Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DISCRETE-TIME CONTROL FOR
RECTANGULAR HYBRID AUTOMATA

by

Thomas A. Henzinger and Peter W. Kopke

Memorandum No. UCB/ERL M97/29

15 April 1997

DISCRETE-TIME CONTROL FOR
RECTANGULAR HYBRID AUTOMATA

by

Thomas A. Henzinger and Peter W. Kopke

Memorandum No. UCB/ERL M97/29

15 April 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Discrete-Time Control for Rectangular Hybrid Automata*-**

Thomas A. Henzinger' Peter W. Kopke?

! University of California, Berkeley, CA. Email: tah@eecs.berkeley.edu
2 William H. Kopke, Jr. Inc., Lake Success, NY. Email: 75467.2651 @compuserve.com

Abstract. Rectangular hybrid automata model digital control programs of analog plant envi-
ronments. We study rectangular hybrid automata where the plant state evolves continuously
in real-numbered time, and the controller samples the plant state and changes the control
state discretely, only at the integer points in time. We prove that rectangular hybrid automata
have finite bisimilarity quotients when all control transitions happen at integer times, even if
the constraints on the derivatives of the variables vary between control states. This is sharply
in contrast with the conventional model where control transitions may happen at any real
time, and already the reachability problem is undecidable. Based on the finite bisimilarity
quotients, we give an exponential algorithm for the symbolic sampling-controller synthesis
of rectangular automata. We show our algorithm to be optimal by proving the problem to be
EXPTIME-hard. We also show that rectangular automata form a maximal class of systems
for which the sampling-controller synthesis problem can be solved algorithmically.

1 Introduction

Hybrid systems are dynamical systems with both discrete and continuous components. A paradig-
matic example of a hybrid system is a digital control program for an analog plant environment, like
a furnace or an airplane: the controller state moves discretely between control modes, and in each
control mode, the plant state evolves continuously according to physical laws. A natural mathe-
matical model for hybrid systems is the hybrid automaton, which represents discrete components
using finite-state machines and continuous components using real-numbered variables [ACH*95].
A particularly important subclass of hybrid automata are the rectangular automata, where in each
control mode v, the given n variables follow a nondeterministic differential equation of the form
4X ¢ B(v), foran n-dimensional rectangle B(v) C R" [HKPV95]. Rectangular automata are use-
ful as (1) they can be made to approximate, arbitrarily closely, complex continuous behavior using
lower and upper bounds on derivatives [HH95], and (2) they can be analyzed automatically using
(semi)algorithms based on symbolic execution, such as those implemented in HYTECH [HHW97].

For systems that can be executed symbolically, verification and control yield to a (semi)algorith-
mic approach even if the state space is infinite [Hen96]. For such systems, a temporal formula can
be verified automatically and a controller can be synthesized automatically by computing, using
iterative approximation, a fixpoint of an operator on state sets [BCM*92, MPS95). The fixpoint
computation is guaranteed to terminate in the presence of a suitable finite quotient space. For
example, symbolically-executable systems with finite bisimilarity quotients allow symbolic LTL
and CTL model checking, and symbolic safety controller synthesis. While rectangular automata
can be executed symbolically, they do not necessarily have finite bisimilarity quotients, and sim-
ple reachability questions are undecidable [HKPV95]. A noted subclass of rectangular automata

* To appear in the Proceedings of the 24th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), Lecture Notes in Computer Science, Springer-Verlag, 1997.

** This research was supported in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER
award CCR-9501708, by the NSF grant CCR-9504469, by the AFOSR contract F49620-93-1-0056, by the
ARO MURI contract DAAH-04-96-1-0341, by the ARO contract DAAL03-91-C-0027 through the MS] at
Comell University, by the ARPA grant NAG2-892, and by the SRC contract 95-DC-324.036.

with finite bisimilarity quotients are timed automata, where all variables are clocks with deriva-
tive 1 [AD94]. As a consequence, the symbolic model checking and controller synthesis problems
have been solved for timed automata [HNSY94, MPS95].

While previous results on timed and hybrid automata allow edge transitions (i.e., control
switches) to occur at any real-numbered points in time, this is not necessarily a natural assumption
for controller synthesis, as it permits controllers that, in a single time unit, can interact with the
plant an unbounded number of times (even infinitely often, if no special care is taken [AH97]).
By contrast, we study the control problem under the assumption that while the plant evolves
continuously, the controller samples the plant state discretely, at the integer points in time only.?
This leads to the following formulation of the sampling-controller synthesis problem for rectangular
automata: given a continuous-time rectangular automaton, is there a discrete-time controller that
samples the automaton state at integer times and switches the control mode accordingly so that the
resulting closed-loop system satisfies a given invariant?

To solve this problem, we study the discrete-time transition systems of timed and rectangular
automata, where all time transitions have unit duration. It should be noticed that all variables
still evolve continuously, in real-numbered time; only edge transitions are restricted to discrete
time. We prove that unlike in the case of dense time, the discrete-time transition system of
every rectangular automaton has a finite bisimilarity quotient.* As a corollary, we conclude that
the standard approaches to symbolic model checking and controller synthesis are guaranteed to
terminate when all control switches must occur at integer times. The running times of the verification
and control algorithms depend on the number of bisimilarity equivalence classes, which, while
exponential in the description of the automaton, is less by a multiplicative exponential factor than
the number of region equivalence classes used for the dense-time verification and control of timed
automata. Thus, the often more realistic sampling-controller synthesis problem can be solved for
a wider class of hybrid systems than dense-time control (rectangular vs. timed), at a smaller cost.

We prove that our sampling-control algorithm is optimal, by giving lower bounds on the control
problem for timed and hybrid systems: we show that the safety control decision problem (does there
exist a controller that maintains an invariant?) is complete for EXPTIME already in the restricted
case of discrete-time timed automata. We also identify the boundary of sampling controllability
by proving that several generalizations of rectangular automata lead to an undecidable reachability
problem, even in discrete time. The undecidability of dense-time reachability for rectangular
automata has led [PV94] to consider the restriction that the flow rectangle B(v) must be the same
for each control mode v. For the resulting class of initialized rectangular automata, reachability
is decidable [HKPV95]. Our work can be viewed as pointing out an orthogonal restriction of
rectangularity, namely, that the flow rectangle may change only at integer points in time. Unlike
initialization, our restriction guarantees not only a finite language equivalence quotient but a finite
bisimilarity quotient on the infinite state space of a rectangular automaton.

2 Definitions and Previous Results
2.1 Labeled Transition Systems

Definition 2.1 [Transition system] A transition system S = (Q, Z, = ,Qr, IT, =) consists of a
set Q of states, a finite set 2 of events, amultiset & C Q x X x Q called the transition relation,
aset Qr C Q of initial states, a set IT of propositions, and a satisfaction relation |=C Q x IT. We
write ¢ =3 ¢’ instead of (g, 7, ¢’) € =, and ¢ |= = instead of (¢,) € [. The transition system S

3 The sampling rate of the controller may be any rational, but without loss of generality we assumeit tobe 1.
4 Under the technical restriction that either the invariant and flow rectangles are positive, or the automaton
state stays within a bounded region.

is finite if Q is finite. We assume for simplicity that S is deadlock-free; that is, for each state ¢ € Q,
there exists an event ¢ € X and a state r € Q such that ¢ 2 r. A region is a subset of Q. Given a
proposition 7 € IT, we write R, = {g € Q | ¢ |= =} for the region of states that satisfy 7. B

Verification as reachability

Definition 2.2 [Weakest precondition] Let S be a transition system. For each event ¢ € X, the
o-predecessor operator Pre, : 22 — 29 is defined by Pre,(R) = {€Q |3r€ R.q=r}.In
particular, Pre, (Q) is the set of states in which the event o is enabled. Define Pre: 29 — 29 by
Pre(R) = U,¢x Pres(R). A region R C Q is reachable in S if Q; N Pre*(R) # @ for some
keN.m

The basic verification problem for transition systems asks whether an unsafe state is unreachable.

Definition 2.3 [Safety verification] Let C be a class of transition systems. The safety verification
problem for C is stated in the following way: given a transition system S € C and a proposition
m € II, determine whether the region R is not reachable in S. B

For finite transition systems, the safety verification problem is the complement of graph reachability,
which can be solved in linear time and is complete for NLOGSPACE. The safety verification
problem can be generalized to the safety control problem.

Control as alternating reachability We use the following model for control: for each state ¢
of a transition system, a (memory-free) controller chooses an enabled event o so that in state g,
the controlled system always proceeds via event o. Since ¢ may have several g-successors, the
controlled system may still be nondeterministic. Alternative models for memory-free control are
equivalent.

Definition 2.4 [Control map] Let S be a transition system. A control map fg{ is a function
x: Q — X such that for each state ¢ € Q, there exists a state r € Q with ¢ =5 r. The closed-
loop system k(S) is the transition system (Q, X, =, Qy, T, |=), where ¢=¢' iff ¢3¢’ and
k(g)=oc.0

The basic control problem for transition systems asks whether an unsafe state is avoidable by
applying some control map.

Definition 2.5 [Safety control] Let C be a class of transition systems. The safety control decision
problem for C is stated in the following way: given a transition system S € C and a proposition
m € II, determine whether there exists a control map x such that the region R, is not reachable in
the closed-loop system «(S). If so, then we say = is avoidable in S. The safety controller synthesis
problem requires the construction of a witnessing control map « when = is avoidable. B

For finite transition systems, the safety control decision problem is the complement of AND-OR
graph reachability, which can be solved in quadratic time and is complete for PTIME.

Definition 2.6 [Alternating reachability] An AND-OR graph G = (Va, Vo, V1, —) consists of a .
finite set V = V4 U Vp of vertices that is partitioned into a set V4 of AND vertices and a set Vp
of OR vertices, a set V; C V of initial vertices, and a multiset -+ C V x V of edges. We assume
deadlock freedom, namely, that for each vertex v € V/, there exists a vertex w € V such that
v = w. The controllable predecessor operator CPre: 2V — 2V is defined by CPre(R) = {q €
Vo|3re Rg—ar}U{ge Va|V¥re€V.g— rimpliesr € R}. Aset R C V of vertices is
alternating reachable in G if Vi N CPre* (R) # @ for some k € N. The alternating reachability
problem asks whether a given set of vertices is alternating reachable in a given AND-OR graph. B

Theorem 2.1 [Imm81] The alternating reachability problem is complete for PTIME.

There is a simple correspondence between safety control and alternating reachability. Let S be a
finite transition system and let 7 be a proposition. Define an AND-OR graph G's as follows: let
Va=Qand Vp = Q x X and Vi = Q; for each vertex ¢ € V4 and each event o € T, let
g (q, 0) in Gs iff ¢ € Pre,(Q) in S; and for each vertex (g,0) € Vo, let (¢,0) = rin Gs
iff g = r in S. Then the proposition = is avoidable in S iff the set R. of AND vertices is not
alternating reachable in G's.

Corollary 2.1 The safety control decision problem for finite transition systems is complete for
PTIME. '

Moreover, a byproduct of a negative alternating reachability computation is a control map that
avoids . Note that for each set R C Q of AND vertices, CPre?(R) = Noes(Pres.(R) U (Q\
Pre,(Q))). Thus the region CPre?(R) is the set of all states that no control map can keep out of
R at the next transition. Let Rp = CPre?l@l (Rz). Then 7 is avoidable in S iff Qr N Ry = 0.
Each application of CPre® can be computed in linear time, so Ry can be computed in quadratic
time. If 7 is indeed avoidable, then a witnessing control map may be constructed by choosing for
each state ¢ € Q \ Rr an event & such that ¢ € Pre,(Q) \ Pre,(RF).

Theorem 2.2 [RW87] The safety controller synthesis problem for finite transition systems can be
solved in quadratic time.

Effectively-presented transition systems with finite bisimilarity quotients The safety con-
troller synthesis problem can be solved not only for finite transition systems, but also for effectively-
presented transition systems with finite bisimilarity quotients.

Definition 2.7 [Effective presentation] A symbolic execution theory for the transition system S
consists of a set F of formulas, a formula ¢; € F, and amap [-]: F — 29 such that (1) every
proposition 7 € IT is a formula: [7] = Ry; (2) for all formulas ¢;, ¢, € F, the three expressions
é1 A ¢2and ¢ V ¢; and ¢, are formulas: [¢; A ¢,] = [¢1]N[¢2] and [¢; V ¢2] = [$:1]U 6]
and [-¢1] = Q \ [1]; 3) [#1] = Qr; (4) the set {¢ € F | [¢] = 0} is recursive; and (5) for
each event ¢ € X, there is a computable map Pre, : F — F such that [Pre,(¢)] = Pre,([#]) for
all formulas ¢ € F. An effectively-presented transition system consists of a transition system S
together with a symbolic execution theory for S. B

Definition 2.8 [Bisimilarity] A bisimulation on the transition system S is an equivalence relation
2 on the state set @) such that (1) if ¢ = r then for all proposmons m € I, we have ¢ |= T 1ff
r | m, and (2) if ¢ = r and ¢ ¢/, then there exists a state r’ € Q such that r 5+ and ¢ =

The largest bisimulation on S is denoted by =. The bisimilarity quotient S/= is the transmon
system (Q/=, X, =3,Q3, I1, |=3), where R 53 R’ iff there exist two states ¢ € Rand ¢’ € R’
such that ¢ ¢’, where R € Q1 iff RN Q; # 0,and where R |=3 niff RN R, # 0.8

The controllable-predecessor operator CPre? can be computed on any effectively-presented tran-
sition system. When the bisimilarity quonent has k € N equivalence classes, the Ry computation
converges in at most k iterations of CPre’. Synthesizing a control map is accomplished by first
computing the bisimilarity quotient, and then choosing for each state in each equivalence class R
disjoint from Rr, an event o € X such that RN Pre,(Q) # @ and RN Pre,(RF) =

Theorem 2.3 [Hen95] The safety control decision problem is decidable for effectively-presented
transition systems with finite bisimilarity quotients. Moreover, when a proposition is avoidable, a
witnessing control map can be computed.

This result can be generalized to liveness verification such as u-calculus model checking, and to
memory-free liveness control such as control-map synthesis for Rabin chain conditions.

2.2 Rectangular Hybrid Automata

Definition 2.9 [Rectangle] Let X = {z,,...,z,} be a set of real-valued variables. A rectangular
inequality over X is a formula of the form z; ~ ¢, where c is an integer constant, and ~ is one
of <, <, >,>. A rectangular predicate over X is a conjunction of rectangular inequalities. The
rectangular predicate ¢ defines the set of vectors [¢] = {y € R" | ¢[X := y] is true}. A set of
the form [¢], where ¢ is a rectangular predicate, is called a rectangle. Given a positive integer
m € Ny, the rectangular predicate ¢ and the rectangle [¢] are m-definable if |c| < m for every
conjunct z; ~ c of ¢. The set of all rectangular predicates over X is denoted Rect(X). B

Definition 2.10 [Rectangular automaton][HKPV95) A rectangular automaton A consists of the
following components:

Variables. A finite set X = {z,,...,2,} of real-valued variables representing the continuous
component of the system. The number n is the dimension of A. We write X for the set
{#:i | z: € X} of dotted variables, and X’ for the set {z} | z; € X} of primed variables.

Control graph. A finite directed multigraph (V, E) representing the discrete component of the
system. The vertices in V are called control modes. The edges in E are called control switches.

Invariant conditions. A function inv: V — Rect(X) mapping each control mode to its invariant
condition, a rectangular predicate.

Initial conditions. A function init: V — Rect(X) mapping each control mode to its initial
condition, a rectangular predicate.

Jump conditions. A function jump mapping each control switch e € E to a predicate jump(e)
of the form ¢ A ¢' A Aigupdare(e) (i = i), where ¢ € Rect(X) and ¢’ € Rect(X') are
rectangular predicates, and update(e) C {1, ...,n}. The jump condition jump(e) specifies the
effect of the change in control mode on the values of the variables: each unprimed variable
z; refers to a value before the control switch e, and each primed variable z/ refers to the
corresponding value after the control switch.

Flow conditions. A functionflow: V — Rect(X) mapping each control mode v to aflow condition,
arectangular predicate that constrains the behavior of the first derivatives of the variables while
time passes in control mode v.

Events. A finite set X of events, and a function event: E — X mapping each control switch to an
event.

Thus a rectangular automaton A is a tuple (X, V, E, inv, init, jump, flow, Z, event). The automaton
A is m-definable if every rectangular predicate in the definition of A is m-definable. The automa-
ton A is positive if for every control mode v € V/, the invariant rectangle [inv(v)] and the flow
rectangle [flow(v)] are subsets of the positive orthant R% . The automaton A is bounded if for
every control mode v € V, the invariant rectangle [inv(v)] is a bounded set. ®

The state of a rectangular automaton has two parts: a discrete (or control) part, and a continuous
(or plant) part. The discrete state is a control mode. The continuous state is a valuation for the
variables.

Definition 2.11 [States of rectangular automata) Let A be a rectangular automaton. A state of A
is a pair (v,y), where v € V is a control mode and y € [inv(v)] is a vector satisfying the invariant
condition of v. Thus the set of states is @ = {(v,y) € V x R" | y € [inv(v)]}. A subset of Q is
called a region of A. A rectangular state predicate for A is a function ¢ from V to Rect(X). The
rectangular state predicate ¥ defines the region [¥] = {(v,y) € Q | y € [¥(v)]}. A region of the
form [+], where 4 is a rectangular state predicate for A, is called a rectangular region. The initial
condition map defines the rectangular region Q; = [inif] of initial states. W

A rectangular automaton makes two types of transitions: jump (or edge, or control) transitions,
and flow (or time, or plant) transitions. Jump transitions are instantaneous. They are characterized

by a change in control mode, and are accompanied by discrete modifications to the variables in
accordance with the jump condition of the control switch. During flow transitions, while time
elapses, the control mode remains fixed and the variables evolve continuously via a trajectory that
satisfies the flow condition of the active control mode.

Definition 2.12 [Transitions of rectangular automata] Let A be a rectangular automaton. For each
event o € X, we define the jump relation = C Q2 by (v,y) 3> (v',y') iff there exists a control
switch e = (v,v’) € E such that event(e) = o and (y, y') € [jump(e)]. For each nonnegative real
d € Ryo, we define the flow relation 4 c Q@?* by (v,y) KA (v',¥') iff (1) v = ¢/, and (2) there
exists a differentiable function f : [0,6] — [inv(v)] such that f(0) = y and f(6) = y’, and
f(€) € [flow(v)] for all reals ¢ € (0,4), where f is the first derivative of f. We say that & is
the duration of the flow transition. Since the rectangle Jinv(v)] is a convex set, it follows that for
& > 0, condition (2) is equivalent to "T'l € [flow(v)]; that is, all flows can be thought of as straight
lines. ®

Every rectangular automaton defines two transition systems.

Definition 2.13 [Discrete time and dense time] Let A be a rectangular automaton. Define the
binary relation = C Q2 by (v,y) ™ (v',y) iff (v,y)ﬁ)(v’,y’) for some duration § € Ryo
Define IT to be the set of rectangular state predicates for A, and for all states (v,y) € @,
define (v,y) | = iff (v,y) € [#]. The discrete-time transition system of A is defined by
Sdss = (Q,X U {1}, »,Qr, 11, k=). The dense-time transition system of A is defined by
Séense = (Q, X U {time}, =, Qy, IT, =). Thus all flow transitions in the discrete-time transition
system are required to have duration 1, while flow transitions in the dense-time transition system
can have any nonnegative real duration. We refer to the safety verification problem for transition
systems of the form S4% (resp. $9"), for some rectangular automaton A, as the discrete-time
(resp. dense-time) safety verification problem for rectangular automata, and similarly for the control
decision and controller synthesis problems. B

Dense-time undecidability results In dense time, the verification and control of rectangular
automata cannot be fully automated.

Theorem 2.4 [ACH*95] For positive and bounded rectangular automata, the dense-time safety
verification problem (and thus the dense-time safety control decision problem) is undecidable.

Research has therefore concentrated on subclasses of rectangular automata. In [HKPV95] it is
shown that for initialized rectangular automata, whose flow condition map is a constant function
(i.e., all control modes have the same flow condition), the dense-time safety verification problem
(in fact, LTL model checking) can be decided. These automata, however, have no finite bisimilarity
quotients in dense time [Hen95), and therefore further restrictions are desirable.

Timed automata An important special case of initialized rectangular automata are timed au-
tomata. All variables of a timed automaton are clocks, which advance uniformly at rate 1 while
time elapses.

Definition 2.14 [Timed automaton][AD94] A timed automaton is a positive rectangular automaton
A with the restriction that flow(v) = A!_,(2; = 1) for every control mode v. A triangular
inequality over a set X of variables is a formula of the form z; — z; ~ c, where z;,z; € X are
variables, ¢ is an integer constant, and ~ is one of <, <, >, >. A triangular predicate over X is
a conjunction of rectangular and triangular inequalities. A triangular state predicate for a timed
automaton A is a function that maps every control mode of A to a triangular predicate over the
variables of A. B

The fundamental theorem for timed automata states that the dense-time transition system S4e*
of a timed automaton A has a finite bisimilarity quotient and can be presented effectively using
triangular state predicates.

Theorem 2.5 [AD94, HNSY94] For every m-definable n-dimensional timed automaton A with
k control modes, the dense-time transition system Sj"{"" has a finite bisimilarity quotient with
O(k-(n+1)!-(2m)™) many equivalence classes. Moreover, the boolean combinations of triangular
state predicates for A form a symbolic execution theory for S4™e.

Corollary 2.2 For timed automata, the dense-time safety verification problem (in fact, LTL and
CTL model checking) can be solved in PSPACE, and the dense-time safety controller synthesis
problem can be solved in EXPTIME.

As for finite transition systems, control is harder than verification. In [AD94] it is shown that the
dense-time safety verification problem for timed automata is hard for PSPACE. From Theorem 3.2
below it follows that the dense-time safety control decision problem for timed automata is hard for
EXPTIME.

3 Discrete-Time Rectangular Automata
3.1 Finite Bisimilarity Quotients and Effective Presentation

We show that the discrete-time transition system S$9%*¢ of a positive or bounded rectangular
automaton A has a finite bisimilarity quotient and can be presented effectively using rectangular
state predicates. More precisely, in discrete time, two states of arectangular automaton are bisimilar
if (1) they have the same control mode, (2) corresponding variable values agree on their integer
parts, and (3) corresponding variable values agree on whether they are integral. Moreover, if an
m-definable rectangular automaton is positive, then it cannot distinguish variable values greater
than m. For m-definable bounded rectangular automata, the continuous part of the state is contained
in the cube [—m, m]". It follows that in both the positive and the bounded case, the bisimilarity
quotient is finite.

Definition 3.1 Define theequivalencerelationx, onR"byy =, ziff |y;] = |2]and [y;] = [2]
forall 1 < i < n. Given m € Ny, define the equivalence relation =7 on R™ by y =7 z iff for
each 1 < ¢ < n, either y; &) z;, or both y; and z; are greater than m, or both y; and z2; are less
than —m. For an n-dimensional rectangular automaton A, define the equivalence relations 24 and
=™ on the states of A by (v,y) =4 (w,2z) iff v =wandy =, z, and (v,y) =7 (w,2)iffv=w
andyxz B

Lemma 3.1 Consider two vectors y,z € R™. Then y =, z iff for every rectangle B C R™, we
havey € B iffz € B. Moreover, y =7 z iff for every m-definable rectangle B C R", we have
yE Biffz€ B.

Theorem 3.1 Let A be an n-dimensional rectangular automaton with k control modes. The
equivalence relation = 4 is a bisimulation on the discrete-time transition system Sﬂ"“. IfAis
m-definable and either positive or bounded, then =7 is also a bisimulation on Sﬂ‘". The number
of equivalence classes of =7} is k - (dm + 3)".

Proof. We argue that &' is a bisimulation for positive m-definable A; the other parts of the proof
are similar. Suppose that (v,y) =7 (w,z) and (v,y) = (v',y'). We must show that there exists
a state (w',2’) such that (w,z) > (w',2’) and (v',y') =7 (w',2’). First, assume that ¢ € .
In this case there exists a control switch e with source v = w such that event(e) = o and
(y,¥’) € [jump(e)], and y; = y foreach i € update(e). Define 2’ by z! = 2; for i ¢ update(e),

Fig. 1. Given a control mode v, consider the flow conditionflow(v) = (1 <) <3 A 1 < 43 < 2). Let
B=[3<21<4A2<z:<3]andP=[0<) <3 A0< z; <2]. ThenPre,({v} x B) = {v} x P.

and z; = y; fori € update(e). By Lemma 3.1, (z,2’) € [jump(e)] and 2’ € Jinv(v')]. It follows
that (w,z) = (v, 2').

Second, assume that ¢ = 1 (cf. Fig. 1). In this case v' = v = w, and y' — y € [flow(v)].
We must show that there exists a vector z’ such that z’ — z € [flow(v)] and y’ &~ 2’ (notice
that by Lemma 3.1, y’ =} 2z’ implies 2’ € [inv(v)]). We do this one coordinate at a time.
Fix i € {1,...,n}. Suppose that y; > m. It follows that 5} > m and z; > m, because A is
positive. Choose any ¢ € [flow(v)];, and define z} = z; + c. Since ¢ > 0, we have y} ~T* zl.
Now suppose that y; < m. If y; € N then z; = y;, because y; = z;. Define z/ = /. Then
zi —zi = y; — yi € [flow(v)]i. If i & Nthen |y;i] < i,z < [y]. The set [flow(v)]; is
an interval, say, with endpoints a,b € N (it is easy to extend the argument to the case b = o0).
Thus [flow(v)]; contains the open interval (a, b), and y} € [y + a, v + b]. We show that there
exists a number ¢ € (a,b) such that 3} =, 2; + c. Since a,b € N and y; = z;, it follows that
¥i+a = zi +aandy; + b= 2; + b. Thus the closed interval [z; + a, z; + b] intersects the same
~vj-equivalence classes as does [y; + a, y; + b). Since neither z; + a nor z; + b is an integer, the
same is true for the open interval (z; + a, z; 4 b). Therefore there exists a number ¢ € (a, b) such
thaty! =~ z; +c. B

]
Corollary 3.1 For every rectangular automaton A, the boolean combinations of rectangular state
predicates for A form a symbolic execution theory for the discrete-time transition system Sdise,

Corollary 3.2 For positive or bounded rectangular automata, the discrete-time safety verification
problem (in fact, LTL and CTL model checking) can be solved in PSPACE, and the discrete-time
safety controller synthesis problem can be solved in EXPTIME.

The LTL and CTL parts of the corollary follow from the facts that both model-checking problems
can be solved in space logarithmic in the size of the transition system and polynomial in the size of
the temporal formula [Kup95). It should be noted that while in the same complexity class, the actual
running times of the discrete-time algorithms for rectangular automata are better by a multiplicative
exponential factor than the running times of the corresponding dense-time algorithms for timed
automata. This is because there, the number of equivalence classes of the bisimilarity quotient
is £2(k - n! - (m 4+ 1)™). By providing tight lower bounds, the following theorem shows that our
algorithms are optimal. The second part of the theorem follows from Theorem 3.4 below.

Theorem 3.2 For bounded timed automata, the discrete-time safety verification problem is hard
Jor PSPACE [AD94], and the discrete-time safety control decision problem is hard for EXPTIME.

3.2 Sampling-Controller Synthesis

The dense-time and discrete-time control problems are not realistic, as a controller may enforce
arbitrarily many (even infinitely many) consecutive instantaneous jumps. A more natural control
model for hybrid systems involves a controller that samples the plant state once per time unit, and
then issues a command based upon its measurement. The command may cause a switch in control
mode, after which the plant state evolves continuously for one time unit, before receiving the
next command. We call this model “sampling control” to distinguish it from discrete-time control.
Moreover, we wish to ensure that a proposition is avoided not only at the sampling points but also
between sampling points. Given a rectangular automaton A, we define a third transition system,
S52™P'e_ such that (1) any control map behaves in a sampling manner and (2) the propositional
regions are “large enough” so that they cannot be entered and left by a single flow transition of
duration 1. For example, if 7 is a rectangular state predicate that maps each control mode of A4 to
either true or false, then R, is large enough. If the region of unsafe states is not large enough, this
may be correctable by increasing the sampling rate (i.e., by reducing the unit of time).

Definition 3.2 [Sampling control] Let A be a rectangular automaton. A rectangular state predicate
m € II is large enough for A if there are no three states (v,y), (v,y’) € Rx and (v,y") € Rx
such that (v,y)—")(v,y") and (v,y”) = (v,y’') for some real § € (0,1). Define 17’ C IT to be
the set of rectangular state predicates that are large enough for A, and define ((v,y),)) ' =
iff (v,y) | w. The sampling-control transition system of A is defined by S%™"* = (Q x
{control, plant}, T U {1}, = ,Qr x {control}, IT', |='), where the binary relation = is defined
by: (1) for each event o € X, we have ((v,y), control) > ((v',¥’), plant) iff (v,y) 2 (v',¥'), and
@) ((v,y), plant) > (v, ¥'), control) iff (v, y) > (v',y’). Thus in the sampling-control transition
system the controller and the plant take turns: first the controller specifies a jump transition, then one
time unit passes in a flow transition, and so on. We refer to the safety control decision problem for
transition systems of the form S;“"‘”", for some rectangular automaton A, as the sampling-control
decision problem for rectangular automata, and similarly for the sampling-controller synthesis
problem. B

Theorem 3.3 For positive or bounded rectangular automata, the sampling-controller synthesis
problem can be solved in EXPTIME.

Proof. Consider an n-dimensional positive or bounded rectangular automaton A. We reduce
the sampling-control problems to discrete-time control problems by constructing a rectangular
automaton Ctrl(A) such that $5*™* is isomorphic to Sgﬁ(a)- Moreover, if A is positive, then
Ctrl(A) is positive, and if A is bounded, then Ctrl(A) is bounded. Let Xceryga) = Xa U
{Zn41} for a clock zn41 € Xa. The control graph and events of Ctrl(A) are identical to
those of A. Let invceria)(v) = inva(v) A 0 < znpyy < 1, let dnitee(a)(v) = dnita(v) A
Zn41 = 1, let jumpcyya)(€) = jumpy(e) A Zng1 =1 A 2,4, = 0, and let flow gy 4y (V) =
flowy(v) A Zngy = 1. Tt follows that in the discrete-time transition system S&:< ,,. jump
transitions must alternate with flow transitions (of duration 1). Hence the map f : Qciri(a) —
Qa4 x {control, plant}, defined by f(v,y,0) = (v,y, plant) and f(v,y,1) = (v,y, control),
is an isomorphism between the transition systems S&:5 4y and S ', If A is m-definable
with k control modes, by Theorem 3.1, the bisimilarity quotient of S&5 ,) has no more than
k - (4m + 3)"*! equivalence classes, which is singly exponential in the size of A. B

Lemma 3.2 Let G = (Va, Vo, V1, —) be an AND-OR graph, and let R be a set of vertices of G.
Define the transition system Sg = (V4 U Vg, L, =, V1, {7}, [E) such that (1) v = 7 iff v € R,
(2) for all OR staes v € Vo, ifv Swandv o', theno = o', and(3) for all AND states v € V,,
ifvIwand v w' and w # ', then ¢ # o'. Then R is alternating reachable in G iff r is not
avoidable in Sg.

Theorem 3.4 For bounded timed automata, the sampling-control decision problem is hard for
EXPTIME.

Proof sketch. We reduce the halting problem for alternating Turing machines using polynomial
space [CKS81] to the sampling-control decision problem for bounded timed automata. Let M
be an alternating Turing Machine with input s so that M uses space p(|s|). Then M accepts s
iff the unique final state up is alternating reachable in an AND-OR graph whose vertices are
configurations of M. The set of configurations of M is U x {1,...,p(|s|)} x I'?UsD), where U
is the state set of M, the second component of the product gives the position of the tape head,
and I is the tape alphabet. Without loss of generality, we assume that I' = {0, 1,2}, where 0
is the “blank” symbol. We first define a bounded positive rectangular automaton A whose states
are configurations of M, and a proposition 7, large enough for A, that is true exactly in the
configurations comammg up. This is done in a way consistent with Lemma 3.2, so that 7 is not
avoidable in $%*™P'¢ iff M accepts s. Then we turn A into a bounded timed automaton.

The automaton A uses p(|s|) variables zy, ..., Zp(js)) to store the tape contents. The set of
controlmodesof AisU x {1,...,p(|s|)}. The inva.riam and flow conditions are constant functions:
inv(u,i) = A9V(0 < z; 5 2) and flow(u,i) = /\”(l’l)(:.', = 0) for all u and #; thus flow
transitions have no effect. The initial condition is defined by init(u, i) = false except when u is the

initial state uy of M and i = 1; in that case, init(uz,1) = /\"' (z; = s5) A /\;ﬂ’jf+‘(z, =0).

Each transition ¢ of M consists of a source state u € U, a tape symbol 4 € T, and a list of
triples (u;,7v;,d;), where u; € U is a target state, 4; € I' is written on the current tape cell,

and d; € {-1, l} gives the direction moved by the tape head (there is exactly one transition for
each source state u). For every transition ¢ = (u,¥, (4;,7;,d;)jes) of M, every tape position
1 < i< p(|s]), and every j € J, we define in A a control switch e, ;,; with source (u, i) and target
(uj,7+ d;). The jump condition jump(e;s;) is@i =y A z{ = ; A Nszi(zi = zi)- lfuisan
AND state of M, then event(e:,;,;) = (u, 1, j). If uis an OR state of M, then event (e, ; ;) = 0.To
turn A into a timed automaton, all variables are replaced by clocks, and between any two control
switches of A, a sequence of p(|s|) control switches is added, one for each clock, to subtract
p(|s|) + 1 from each clock value. @

4 Beyond Rectangular Automata

Discrete-Time Undecidability Results We show that the pleasant properties of discrete-time
rectangular automata (Theorem 3.1) depend on both conditions, (1) positivity or boundedness and
(2) rectangularity. If either condition is violated, then already the discrete-time safety verification
problem becomes undecidable.

Definition 4.1 [Triangular automaton] A triangular automaton A has the same components as
a rectangular automaton, except that the predicates defining A may be triangular predicates, and
need not necessarily be rectangular. B

Theorem 4.1 The discrete-time safety verification problem (and thus the discrete-time control
decision problem) is undecidable for the class of all rectangular automata, and also for the class
of bounded positive triangular automata.

Proof sketch. Both parts use a reduction from the halting problem for two-counter machines. For
the first part, the reduction is simple, as counter values can be represented by variable values, as
in [KPSY93). For the second pan counter values must be encoded, so that the counter value ¢
corresponds to the variable value = For this purpose, the wrapping-clock technique of [HKPV95]
can be modified as follows. The sel {z1,...,2n} of dense-time clocks used for encoding counter
values is simulated in discrete time by variables with the triangular flow condition#, = - - - = &,,.

10

Then the variables are enforced to represent valid encodings at those integer times when the
wrapping clock shows 0. B

Generalized Rectangular Automata It is well-known that the pleasant properties of timed
automata (Theorem 2.5) are preserved if rectangularity is relaxed to triangularity in invariant,
initial, and jump conditions. We conclude with a similar observation for rectangular automata. A
generalized rectangular automaton is a triangular automaton whose flow conditions are rectangular
predicates. It follows from our arguments that for every generalized rectangular automaton A, the
boolean combinations of triangular state predicates for A form a symbolic execution theory for
the discrete-time transition system S47*¢. Consequently, if A is a bounded generalized rectangular
automaton, then $4° has a finite bisimilarity quotient (which is identical to the region equivalence
of timed automata [AD94], and finer by a multiplicative exponential factor than the equivalence of
Theorem 3.1). For such automata, we can automatically synthesize sampling controllers that avoid
triangular state predicates.

References

[ACH*95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3—
34,1995.

[AD94] R. Alur, D.L. Dill. A theory oftimed automata. Theoretical Computer Science, 126:183-235, 1994.

[AH97] R. Alur, T.A. Henzinger. Modularity for timed and hybrid systems. In CONCUR: Concurrency
Theory, LNCS. Springer, 1997.

[BCM*92] J.R. Burch, EM. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic model checking:
107 states and beyond. Information and Computation, 98:142-170, 1992.

[CKS81] AK. Chandra, D.C. Kozen, L.J. Stockmeyer. Alternation. J. ACM, 28:114-133, 1981.

(Hen95] T.A. Henzinger. Hybrid automata with finite bisimulations. In ICALP: Automata, Languages, and
Programming, LNCS 944, pp. 324-335. Springer, 1995.

(Hen96] T.A. Henzinger. The theory of hybrid automata. In Proc. 11th Symp. Logic in Computer Science,
pp. 278-292. IEEE, 1996. '

[HH95] T.A. Henzinger, P.-H. Ho. Algorithmic analysis of nonlinear hybrid systems. In CAV: Computer-
Aided Verification, LNCS 939, pp. 225-238. Springer, 1995.

[HHW97] T.A. Henzinger, P-H. Ho, H. Wong-Toi. HYTECH: a model checker for hybrid systems. In CAV:
Computer-Aided Verification, LNCS. Springer, 1997.

{HKPV95] T.A. Henzinger, PW. Kopke, A. Puri, P. Varaiya. What'’s decidable about hybrid automata? In
Proc. 27th Symp. Theory of Computing, pp. 373-382. ACM, 1995.

(HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic model checking for real-time
systems. Information and Computation, 111:193-244,1994.

(Imm81] N. Immerman. Number of quantifiers is better than number of tape cells. J. Computer and System
Sciences, 22:384-406, 1981.

[(KPSY93] Y. Kesten, A. Pnueli, J. Sifakis, S. Yovine. Integration graphs: a class of decidable hybrid sys-
tems. In Hybrid Systems, LNCS 736, pp. 179-208. Springer, 1993.

(Kup95] O. Kupferman. Model Checking for Branching-Time Temporal Logics. PhD thesis, The Technion,
Haifa, Israel, 1995.

[MPS95] O. Maler, A. Pnueli, J. Sifakis. On the synthesis of discrete controllers for timed systems. In
STACS: Theoretical Aspects of Computer Science, LNCS 900, pp. 229-242. Springer, 1995.

[PV94] A. Pur, P. Varaiya. Decidability of hybrid systems with rectangular differential inclusions. In CAV:
Computer-Aided Verification, LNCS 818, pp. 95-104. Springer, 1994.

[RW87] P.J. Ramadge, W.M. Wonham. Supervisory control of a class of discrete-event processes. SIAM J.
Control and Optimization, 25:206-230, 1987,

11

	Copyright notice 1997
	ERL-97-29

