

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LOGIC SYNTHESIS FOR LARGE PASS

TRANSISTOR CIRCUITS

by

Premal Buch, Amit Narayan, A. Richard Newton,
and A. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M97/26

18 April 1997

LOGIC SYNTHESIS FOR LARGE PASS

TRANSISTOR CIRCUITS

by

Premal Buch, Amit Narayan, A. Richard Newton,
and A. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M97/26

18 April 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
Universityof California, Berkeley

94720

Abstract

Pass transistor logic (PTL) canbea promising alternative to static CMOS fordeep sub-micron
design. Inthis work, we motivate the need forCAD algorithms forPTL circuit design and propose
decomposed BDDs asa suitable logic levelrepresentation forsynthesis of PTLnetworks. Decom
posed BDDs can represent large, arbitrary hmctions as a multi-stage circuit and can ejqrioit the
natural, efficient moping of a BDD to PIT..

A comprehensive synthesis flow based on decomposed BDDs is outlined forPTLdesign. We
showthat theinoposed approach allows us to make logic-level optimizations similar to the tradi
tional multi-level network based synthesis flow for static CMOS, and also makes possible optimi
zations with adirect impact on area, delay andpower of thefinal circuit implementation which do
nothave any equivalent inthetraditional aiq[)roach. Wealso present a setof heuristical algorithms
tosynthesize PTL circuits optimized forarea, delay and power which are key totheproposed syn
thesis flow.

Experimental results on ISCAS benchmark circuits show thatour technique yields PTL cir
cuits with substantial improvements over static CMOS designs. In addition, to the best of our
knowledge this is the first time PTLcircuits havebeensynthesized for the entire ISCAS bench
mark set

This work was supported inpart bySemiconductor Research Corporation contract DC-324-97

1 Introduction

Static CMOS has long been the design style ofchoice for IC designers due tothe ease ofdesigning

safe, scalable circuits. However, switching capacitances in a static CMOS circuit can be fairly

large. With the shrinking feature sizes and increasing transisttn* counts onchips, the push ftn* higher

speed and lower power makes itnecessary tolook foraltonative design styles which canoffer bet

terperfOTmance characteristics tostatic CMOS. Hiese include pass-transistor-based logic families,

domino-like dynamic logicstyles etc.

Among these, pass transistor logic (PTL) circuits offer great (nxnnise. ComiKued todomino cir

cuits, diey are less susceptible tocrosstalk problems, which isa mqor issue indeep sub-micron

technology. Several case studies ([4](21]) have shown that PTL can implement most fimctions with

fewo* transist(HS dian static CMOS. This reduces the ovoall capacitance, resulting infaster switch

ing times and lower power. Itwas reported in[21] that acomplementary PTL multiplier was twice

asfast asconventional CMOS due tolower input capacitance and higher logic functionality. At a

supply voltage of4V, PTL designs typically consume 30% less power than static CMOS designs
([4]). To illustrate this point, we take a function F= A*+BC'. Fig. 1(a) shows our implemoitation
of this function in PTL and Fig. 1(b) shows the corresponding static CMOS implementation.

Clearly, the PTL design style can yield a circuit which can be much more compact than static

CMOS. Itwas rqxirted in [22] that the PTL yielded a32% improvement in area, 29% improvement
in delay and a47% improvement in power over a static CMOS OR/NAND-based implementation
of this function.

The circuit in Fig. 1(b) can in fact, also be inteipreted asa PTL circuit. The only difference

between PTL and static CMOS is that in static CMOS, unlike PTL, all paths from V^d to the output

F = A* + BC'

(a) PTL (b) static CMOS

Rgure 1:Ctmiparing pass transistor and static CMOS implementations
of an example functionF = A'-t-BC

F = A'+BC'

are connected via pMOS (thepull-upnetwork) and pathsfiom ou^ut to groundare connected via

nMOS (pull-down netwoik). Hius, static CMOS can be viewed as restricted case of PTL. These

restricticHis make the task of synthesizing safe, large static CMOS circuits easier, but reduce the

potential of circuit q>timization. Thus, given a methodology to synthesize safe,largecircuits, PTL

can be mwe attractive dien static C^OS.

The lack of sucha methodology is whythe use of pass transistors in industry circuitshas been

very limited. While there have been several attempts in this area ([3][7][10][11][1S][16][17][18]

[22]), limitaticns of some of whichare discussed later in the paper,thoe are no algorithms which

can be used to design safe, large PTL circuits. Thus, while designerscan manually design veiy effi

cient small PTL circuits as in Fig. 1,a satisfactorysolution to automatic synthesis of circuits realiz

ing the expected benefits of PTL does not exist.

In this work we address this void by proposing a decomposed BDD-based approach which

exploits some of the strengths of PTL logic and is scalable in that it can be used to obtain compact,

multi-stage transistOT-level circuits fen* large, arbitrary designs.

The main craitribution of this work is as follows: a comprehensive synthesis flow is outlined for

PTL design starting from an unoptimized logic level netlist, all the way up to generating a spice

netlist For this, a suitable logic level abstraction based on decomposed BDDs is prqx>sed which

allows us to make logic level optimizations similar to die traditional multi-level network based syn

thesis flow for static CMOS. This representation takes advantage of the correspondence between

PTL circuits and BDDs without suffering from the drawlxicks imposed by properties of monolithic

BDDs. A straightforward mapping exists from this logic level abstraction to a transistor-level PTL

nedist which preserves all the interconnection information. This makes possible optimizaticxis with

a direct impact on area, delay and power of the frnal circuit implementation. We present a set of

heuristical algorithms to synthesize PTL circuits optimized for area, delay and power which are key

to the proposed synthesis flow. Initial experimental results on ISCAS benchmark circuits show that

our technique yields PTL circuits with substantial improvemoits over conventional static CMOS

designs. To the best of our knowledge this is the first time PTL circuits have been syndiesized for

the entire ISCAS benchmark sets.

This paper is structuredas follows: in Section2, we argue why a BDD-basedapproach is suit

able for PTL circuit synthesis and review the shortcomings of monolithic BDD-based aj^roaches.

In Section 3 we motivate decomposed BDDs as a suitable logic level abstraction for PTL synthesis.

Section 4 compares the proposed decomposed BDD-based synthesis flow and the traditional

apiHDach for static CMOS. Section S presents decomposition techniques to obtain PTL circuits

optimized for area, delay and power. Section 6 presents the experimental results. Section 7 outlines

issues for future research and Section 8 concludes with a summary of this work.

2 PTL Networics and BDDs

One ofthe main strengths ofstatic CMOS designs is that they are guaranteed to not have asteady-
state sneak path connecting a node toboth power supply andground at thesame Hme iinfi<*r some

input combination. From Section 1,PTL admits more general circuit structures than gfntjr CMOS.

However, itsuff(^ from the drawback that there isno guarantee cm the absence ofgnftair pathc in
the circuit. Hence, special care needs to be taken toensure that the circuit is sneak path-free. For

example, the PTL circuit inFig. 2requires only three transistors toimplement the example function

from Fig. 1. However, this circuit has a sneak path as shown, fcscing the output to be connected to

bothgroundandpowersupplyat the sametimewhenA=l, B=0,C=0.Wetherefore needa method

ology tosynthesize PTL circuits which ensure theabsence ofsuch sneak paths.

The basic unit inPTL isaMOS transistor which isused asa switch. When the control signal at

theMOS gate isenabled, theiiqiut (drain/source) isconnected totheouqiut (source/drain). Theout

putis ina high impedance state when the control signal isdisabled. This switching characteristic of

the MOSmakesit veryeasy to implement a multiplexer in PTLas a wiredOR of transistors.

A 2-input multiplexer implements the samefunctionality as a BDDnode, withthe BDDnode

variable corresponding to the control signal of the multiplexer and the outgoing and incoming

branches ofthe BDD node corresponding tothe iiq)uts and output of the multiplexer respectively.

Fig. 3 shows two different ways of implementing a BDD node using two MOS transistors.

Thus, the BDD representation ofthe target fimction can bevery easily ma[q)ed toa multiplexer

network, which inturn can beimplemented compactly using pass transistors. This provides a way

toconstruct efficient PTL circuits [15]. Infact, the PTL implementation inFig. 1(a) corresponds to

the BDD of F, as shown in Fig. 4.

The main advantage ofsuch a BDD-based approach is that italways gives correct, sneak-path-

free circuits, since at a time, mily one path connecting the ground/power supply to the output is

active. Using the two different implementations ofa BDD node from Fig. 3 yields the two circuits

shown in Fig. S(a)and 5(b), both smalls than die static CMOS implementation inFig. 5(c). Note

that the nMOS-only implementation in Fig. 5(b) uses more transistors than theimplementation in

Fig. 5(a) because itneeds signal and signal for each BDD node. However, it isquite competitive in

terms of gate area. This is due to the fact that to obtain a similar current drive, pMOS has to be

twice as bigas nMOS in terms d[thegate size (aminimum size pMOS hasdimensions 3AxX while

a minimum size nMOS is 1.5AxX). This results in higher active gateareapertransistor in thecase

F = A'+BC'

Figure2: A FTLcircuit with a sneakpath

F = A*+BC*

r r r

OH OH G H

(a) (b) (c)

Figure 3: Imirieineating a BDD node in FTL

F = A* + BC

Figure4: Comparing passtransistor inq>lenientatioos of theexanqdefunction of Fig. I withits BDD

of Static CMOS anda pMOS/nMOS PTL. Also, in a pMOS/nMOS PTL, a pMOS can be in a path

propagating a "1" and an nMOS can be in a padi propagating "C*, resulting in ouQ}ut levelsof

andVdd-Vj fw '*0" and"1"respectively. Incomparison, inthenMOS-only case, tiie voltage isVdd-

V| for output "1", and OV for output"0" sincenMOSare goodconductorsof '*0".

This has three advantages:

• Each nMOS is at a better (^rating point when propagating **0'* and hasa higher drive, resulting

in a faster circuit.

• The output has a better noise margin, which can be particularly important if it is driving MOS

gates (of buffers or subsequent stages).

• Apart from the savings in active gate area, the smaller sizeof nMOS also means a lower gate

capacitance. Thisresults in a lower switching c^citance for diecircuit making it faster andalso

reducing its power dissipation.

In fact, for large circuits, we found tiiat theoverhead of graerating signal wasquite small (in

most cases, particularly in case of large circuits, signal was required inthecircuit anyway as7^ is in

Fig. 5(a)),and tiiegate area savings and performance gainsmorethanoffset this. For this reason,

we haveusedthenMOS-only implementation of Fig.3(c) in synthesizing transistor-level circuits.

While a BDD-based PTLnetwork canbe quite cmnpact, a naive BDD-based methodology for

implementing PTL circuits suffers from the drawl»ck that for many functions of practical interest,

thesize ofa BDD representing the function canbeexponential inthe number of inputs. Also, a cir-

Logic Synthesis for Lai^e Pass "PransKtor Circuits

Premal Buch

Amit Narayan

A. Richard Newton

A. Sangiovanni-N^centelli

Department of Electrical Engineering & Computer Sciences

University of California,Berkeley, CA 94720

April 9, 1997

Abstract

Pass transistor logic (PTL)can be a promisingalternativeto static CMOS for deep sub-micron
design. In this work, we motivate the ne^ for CAD algorithms for PTL circuit design and propose
decomposed BDDsas a suitablelogic levelrepresentation for synthesisof PTL networks. Decom
posed BDDscan represent large, arbitrary hmctionsas a multi-stage circuit and can e;q)loit the
natural, efHcientmqjping of a BDD to Pll^

A comprehensive synthesis flow based on decomposed BDDs is outlined for PTL design. We
show that the i»oposed qtproach allows us to make logic-leveloptimizationssimilar to the tradi
tional multi-level network based synthesis flowfor staticCMOS, andalsomakes possible optimi
zationswitha direct impact on area,delayand powerof the finalcircuitimplementation whichdo
not haveanyequivalent in the traditional approach. We alsopresenta set of heuristical algoriduns
to synthesize PTLcircuitsoptimized for area,delay andpowerwhicharekey to the proposed syn
thesis flow.

Experimental results on ISCAS benchmark circuits show that our techniqueyields PH. cir
cuits with substantial improvements over static CMOS designs. In addition, to the best of our
knowledge this is the first time PTL circuits have been synthesized for the entire ISCAS bench
mark set.

Thisworkwassupported in partbySemiconductor Research Corporation contract DC-324-97

1 Introduction

Static CMOS has long been the design style ofchoice for IC designers due tothe ease ofdesigning
safe, scalable circuits. However, switching capacitances in a static CMOS circuit can be fairly

large. With the shrinking feature sizes and increasing transistor counts on chips, the push for higher

speed and lower power makes it necessary to look foralternative design styles which canoffer bet

terperf(Hinance characteristics to static CMOS. These include pass-transistor-tesed logic families,

domino-likedynamiclogic stylesetc.

Among these, pass transistor logic (PTL) circuits offer great {Homise. Compared todomino cir

cuits, they are less susceptible to crosstalk problems, which is a major issue in deep sub-micron

technology. Several casestudies ([4][21]) have shown that PTL canimplement most functions with

fewCT transistOTS than static CMOS. This reduces theoverall c^)acitance, requiring infaster switch

ingtimes andlower power. Itwas reported in [21] that a complementary PTL multiplier was twice

as fast as convoitional CMOS dueto lower input capacitance andhigher logic functionality. Ata

supply voltage of 4V, PTL designs typically consume 30% less power than static CMOS designs

([4]). To illustrate thispoint, we take a function F = A'+BC. Rg. 1(a) shows ourimplementatirai

of this function in PTL and Rg. 1(b) shows the correspcmding static CMOS implementation.

Clearly, the PTL design style can yield a circuit which can be much more compact than static

CMOS. It was reported in [22] that thePTL yielded a 32% improvement inarea, 29% improvement

in delay anda 47% improvement inpower overa static CMOS OR/NAND-based implementation

of this function.

The circuit in Fig. 1(b) can in fact, also be interpreted as a PTLcircuit The only difference

between PTLandstatic CMOS is that in static CMOS, unlike PTL, allpaths from totheoutput

F=A' + BC

(a)PTL (b) static CMOS

Figure I: Comparing passtransistor andstaticCMOS implementations
of an example function F = A'+BC

F = A'+BC

are connected via pMOS (the pull-up netwoik) and paths from output to ground ate connected via

nMOS (pull-down netwoik). Thus* static CMOS can be viewed as restricted case of PTL. These

restrictions make the task of synthesizing safe, large static CMOS circuits easier^ but reduce die

potential of circuit optimization.Thus, given a methodology to synthesize safe, large circuits, PTL

can be mcae attractive then static CMOS.

The lack of such a methodology is why the use of pass transistors in industry circuits has been

very limited. While there have been several attempts in this area ([3][7][10][li][15][16][17][18]

[22]), limitatimis of smne of which are discussed later in the paper, thme are no algorithms which

can be used to design safe, large PTL circuits. Thus, while designers can manually design very effi

cient small PTL circuits as in Fig. 1, a satisfactory solution to automatic syndiesis of circuits realiz

ing the expected benefits of PTL does not exist.

In this work we address this void by proposing a decomposed BDD-based approach which

exploits some of the strengths of PTL logic and is scalable in that it can be used to obtain compact,

multi-stage transist(x--level circuits for large, arbitrary designs.

The main ccxitribution of this work is as follows: a comprehensivesynthesis flow is outlined for

PTL design starting from an unoptimized logic level netlist, all the way up to generating a ^ice

netlist For this, a suitable logic level abstraction based on decomposed BDDs is prqx>sedwhich

allows us to make logic level q)timizati(xissimilar to the traditional multi-levelnetwork basedsyn

thesis flow for static CMOS. This representation takes advantage of the correspondence between

PTL circuitsand BDDswithoutsufferingfrom the drawbacks imposedby prop^es of monolithic

BDDs. A straightforward mailing exists from this logic level abstractionto a transistor-level PTL

netlist whichpreservesall the interconnection informatimi. This makespossibleq>timizati(xis with

a direct impact on area, delay and power of the final circuit implementation. We present a set of

heuristical algorithms to synthesize PTLcircuitsoptimizedfor area, delayand powerwhichare key

to the proposed synthesis flow. Initial experimental results on ISCAS benchmark circuits show that

our technique yields PTL circuits with substantial imixovements over conventional static CMOS

designs. To the best of our knowledge this is the first timePTL circuitshave been synthesized for

the entire ISCAS benchmark sets.

This paper is structured as follows: in Section 2, we arguewhy a BDD-based approach is suit

able for PTL circuitsynthesis and reviewthe shortcomings of monolithic BDD-based ajqiroaches.

In Section 3 we motivate decomposed BDDsas a suitable logiclevelabstraction for PTLsynthesis.

Secticxi 4 compares the proposed decomposed BDD-based synthesis flow and the traditional

apiffoach for static CMOS. Section 5 presents decomposition techniques to obtain PTL circuits

optimized forarea, delay andpower. Section 6 presents theexperimental results. Secticm 7 outlines

issues forfuture research and Section 8 concludes with a summary ofdiis wmk.

2 PTL Networks and BDDs

One of tfie main strengths of static CMOS designs is that they are guaranteed to not have a steady-

state sneak path connecting a trade to both power supply and ground at die same time und^ some

input combination. From Section 1« PTL admits more genoal circuit structures than static CMOS.

However, it suffers from the drawback that there is no guarantee on the absence of sneak paths in

the circuit. Hence, special care needs to be taken to oosure diat the circuit is sneak path-free. For

example, die PTL circuit in Fig. 2 requires only three transistors to inqilement the example function

from Fig. 1. However, this circuit has a sneak path as shown, fencing the output to be coimected to

bodi ground and power siqiply at the same time when A=l, B=0, C=0. We thereftne need a method

ology to synthesizePTL circuits whichensure the absenceof such sneakpaths.

The basic unit in PTL is a MOStransistorwhichis usedas a switch.When the control signalat

the MOSgate is enabled, the iiqiut(drain/source) is connected to die ouqnit(source/drain). The out

put is in a highimpedance statewhenthe control signalis disabled. Hiis switching characteristic of

the MOS makes it very easy to implementa multiplexerin PTL as a wired OR of transistors.

A 2-input multiplexer implements the same functionality as a BDD node, with the BDD node

variable corresponding to the cmitrol signal of the multiplexer and the outgoing and incoming

branches of the BDD nodecorresponding to the iiqiuts and outputof the multiplexer respectively.

Fig. 3 showstwo differentwaysof implementing a BDDnode usingtwo MOS transistors.

Thus, theBDDr^iresentation of the target function can be veryeasily maiqied to a multiplexer

network, whichin tum can be implemented compacdy usingpass transistors. This provides a way

to constructefficientPTL circuits [15]. In fact, the PTLimplementation in Fig. 1(a)corresponds to

the BDD of F, as shown in Fig. 4.

Themainadvantage of sucha BDD-based ^iproachis that it always givescorrect, sneak-path-

free circuits, since at a time, (xily one path connecting die ground/power supply to the output is

active.Usingthe two different implementaticxis of a BDDnode from Fig. 3 yields the two circuits

shownin Fig. S(a)and 5(b), both smallo' than the staticCMOS implementation in Fig. 5(c). Note

that the nMOS-only implementation in Fig. 5(b) uses more transistors than the implementation in

Fig.5(a) because it needs signal andsignal foreachBDD node. However, it is quite competitive in

toms of gate area. This is due to the fact that to obtain a similar current drive, pMOS has to be

twiceas big as nMOS in termsof the gate size (a minimum size pMOS has dimensions 3AxX while

a minimum sizenMOS is 1.5AxA,). Thisresults in higher active gateareaper transistor in the case

F = A*+BC'

Figure2: A FTLcircuit with a sneakpath

F = A'+BC

r r r

G H G H G H

(a) (b) (c)

Rgure 3: Inplementing a BDD node in PH.

F = A* + BC

Figure4: Comparing passtransistor implementatitnis of the exaiii{de ftmction of Fig. 1with its BDD

of Static CMOS and a pMOS/nMOSPTL. Also, in a pMOS/nMOSPTL, a pMOS can be in a path

propagating a "1" and an nMOS can be in a path propagating **0**, resulting in output levels of

and Vdj-Vtfa- "0** and "1" respectively. In comparison, in the nMOS-only case, the voltageis Vdd-

Vj for ou^ut "1", and OVfor output "0" since nMOS are good conductors of **0".

This has three advantages:

• Each nMOS is at a better c^rating point when propagating "0" and has a higher drive, resulting

in a faster circuit.

• The ou^ut has a better noise margin, which can be particularly important if it is driving MOS

gates (of buffers or subsequent stages).

• Apart from the savings in active gate area, the smaller size of nMOS also means a lower gate

capacitance. This results in a lower switchingcapacitance for the circuit making it faster and also

reducing its power dissipaticni.

In fact, for large circuits, we found that the overhead of generatingsignal was quite small (in

most cases, particularly in case of large circuits, signal was required inthecircuit anyway asX is in

Fig. 5(a)), and the gate area savings and performance gains more than offset this. For this reastm,

we have used the nMOS-only implementation of Hg. 3(c) in syndiesizing transistor-level circuits.

While a BDD-basedPTL networkcan be quite compact, a naive BDD-basedmethodology for

implementing PTL circuits suffers from the drawback that for many functions of practical interest,

the size of a BDD representing the function can be exponential in the number of inputs. Also, a cir-

F = A' + BC'

IVansistor Count = 6

Gate Area = 9

.F=A' + BC' ABC

Ihrnsisto- Count = 8

Gate Area = 10

Ttansistm' COunt = 8

Gate Areas I2X^
(a) (b) (c)

Figure5: alternative BDD-based implementation of theexamplefimction fromFig. 1

F = A'+BC'

cuit generatedfrom a monolithic BDD can have long chains of transistOTs conesponding to long

pathsfrom the root to the 0/1 tenninalsfor the BDD. This is equivalent to implemrating a single-

stage static CMOS circuit and can make the circuit very slow.

A technique fm- generating PTL circuits in which buffers are inserted in the monolithicBDD to

solve the speed problemis given in [22]. However, this approach still suffers from die BDD size

problem. A multi-level pass transistor logicis introduced in [17], which tries to maximize the logic

sharedbetween different partsof the circuitby looking at the structure of a monolithic BDD.Using

a monolithic BDDas the startingpoint and modifying its structurehas two disadvantages: first, the

apiHoach will not be viable for largecircuitswithexponentially sized BDDs.Secondly, even when

a monolithic BDDcanbe built, the resulting circuit is highly unoptimal in areabecause theoptimi

zationsare basedon the topology of the BDDand not the logicimplemented in it, thereby restrict

ing the sharing to sub-graphs found in the starting monolithicBDD.

3 PTL Networks and Decomposed BDDs

We propose a synthesis aj^roach which does not construct monolithic BDDs for the circuit at all.

The common problem of the previous works outlined in Section 2 is that they try to improve a

mtmolithic HDD-based solution. Our approach is trulymulti-stage in that we always workwith a

multi-level representation of the PTL circuit which is similar to die traditional multi-level network

for static CMOS. Forsucha flow, wepropose decomposed BDDs asa suitable logic level abstrac

tion of the circuit which exploits the axrespondoice betweenPTL circuits and BDDs withoutsuf

fering from thedrawbacks imposed byproperties of monolithic BDDs (e.g., canonicity, which may

be desirable for logiclevel datarqnesoitation butare unnecessary fcM* circuitgeneration).

The growth in the HDDsize can be controlled by introducing new, intennediatevariables dur

ing the construction of die HDD itself. Hiese intermediate variables are called decomposition

pointsand the resulting setof BDDs(BDDs of thedecomposition points, and the HDD of the target

function in termsof the primary inputsanddecomposition points) is calleda decomposed HDD [8].

An example ofa decomposed HDD is shown in Fig. 6'. Note that the output ofa decomposition

point HDDcan be a node variablefor die BDDs of subsequendy introduced deccnnposition points

or the target function. FromSecticm 2, thiscorresponds to theoutputof a decomposition pointdriv

ing MOSgatesin thecircuits of subsequent decompositicm pointsor die targetfunction. The result

ing circuit is then a multi-stage circuitwith cells in any given stage being driven by the primary

inputs and the outputs of precedingstages.

The intuiticHi behind the savings in HDDsize due to decompositicm is as follows: in general,

when constructing thegraph of a function F=G\ <op>G2, the sizeof F, Ifl, is 0(IGillG2l), where

IGjI and iG2l are the sizesof the input graphs. By introducing decomposition points for Gj and G^,

the size of the decomposedHDDis reducedto 0(IGil+IG2l). Thus, decompositicm can be very use

ful when there is a memoryexplosion due to a difQcult HDDmanipulation during HDDconstruc

tion. The trade-off here is that while monolithic ROBDDs are canonical for a given cmdering, a

decomposed HDD is not, sincea HDDfor a givenfunction can be decomposed in manyways.This

however does not pose a problem in our case, since we are interestedin generating PTL circuits and

not in manipulating HDD as a data structure.

Note that our ^proach is orthogonal to the ap^aoachof [22] in that, decomposed BDDs can be

used to obtain a compact,HDDrepresentationof the circuit. Each individual HDDcan then be opti-

1.Althougha moreefficientorderingfor this monolithicHDDexists [4], for the givenorderingthis case serves
to illustrate the potentialBDD size reductiondue to decomposition.

F = AD + BE + CF x = AD.y=BE,z = CF

Figure 6: Comparing monolitfaic and decomposed ROBDDs

mized by the techniques presented in this woric and then mapped to a transistor-level circuit with

apiHopriate buffering using [22]. Similarly, (^timizaticmalgmithms for area, delay and power pre

sented here can be applied to BDDs generated using [17] as well. In Section S.2, we provide some

mme arguments on why, from a delay pmpective for large circuits, a decomposed BDD approach

is better than a monolithicBDD-basedapproach ccanbinedwith buffer insertion.

Finally, we would like to mention that the idea of introducing intermediate variables to control

the size of BDDshas previouslybeen used in [8][9]for unrelatedproblems.In thesepapers decom

position was used in a different context - In [8] decomposition was used to reduce the intermediate

memmy requirements during BDD construction and in [9] it was used for cycle-based simulation.

In this work, we ^ply decomposition to construct a ccnnpact, decomposed BDD representation of

the target logic function which can be directlymappedto a PTL network. The olgectivethen is to

developdecomposition techniques such that the PTL networkcmresponding to the resulting BDD

is optimizedfor thedesiredobjectives (e.g.area, speed,power).

4 A Synthesis Flow for PTL Design

dCell Library

IjQpc Description (BLIF, Verilc^)^

i
Tecbndogy Independent Opdmization
via/acforang, stdtstitution, elimination,

and don't care t^aimizption

TechnologyDependent Optiniization
viamappihg

\
^fansistor Level Netlist~]

DeoonqiosedBDD Constiuction
vb Area/Delay decomposition techniques,

BDDsubstitution,composition,
and don't care optitnization

Boolean and stnictuFaloptimizations
for Area/Delay/Power

I
trivialmapping«4iicbpreserves

high-level gains

TVansistcr Level Netlist ^

t
Layout

Figure7:Thetraditimial staticCMOS syndiesis flowvs.theproposed decomposed BDDsynthesis flow

Apart from proposing a decomposed BDD-based lepresentaticHi forPTLsynthesis, a majm* contri

butionof this workis a comprehensive synthesis flowfor PTLdesign.

Fig.7 outlines thekeysteps of thetraditicaial multi-level netwoik based synthesis flow forstatic

CMOS. Wepropose an analogous synthesis flow where a deccnnposed BDD is used to represent a

circuit similar to themulti-level network inthetraditional flow andeachdeccMnposition point BDD

is manipulated similar to a complex node in the multi-level netwOTk.

Abigadvantage of theBDD-based PTL network design is thattheone-to-one mapping between

the BDDand the PTLnetwork makes the technology mapping problem verystraightforward. As a

result, wecanperform circuit leveloptimizations by manipulating the BDD. Thefact thatmapping

preserves the circuit structure allows us to make high-level changes which can have significant

impact on area, power andperfcxmance, butfor which gains made at the highlevelholdat thecir

cuit level as well.Thisaddresses a trig problemwith the existingmulti-level networkbasedsynthe

sis flow where technology independent optimizations are becoming increasingly irrelevant with

respectto the final performance of the transistor-level designbecause the technology mapping does

not preservethe structure. This is particularly importantin the contextof deep sub-micron designs,

where logic level (q)timizations need to be driven by f^ysical issues which depend on die circuit

structure and tqx)logy.

Thefactoring operation of the conventicHial flow aims at extracting ccmunon sub-exp^ssions

out of a function description. This is similarto selectinggooddecomposition pointsin the proposed

flow.Substitution is similarto usinga decomposition pointas a HDDvariablein the construction of

the BDDs of subsequent decomposition points and the target function. Etimination is similar to

compositicxi operation on decomposition point BDDs,where a decomposition point BDD is con-

posed into the BDDs of the rest of the circuit and the BDD node variable corre^nding to die

decomp(»iti(m point eliminated if there is an overall saving in BDD nodes. Design c^timization

using don't cares can be employed in the poposed flow in a fashicm very similar to the conven

tional flow. This is discussed in more detail in Section 7.1.

Apart from above operations which are analogous to optimization steps in die conventicmal syn

thesis flow, the decomposed BDD-based approach allows us to optimize circuits in several ways

which have no equivalent in the conventional multi-level network based synthesis flow. These are

outlined in Section 5.

10

5 Decomposition Techniques for BDD-based PTL Networks

5.1 Area Minimization

Since each node ofa BDD ccnesponds toa PTL multiplex '̂ cell, minimizing die area of the final

circuit implementation is the same asminimizing the size ofthe decomposed BDD representation.

We employ a simple, greedy heuristic tocontrol the size of the decomposed BDD bymonitor

ing the BDD size while it isconstructed. This issimilar to[8]. Whai building the BDD depth-first

fix)m inputs tooutputs, a dectxnpositicm point is introduced wheoevo* the BDD size increases by a

disproportionate amount This attempts to avdd difficult BDD manipulations. A decomposition

pointis alsointroduced when an individual BDDgrows beyond a threshold value. Thisensures that

none of tte individual BDDs inthedecomposed representation exceeds the threshold. This is par

ticularly important in thePTL context since both resistance and capacitance increase linearly with

the numberof transistorin series. Thus, a verydeep BDDcan result in a slow circuit.

Due tothe local, greedy nature ofourheuristic, it ispossiUe that the introducticai ofa decompo

sition point prevents Boolean simplification in the target function BDD. To discov^ some of these

simplifications thedecmnposition points arecomposed tock into thetarget function BDD as long

as theoverall BDD sizereduces. Anexample of BDD sizereduction by composition due to Bool

ean simplification is shown in Fig. 8. Since the amount of reductimi is dependrat on the orderof

composition, wee]q)eriment with several different orderings todetermine a goodchoice.

Complementary edges can beused to reduce the size of the BDDs even further. Acomplemen

tary edge introduces an inverter in the circuit, saves at least one BDD node and in the best case

reduces the BDD size by half [1]. Thus, the net transistor count can only decrease. Also, these

inverters provide theadded benefit of restoring diesignal to therail values, thus offsetting anysig

naldegradation due to itspassage through a long pass transistor chain. Additionally, theoutput of

decomposition points arebuffered if they areconnected to MOS gates of a subsequent stage.

Further, when synthesizing PTL networks from a decomposed BDD, a global variable ordering

F = A + x F = A + AB

Figure 8; BDD sizereductira) dueto Boolean simidification viacomposition

11

catl:{AB,CD)

(a) monditfaic ROBDD
cridcal path = 4

F=ABCD-t-

(AB)*C'

CD.(ABrCl

X = AB z = (AB) C

critical paA = 2 criticalpadi = 2 critical path = 3

I^xy + x*C

(b)cut 1
criticd path = S

F = xy + z sxy-fz

(c) cut 2 (d) cut 2
critiod patb = 6 critical path with retmlering &S

Figure 9: High performance heuristics (ordering: A,B,C,D,x,y^)

for all BDDs is not required. This provides an additional flexibility for reducing the size of each

BDD by reordering them indq)endently.

5.2 Peifonnance

In a mcmolithic BDD implementation, the critical path cannot be longer than the number of iiq>ut

variablesn and can be as low as log n. Decompositionintroducesextra control variables whose crit

ical pathscan be in series with the criticalpath of the primaryoutputs' BDD. Note that the critical

path length of the decomposition point BDD is bounded by the number of its variables, which can

be more then n if the decomposition point is expressedin t^ms of other decomposition points.The

critical path of the decomposed BDD is then bounded by max {critical paths of decomposition

point BDDs, lengthof the longestpath in the primaryouq)utBDDs}. Thus, the criticalpath length

of the decomposed BDD is bounded by the critical path of the corresponding monolithic BDD.

However, whencircuit level issuesare considoed, the quadratic depradenceof delay on the tran

sistor chain length more than offsets the advantages of a shorter critical path. For today's static

CMOS it is known that transistor chains longer than 3-4 transistors in series can be unaeceptably

slow [12]. A monolithic HDD-basedcircuit would require buffer insertion as in [22] f<x all but the

smallestcircuits.In comparison, a decomposed HDD-based circuitwhereoutputsof deccnnposition

pointsare bufferedallowsus to exploitarea gains (and the associatedreductionin switchingcapac

itance) while controlling the length of unbuffered chains. Selecting decomposition points with

appropriate thresholds on thedepth of decomposition point HDDs is thusa mtnre powerful strategy

12

than selectingbufferinsertionpoints in a monolithicBDD.

Apart from controlling the depth of decomposition pdnt BDDs, the choice of decomposition

points canbetargeted at delay minimization when q)eed is tihe main concern. Ifa cutset' ofdiecir

cuit is selected asthesetofdecomposition points, then thecritical path intheBDDs oftheprimary

ou^uts is bounded by the cutset cardinality (because BDDs of die primary outputs can be con

structed in terms of thecutset variables only). Using theminimum cardinality cutset of thecircuit

as thedecomposition set is then a good heuristic to reduce the critical path lengdi. Anexanple to

illustrate diis heuristic is shown in Fig. 9.Fig. 9(b) and 9(c) compare thecritical path length when

twodifferent cutsets arechosen as decomposition points. Thecritical pathis lowerwhen themincut

is selected asthedecomposition set(Fig. 9(b)) butlongo- than the monolithic ROBDD (Fig. 9(a)).

BDD variable (vdering hasa great impact on the BDD sizeandconsequently thecircuit area.

This ordering canalsoinfluence thecircuit power andspeed. Placing latearriving signals closer to

the outputs canspeed-up the circuit byminimizing the number oftransistors that need tobecharged

after the late signal arrives. Signal flow ina BDD-based FTL network corcespmids totraversing die

BDD from leafnodes up. Thus it is advantageous to place latearriving control variables close to the

topof theBDD. Variables ina BDD canbeswaj^ied pairwise as long as theresulting variable mder

does not cause die BDD size to increase significantly. In the example of Fig. 9, placing the late

arriving signal z at the top (Fig. 9(d)) reduces the critical pathby 1 unit overFig. 9(c). The best

known dynamic reordering algorithms for BDD size ([14][11]) move each variable or a block of

variables throughout theorder to find anoptimal position forthevariable. A similar reordering can

be performed fordelay, where theoptimal position is theoneresulting in thesmallest depth BDD

instead of thesmallest sized BDD. Asin Section 5.1,eachdecmnposition pointBDD can be reor

dered independentlyto c^timize fcs* total delay.

53 Low Power

Power dissipation ina circuit isa function ofswitching capacitance andswitching activity. It is thus

desirable that the capacitance connected to nodes withhighswitching activity is minimized. Since

the gatecapacitance of a transistor is substantially higher than the drain/source capacitances, this

translates intoensuring that thehighswitching activity nodes are not connected to thegatesof too

many transistcffs. Notetiiatneglecting drain-source capacitance switching is analogous to ignming

the internal node switching in a static CMOS gate.

1.setof nodes suchthatallpaths from jHimary inputs toprimary ouqmts passthrough some node in theset

13

high switching
activity vari^Ie

F = *1X3 + X2X4

Hgute 10: Redudog occmrences of switching activity node

XHL ^JHA

(a) (b)

Hgure lltLow Pbwerbeuristictoiniminizeglitching:F = A-f BC,p(A=l)ai =^p(Fsl)sl

In the case of PTL netwcaics, only control variables are connected to the gate tominals of tran

sistors. In our decomposed BDD-based approach, the omtTol variables ctxisist of primary inputs

and decomposition points. Note that every node in the BDD is implemented as a multiplexer in the

corresponding circuit and the node variable in the BDD is connected to the gates of two transistors

of the multiplexer. Minimizing the occurrences of high switching activity node thai translates into

minimizing the occurrences of the corresponding variable in the BDD. Re-ordering BDD variables

can be used to achieve this. Fig. 10 illustrates a case where re-ordering reduces the occurrences of

the high switching activity variable at the expense of more occurroices of a lower switching activ

ity variable.

A node in the PTL network is charged high when there is a path connecting it to the power sup

ply and discharged when there is a path connecting it to ground. Even when the output does not

change, glitching (charging and discharging of intemal nodes) can ccmsume a significant amount of

power. Glitching can be minimized by placing variables which have a low switching probability

close to the bottom of the BDD. This implies that the transistors controlled by diese variables are

close to the power supply and ground in the PTL network. Dqiending upon their state, this will cut

off the rest of the PTL network from the power supply or ground, resulting in a lower switching

power dissipation. In the example in Rg. 11, since the probability of A being high is almost 1, the

iiMOS coimected to A is almostalwayscut-off,and Pis almostalways 1.The orderingin Rg. 11(a)

can however result in a significant power dissipation due to the intemal nodes being charged

14

through thenMOS connected to C anddischarged through thenMOS ccmnected to7 andC. Com

pared to this, die ordering in Fig. 11(b) has no internal power dissipation as the nMOS ccmnectedto

X cuts-off therest of thecircuit from ground.

Note that these heuristics are similar to re-<miering transistors fcnr low powa at the circuit level

in static CMOS ([6]). However, in our approach, technology mapping is straightforwardand there

is a one-to-one correspcxidence between BDDs and FTL circuits. This allows us to perform Bool

ean manipulatiais at a high level in which we can trade-off circuit area for power, rather ttoi mak

ing restricted structural changes at the circuit level.

15

6 Results

The techniques described in this paper have been tested on ISCAS benchmarks circuits, which

include circuits which are hard for monolithic BDD-based approaches (e.g. C6288). In the follow

ing we present results comparingour PTL synthesisalgorithm with dififeroitstatic CMOS synthesis

algorithms to demonstrate the area and delay gains achieved by our approach, and HSPICE simula

tion results to verify the validity of die logic level results.

The PTL synthesis algorithm was implemented in the SIS fiamewcx'k. It is compared against

four synthesis scripts for static OMOS: area and delay (^timizatioo scripts which do not use don*t

cares, and scnpLrugged and scriptMelayof SIS. Technology mapping was performed using three

different libraries: msu.genlib, 33-4.genlib, and 44-3.genlib. All experimrats were carried out on a

400 MHz DEC Alpha with a SPECint_92 rating of 341, DEC 21164 CPU, 4Mb cache and 2Gb

total memory.

PTL circuits were synthesized with four different threshold parameters. This threshold parame

ter from Section 5.1 controls the depth of decomposition point BDDs. For a given logic circuit, the

best of the four PTL transistor-level circuits was selected and data for this circuit is presmted in all

tables. Compared to this, static CMOS circuit in each table is the best of several test runs with dif

ferent paramet^. Moreover, not the same circuit is used in aU tables. That is, the same PTL circuit

data is compared with the area optimized static CMOS circuit in the area columns of the tables and

against the delay optimized static CMOS circuit in tte delay columns. The gains achieved by PTL

are thus very conservative, since the area-<^timal static CMOS circuit is far from delay-q>timal

and vice versa.

Table 1 comixes the PTL results against results from area and delay optimization scripts for

static CMOS which do not use don*tcares (mapped for area and delay respectively using msu.gen

lib). Since our PTL implementation does not perform don't care optimization yet, this table gives

the best picture of the efficiency of our PTL algorithm. Column 1 contains the names of the ISCAS

beiK:hmark circuits. Column 2and 3compare the active gate area (measured in7?) ofcircuits syn

thesized by the PTL and minimum area static CMOS algcaithm. Column 4 contains the relative

gain in area achieved by our PTL algorithm over the static CMOS algmthm. Columns 5 and 6

compare the critical path length of the circuits generated by PTL and minimum delay static CMOS.

Column 7 contains the relative gains of PTL ov^ the static CMOS algorithm.

Table 2 presents results in the same format, this time comparing the PTL data of Table 1 with

16

static CMOS results optimized using local optimizations and full don*t cares. The static CMOS

results in Column 2 are optimized using script.rugged and the results in Column S are optimized

using scripudelay. Note diat the cuirrat PTL implementatioi does not perform local optimizations

or don't care optimizations. This is not an algcxithmic limitation and will be implemented in the

near future (techniques for this have already been outlined in Secticm 7). In ^ite of diis handicap,

the currentPTLimplementation yieldsinqiressive gainsover the script,ruggedand scnpt.delay.

Table 3 compares the runtimes of the PTL synthesis algorithm (Column 6) with die area and

delay qitimization scripts without doi't cares, and scriptrugged and script.delay (Columns 2, 3,4

and 5 respectively). Note that the output of static CMOS algorithms is a mapped logic netwcnk

while the ouqiut of the PTL algorithm is an HSPICEnetlist The results clearly indicate diat PTL

synthesis is substantially fast^ than all static CMOS techniques.

When using the critical path length as the metric to compare delays of two circuits, it is impor

tant to ensure that the amount of logic implemented in a cell is similar fcH- each case, because a cir

cuit with large individual cells can have a small critical path but be slow due to high cell

propagaticHi delay. Table4 comparesthe cell count of the PTL circuitwidi the area and delay opti

mized static CMOScircuitsof Table 1 in Columns2,3 and 4 respectively, and the averagecell size

in Columns S, 6, and 7 respectively. The data indicates that the PTL circuit indeed uses fewer cells

with more logic in each individual cell. However, the delay of each cell is not directly related to the

cell size since each cell in the PTL circuit implements a BDD structure, while the static CMOS

cells implement a series-parallel pull-up and pull-down tree structure. We analyze a fiill adder cir

cuit and perform HSPILIE analysis to examii» die delay trade-off between a larger cell implement

ing a BDD structure vs. a smaller series-parallel logic cell. These results are pHCsented in Fig. 12.

As an aside, we also synthesized static CMOS using larger libraries like 33-4.genlib (87 cells,

average cell size: 27.4 }?) and 44-4.genlib (625 cells, average cell size 43.4 tosee ifa greater

choice of cells, including very large cells, improved the static CMOS results. However, we found

that there was no major change in die results, and in fact, the syndiesis runtimes for static CMOS

increased by factors of 5 -100 due to the library size.

Table 5 [resents the logic synthesis and HSPICE analysis results for a full adder circuit PTLl

and PTL2 are two circuits obtained by using two different thresholds for decomposition point

BDDs. In fact, the threshold was large enough in case of PTL2 so that it is implemented as a mcmo-

lithic BDD in just one cell. Columns 2,3,4, and 5 provide logic level data (area, number of transis

tors, number of cells and average cell size respectively) about the three test cases. Columns 6 and 7

17

contain the slowest rise and fall times from an exhaustive HSPICE simulation. Fig. 12(a) and 12(b)

show a sample rise and fall time wavefam plot The results indicate that PTLl has a smaller fall

time but a largo- rise time compared to static CIMOS.PTL2 has a smaller fall time and the same rise

time as static (TMOS. This is to be expected since an nMOS-only PTL circuit is good at conducting

"0". Comparingthe actual rise and fall times to the criticalpath loigth, the criticalpath seems to be

a good indicator of die fall times. Rise times ofPTL are also {nt^xxticmal to the critical path length,

but a normalizing co-efficient would have to be t^lied when comparing two diffoent logic styles.

In general,a lower area implies a smaller switchingcapacitance,which does indeedcorrelate with a

faster circuits. Thus, the 20-504-% gains achieved at logic level should translate to gains at the tran

sistor level, albeit in slighdy smaller numbers (Note that the delay gains are not really reduced in

mapping to the transistCH'-level. This analysis is aimed only at fnoviding a good understanding of

the logic-level critical padi length as a metric ofdelay at the transistor-level).

Columns 8 and 9 pesent the average and rms power dissipation results. The static CMOS cir

cuit has a lower average power dissipation but a higher rms power dissipaticxi. Bg. 12(c) indicates

that the static CMOS has a higher peak power dissipation as well. This can be explained by the fact

that static CMOS has a higher switchingcapacitance, while PTL may have a higher leakage cur

rent. While the lower average power dissipationof static CMOS is good from the battery life per

spective, a higher peak and rms power dissipation is undesirable from the electrmnigration and IR

drop point of view.

18

Circuit

Area Delay

static CMOS

(Area Opt.)
PTL gain static CMOS

(DdayOpt)
PTL gain

C17 54.0 58.5 •8% 3 2 33%

C432 1620.0 1468J 9% 18 23 -28%

C499 3424.5 2920J 15% 12 9 25%

C880 2673.0 2433.0 9% 16 9 44%

C1355 3424.5 2953.5 14% 14 6 57%

C1908 4851.0 3174.0 35% 20 14 30%

C2670 5787.0 4797.0 17% 18 11 39%

C3540 9279.0 7495.5 19% 28 18 36%

C5315 13266.0 12415.5 6% 24 11 54%

C6288 21321.0 16180.5 24% 120 70 42%

C7552 18310J 19902.0 -9% 21 14 33%

Table 1 : Comparing the bestareastatic CMOS vs. PTLanddie bestdelay staticCMOS vs.PTL(Areais
measured in anddelay is measured as the length of diecritical Congest topological) path)

Circuit

Area Delay

static CMOS

iscripLrugged
with foO DC)

PTL

(without DC) gain
static CMOS

(paipLdeiay
withfuUDC)

PTL

(without DC) gain

C17 49J 58.5 -i6% 3 2 33%

C432 1233.0 1468.5 -19% 18 23 -28%

C499 3244.5 2920.5 10% 11 9 18%

C880 2596.5 2433.0 6% 16 9 44%

C1355 3244.5 2953.5 9% 11 6 45%

C1908 3226.5 3174.0 2% 18 14 22%

C2670 4491.0 4797.0 -9%
- 11 -

C3540 8176J 7495.5 8% 26 18 31 %

C5315 9985J 12415.5 -24% 23 11 52%

C6288 19885.5 16180.5 19% 61 70 -15%

C7552 - 19902.0 - - 14 -

Table 2: Comparing static CMOS optimized using local minimizations andfiill Don'tCares (using script.rugged
for areaandscripudelay fordelay) vs. PTL(which doesnotuselocaloptimizations or anyDon't Caresin this

implementation). (Area ismeasured in X^ and delay ismeasured as the length ofthe critical path). A**-" indicates
that the program could not complete due to space out

19

Circuit

static CMOS

PTL
Area

(^timized
Delay

(optimized
seripLrugged
withftiUDC

teripLdek^
withfiillDC

C17 0.01 0.01 0.10 0.10 0.01

C432 0.6 0.6 113.2 91.4 0.2

C499 I.l 1.0 12.9 10.5 0.6

C880 0.9 0.9 43 11.0 0.4

C1355 1.4 1.4 133 24.4 0.6

C1908 1.7 1.7 15.9 Ain 1.1

C2670 3.0 2.6 100.4 - 1.8

C3540 4.3 3.5 30.0 371.4 2.8

C5315 7.2 5.9 22.9 664.9 5.1

C6288 5.5 6.1 65.0 287.2 10.4

C7552 10.1 8.6 - - 143

Table3 : Comparing staticCMOSvs. PTL in runtime(measured in seconds)(Notethat dieou^ut of static
CMOSalgorithms is a mappedlogicnetworkwhilethe outputof the PTL algorithm is an HSPICEnetlist).

A **-" indicates that die program could not complete due to space out

Circuit

Cell Count Average Cdl Size

static CMOS

PTL

static CMOS

PTL
Area opt Delay opt Area opt Dday (q>t

C17 6 6 3 6.0 6.0 13.0

C432 141 144 58 7.7 7.7 16.9

C499 238 243 133 9.6 9.8 14.6

C880 223 215 94 8.0 8.8 173

C1355 238 235 41 9.6 10.8 48.0

C1908 356 345 189 9.1 10.1 113

C2670 425 514 227 9.1 8.8 14.1

C3540 778 789 382 8.0 8.5 13.1

C5315 1030 1238 316 8.6 8.7 263

C6288 2326 2340 929 6.1 6.1 11.6

C7552 1596 1512 989 7.6 8.3 13.4

Ihble 4: Comparing static CMOS ofTable 1vs. PTL for cell counts and average cell size (measured inX^)

20

Logic Area #MOS #CeD AvgCeD
SheO?)

Deby Fower

Critical firoffiHSnCE Average RMS

Flath
W *fUl

PTLl 78 42 5 15.6 4 1.4 ns 0.4 ns 48 pW 117nW

PTL2 42 22 1 42.0 1 0.6 ns 0.2 ns 30 pW 83)iW

static CMOS 81 36 8 10.1 4 0.6 ns OJns 17 pW 122 pW

Table 5: Experimental data for a fiill adder circuit

liiu i^u iJu n!i

(a)

I 1 f

AO'.OO

(C)

r^r

OHiLfUl

powcT_cmom

powerjptQ

ao.(ar

Figure 12:HSPICEresults on timingand power dissipation c€staticCMOSand two PTL circuitsfor a full

21

7 Enhandng the Decomposed BDD-based Approach

7.1 Don't Care Optiiiiization

The PTL synthesis tool benchmarked in Section 6 does not use (km't cares for design optimization.

Don't cares provide a significant amount of flexibility in minimizing a circuit as witnessed from the

improvement of the static CMOS area and delay results betweenTable 1and Table 2 in Secticxi 6.

Extending the proposed {q>proa£h to handle don't cares is relatively straightforward. Several

heuristics to minimize BDD size using don't cares are [nesented in [20]. Since the area of a decom

posed BDD-based PTL circuit is [nxjpmtitmal to the BDD size, the results of [20] can be ai^lied to

PTL synthesis directly. The synthesis algoridun would then be modified as follows: after generat

ing tte decomposed BDD representation, we minimize die target function BDD and each decompo

sition point BDD travelling from the primary outputs of the circuit to primary inputs. In the context

of the multi-stage circuit represented by the decomposed BDDs, travelling from the outputs to the

inputs amounts to first minimizingthe target functimi BDD and then each decomposed BDD in the

reverse OTder of decomposition point introduction. For each BDD, we compute the compatible

observability don't cares for die ouQiut function in tams of the i^imary inputs. This is m^ped to a

local don't care set via image cmnputation. Hie don't care set construction is the same as in die

case of the multi-level network minimization and we refer the reader to [18] for more details. The

heuristics of [20] are then applied to minimize the BDD. Based mi the results reported in [20], we

expect this extension to yield significant reduction in the area of the PTL circuits.

7.2 Synthesis of Mixed static CMOS/PTL Circuits

This work has proposed the use of PTL for large deep sub-micron designs. PTL can provide sub

stantial gains in area and delay over static CMOS, while the static CMOS has the advantage of a

well-established designflow for synthesizing robust circuits.Static CMOSmay be preferableover

PTL in cases wherea static CMOSimplementatimi of a gate is particularly efficient, or where an

nMOS conducting "1" is not allowed

The PTL synthesisflow proposed in this woik is very general in natureand allowssynthesisof

mixed static CMOS/PTL circuits which can leverage the strengths of static CMOS as well as PTL

as appropriate. Eachdecomposition point BDDcan be viewedas a complexnode and can be imple

mented by static CMOS logic or PTL as desired.

Amongotiier issues, currentlywe use ROBDDsas the underlying data structurefm tiredecom

posedBDDs. General BDDs ([2]), which allow inputvariables to appear multiple timesalong any

22

pathin theBDD, may bemore appropriate fixMn diePTLnetwork design point of view since weare

more interested in compacmess than in canonicity. We plan to look into incorporating general

BDDs in our synthesis algorithm.

23

8 Conclusions

PTL can be a promising alternative to staticCMOS for deep sub-micron design. In this woric, we

have motivated the need for CAD algorithms for PTL circuit design and have proposed a methodol

ogy for synthesizing PTL circuits. The main contributicms of this work are the following:

• A decomposed BDD-based representation is fnoposed to take advantage of the cmre^Kmdence

between PTL circuits and BDDs without suffering firran the drawtecks imposed by properties of

mcmolithic BDDs.

• A comprehensive synthesis flow is outlined for PTL design. We ^owed that the inq>osed

apjHoach allows us to make logic level optimizations similar to the traditional multi-levelnetwork

based synthesis flowfen- static CMOS, and also makes possibleoptimizations wiflia direct impact

on area, delay and power of the final circuit implementationwhich do not have any equivalent in

the traditional ai^)roach. Using these techniques we wm able to synthesize PTL circuits for the

entire ISCAS benchmark set.

• A set of heuristical algorithms to synthesize PTL circuits optimized for area, delay and power

which are key to the proposed synfliesis flow, are presented. These algorithms are very intuitive

and simple and have a great impact on the optimality of the resulting circuit.

Initial experimental results on ISCAS benchmark circuits show that our technique yields PTL

circuits with substantial improvements in area and delay over conventional static CMOS designs.

We believe that with more research in this area PTL can become a viable alternative to static

CMOS, and that this work is the first step in that direction.

9 Acknowledgements

The authors would like to thank Prof. Takayasu Sakurai and Ravi Gunturi for useful discussions

on this work.

24

References

[11 S.Akers, "Binary decision diagrams." IEEE Transactions onComputers, Vol. C-27, No. 6,June 1978.

[2] P. Ashar. A. Ghosh, and S. Devadas, *%oolean satisfiability and equivalence checking using general binary

decision diagrams," Proceedings ofthe International Conference onComputer Design, 1991.

[3] W. Al-Assadi, A.P. Jayasumana, and Y.K. Malaiya, Tass-transistor logic design," Intemaional Journal of

Electronics, vol. 70, no. 4,1991.

[4] R.E. Bryant, "Grairii-Based Algorithms for Boolean Function Manipulation," IEEE Transactions onCom

puters, Vol.C-3S,No. 8, Aug.1986.

[5] A. P. Chandrakasan, S. Sheng, and R.W. Brodersen, Xow Power CMOS Digital Design," IEEEJournal cf

Solid-State Circuits, Vol. SC-20,198S.

[6] R. Hossain, M. Zheng and, A. Albicki, "Reducing power dissipation inCMOS circuits by signal probabil

ity based transistor reordering," IEEE Transactions onComputer-Aitkd Design ofIntegrated Circuits and

Systems, Vol.15, No. 3, Match 1996.

[7] A. Jaekel, G.A. Jullien, S. Bandyopadhyay, "A multilevel factorization technique for pass transistor logic,"

Proceedings of the 9thInternationalCorference on VLSI Design,Jan. 1996.

[8] J. Jain, A. Narayan, C. Coelho, S.P. Khatri, A. Sangiovanni-Vincentelli, R.K. Brayton, and M. Fujita,

"Decomposition techniques for efficient ROBDD construction,". Proceedings cfInternational Corference

in Formal Methodsin Computer-Aided Design, 1996.

[9] PC. McGeer, K.L. McMillan, A. Saldanha, A. Sangiovanni-Vincentelli, and P. Scaglia, "Fast discrete

function evaluation using decision diagrams," Proceedings ofthe International Corference on Computer-

Aided Design, Nov. 1995.

[10]J.L. Neves, and A. Albicki, "Apass transistor regular structitre for implementing multi-level combina

tional circuits," Proceedings ofthe 7th Annual IEEE International ASIC Conference andExhibit, 1994.

[11]S. Panda, and F. Somenzi, "Who are the variables inyour neighborhood," Proceedings ofthe International

Corference on Computer-Aided Design, Nov. 1995.

tl2]J. Rabaey,Dig/ro/Integrated Circuits,Prentice-Hall, Inc. 1996.

[13]D. Radhakrtshnan, S.R. Whitaker, and G.K. Maki, "Formal design procedures for pass transistor switching

circuits," IEEEJournal ofSolid-State Circuits, Vol. SC-20, No. 2, April 1985.

tl4]R. Rudell, "Dynamic variable ordering for ordered binary decision diagrams," Proceedings ofthe Intema-

tiorudCorferenceon Computer-Aided Design,Nov. 1993.

[15]T. Sakurai, B.Lin, and AJl. Newton, "Multiple-Outyut Shared Transistor Logic O^OSTL) Family Syn

thesized Using Binary Decision Diagram," Technical Report. University of California, Berkeley, UCB/

ERLMemoM90/21,1990.

[16]F. Salice, "Automatic synthesis of logic functions using transmission gates," Journal of Microelectronic

Systems Integration, Vol. 3, No.l, March 1995.

[17]Y. Sasaki, K. Yano, S. Yamashita, H. Chikata, K. Rikino, K. Uchiyama, and K. Seki, "Multi-level pass-

25

transistor logic for low-power ULSIs " Proceedings of theInternational Symposium on Low Power Elec

tronics, Oct. 1995.

[18]H. Savoj, "Don't cares inmulti-level netwoik optimization," Ph.D. Dissertation, University ofCalifornia,

Berkeley, UCB/ERL Memo. M92/122, Get 1992.

[19]M. Shamanna, K. Cameron, and S.R. Whitaker, *^ultiple-iiq)ut, multiple-ou^ut pass transistor logic,"

IntenwtionalJoumal ofElectronics, vol. 79, no. 1,1995.

[20]T. Shiple, R. Hojati, A. Sangiovanni-Vincentelli, R.K. Brayton, "Heuristic minimization ofBDDs using

don'tcares," Proceedings ofthe3IstACM/IEEE Design Automation Conference, June 1994.

[21]K. Yano, T.Yamanaka, T. Nishida, M.Saito, K. Shimohigashi, and A.Shimizu, "A3.8-ns CMOS 16xl6-b

multiplier using complementary pass-transistor logic," IEEE JournalofSolid-State Circuits, Vol. 25,No.

2, April 1990.

[22]K. Yano, Y. Sasaki, K. Rikino, and K. Seki, "Top-down pass-transistor logic design," IEEE Joumd, of

Solid-State Circuits, Vol. 31, No. 6, June 1996.

26

	Copyright notice 1997
	ERL-97-26

