

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

REACHABILITY ANALYSIS USING

PARTITIONED-ROBDDs

by

Amit Narayan, Adrian J. Isles, Jawahar Jain, Robert K. Brayton,
and Alberto L. Sangiovanni-VincentelU

Memorandum No. UCB/ERL M97/27

10 April 1997

REACHABILITY ANALYSIS USING

PARTITIONED-ROBDDs

by

Amit Narayan, AdrianJ. Isles, Jawahar Jain, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M97/27

10 April 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
Universityof California, Berkeley

94720

Reachability Analysis Using Partitioned-ROBDDs

AmitNarayan Adrian J. Isles JawaharJain^ RobertK. Brayton

Alberto L. Sangiovanni-'^centelli

Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley, CA 94720

Abstract

In this paper we address the problem offinite state machine (FSM) traversal, a key step in most

sequential verification and synthesis algorithms. We propose the use ofpartitioned-ROBDDs to reduce

the memory explosionproblem associated with symbolic state space exploration techniques.

In our technique, the reachable state set is represented as a partitioned-ROBDD [23]. Different

partitions ofthe Boolean space are allowed to have different variable orderings and only one partition

needs to be in memory at any given time.

We show the effectivenessofourapproach on a set ofISCAS89 bendtmark circuits. Our tedmiques

result in a significant reduction in total memory utilizptim. For a given memory limit, partitioned-

ROBDD based method can complete traversal for rrutny circuits for which monolithic ROBDDs fail.

For circuits where both partitioned-ROBDDsas wellas monolithic-ROBDDscannot complete traversal,

partitioned-ROBDDs can reach a significantlylarger set ofstates.

1 Introduction

A large numberofproblems in VLSI-CADincluding v^fication and synthesis ofsequential circuits require

efficient techniques to perform state enum^ation of finite state machines (FSMs). For a given sequential

circuit, the number of reachable states can be exponential in the number of state elements present in the

circuit. Apopular^roach to deal with this *state explosionproblem* consistsofimplicitlyrepresentingthe

set of reachablestates and the transitionrelationof an FSM as ReducedOrdered BinaryDecisionDiagrams

(ROBDDs) [10, 21]. In many cases, ROBDDs can represent a large number of states y&y compactly,

thus allowing automatic verificationand synthesis of systems having laige state spaces. However, in many

Fujitsu Laboratories of America, San Jose. CA 95134

other cases, the ROBDD representation isnot compact. Infact, the size ofan ROBDD representing the set

of reachable states of a circuit can beexponential in the numb^ of state holding elements present in the

circuit. Unfortunately, circuits which exhibit this worst case complexity do frequently arise inpractice. This

problem, commonly known asthe ROBDD 'memory explosion problem*, places a limit onthe complexity

of circuits thatcan be processed using ROBDDs.

Many researchers have addressed this problemofROBDD memoryexplosion and have proposed alterna

tiverepresentations for Boolean functions which are morecompact than ROBDDs (sometimes exponentially

so) on certain classes of functions. Some of these are Free BDDs [12, 1, 26], Functional Decision Dia

grams (FDDs) [19], ZBDDs [22], OKFDD [11], k-OBDD [2], IBDDs [16], partitioned-ROBDDs [17, 23],

e-OBDDs [29], TBDDs [1], Canonical TBDDs [13] etc.

In spite of the theoretical advances made in the area of Boolean function representation, ROBDDs

still remain the most popular representation for theproblems arising in sequential circuit verification and

synthesis. One important reason behind this is that the effectiveness of these alternative rqnesentations

has not been adequately demonstrated on practical problems. In particular, nobody (to the best of our

knowledge) has shown anapplication of these r^resentations in thecontext of sequential circuits.

Recently, Narayan, Jain,FujitaandSangiovanni-Vmcentelli [23] proposed a rq)resentation forBoolean

functions, called partitioned-ROBDDs. Partitioned-ROBDDs [17, 23], besides being canonical and effi

ciently manipulable, can beexponentially more compact than monolithic ROBDDs inrepresenting certain

classes of Boolean functions. Experimental results on a set of hard combinational circuits showed a

significant improvement in memory requirement [23].

In this p^)er, we show how partitioned-ROBDDs canbe applied for performing reachability analysis

on sequential circuits. Reachability analysis constitutes thecorecomputation of many sequential synthesis

andverification algorithms. We present an algorithm to create thepartitioned-ROBDD representation for

the setof reachable states starting from a sequential netlist. Thealgorithm is builton topof a conventional

reachability algorithm andcanfully leverage otheradvances made in theBDD technology andreachability

analysis. Inthissense, it isbackwardcompatiblewithotherapproaches. Wehave implementedouralgorithm

intheVIS [5] environmentusing theCUDD package fremUniversity ofColorado [27]. Experimental results

on a set ofISCAS89 and ISCAS89-addendum93circuits show up to 2 orders ofmagnitude reduction in space

required to represent the set of reachable states. For a given memory limit, the partitioned-ROBDD based

reachability algorithm can complete traversal for many circuits on which monolithic-ROBDDs fail. For

hard circuits where both monolithic-ROBDDs and partitioned-ROBDDs are unable to complete trav^al,

partitioned-ROBDDs are able to reach a significantly larger numb^ ofstates than monolithic ROBDDs.

The rest of the paper is organized as follows. In Section 2, we briefly review partitioned-ROBDDs and

show an example of a sequential circuit whoe partitioned-ROBDDs can be exponentially more compact

than monolithic ROBDDs in representing the set of reachable states. In section 3, we briefly review the

monolithic ROBDD based FSM traversal algorithm and some previous approaches to deal with the memory

explosion problem. In Section 4 we present our algorithm ofpartitioned-ROBDD based FSM trav^al and

discuss some implementation issues. Experimental results are presented in Section 5 .

2 Partitioned-ROBDDs

The idea of partitioning was used to discuss a function representation scheme called partitioned-ROBDDs

in [17, 15] which was then extensively developed, both theoretically and experimentally in [23]. In this

section, we firstbrieflyreviewthe definitionofpartitioned-ROBDDsandthen show anexample ofsequential

circuit verification where the set of reachable states has an exponential ROBDD representationbut can be

efficientlyrepresentedby partitioned-ROBDDs using only polynomialspace.

2.1 Faititioned-RGBDDs: Definition

Assumethat we aregivena Boolean function / : B" B, defined over n inputsA'n = {a; i,..., Xn}. The

partitioned-ROBDD representation, x/» of / is defined as follows [23]:

Definition 1 Givena Booleanjunction definedover Xn, a partitioned-ROBDDrepresentation

Xf off is a set of kfunctionpairs, Xf = /i), •••, fk)} where, Wi: B^ -¥ B and f: B^ -¥ B,

are also definedover Xn and satisfy thefollowing conditions:

• 1. Wi and fi are representedas ROBDDs with the variable ordering tt,-, for I < i < k.

• 2. W\ i-W2 + ...-\-Wk= I

• 3. Wi A Wj = 0,for i ^ j

• 4. fi = Wi Af,for I <i<k

Here, + and Arqnesent Boolean OR and AND respectively. The set {wi,..., «;*} isdenoted by W. Each

Wi iscalled awindowfunction and represents apart ofthe Boolean space over which / is defined. Intuitively

speaking, inpartitioned-ROBDDs the Boolean space isdivided into kpartitions (using the window functions

Wi e W). The functionality of / isrepresented over each partition asa separate ROBDD /,. ROBDDs for

diffi^nt partitions can have different variable ord^.

It was shown in [23] that partitioned-ROBDDs are canonical and various Boolean op^ations can be

efiiciently performed on them just like ROBDDs. In addition, they can be exponentially more compact

than ROBDDs for certain classes offunctions. The practical utility ofthis representation was demonstrated

by constructing ROBDDs for the outputs of combinational circuits. Recently, it was proved by Bollig

and Wegener [3] that the class ofpartitioned-ROBDDs form a strict hierarchy i.e. for any given k, there

are functions which have a polynomial {k -H 1)- paititioned-ROBDD representation but no polynomial

/j-partitioned-ROBDD representation. Therefore, by increasing the number ofpartitions, we can increase

the class offunctions that become tractable. An excellent comparison ofthe computational pow^ofvarious

BDD based representations andpartitioned-ROBDDs canbe found in [4].

2.2 Partitioned-ROBDD: An Example

The examples used in [23] to prove that partitioned-ROBDDs can be exponentially more compact than

monolithic ROBDDs are somewhat artificial in thesense that oneis unlikely to encounter these functions

in real-life circuits. Here we present a more realistic example of sequential circuit verification where

partitioned-ROBDD representation of the setof reachable states is exponentially more compact than the

monolithic representation. This example is taken ficm [20] and consists ofvaifying whetha two hardware

implementations of a bounded queue are equivalent (Figure 1). The first implementation is a shift register

in which the most recent item is always stored in location 0, and all items shift over when a new item is

inserted. The second implementation is a ring buffer^ whoe a "head pointer" points to the oldest item, and

the items themselves remain fixed. The two circuits can be voified by constructing the product machine

and checking that the outputs of the two circuits are alwaysequal [10]. lb check this, we need to construct

the set of reachablestates, lb get a small ROBDD representationfor the reachablestates, we needto put the

shift register ring buffer

On)

ttO

(out)
tail

(out)
head

(in)

Figure 1: Twoimplementation ofFIFO queue

related state variablestogether in the variable order of the ROBDD re>resenting the set of reachablestates.

However, since the locationof the head pointer is not fixed, we cannot fix an ord^ which keepsthe related

variables together. Notice that although thereis no orderwhich is goodfor ROBDDs, if wefixthe position

of the head pointer then there is a one-to-one correspondence between the locations of the two queues.

Therefore for a givenlocationof the headpointer, we can find an ordering whichleadsto a smallROBDD

forthe reachable stateset. SinceROBDDs arerestricted to haveonlyoneorder, anyvariable ordering leads

to an exponentially sized ROBDD. Partitioned-ROBDDs, on the oth^ hand can employdiffeent ord^

for different partitions. Therefore, if we select the diffoent locations of the head pointeras our window

functions, then for each window function there is a one-to-one correspondence between the state variables

of the twoimplementations. For each window function we can select the variable ordering which keeps

theserelated statevariables together, resulting in a small partitioned-ROBDD representation.

Notice that a firee-BDD representation of the above example is alsopolynomial. However, using free-

BDDs in sequential v^fication is difficult because of the inh^nt difficulties associated in performing

existential quantification on them.

3 Reachability Analysis Using Monolithic ROBDDs

In this section, we discuss the standard monolithic algorithm for reachability analysis and some improve

ments that have been proposed for it. The partitioned-ROBDD based traversal algorithm uses the monolithic

ROBDD based algorithm inits inner loop (top^orm fixed point onindividual partitions). Therefore, it is

ableto take advantage of all of theseimprovements.

3.1 Standard Algoritfam

The standard reachability algorithm isbased onabreadth-first traversal offinite-state machines [10,21,28].

The algorithm takes as inputs the set ofinitial states, /(s), expressed interms ofthe present state variables,

s, and a transition relation, T(s, s\ i), relating the setof next states, N(s'), that a system can reach from a

state5onaninput i. Thetransition relation, T(s, s', t), is obtained bytaking a conjunction of thetransition

relations, = /jt(s,i), of the individual state elements. Given a set of states, R(s), that the system can

reach, thesetof next states, iV(s'), is calculated using equation (1) (also known as image computation and

ref(^ed to as IMAGE{R(s), T(s, s', i)) in the algorithms):

N(s') = 35.i[r(s, s', i) Ai2(s)] (1)

where T(s, s', i) is given by the following equation,

r(s, s',«) = JJ(s;t = fk(s, i)) (2)

The set of reached states iscomputed byadding N{s) (obtained by replacing variables s' with s) toR(s)

anditCTatively performing theabove image computation step until a fixed point is reached. Hgure 2 shows

the outline of this algorithm.

FSM.TRAVERSAL(/(s), T(s, s', i)) {
R(s) = F(s) = I(s)
while (F(s) / 0)

N(s') = /Af/lGE[F(s), T(s, s', i)]
F(«) = JV(s'<-s)Afl(s)
fl(s) = R{s) + F(s)

repeat

}

Hgure 2: Standard Monolithic ROBDD basedFSMll'av^a] Algorithm

3J2 Enhancements to the Standard Algorithm

The FSM traversal algorithm presented in Figure 2 needs the ROBDD representations of r(s, s\ t) and

R{s). The algorithm will not beable toterminate if eith^ ofthe two ROBDDs become very large. Many

techniques have been proposed which can substantially reduce the memory required to r^resent r(s, s\ i)

and i2(s) as ROBDDs.

3^.1 Partitioned Transition Relation

To control the size of transition relations, Burch, Qarke and Long [6] propose the use of partitioned

transition relations. In this method, instead of using a monolithic ROBDD representation of the transition

relation, the transition relations of diif(^nt latches are kq)t as sq)arate ROBDDs (or clustered into small

groups of latches [24]). SinceROBDDs representing the individual latchtransition relations are typically

much smaller than when they are combined, this method can result in substantial memory savings. In

addition, it allows for early quantification of variables which are not present in the support of other

transition relations [14,7,28]. Thistechnique canalsoresult insubstantial savings inmemory during image

computation. Notice though, that the term 'partitioning* is being used here in a totally dififorent context;

in the partitioned-transition relation £^roach, thesetof latches arebeing partitioned intodiffoient groups

while inpartitioned-ROBDDs, it istheBoolean space which isbeing partitioned. Infact, thetwoai^roaches

areorthogonal andpartitioned-transition relations areusedin the innerloopof our approach.

Forlaigecircuits, even theROBDDs oftheindividual latches canbecome very large. Inthesecases [8,18]

suggest the use of intermediate variables to control the size of transition relations . These intomediate

variables can bequantified outalong with thepresent state variables during theimage computation step.

322 Reducing Intermediate Memory Required to Represent R{s)

Most of the techniques for controlling the size of the ROBDD rqpresentation of R(s) are based on the

observation that thesetof reachable states usually hasa much smaller representation at thefixed-point as

compared to the peaksizeobsoved during the intermediate stages of computation. These techniques try

to reducethe intermediate peak memoiy requirement by changing the ord^ in which the statesare visited

during traversal. One popular approach, proposedbyRavi and Somenzi [25], tries tomaximize the^density'

of the ROBDD representing the reachable state set at each step of traversal. density is defined as

the number of states rpresented by an ROBDD divided by theROBDD size. They present a sub-setting

heuristic which tries to reduce the size of reached state set ROBDD by p^orming reachability analysis

only along certain paths when thesize grows beyond a certain threshold. Their algorithm can be easily

integrated in the algorithm presented inRgure 2 by rplacing the 'frontier' set, F(s), with a dense subset

of it. Recently, Cabodi, Camurati and Quer [9] have presented a very interesting technique which they call

A-latch removal. In thistechnique, the latchesaredividedintosubsetsA andB suchthat thelatches in B are

not inthesupport of the next state fiinctions ofother latches. Reachability isperformed byusing the latches

in A until a fixed point is reached. Latches in B are introduced back only in the last image computation

stp. Since theROBDD of thereachable states is usually smaller at thefixed point thanat the intermediate

stages, this technique leads toa global reduction inthememory requirement. Another into^ting technique

proposed in [9] which is somewhat related to ours is of setdecomposition. In this pproach, theset of

reachable states is decomposed into two or more sets during the intermediate stages of computation and

reachability isperformed onthese decompositions sparately. After a few steps ofreachability, results fix)m

thesedifferent sets are combined to obtain a monolithic ROBDD rpmsentation of the reachable stateset.

Thefundamental diffoence between theapproach of [9] and ours is that it uses partitioning to reduce the

intermediate memory requirement during the construction ofa monolithic ROBDD representation ofR(s),

whereas ourgoal is toconstruct a partitioned-ROBDD rpresentation of R{s). We will do a more detailed

comparison with their approach in section 6.

4 Reachability Analysis Using Paititioned-ROBDDs

Inthis section, we describe our partitioned-ROBDD based reachability analysis algorithms indetail. This

algorithms isbuilt ontop ofthe standard BPS algorithm and thus benefits firom the improvements discussed

in the previous section.

Before describing the algorithm in detail, let us first take a look at image computation step for

partitioned-ROBDDs. For the case of monolithic ROBDDs, the image computation is performed ac

cording toequation (1). Now suppose we are given the partitioned-ROBDD representation, xr* ofJ?(s)

where, XR = < j < k} satisfying conditions 1-4 in Definition 1. We want to get the

partitioned-ROBDD representation, XN* ofthe set ofnext states. Suppose we take the image ofRj under

T{s, s', t) to obtain Nj for 1 < i < A;. These Nj*s obtained und^ the image ofr(s, s', t) are not disjoint

and hence caimot beused inthepartitioned-ROBDD rq)resentation of N(s) (Definition 1). There are two

simple solutions tothis problem. One is that we re-partition these Nj*s according tothe window function

W and assign themin-terms in Wi ANj topartition i. However, since wewant to maintain diff(^nt orders

for different partitions, this computation can be expensive ifperformed at every step ofimage computation.

Another solution isthat we continue with the reachability analysis on the Nj*s obtained for afew more steps

and then re-partition toobtain apartitioned-ROBDD r^resentation. The problem with this approach isthat

inthe intermediate stages ofcomputation, the same stages can be visited multiple times making it hard to

detect when a fixed point is reached and leading tounnecessary extra computation.

We propose an alternative solution to theabove based onthefollowing observation. Letusassume that

we are given apartitioned-ROBDD representation xa = {(w'j(s), i2j)|l < i < A^}. Ifwe take the image of

Rj under Tjj(s^ s', i), where Tjj(s^ s\ i) = Wj(s)wj{s')T(s, s', i),we get,

Nj{s') = s', i)i?j(s)] (3)

Since Wj (s') isindependent ofthe variables to be quantified, itcan be taken out ofexistential quantification.

givingus the following equation:

Nj(s') = Wj(s')[3^,i[wj{s)T(s,s\i)Rj{s)]] (4)

Equation4shows that the imageofRj underTjj(s,s', i)lies completelywithin thepartitionj. Similarly,

the image, Ni ofRjunder 2j/(s, s', i)wha:eTj/(s, s\ t) = Wj(s)wi(s^)T(s, s', i),will liecompletelywithin

the partition /. This simple observation forms the basis ofour algorithm. We perform multiple stq)s of

image computation on each Rj under Tjj. Since these steps ofimage computation add states only within

thesame partition, and since different partitions are disjoint, weare guaranteed that thesame state is not

being visited multiple times within different partitions. Once a fixed-point is reached within a partition

i, transition relations Tji{s, s\ i) are used to communicate the new set ofstates to the partition I for for

1< / < A: and / 7^ j. The overall flow ofthe partitioned-ROBDD based algorithm isoutlined in Figure 3.

The PDBDD-REACH algorithm takes BDDs representing the transition relation T(s,s', i), the set of

initial states I(s) of an FSM M and an integer k. The result of the algorithm is the set ofreachable states

of M represented as POBDD: XR = {{wj(s), i?y)|l < j < k}. Associated with each partition, j, is a

bddMgrj. Each BDD manager is fiee tochoose a unique ordering that minimizes the number of nodes in

itspartition. In addition to Rj (s), eachpartition utilizes k transition relations. These transition relations are

computed for each j using Tji{s, s', i) = Wj(s)wi{s')T{s, s', i) (1 < / < k). Intuitively, Tji rq)resents the

transitions fiom states inwindow j tostates inwindow /. POBDDJREACH attempts tominimize memory

usage by onlykeeping the reachable state set and transitionrelations associated with one partition inmemory

ata given time. Thereachable state sets forpartitions notbeing processed aresaved ondisk. Thetransition

relations forpartitions notbeing processed are freed andrecomputed when needed.

Given /(s), r(s, s', i) and A:, function COMPUTE-WINDOW.FUNCTIONS returns a set of window

functions {wj(5)}. Theheuristic usedto determine thesewindow functions is discussed in Section 4.1.

Tliealgorithm maintains an array, eventQueue, which keeps trackofthepartitions onwhichreachability

has tobe performed. This array isinitialized using the function INTITALIZE-QUEUE, which computes the

set ofinitial states for each partition. Each 7/ (s) is computed by taking the image of7(s) under Tji(s, s', i)

10

foT I < j < k and adding it to wi(s) A /(s). Partition I is insoted into eventQueue only if Ii(s) is non

empty. DMl l lALIZE-QUEUE initially saves all partitions to disk.

FOBDDJ®ACH(/(s). T(s, s', i), k) {

{u;j(s)}= COMPUTE_WINDOW_FUNCnONS(T(s, s', i))
{bddMgrj } = CREATE_BDD_MANAGERS(k)
eventQueue = INmALIZE_QUEUE({wj(s), /(s), T(s^ s\«)})
{CiW =

while(|cventQ«e«€| 0) {
newQueue = 4>
foreach(j € eventQueue) {

Rj(8) = LOADJ^OMJ)ISK(bddMgrjJ)) + Cj(s)
FREE(Cj(s))
{Tji{s, s', i)} = CREATE_TRANSinON_RELAnONS(bddMgvjJ)
Nj(s) =reM.TRAVERSAL(Rj(s),Tjj{s,s', i))
Fi(s) = Rj{s)^Ni(s)
Rj(s) = Rj(s) + Fj(s)
if(Fj(s)#0){

foreach(I s.t. ((1 < / < fc) & (/ # j))) {
Ni{s' s) = lMAGE(^Rj,Tji{s))
Ci(s) = MGR-COMMUNICATE(Ni(s), bddMgrj, bddMgn, (f>) + C/(s)
if(|C/(s)| 0) I-¥ newQueue

}
}
SAVE-TO-DISK(bddMgrj, Rj(s))
FREE(Rj(s))
FREE({T,,(«,«',»)})

}
eventQueue = newQueue

}

Figure 3: POBDD-REACH Algorithm

Oncetheinitialstates ofeachpartition arecomputed, thealgorithm proceeds by loading Rj (s) from disk

and then performing a fixed point computation using Tjj. Next, A; —1 image computations are performed

underTji (for I ^ j) to communicate the information aboutthe new states, Fj (s), added in partition j. Fbr

this conununication between managers, we keep a communication cache, C/, which is a BDD in memory

that keeps the states that can be reached fix)m the new states Fj(8) of oth^ partitions j, j ^ I under the

11

image of Tji(s,s\ i). Note thatSince Q is defined in bddMgru MGR_COMMUNICATE must be called

usingbddMgrj and bddMgri as aiguments. EachCi is saved in memory and addedto the setof reachable

states in / the next time it is loaded fiom disk. The sets Partition I is added to the newQueue if Q is

non-empty. The algorithm continues until no new partitions need to be processed.

The function MGR-COMMUNICATE (Figure 4) takes a BDD / that is defined in the BDD manager

srcMgr^ andreturnsa BDDg that is functionallyequivalentto / butdefinedin the BDDmanage* destMgr.

The function also takes the table computedTable as an aigument which maps BDD nodes in the srcMgr

to equivalent nodes in the destMgr that have been previously computed by the function. Initially, the

computedTable is empty. MGR_COMMUNICATE pnceeds recursively. Rrst, / is checked to see if it

is a tautology. If so, the ^ipropriate node in the destMgr is r^umed. Othmvise, the computedTable is

checked to see if a BDD equivalent to / has already been constructed in the destMgr. If such a BDD is

found the result is returned. If that is not the case, MGR-COMMUNICATE is called on the then and else

branches of /. The ite function is then used to construct g. Weassume that the variables in both managers

have the same id. As a final stq), the pairs (/, g) and (/, ^ are insoted into the computedTable and g

is returned. Note that MGR-COMMUNICATE does not require srcMgr and destMgr to have the same

variable orderings.

MGR-COMMUNICATE(/, srcMgr^ destMgr^ computedTable){
if(/ == 0) return bddjsero(destMgr)
if(/ == 1) return bddj)ne{destMgr)

if(g = computedTable(f)) return g

t = MGR-COMMUNICATE(bddJthen{srcMgr, /), srcMgr^ destMgr^ computedTable)
e = MGR-COMMUNICATE(bddjilse{srcMgr^ /), srcMgry destMgry computedTable)

g = ite{topVar{f)yty e)

ifyg) —>• computedTable
(/,y) -¥ computedTable

return g

}

Figure 4; Algorithm to convert between BDD managers

12

4.1 Partitioning Heuristic

Currently we use a static algorithm to obtainthe window functions in which the numb^ of partitions is

specified apriori.)^ndow functions, u;(a) *s, arecubes onthe{nesent statevariables. Thealgorithm assigns

a cost to each variable and selects the best logik variables (for k partitions) for partitioning. From these

log2k variables k partitions arecreated which correspond to all thebinary assignments of these variables.

Ourgoal is to create small andbalanced partitions. For this we define the cost of partitioning a transition

relationT(5, a', t) on variables as

costs(T) = Q;[p,(r)] + Plra(T)] (5)

where Ps(T) represents the partitioning factor andis given by,

Ps(T) = max(\Tgl \Ts\) (6)

andra(r) represents the redundancy factorandis given by,

rs{T) = \Ts\ + \Tj\ (7)

Here, Ta andTj rq)resent thepositive andthe negative cofactors ofT withrespect to s respectively. Notice

thata lowerpartitioning factor is goodas it implies thatthe worst of the twopartitions is smallandsimilarly

a lowerredundancy factor is goodsinceit implies that the totalworkinvolved in creating the twopartitions

is less.

If r(s, s', i) = nikLi T)fe(s, s', i) is a ^partitioned-lVansition Relation* (seeSection 3.2.1), thenthecost

of partitioning for a variable s is defined as:

Noticethat although ourcurrentheuristic forwindow function selection onlygiveswindow functions which

arecubesonthepresent statevariables, in thealgorithm or implementationthereis nothing which restricts us

13

from using moregeneral window frinctions (whichcanbearbitrary functions ofa). Also, ourcurrentheuristic

for window function selectionisbased ononlythetransition relation. We are currently implementinganother

heuristic which dynamically increases thenumber ofpartitions if thepartitions become very large.

4.2 Useof Wj as Don't Cares

In ouralgorithm, thepart of theBoolean space covered by Wj{s) is used as don*t cares while performing

trav^al in partition j. Since we use onlyTii while traversing partition j, it ensures that no extra states

are added to this partition if we use the space wj{8) as don*t cares. Thisdon't care set, is usedto

minimize the HDDs of R{s),N(s) and F(s) inside the FSM.TRAVERSAL routine. A good heuristic to

minimize HDDs / inthe presence ofdon't cares Wj (s), is totake the cofactor of/ with respect to Wj(s).

Since, inthepresent implementation Wj (s) isacube, taking thecofactorof / with respect toit isguaranteed

to reduce the sizeof the HDDs in the intermediate steps. Before communicating the new states to other

partitions under Tji(s, s\ i), we take the conjunction of Rj returned by the FSM_TRAVERSAL algorithm

(which uses don'tcares) with Wj (s) toensure thatnoextra states areadded to partition /.

4.3 Guiding Reachability by UsingSizeand Depth Threshold

The POBDD-REACH algorithm presented inFigure 3 provides us with considerable flexibility in terms of

changing the order inwhich the state space is traversed. This can bedone bychoosing different schedules

for processing the eventQueue, imposing a 'size' threshold such that BDDs of any one partition do not

become very large orplacing a depth threshold for thenumber of steps of reachability that are performed

for each partition.

5 Experimental Results

We have implemented our algorithm of Section 4 in the VIS [5] environment using the BDD package

from theUniversity ofColorado atBoulder [27] which incoiporates state-of-the-art algorithms fordynamic

reordering. All results are reported using DEC Alpha architecture with 250MHz clock. The data-size limit

was set to 128Mb (except for sl423 in Table 2 for which weuseda DEC Alphawith300MHz clockand a

14

data-size limit of 256Mb was set).

InIbble 1andTable 2 wecompare theresults of reachability usingmonolithic ROBDDs andpartitioned-

ROBDDs. We usethealgorithmproposedbyRanjan, Aziz, Brayton, Plessi^ andPixley [24] asthereference

algorithm formonolithic ROBDDs. We usethesamealgorithm withexactly thesame parameter settings in

theinner-loopofpartitioned-ROBDDs toperform fixed-point computationoneachpartition. We present two

setsofresultwithdifferentvaluesof theparameterimage-cluster-size [24]to test therobustness ofourresults.

Dynamic reordering wasenabledat all timeswiththe defaultsettingsof the parameters. Column3 (labeled

ROBDD) reports the memory andtimeresource usedin generating themonolithic ROBDD representation.

Column 4 (labeled Partitioned-ROBDD) reports the results for thepartitioned-ROBDD based reachability

analysis algorithm. The columns labeled ISI rqiresent the number of states that could be reached using

the respective approach before the memory limit was exceeded and the columns labeled Size r^it the

memory required in rqnesenting the state set and is measured in tarns of the number of nodes in the BDD

representation. For partitioned-ROBDDs, the size refers to the size of the largestpartitionsinceonly one

partition needs to be active in the memory at a given time. The column labeled *N* represents the number

of partitions constructed for partitioned-ROBDDs. The columnlabeled *Hme' reports the total time taken

for cases where traversal could be completed.

Asthe tablesclearlyindicate,partitioned-ROBDD basedtraversal is alwaysableto reachmorestatesand

the representation in termsof BDDsis always smallerthan monolithic ROBDDs. Given the memory-limit

of 128Mb, partitioned-ROBDDs areableto completetraversal for sl269, slS12 ands3330whilemonolithic

ROBDDs are able to complete trav^al only for one of these circuits, namelysl512. Even in this case,

partitioned-ROBDDs areabletofinish traversal insignificantly lesstime. Thegains inmemory areeven more

impressive. Partitioned-ROBDDs are almost always an orderof magnitude morecompact than monolithic

ROBDDs (evenwhile rqnesenting a laiger state space). In particular, for s3330,monolithicROBDD based

representation requires more than 400000 nodes to rq>resent 1.17x10 '̂ states (for imagexluster-size =

100) while partitioned-ROBDDs cancomplete traversal andrepresent all7.2778x10'̂ states in about4000

nodes; a factor of 100reduction. This is surprising because the reduction wasachieved by creating only4

partitions.

15

We have plotted the BDD size profile, as a function of the number of states reached for s3330 to

check whether theintermediate memory requirement of partitioned-ROBDDs is also small or not. Again,

partitioned-ROBDDs have a much better behavior compared to monolithic ROBDDs asshown inFigure 5.

Similar results were obtained forother circuits. Inparticular, forsl423 weobserved that by making only

4 partitions, thepartitioned-ROBDD algorithm was able toreach a significantly more number of states. In

fact, thepartitioned-ROBDD based algorithm was able toreach more states (8.0554x10'^ than monolithic

ROBDD based algorithm injusta few seconds and needed only 14151 nodes torepresent them. Once again

overa factor of 100improvement in representing a statesetof comparable size.

BDDProOle

30000-

23000-

S 20000-

OOO -

le+03 ImO? Io,| I

No. of Reached Sutes

isnr

Figure 5: BDD Profile ofs3330

6 Comment on Related Work

POSDD

Aspreviously mentioned, Cabodi, Camurati and Quer [9] use thenotion ofdecomposition torepresent the

set of reachable states. At the first glance, theirapproach appears to be somewhat similarto ours. However,

there are significant differences between the twoworks. In their approach, when the set of reached states

becomes larger than acertain threshold, it issplitinto two ormore partitions. Reachability is then performed

on these partitions separately after which thesetsarecombined to obtain a monolithic representation of the

16

Ckt #FF ROBDD Partitioned-ROBDD
iSI Size Time iSI Size Time N

S1269 37 1.3077x10^ 20862 N/A 1.1313x10' 550 906 2
S1512 57 1.6537x10*2 687 7226.5 1.6537x10" 649 3238.6 2
S3271 116 4.1292x1022 193593 N/A 9.3374x102' 80172 N/A 4

S3330 132 5.9573x10'^ 125600 N/A 7.2778x10" 6411 1031.6 8
s4863 104 3.9746x10'^ 13270 N/A 3.1460x10" 2156 N/A 8
sl423 74 7.99116x10^* 469271 N/A 1.4787x10" 394136 N/A 4

Table1: ISCAS-89 Circuits: Image-ClusterJSize = 5000

Ckt #FF ROBDD Partitioned-ROBDD
ISI Size Time ISI Size Time N

S1269 37 1.3077x10' 15886 N/AA 7.300x10" 499 N/A 4
S1512 57 1.6537x10" 687 2066 1.6537x10" 581 1426 4

S3271 116 3.5143x10" 159146 N/A 1.0096x10" 39381 N/A 4

S3330 132 1.1728x10" 404213 N/A 7.2778x10" 4202 672.3 4

s4863 104 3.9746x10" 14273 N/A 3.1460x10" 2156 N/A 8

Table2: ISCAS-89Circuits: Image.Quster-Size = 100

reachable state set. The goal here is to reduce the intermediate memory requirement instead of creating

a partitioned-ROBDD representation. Since, reachability is performed on the different partitions using

T(s,s', i) (unlike our approach where we use Tjj{s, s', i) for the jth partition), it suffers from the same

problems aswere discussed in thebeginning of section 4. Furth^, since thepartitions have to becombined

later on, their ^proachisnot able touse (at least inthepresent form) different orders for diff^ent partitions.

Asmost of thegains incube based partitioning come from thefact thatdifferent partitions canhave different

orders, this poses aserious restriction ontheeffectiveness oftheir ^}proach. Itcan beproved, infact, that for

input variable based partitioning, without allowing diffa:ent partitions tohave different variable orderings,

partitioning can achieve only linear reduction inspace asopposed topartitioned-ROBDDs where the gains

can be exponential. An example of such a case is thebuffi^-queue verification example of section 2. In

addition tothese, differences exist in the details ofthe algorithm. These include our use ofan event queue,

a different partitioning heuristic, our use of don*t cares, communication between managers with different

orderings and control onthescheduling ofthe partitions. Unfortunately, adirect comparison ofresults could

17

notbemade since wedidnothave a copy of their package.

7 Conclusions

In this paper, the use ofpartitioned-ROBDDs for performing reach^ility analysis on sequential circuits

has been proposed. We have shown, by means of an example, that compared to monolithic ROBDDs,

partitioned-ROBDDs can represent the reachable state set ofsome circuits in exponentially less space. In

addition, we have presented an algorithm toconstruct the partitioned-RDBDD i^nesentation ofthe set of

reachable states starting from the set ofinitial states and the transition relation ofa system. Our algorithm

allows different partitions to have different variable orderings and only one partition needs to be present in

memory at any given time. Further, multiple steps ofreachability can be performed independently before

any communicationbetweenpartitions is needed.

Experimental results have been very encouraging. Our algorithm has been implemented in the VIS

environment and we have observed up to two orders ofmagnitude reduction in memory usage. Fbr agiven

memory limit, the partitioned-ROBDD based algorithm was able to complete trav^al for many circuits on

which monolithic ROBDDs failed. For circuits where both monolithic ROBDDs and partitioned-ROBDDs

could not complete trav^isal, partitioned-ROBDDs were able to cover asignificantly laiger state space.

Future research is directed towards improving the efficiency ofour algorithm. In particular, we are

experimenting with different partitioning heuristics. We are currently implementing adynamic partitioning

algorithm, which increases the number ofpartitions whenever the size ofa particular partition crosses

a c^tain threshold. Finally, since reachability can be performed on each partition s^arately, with only

minimal communication between partitions, we feel that our algorithm is particularly suitable for parallel

implementation.

8 Acknowledgements

Theauthors would liketo thank Amit Mehrotra andRavi Gunturi fortheir critical review of thedraft. This

work was supported inpart bySemiconductor Research Corporation contract #97-DC-324.

18

References

[1] J. Bern, C. Meinel, andA.Slobodova. Efficient OBDD-Based Boolean Manipulation in CADBeyond

Current Limits. In DAC, pages 408-413, June 1995.

[2] B. BoUig, M. SauerhofF, D. Sieling, and I. Wiener. Hio^hy Theorems for kOBDDs and kIBDDs.

Acceptedforpublication in Theoretical Computer Science^ 1997.

[3] Beate Bollig and Ingo Wegener. manuscript,Po^nal communication, 1997.

[4] Beate Bollig and Ingo Wipgener. Partitioned-BDDs vs. Oth^ BDD Models. In To be published in

IWLS97, Tahoe City, CA, May 1997.

[5] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. Ed

wards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R.K. Ranjan, S. Sarwary, T.R. Shiple,G. Swamy,

and T. Wla. VIS: A System for Verificationand Synthesis. In Proc. ofthe 8th InternationalConference

on Computer-Aided Verification, volume 1102of LNCS, pages 428-432. Springer-Verlag, 1996.

[6] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic Model Checking with Partitioned Transition

Relations. In DAC,pages 403-407, June 1991.

[7] G. Cabodi and P. Camurati. Symbolic fsm trav^als based on the transition relation. Manuscript

Submitted to Transaction on Computer-AidedDesign, 1994.

[8] G. Cabodi, P. Camurati, and Stefano Quer. Auxiliary variables for extending symbolic traversal

techniques to data paths. 31st DesignAutomation Conference, pages 289-293,1994.

[9] G.Cabodi,P.Camurati,and StefanoQuer. Improvedreachabilityanalysisoflargefinitestate machines.

ICCAD, pages 354-360,1996.

[10] O. Coudert, C. Berthet, and J. C. Madre. Vmfication of Sequential Machines Based on Symbolic

Execution. In Proc. of the Workshop on Automatic Verification Methodsfor Finite State Systems,

Grenoble, France, 1989.

19

[11] R. Drechsl^ et. al. Efficient representation and manipulation ofswitching functions based onOrdoed

Kronecker Functional Decision Diagrams. In DAQpages415-419,1994.

[12] J Geigov andCh.Meinel. Efficient Boolean Manipulation Wth OBDD's canbeExtended toFBDD's.

IEEE Transaction on Computers, 43(10):1197-1209,1994.

[13] E. Goldberg, Y. Kukimoto, andR. K.Brayton. Canonical TBDD's- A NewDataStructure forBoolean

Functions. In Proa, of theIntl. Workshop onLogic Synthesis, May 1997.

[14] R. Hojati, S.C. Knshnan, and R. K. Brayton. Heuristic Algorithms for Early Quantification and

Partial Product Minimization. Technical Rqwrt UCB/ERL M93/58, Electronics Research Lab, Univ.

of California, Berkeley, CA 94720, July 1993.

[15] J. Jain. On analysis of boolean functions. Ph.D Dissertation, Dept. ofElectrical and Computer

Engineering, The UniversityofTexas at Austin, 1993.

[16] J.Jain, J.Bitner, M. Abadir, J.A. Abraham, and D. S. Fussell. Indexed BDDs; Algorithmic advances

intechniques to represent and verify Boolean functions. IEEE Transactions on Computers (to appear).

[17] J.Jain, J.Bitner, D. S. Fussell, and J.A. Abraham. Functional partitioning for verification and related

problems. Brown/MITVLSI Conference, March 1992.

[18] J. Jain, A. Narayan, C. Coelho, S. Khatri, A. Sangiovanni-\fincentelli, R. Brayton, and M. Fujita.

Decomposition Techniques for Efficient ROBDD Construction. In Formal Methods in CAD 96,

LNCS. Springer-Verlag, 1996.

[19] U. Kebschull et. al. Multilevel logic synthesis based on Functional Decision Diagrams. European

DAC,pages 43-47,1992.

[20] K. L. McMillan. Aconjunctively decomposed boolean representation for symbolic model checking.

In Computer-Aided Verification, pages 13-25,1996.

[21] Kermeth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

20

[22] S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In DAC, June

1993.

[23] A. Narayan,J. Jain, M. Fujita, and A. L. Sangiovaimi-Vincentelli. Partitioned-ROBDDs - A Compact,

Canonical and Efficiently Manipulable Representation for Boolean Functions. /CCAD, November

1996.

[24] R. K. Ranjan, A. Aziz, R, K. Brayton, B. Plessia*, and C. Pixley. Efficient BDD Algorithms for FSM

Synthesis and V^fication. In Pwc. of the Intl. Workshop on Logic SynthesiSy Ibhoe City, NV, May

1995.

[25] K. Ravi and F. Somenzi. High-density reachability analysis. ICCADy 1995.

[26] D. Sieling and Wegener I. Graph-driven OBDDs - a new data structure for Boolean functions.

Theoretical Computer Scienccy 1995.

[27] F. Somenzi. CUDD: CU decision diagram package, release 2.1.1. Department of Electrical and

Computer Engineering, UniversityofColorado at Bouldery February 1997.

[28] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Implicit State

Enumeration of Finite State Machines using BDD's. In ICCADy pages 130-133, November 1990.

[29] S. Waack. On the descriptiveand algorithmicpowerof Parity OrderedBinary Decision Diagrams. In

Proc. ofSTACSy LNCS. Springer-Verlag, 1997.

21

	Copyright notice 1997
	ERL-97-27

