handle the reset quantifier of TCTL, which resets a real-
valued clock. Practically, our reduction enables anyone who has a tool for CTL model
checking to use it for TCTL model checking. The TCTL model-checking algorithm
that follows from our reduction is in PSPACE, matching the known bound for this
problem. In addition, it enjoys the wide distribution of CTL model-checking tools
and the extensive and fruitful researcheffortsand heiuistics that have been put into
these tools.

1 Introduction

Temporal logics can describe a temporal ordering of events and have been adopted as a
powerful toolforspecifying emd verifying concurrent programs [Pnu77, MP92]. In temporal-
logic model checking, we verify that a program meets a desired behavior bychecking that
a mathematicalmodel of the program satisfies a temporal-logic formula that specifies the
behavior [CE81, QS81]. We distinguish between four levels of temporal reasoning. The
verification methods induced by these levels differ in the interpretation given to time.
The first level allows only qualitative reference to time. The classical method of CTL
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model checking belongs to this level. There, the program is modeled as a state-transition
graph, and the correct behaviors of the program are specified in the qualitativebranching
temporal logic CTL, which allows temporal operators such as "always" and "eventually."
For example, if req and grant are atomic propositions, then the CTL formula

t/) = AG{req —^ AFgrant)

asserts that in all computations of the program, every request is eventually grsmted. The
model-checking problem for CTL can be solved in linear time. More precisely, given a
state-transition graph K and a CTL formula V*) we can determine whether K satisfies V*
in time 0{\K\ • |^|) [CES86].

The development of programs that must meet rigid real-time constraints has brought
with it a need for real-time temporal logics that enable quantitative reference to time
[EMSS90, AH92]. Weconsider herea real-timeextension ofCTL,which wecallCTL-f-clocks.
The syntax of CTL-|-clocks extends the syntax of CTL by allowing reference to a set of
clock variables. Formulas of CTL+clocks can refer to the values of the clocks, and may
contain a reset quantifier c.(p, which resets a clock c to the value 0. For example, if c is a
clock, then the formula

ilf' = AG[c.req ^ AF{grant A(c < 2))]

strengthens the formula if; above by putting an upper bound on the time that may elapse
before a grant is given: if the clock c is started at the time of a request, then the value of c
is at most 2 at the time of the subsequent grant. The exact meaning of ij)' depends on the
formal interpretation of CTL-l-clocks. The formulas of CTL-f-clocks can be interpreted in
three different ways, forming the following three levels of quantitative temporal reasoning.

Pioneering work on real-time temporal logicsallowed very simple quantitative reference
to time. In [EMSS90], Emerson et al. interpret CTL-|-clocks formulas® over state-transition
graphs (see also [CCM+94]). Each transition in the graph advances the time by one time
unit. Hence, this level of temporal reasoning uses the discrete domain of the integers to
model time, and it uses quantitative reference to time only in the specifications. It is quite
clear that, when interpreted over state-transition graphs, CTL-fclocks formulas can be
translated to equivalent CTL formulas, and the problem of CTL-|-clocks model checking
can be reduced to the problem of CTL model checking.^ For example, when interpreted
over state-transition graphs, the formula tf;' above is equivalent to the CTL formula

ip" = AG{Teq {grant VAX(grant VAXgranf))),

which states that every request is granted within two trainsitions. The main limitation of this
levelof temporal reasoningis that whilediscrete time suffices for modelingglobally-clocked
programs, continuous time is required for modeling the composition of independently-
clocked programs.

This limitation has been removed in the third level of temporal reasoning, known as
the fictitious-clock approach [HMP92, AH93, AH94]. At this level, transitions happen in
continuous time, but are recorded by a global digital clock, in discrete time. Accordingly,

^ The logic used in [EMSS90] is RTCTL, which is a strict syntactic subset of CTL+clocks.
* We note that while the translation involves an exponential blow-up, using a more sophisticated

approach, model checking can still be done in time linear in the original CTL+clocks formula
[EMSS90].



time is viewed as a state variable that ranges over the domain of the integers. Some transi
tions in the state-transition graph are designated as tick transitions (i.e., transitions of the
global digital clock). Whenever a tick trzmsition is taken, time is advanced by one time unit.
Hence, jtny numberof programtransitions can be taken in one time unit. By introducinga
new atomic proposition, "tick", we can translate CTL-fclocks formulas, when interpreted
over state-transition graphs with tick transitions, to CTL formulas.® For example, the
CTL-fclocks formula above is equivalent to the CTL formula

= AG{r€q —^ A{{-^tick)U(grant V(tick AAXA((-^tick)[/grant))))).

Hence, CTL-|-clocks modelchecking can be reduced to CTL modelchecking on this level of
temporal reasoning as well [AH92]. The main limitation of this level is its limited accuracy.
Forexample, the formula V*"' asserts only that in all computations of the program,every
request is followed by a grant within more than one and less thsui three time units. Also,
as in the previous level, we have to fix a time granularity, which may cause a blow-up in
the state space.

Much present research on qualitative reeisoning focuses on dense time and uses the do
main of the reals to model time in both the state-transition graph and the specification.
On this fourth level of temporal reasoning, we model the programs as timed automata
[AD94], where real-valued clocks keep track of timingconstraints. The fourth level consti
tutes the most expressive way of specifying real-time programs. With this semantics, the
logic CTL-fclocks is called TCTL [ACD93], and the formula if/ asserts that in all compu
tations of the program, every request is followed by a grant within at most two time units.
TCTL model checking is the problem of determining whether a given TCTL formula is
satisfied in a given timed automaton.

The introduction of dense time in the model makes quantitative reasoning more com
plicated. For example, while the satisfiability problem for CTL-fclocks when interpreted
over discrete-time models (levels two or three) is decidable, it is undecidable for TCTL.
Indeed, algorithms that hsmdle satisfiability or model checking of CTL, and which are
applicable to verification methods induced by the first three levels of temporal reasoning,
cannot be easily extended to handleTCTL. The reason is the dense timedomainofTCTL,
which induces state-transition graphs with infinitely manystates. It was shown, however,
in [AD94], that esich timed automaton induces a finite quotient of the infinite state space,
such that two equivalent states satisfy the same TCTL formulas. More precisely, the au
tomaton partitions the infinite time domain of clock valuationsinto finitely many regions^
each ofwhich can be viewed asa setofclock constraints (e.g., 2 < chcki < 3 ; clock2 = 1).
This finite quotient is used in [ACD93] in order to solve the model-checking problem for
TCTL. Alur et al. also prove that the problem is PSPACEfcomplete. The importance of
the model-checking problem has led to the development of several other model-checking
algorithms for TCTL [HNSY94, LL95, SS95, HKV96], all trying to cope with the large
state space that needs to be stored.

This space problem, known as the state-explosion problem, is the maincomputational
limitation ofall theverification methods induced by thefour levels oftemporal reasoning. It
constitutesoneof the mostchallenging issues in the area ofcomputer-aided verification and
is the subjectofactive research. Most ofthe efforts duringthe last twodecades have focused
on pure qualitative reasoning, yielding CTL model-checking tools (e.g., SMV, VIS, CADP)
that can handle systems with large state spaces [McM93, CGL93, BHSV+96, FGK+96].
Model-checking algorithms for TCTL adopt some of the techniques used in the tools for

Again, the translation involves an exponential blow-up that is unnecessary for model checking.



CTL modelchecking. Still, TCTL model-checking tools are lesssuccessful than CTL model-
checking tools, both in their level of performance and in their distribution. The reason is
not only the clear computational advantage of CTL, but also the broad attention that CTL
model-checking tools have enjoyed.

In this paper wesuggest a reduction from TCTL model checking to CTL model check
ing. The contribution ofsuch a reduction is twofold. Theoretically, it completesthe picture
of the four levels of temporal reasoning. While it has long been known that the first three
levels are inter-reducible, our reduction shows that, as far as model-checking is concerned,
the fourth level can also be reduced to the first three levels. Practically, our reduction
enables anyone who has a tool for CTL model checking to use it for TCTL model check
ing. The TCTL model-checking algorithm that follows from our reduction is in PSPACE,
matching the known bound for this problem. In addition, it enjoys the extensive and fruitful
research efforts that have been put into CTL model-checking tools.

The reduction is not complicated. Given a timed automaton U and TCTL formula
we construct a state-transition graph untime{U), of size exponential in the size of 2/, and
a CTL formula untime{i}>)y of length linear in the length of tf;, such that U satisfies ^ iff
untime(U) satisfies untime{rp). The graph uniime{l() is essentially the region graph used
in [ACD93], augmented by a new atomic proposition and new transitions, which handle
the reset quantifier c.(p. When we evaluate TCTL formulas, the reset quantifier causes the
course of evaluation to "jump around in the graph." Having to evaluate a formula c.(p in
a state w, we actually evaluate the formula <p in another state, which differs from w only
in that the value of the clock c is reset to 0. Such jumps are replaced in untime{U) by
new transitions. In untime{ij}), path quantification guarantees that whenever we come to
evaluate c.(p, the current value of c is 0, and thus no jump is required.

2 Definitions

2.1 Kripke Structures and Timed Structures

We model programs without real-time constraints by Kripke structures. A Kripke structure
is a tuple K = {AP, W,R, <t), where AP is a finite set of atomic propositions, W is a set
of states, RCW xW is a total transition relation (every state has at least one successor),
ty® 6 W isan initialstate, and c :W 2^^ mapsto each state a set ofatomic propositions
true in the state. A path in K is an infinite sequence of states two, t^i, 102, • •• such that for
all i > 0, we have € R.

We model real-time programs by timed structures. Timed structures extend traditional
Kripke structures by labeling each transition with a nonnegative real number denoting its
duration. Formally, a timed structure is a tuple T = (AP, W, P, ly®, a), where AP, W, iy°,
amd a- are as in a Kripke structure, and R C W xJRx W (we denote by IR the set of all
nonnegative real numbers). A path in T is an infinite sequence ofpairs (tyo, <(o)> (^1,^1),...,
such that for all i > 0, we have (ty,-,<5i, iy,*+i) € P. A timed wordis an infinite sequence
r G{2^^ XIR)'". We sometimes refer to a timed word as a function r : IN —2^^ x ffi, and
use ri(») and r2(i) to refer to the t'th event and duration, respectively, in r.

2.2 Timed Automata

We represent real-time progratms by timed automata. We now define timed automata and
the timed structures induced by them.



Given a set C of clocks, a clock environment € : C TR assigns to each clock a non-
negative real value. Given a clockenvironment ^, a set 5 C C of clocks and a nonnegative
real 5 GIR, wedefineprogress{£y SyS) as the clockenvironment S' that resets all clocks in
S and advances all clocks in 5 \ C by that is, for all c G C, we have

£'(c) =I0 if c G 5,
S{c) + ^ if c 5.

For two clock environments £ and £'y we say that £ <£' for every clock c G C, we have
£{c) < £'{c). We use £^ to denote the clock environment that assigns 0 to all clocks. Fora
set C of clocks, a formula (alsoreferred sometimes as clock constraint) in guard{C) is one
of the following:

- true, false, or c ~ v, where c G C, wGIN, and ~G {>, >, <, <},
- V02 or ^1 A02» where Bi and 02 are formulas in guard{C).

A timed automaton is a tuple U = (AP,C, jD, Ey P, inu, /°), where

- AP is a finite set of atomic propositions,
- C is a finite set of program clocks,
- L is a finite set of locations,
- E : L -¥ jg ^ nondeterministic transition function,
- P : L-^ 2-^^ assigns to each location a set of atomic propositions,
- inv : L -¥ guard{C) assigns to each location an invarismt,
- G jL is an initial location.

A position of2/ is a pair {l,£) E. L x IR^; that is, a position describes a location and a
clock environment. Given a position (/, £) and a time delay <5 GIR, wesay that the position
{Vy £') is a S-successor of(/,£) iffthere existsa triple (0,5, V) GE{1) such that the following
three conditions hold:

1. progress{£y^yS) |= 0.
2. For every nonnegative real < 0, we have progress{£y^yS') }= inv{l).
3. £'= progress{£ySyS).

Timed automata run on timed words. A run r of a timed automaton on the timed word

U is an infinite sequence ofpositions ofU. Thus, r E {L x IR^)*^. We sometimes refer to a
run as a function r : IN —> L x IR^. Given a timed word r : IN —^ 2^^ x IR, a run r ofU
on r satisfies the following. For every i > 0, let r(j) = {liy£i). Then:

- /q = /° and £o = £^.
- For every i > 0, we have P(/|) = Ti(i).
- For every i > 0, we have is a r2(t)-successor of (/<,^f).

We say that U accepts the timed word r iff there exists a run of U on r. The language of
U is the set of all timed words that are accepted by U. Each timed automaton induces a
timed structure. Formally, the timed structure of U is

r(W) = (AP,L X

where R and a are defined as follows:



- R({l,£)^S, {l',S')) iff is a ^-successor of {l,S).
- For all states {l,€)£ L x IR^, we have <r((/,^)) = P{1).

Note that the state set of T{lf) is infinite and that T{U) may have an infinite branching
degree. It is easy to see that a timed word is accepted by U iff it is induced by a path,
starting at in T{U),

2.3 The Real-time Branching Temporal Logic TCTL

We specify properties of real-time programs using real-time temporal logics. We con
sider here TCTL, a real-time extension of the branching temporal logic CTL with clocks
[ACD93]. Formulasof TCTL are defined with respect to the sets AP and Cu of the pro
gram's atomic propositions and clocks, respectively, and a set of specification clocks. We
consider TCTL formulas in positive normal form in which negation may apply to atomic
propositions only. Given AP, Cu^ and a formula of TCTL is one of the following;

- true, false, p, or -»p, where p € AP.
- where c G Cw UC^, v GIN, and G {>, >, <, <}.
- tpi\J(p2, tp\t\(p2, E(piU(p2, AipiU(p2, E<piU<P2, or A(piU(p2, where <pi and (p2 are TCTL

formulas.

- c.<p, where c G Q- and ^ is a TCTL formula.

The temporal operator U is dual to the U ("until") operator. For example, the formula
E<piU(p2 is equivalent to the formula -^A{-^(pi)U{p(p2)' In addition, we use the usual
("implies"), F ("eventually"), and G ("always") abbreviations. The reset quantifier c.tp
binds all free occurrences of c in (p. We denote by free{il>) C Q/ U the set of clocks free
in (i.e., these that have a non-bound occurrence). We denote by bound{if;) C the set
of all clocks bound in ij) (i.e., clocks c for which c.(p is a subformula of^). For example,
the formula V* = (ci = 5) VC2.AF{c2 > 0) has /ree(V') = {ci} and bound{tl)) —{02}. By
renaming clocks we can make sure that no occurrence of a clock in t/; is bound to more
than one reset quantifier and that bound{tj;) and /ree(V') are disjoint. A TCTL formula i/f
is closed iff free{ij;) = 0. We denote by cl{ip) the set of all subformulas of ip. It is easy to
see that the size of c/(^) is bounded by the length of rj;.

TCTL formulas are interpreted over pairs that consist of a state of a timed structure
T{U), where Cu is the set of Z/'s clocks, and a clock environment £ : Cw U —> IR. We
use tw, 5 {= v? to indicate that a formula (p holds at state w with clock environment £ (with
respect to the given timed structure T). A formal definitionof the relation |= can be found
in [HNSY94]. We willdefine later the semantics of TCTL formulas when interpreted over
quotient graphs induced by timed structures.

For a timed structure T and a TCTL formula we say that T ^ V* iff (w'®. 1=
The model-checking problem for TCTL is defined as follows: given a timed automaton U
and a closed TCTL formula i/;, determine whether T(Z/) [= V* (denoted Z/ [= ^).

2.4 Regions and Region Structures

Each set C of clocks induces infinitely many clock environments. Given a set C of clocks
and a set G of clock constraints in guard{C), we can partition the clock environments in
liP into finitely manyequivalence classes such that all clock environments in the sameclass
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are indistinguishable by clock constraints in G. It was proven in [AD94] that a sufficient
condition for two environment clocks to be indistinguishable is agreement on the integral
parts of all clocks values and agreement on the ordering of the fractional parts of all clock
values. This leads to the following definition of regions. Forx € IR, let [xj and (x) denote
the integer and the fractional parts of x, respectively. Also, for each clock c € C, let Vg be
the largest integer v for which x v is a subformula of some clock constraint in G. We
define anequivalent relation « C IR^ xIR^. For two clock environments S andS\ we have
SasS' \fi the following three conditions hold:

1. For all c e C, either [^(c)J = [5'(c)J, or £{c) > Vc and S'{c) > Vc.
2. For all {c, d}CC with S{c) < Vc and S{d) < we have (^(c)) < (S(d)) iff ( '̂(c)) <

3. For all c e C with €{c) < Vc, wehave (5(c)) = 0 iff (5'(c)) = 0.

We now define a region to be an equivalence class of the relation w.

We denote the set of all regions induced by C and G by T{C,G). When C and G
are clear or not important, we use only T. Let rep : T -4 IR^ map each region to an
arbitrary representative clock environment in it. We represent a region tt by rep{ir). A
clock environments £ then belongs to tt iff 5 » rep(7r). We sometime represent a region
also by a finite set of clock constraints (e.g., [x = 1;2 < z < 3]). A clock environment £
then belongs to tt iffit satisfies all its clock constraints. Following the definition of regions,
the constraints that represent tt specify the integral part of aJl clocks, the order amongthe
fractional parts, and whether they are equal to 0.

Lemma 1. [AD94] The number ofregions inT{C, G) is bounded by + 2).

Fora region ir and a formula y? G(7, we say that tt satisfies <p (denoted 7r f= iffrep{n)
satisfies (p. Note that by the definition of regions, tt satisfies <p iff all clock environments in
ir satisfy <p. Given a clock constraint c v in G, let reg{c v) be the union of all regions
that satisfy c ^ V*

Each region has a unique successor region. Intuitively, the successor of a region rr is
obtained from ir by letting time pass. The function succ :T -^T maps a region ir to its
successor region. For a region ir and a clock environment 5, we have that £ € s«cc(7r) iff
rep{ir) 96 5, rep{ir) < £, and for every clock environment £' with rep{ir) < 5' < 5, we
have £' « rep(7r) or £' « £. So, for example, if ir has a clock constraint c = v, for v ^ Vc,
its successor has a clock constraint «< c<t; + l. Ift; = t;c, then the successor has a
clock constraint c > v, reflecting the fact that once c is larger than Vc, we are no longer
interested in how large it is.

For ir € T(C, G) and a set S of clocks, we denote by 7r[5 := 0] the region obtained
from ir by resetting all clocks in S. That is, 7r[S := 0] contains the clock environment
pro(/rcss(rcp(7r), 5,0). For a guard ^ GG and 5 C G we denote by y>[5 := 0] the guard
obtained from tp by replacing with 0 allclocks in 5. Also, let r[0] denote the region where
all clocks in C are set to 0.

Consider a timed automaton U —{AP^ »nv, /°) and a TCTL formula^ over
APyCuy and a set G^ of specification clocks. Let G be the set of clock constraints in U
and and let T = T(Cu UG^, G) be the set of regions induced by 1/ and r/;. We define
a region position of 2/ as a pair (/, tp) G L x T. When we say that U is in region position
(/, 7r), we mean that U is in location I and that its clock environment is in ir. We say that
a region position (/, tp) is admissible iff ir satisfies inv{l). We know that the automaton U



can be only in admissible region positions. Moreover, when U is in region position {/,tt),
we know what its possible next region positions are: the automaton U can either take an
edge transition and moveto another location, possibly resetting someclocks, or take a time
transition and stay in I while the values of the clocks changeand meet the successor region.
This leads to the following definition of the region structure11{U, ip) induced by U and ip.

We define H{U, —{APUT,W, i2, tx;°, a) to be the following Kripke structure:

- The set W C i XT of states consists of all the admissible positions of U.
- /?({/,tt), tt')) iff one of the following two conditions holds:

1. / = /' and TT* = succ(7r). These transitions correspond to time transitions in U and
we call them time transitions.

2. There exists a transition {$, 5, V) G E{1) such that tt satisfies 9 and n' = 7r[5 :=
0]. These tremsitions correspond to edge transitions in U and we call them edge
transitions.

- The initial state vP is (/°,!r[0]). If ly® is not admissible, the automaton U is not an
interesting real-time program.

- For all states (/, tt) G W, we have tt)) = P(l) U{tt}.

We can interpret a TCTL formula ij; with respect to a state in the timed automaton
U and a clock environment for the specification clocks by means of the region structure

V*)- We use (/, jt) ^ to indicate that a subformula (p of tf; holds at state (/,?r) of
Note that as it refers to the values of the clocks in both Cu and C,/,, we do not

need a clock environment for the specification clocks. The relation |= is defined inductively
as follows:

- For all I and tt, we have (/, it) |= true and {/, it) false.
- Forp GAP, we have (/, tt) |= p iffp Go-((/, tt)), and (/, tt) |= -.p iffp ^ it)).
- For c GC, VGIN, and G{>, >, <, <}, we have {I, it) |= c v iff tt ^ c v.
- (/,tt) ^ V<p2 iff (/, It) f= <pi or (/, tt) y>2.
- (/, tt) }= A(p2 iff{/,It) [= <pi and (/, ?r) |= y>2-
- (/, It) }= EtpiU(p2 iff there exists a path {Iq, ttq), (/i, jti) ... in ip) with {/o, ttq) =

{I, It), and there exists « > 0 such that (/,,7r,) |= y>2, and for all 0 < j < i we have
|=v?i.

- (/, tt) {= A(piU<p2 iff for every path (/o, tq), (/i, tti) ... in 11{U, ip) with {Iq, ttq) = (/,tt),
there exists »> 0 such that tt,) |= (p2 and for all 0 < j < t we have {lj,itj) |= <pi.

- {I,It) E<piU<p2 iff there exists a path (/o,To),(/i,7ri)... in 1l{U,tp) with {/o,7ro) =
{/,7r) such that for every i > 0 for which {li,iti) y?2» there exists j < i such that
ih»''j) N

- (/,It) {= A(piU<p2 iff for every path {h,iti), {h,1^2)... in Hilt, tp) with </i, tti) = (/,it)
andfor every i > 0 for which {U,tt,) (p2, there exists j < i such that {lj,itj) 1= (pi.

- (/, tt) ^ c.(p iff {/,7r[c := 0]) 1= p.

We say that 1l{U, |= ^ iffu>° ^ ip. Seversd works on real-time temporal logics consider
a more elaborated semantic for TCTL, where path quantification ranges only over paths
for which time diverges [HNSY94]. As we discuss in Section 4, our algorithmcan be easily
extended to handle this semantics as well.

By the definition of regions, we have the following.

Theorem 2. [HNSY94] For every timed automaton U and TCTL formula tp, we have
U\=tPiffTl{U,tP)\=tp.
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3 Reducing TCTL Model Checking to CTL Model Checking

3.1 Untiming the Program

Consider a timed automaton U —{AP,CuyL,E,P,inv,l^) and a TCTL formula if) over
AP, Cw, and a set ofspecification clocks. Let 72.(2/, V*) be the regionstructure induced by
U and if;. Manystates in 72(2/, V') are not reachable. Indeed, the transitions in 7^(2/, iff) may
reset someof the clocks in Cu but can never reset clocks in C^. Weneed these tmreachable
states because V* may contain reset quantifiers that cause the course of the evaluation of iff
to "jump" into these states. When we untime the program, we make these states resurhable.
Below we define the Kripke structure K{li,if>) induced by 2/ and if>. The structure lC{U,iff)
is very similar to 72(2/, iff). Each state w in /C(2/, i/>) corresponds to twostates {w,T) and
{w,E) in 72(2/, if>). The copy of w annotated with T can be reached only by time transitions.
The copy of w annotated with E can be reached only by edge transitions. Time transitions
in /C(2/, iff) may reset an arbitrary subset of the clocks in C^. Formally,

K{U, iff) = {APuru{T},Wx {T,E). /2, (u;®, E),c),

where W, uP, and are as in 72(2/, V*), and R and <; are defined as follows:

- R{{1, TT, 6), (/', tt', 6')) iff one of the following two conditions holds:
1. 6' = T, / = /', and there exists a set 5^ C of specification clocks such that

ir* = succ(7r)[S^ := 0]. These transitions correspond to time transitions in 2/ and
we call them time transitions.

2. 6' = E and there exists a transition {6,3,1') G E{1) such that jr satisfies 6 and
tt' = 7r[5 := 0]. These transitions correspond to edge transitions in 2/ and we call
them edge transitions.

—The set of atomic propositions that hold in each state is as the one in 72^(2/, V')* only
that we add the atomic proposition T to states in W x {T}. Thus, <;{{w,b)) is <r(u;) if
6 = E, and is (r{w) U{T} if 6 = T.

Note that the specification clocks are changed only in time transitions, when each specifi
cation clock is either advanced by the same amount as the program clocks, or it is reset.
The duplication of the states and the new atomic proposition T enable us to distinguish
between states that are reached by a time transition and states that are reached by an
edge transition. Following Lemma 1, the size of /C(2/, iff) is exponential in the size of 2/ and
the length of iff.

3.2 Untiming the Specification

We define a function

untime : TCTL formulas —)• CTL formulas

such that for every timed automaton 2/ and TCTL formula iff, we have2/ |= V* iff /C(2/, V*) N
untime{il)). We define the function untime by means of a function

/ : TCTL formulas x sets of specification clocks -> CTL formulas.

For a TCTL formula iff, the CTL formula uniime{ilf) is then the formula /{iff, 0).



For a set 5 C C of clocks, we use 5 = 0 as an abbreviation for Ac65(^ ~
5 > 0 as an abbreviation for > ®)- Note that when 5 = 0, the formulas 5 = 0 and
5 > 0 evaluate to true. Consider a path p in /C(2/, rj)). For sets 5i and S2 of clocks, we use
fair{Si, 52) to abbreviate a path formula stating that the clocks in 5i are never reset and
the clocks in S2 are always reset along the path p. That is,

/air(5i, 52) = XG{T ^ (5i > 0)) AG(52 = 0).

Given a TCTL formula(p and a set 5 C Q, of clocks, wedehne /(^, 5) by induction on
the structure of y? as follows (we first present the mapping into CTL* formulas and then
translate them, in Section 3.4, to CTL).

- /(true, 5) = true and /(false, 5) = false.
- For p GAPy we have /(p, 5) = p and /(-"p, 5) = -«p.
- For a clock constraint c v, we have /(c v,5) = reg{{c -t;)[5:=0]).
- /(v?l Vy>2,5) =/(y?i,5) V/(¥)2,5).
- /(v>i Ay>2,5) =/(yji,5) A/(^2,.5).
- f{E<piUfp2yS) = E\fair{S,hound{E(piU(p2)) ^ f{ip2y^)].
- f{AipiUjp2yS) = A\fa%r{Sybound{A*p\Ujp2)) -> /(¥>!,0)^/(^2,0)]-
- f[EipiU(p2yS) = 5|/ajr(5, 6oun(/(5^i^y>2)) A/(y>i,0)C//(y?2,0)].
- f{A(piUtp2yS) = A\fair{Syhomd{A(piU(p2)) -»•/(¥'i.0)C^/(¥>2,0)].
- f{c.<piyS) = f{<pi,SU{c]).

Intuitively, the set 5 in /(y?,5) contains all the free clocks in (p that should be reset
and then never reset again once we come to evaluate (p. When we evaluate a formula
path quantification ranges only over paths in which the clocks in bind{(p) are always reset.
This restricted quamtification is imposed by the second conjunct in the path formula fair.
Consider a clock c G5. We know that c enters 5 as a result of being a bindingclock in a
formula of the form c.<pi. Hence, when c enters 5 is is not free and therefore, by the above
rules, it is reset. We "release" the clock c and path quantification becomes restricted to
paths in which c and the other clocks in 5 are never reset (this is imposed by the first
conjunct in fair) and in which the clocks in bind{<pi) remain always reset.

If ^ is a clock constraint, then releasing c is done by simply assigning 0 to c. If (p is of
the form EipiUp2y ApiU(p2> E<piU(p2, or AipiU(p2y then releasing c is done by updating
the parameters of the formula fair. For example, the formula

t/f = i4G[c.req -¥ AF{grant A(c < 2))],

mentioned earlier in the introduction, has

untime{i{;) = i4[Gco -)• G(req A[XG{T -)> -•co) F(graneAc<2)],

where cq and c<2 abbreviate reg{c = 0) and reg{c < 2), respectively.
It is easy to see that the length of untime{ip) is linear in the length of tj; (we ignore

quadratic blow-up caused by specifying sets of clocks and sets of regions in fair; such a
blow-upcan be easily handled by new atomic propositions).
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3.3 Correctness of the Reduction

We now prove the correctness of the reduction. Along the proof, we use (/, tt) ^ to
indicate that the state (/, tt) satisfies the TCTL formula ^ in the region structure
and we use {/,7r) |=x: (p to indicate that the states (/,7r,E) and (Z,;r,T) satisfy the CTL
formula (p in the Kripke structure K[U,rl)). Note that as {/, tt,E) and (/, 7r, T) have exactly
the same future, and they differ only in the value of T, they agree on satisfaction of CTL
formulas that do not refer to the value of T in the present.

Theorem 3. For every timed atiiomaion U, TCTLformula ip, location I ofU, subformula
(p of ij), region tt GT, and set S CC^ of specification clocks such that S n bound{(p) = 0,
the following are equivalent:

1. {l,ir[S := 0]) <p-
2. {/, jr[5U bound{<p) := 0]) \=k f{<py S).

Proof. The proof proceeds by induction on the structure of (p.
- The cases where tp is of the form true, false, p, or ->p are immediate.
- For <p that is a clock constraint c v, we have /(c ~ v,5) = reg{{c ^ t;)[5 := 0]). Since
the clocks in S are reset anyway, then (Z, jr[S := 0]) (c v) holds iff (1,7r[S := 0]) {=7?
(c ~ v)[5 := 0]. Since the satisfaction of c ~ v depends only on the value of c and is
independent of Z, then the latter, according to the definition of the mapping reg, holds iff
(l,7r[S := 0]) [=k: reg((c t;)[5 ;= 0]); thus iff (Z,7r[5 := 0]) /(c ~ t;,5). Finally, as
bound(^) = 0, the latter holds iff (Z, TrfS'U 6otind(y>) := 0]) |=x: f(c v,S), and we are
done.

- For ^ = y)i A y?2> we have that f(p,S) = f(pi,iS) A f(p2,S). By the semantics of
TCTL, (Z, 7r[S := 0]) <pi Av?2 iff <Z, 7r[5 := 0]) |=7i <pi and (Z, 7r[S := 0]) \='r (p2. Since
Sr\bound{(p) = 0, then SC\bound{(pi) = 0. Therefore, the induction hypothesis is applicable,
and {l,ir[S := 0]) <pi iff (Z, 7r[5U 6oun(/(^i) := 0]) |=x: /(v?i,5).

Consider the set of clocks bound{<p)\bound{(pi). By the syntax of TCTL, these clocks do
not appear in <pi, and therefore, as Sr\bind{(p) = 0, they do not appear in in f{<pi, 5) either.
Hence (Z, 7r[S U6ound(9Pi) := 0]) |=x: f{<pi,S) iff (Z, jr[5U 6o«nd(y?) := 0]) [=a: /(y?i,5).
Similarly, {Z, 7r[5U bound{(p2) := 0]) }=/c f{<P2,S) iff(Z, 7r[SU bound{(p) := 0]) \=k f {(p2,S).
We thus have that (Z,7r[5 := 0]) (p\ A <p2 iff {l,ir[S\J bound{(p) := 0]) f{pi,S)
and (Z, 7r[5U 6ouncZ(yj) := 0]) f=7c f{(p2,S). This holds iff {lyn[S Ubound{<p) := 0]) |=x:
fiV'hS) Af{<p2,S). This, by the definition of /, holds iff {Z, 7r[5 Ufecund(y>) := 0]) |=a:
f{<Pi A(p2, S), and we are done.

The proof is similar for (p of the form yi V^2•

- For v? = E(piU(p2, we have f{E<piU(p2yS) = E[fair{S,bound{ip)) A /(y>i,0)C//(¥>2> 0)]-
Consider a state (Z, tt) in if:). Assume first that (Z, 7r[S := 0]) <p. Then, by the se
manticofTCTL, there is a path (Zo, ttq) , (Zi, tti) ... in TllfJ, if>) with (Zq , tto) = {1,7r[5 := 0]),
and there exists »> 0 such that (Zj, tt^) |=7j (p^, and for all 0 < j < * we have {Ij^irj) |=7j
<pi. By the induction hypothesis (applied with <p = y»2, Z = Zj,7r = tt,-, and 5 = 0),
Cii'T,) \=n 92 iff (Zi,7rf[feound(^2) := 0]) }=x: /(y>2i0)- Similarly, for all 0 < j < i, we have
that {lj,irj) |=7j (pi iff {lj,irj[bound{(pi) := 0]) \=k: /(y>i»0)- As in the (pi A v>2 case, this
implies, that (Z,-,7r,) <p2 iff (Z,-, 7ri[feound(y>) := 0]) [=k /(v>2,0), and for all 0 < j < t,
we have that {Ijjirj) ^ (pi iff {ljy7rj[bound{(p) := 0]) ^;c /(y>i,0)- Hence, the induction
hypothesis is applicable as follows. Consider the sequence of regions »/ = »7o, •••and the
sequence of attributions feo, fei,... € {T, E}**', where
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- Tjo = 7r[5 U bound{tp) := 0] and 60 = E.
- For every a > 0, the region iji+i and the attribution 6,+i are defined as follows.

• If the transition in HiU, rff) from (/f,tt,) to , Jr,+i) is an edge transition, in which
case there exists Su C Cu for which 7r,+i = TrffSy := 0], then r)i+i = r}i[Su := 0]
and 6,-4.1 = E.

• If the transition in from to (/f+i, 7r,-+i) is a time transition, then
a/i+i = succ(}7,)[6ound(v7) := 0] and B,+i = T.

Note that for every /: > 0, wehave »/ik = nk[bound{(p) := 0].Thus, clearly, for all ib > 0,
we have that tjk |= {bound{<p) = 0). Also, for all k > I, since the only specification clocks
that arereset along p are these inbind{(p) andsince 5n6md(y)) = 0,we have that rfk^T ^
(S > 0). Indeed, the value of a clock that is not reset in a time transition must become
greater than 0. Since bound{(p) C then, by the definition of )C{U,if})f the sequence
P — ••• is a path in K{U^^). As detailed above, by the induction
hypothesis, we have that </,•,;/,•) f=jc f{'p2,0), and for all 0 < j < t, we have that </j, Jjfj) |=
/(^i»0)- In addition, p satisfies fair{S, bound{(p)). Hence, {/, 7r[5U 6ound(^) := 0]) f=x:
E\fdir{S, bound{<p)) Af{(pi, 0)I//(v?2,0)], and we are done.

Assume now that {/,7r[SU 6ound(y>) := 0]) \=k f{v>,S). Therefore, there exists a path
(/o,7ro,6o),{Ii,Ti,6i),... in K{Uf'tff) with (/o,7ro,6o) = (I, ?r[6o«nd(^) U5 := 0],E), such
that the following hold. First, for all /: > 1, we have that tt^ ^ T (5 > 0). Second, for
all k > OjVfe have that tt/s |= {bound{(p) = 0). In addition, there exists i > 0 such that
('f,Tf,6i) }= /(^2,0), and for all 0 < j < i, we have {lj,Wj,bj) |= /(^i,0). Consider the
sequence of regions »/ = VOj »?i» •• • defined as follows.

- »7o = Jr[5 := 0].
- For every i > 0, the region i;,+i is defined as follows.

• If 6,+i = E, in which case there exists Su C Cu for which 7r,+i = i:i[Su := 0], then
»7f+i = i)i[Su 0].

• If 6,+i = T, then 17,+1 = succ{rji).

Note that for every > 0, we have irk = ijk[bound{(p) := 0]. Also, since nospecification
clocks are reset along 17, it is guaranteed that the sequence {Iq,ijq), {/i, »7i), ... is a path in

As detailed above, by the induction hypothesis, we have that f=:/c <p2^ and
for all 0 < i < i, we have that |= tpi. Hence, as (/o,»7o> = </,Jr[5 := 0]>, it follows
that {/,7r[5 := 0]) ^7? p, and we are done.

The proof is similar for p of the form ApiUp2, Ep\Up2, or ApiUp2.
- For p = c.pi, we have /(^,S) = /(yi,5 U{c}). By the semantics of TCTL, we have
(/, 7r[5 := 0]) 1=71 p iff (/,7r[SU {c} := 0]) p\. Since c ^ bound{pi) and bound{pi) C
bound{p), then S n bound{p) = 0 implies that (5U {c}) n bound{pi) = 0. Therefore, by
the induction hypothesis, (/, jr[S U{c} := 0]) [=72 pi iff {/, 7r[S U{c} Ubound{pi) •= 0]) ^/c
/(^i,5U{c}). As bound{p) = {c)U 6o«nd(y>i), this holds iff {l,ir[SU bound{p) := 0]) |=x:
f{pi, S U{c}); thus, iff{/, 7r[5 Ubound{p) := 0]) f{<P, S), and we are done. •

Theorems 2 and 3 imply the following.

Corollary4. For every timed automaton U and TCTL formula ij), thefollowing are equiv
alent:

12



2. 1= untime{ip).

The transition fromU to involves an exponential blow-up, and the translation of
V* into unUme{ij}) involves only a linear blow-up. The model-checking problem for CTL
can be solved in space that is polynomial in the specification and only poly-logarithmic
in the Kripke structure p3VW94]. Corollary 4 then suggests a PSPACE model-checking
algorithm for TCTL, matching the known lower bound [ACD93].

3.4 Moving from CTL* to CTL

The formula fair{Si, S2) that we use in the definition of fair is not a CTL formula. More
over, when we use the formula fair, it comes before a boolean connective (A or —)•) that
relates it to formulas of the form <piU(p2 or (piU(p2- Hence, as defined now, the function
untime translates TCTL formulas to CTL* formulas. In this section we redefine f{<p, S)
for (p of the form E<p\Up2,A(p\U(f2iE(p\U(p2^ or A(piU<p2, so that the resulting formula
will be a CTL formula. Recall that

fair(Si, S2) = XG{T (5i > 0)) AG{S2 = 0).

Thus, clearly, we could define

fair{Si,S2) = (S2 = 0) A[XG((T -> {Si > 0)) A(52 = 0))],

which has the form ^1 AXG^2, where ^1 = (52 = 0) and ^2 = (T -> (5i > 0)) A(52 = 0)
are prepositional formulas. It follows that we have to translate the following four CTL*
formulas to CTL formulas:

1. E{^i AXG^2 ^'PiU(p2)-
2. A((^i AXG^2) —> '£iU(p2)-
3. E{^i AXG^2 A<piU<p2).
4. A((^i AXG^2) 'PiU(p2)-

We translate the four formulas to a fragment of CTL* in which the path formulas may
contain twotemporaloperatorsconnected by a boolean operator. Formulas ofthis fragment
have equivalent formulas in CTL [KG96].

1. E{^i AXGi2 ApiUip2) = 6 A[(v?2 AEXEGi2) V{pi AEXE{{Gi2) APiUp2)l
2. A((^i AXG^2) ->• <piU(p2) = (~^6) Vv?2 V{(pi AAXA{{G^2) <piUp2)) VAXAF-^^2'
3. E{^i AXG^2 A(piU(p2\= A[(^1 Ay>2 AEXEG^2) V{tp2 AEXE{{G^2) A<piU<p2))]-
4. A((4i AXG^2) ^10^2) = (""Ci) V{(pi A(P2) V{(p2 AAXA{{Gi2) -*• ^iUp2)) V

AXAF-^2'

Finally, as the formula EXEG^2 is validin K{U,ip), wereplace it with true and replace
its negation AXAF-1^2 with false. Accordingly, we now have.

1. f{E(piU(p2)S) = AIp2 V(^1 AEXE{{G^2) a ^iC^^2))]'
2. f{Api[/p2jS) = (-1^1) Vy?2 V(v?i AAArA((G^2)
3. f{EpiUp2yS) =^i A[(v?i Ay>2) V{p2 AEXE{{G^2) A(piUp2))]-
4. f{A(piU(p2, S) = (-1^1) V(v?i AP2) V{p2 AAXA{{G^2) fpiUp2))'

This completes the translation of un<«me(^) into CTL.
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4 Discussion

In thispaper we suggested a reduction from TCTL model checking to CTL model checking.
Recall that the way we define the semantics for TCTL, we do not require path quantifi
cation to range only over paths for which time diverges, diverge. Since we can replace the
divergance requirement by a fairness constraint on /C(W,V') (see [HKV96]), it is easy to
extend our algorithm to handle a semantics in which path quantification ranges only over
divergent paths. Then, TCTL model checking is reduced to Fair-CTL model checking. By
[KV95], the latter can be solved with the same space complexity as CTL model checking.
Hence, the PSPACE complexity is preserved.

Our reduction handles the reset quantifier of TCTL by augmenting the region graph
induced by a timed automaton with new transitions and limiting path quantification in
the formula. As such, our reduction can be easily adjusted to handle model checking of
TCTL formulas when interpreted with respect to hybrid systems with finite bisimulations
[Hen95].

The advantage of the algorithm that follows from our reduction is the existence of fine-
tuned tools for CTL model checking. The algorithm can beoptimized further by exploiting
the special structure of For example, the optimization suggested in [HKV96],
which integrates states that differ only in their region element into a single state, can be
used alsohere. It remains to be seen how the algorithmperforms in practice.
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