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Abstract Rectangularhybrid automata model digital control programsof analog plant envi
ronments. We study rectangular hybrid automata where the plant state evolves continuously
in real-numbered time, and the controller samples the plant state and changes the control
state discretely, only at the integer points in time. We prove that rectangular hybrid automata
have finite bisimilarity quotients when all control transitions happen at integer times, even if
the constraints on the derivatives of the variables vary between control states. This is sharply
in contrast with the conventional model where control transitions may happen at any real
time, and already the reachability problem is undecidable. Based on the finite bisimilarity
quotients, we give an exponential algorithm for the symbolic sampling-controller synthesis
of rectangular automata.We show our algorithm to be optimal by proving the problem to be
EXPTlME-hard. We also show that rectangular automata form a maximal class of systems
for which the sampling-controller synthesis problem can be solved algorithmically.

1 Introduction

Hybrid systemsare dynamical systems with both discrete and continuous components. A paradig
matic example of a hybrid system is a digital control program for an analog plant environment, like
a furnace or an airplane: the controller state moves discretely between control modes, and in each
control mode, the plant state evolves continuously according to physical laws. A natural mathe
matical model for hybrid systems is the hybrid automaton, which represents discrete components
usingfinite-state machines andcontinuouscomponentsusingreal-numbered variables [ACH'''95].
A particularly important subclass of hybrid automata are the rectangular automata, where in each
control mode v, the given n variables follow a nondeterministic differential equation of the form
^ GB(v),forann-dimensional rectangle B(v) C M" [HKPV95]. Rectangular automata are use
ful as (1) theycan be made to approximate, arbitrarilyclosely,complex continuousbehavior using
lower and upper bounds on derivatives [HH95],and (2) they can be analyzedautomatically using
(semi)algorithms based on symbolic execution, such as those implemented in HyTech [HHW97].

For systems that can be executedsymbolically,verificationand control yield to a (semi)algorith-
mic approacheven if the state space is infinite [Hen96]. For such systems,a temporal formulacan
be verified automatically and a controller can be synthesizedautomatically by computing, using
iterative approximation, a fixpoint of an operator on state sets [BCM''"92, MPS95]. The fixpoint
computation is guaranteed to terminate in the presence of a suitable finite quotient space. For
example, symbolically-executable systems with finite bisimilarityquotients allow symbolic LTL
and CTL model checking, and symbolic safety controller synthesis. While rectangular automata
can be executed symbolically, they do not necessarily have finite bisimilarityquotients,and sim
ple reachability questions are undecidable [HKPV95]. A noted subclassof rectangular automata
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with finite bisimilarity quotients are timed automata, where all variables are clocks with deriva
tive 1 [AD94]. Asaconsequence, thesymbolic model checking andcontroller synthesis problems
have been solved for timed automata [HNSY94, MPS95].

While previous results on timed and hybrid automata allow edge transitions (i.e., control
switches) tooccur atany real-numbered points intime, thisis notnecessarily a natural assumption
for controller synthesis, as it permits controllers that, in a single time unit, can interact with the
plantan unbounded number of times (even infinitely often, if no special care is taken [AH97]).
By contrast, we study the control problem under the assumption that while the plant evolves
continuously, the controller samples the plantstatediscretely, at the integer points in time only.^
This leads tothefollowing formulation ofih& sampling-controllersynthesisproblem forrectangular
automata: given a continuous-time rectangular automaton, is there a discrete-time controller that
samples theautomaton stateat integer timesand switches thecontrolmodeaccordingly so that the
resulting closed-loop system satisfies a given invariant?

Tosolvethis problem, we studythe discrete-time transitionsystems of timedand rectangular
automata, where all time transitions have unit duration. It should be noticed that all variables
still evolve continuously, in real-numbered time; only edge transitions are restricted to discrete
time. We prove that unlike in the case of dense time, the discrete-time transition system of
every rectangular automaton has a finite bisimilarity quotient.'* As a corollaiy, we conclude that
the standard approaches to symbolic model checking and controllersynthesis are guaranteed to
terminate when allcontrolswitchesmustoccurat integertimes.Therunningtimesoftheverification
and control algorithms depend on the number of bisimilarity equivalence classes, which, while
exponential in the description of the automaton, is less by a multiplicative exponential factor than
the number of region equivalence classes used for the dense-time verification and control of timed
automata. TTius, the often more realisticsampling-controller synthesisproblem can be solvedfor
a wider class of hybridsystems than dense-timecontrol (rectangularvs. timed),at a smallercost.

Weprovethatoursampling-control algorithmis optimal,by givinglowerboundsonthecontrol
problemfortimedandhybridsystems: weshowthatthesafetycontroldecision problem(doesthere
exist a controllerthat maintains an invariant?) is completefor EXPTIME already in the restricted
case of discrete-time timed automata. We also identify the boundary of sampling controllability
byproving thatseveral generalizations of rectangular automata leadtoanundecidable reachability
problem, even in discrete time. The undecidability of dense-time reachability for rectangular
automata has led [PV94] to consider therestriction that the flow rectangle B(v) mustbe thesame
for each control mode v. For the resulting class of initialized rectangular automata, reachability
is decidable [HKPV95]. Our work can be viewed as pointing out an orthogonal restriction of
rectangularity, namely, that the flow rectangle may change only at integerpoints in time. Unlike
initialization, ourrestriction guarantees notonlya finite language equivalence quotient buta finite
bisimilarityquotient on the infinitestate space of a rectangularautomaton.

2 Definitions and Previous Results

2.1 Labeled Transition Systems

Definition 2.1 [Transition system] A transition system S = {Q,S, ,Qi,n,^) consists of a
set Q of states, a finite set E of events, a multiset C Q x E x Q calledthe transitionrelation,
a set Qi CQ of initialstates, a setU ofpropositions, anda satisfaction relation ^ C Q x i7. We
write g-^q' instead of{q, <r, q') € and q n instead of{q, tt) € {=. The transition system S

^The sampling rate ofthe controller may beany rational, but without loss ofgenerality we assume itto be 1.
" Under the technical restriction that either the invariant and flow rectangles are positive, orthe automaton

state stays within a bounded region.



ISfinite if Q is finite.Weassumefor simplicitythat 5 is deadlock-free; that is, for each state 9 G Q.
there exists an event a ^ E and a state r 6 Q such that 9A r. A region is a subset ofQ.Given a
proposition tt Gi7, wewrite = {9 GQ | 9 |= tt) for theregion of states thatsatisfy tt. •

Verification as reachability

Definidon 2J2 [Weakest precondition] Let 5 be a transition system. For each event 0- G 17, the
o-predecessor operator Preg : 2^ 2^ is defined by Prea{B) = {g € Q | 3r Gii. 9A r}. In
particular, Prea{Q) is the setofstates in which the event o is enabled. Define Pre -¥2^ by
Pre{R) = Uaer Aregion 12 C Qis reachable in S ifQ/HPre^[R) ^ 0for some
i&GN.B

The basic verification problem for transition systems asks whether an unsafe state is unreachable.

Definition 2.3 [Safety verification] Let C be a class of transition systems. The serfety verification
problem for C is stated in the following way: given a transition system S € C and a proposition
ir ElI, determine whether the region R„ is not reachable in 5. •

For finite transition systems, the safety verification problem is the complement ofgraph reachability,
which can be solved in linear time and is complete for NLOGSPACE. The safety verification
problem can be generalized to the safety control problem.

Control as alternating reachability We use the following model for control: for each state 9
of a transition system, a (memory-free) controller chooses an enabled event <t so that in state 9,
the controlled system always proceeds via event or. Since 9 may have several cr-successors, the
controlled system may still be nondeterministic. Alternative models for memory-free control are
equivalent.

Definition 2.4 [Control map] Let 5 be a transition system. A control map for 5 is a function
K\ Q -¥ E such that for each state q £ Q, there exists a state r GQ with 9'A r. The closed-
loop system k{S) is the transition system {Q,E, |=), where 9A 9' iff 9A 9' and
k(9) = <7. •

The basic control problem for transition systems asks whether an unsafe state is avoidable by
applying some control map.

Definition 2.5 [Safetycontrol] Let C be a class of transition systems. The safety control decision
problem for C is stated in the following way: givena transitionsystem 5 G C and a proposition
n £ JI, determine whether there exists a control map k such that the region R„ is not reachable in
the closed-loopsystem k(5). If so, then we say ir is avoidable in S. The safetycontroller synthesis
problem requires the constructionof a witnessing control map k when tt is avoidable.•

For finite transition systems, the safety control decision problem is the complement of AND-OR
graph reachability, which can be solved in quadratic time and is complete for PTIME.

Definition 2.6 [Alternating reachability] AnAND-OR graph G = {Va,Vo,Vi,-¥) consists of a
finite set V = VaUVo of vertices that is partitioned into a set Va of AND vertices and a set Vo
of OR vertices, a set C V of initial vertices, and a multiset -4 C V x V of edges. We assume
deadlock freedom, namely, that for each vertex u G V, there exists a vertex w £ V such that
V-¥ w. The controllable predecessor operator CPre: 2^ -4 2^ is defined by CPre{R) = {9 G
Vo I 3r G i2.9 ^ r} U{9 G Va | Vr G V. 9 -4 r implies r € R}. A set i? C V of vertices is
alternating reachable inG if V/ n CPre''[R) ^ 0 for some ^ GN.The alternating reachability
problemaskswhethera givenset of vertices is alternating reachable in a givenAND-OR graph.•



Theorem2.1 [ImmS1] The alternatingreachability problem is completefor PTIME.

There is a simple correspondence between safety control andalternating reachability. Let 5 be a
finite transition system and let tt be a proposition. Define an AND-OR gr^h G5 as follows: let
Va = Q and Vb = Q x i7 and Vi = Qi\ for each vertex q E Va and each event a £ E, let
9 (9. in Gs iffq E PTiea(Q) in 5; and for each vertex (g, <r) G Vo, let (g, o-) r in Gs
iff g r in S. Then the proposition tt is avoidable in S iff the set Rir of AND vertices is not
alternating reachable in Gs-

CoroUaiy2.1 The safety controldecision problem for finite transition systems is complete for
PTIME.

Moreover, a byproduct of a negative alternating reachability computation is a control map that
avoids TT. Note that for each set it C QofAND vertices, CPre^{R) = (Q \
Prca (Q))). Thus the region CPre^[R) isthe set ofall states that no control map can keep out of
R atthe next transition. Let Rp = CPre^^^^R^). Then tt is avoidable in S iffQj Hitj? = 0.
Each {^plication ofCPre^ can be computed inlinear time, so Rp can be computed in quadratic
time. If TT is indeedavoidable, then a witnessing controlmap may be constructed by choosingfor
each state q € Q\ Rp anevent <7 such thatg 6 Prea{Q)\Prea{Rp).

Theorem 2.2 [RW87] Thesafetycontrollersynthesis problemforfinite transitionsystems can be
solved in quadratic time.

Effectively-presented transition systems with finite bisimilarity quotients The safety con
trollersynthesis problemcanbe solved notonlyforfinite transition systems, butalsoforeffectively-
presented transition systems with finite bisimilarity quotients.

Definition2.7 [Effective presentation] A symbolic execution theory for the transitionsystem 5
consists of a setT offormulas, a formula <6/ GP, and a map ||: .F 2^ such that(1) every
proposition tt € i7 is a formula: |7r| = R^; (2) forall formulas bi, ^2 € the threeexpressions
<f>\ A <l>2 and V <f>2 and -i^i areformulas: |bi A^2] = I<^il H[[^21 and [[bi V ^2] = i] U1^2!
and = Q \ (3) |b/l = Q/I (4) the set G .F | |bl = 0) is recursive; and (5) for
eachevent a e E, thereis a computable mapPrea \T suchthat \Preo{<t>)\ = Prea(M) for
all formulas b G .7^. An effectively-presented transition system consists of a transition system S
together with a symbolic execution theory for S. •

Definition2.8 [Bisimilarity] A bisimulation on the transition system5 is an equivalence relation
= on the state set Q such that (1) if g —r then for all propositions tt 6 i7, we have g ^ 7r iff
r TT, and (2) if g = r and g q', then there exists a state r' e Q such thatr A r' and q' = P.
The largest bisimulation on S is denoted by =. The bisimilarity quotient S/= is the transition
system {Q/^,E, -^3 ^3), where R-^^ R' iffthere exist two states g € i? and g' € R'
such that gA g',where € Qs iff fl Q/ 7^ 0, and where i? [=3 ttiffi?n i?* 0. •
The controllable-predecessor operator CPre^ can be computed on any effectively-presented tran
sition system. When the bisimilarity quotient has /; G N equivalenceclasses, the Rp computation
converges inatmost k iterations of CPre^. Synthesizing a control m^ isaccomplished by first
computing the bisimilarity quotient, and then choosing for each state in each equivalenceclass R
disjointfrom Rp, an eventa € E suchthat R n Preff{Q) ^ 0 and R n Prea{Rp) = 0.

Theorem 2.3 [Hen95] The safety control decision problem is decidablefor effectively-presented
transition systemswithfinite bisimilarity quotients. Moreover, when a proposition is avoidable, a
witnessingcontrol map can be computed.

This result can be generalized to liveness verification such as /i-calculus model checking, and to
memory-free liveness control such as control-map synthesis for Rabin chain conditions.



2.2 Rectangular Hybrid Automata

Definition2.9 [Rectangle] Let X = {xi,..., Xn} be a set of real-valued variables. A rectangular
inequality over X is a formula of the form Xj ~ c, where c is an integer constant, and is one
of <,<,>,>. A rectangular predicate over X is a conjunction of rectangular inequalities. The
rectangular predicate <f> defines the set of vectors = {y G K" | <f>[X := y] is true). A set of
the form [^|, where ^ is a rectangular predicate, is called a rectangle. Given a positive integer
m G N>o, the rectangular predicate0 and the rectangle |^] are m-definableif |c| < m for every
conjunctx,- ^ c of <f>. The set of all rectangular predicatesoverX is denotedRect{X). •

Definition 2.10 [Rectangular automaton][HKPV95] A rectangular automaton A consists of the
following components:

Variables. A finite set X = {xi,..., x„} of real-valued variables representing the continuous
component of the system. The number n is the dimension of A. We write X for the set
{xf I X,- GX} ofdotted variables, andX' for theset {xj | x,- GX} of primed variables.

Control graph. A finite directed multigraph {VyE) representing the discrete component of the
system. The vertices in V are called control modes. The edges in E are called control switches.

Invariant conditions. A function inv: V Rect{X) mappingeach control mode to its invariant
condition, a rectangular predicate.

Initial conditions. A function init: V -¥ Rect{X) mapping each control mode to its initial
condition, a rectangular predicate.

Jump conditions. A function jump mappingeach control switch e G to a predicate jump{e)
ofthe form ^ A 0' A Ai^update{e)i^i - ®«)' where ^ GRect{X) and (j)' GRect{X') are
rectangular predicates, and update{e) C {1,..., n}. Thejump conditionJump{e) specifies the
effect of the change in control mode on the values of the variables: each unprimed variable
Xi refers to a value before the control switch e, and each primed variable x( refers to the
corresponding value after the control switch.

Flow conditions. A function^ow: V /?ccf(X) mappingeachcontrol mode v to ayfowcond/t/on,
a rectangular predicate that constrains the behavior of the first derivatives of the variables while
time passes in control mode v.

Events. A finite set E of events, and a function event: E E mapping each control switch to an
event.

Thus a rectangularautomatonA is a tuple (X, V,E, inv,init,jump,flow, E, event).The automaton
A is m-definable if every rectangular predicate in the definitionof A is m-definable. The automa
ton A is positive if for every control mode u G V, the invariant rectangle [[mv(r;)] and the flow
rectangle |^ow(u)| are subsets of the positive orthant R>o- automaton A is bounded if for
every control mode u GV, theinvariant rectangle Iim'(v)J is a bounded set. •

The state of a rectangularautomaton has two parts: a discrete (or control) part, and a continuous
(or plant) part. Ibe discrete state is a control mode. The continuous state is a valuation for the
variables.

Definition 2.11 [States of rectangular automata] Let A be a rectangular automaton. A state of A
isa pair (v,y), where v G V is a control mode and y G [fm'(v)J is a vector satisfying theinvariant
condition of v. Thus theset of states is Q = {(v,y) G V x M" | y G [/m'(v)]}. A subset of Q is
calleda region of A. A rectangularstatepredicate for A is a function ^ from V to Rect{X). The
rectangular state predicate defines the region M = {{v,y) G Q | y G A regionof the
form [[V*!, where tp is a rectangular state predicate for A, is called a rectangular region. The initial
conditionmap defines the rectangular regionQi = |miV[) of initialstates. •

A rectangular automaton makes two types of transitions: jump (or edge, or control) transitions,
and flow (or time, or plant) transitions.Jump transitions are instantaneous.They are characterized



by a change in control mode, and are accompanied by discrete modifications to the variables in
accordance with the jump condition of the control switch. During flow transitions, while time
elapses, thecontrol mode remains fixed andthevariables evolve continuously viaa trajectory that
satisfies the flow condition of the active control mode.

Definition 2.12 [Transitions ofrectangular automata] Let.4 bea rectangular automaton. Foreach
event cr g 17, we define the jump relation A C by (v, y) («', y') iffthere exists acontrol
switch e = (v,v') 6 E such that event(e) = <r and (y,y') € [jfMmp(e)|. Foreach nonnegative real
S£ ]R>o. we define the flow relation C by (v,y) -4(v'.y') iff (1) v = v', and (2) there
exists a differentiable function / : [0, <5] [/nv^u)! such that /(O) = y and f{S) = y', and
/(c) € lflow{v)l for all reals e € (0,^), where f is the first derivative of /. We say thatS is
theduration of the flow transition. Since the rectangle [inv(v)| is a convex set, it follows thatfor

> 0,condition (2)isequivalent to G ]flow{v)\y thatis,all flows canbethought ofasstraight
lines. •

Every rectangular automaton defines two transition systems.

Definition 2.13 [Discrete time and dense time] Let 4 be a rectangular automaton. Define the
binary relation C by ( '̂>3^) iff -4 (v'jy') for some duration SGM>o.
Define il to be the set of rectangular state predicates for A, and for all states (v,y) G Q,
define (v,y) \= tt iff (u,y) G IttJ. The discrete-time transition system of A is defined by

= {Q,E U {1}, yQi,n,\=). The dense-time transition system of A is defined by
5^'"" = {Q, E U{time)y ->, Qj, 77, |=).Thus all flow transitions in the discrete-time transition
system are required to have duration 1, while flow transitions in the dense-time transition system
can have any nonnegative real duration. We refer to the safety verification problem for transition
systems of the form (resp. 5^*""), for some rectangular automaton 4, as the discrete-time
(resp.dense-time) safetyverificationproblemfor rectangularautomata, andsimilarlyfor thecontrol
decision and controller synthesis problems. •

Dense-time undecidabiiity results In dense time, the verification and control of rectangular
automata cannot be fiilly automated.

Theorem 2.4 [ACH+95] Forpositive andbounded rectangular automata, thedense-time safety
verification problem (and thus the dense-time safetycontrol decisionproblem) is undecidable.

Research has therefore concentrated on subclasses of rectangular automata. In [HKPV95] it is
shownthat for initializedrectangular automata, whoseflow conditionmap is a constantfunction
(i.e., all control modes have the sameflow condition), the dense-time safety verification problem
(in fact,LTLmodelchecking) can bedecided.These automata, however, haveno finitebisimilarity
quotients in dense time [Hen95], and therefore further restrictions are desirable.

Timed automata An important special case of initializedrectangular automata are timed au
tomata. All variables of a timed automaton are clocks, which advance uniformly at rate 1 while
time elapses.

Definition2.14 [Timed automaton][AD94] A timedautomatonis apositiverectangularautomaton
4 with the restriction \hstflow{v) = Ar=:i(^« = 1) for every control mode v. A triangular
inequality over a set X of variables is a formula of the form x,- —Xj c, where x,-, Xj G X are
variables, c is an integerconstant, and ~ is one of <,<,>,>. A triangularpredicate over X is
a conjunctionof rectangularand triangular inequalities. A triangular state predicate for a timed
automaton 4 is a function that maps every control mode of 4 to a triangular predicate over the
variables of 4. •



The fundamental theorem for timed automata states that the dense-time transition system
of a timed automaton A has a finite bisimilarity quotient and can be presented effectively using
triangular state predicates.

Theorem 2.5 [AD94, HNSY94] For every m-definable n-dimensional timed automaton A with
k control modes, the dense-time transition system has a finite bisimilarity quotient with
0(Ar-(n-i-l)!-(2m)") manyequivalence classes. Moreover, thebooleancombinationsoftriangular
statepredicatesfor Aform a symbolic execution theoryfor S^'.

CoroUaiy 2.2 For timed automata, the dense-time safety verification problem (in fact, LTL and
CTL model checking) can be solved in PSPACE, and the dense-time safety controller synthesis
problem can be solved in EXPTIME.

As for finite transition systems, control is harder than verification. In [AD94] it is shown that the
dense-time safety verification problem for timed automata is hard for PSPACE. From Theorem 3.2
below it follows that the dense-time safety control decision problem for timed automata is hard for
EXPTIME.

3 Discrete-Time Rectangular Automata

3.1 Finite BisimUarity Quotients and Effective Presentation

We show that the discrete-time transition system of a positive or bounded rectangular
automaton A has a finite bisimilarity quotient and can be presented effectively using rectangular
state predicates. More precisely, in discrete time, two states ofa rectangular automaton are bisimilar
if (1) they have the same control mode, (2) corresponding variable values agree on their integer
parts, and (3) corresponding variable values agree on whether they are integral. Moreover, if an
m-definable rectangular automaton is positive, then it cannot distinguish variable values greater
than m. For m-definable bounded rectangular automata, the continuous part of the state is contained
in the cube [—m, m]". It followsthat in both the positiveand the boundedcase, the bisimilarity
quotient is finite.

Definition 3.1 Define theequivalencerelation onR" byy ziff[y,J = [^.J andfy,] = [2,"|
for ^1 1 < i < n. Given m € N>o, define the equivalence relation ss™ on R" by y z iff for
each 1 < t < n, either y,- z,-, or both y,- and z< are greater than m, or both y,- and z,- are less
than —m.For an n-dimensional rectangular automaton A, define the equivalence relations and

on the states of A by (u, y) ^a z)iffv = w and y «n z. and (v, y) =a (^i z) iff v = w
and y z. •

Lemma 3.1 Consider two vectors y,z € R" Then y z ifffor every rectangle B C R", we
have y G B iff z G B. Moreover, y z ifffor every m-definable rectangle B C R", we have
yeB iffzGB.

Theorem 3.1 Let A be an n-dimensional rectangular automaton with k control modes. The
equivalence relation =a is a bisimulation on the discrete-time transition system If A is
m-definable and eitherpositive or bounded, then is also a bisimulation on The number
ofequivalenceclasses of=^ is k • (4m -f 3)".

Proof. We argue that =X is a bisimulation for positive m-definable A; the other parts of the proof
are similar. Suppose that {v, y) (ly, z) and (v, y) A (v',y'). We must show that there exists
a state {w',z') such that (iy,z) A (u;',z') and (u',y') =a {w',z'). First, assume that a G E.
In this case there exists a control switch e with source v = w such that event{e) = <r and
(y>yO € lj^Tnp{e)}, and y,- = foreachi ^ update{e). Define z' by zj = Zi for i ^ update{e).



Fig.l. Given a control mode t>, consider the flow condition = (1 < iri < 3 A 1 < ij < 2). Let
B= p <X, <4A2<a;2 <3]andP = 10 < XI <3A0<xj <2i.ThenPre,({t;} xB) ={v} xP.

and z'i = j/f fori € update{e). ByLemma 3.1, (z,z') € ljump{e)\ and z' € It follows
that (tt;,z) A(t;',z'),

Second, assume that <r = 1 (cf. Fig. 1). In thiscase v' = t; = ly, and y' - y 6 |[/?oty(v)|.
We must show that there exists a vector z' such that z' —z € lftow{y)} and y' z' (notice
that by Lemma 3.1, y' z' implies z' 6 [[tnu(u)|). We do this one coordinate at a time.
Fix i E {1,..., n}. Suppose that y,- > m. It follows that > m and x,- > m, because A is
positive. Choose any c € [[/?oiw(v)]l,-, and define z\ —Zi + c. Since c > 0, we have '̂i-
Now suppose that y,- < m. If y,- E N then z,- = y.-, because y,- z,-. Define z^ = y<. Then

= !/f - yi € If y,- ^ N then [y.J < y.-.z,- < [y,]. The set is
an interval, say, withendpoints a, 6 G N (it is easy to extend the argument to the case b = oo).
Thus l[^ou;(u)l,- contains the open interval (a,6), and y< € [y,- + a, y,- + 6]. We show that there
exists a number c E (o, 6) such that y- «i z; + c. Since a, 6 € N and y,- «i z,-, it follows that
y,- + a z,-f a and y,- + 6 f«i z,- + 6.Thustheclosed interval [z,- + a, z,- + 6] intersects thesame

-equivalence classes as does [y,- + a, y, + 6]. Since neither z,- + a norz,- -1- 6 is an integer, the
same is true fortheopen interval (z,- -H a, z,- 4- 6). Therefore there exists a number c G{a,b) such
that ftsi Zi -f c. •

Corollary 3.1 Forevery rectangularautomaton A, the boolean combinationsofrectangularstate
predicatesfor Aform a symbolic execution theoryfor thediscrete-time transition system

Corollary 3.2 Forpositive or bounded rectangularautomata, thediscrete-time safety verification
problem (infact, LTL and CTL modelchecking) can be solved in PSPACE, and the discrete-time
safety controller synthesis problem can be solved in EXPTIME.

The LTL and CTL parts of the corollary follow from the facts that both model-checking problems
canbesolved inspace logarithmic in thesizeof thetransition system andpolynomial in thesizeof
thetemporal formula [Kup95]. Itshould benoted that while inthesame complexity class, theactual
running times ofthe discrete-time algorithms for rectangular automata are better by amultiplicative
exponential factor than the running times of the corresponding dense-time algorithms for timed
automata. This is because there, the number of equivalence classes of the bisimilarity quotient
is f2{k •n! •(m -H 1)"). By providing tightlower bounds, thefollowing theorem shows thatour
algorithmsare optimal.The second part of the theorem follows from Theorem 3.4 below.

Theorem 3.2 Forbounded timed automata, thediscrete-time safety verification problem is hard
for PSPACE [AD94], and thediscrete-time safety control decision problem is hardfor EXPTIME.



3.2 Sampling-Controller Synthesis

The dense-time and discrete-time control problems are not realistic, as a controller mayenforce
arbitrarily many (even infinitely many) consecutive instantaneous jumps. A more natural control
model forhybrid systems involves a controller thatsamples theplantstateonceper timeunit,and
then issuesa command baseduponits measurement. The command may causea switchin control
mode, after which the plant state evolves continuously for one time unit, before receiving the
nextcommand. Wecall this model"samplingcontrol"to distinguishit fromdiscrete-time control.
Moreover, wewishto ensurethat a proposition is avoided not onlyat thesampling pointsbut also
between sampling points. Given a rectangular automaton A, we define a third transition system,
5"'"'''®, such that (1) any control map behaves in a sampling manner and (2) the propositional
regions are "large enough" so that they cannot be entered and left by a single flow transitionof
duration 1.For example, if tt is a rectangular statepredicatethat maps each controlmode of A to
eithertrue or false, then is largeenough. If theregion of unsafe states isnotlargeenough, this
may be correctable by increasing the sampling rate (i.e., by reducing the unit of time).

Definition3.2 [Sampling control] LetA be a rectangular automaton. A rectangular statepredicate
TT € i7 is large enough for A if there are no three states (v,y), (v,y') ^ and (u,y") G Rv
suchthat (t;,y) -> (v,y") and (v.y'') (v.y') for some real S € (0,1). Define i7' C 77 to be
the set of rectangular state predicates that are large enough for A, and define ((u,y), A) [=' tt
iff (v,y) ^ TT. The sampling-control transition system of A is defined by = {Q x
{control,plant], EU {1}, =»,Q/ x {control}, 11',|='), where thebinary relation =» is defined
by: (1) for each event <r E E,we have ((v, y), control) ^ {{v',y'),plant) iff(v, y) A (v', y*), and
(2) ((v, y),plant) A- {{v',^), control) iff (v, y) A (v', y'). TTius in the sampling-control transition
systemthecontrollerandtheplant taketurns: firstthecontrollerspecifies ajump transition,thenone
time unit passesin a flow transition,and so on. Werefer to the safetycontroldecisionproblemfor
transition systems of the form for some rectangular automaton A, as the sampling-control
decision problem for rectangular automata, and similarly for the sampling-controller synthesis
problem. •

Theorem 3.3 For positive or bounded rectangular automata, the sampling-controllersynthesis
problem can be solved in EXPTIME.

Proof. Consider an n-dimensional positive or bounded rectangular automaton A. We reduce
the sampling-control problems to discrete-time control problems by constructing a rectangular
automaton Ctrl{A) such that is isomorphic to Moreover, if A is positive, then
Ctrl{A) is positive, and if A is bounded, then Ctrl{A) is bounded. Let Xctri{A) = Xa U
{x„+i} for a clock Xn+i ^ Xa- The control graph and events of Ctrl{A) are identical to
thoseofA. Let tnuctr/(>i)(t') = A 0 < x„+i < 1, let initctri{A){'v) = initA{v) A
X„+1 = I, let jumpctri(A){^) =J»^Pa{^) ^ «n+i = 1 Ax^^, = 0, and let flowctri(A){^) =
f1owj^{v) A Xn+i = 1. It follows that in the discrete-time transition system jump
transitions must alternate with flow transitions (ofduration 1). Hence the map / : Qctri{A)
Qa X{con<n>/,p/anf}, defined by /(t;,y,0) = (t;,y,p/an<) and f{v,y, 1) = {v,y, control),
is an isomorphism between the transition systems and if ^ is m-definable

with k control modes, by Theorem 3.1, the bisimilarity quotient of has no more than

k •(4m+ 3)"+' equivalence classes, which is singly exponential in the size of A.•
Lemma 3.2 LetG = (Va,Vo,Vi,—^) be an AND-OR graph, and let R be a set of vertices of G.
Define the transition system So = (Va U Vq, E, Vj, {tt}, |=) such that (l)v ^ ir iffv G R,
(2)forallOR stages v GVo» ifvA wandvA w', then cr = a', and(3)forallAND states v EVa,
ifv-^ XV and vA u;' and w^ w', then a ^ cr'. Then R isalternating reachable in G iffirisnot
avoidable in So-



Theorem 3.4 For bounded timed automata, the sampling-control decisionproblem is hard for
EXPTIME.

Proof sketch. We reduce the halting problem for alternatingIhring machines using polynomial
space [CKS81] to the sampling-control decision problem for bounded timed automata. Let M
be an alternating Thring Machine with input s so that M uses spacep(|s|). Then M accepts s
iff the unique final state Uf is alternating reachable in an AND-OR graph whose vertices are
configurations of M. The set of configurations of M is U x {1,... ,p(kl)} x where U
is the state set of M, the second component of the product gives the position of the tape head,
and r is the tape alphabet. >^^thout loss of generality, we assume that F = {0,1,2}, where 0
is the "blank" symbol. We first define a boundedpositiverectangular automaton A whosestates
are configurations of M, and a propositionttf, large enough for A, that is true exactly in the
configurations containing up. This is done in a way consistent with Lemma 3.2, so that np is not
avoidable in iff jvf accepts s. Then we turn A into a bounded timed automaton.

The automaton A uses p(|s|) variables xi,... ,®p(|5|) to store the tape contents. The set of
controlmodesofAisU x {1,.. .,p(|s|)}.Theinvariantand flow conditionsareconstantfunctions:

i) = AjEi'̂ (0 ^ S 2) and flow{u,i) = = 0) for all uand i; thus flow
transitionshave noeffect. Theinitial condition isdefined by init (u, i) = false except when u is the
initial state u/ of Mand i= 1; in that case, init{uj, 1) =Ai=i(®i =®j) ^ A5=f]|+i(®i =0)-
Each transition t of M consists of a source state u € f/, a tape symbol f E F, and a list of
triples (uj,7j,(ij), where uj E U is a. target state, fj E F is written on the current tape cell,
anddj E {—1,1} gives the direction moved by the tapehead (there is exactly one transition for
each source stateu). For eveiy transition i = (w,7,{uj,jjydj)j^j) of M, every tape position
1 ^< P{|®l)' every j E J, we define in>1 a control switch et,i,j with source (u,i) and target
{uj,i+ dj). The jump condition isx,- = 7 Ax{ = 7,- AAifc9£i(®A = If« is an
AND state of M, then event{et,i,j) = («,«,j). Ifu isanOR state of M, then event(et,ij) = 0.To
turnA intoa timed automaton, all variables are replaced by clocks, andbetween any twocontrol
switches of A, a sequence of p(|s|) control switches is added, one for each clock, to subtract
p(|s|) + 1fromeach clockvalue. •

4 Beyond Rectangular Automata

Discrete-Time Undecidability Results We show that the pleasant properties of discrete-time
rectangular automata (Theorem 3.1)dependon bothconditions, (1) positivityor boundedness and
(2) rectangularity. If eitherconditionis violated, then already the discrete-time safetyverification
problem becomes undecidable.

Defiiiition 4.1 [Triangular automaton] A triangular automaton A has the same components as
a rectangular automaton, except that the predicates defining A may be triangular predicates, and
need not necessarily be rectangular. •

Theorem 4.1 The discrete-time safety verification problem (and thus the discrete-time control
decision problem) is undecidablefor the classofall rectangular automata, and alsofor the class
ofbounded positive triangularautomata.

Proofsketch. Bothpartsuse a reduction from the haltingproblem for two-counter machines. For
the firstpart, the reduction is simple, as countervalues can be represented by variable values, as
in [KPSY93]. For the second part, counter values must be encoded, so that the counter value c
corresponds to the variablevalue For thispurpose,the wrapping-clock techniqueof [HKPV95]
can bemodified as follows. Theset{xj,..., x„} ofdense-time clocks used forencoding counter
values is simulatedin discrete time by variables with the triangular flow condition xi = ••• = x„.
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Then the variables are enforced to represent valid encodings at those integer times when the
wrapping clock shows 0. •

Generalized Rectangular Automata It is well-known that the pleasant properties of timed
automata (Theorem 2.5) are preserved if rectangularity is relaxed to triangularity in invariant,
initial, and jump conditions. We conclude with a similar observation for rectangular automata. A
generalized rectangular automatonis a triangular automatonwhoseflowconditions are rectangular
predicates. It follows from our arguments that for eveiy generalized rectangular automaton A, the
boolean combinations of triangular state predicates for A form a symbolic execution theory for
the discrete-time transition system Consequently,if A is a bounded generalized rectangular
automaton,then5has a finitebisimilarityquotient (which is identical to the regionequivalence
of timed automata [AD94],and finerby a multiplicativeexponential factor than the equivalenceof
Theorem 3.1). For such automata, we can automatically synthesize sampling controllers that avoid
triangular state predicates.
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