

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

INTEGER-CONTROLLED DATAFLOW IN

PTOLEMY

by

Takashi Miyazaki

Memorandum No. UCB/ERL M97/21

19 March 1997

INTEGER-CONTROLLED DATAFLOW IN

PTOLEMY

by

Takashi Miyazaki

Memorandum No. UCB/ERL M97/21

19 March 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Integer-Controlled Dataflow in Ptolemy

Takashi Miyazaki t

Department ofElectrical Engineering and Computer Sciences
University of California at Berkeley

ABSTRACT

In this report, integer-controlled dataflow (IDF) and its code generation applications
in Ptolemy are presented. The IDF model of computation is built on BDF with the
introduction of a decision function. The IDF schedule is static and conditional, so that
memory requirement is determined at compile-time. IDF supports code generation.
This enables code generation from program graphs that include conditional jumps,
loops and repetitions, and greatly improves the practical usability of the progfram
synthesis in Ptolemy.

+Visiting Industrial Fellow from Information Technology Research Laboratories, NEC
Corporation, from September 1, 1995 to August 31, 1996.

1. INTRODUCTION
Ptolemy [1] is a firamework for simulation, prototyping and software synthesis for

heterogeneous systems. In Ptolemy, a systemis specified by dataflow graphs in which
nodes represent computational actois and data tokens flow between them along the
arcs of the graph. Algorithms with controlflow that is completely deterministic can be
effectively represented by using the synchronous dataflow (SDF) modelofcomputation
[2]. In SDFgraphs, each actor consumes and produces a constant number of tokens at
every firing. The advantage of the SDF model is that it is possible to determine the
execution order of actors (schedule) and memory requirements at compile time.
However, data-dependent decision-making at run-time is required in many digital
s^nal processing algorithms. Dsmamic dataflow (DDF) [4, 5] is a data-driven model
that includes asynchronous operations. The DDFmodel is usable, but the overhead of
run-time scheduling is excessive.

To preserve the compile-time scheduling properties of SDF but permit data-
dependent execution, Boolean-controlled dataflow (BDF) [6, 7] was developed. The
BDF modelofcomputation extends the SDF model to permit data movement to depend
on the values of certain Boolean tokens in the system. The BDF model is successfully
applied to simulation and C programsynthesis in Ptolemy. Limiting control variables
to binary values, however, overly restrictive. A generalization to integer control
variables has been proposed [8].

In this report, integer-controlled dataflow (IDF) and its code generation
implementation in Ptolemy are presented. The IDF graphs, which include IF, CASE,
REPEAT and LOOP control structures, support not only simulation but also code
generation. C and DSPassemblerprogramswith the IDFstructure can be synthesized.

2. INTEGER-CONTROLLED DATAFLOW
2.1. Model of Computation

Concept of Integer-controlled dataflow is originally presented in [8]. In this report,
the IDF model ofcomputation implemented in Ptolemy is explained.

In IDF, dataflow is controlled by integer values of a control token and / or a state of
an actor (Star). An IDF actor has a control port which receives a control token and its
own internal state, as shown in Fig. 1. Behavior ofan IDF actor, such as data input port
selection, computation in the actor and output port selection, is determined by both or
one of the integer values of the control token and the internal state at run-time.

Control

Actor

Data
state

Data

Fig. 1 IDF Actor

IDF dataflow graphs can describe a variety of dataflow control, for instance,
BRANCH, CASE. REPEAT and LOOP.

(l)BRANCH QF) and CASE
BRANCH is a general case ofIF. Fig. 2 and Fig. 3 show two cases ofBRANCH, such

as data switching anddata selection, respectively. CASE-Begin and CASE-End are IDF
actors. CASE-Begin actor chooses an output port by the integer value of the control
token, and sends the input data token to the selected output port. CASE-End forms a
reverse structure of CASE-Begin. CASE-End actor receives an input token from the
selected input port, and send it to the output port.

control

r-4(—

o

to
<0

data —^^

s

control

Fig. 2 CASE-Begin

i
1

w

Fig. 3 CASE-End

data

A CASE structure shown in Fig. 4 is a counterpart of switch-case statements in C
programs. Two IDF actors. CASE-Begin and CASE-End, forms the CASE structure,
and controlled by the same integer control token. In this example, data tokens go
through one of four conditional branches.

data
i
6d

OQ

O
Fig. 4 CASE

O

9

(2)REPEAT
REPEAT actors express repetition of actor execution in dataflow graphs. REPEAT-

Begin and REPEAT-End actors shown in Fig. 5 and Fig. 6 work as controllers of
beginning and ending of repetitions, respectively. REPEAT-Begin actor reads the
number ofrepetition and an input data token at the beginningofrepetition, and sends
out output data tokens iteratively in the number of repetition count. REPEAT-End
actor reads the number of repetition at the beginning of repetition. It receives input
data tokens iteratively, and sends out an output token at the end of repetition. REAET
actors are different from multi-rate actors, because each repetition is counted as one
iteration of actor execution. Actors which follow the REPEAT-Begin actor or are
followed by the REPEAT-End actor may be executed at each repetition of REPEAT
actors.

Output data tokens of REPEAT-Begin and input data tokens of REPEAT-End are
definedby users, therefore, REPEATactors are customized. Current repetition count is
stored as an internal state. For example, an array data and its elements may be input
and output tokens of REPEAT-Begin. In the video processing, an image data is an
input, and block data are output.

number of

repetition

data

REPEAT-Begin

state

Fig. 5 REPEAT-Begin

number of

repetition

data

REPEAT-End

Fig. 6 REPEAT-End

REPEAT actor, which combine REPEAT-Begin and REPEAT-End, expresses a
repeat structure in dataflow graphs, as shown in Fig. 7. This actor receives the number
of repetition and an input data token at the beginning of repetition. During repetition,
data tokens go through the loop path, and an output data token are put out from the
output port.

number of

repetition

data REPEAT

state

Fig. 7 REPEAT

^ repeat path

(3)L00P
LOOP actor realizes a loop structure in dataflow graphs. Fig. 8 shows an example of

the loop. LOOP actor receives the number of loop counts and an input data token at the
beginning of loop. The data token goes on the loop path iteratively up to loop counts,
and gets out from the output port at the end of loop.

The differences between LOOP and REPEAT are that one data token is repeatedly
processed by actors on the loop path in the loop structure, on the other hand, tokens
divided from an original input data token are put on the repeat path, and summed up
to be an output data token in the REPEAT.

number of

repetition

data LOOP

Fig. 8 LOOP

loop path

2.2. Scheduling and Control of Dataflow in Rolemy
IDF is implemented as one of model ofcomputation (Domain) in Ptolemy. The IDF

Domain is derived fix)m the BDF Domain. Therefore IDF inherits most of BDF
properties.

IDF uses the BDF scheduler as its own scheduler to determine static execution order
of actors. Therefore, the performance of actor scheduling in IDF is the same of BDF.
Details of BDF is described in [7].

In order to realize IDF dataflow control on the BDF dataflow control mechanism, a
decision function is attached to each conditional input/output port. The decision
function evaluates integer values ofan integer controltoken from a controlport and an
internal state, and return TRUE or FALSE value. The TRUE/FALSE value is used to
control conditional input/output ports.

The decision function is user-defined. As described, the decision fiinction estimates
two values ofinteger controltoken fix)m a controlport and an integer internal status in
an actor. The control token is used to manage the IDF actor firom outside. The internal
status is used to manage the IDF actor from inside. For example, CASE-Begin and
CASE-End actors are controlledby only the control token. On the other hand, REPEAT
and LOOP actors are controlled by only the internal status, which stores loop counts.

Integer

control token

state

Decision

Function TRUE/

FALSE

data

Conditional I/O port

(BDF dataflow control)

g. 9 Mechanism of Dataflow Control in IDF
Fi

3. Simulation

3.1. Default-IDF Target
The default-IDF target supports the IDF modelofcomputation. It must be used when

IDF stars are present in the dataflow graph. It can also be used with graphs that
contain only SDF stars. It does not support graphs with BDF stars, however, the
graphs can be re-used, when the BDFstars are replaced with the same functional IDF
stars. ISelect and ISwitch stars are used for this purpose. The default-IDF target
supports single processors. The defavilt-idf target has the same parameters as the
default-bdf target.

3.2. IDF Stars

IDF stars are used for conditionally routing data and looping and repeating. IDF
stars require the IDF target, because the stars require the IDF scheduler and IDF
dataflow control mechanism.

(1)ISelect
If the value on the control line is nonzero (TRUE), truelnput is copied to the output;

otherwise, falselnput. This star is equivalent to the Select star in BDF stars.

(2)ISwitch
This star switches an input token to one of two outputs, depending on the value of the

control input. If the value on the control hne is nonzero (TRUE), input is copied to the
trueOutput; otherwise, falseOutput. This star is equivalent to the Switch star in BDF
stars.

(3)ICaseB4
This star is an example of IDF stars. This star switches an input token to one of 4

outputs, depending on the value of the control input. Modulo of 4 of the control input is
currently implemented on evaluation functions to switch the input token.

(4)lCaseE4
This star is an example of ITDF stars. This star selects one of 4 inputs, and copies it

to the output, depending on the value of the control input. Modulo of 4 of the control is
currently implemented on evaluation functions to select the input token.

ICaseBn and ICaseEn stars can form a case structure of dataflow corresponding to
switch-case structure in C/C++ programs. See a demo of lCase4-demo

(5)lLoop
This star forms a loop structure. At the beginning of loop process, the stare receives a

loop count from the set port, and a data token from input. During the loop process, the
data token is put out frx>m loopFor port, and put in frrom loopBack port. Stars on the
path between loopFor and loopBack represent the loop process imposed on the looped
token. At the end of the loop, the processed token is sent out from output port.

CntUnI, cntUnO and cntlOut ports are used only to determine star schedule by the
IDF (BDF) scheduler. Its connection must be the same as a loop structure
demonstration ofILoop-demo. This restriction comes from the BDF scheduler, which is
an original of the IDF scheduler. At run time, tokens from the control port are not
necessary, and are discarded.

(6)IRepeatB
This star is an example of IDF stars. This star receives one token, and sends the

token outrepeatedly. The repeat count depends on setport value. If thesetport value
is N, the input token issent tooutput Ntimes. The input and setports receives a token
respectively at thebeginning ofrepeat. The control portisused only todetermine a star
schedule by the IDF scheduler. At run time, tokens fium
the controlport are not necessary, and are discarded.

(7)IRepeatE
This star is an example ofIDF stars. This star receives tokens repeatedly finm the

inputport, sums them, andsends the resultoutfrom the output port. The repeat count
depends on the value of the set port. If the set port value is N, N input tokens are
received, andone resultis sent to the outputport. The set ports receives a token at the
beginning ofrepeat. The output port sends a tokenout at the end
of the repeat. The control port is used only to determine star schedule by the IDF
scheduler. In the execution, tokens from the control port are discarded.

The IRepeatB and IRepeatE stars can form a repeat process, in which each token
produced by IRepeatB is processed by fiinctional stars on the datapath between
IRepeatB and IRepeatE stars. TheIRepeatE star collects the processed tokens.

3.3. Demos

(l)CASE
The CASE demo shown in Fig. 10 is an example of a case structure in dataflow

graphs. Source data from the Const star are switched to one of four Gain stars. The
switching depends on the value of the control tokens from the IIDUniform star. The
ICaseB4 and ICaseE4 stars choose one of four data path. Two windows appear to show
input and output data.

CWLl

imuL.

Fig. 10 CASE demo in IDF simulation

8

(2)REPEAT
The repeat demo is shown in Fig. 11. Two REPEAT actors, IRepeatB and IRepeatE

form a repeat loop. These REPEAT stars read the common repetition count at the
beginning ofrepeat. Thedata path composed ofIFork2 and Delay is necessary forthe
IDF (BDF) scheduler to determine a star schedule, however, at run-time, data on this
path is not used. This path should be invisible to avoid unexpected confusion.

IDtMam. rttfiurt

I

IBJM

; "V 1
A- •-

kST'

Fig. 11 REPEAT demo in IDF simulation

(3)L00P
A Loop demo is shown in Fig. 12. In this demo, data is amplified by Gainint Star. The

data path composed of IFork2 and Delay is necessary for the IDF (BDF) scheduler to
determine a star schedule, however, at run-time, data on this path is not used. This
path should be invisible to avoid unexpected confusion.

TKRat

mama

ns3^

usudEsim

Gatiirt

IFOCKZ

Fig. 12 LOOP demo in IDF simulation

3.4. Writing IDF stars
Description of IDF stars basically obeys to rules of writing other simulation stars.

Additional descriptions are required to let the IDF scheduler know dataflow control
staffe and to control dataflow at run-time.

For convenience, the ICaseB4 star is shown as an example of writing IDF stars.

name {ICaseB4}
domain {IDF}

The definitions of the star name and domain are common among all stars. The domain
name is "IDF".

input

{
name {control}
type {int}
desc {control to select one out of conditional outputs}

}

Definition of input and output ports is also common among all stars. The star writer
must be careful that the control port, whose value is used to determine behavior of a
conditional port, must be a type of "int".

hinclude {"IdfCntLh"}

Including a header file, "IdfCntLh", is currently mandatory, except for BDF-Hke stars

10

such as the ISwitch and ISelect stars. In the file, a dass data used for IDF dataflow
control is defined.

de&tate

{
name {statOutputO}
type {int}
default {0}
desc {state variable ofoutputO}

}

States of conditional I/O ports, which are also used to determine behavior of a
conditional port, should be defined in the defetate method. Its type is also a type of
"int".

protected
{

IdfCntl cStatOutputO;

}

The IdfCntl class is defined in "IdfCntLh". Each conditional port needs IdfCntl class
data to let the IDF scheduler know dataflow control stafife of the conditional port
through the IDFPortHole::SetO method. The details will be described later.

code

{
// if modulo 4 ofcntl is 0, return 1
int ISCaseB4_mod4_0(int cntl, int st) {return ((cntl % 4) = 0);}

}

Decision functions to determine behavior of conditional ports are defined here. The
function must have two int type arguments. One is for a value of a control port, and the
other is for a value of the I/O port status. This fiinction must return TRUE (1) or
FALSE (0) value.

cStatOutputO.Set((const char*)fuIlNameO,
"control",
"statOutputO",
"ISCaseB4_mod4_0",
(EVALFUNC)ISCaseB4^mod4_0,
&statOutputO);

IdfCntl::SetO method stores dataflow control stafife in its object.

11

void CntlState::Set(coiist char* starName,
const char* cntlName,
const char* stateName,
const char* fiincName,
EVALFUNC fiinc,
IntState* stat)

starName star name. fullName method may be used.
CntlName ••• control port name
StateName ••• internal state name

fiincName decision fiinction name

fiinc •• pointerto the decision function. Thedata type is EVALFUNC.
stat ••• pointer to the internal state data

output0.setIDFParams(n,control,IDF_TRUE,cStatOutputO,n-l);

PortHolei-.setlDFParamsO method sets the relationofthis portwith associated porthole
and dataflow control sta£&.

void PortHole:: setIDFParams(int n,
PortHole control,
IDFRelation rel,
IdfCntl cStat,
int n-1);

n ••• number of input tokens
control ••• control port
rel ••• Specify the relation ofthis port with the result ofthe evaluation function.

DF_TRUE : produce/consume data only when the result ofevaluation fiinction is
TRUE. ~

DF_FALSE : produce/consume data onlywhen the result ofevaluationfiinction is
FALSE.

CStat ••• IdfCntl data

n-1 ••• buffer size

go

{
int i;
int n = int(N);
// read control value, and route input to output depending on it.
int cntl = int(control%0);
// do conditional outputs
if(cStatOutput0.eval(cntl) = IDF_TRUE)
{for(i= 0; i < n; i++) {outputO%i = input%i;}}

12

In the go methodO, behavior of this actor is defined. In CaseB star, conditions of each
conditional port are evaluated, and if the condition is TRUE, the port is activated.

4. CODE GENERATION

4.1.0 Code Generation

The IDF model of computation is implemented on code generation for the C
programminglanguage. The idf-CGC tai^et, added to the members in the CGC tai^et
list, supports program graphs that contain SDF and IDF stars.

4.1.1. Idf-CGC Target
The idf-CGC target supports the IDF model of computation. It must be used when

IDF stars are present in the program graph. It can also be used with program graphs
that contain only SDF stars. It does not support program graphs with BDF stars,
however, the program graphs can be re-used, when the BDFstars are replaced with the
same functional IDF stars. CGCISelect and CGCISwitch stars are prepared for this
purpose. The idf-CGC target supports single processors. The idf-CGC target has the
same parameters as the bdf-CGC target.

The idf-CGC program graphs are similar to the bdf-CGC. This is because the IDF
dataflow control method originally comesfirom the BDF. However, IDF program graphs
are more concise and explicit than BDF.

4.1.2. CGC/IDF Stars

IDF stars are used for conditionally routing data and looping and repeating. IDF
stars require the idf-CGC target, because the stars require the IDF (BDF) scheduler
and IDF dataflow control mechanism. Unlike their simulation counterparts, these stars
can only transfer single tokens in one firing.

(1)ISelect
If the value on the control line is nonzero (TRUE), truelnput is copied to the output;
otherwise, falselnput. This star is equivalent to the Select star in CGC/BDF stars.

(2)ISwitch
This star switches an input token to one of two outputs, depending on the value ofthe

control input. If the value on the control line is nonzero (TRUE), input is copied to the
trueOutput; otherwise, falseOutput. This star is equivalent to the Switch star in
CGC/BDF stars.

(3)ICa8eB4
This star is an example of CGC/IDF stars. This star switches an input token to one of

4 outputs, depending on the value of the control input. Modulo of 4 of the control input
is currently implemented on evaluation functions to switch the input token.

(4)ICaseE4
This star is an example ofCGC/IDF stars. This star selects one of4 inputs, and copies

13

it to theoutput, depending on thevalue ofthe control input. Modulo of4ofthecontrol
is currently implemented onevaluation functions to selectthe input token.

ICaseBn and ICaseEn stars can form a case structure of dataflow corresponding to
switch-case structure in C/C++ programs. See a demo of ICase4-demo

(5)ILoop
Thisstar forms a loop structure. Atthe beginning ofloop process, the stare receives a

loop count from theset port, and a data token from input. During the loop process, the
data token isput out from loopFor port, and put in i^m loopBack port. Stars on the
path between loopFor and loopBack represent the loop process imposed on the looped
token. At the end of the loop, the processed token is sent out from output port.

CntUnl, cntUnO and cntlOut ports are used only to determine star schedule by the
IDF (BDF) scheduler. Its connection must be the same as a loop structure
demonstrationofILoop-demo. This restrictioncomes from the BDFscheduler, whichis
an original of the IDF scheduler. At run time, tokens from the control port are not
necessary, and are discarded.

(6)IRepeatB
This star is an exampleofCGC/IDF stars. This star receives one token, and sends the

tokenout repeatedly. The repeat count depends on set port value. If the set port value
is N, the input tokenis sent to output Ntimes. Theinput and set portsreceives a token
respectively at the beginningofrepeat. Thecontrol port is used onlyto determine a star
scheduleby the IDF (BDF) scheduler. At run time, tokens from the controlport are not
necessary, and are discarded.

(7)IRepeatE
This star is an example of CGC/IDF stars. This star receives tokens repeatedly from

the input port, sums them, and sends the result out from the output port. The repeat
count depends on the value of the set port. If the set port value is N, N input tokens are
received, and one result is sent to the output port. The set ports receives a token at the
beginning of repeat. The output port sends a token out at the end of the repeat. The
controlport is used only to determine star schedule by the IDF (BDF) scheduler. In the
execution, tokens from the control port are discarded.

The IRepeatB and IRepeatE stars can form a repeat process, in which each token
produced by IRepeatB is processed by functional stars on the datapath between
IRepeatB and IRepeatE stars. The IRepeatE star collects the processed tokens.

4.1.3. CGC/IDF demos

(l)ifThenElse
The ifThenElse demo is equivalent to the ifThenElse demo. Difference between the

both is that the Switch and Select stars are replaced with the ISwitch and ISelect stars.
Results of the both are the same.

14

. A .

Fig. 13 IfThenElse demo in CGC/IDF

(2)Case
The Case-demo shows an example ofa case structure in program graphs. Sourcedata

from the IIDUniform star are switched to one of four Gain stars. The switching depends
on the value of the control line of the ICaseB4 and ICaseE4 stars. The ICaseE4 star
selects data through a gain. Two graphs show input and output data.

caasa

flaMIMrt

Fig. 14 Case demo in CGC/IDF

(3)Loop
The Loop demo shows an example of a loop structure in program graphs. The ILoop
6t£ur read a source data from the IIDUniform star at the beginning ofa loop process. At
the same time, a loop count is also read from the set port. The data go round on the loop
path between the loopFor and loopBack ports. At the end of loop, the looped data is put
out fixjm the output port. Two graphs show input and output data to/from the loop.
CntUnI, cntUnO and cntlOut ports are used only to determine star schedule by the IDF
(BDF) scheduler. Its connection must be the same as a loop structure demonstration of

15

the Loop demo. Thisrestriction comes from the BDF scheduler, which is an original of
the IDF scheduler. At run time, tokens from the control port are discarded.

Mm

/mm
ilDuriigtm

FlaslTahl

Fig. 15 Loop demo in CGC/IDF

(4)Repeat
The Repeat demo shows an example of a repeat structure in program graphs. The

IRepeatB star receives one data token from its input port, and a repeat count from its
set port. The star sends the data tokens repeatedly. IRepeatE star sums the tokens
through the Gain star. Twographs show input and output data to/from the repeat. The
paths to control ports of the IRepeatB and IRepeatE stars are necessary, because of
restriction of the BDF (IDF) scheduler. At run time, tokens on the control path are
discarded.

16

ik.tnwiini
bmin.

•» » TH^-

C«n

e—
Fi|^. 16 Repeat demo in CGC/IDF

P

RailT in

1 •

•k_ _

. A .

D

4.1.4. Writing CGC/IDF stars
Description of CGC/IDF stars also obeys to rules of writing CGC stars. Additional

descriptions are required to let the IDF (BDF) schedulerknow dataflow control sta£&
and to control dataflow at run time.

For convenience, the lCa8eB4 star is shown as an example of writing CGC/IDFstars.

name {lCaseB4}
domain {CGC}

The definitions ofthe star name and domain are common among all stars. The domain
name is "CGC".

input

{
name {control}
type {int}
desc {control to select one out ofconditional outputs}

}

Definition of input and output ports is also common among all stars. The star writer
must be careful that the control port, whose value is used to determine behavior of a
conditional port, must be a type of "int".

defstate

{
name

type
default

{statOutputO}
{int}
{0}

17

attributes {A_NONCONSTANT}
desc {state variable of outputO}

}

State of conditional I/O ports, which are also used to determine behavior of a
conditional port, should bedefined in thedefetate method. Its type isalso a type of int.
Its valueswould bechanged, soits attribute is usually "A.NONCGNSTANT".

hindude {" IdfCntLh"}

Including a header fiile," IdfCntLh", is currently mandatory, except for BDF-like stars
such as the ISwitch and ISelect stars.

protected
{

IdfCntl cStatOutputO;

}

The IdfCntl class is defined in "IdfCntLh". Each conditional port needs CntlState class
data to let the IDF scheduler know dataflow control stafife of the conditional port
throughthe IDFPortHole::SetO method. The detailswillbe described later.

codeblock(evalFunction)

int $sharedSymbol(ICaseB4,ICaseB4_mod4_0)(int cntl, int st)
{return ((cntl % 4) = 0);}

}

Decision functions to determine behavior of conditional poits are defined here. The
fiinction must have two int type arguments. One is for a value of a control port, and the
other is for a value of the I/O port status. This function must return TRUE (1) or
FALSE (0) value. Be careful that the function name is defined by using
$sharedSymbolO macro. This is because the evaluation fiinctions are written as a
global code in generated programs.

method

{
name {notone}
type {int}
arghst {"(CGCPortHole& port)"}
code

{
return (port.nuniInitDelaysO >111 port.farO->numXferO > 1);

}

18

}

This method is used to check the number ofparticle consumed or produced at portholes,
and return FALSE (0) if not one. This is because porthole can consume or produce only
oneparticle whenit fires. Thisis the sameas CGC/BDF stars. Thismethod will appear
in a setup method of the star, and be necessary to avoidunexpectedresult.

setup

(
if(notone(input) I I notone(control) I I

notone(outputO) 1I notone(outputl) 1I
notone(output2) I I notone(output3))

{
Error:abortRun(*this,

"Non-unity buffers connected to a switch not yet supported");
}

(CONTINUED)

In the setup method of the star, function of notoneO appears, first. This function is
described above. It is wise to stop run, if the result of this function is FALSE (0), or
unexpected result would worry you.

else

{
// make all the buffers overlap.

input.embed(outputO,0);

embedO method is described in "Buffer Embedding" in CGC Domain section in
"Ptolemy Programmer's Manual".

cStatOutputO.SetCCconst char*)fuIlNameO,
"control",
"statOutputO",
(const char*)evalFuncSymbol("ICaseB4","ICaseB4_mod4_0"),
(EVALFUNC)DUMMY_EVALFUNC,
&statOutputO);

ldfCntl::SetO method stores dataflow control staffe in its object.

void CntlState::Set(const char* starName,
const char* cntlName,
const char* stateName,
const char* fiincName,
EVALFUNC func,
IntState* stat)

19

starName star name. fullName method may be used.
CntlName ••• control port name
stateName ••• internal state name

funcName —decision fiinction name. It is OK towrite "DUMMY.EVALFUNC".
fiine ••• pointer to the decision function. The data type is EVALFUNC. Use the

function, evaIFuncSymbol(char*, char*), to pass the name. A^mentsof the
function must be the same as the $sharedSymbolO macro in the evaluation fiinction
definition.

stat ••• pointer to the internal state data

// set relation
outputO.setRelationODF^TRUE, &control, &cStatInputO);

PortHole::setRelationO method sets the relation of this port with associated porthole
and dataflow control stafis.

void PortHole::setRelation(PFRelation relation, DynDFPortHole* assoc, CntlState*
stat)

relation... Specify the relation ofthis port with the result ofthe evaluation function.
DF_TRUE : produce/consume data only when the result ofevaluation function is

TRUE.

DF_FALSE : produce/consume data only when the result ofevaluation fiinction is
FALSE.

initCode

{
II add code ofevaluation functions to the code stream

addGlobal(evalFunction);

}

In initCode method, the code block of the evaluation function must be added in the
global code section.

The ICaseB4 star does not have goO method. The star writer can fireely write codes in
go and wrapup methods. The writers must obey to rules of writing IDF stars.
Description of go method usually consists of data receive section, state change section
and data send section, and these sections appear in this order.

4.2. DSP Code Generation

The IDF model of computation is implemented on code generation for the Motorola
56000 assembler language. The idf-CG56 target, added to the members in the CG56
target list, supports program graphs that contain CG56/SDF and CG56/IDF stars.

20

The CG56 domain did not have method of conditional execution of stars. This
sometimes restricts programmability. Now you can draw flexible program flows of
assembler programs.

4.2.1. idf-CG56 Target

The idf-CG56 target supports the IDF model ofcomputation. It must be used when
CG56/IDF stars are present in the program graph. It can also be used with program
graphs that contain only CG56/SDF stars. The IDF scheduler support the BDF model
ofcomputation, so thatBDF-like stars also can be used. CG56ISelect and CG56IS^tch
stars have similar functions to BDF stars. The idf-CGSB tai^et supports single
processors.

4.2.2. CG56/iDF Stars
CG56/IDF stars are used for conditionally routing data and looping and repeating.

CG56/IDF stars require the idf-CG56 target, because the stars require the IDF (BDF)
scheduler and IDF dataflow control mechanism. Unlike their simulation counterparts,
these stars can only transfer single tokens in one firing.

(1)ISelect
If the value on the control line is nonzero (TRUE), truelnput is copied to the output;

otherwise, falselnput.

(2)ISwitch
This star switches an input token to oneoftwooutputs, dependingon the value ofthe

control input. If the value on the control line is nonzero (TRUE), input is copied to the
trueOutput; otherwise, falseOutput.

(3)ICaseB4
This star is an exampleofCG56/IDF stars. This star switchesan input token to one of

4 outputs, depending on the value ofthe controlinput. In this example, if control is one,
the star send input to the output-1 port

(4)ICa8eE4
This star is an example ofCG56/IDF stars. This star selects one of 4 inputs, and copys

it to the output, depending on the value of the control input.
ICaseBn and ICaseEn stars can form a case structure of dataflow corresponding to

switch-case structure in C/C-h- programs. See a demo ofca8e4

(5)ILoop
This star forms a loop structure. At the beginning of loop process, the stare receives a

loop count firom the set port, and a data token firom input. During the loop process, the
data token is put out from loopFor port, and put in fix)m loopBack port. Stars on the
path between loopFor and loopBack represent the loop process imposed on the looped
token. At the end of the loop, the processed token is sent out firom output port.

CntUnI, cntUnO and cntlOut ports are used only to determine star schedule by the

21

IDF (BDF) scheduler. Its connection must be the same as a loop stru^re
demonstration ofILoop-demo. This restriction comes from the BDF scheduler, which is
an original of the IDF scheduler. At run time, tokens from the control port are not
necessaiy, and are discarded.

(6)IRepeatB
This star is an example ofCG56/IDF stars. This star receives one token, and sends

the token out repeatedly. The repeat count depends on set port value. If the set port
value is N, the input token is sent tooutputN times. Theinputand setportsreceives a
token respectively at thebeginning ofrepeat. The control portisused only todetermine
a star schedule by the IDF (BDF) scheduler. Atrun time, tokens from the control port
are not necessary, and are discarded.

(7)IRepeatE
Thisstar is an example ofCG56/IDF stars. Thisstar receives tokens repeatedly from

the input port, sums them, and sends the result out from the outputport. The repeat
count depends onthe valueofthe set port. If the set portvalue is N, N input tokens are
received, and oneresult is sent to the output port. The set ports receives a token at the
beginningofrepeat. The output port sends a token out at the end
ofthe repeat. Thecontrol port is usedonly to determine star schedule bythe IDF(BDF)
scheduler. In the execution, tokens from the control port are discarded.

The IRepeatB and IRepeatE stars can form a repeat process, in which each token
produced by IRepeatB is processed by frinctional stars on the datapath between
IRepeatB and IRepeatE stars. The IRepeatE star collects the processed tokens.

(8)IRepeat
This star realizes repeat process by only one star.

4.2.3. CG56/IDF demos

(l)ifthenelse
The ifthenelse demo is equivalent to the BDF ifPhenElse demo. Difference between

the both is that the Switch and Select stars are replaced with the ISwitch and ISelect
stars. Results of the both are the same.

22

•<

Consi

Fig. 17 ifThenElse demo in CG56/IDF

(2)Case4
The case4showsan exampleofa case structure in program graphs. Sourcedata from

the IIDUniform star are switched to one of four Gain stars. The switching depends on
the value of the control line of the ICaseB4 and ICAseE4 stars. The ICaseE4 star
selects data through a gain. Twographs show input and output data.

1 V 1I'-l
m 1

Fig. 18 Ca8e4 demo in CG66/IDF

(3)Loop
The Loop demo shows an example of a loop structure in program graphs. The ILoop

star read a source data from the IIDUniform star at the beginning ofa loop process. At
the same time, a loop count is also read from the set port. The data go round on the loop
path between the loopFor and loopBack ports. At the end of loop, the looped data is put
out from the output port. Two graphs show input and output data to/from the loop.
CntUnI, cntUnO and cntlOut ports are used only to determine star schedule by the IDF
OBDF) scheduler. Its connection must be the same as a loop structure demonstration of
ILoop-demo. This restriction comes from the BDF scheduler, which is an original of the
IDF scheduler. At run time, tokens from the control port are discarded.

23

/vmvi

BSUUSBD

Bsnm

mm
Foh FbiTott

Fig. 19 Loop demo in C656/IDF

(4)repeat
The repeat shows an example of a repeat structure in program graphs. The IRepeat

star receives one data token from its input port, and a repeat count firom its set port.
The star sends the data tokens to beginRep port repeatedly. IRepeat star sums the
tokens from endRep port. Two graphs show input and output data to/from the repeat.
The paths to controlports ofthe IRepeat star are necessary, because ofrestriction ofthe
BDF (IDF) scheduler. At run time, tokens on the control path are discarded.

24

/Mr Mm
Iffotm ♦

(KM

VP
obIOu

ForK BNTort

Fig. 20 Repeat demo in CG56/IDF

4.2.4. Writing CG56/iDF stars
Description of CG56/IDF stars also obeys to rules ofwriting CG56 stars. Additional

descriptions are required to let the IDF (BDF) scheduler know dataflow control staffe
and to control dataflow at run time.

For convenience, the lCaseB4 star is shown as an example ofwriting CG56/1DF stars.

name {lCaseB4}
domain {CG56}

The definitions of the star name and domain are common among all stars. The domain
name is "CG56".

input

{
name {control}

}

type {int}
desc {control to select one out ofconditional outputs}

Definition of input and output ports is also common among all stars. The star writer
must be careful that the control port, whose value is used to determine behavior of a
conditional port, must be a type of"int".

defstate

25

}

name {statOutputO}
type {int}
default {0}
attributes {A_NONCONSTANT IA^YMEM 1A_RAM}
desc {state variable of outputO}

State of conditional I/O ports, which are also used to determine behavior of a
conditional port, should bedefined in thedefetate method. Its type isalso a type of"int".
Its values would be chained, so its attribute is usually "A_NONCONSTANT". The
important thingis toassign a memory space to thisstate, so set the ambute to
"A.YMEM IA.RAM", for example.

hinclude {"IdfCntlh"}

Including a header file, "IdfCntLh", is currently mandatory, except for BDF-like stars
such as the ISwitch and ISelect stars.

protected
{

IdfCntl cStatlnputO;

}

The IdfCntl dass is defined in "IdfCntlh". Each conditional port needs IdfCntl class
data to let the IDF scheduler know dataflow control staffe of the conditional port
through the IDFPortHole::SetO method. The details will be described later.

method

{
name {notone}
type (int}
arglist {"(CG56PortHole& port)"}
code

{
return (port.numInitDelaysO >111 port.farO->numXferO > 1);

}
}

This method is used to check the number ofparticle consumed or produced at portholes,
and return FALSE (0) ifnot one. This is because porthole can consume or produce only
one particle when it fires. This is the same as CGC/BDF stars. This method will appear
in a setup method of the star, and be necessary to avoid unexpected result.

setup

26

{
if(notone(input) I I notone(control) I 1

notone(outputO) 11 notone(outputl) 11
notone(output2) I I notone(output3))

{
EiTor::abortRun(*this,

"Non-unity buffers connected to a switch notyetsupported),
}

(CONTINUED)

In the setup method ofthe star, function ofnotoneO appears, firat. This function is
described above. It is wise to stop run, if the result of this function is FALSE (0), or
unexpected result would worry you.

else

{
II set control/status functions
cStatOutputO.Set((const char*)fiillNameO,

"control",
"statOutputO",
(const char*)evalFuncSymbol("ICase","SUB_CntlEqO"),
(EVALFUNC)DUMMY_EVALFUNC,
&statOutputO);

CntlState::SetO method stores dataflow control staffe in its object.

void CntlState::Set(const char* starName,
const char* portName,
const char* stateName,
const char* funcName,
EVALFUNC efunc,
IntState* state)

StarName ... this star name
portName ... control port name
StateName ... port state name
funcName ... evaluation function name

eflinc... pointer to an evaluatin fiinction. It is OKto write "DUMMY_EVALFUNC".
state... state variable

// set relation
output0.setRelation(DF_TRUE, &control, &cStatInputO);

PortHole:;setRelationO method sets the relation of this port with associated porthole
and dataflow control staffe.

27

void PortHole::8etRelation(DFRelation relation, DynDFPortHole* assoc. CntlState*
stat)

relation... Specify therelation ofthisport with theresult oftheevaluation function.
DF_TRUE : produce/consume data only when the result ofevaluation function is

TRUE. • ^ .
DF FALSE ; produce/consume data only when the result ofevaluation function is

FALSE.

initCode

{
// add code ofevaluation functions to the code stream
addProcedure(COD_CntlEqO,"$sharedSymbol(ICa8e,SUB_CntlEqO)'');

}

In initCode method, the code block of the evaluation function must be added in the
procedure code section.

go

{

}

// IfembedO method is available, 'copy' codeblock is not necessary.
addCode(copy);

In the go method, behavior of the star is described.

codeblock(copy)

{

}

Obey how to write CG56 codeblock.

codeblock(COD_CntlEqO)

{
org y:

$label(CData)
dc 1

org p:

$8haredSymbol(ICase,SUB_CntlEqI)
move y:$label(CData),xI
cmp xl,a
rts

}

constant data: 1

; load I
; compare

return

28

•COD_CntlEqO' codeblock is a description ofan evaluation function. The function is
user-definable. The rule is (l)The evaluation function must be a subroutine, because
thiR instruction block is called as a subroutine. (2)When it returns, the condition code Z
must reflect the result of the evaluation, ie, Z=1 and Z=0 mean TRUE and FALSE,
respectively.

5. CONCLUSION
In this report, integer-controlled dataflow (IDF) and itscode generation appli^tions

in Ptolemy are presented. The IDF model ofcomputation is built on BDF with the
introduction ofa decision fiinction. The IDF schedule is static and conditional, so that
memory requirement is determined at compile-time. IDF supports code generation.
This enables code generation firom program graphs that include conditional jumps,
loops and repetitions, and greatly improves the practical usability of the program
synthesis in Ptolemy.

ACKNOWLEDGEMENT
The author is grateful to Prof. EdwardA. Lee of U.C. Berkeley, and to Brian Evans

currently ofUniversity ofTexas at Austin and JoseLuisPino currently ofHP.

REFERENCE
[1] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A firamework for
simulating and prototyping heterogeneous systems," International journal ofComputer
Simulation, special issue on Simulation Software Development, vol. 4, pp. 155-182,
1994.

[2] E. A. Lee and D. G. Messerschmit, "Synchronous data flow," Proceedings of the
IEEE, vol. 75, no. 9, pp. 1235-1245, 1987.
[3] E. A. Lee, "Consistency in Dataflow Graphs," IEEE Transactions on Parallel and
Distributed Systems, Vol. 2, No.2, April 1991.
[4] D. G. Messerschmitt, "Structured Interconnection of Signal Processing Programs,"
Globecom, Atlanta, Georgia, 1984.
[5]D. G. Messerschmitt, "ATool for Structured Functional Simulation," IEEE Journal
on Selected Areas in Communications, vol. SAC-2 no. 1,1984.
[6] J. Buck and E. A. Lee, "Scheduling Dynamic Dataflow Graphs With Bounded
Memory Using the Token Flow Model," Proc. OfICASSF93, 1993.
[7] J. Buck, "Scheduling Djmamic Dataflow Graphs With Bounded Memory Using the
Token Flow Model," Memorandum No. UCB/ERL M93/69 (Ph.D. Thesis), EECS Dept.,
University of California, Berkeley, September 1993.
[8]J. T. Buck, "Static Scheduling and Code Generation firom Dynamic Dataflow Graphs
with Integer-Valued Control Systems," Proc. of IEEE Asilomar Conf on Signals,
Systems, and Computers, Oct. 31, 1994.
[9] J. L. Pino, S. Ha, E. A. Lee and J. T. Buck, "Software Synthesis for DSP Using
Ptolemy," Journal ofVLSI Signal Processing, 9, 7-21, 1995.

29

[10] S. Ritz, M. Pankert, V. Zivojnovie and H. Meyr, "High level software synthesis for
the design of communication systems," IEEE Journal on Selected Area in
Communications, pp. 348 - 358, Apr. 1993.
[11] M. Willems, M. Pankert and S. Ritz, "Fine grain code synthesis within a block
diagram oriented code generation environment," Proc. ofICASSP, Detroit, 1995.

30

	Copyright notice 1997
	ERL-97-21

