Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

INTEGER-CONTROLLED DATAFLOW IN
PTOLEMY

by

Takashi Miyazaki

Memorandum No. UCB/ERL M97/21

19 March 1997

INTEGER-CONTROLLED DATAFLOW IN
PTOLEMY

by

Takashi Miyazaki

Memorandum No. UCB/ERL M97/21

19 March 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Integer-Controlled Dataflow in Ptolemy

Takashi Miyazaki t

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

ABSTRACT

In this report, integer-controlled dataflow (IDF) and its code generation applications
in Ptolemy are presented. The IDF model of computation is built on BDF with the
introduction of a decision function. The IDF schedule is static and conditional, so that
memory requirement is determined at compile-time. IDF supports code generation.
This enables code generation from program graphs that include conditional jumps,

loops and repetitions, and greatly improves the practical usability of the program
synthesis in Ptolemy.

1 Visiting Industrial Fellow from Information Technology Research Laboratories, NEC
Corporation, from September 1, 1995 to August 31, 1996.

1. INTRODUCTION

Ptolemy [1] is a framework for simulation, prototyping and software synthesis for
heterogeneous systems. In Ptolemy, a system is specified by dataflow graphs in which
nodes represent computational actors and data tokens flow between them along the
arcs of the graph. Algorithms with control flow that is completely deterministic can be
effectively represented by using the synchronous dataflow (SDF) model of computation
[2]. In SDF graphs, each actor consumes and produces a constant number of tokens at
every firing. The advantage of the SDF model is that it is possible to determine the
execution order of actors (schedule) and memory requirements at compile time.
However, data-dependent decision-making at run-time is required in many digital
signal processing algorithms. Dynamic dataflow (DDF) [4, 5] is a data-driven model
that includes asynchronous operations. The DDF model is usable, but the overhead of
run-time scheduling is excessive.

To preserve the compile-time scheduling properties of SDF but permit data-
dependent execution, Boolean-controlled dataflow (BDF) [6, 7] was developed. The
BDF model of computation extends the SDF model to permit data movement to depend
on the values of certain Boolean tokens in the system. The BDF model is successfully
applied to simulation and C program synthesis in Ptolemy. Limiting control variables
to binary values, however, overly restrictive. A generalization to integer control
variables has been proposed [8].

In this report, integer-controlled dataflow (IDF) and its code generation
implementation in Ptolemy are presented. The IDF graphs, which include IF, CASE,
REPEAT and LOOP control structures, support not only simulation but also code
generation. C and DSP assembler programs with the IDF structure can be synthesized.

2. INTEGER-CONTROLLED DATAFLOW
2.1. Model of Computation

Concept of Integer-controlled dataflow is originally presented in [8]. In this report,
the IDF model of computation implemented in Ptolemy is explained.

In IDF, dataflow is controlled by integer values of a control token and / or a state of
an actor (Star). An IDF actor has a control port which receives a control token and its
own internal state, as shown in Fig. 1. Behavior of an IDF actor, such as data input port
selection, computation in the actor and output port selection, is determined by both or
one of the integer values of the control token and the internal state at run-time.

Control O
Actor
state il

Data

Data

Fig. 1 IDF Actor

IDF dataflow graphs can describe a variety of dataflow control, for instance,
BRANCH, CASE, REPEAT and LOOP.

(1)BRANCH (IF) and CASE

BRANCH is a general case of IF. Fig. 2 and Fig. 3 show two cases of BRANCH, such
as data switching and data selection, respectively. CASE-Begin and CASE-End are IDF
actors. CASE-Begin actor chooses an output port by the integer value of the control
token, and sends the input data token to the selected output port. CASE-End forms a
reverse structure of CASE-Begin. CASE-End actor receives an input token from the
selected input port, and send it to the output port.

contro

data —.—-4

ui3eg-gSVD

-0
—
]

Fig. 2 CASE-Begin

control

—@— data

Fig. 3 CASE-End

A CASE structure shown in Fig. 4 is a counterpart of switch-case statements in C
programs. Two IDF actors, CASE-Begin and CASE-End, forms the CASE structure,
and controlled by the same integer control token. In this example, data tokens go
through one of four conditional branches.

B

2]
-
PUF-ESVO

)
-

(2)REPEAT

REPEAT actors express repetition of actor execution in dataflow graphs. REPEAT-
Begin and REPEAT-End actors shown in Fig. 5 and Fig. 6 work as controllers of
beginning and ending of repetitions, respectively. REPEAT-Begin actor reads the
number of repetition and an input data token at the beginning of repetition, and sends
out output data tokens iteratively in the number of repetition count. REPEAT-End
actor reads the number of repetition at the beginning of repetition. It receives input
data tokens iteratively, and sends out an output token at the end of repetition. REAET
actors are different from multi-rate actors, because each repetition is counted as one
iteration of actor execution. Actors which follow the REPEAT-Begin actor or are
followed by the REPEAT-End actor may be executed at each repetition of REPEAT
actors.

Output data tokens of REPEAT-Begin and input data tokens of REPEAT-End are
defined by users, therefore, REPEAT actors are customized. Current repetition count is
stored as an internal state. For example, an array data and its elements may be input
and output tokens of REPEAT-Begin. In the video processing, an image data is an
input, and block data are output.

number of P
repetition J'
REPEAT-Begin
v — @ e e
state

Fig. 5 REPEAT-Begin

number of £\
<J

repetition ' L
REPEAT-End
data —.—)[:—.—)v ——.-*

state

Fig. 6 REPEAT-End

REPEAT actor, which combine REPEAT-Begin and REPEAT-End, expresses a
repeat structure in dataflow graphs, as shown in Fig. 7. This actor receives the number
of repetition and an input data token at the beginning of repetition. During repetition,
data tokens go through the loop path, and an output data token are put out from the
output port.

number of O
repetition l
data ‘ REPEAT r-—.'—>

state

| o

Fig. 7 REPEAT

/> repeat path

(3)LOOP

LOOP actor realizes a loop structure in dataflow graphs. Fig. 8 shows an example of
the loop. LOOP actor receives the number of loop counts and an input data token at the
beginning of loop. The data token goes on the loop path iteratively up to loop counts,
and gets out from the output port at the end of loop.

The differences between LOOP and REPEAT are that one data token is repeatedly
processed by actors on the loop path in the loop structure, on the other hand, tokens
divided from an original input data token are put on the repeat path, and summed up
to be an output data token in the REPEAT.

'

mber of A
number D'
repetition

data —@—> LOOP o
_4 state
/> loop path
®]‘ —@
Fig. 8 LOOP

2.2. Scheduling and Control of Dataflow in Ptolemy

IDF is implemented as one of model of computation (Domain) in Ptolemy. The IDF
Domain is derived from the BDF Domain. Therefore IDF inherits most of BDF
properties.

IDF uses the BDF scheduler as its own scheduler to determine static execution order
of actors. Therefore, the performance of actor scheduling in IDF is the same of BDF.
Details of BDF is described in [7].

In order to realize IDF dataflow control on the BDF dataflow control mechanism, a
decision function is attached to each conditional input/output port. The decision
function evaluates integer values of an integer control token from a control port and an
internal state, and return TRUE or FALSE value. The TRUE/FALSE value is used to
control conditional input/output ports.

The decision function is user-defined. As described, the decision function estimates
two values of integer control token from a control port and an integer internal status in
an actor. The control token is used to manage the IDF actor from outside. The internal
status is used to manage the IDF actor from inside. For example, CASE-Begin and
CASE-End actors are controlled by only the control token. On the other hand, REPEAT
and LOOP actors are controlled by only the internal status, which stores loop counts.

state

: [Conditional 1/0 port
nteger Decision (BDF dataflow control)
control token Function | TRUE/

v Fi

data

FALSE
g. 9 Mechanism of Dataflow Control in IDF

3. Simulation
3.1. Default-IDF Target

The default-IDF target supports the IDF model of computation. It must be used when
IDF stars are present in the dataflow graph. It can also be used with graphs that
contain only SDF stars. It does not support graphs with BDF stars, however, the
graphs can be re-used, when the BDF stars are replaced with the same functional IDF
stars. ISelect and ISwitch stars are used for this purpose. The default-IDF target
supports single processors. The default-idf target has the same parameters as the
default-bdf target.

3.2. IDF Stars

IDF stars are used for conditionally routing data and looping and repeating. IDF
stars require the IDF target, because the stars require the IDF scheduler and IDF
dataflow control mechanism.

(DISelect
If the value on the control line is nonzero (TRUE), truelnput is copied to the output;
otherwise, falseInput. This star is equivalent to the Select star in BDF stars.

(2)ISwitch

This star switches an input token to one of two outputs, depending on the value of the
control input. If the value on the control line is nonzero (TRUE), input is copied to the
trueOutput; otherwise, falseOutput. This star is equivalent to the Switch star in BDF
stars.

(3)ICaseB4

This star is an example of IDF stars. This star switches an input token to one of 4
outputs, depending on the value of the control input. Modulo of 4 of the control input is
currently implemented on evaluation functions to switch the input token.

(4)ICaseE4

This star is an example of ITDF stars. This star selects one of 4 inputs, and copies it
to the output, depending on the value of the control input. Modulo of 4 of the control is
currently implemented on evaluation functions to select the input token.

ICaseBn and ICaseEn stars can form a case structure of dataflow corresponding to
switch-case structure in C/C++ programs. See a demo of ICase4-demo

(5)ILoop

This star forms a loop structure. At the beginning of loop process, the stare receives a
loop count from the set port, and a data token from input. During the loop process, the
data token is put out from loopFor port, and put in from loopBack port. Stars on the
path between loopFor and leopBack represent the loop process imposed on the looped
token. At the end of the loop, the processed token is sent out from output port.

CntlInl, cntlInO and cntlOut ports are used only to determine star schedule by the
IDF (BDF) scheduler. Its connection must be the same as a loop structure
demonstration of ILoop-demo. This restriction comes from the BDF scheduler, which is
an original of the IDF scheduler. At run time, tokens from the control port are not
necessary, and are discarded.

(6)IRepeatB

This star is an example of IDF stars. This star receives one token, and sends the
token out repeatedly. The repeat count depends on set port value. If the set port value
is N, the input token is sent to output N times. The input and set ports receives a token
respectively at the beginning of repeat. The control port is used only to determine a star
schedule by the IDF scheduler. At run time, tokens from
the control port are not necessary, and are discarded.

(DIRepeatE

This star is an example of IDF stars. This star receives tokens repeatedly from the
input port, sums them, and sends the result out from the output port. The repeat count
depends on the value of the set port. If the set port value is N, N input tokens are
received, and one result is sent to the output port. The set ports receives a token at the
beginning of repeat. The output port sends a token out at the end
of the repeat. The control port is used only to determine star schedule by the IDF
scheduler. In the execution, tokens from the control port are discarded.

The IRepeatB and IRepeatE stars can form a repeat process, in which each token
produced by IRepeatB is processed by functional stars on the datapath between
IRepeatB and IRepeatE stars. The IRepeatE star collects the processed tokens.

3.3. Demos
(1)CASE

The CASE demo shown in Fig. 10 is an example of a case structure in dataflow
graphs. Source data from the Const star are switched to one of four Gain stars. The
switching depends on the value of the control tokens from the IIDUniform star. The
ICaseB4 and ICaseE4 stars choose one of four data path. Two windows appear to show
input and output data.

-

Fig. 10 CASE demo in IDF simulation

(2 REPEAT

The repeat demo is shown in Fig. 11. Two REPEAT actors, IRepeatB and IRepeatE
form a repeat loop. These REPEAT stars read the common repetition count at the
beginning of repeat. The data path composed of IFork2 and Delay is necessary for the
IDF (BDF) scheduler to determine a star schedule, however, at run-time, data on this
path is not used. This path should be invisible to avoid unexpected confusion.

il L

) FTanl

L

Fig. 11 REPEAT demo in IDF simulation

(3)LOOP

A Loop demo is shown in Fig. 12. In this demo, data is amplified by GainInt Star. The
data path composed of IFork2 and Delay is necessary for the IDF (BDF) scheduler to
determine a star schedule, however, at run-time, data on this path is not used. This
path should be invisible to avoid unexpected confusion.

Fig. 12 LOOP demo in IDF simulation

3.4. Writing IDF stars

Description of IDF stars basically obeys to rules of writing other simulation stars.
Additional descriptions are required to let the IDF scheduler know dataflow control
staffs and to control dataflow at run-time.

For convenience, the ICaseB4 star is shown as an example of writing IDF stars.

name {ICaseB4}
domain {IDF }

The definitions of the star name and domain are common among all stars. The domain
name is "IDF".

input
{

name §{ control }
type {int }

desc { control to select one out of conditional outputs }
}
Definition of input and output ports is also common among all stars. The star writer
must be careful that the control port, whose value is used to determine behavior of a
conditional port, must be a type of "int".
hinclude { "IdfCntLh" }

Including a header file, "1dfCntLh", is currently mandatory, except for BDF-like stars

10

such as the ISwitch and ISelect stars. In the file, a class data used for IDF dataflow
control is defined.

\

defstate
{
name { statOutput0 }
type {int}
default {0}
desc { state variable of output0 }

}

States of conditional I/O ports, which are also used to determine behavior of a
conditional port, should be defined in the defstate method. Its type is also a type of
"int“.

protected

{
1dfCntl cStatOutput0;

The 1dfCntl class is defined in "IdfCntlh". Each conditional port needs 1dfCntl class
data to let the IDF scheduler know dataflow control staffs of the conditional port
through the IDFPortHole::Set() method. The details will be described later.

code

// if modulo 4 of entl is 0, return 1
int ISCaseB4_mod4_0(int cntl, int st) { return ((cntl % 4) =0); }

}

Decision functions to determine behavior of conditional ports are defined here. The
function must have two int type arguments. One is for a value of a control port, and the
other is for a value of the I/O port status. This function must return TRUE (1) or
FALSE (0) value.

cStatOutput0.Set((const char®)fullName(),
"control”,
"statOutput0”,
"ISCaseB4_mod4_0",
(EVALFUNC)ISCaseB4_mod4_0,
&statOutputQ);

1dfCntl::Set() method stores dataflow control staffs in its object.

11

void CntlState::Set(const char* starName,
const char* cntlName,
const char* stateName,
const char* funcName,
EVALFUNC func,
IntState* stat)
starName --- star name. fullName method may be used.
CntlName -:* control port name
stateName -*- internal state name
funcName -+ decision function name
func ‘- pointer to the decision function. The data type is EVALFUNC.
stat *-- pointer to the internal state data

outputO.setIDFParams(n,control,IDF_TRUE,cStatOutputO,n- 1);

PortHole::setIDFParams() method sets the relation of this port with associated porthole
and dataflow control staffs.

void PortHole:: setIDFParams(int n,
PortHole control,
IDFRelation rel,
1dfCntl cStat,
int n-1);
n -~ number of input tokens
control -+ control port
rel -+ Specify the relation of this port with the result of the evaluation function.
DF_TRUE : produce/consume data only when the result of evaluation function is
TRUE.
DF_FALSE : produce/consume data only when the result of evaluation function is
FALSE.
CStat --- 1dfCntl data

n-1 -+ buffer size

go
{
int i;
int n = int(N);
// read control value, and route input to output depending on it.
int cntl = int(control%0);
// do conditional outputs
if(cStatOutput0.eval(cntl) = IDF_TRUE)
{for(= 0; i < n; i++) { output0%i = input%i; } }

12

In the go method(), behavior of this actor is defined. In CaseB star, conditions of each
conditional port are evaluated, and if the condition is TRUE, the port is activated.

4. CODE GENERATION
4.1. C Code Generation

The IDF model of computation is implemented on code generation for the C
programming language. The idf-CGC target, added to the members in the CGC target
list, supports program graphs that contain SDF and IDF stars.

4.1.1. idf-CGC Target

The idf-CGC target supports the IDF medel of computation. It must be used when
IDF stars are present in the program graph. It can also be used with program graphs
that contain only SDF stars. It does not support program graphs with BDF stars,
however, the program graphs can be re-used, when the BDF stars are replaced with the
same functional IDF stars. CGCISelect and CGCISwitch stars are prepared for this
purpose. The idf-CGC target supports single processors. The idf-CGC target has the
same parameters as the bdf-CGC target.

The idf-CGC program graphs are similar to the bdf-CGC. This is because the IDF
dataflow control method originally comes from the BDF. However, IDF program graphs
are more concise and explicit than BDF.

4.1.2. CGC/IDF Stars

IDF stars are used for conditionally routing data and looping and repeating. IDF
stars require the idf-CGC target, because the stars require the IDF (BDF) scheduler
and IDF dataflow control mechanism. Unlike their simulation counterparts, these stars
can only transfer single tokens in one firing.

(DISelect
If the value on the control line is nonzero (TRUE), truelnput is copied to the output;
otherwise, falseInput. This star is equivalent to the Select star in CGC/BDF stars.

(2)ISwitch

This star switches an input token to one of two outputs, depending on the value of the
control input. If the value on the control line is nonzero (TRUE), input is copied to the
trueOutput; otherwise, falseOutput. This star is equivalent to the Switch star in
CGC/BDF stars.

(3)ICaseB4

This star is an example of CGC/IDF stars. This star switches an input token to one of
4 outputs, depending on the value of the control input. Modulo of 4 of the control input
is currently implemented on evaluation functions to switch the input token.

(4)ICaseE4
This star is an example of CGC/IDF stars. This star selects one of 4 inputs, and copies

13

it to the output, depending on the value of the control input. Modulo of 4 of the control
is currently implemented on evaluation functions to select the input token.

ICaseBn and ICaseEn stars can form a case structure of dataflow corresponding to
switch-case structure in C/C++ programs. See a demo of ICase4-demo

(5)ILoop

This star forme a loop structure. At the beginning of loop process, the stare receives a
loop count from the set port, and a data token from input. During the loop process, the
data token is put out from loopFor port, and put in from loopBack port. Stars on the
path between loopFor and loopBack represent the loop process imposed on the looped
token. At the end of the loop, the processed token is sent out from output port.

CntlInl, cntlInO and cntlOut ports are used only to determine star schedule by the
IDF (BDF) scheduler. Its connection must be the same as a loop structure
demonstration of ILoop-demo. This restriction comes from the BDF scheduler, which is
an original of the IDF scheduler. At run time, tokens from the control port are not
necessary, and are discarded.

(6)IRepeatB

This star is an example of CGC/IDF stars. This star receives one token, and sends the
token out repeatedly. The repeat count depends on set port value. If the set port value
is N, the input token is sent to output N times. The input and set ports receives a token
respectively at the beginning of repeat. The control port is used only to determine a star
schedule by the IDF (BDF) scheduler. At run time, tokens from the control port are not
necessary, and are discarded.

(NIRepeatE

This star is an example of CGC/IDF stars. This star receives tokens repeatedly from
the input port, sums them, and sends the result out from the output port. The repeat
count depends on the value of the set port. If the set port value is N, N input tokens are
received, and one result is sent to the output port. The set ports receives a token at the
beginning of repeat. The output port sends a token out at the end of the repeat. The
control port is used only to determine star schedule by the IDF (BDF) scheduler. In the
execution, tokens from the control port are discarded.

The IRepeatB and IRepeatE stars can form a repeat process, in which each token
produced by IRepeatB is processed by functional stars on the datapath between
IRepeatB and IRepeatE stars. The IRepeatE star collects the processed tokens.

4.1.3. CGC/IDF demos
(D)if ThenElse
The ifThenElse demo is equivalent to the ifThenElse demo. Difference between the

both is that the Switch and Select stars are replaced with the ISwitch and ISelect stars.
Results of the both are the same.

14

Fig. 13 ifThenElse demo in CGC/IDF

(2)Case

The Case-demo shows an example of a case structure in program graphs. Source data
from the ITDUniform star are switched to one of four Gain stars. The switching depends
on the value of the control line of the ICaseB4 and ICaseE4 stars. The ICaseE4 star
selects data through a gain. Two graphs show input and output data.

| AVMH

L=
!ﬂ,’"‘

g

i Teird

Fig. 14 Case demo in CGC/IDF

(3)Loop

The Loop demo shows an example of a loop structure in program graphs. The ILoop
star read a source data from the IIDUniform star at the beginning of a loop process. At
the same time, a loop count is also read from the set port. The data go round on the loop
path between the loopFor and loopBack ports. At the end of loop, the locoped data is put
out from the output port. Two graphs show input and output data to/from the loop.
CntlInl, cntlinO and cntlOut ports are used only to determine star schedule by the IDF
(BDF) scheduler. Its connection must be the same as a loop structure demonstration of

15

the Loop demo. This restriction comes from the BDF scheduler, which is an original of
the IDF scheduler. At run time, tokens from the control port are discarded.

Fig. 156 Loop demo in CGC/IDF

(4)Repeat

The Repeat demo shows an example of a repeat structure in program graphs. The
IRepeatB star receives one data token from its input port, and a repeat count from its
set port. The star sends the data tokens repeatedly. IRepeatE star sums the tokens
through the Gain star. Two graphs show input and output data to/from the repeat. The
paths to control ports of the IRepeatB and IRepeatE stars are necessary, because of
restriction of the BDF (IDF) scheduler. At run time, tokens on the control path are
discarded.

16

=]
it

Fa
v v

Fig. 16 Repeat demo in CGC/IDF

4.1.4. Writing CGC/IDF stars
Description of CGC/IDF stars also obeys to rules of writing CGC stars. Additional
descriptions are required to let the IDF (BDF) scheduler know dataflow control staffs

and to control dataflow at run time.
For convenience, the ICaseB4 star is shown as an example of writing CGC/IDF stars.

name {ICaseB4}
domain { CGC}

The definitions of the star name and domain are common among all stars. The domain

name is "CGC".

input

{

name { control }

type {int }

desc { control to select one out of conditional outputs }

}

Definition of input and output ports is also common among all stars. The star writer
must be careful that the control port, whose value is used to determine behavior of a

conditional port, must be a type of "int".

defstate

{
name { statOutput0 }
type {int }

default {0}

17

attributes { A_NONCONSTANT }
desc { state variable of outputO }
}

State of conditional I/O ports, which are also used to determine behavior of a
conditional port, should be defined in the defstate method. Its type is also a type of "int".
Its values would be changed, so its attribute is usually "A_NONCONSTANT".

hinclude { " 1dfCntL.h" }

Including a header file, " 1dfCntLh", is currently mandatory, except for BDF-like stars
such as the ISwitch and ISelect stars.

protected

{
1dfCntl cStatOutputO;

......

The 1dfCntl class is defined in "IdfCntl.h". Each conditional port needs CntlState class
data to let the IDF scheduler know dataflow control staffs of the conditional port
through the IDFPortHole::Set() method. The details will be described later.

codeblock(evalFunction)

int $sharedSymbol(ICaseB4,ICaseB4_mod4_0)(int cntl, int st)
{ return ((cntl % 4) == 0); }

Decision functions to determine behavior of conditional ports are defined here. The
function must have two int type arguments. One is for a value of a control port, and the
other is for a value of the I/O port status. This function must return TRUE (1) or
FALSE (0) value. Be careful that the function name is defined by using
$sharedSymbol() macro. This is because the evaluation functions are written as a
global code in generated programs.

method
{

name { notone }

type {int }

arglist { "(CGCPortHole& port)" }
code

{
return (port.numinitDelays() > 1 | | port.far()->numXfer(> 1);

}

18

}

This method is used to check the number of particle consumed or produced at portholes,
and return FALSE (0) if not one. This is because porthole can consume or produce only
one particle when it fires. This is the same as CGC/BDF stars. This method will appear
in a setup method of the star, and be necessary to avoid unexpected result.

setup
{
if(notone(input) | | notone(control) | |
notone(output0) | | notone(outputl) | |
notone(output2) | | notone(output3))
{
Error::abortRun(*this,
"Non-unity buffers connected to a switch not yet supported");

}
(CONTINUED)

In the setup method of the star, function of notone() appears, first. This function is
described above. It is wise to stop run, if the result of this function is FALSE (0), or
unexpected result would worry you.

else

// make all the buffers overlap.
input.embed(output0,0);

embed() method is described in "Buffer Embedding" in CGC Domain section in
"Ptolemy Programmer's Manual".

cStatOutput0.Set((const char*)fullName(),
"control",
"statOutput0”,
(const char*)evalFuncSymbol("ICaseB4","ICaseB4_mod4_0"),
EVALFUNC)DUMMY_EVALFUNC,
&statOutput0);

1dfCntl::Set() method stores dataflow control staffs in its object.

void CntlState::Set(const char* starName,
const char* cntiName,
const char* stateName,
const char* funcName,
EVALFUNC func,
IntState* stat)

19

starName ‘- star name. fullName method may be used.

CntlName --* control port name

stateName °-- internal state name

funcName --- decision function name. It is OK to write "DUMMY_EVALFUNC".

func -+ pointer to the decision function. The data type is EVALFUNC. Use the
function, evalFuncSymbol(char*, char*), to pass the name. Arguments of the
function must be the same as the $sharedSymbol() macro in the evaluation function
definition.

stat -** pointer to the internal state data

// set relation
outputO.setRelation(DF_TRUE, &control, &cStatInput0);

PortHole::setRelation() method sets the relation of this port with associated porthole
and dataflow control staffs.

void PortHole::setRelation(DFRelation relation, DynDFPortHole* assoc, CntlState*
stat)

relation ... Specify the relation of this port with the result of the evaluation function.
DF_TRUE : produce/consume data only when the result of evaluation function is
TRUE.

DF_FALSE : produce/consume data only when the result of evaluation function is
FALSE.

initCode

// add code of evaluation functions to the code stream
addGlobal(evalFunction);
¥

In initCode method, the code block of the evaluation function must be added in the
global code section.

The ICaseB4 star does not have go() method. The star writer can freely write codes in -
go and wrapup methods. The writers must obey to rules of writing IDF stars.
Description of go method usually consists of data receive section, state change section
and data send section, and these sections appear in this order.

4.2. DSP Code Generation

The IDF model of computation is implemented on code generation for the Motorola
56000 assembler language. The idf-CG56 target, added to the members in the CG56
target list, supports program graphs that contain CG56/SDF and CG56/IDF stars.

20

The CG56 domain did not have method of conditional execution of stars. This
sometimes restricts programmability. Now you can draw flexible program flows of
assembler programs.

4.2.1.idf-CG56 Target

The idf-CG56 target supports the IDF model of computation. It must be used when
CGB6/IDF stars are present in the program graph. It can also be used with program
graphs that contain only CG56/SDF stars. The IDF scheduler support the BDF model
of computation, so that BDF-like stars also can be used. CG56ISelect and CG56ISwitch
stars have similar functions to BDF stars. The idf-CG56 target supports single
Processors.

4.2.2. CG56/IDF Stars

CG56/IDF stars are used for conditionally routing data and looping and repeating.
CG56/IDF stars require the idf-CG56 target, because the stars require the IDF (BDF)
scheduler and IDF dataflow control mechanism. Unlike their simulation counterparts,
these stars can only transfer single tokens in one firing.

(1)1Select
If the value on the control line is nonzero (TRUE), truelnput is copied to the output;
otherwise, falseInput.

(2)ISwitch

This star switches an input token to one of two outputs, depending on the value of the
control input. If the value on the control line is nonzero (TRUE), input is copied to the
trueOutput; otherwise, falseOutput.

(8)ICaseB4 -

This star is an example of CG56/IDF stars. This star switches an input token to one of
4 outputs, depending on the value of the control input. In this example, if control is one,
the star send input to the output-1 port

(4)ICaseE4

This star is an example of CG56/IDF stars. This star selects one of 4 inputs, and copys
it to the output, depending on the value of the control input.

ICaseBn and ICaseEn stars can form a case structure of dataflow corresponding to
switch-case structure in C/C++ programs. See a demo of case4

(5)ILoop

This star forms a loop structure. At the beginning of loop process, the stare receives a
loop count from the set port, and a data token from input. During the loop process, the
data token is put out from loopFor port, and put in from loopBack port. Stars on the
path between loopFor and loopBack represent the loop process imposed on the looped
token. At the end of the loop, the processed token is sent out from output port.

CntlInl, entlInO and cntlOut ports are used only to determine star schedule by the

21

IDF (BDF) scheduler. Its connection must be the same as a loop structure
demonstration of ILoop-demo. This restriction comes from the BDF scheduler, which is
an original of the IDF scheduler. At run time, tokens from the control port are not
necessary, and are discarded.

(6)IRepeatB :

This star is an example of CG56/IDF stars. This star receives one token, and sends
the token out repeatedly. The repeat count depends on set port value. If the set port
value is N, the input token is sent to output N times. The input and set ports receives a
token respectively at the beginning of repeat. The control port is used only to determine
a star schedule by the IDF (BDF) scheduler. At run time, tokens from the control port
are not necessary, and are discarded.

(7)IRepeatE

This star is an example of CG56/IDF stars. This star receives tokens repeatedly from
the input port, sums them, and sends the result out from the output port. The repeat
count depends on the value of the set port. If the set port value is N, N input tokens are
received, and one result is sent to the output port. The set ports receives a token at the
beginning of repeat. The output port sends a token out at the end
of the repeat. The control port is used only to determine star schedule by the IDF (BDF)
scheduler. In the execution, tokens from the control port are discarded.

The IRepeatB and IRepeatE stars can form a repeat process, in which each token
produced by IRepeatB is processed by functional stars on the datapath between
IRepeatB and IRepeatE stars. The IRepeatE star collects the processed tokens.

(8)IRepeat
This star realizes repeat process by only one star.

4.2.3. CG56/IDF demos
(1ifthenelse
The ifthenelse demo is equivalent to the BDF ifThenElse demo. Difference between

the both is that the Switch and Select stars are replaced with the ISwitch and ISelect
stars. Results of the both are the same.

22

Comst

Fig. 17 ifThenElse demo in CG56/IDF

(2)Cased

The case4 shows an example of a case structure in program graphs. Source data from
the IIDUniform star are switched to one of four Gain stars. The switching depends on
the value of the control line of the ICaseB4 and ICAseE4 stars. The ICaseE4 star
selects data through a gain. Two graphs show input and output data.

iy

WHL:‘(|21 j:

()

Fig. 18 Case4 demo in CG56/IDF

(3)Loop

The Loop demo shows an example of a loop structure in program graphs. The ILoop
star read a source data from the IIDUniform star at the beginning of a loop process. At
the same time, a loop count is also read from the set port. The data go round on the loop
path between the loopFor and loopBack ports. At the end of loop, the looped data is put
out from the output port. Two graphs show input and output data to/from the loop.
CntlInI, entlInO and cntlOut ports are used only to determine star schedule by the IDF
(BDF) scheduler. Its connection must be the same as a loop structure demonstration of
ILoop-demo. This restriction comes from the BDF scheduler, which is an original of the
IDF scheduler. At run time, tokens from the control port are discarded.

23

Barpit |

Fig. 19 Loop demo in CG56/IDF

(drepeat

The repeat shows an example of a repeat structure in program graphs. The IRepeat
star receives one data token from its input port, and a repeat count from its set port.
The star sends the data tokens to beginRep port repeatedly. IRepeat star sums the
tokens from endRep port. Two graphs show input and output data to/from the repeat.
The paths to control ports of the IRepeat star are necessary, because of restriction of the
BDF (IDF) scheduler. At run time, tokens on the control path are discarded.

24

L]
i
&
in

N,
Fig. 20 Repeat demo in CG56/IDF

4.2.4. Writing CG56/IDF stars

Description of CG56/IDF stars also obeys to rules of writing CG56 stars. Additional
descriptions are required to let the IDF (BDF) scheduler know dataflow control staffs
and to control dataflow at run time.

For convenience, the ICaseB4 star is shown as an example of writing CG56/IDF stars.

name {1CaseB4 }
domain {CG56}

The definitions of the star name and domain are common among all stars. The domain
name is "CG56".

input
{

name {conirol}

type {int}

desc {control to select one out of conditional outputs }
}

Definition of input and output ports is also common among all stars. The star writer
must be careful that the control port, whose value is used to determine behavior of a
conditional port, must be a type of "int".

defstate

25

name { statOutputO }

type {int}

default {0}

attributes { A_NONCONSTANT|A_YMEM|A_RAM}
desc { state variable of output0 }

}

State of conditional 1/0 ports, which are also used to determine behavior of a
conditional port, should be defined in the defstate method. Its type is also a type of "int".
Its values would be changed, so its attribute is usually "A_NONCONSTANT". The
important thing is to assign a memory space to this state, so set the arribute to
"A_YMEM|A_RAM", for example.

hinclude { "1dfCntlh" }

Including a header file, "IdfCntLh", is currently mandatory, except for BDF-like stars
such as the ISwitch and ISelect stars. :

protected

{
IdfCntl cStatInput0;

The 1dfCntl class is defined in "IdfCntlh". Each conditional port needs 1dfCntl class
data to let the IDF scheduler know dataflow control staffs of the conditional port
through the IDFPortHole::Set() method. The details will be described later.

method
{
name { notone }
type {int }
arglist { "(CG56PortHole& port)" }
code
{
return (port.numlInitDelays() > 1 | | port.far()->numXfer() > 1);
}
}

This method is used to check the number of particle consumed or produced at portholes,
and return FALSE (0) if not one. This is because porthole can consume or produce only
one particle when it fires. This is the same as CGC/BDF stars. This method will appear
in a setup method of the star, and be necessary to avoid unexpected result.

setup

26

{
if(notone(input) | | notone(control) | |

notone(output0) | | notone(outputl) | |
notone(output2) | | notone(output3))
{
Error::abortRun(*this,
"Non-unity buffers connected to a switch not yet supported™);

}
(CONTINUED)

In the setup method of the star, function of notone() appears, first. This function is
described above. It is wise to stop run, if the result of this function is FALSE (0), or
unexpected result would worry you.

else
{
!/ set control/status functions
cStatOutput0.Set((const char*)fullName(),
"control”,
"statOutput0”,
(const char*)evalFuncSymbol("ICase”,"SUB_CntlEq0"),
(EVALFUNC)DUMMY_EVALFUNC,
&statOutput0);

CntlState::Set() method stores dataflow control staffs in its object.

void CntlState::Set(const char* starName,
const char* portName,
const char* stateName,
const char* funcName,
EVALFUNC efunc,
IntState* state)

starName ... this star name

portName ... control port name

stateName ... port state name

funcName ... evaluation function name

efunc ... pointer to an evaluatin function. It is OK to write "DUMMY_EVALFUNC".
state ... state variable

// set relation
output0.setRelation(DF_TRUE, &control, &cStatInput0);

PortHole::setRelation() method sets the relation of this port with associated porthole
and dataflow control staffs.

27

void PortHole::setRelation(DFRelation relation, DynDFPortHole* assoc, CntlState*
stat)

relation ... Specify the relation of this port with the result of the evaluation function.
DF_TRUE : produce/consume data only when the result of evaluation function is
TRUE.
DF_FALSE : produce/consume data only when the result of evaluation function is
FALSE.

initCode

/I add code of evaluation functions to the code stream
addProcedure(COD_CntlEq0,"$sharedSymbol(ICase,SUB_CntlEq0)");

}

In initCode method, the code block of the evaluation function must be added in the
procedure code section.

go
{
/1 If embed() method is available, 'copy' codeblock is not necessary.

addCode(copy);
}

In the go method, behavior of the star is described.

codeblock(copy)
{

}
Obey how to write CG56 codeblock.
codeblock(COD_CntlEq0)

{

org y:

$label(CData)
de 1 ; constant data: 1
org p:

$sharedSymbol(ICase,SUB_CntlEql)
move y:$label(CData),x1 ;load 1
cmp xl,a ; compare
rts ; return

28

'‘COD_CntlEq0' codeblock is a description of an evaluation function. The function is
user-definable. The rule is (1)The evaluation function must be a subroutine, because
this instruction block is called as a subroutine. (2)When it returns, the condition code Z
must reflect the result of the evaluation, ie, Z=1 and Z=0 mean TRUE and FALSE,
respectively.

5. CONCLUSION

In this report, integer-controlled dataflow (IDF) and its code generation applications
in Ptolemy are presented. The IDF model of computation is built on BDF with the
introduction of a decision function. The IDF schedule is static and conditional, so that
memory requirement is determined at compile-time. IDF supports code generation.
This enables code generation from program graphs that include conditional jumps,
loops and repetitions, and greatly improves the practical usability of the program
synthesis in Ptolemy.

ACKNOWLEDGEMENT
The author is grateful to Prof. Edward A. Lee of U.C. Berkeley, and to Brian Evans
currently of University of Texas at Austin and Jose Luis Pino currently of HP.

REFERENCE

(1] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A framework for
simulating and prototyping heterogeneous systems,” International journal of Computer
Simulation, special issue on Simulation Software Development, vol. 4, pp. 155-182,
1994.

[2] E. A. Lee and D. G. Messerschmit, “Synchronous data flow,” Proceedings of the
IEEE, vol. 75, no. 9, pp. 1235-1245, 1987.

[3] E. A. Lee, “Consistency in Dataflow Graphs,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 2, No.2, April 1991.

[4] D. G. Messerschmitt, “Structured Interconnection of Signal Processing Programs,”
Globecom, Atlanta, Georgia, 1984.

[5]D. G. Messerschmitt, “A Tool for Structured Functional Simulation,” IEEE Journal
on Selected Areas in Communications, vol. SAC-2 no. 1, 1984.

[6] J. Buck and E. A. Lee, “Scheduling Dynamic Dataflow Graphs With Bounded
Memory Using the Token Flow Model,” Proc. Of ICASSP’93, 1993.

[7] J. Buck, “Scheduling Dynamic Dataflow Graphs With Bounded Memory Using the
Token Flow Model,” Memorandum No. UCB/ERL M93/69 (Ph.D. Thesis), EECS Dept.,
University of California, Berkeley, September 1993.

[8] J. T. Buck, “Static Scheduling and Code Generation from Dynamic Dataflow Graphs
with Integer-Valued Control Systems,” Proc. of IEEE Asilomar Conf on Signals,
Systems, and Computers, Oct. 31, 1994,

[9) J. L. Pino, S. Ha, E. A. Lee and J. T. Buck, “Software Synthesis for DSP Using
Ptolemy,” Journal of VLSI Signal Processing, 9, 7-21, 1995.

29

{10} S. Ritz, M. Pankert, V. Zivojnovie and H. Meyr, “High level software synthesis for
the design of communication systems,” IEEE Journal on Selected Area in

Communications, pp. 348 - 358, Apr. 1993.
[11] M. Willems, M. Pankert and S. Ritz, “Fine grain code synthesis within a block
diagram oriented code generation environment,” Proc. of ICASSP, Detroit, 1995.

30

	Copyright notice 1997
	ERL-97-21

