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Event-Clock Automata:

A Determinizable Class of Timed Automata*

Rajeev Alud Limor Fix* Thomas A. Henzinger®

Abstract. We introduce event-recording automata. An event-recording automaton
is a timed automaton that contains, for every event a, a clock that records the time
of the last occurrence of a. The class of event-recording automata is, on one hand,
expressive enough to model (finite) timed transition systems and, on the other hand,
determinizable and closed under all boolean operations. As a result, the language-
inclusion problem is decidable for event-recording automata. We present a translation
from timed transition systems to event-recording automata, which leads to an algorithm
for checking if two timed transition systems have the same set of timed behaviors.

We also consider event-predicting automata^ which contain clocks that predict the
time of the next occurrence of an event. The class of event-clock automata, which contain
both event-recording and event-predicting clocks, is a suitable specification language for
real-time properties. We provide an algorithm for checking if a timed automaton meets
a specification that is given as an event-clock automaton.

1 Introduction

Finite automata are instrumental for the modeling and analysis of many phenomena within com
puter science. In particular, automata theory plays an important role in the verification of con
current finite-state systems [15, 21]. In the trace model for concurrent computation, a system is
identified with its behaviors. Assuming that a behavior is represented as a sequence of states or
events, the set of possible behaviors of a system is a formal language, and the system can be mod
eled as an automaton that generates the language (a complex system is modeled as the product of
automata that model the component systems). Since the admissible behaviors of the system also
constitute a formal language, the requirements specification can be given by another automaton
(the adequacy of automata as a specification formalism is justified by the fact that competing for
malisms such as linear temporal logic are no more expressive). The verification problem of checking
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that a system meets its specification, then, reduces to testing language inclusion between two au
tomata. The decision procedure for language inclusion typically involves the complementation of
the specification automaton, which in turn relies upon determinization [14, 20].

To capture the behavior of a real-time system, the model of computation needs to be augmented
with a notion of time. For this purpose, timed automata [3] provide a simple, and yet powerful,
way of annotating state-transition graphs with timing constraints, using finitely many real-valued
variables called clocks. With each transition, a timed automaton may check the clock values, and
reassign new values to some clocks. A timed automaton, then, accepts timed words—strings in
which each symbol is paired with a real-valued time-stamp. The theory of timed automata allows
the solution ofcertain verification problems for real-time systems with finite control [1, 3, 4, 6, 13],
and the solution of certain delay problems [2, 9]. Solutions based on this theory have been imple
mented in several automatic tools, including Cospan [7], Kronos [10], and UppAal [8]. However,
the general verification problem (i.e., language inclusion) is undecidable for timed automata [3].
This is because, unlike in the untimed case, the nondeterministic variety of timed automata is
strictly more expressive than the deterministic variety. The notion of nondeterminism allowed by
timed automata, therefore, seems too permissive, and we hesitate to accept timed automata as the
canonical model for real-time computation with finite control [5].

In this paper, we obtain a determinizable class of timed automatabyrestricting the use ofclocks.
Theclocks ofan event-clock automaton have a fixed, predefined association with the symbols ofthe
input alphabet (thealphabet symbols typically represent events). The event-recording clock of the
input symbol a is a history variable whose value alwaysequals the time of the last occurrence of a
relative to the current time; theevent-predicting clock ofa isa prophecy variable whose value always
equals the time ofthe next occurrence ofa relative to thecurrent time (if no such occurrence exists,
then the clock value is undefined). Thus, unlike a timed automaton, an event-clock automaton
does not control the reassignments of its clocks, and, at each input symbol, all clock values of the
automaton are determined solely by the input word. This property allows the determinization of
event-clock automata, which, in turn, leads to a complementation procedure. Indeed, theclass EGA
ofevent-clock automata isclosed under all boolean operations (timed automata arenotclosed under
complement), and the language-inclusion problem is decidable (PsPACE-complete) for event-clock
automata.

The class of event-clock automata is sufficiently expressive to model real-time systems with
finite control, and to specify common real-time requirements. For instance, the hard real-time
requirements that "every request is followed by a response within 3 seconds" and that "every
two consecutive requests are separated by at least 5 seconds" can be expressed using event-clock
automata. In fact, we argue thatautomata thatcontain only event-recording clocks {event-recording
automata) are a suitable abstract model for real-time systems by proving that event-recording
automata are as powerful as another popular model for real-time computation, timed transition
systems [12]. A timed transition system associates with each transition a lower bound and an
upper bound on the time that the transition may be enabled without being taken (many related
real-time formalisms also use lower and upper time bounds to express timing constraints [18, 19]).
Arun ofa timed transition system, then, is again a timed word—a sequence of time-stamped state
changes. We construct, for a given timed transition system T with a finite set ofstates, an event-
recording automaton that accepts precisely the runs of T. This result leads to a Pspace algorithm
for checking the equivalence of two finite timed transition systems.

The remaining paper is organized as follows. Section 2 defines event-clock automata. Section 3
proves that for every nondeterministic event-clock automaton, we can construct an equivalent
deterministic event-clock automaton. Section 4studies closure properties and decision problems of



event-clock automata. Section 5 relates the expressiveness of various classes of timed automata.
Section 6 shows how event-clock automata can be used to obtain decision procedures for timed
transition systems.

2 Event-clock Automata

Timed words and timed languages

We study formal languages of timed words.^ A timed word w over an alphabet E is a finite
sequence (cq, to)(aij fi) •••(onj ^n) ofsymbols a,- € E that are paired with nonnegative real numbers
ti 6 R-° such that the sequence t = toti.. -tn of time-stamps is nondecreasing (i.e., t,- < t^+i for
all 0 < i < n). Without loss of generality it may be assumed that to = 0. Sometimes we denote the
timed word w by the pair (a,t), where a G E* is an untimed word over E. A timed language over
the alphabet E is a set of timed words over E. The boolean operations of union, intersection, and
complement of timed languages are defined as usual. Given a timed language C over the alphabet E,
the projection Untime{C) is the untimed language over E that is obtained by discarding the time-
stamps: Untime(C) C E" consists of all untimed words a for which there exists a sequence t of
time-stamps such that (a, i) € £.

Automata with clocks

Timed automata are finite-state machines whose transitions are constrained with timing require
ments so that they accept (or generate) timed words (and thus define timed languages); they were
proposed in [3] as an abstract model for real-time systems with finite control. The finite control
of a timed automaton consists of a finite set of locations and a finite set of real-valued variables

called clocks. Each edge between locations specifies a set of clocks to be reset (i.e., restarted). The
value of a clock always records the amount of time that has elapsed since the last time the clock
was reset: if the clock z is reset while reading the i-th symbol of a timed input word (a, t), then
the value of z while reading the j-th symbol, for j > i, is tj —ti (assuming that the clock z is not
reset at any position between i and j). The edges of the automaton put arithmetic constraints on
the clock values; the automaton control may proceed along an edge only when the values of the
clocks satisfy the corresponding constraints.

Each clock of a timed automaton, therefore, is a real-valued variable that records the time
difference between the current input symbol and a previous input symbol, namely, the input symbol
on which the clock was last reset. This association between clocks and input symbols is determined
dynamically by the behavior of the automaton. An event-clock automaton, by contrast, employs
clocks that have a tight, predefined association with certain symbols of the input word. Suppose
that we model a real-time system so that the alphabet symbols represent events of the system.
In most cases, it will suffice to know, for each event, the time that has elapsed since the previous
occurrence of the event. For example, to model a delay of 1 to 2 seconds between the input and
output events of a device, it suffices to use a clock z that records the time that has elapsed since
the last input event, and require the constraint 1 < 2 < 2 when the output event occurs. This
observation leads us to the definition of clocks that have a fixed association with input symbols
and cannot be reset arbitrarily.

'For the clarity of exposition, we limit ourselves to finite words. Our results can be extended to the framework of
timed b;-languages.



Event-recording and event-predicting clocks

Let E be a finite alphabet. For every symbol a G E, we write Xa to denote the event-recording
clock of a. Given a timed word w = (aoj^o)(fli)^i) the value of the clock Xa at the
j-th position of w is tj — where i is the largest position preceding j such that a,- equals a. If
no occurrence of a precedes the j-th position of u;, then the value of the clock Xa is "undefined,"
denoted by ±. We write = R-°U {±} for the set of nonnegative real numbers together with
the special value X. Formally, we define for all 0 < j < n.

ifM =
tj —ti if there exists an i such that 0 < i < i and a,- = a,

and for all k with i < A: < j, we have ak ^ fl,
X if Ok ^ a for all k with 0 < A: < j.

That is, the event-recording clock Xa behaves exactly like an automaton clock that is reset every
time the automaton encounters the input symbol a. The value of Xa, therefore, is determined by
the input word, not by the automaton. Auxiliary variables that record the times of last occurrences
of events have been used extensively in real-time reasoning, for example, in the context of model-
checking for timed Petri nets [23], and in assertional proof methods [16, 19].

Event-recording clocks provide timing information about events in the past. The dual notion of
event-predicting clocks provides timing information about future events. For every symbol a € E,
we write ya to denote the event-predicting clock of a. At each position of the timed word uJ, the
value of the clock pa indicates the time difference between the current input symbol and the next
occurrence of the input symbol a; the special value X indicates the absence of a future occurrence
of a. Formally, we define for all 0 < i < n,

ti —tj if there exists an i such that j < i < n and a,- = a,
ifiVa) = ^ and for all k with j < k < i, we have ajt ^ a,

X if Gfc ^ Gfor all k with j < k < n.

The event-predicting clock pa can be viewed as an automaton clock that is reset, every time the au
tomaton encounters the input symbol a, to a nondeterministic negative starting value, and checked
for 0 at the subsequent occurrence of a.

We write Ce for the set {xq | g € E} U{pa | g GE} of event-recording and event-predicting
clocks. For each position j of a timed word W, the clock-valuation function yf, then, is a mapping
from Ce to Rj°. The clock constraints compare clock values to rational constants or to the special
value X. Let denote the set of nonnegative rational numbers together with X. Formally, a
clock constraint over the set C of clocks is a boolean combination of atomic formulas of the form
z < c and z > c^ where z ^ C and c G The clock constraints over C are interpreted with
respect to clock-valnation functions 7 from C to Rj°: the atom X<X evaluates to true, and all
other comparisons that involve X (e.g., X> 3) evaluate to false. For the clock-valuation function 7
and a clock constraint we write 7 [= <^ to denote that according to 7 the constraint (p evaluates
to true. We freely use abbreviations such as < and = when writing clock constraints.

Syntax and semantics of event-clock automata

An event-clock automaton is a (nondeterministic) finite-state machine whose edges are annotated
both with input symbols and with clock constraints over event-recording and event-predicting
clocks.^ Formally, an event-clock automaton A consists of

^Clock constraints can be added, as invariant conditions, also to the locations of an event-clock automaton [13],
without influencing our results.
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Figure 1: Event-recording automaton A]

• a finite input alphabet E,

• a finite set L of locations,

• a set C X of start locations,

• a set C X of accepting locations, and

a finite set E of edges. Each edge is a quadruple (^, a, (p) with a source location ^ € X, a
target location 6 X, an input symbol a € E, and a clock constraint p over the clocks Cs-

An (untimed) finite-state machine can be viewed as an event-clock automaton all of whose edges
have the trivial clock constraint <rue, which evaluates to true for all clock-valuation functions.

Consider the behavior of the event-clock automaton A over the timed input word w = (ao> ^o)
(ai,ti).. .(a„,t„). Starting in one of the start locations and scanning the first input pair (oo,to)i
the automaton scans the input word from left to right, consuming, at each step, an input symbol
together with its time-stamp. In location i scanning the i-th input pair the automaton may
proceed to location t' and the {i l)-st input pair if there is an edge a, (p) such that a equals
the current input symbol a,-, and the current clock valuation satisfies the clock constraint p.
Formally, a computation of the event-clock automaton A over the timed input word u; is a finite
sequence

tt ^0. 0 . Q ^2 ^ n en^ n
to —f ti —> 12 —> ' • • —r t„ —y t„+i

of locations £,• 6 X and edges Ci = (A, € E such that € Xq and for all 0 < i < n,
7j" Pi. The computation is accepting iff £„+i € . The timed language C[A) defined by the
event-clock automaton A consists of all timed words w such that A has an accepting computation
over w. We write ECA for the class of timed languages that are definable by event-clock automata.

The event-clock automaton A is an event-recording automaton iff all clock constraints of A
contain only event-recording clocks; A is an event-predicting automaton iff the clock constraints of
A contain only event-predicting clocks. The class of timed languages that can be defined by these
two restricted types of event-clock automata are denoted ERA and EPA, respectively.

Examples of event-clock automata

The event-clock automaton Ai of Figure 1 uses two event-recording clocks, Xa and xi,. The location
£o is the start location of Ai, and also the sole accepting location. The automaton accepts timed



Figure 2: Event-recording automaton A2 and event-predicting automaton >13

Xfl = ± V Xfl > 5
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Figure 3: Event-recording automaton >14

input words of the form (a,i) with a = (abed)'', for some A: > 0. All edges that are not labeled by
clock constraints have, by default, the trivial clock constraint true. The clock constraint Xq < 1
that is associated with the edge from £2 to £3 ensures that each c occurs within 1 time unit of the
preceding a. A similar mechanism for checking the value of Xb while reading d ensures that the
time difference between each b and the subsequent d is always greater than 2. Thus, the timed
language £(Ai) defined by Ai consists of all timed words (a,t) such that for all 0 < j < k,we have
^4j+2 < t4j + 1 and t4j+3 > i4j+i + 2. Note that the timed language C{Ai) can also be defined
using event-predicting clocks: require yc<l while reading a, and yd> 2 while reading b.

The duality of the two types of clocks is further illustrated by the automata of Figure 2.
The event-recording automaton A2 accepts all timed words of the form {ab%I) such that the
time difference between the two extreme symbols is 1, which is enforced by the event-recording
clock Xq. Later we will prove that there is no event-predicting automaton that defines the timed
language £(^2). The event-predicting automaton A3, on the other hand, accepts all timed words
of the form (aa*6,f) such that the time difference between the two extreme symbols is 1; for this
purpose, the event-predicting clock yb is used to predict the time of the first b. There is no event-
recording automaton that defines £(^3).

The automaton A4 of Figure 3 expresses the requirement that every request a is followed by
a response 6 within 3 seconds, and two requests are separated by at least 5 seconds. Examples
such as the railroad-gate controller and timing-based mutual-exclusion algorithms that appear in
the literature on real-time verification (see, for instance, [3, 6, 13]) can all be specified using event-
clock automata.

3 Deterministic Event-clock Automata

A finite-state machine (with a single start location) is deterministic if all input symbols that label
edges with the same source location are pairwise distinct. For event-clock automata we consider
the notion of determinism that was proposed for timed automata [3]. The event-clock automaton



A = (E, Z-, L°, E) is deterministic iff

1. A has at most one start location (i.e., |L°| < 1), and

2. two edges with the same source location and the same input symbol have mutually exclusive
clock constraints; that is, if {£^£',a,<pi) G E and a, ^>2) € £7, then for all clock-valuation
functions 7, 7 A ^2-

The determinism condition ensures that at each step during a computation, the choice of the next
edge is uniquely determined by the current location of the automaton, the input word, and the
current position of the automaton along the input word. It is easy to check that every deterministic
event-clock automaton has at most one computation over any given timed input word.

Of our examples from the previous section, the event-clock automata Ai, A3, and A4 are de
terministic. While the automaton A2 is nondeterministic, it can be determinized without changing
its timed language, by adding the clock constraint Xo < 1 to the self-loop at location £i.

In the theory of finite-state machines, it is well-known that every nondeterministic machine can
be determinized; that is, the deterministic and nondeterministic varieties of finite-state machines
define the same class of languages (the regular languages). In the case of timed automata, how
ever, the nondeterministic variety is strictly more expressive than its deterministic counterpart [3].
We now show that the event-clock automata form a subclass of timed automata for which the

deterministic and nondeterministic automata are equally expressive.
The determinization follows the standard subset construction. Let A = (E,L, L°, jL-^, E) be the

given event-clock automaton. The determinized automaton Det{A) over the same alphabet E has
the following components.

• The locations of Det{A) are the nonempty subsets of L.

• The only start location is (if is empty, then Det(A) has no start location).

• A location L' C L is an accepting location iff n L' is nonempty.

• Consider a location L' C L of Det(A) and an input symbol a € E. Let E' C E he the set of
all edges of A whose source locations are in V and whose input symbol is a. Then, for every
nonempty subset E" of £?', there is an edge from L' to L" with the input symbol a and the
clock constraint ip such that

- L" contains precisely the target locations of the edges in E'\ and

- (p IS the conjunction of all clock constraints of edges in E" and all negated clock con
straints of edges in {E' \ E"),

For example. Figure 4 shows a nondeterministic event-recording automaton A5 and the determinized
automaton Det(A^),

It is easy to check the following properties of the determinized automaton Z)e<(A):

1. C(A) = C(Det(A)).

2. Given a location V of Det(A)^ an input symbol a, and a clock-valuation function 7, there is
precisely one edge (L\L"^a^p) such that 7 |= Hence, Det(A) is deterministic.

3. Det(A) is an event-recording (event-predicting) automaton iffA is an event-recording (event-
predicting) automaton.
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Figure 4: Event-recording automata's and DetlAs)

Theorem 1 (Determinization) Forevery event-clock (event-recording; event-predicting) automa
ton A, there is a deterministic event-clock (event-recording; event-predicting) automaton that de
fines the timed language C(A).

Notice that the determinization of an event-clock automaton causes an exponential blow-up in the
number of locations, but changes neither the number of clocks nor the constants that occur in clock
constraints.

The key for the determinization of event-clock automata is the property that at each step
during a computation, all clock values are determined solely by the input word. We therefore
obtain determinizable superclasses of event-clock automata if we add more clocks that do not
violate this property. For example, for each input symbol a and each natural number i, we could
employ a clock z* that records the time since the i-th occurrence of a in the input word, and a
clock zjj that records the time since the i-th-to-last occurrence of a (i.e., Xa = icj). Or, more
ambitiously, we might want to use for each linear temporal logic formula if} over the input alphabet
a formula-recording clock that measures the time since the last position of the input word at
which tj) was true, and 3, formula-predicting clock that measures the time until the next position
at which ^ will be true. A formula-clock automaton^ then, is a timed automaton all of whose
clocks are either formula-recording or formula-predicting (event-clock automata are the subclass
of formula-clock automata for which all formulas are atomic). Similarly to event-clock automata,
every formula-clock automaton can be determinized.



4 Properties of Event-clock Automata

Event-clock automata as labeled transition systems

Every timed automaton can be viewed as an infinite-state labeled transition system. Given an
event-clock automaton A = (E, L, E), we define the labeled transition system Sa to capture
the behavior of A over timed words. The labeled transition system Sa has the following components:

• A state of Sa is a pair (^,7) that consists of a location tQ. L and a clock-valuation function 7
from Cs to R which determines the values of all clocks. The state space of 5^ is denoted
by (3>i.

• Theset Q\ C Qa of initial states consists ofall states (€, 7) such that £ € and j{xa) =J-
for all input symbols a 6 E.

• The set C Qa of final states consists of all states (£,7) such that £ € and 7(1/0) =J-
for all input symbols a 6 E.

• For two states q,q' € an input symbol a € E, and a real-valued time delay 5 £ R^°, let
q-^q' if the automaton A may proceed from the state q to the state q' by reading the input
symbol a, and let q-^q' if A may proceed from q to q^ by letting time S pass. Formally,

- (£, 7)A (£', 7') iff there is a clock-valuation function 7" and an edge (£, £', £ E such
that

* 7 = l"[ya •= 0] (i.e., 7 agrees with 7" on all clocks except j/o, which in 7 evaluates
to 0),

* t' = l"[^a 0], and
* 1" h 9-

—(£, 7) -4 (£', 7') iff £= £' and for all input symbols 66 E,
* if 7(a:t) =J. then 7'(a:fe) =±, otherwise 7'(a;6) = 7(2^6) + and

* if 7'(2/6) =-L then 7(2/6) =±, otherwise 7(2/6) = 'y'(yh) +

We inductively extend the labeled transition relation to timed words:

• q' iff there is a state q" £ Qa such that q^q" and q"^q'\

• if w = (ao, io); ••(fln) ^n) a^nd w' = W(an+i» ^n+i)) then gA g' iff there is a state q" such that
g -¥ q and g q\

The following lemma states the correctness of the labeled-transition-system semantics for event-
clock automata.

Lemma 1 The event-clock automaton A accepts the timed word W iff q-^q' for some initial state
q and some final state q' of the labeled transition system Sa •



The region construction

The analysis of timed automata builds on the so-called region construction, which transforms a
timed automaton into an untimed finite-state machine [3]. Here we apply the region construction
to event-clock automata.

Consider an event-clock automaton A and the corresponding labeled transition system Sa- An
equivalence relation ^ on the state space Qa is a time-abstract bisimulation of A iflf for all states
91) 92 € Qa, if 9i - 92 then

1. ifgi Ag} for some input symbol a € E, then there exists a state € Qa with Agj and
qi = q2, and

2. if qiAq'i for some time delay <5 €K-°, then^ there exists astate €Qa and a time delay
(possibly different from with 92 92 and —92-

The relation = has finite index iff the number of equivalence classes of = is finite. Time-abstract
bisimulations with finite index can be used to solve reachability problems for A. One such relation
is the region equivalence =a-

Let us assume that all clock constraints of A contain only integer constants (otherwise, all
constants need to be multiplied by the least common multiple of the denominators of all rational
numbers that appear in clock constraints). Let c be the largest integer constant that appears in a
clock constraint ofA. Two clock-valuation functions 7 and y' from Ce to R are region-equivalent,
written 7 =a 7', iff the following three conditions are satisfied:

1. 7 and 7' agree on which clock values are undefined: for all 2: € Ce, we have y{z) =J_ iff
y'{z) =JL.

2. 7 and y' agree on the integral parts of all defined clock values that are at most c: for all
2: 6 Ce, if yiz) < c or y'{z) < c, then [7(2)] = [y'(z)\ and [7(2:)] = ly'iz)].

3. 7 and y' agree on the ordering of the fractional parts of all defined clock values that are at
most c. Foran event-recording clock let <7(2^0)) be7(a;a)- [7(3^0)]; for an event-predicting
clock 2/0, let (7(ya)) be [7(2/0)! - 7(ya). Then: for all z,z' € Ce, if y{z) < c and y{z') < c,
then (7(2:)) < <7(^0> iff < ilV))'

Two states {£, 7), y') GQa are region-equivalent, written {£, 7) =a (t, 7'), iff £= £' and 7 =a l'-

Lemma 2 [3] For every event-clock automaton A with integer constants, the region-equivalence
relation =a Is a time-abstract bisimulation of A.

An equivalence class of =a is called a region of A. The number of regions of A is finite.

Lemma 3 [3] For every event-clock automaton A with integer constants, the number of regions of
A is n- where n is the number of locations of A, m is the size of the input alphabet,
and c is the largest constant that appears in a clock constraint of A.

Given thetime-abstract bisimulation with finite index, we define the region automaton Reg^(A)
as a finite-state machine over the input alphabet E, with the following components:

• The locations of Reg^{A) are the regions of A.
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• A region is a start location iff it contains an initial state of Sa >a-nd an accepting location iff
it contains a final state of Sa'

• There is an edge from the region p to the region p' labeled with the input symbol a £ E iff
there are two states q € p and q' € p' of 5^, and a time delay (5 G such that q q'.

Prom Lemma 1 and the definition of time-abstract bisimulations, it follows that the region automa
ton Reg^(A) defines the language Untime{C(A)).

Theorem 2 (Untiming) [3] For every event-clock automaton A, the untimed language Untime(JC(A))
is regular.

Closure properties

While the class of timed automata is not closed under complement, and the language-inclusion
problem for timed automata is undecidable, the subclass of event-clock automata is well-behaved.

Theorem 3 (Closure properties) Each of the classes EGA, ERA, and EPA of timed languages
are closed under union, intersection, and complement.

Proof. Closure under union is trivial, because event-clock automata admit multiple start locations.
Closure under intersection is also straightforward, because the standard automata-theoretic

product construction A1XA2 for two given event-clock (event-recording; event-predicting) automata
Ai and A2 yields an event-clock (event-recording; event-predicting) automaton. Eaoh location of
Ai X A2 is a pair consisting of a location of Ai and a location of A2, and each a-edge e of Ai x A2
corresponds to both an o-edge ei of Ai and an a-edge of A2 (the clock constraint of e is the
conjunction of the clock constraints of ci and 62).

Closure under complement relies on the determinization construction: given an event-clock
(event-recording; event-predicting) automaton A, the event-clock (event-recording; event-predicting)
automaton ->Det(A) that results from complementing the acceptance condition of Det{A) (inter
change the accepting and the nonaccepting states of Det{A)) defines the complement of the timed
language C(A). •

Unlike (nondeterministic) timed automata, however, event-clock automata are not closed under
renaming or hiding of input symbols. Consider the timed language C over a unary alphabet that
contains all timed words w = (a,t) in which no two symbols occur with time difference 1 (i.e.,
Ij ~ 7^ 1 for all pairs of positions i and j of u;). The timed language £ cannot be defined by a
timed automaton [3], and hence, neither by an event-clock automaton. This fact can be used to
prove nonclosure properties. For instance, consider the timed language £' that contains all timed
words of the form {a*ba*ba*,t) such that the time difference between the two ft-symbols is 1. The
timed language £' is definable by an event-recording or an event-predicting automaton, and thus,
is in ERA HEPA. If we rename the input symbol 6 to a, the resulting timed language contains all
timed words w = (a,t) over the unary alphabet {a} in which some two symbols occur with time
difference 1 (i.e., tj —t,- = 1 for two positions i and j of li;), precisely the complement of the timed
language C. Since the classes ERA and EPA are closed under complement, it follows that neither
class is closed under renaming.

Similarly, consider the timed language C" that contains all timed words in C such that both
6-symbols are followed by a-symbols after exactly time 0.5. The timed language C" is in ERA.
If we hide the input symbol 6, the resulting timed language is again the complement of £, which
implies that ERA is not closed under hiding. An analogous argument applies to EPA.
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Decision procedures

The determinization, closure properties, and region construction can be used to solve decision
problems for event-clock automata. To check if the timed language of an event-clock automaton
A is empty, we construct the region automaton Reg^(A) and check if the untimed language of the
finite-state machine Reg^(A) isempty. Since the number ofregions isexponential, various heuristics
have been proposed to solve emptiness (and other reachability problems) more efficiently. For
instance, it is possible to construct the time-abstract bisimulation of A with the smallest number of
regions using minimization algorithms [22], or to incorporate the clock constraints of Aone byone,
generating successive approximations to the region automaton Reg^(A) [6]. Reachability problems
for timed automata can also be solved by symbolic fixpoint computation [11, 13].

To check if the timed language of the event-clock automaton Ai is included in the timed lan
guage of the event-clock automaton ^2, we determinize A2, complement Det{A2)^ take the product
with y4i, and check if the timed language of the resulting event-clock automaton is empty, by
constructing the corresponding region automaton.

Theorem 4 (Language inclusion) The problem of checking if C{Ai) C £(^2) for two event-
clock automata Ai and A2 is Rs?ACE-complete}

Proof. Consider two event-clock automata A\ and A2 such that each automaton has at most n
locations, and let m be the size of the input alphabet. The first step involves multiplying all
constants in the clock constraints of A\ and A2 by the least common multiple of the denominators
so that the clock constraints contain only integer constants, thus obtaining A'̂ and A2. Let c be
the largest integer constant that appears in the clock constraints after this normalization step. The
length of c (i.e., the number of bits required to represent c) is at most quadratic in the length
of the encoding of the original clock constraints. Let -iDet(A2) the complement of Det{A2).
The automaton -^Det{A'̂ has 2" locations, and the integer constants that appear in the clock
constraints of -^Det(A2) are bounded by c. Let A be the product of A'l and (Aj). The event-
clock automaton A hasn-2" locations, and the integer constantsthat appear in the clock constraints
of A are also bounded by c. By Lemma 3, the region automaton Reg^(A) has n •2" •
regions; that is, the number of regions is singly exponential in the length of the description of the
input automata Ai and A2. Checking emptiness corresponds to searching for accepting paths in
this exponential-sized finite-state machine. Since the rules that define the edges of Reg^(A) can be
verified in polynomial time, it follows that emptiness can be checked in PsPACE.

On theother hand, the problem ofchecking emptiness for event-recording (or event-predicting)
automata is PsPACE-hard. The proof is the same as the corresponding hardness proof for timed
automata [3]. •

The algorithm for language inclusion can be used to verify whether a system described as a timed
automaton satisfies a specification given as an event-clock automaton.

5 Relating Cl£isses of Timed Automata

Timed automata

We briefly review the definition of a timed automaton [3]. A timed automaton A consists of a
finite input alphabet E, a finite set L of locations, a set C L of start locations, a set C L

^In fact, Ai may be any timed automaton.
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Figure 5: Timed automaton Aq

of accepting locations, a finite set C of clocks, and a finite set E of edges. Each edge e £ E is
a quintuple {t^t\ay(p^p) with a source location £ £ L, a. target location i' € L, an input symbol
a € S, a clock constraint (p over C, and a reset condition p C C that specifies the clocks that are
reset to 0 when the edge e is traversed. A clock-valuation function 7 for the timed automaton A
is a function from the clocks C to the extended reals For a time delay S € we write
7 ^ for the clock-valuation function that assigns to each clock x ^ C the value 7(x) + S. For a
set p C C of clocks, we write 7' = yip := 0] for the clock-valuation function that agrees with 7 on
all clocks except those in p, which evaluate to 0 (i.e., 7'(a:) = 7(0;) if x ^ p, and 7'(x) = 0 if x € p).
A computation of the timed automaton A over the timed input word w = (ao,io) •• is a
finite sequence

(4>7o) (^1j7i) (^n)7n) (^n+l>7n+l)

of locations £{ € i, clock-valuation functions 7,-, and edges e,- = (A,A+i? V'ijpt) € E such that

1. £0 € jL° and for all clocks x GC, we have 70 (x) =-i-, and

2. for all 0 < i < n, we have 7,- -b (tj - t,_i) |= <pt and 7,+i = (7,- -}-1,- - ti_i)[p,- := 0].

The computation is accepting iff G . The timed language C(A) defined by the timed
automaton A consists of all timed words w such that A has an accepting computation over w.
Figure 5 shows the timed automaton Ae, which uses a single clock x to accept timed words over
the unary alphabet {a}. The timed language C(Aq) consists of all timed words of the form
for /? > 2, such that tj —ti = l for some Q< i < j < k.

We write NTA for the class of timed languages that are definable by timed automata. The
class NTA is closed under union and intersection, but not under complement [3]. In particular, the
complement of the language ^(Ae), which contains all timed words in which no two symbols occur
with time difference 1, cannot be accepted with finitely many clocks. Checking emptiness for timed
automata is PsPACE-complete, while language inclusion for timed automata cannot be decided [3].

The definition of determinism for timed automata is the same as for event-clock automata; that
is, a timed automaton is deterministic iff it has at most one start location, and two edges with the
same source location and the same input symbol have mutually exclusive clock constraints. We
write DTA for the class of timed languages that are definable by deterministic timed automata.
Since DTA is closed under all boolean operations, DTA is strictly contained in NTA [3].

From event-clock automata to timed automata

Every event-clock automaton can be translated into a timed automaton that defines the same timed
language. Translating event-recording clocks is easy: an event-recording clock Xa is reset on an
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edge € iff the input symbol of e is a. This trivial translation preserves determinism. The translation
of event-predicting clocks introduces nondeterminism.

Consider an event-predicting automaton A = ,E), An atomic clock constraint is
a formula of the form t/o =-1. or j/o c, where stands for < or < or > or >. We assume that
the clock constraint ofecich edge of A is a conjunction of atomic clock constraints; this can always
be achieved by writing clock constraints in disjunctive normal form and creating separate edges
for all disjuncts. Let be the set of atomic clock constraints that appear in the edges of A. We
construct a nondeterministic timed automaton B over the input alphabet E as follows:

• The locations of B are the pairs {£, $) with € € L and I' C

• The location (£,W) is a start location of B iff £ € and does not contain a constraint of
the form j/a c»

• The location (£,^) is an accepting location of B iff ^ and ^ equals {j/a =M o € E}.

• For every constraint tp the automaton B has a clock 2^.

• The automaton B has an edge from the source location (£, to the target location (£',
with the input symbol a, the clock constraint yj, and the reset condition p iff the following
seven conditions are met. Intuitively, a prediction yb ^ c along an edge in A on the time
difference to the next occurrence of 6 is replaced in B by a constraint on the clock the
clock is reset when the prediction is made, and its value is checked by the constraint

c when the next 6 occurs.

1. The automaton A has an edge of the form {£, a, x)-

2. The constraint pa =± does not appear in

3. The constraint ip is the conjunction ofall atomic clock constraints ofthe form (-2(ya'<-c) ~
c) with (2/0 c) G 'i'.

4. For each input symbol b different from a, if a constraint involving yb appears in then
it appears in also.

5. Each conjunct of x appears in also.

6. For each input symbol 6and for equal to > or >, theclock 2(yb<..c) appears in the reset
condition p iff the constraint t/j, c is a conjunct of x-

7. For each input symbol 6and for ~ equal to < or <, the clock 2(yj,^c) appears in the reset
condition p iff the constraint t/j, ~ c is a conjunct of Xj and either 6 = a or the constraint
yb c does not appear in

Then the timed automaton B defines the timed language C(A).
The following theorem relates the various classes of timed automata. The relationships are also

shown in Figure 5.

Theorem 5 (Relationships between classes of timed automata)
(1) ERA EPA (2) EPA g ERA (3) ERA UEPA C EGA
(4) EGA C NTA (5) ERA C DTA (6) EPA g DTA
(7) DTA g EGA
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Figure 6: Relationships between classes of timed automata

Proof. For (1), the timed language of the event-recording automaton A2 of Figure 2 is not definable
by an event-predicting automaton. The proof is by contradiction. Suppose that an event-predicting
automaton B defines the timed language C(A2). Without loss of generality, assume that the clock
constraints of B use only integer constants. Consider the two timed words wi = (a, 0)(6,0.5) (6,1)
and W2 = (a, 0) (6,0.5) (6,0.9). The event-predicting autonmton B uses constraints over the two
clocks j/a ^d t/fc. Although the clock-valuation function y^^ivb) differs from the clock-valuation
function y^(yb)i clock constraints with integer constants cannot detect this d^erence: for every
clock constraint ip of B and every position 0 < i < 2, we have |= y? iff y^^ |= ip. Thus, the
automaton B accepts Wi iff it accepts W2' But, the automaton A2 accepts wi and rejects W2.

For (2), the timed language of the event-predicting automaton A3 of Figure 2 cannot be defined
by an event-recording automaton. The proof is similar to case (1).

For (3), consider the union of the two automata A2 and A3. The resulting automaton is an
event-clock automaton. A proof similar to case (1) shows that the timed language C(A2) U^(As)
is neither in ERA nor in EPA. This shows that the inclusion ERA U EPA C EGA is strict.

The translation from event-clock automata to timed automata proves the inclusions (4) and (5).
Inclusion (4) is strict, because EGA is closed under complement while NTA is not. Inclusion (5) is
strict because of (7).

For (6), the timed language C = {{a^b,to.. .tk) | 30 < J < k.tk - tj = 1} is in EPA (the
event-predicting automaton simply requires that the clock constraint yj, = 1 is satisfied at one of
the symbols in the initial string of a's) but not in DTA. The proof is by contradiction. Suppose
that a deterministic timed automaton B defines the timed language C. Assume that B uses only
integer constants, and m clocks. Gonsider the timed word w = (a'"+^,fo• •-^m+i) with 0 = to <
ti < •• • < tm < ^m+i = 1- Since B is deterministic, there is at most one computation of B that
reads the word w. Since B has at most m clocks, there is at least one position I < j < rn such
that no clock of B has the value 1 - tj when that computation reads the input (a, 1). Hence, the
automaton B "forgets" the time-stamp tj. Gonsider two extensions of the timed word w: let wi be
w followed by (6, tj -|-1), and let W2 be w followed by (6, t' + 1), where t' ^ tj is chosen such that
tj-i < t' < tjjfi. The clocks of B satisfy the same clock constraints when reading the additional,
(m-h 2)-nd input symbol in both cases. Thus, the automaton B accepts wi iff it accepts W2. But,
but Wi is in the timed language £, and W2 is not.

For (7), the timed language {(000,^0^1^2) I ^2 - = 1} is in DTA (the deterministic timed
automaton with one clock x simply resets x when reading the first o, and checks the clock constraint
a; = 1 when reading the third o) but not in EGA. The proof is similar to case (1): an event-clock
automaton either accepts both (o,0)(o,0.5)(o, 1) and (o,0)(o,0.5)(o,0.9), or it rejects both timed
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words. •

In [5], we defined another subclass of NTA that is closed under all boolean operations, namely,
the class 2DTA of timed languages that are definable by deterministic two-way timed automata
that can read the timed input word a bounded number of times (by moving forward and backward
over the input). While EGA is easily seen to be contained in 2DTA, and while there are obvious
similarities between event-predicting clocks and the two-way reading of timed input words, the
exact relationship between event-clock automata and deterministic two-way automata remains to
be studied. However, because they admit nondeterminism, event-clock automata are more suited
for specification than deterministic two-way timed automata.

6 Timed Transition Systems as Event-clock Automata

Timed transition systems

A transition system T consists of a set Q of states, a set Q° C Q of initial states, and a finite
set T of transitions. Each transition t ^ T is a. function from Q to 2^: for each state g € Q,
the set T{g) gives the possible r-successors of q. The transition system T is finite iff the set Q of
states is finite. A run q of the transition system T is a finite sequence qo-^qi-¥ -" -^qn of states
such that qo € and for all 0 < i < n, there exists a transition r,- € T with € r,(9,). The
transition r is enabled at the i-th step of the run g iff r(g,) is nonempty, and r is taken at the i-th
step iff qi e r(g,_i) (note that multiple transitions may be taken at the same step). A variety of
programming systems, such as message-passing systems and shared-memory systems, can be given
a transition-system semantics [17].

The model of transition systems is extended to timed transition systems so that it is possible
to express real-time constraints on the transitions [12]. A timed transition system T consists of a
transition system (Q,Q®, T) and two functions / and u from T to that associate with each
transition t a. lower bound /(r) and an upper bound w(r). Informally, the transition r must
be enabled continuously for at least /(r) time units before it can be taken, and r must not be
enabled continuously for more than u(t) time units without being taken. Formally, we associate a
real-valued time-stamp with each state change along a run: to is the initial time, and the transition
system proceeds from the state qi to the state at time t,+i. A timed run r of the timed
transition system T is a finite sequence

—> % —> Qi —^ • • • —> qn

of states qi e Q and nondecreasing time-stamps t,- 6 such that g is a run of the underlying
transition system and the following two conditions are met:

1. Upper Bound: if r is enabled at all steps A: for i < A: < j, and not taken at all steps k for
i < k < j, then tj - ti < u{t).

2. Lower Bound: ifr istaken at thej-th step, then there is some stepi < j such that tj-ti > 1{t)
and r is enabled at all steps A: for i < A: < j and not taken at all steps A: for i < A: < j.

The semantics of the timed transition system T is the set of timed runs of T. Two timed transition
systems are equivalent iff they have the same timed runs.
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JVom timed transition systems to event-recording automata

We show that the set of timed runs of a finite timed transition system can be defined by an
event-recording automaton. For this purpose, we need to switch from the state-based semantics
of transition systems to an event-based semantics. With the given timed run r with states qi and
time-stamps tj, we associate the timed word

Wr = ((X,9o>,io) ((90,gi>,^l) {{quq2),t2) ... ((9n-l,gn>,tn),

where X is a special symbol not in Q (as usual, Qj. = Q U{X}). Notice that the timed run r and
the corresponding timed word Wr contain the same information: each event (i.e., state change) of
r is modeled by a pair of states—a source state and a target state. Every finite timed transition
system T = (Q, T, /, u), then, defines a timed languageC(T) over the alphabet Qj_ x Q, namely,
the set of timed words Wr that correspond to timed runs r of T. Furthermore, two timed transition
systems are equivalent iff they define the same timed language.

Theorem 6 (Timed transition systems) For every finite timed transition system T, there is
an event-recording timed automaton At that defines the timed language C(T).

Proof. Consider the given finite timed transition system T. Each location of the corresponding
event-clock automaton At records a state g € Q and, for each transition r € T, a pair of states
(a(r),)S(r)) € Q± x Q such that if r is enabled in q, then r has been enabled continuously without
being taken since the last state change from a(r) to /?(r). In addition, we use a special location £o
as the sole start location of Ay. Every location is an accepting location.

For each initial state qo € there is an edge from the source location £o to the target
location (qo,{oi,fi)) with the input symbol (X,go) and the trivial clock constraint true, where
(a(r),/?(r)) = (X, ^o) for all transitions r 6 T. In addition, there is an edge from the source location
{q, (oi,p)) to the target location {q', with the input symbol (9, q') and the conjunction (p of
atomic clock constraints iff there is a transition t £T such that {q, q') 6 r, and for all transitions
rer,

1. if r is enabled in gand q' ^ r(g),then (a'(r),/9'(r)) = (a(r),/?(r)),else (a'(r),/?'(r)) = (q,q'),

2. if r is enabled in q, then ip contains the conjunct aJ^a(T),/?(T)) ^ and

3. if q' € r(g), then <p contains the conjunct a;^a(T),/9(T)) > 1{t)'

Notice that the event-recording automaton At is deterministic, and its size is exponential in the
size of the timed transition system T. To check if two timed transition systems Ti and T2 are
equivalent, we construct the corresponding event-recording automata At^ and At^ and check if
they define the same timed language.

Theorem 7 (Equivalence of timed transition systems) The problem of checking if twofinite
timed transition systems are equivalent is PsPACE-complete.

Proof. Consider two finite timed transition systems Ti and T2. Suppose that each transition
system has at most n states and m transitions, and the bounds associated with the transitions are
at most c. Consider the event-clock automata At^ and Each automaton has
locations. The size of the input alphabet is (n-f 1) -n, and the clock constraints of At^ and use
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constants bounded by c. Since the two automata are deterministic, to check if they accept the same
timed language, we need to take their product, construct the region automaton R€g^{ATi x Ajj)}
and search for a path that is accepting in one component, but not in the other. The resulting
region automaton has 2^(logcn) many regions. This implies that the desired check can
be performed in space polynomial in n and m and logc. The lowerbound follows from the fact that
it is PsPACE-hard to check if twonondeterministic finite-state machines accept the same language.
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