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Abstract

Formal semantics for the dataflow model of computation havecentered around the version of data

flow known as Kahn process networks. Theseprocess networks, however, fail to capture an essential

principle of dataflow, proposed by Dennis andusedin almost allpractical implementations of dataflow,

that of an actor firing. An actor firing is an indivisible quantum of computation. A set of firing rules

give preconditions for a firing, and the firing consumes tokens from the input streams and produces

tokens on the output streams. These notions are missing from Kahn's model, and therefore have not

been thoroughly studied in a formal setting. Thispaper bridges the gap, showing thatsequences of fir

ings define a continuous Kahn process as the least fixed point of an appropriately constructed func

tional. The firing rules are sets of prefixes with certain technical conditions to ensure determinacy.

Theseconditions results in firing rulesthatare moregeneral thanthe blocking readsof the Kahn-Mac-

Queen implementation of Kahn process networks, andresultin a compositional dataflow model.



1. Introduction

Threedistinct variants of the dataflow modelof computation haveemerged in the literature, Kahn

process networks [8], Dennis dataflow [7], and dataflow synchronous languages [3].Thefirst twoare

closely related, while the third is quite different. This paperdeals only with the first two, which have

onekey important difference. In Dennis dataflow, a process consists of a sequence ofatormcfirings of

actors. Although Dennis dataflow can be viewed as a special caseof Kahn process networks [10], the

notion of firings has been absent from formal semantic models, which are most developed for Kahn

process networks anddataflow synchronous.languages. Thisomission is problematic because although

Kahn process networks in their general form have not found widespread use, Dennis dataflow has,

experimentally in computer architecture [2] and in production in signal processing software (see [10]

and the references therein).

This paper fills in this gap, showing that methods pioneered by Kahn extend naturally to Dennis

dataflow, embracing the notion of firing. This is done by establishing the relationship betweena firing

function and the Kahn process madeup of a sequence of such firings. A practical consequence of this

analysis is a formal characterization of firing rulesand firing functions thatpreserve determinacy.

The semantics givenhere of dataflow withfiring (Dennisdataflow) is denotational, in the sense of

ScottandStrachey [13], ratherthanoperational, the usual semantics given. Thedenotational semantics

is shownto be equivalent to a usued operational semantics, thus establishing full abstraction.

2. Review of Kahn Process Networks

In all dataflow models, processes communicate by sendingtokens^ atomicunits of data, along uni

directional channels with one writer and one reader. Let V denote the alphabet of tokens and S the set

of all sequences of tokens. A particular finite sequence is written [vj, Vj,v^], and an infinite
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sequence [vj, Vj,...]. The set of tuples of n such sequences is denoted 5". Aparticular n-tuple of

sequences is written s = (Sj,s„). AKahn process is amapping FiS"* —> 5" from an m-tuple an

rt-tuple, with a key technical restriction. The mapping must be a continuous junction (in a sense

reviewed below). This restriction ensures that compositions of Kahn processes are determinate (in a

sense also reviewed below).

2.1 COMPLETE PARTIAL ORDERS AND THE PREFIX ORDER

An ordering relation on the set 5 isa reflexive, transitive, antisymmetric relation "E" on members

ofthe set. Reflexive means that s ^ s, transitive means that 5 E j' and 5' E 5" imply that s E 5",

and antisymmetric means that 5 E s' and E 5 imply s = 5', for all s,5',5" in S. Ofcourse, we

can define a relatedirreflexive relation, denoted"c", where j ^ 5' if j E 5' and s^s*. AsttS with

an ordering relationship is called an ordered set. If the ordering relationship is partial (there exist

SyS'e S such that neither s E 5' nor5' E 5, then Siscalled apartially-ordered setorposet[6].

Below, we usethe symbol N to denote the setof natural numbers, {1,2,...}, the symbol Nq to

denote Nu {0}, and the symbol todenote NqU{00}. The ordered set co is usual

numeric ordering relation.

Aparticularly useful partial ordering relation is called the preflx order. In the prefix order, j E 5'

if 5 isa prefix ofs'. This means simply that the first n tokens ofs' are the same asthe /i tokens in s,

in the same order, where n € is the length of the sequence s. The empty signal, one with no

tokens, is denoted X, and is a prefix of every other signal.

A chain in 5 is a set e S and 1e N}, where N is the set of natural numbers and s, E 5,'
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<=>! ^ . An upper bound ofa subset W£ 5 isanelement we S where every element in Wis a pre

fix of w. A leastupper bound {LUB\ written u W, is anupper bound that is a prefix of every other

upper bound. Alower bound and greatest lower bound are defined similarly. The bottom element ofa

poset, ifitexists, isa lower bound for the poset itself. Acompletepartial order (CPO) isaposet with a

bottom element where every chain hasa LUB. From a practical perspective, this usually implies that

our set S ofsequences must include the empty sequence %and sequences with aninfinite number of

values. The poset S withthe prefix orderis a CPO.

These definitions are easy to generalize to 5", the set of n-tuples ofsequences. For s€ 5" and

s' € 5", s c s' if each corresponding element is a prefix, i.e. E s\ for each 1< i ^ n, where

s = (5j,..., .Following Birkhoff and Mac Lane [5], we define 5® to be aset with asingle element.

With thisdefinition, if 5 is a CPO, so is 5" forany n e . Thetuple of empty signals is denoted A,

andis a prefix of every othertuple of signals of thedimension.

Consider a function F 5", where m^ne allow either m or /i to be zeroin order to

model Kahn processes with no inputs or no outputs, respectively. For example, afunction F:5® 5^

isa source ofa sequence. Since it isa function, and has only one element, the output isalways the

same sequence.

2.2 MONOTONIC AND CONTINUOUS FUNCTIONS

A function F rS" S" is monotonic if

5 c s' =>Fis) c FU'). (1)
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Intuitively, thissays thatif an input sequence s is extended with additional tokens appended to theend

to get s', then the output F{s) can only be changed by extending it with additional tokens to get

F{s'). Le., giving additional inputs canonly result in additional outputs. Thisis likeanuntimed notion

of causality. Note that if m = 0 orn = 0 then the function is always monotonic.

A function F:S" -^S" is continuous if for every chain Wc 5™, F^W) has a least upper bound

uF(lV), and

F(u W) = uF(\V). (2)

The notation FiW) denotes a set obtained by applying the function F to each element of W. Intu

itively, this says that the response of the function to an infinite input sequence is the limit of its

response to the finite approximations of this input.Note again that if m = 0 or n = 0 then the func

tion is always continuous.

"Continuous" here is exactly the topological notion of continuity in a particular topology called

the Scott topology. In this topology, the set of all sequences witha particularfinite prefixis an open set.

The union of any number of such open sets is also an open set, and the intersection of a finite number

of such open sets is also an open set.

A continuous process is always monotonic. To see this, suppose F: ->5" is continuous, and

consider two signals s and in iS" where s £ r'. Define the increasing chain

W = {r, s\ j', 5',...}. Then u W = ^', so from continuity,

F(0 =F(u W) = uF(W) =u{F(5),F(5')}. (3)

Therefore F{s) ^ F(j'), so the process is monotonic.
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Not all monotonic functions are continuous. Consider for example a system where the set of

tokens is binary, V = {0,1}, and

„ j [0]; if5is finite ^4)
I [0,1]; otherwise

It is easyto showthat this is monotonic but notcontinuous.

Aconcatenation ofa finite sequence s' and another (possibly infinite) sequence s is written s\s.

An example ofa continuous function that we will discuss further is the unit delay. It isdefined by

D^{s) = [v].s (5)

where v e V is a token value. The effect of the delay is to insert an initial token with value v onto the

head of a sequence. The term "delay" reflects the fact that a given token on the input appears on the

output also, but one token later in the sequence.

2.3 COMPOSITIONS OF KAHN PROCESSES AND DETERMINACY

Afinite composition of Kahn processes is a collection ^2 sequences and a collec

tion {Fj, ^2,..., ofcontinuous functions relating them, such that no sequence isthe input orout

put ofmore than one function. Any sequence that isnot the output ofany ofthe functions isaninput to

the composition.

A composition is determinate if given the input sequences, all other sequences are determined.

Obviously, a Kahn process by itself is determinate, since it is a functional mapping from input

sequences to output sequences.

Some examples of finite compositions of Kahn processes are shown in figure 1. In each of these

examples, given the component functions, it isobvious how toconstruct a function that maps the input
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sequences (those that arenotoutputs ofany function) totheother sequences. Thus, each of these com

positions isdeterminate. Moreover, if the component functions arecontinuous (ormonotonic), then the

composite functions are also continuous (or monotonic).

Feedback compositions of Kahn processes may ormay not bedeterminate. Consider for example

theidentity function, I{s) = s. This function is obviously continuous. Suppose we create a very sim

ple composition ofthe identity process by feeding back the output tothe input, letting F = / infigure

2. There are no inputs to the composition, the composition is determinate only if the sequence s is

determined. Butany sequence s satisfies thecomposition, so it is notdetermined.

(a) (b)

(c)

(d)

FIGURE 1. Examples of composition of processes.

FIGURE 2. Feedback (a directed self-loop).
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2.4 LEAST FIXED POINT SEMANTICS

There is an alternative interpretation due to Kahn [8] of a feedback composition that makes the

example infigure 2determinate. Under this interpretation, any composition ofcontinuous processes is

determinate. Moreover, this interpretation is consistent with execution policies typically used for such

systems (their operational semantics), and hence is an entirely reasonable denotational semantics for

thecomposition. Thisinterpretation is the least-fixed-point semantics.

A well-known fixed point theorem states thata continuous function F :X -> X in a CPO X hasa

least fixed point jc. Fix) = x (see [6], page 89). By"least fixed point" wemean thatfor any y such

that F(y) = y, x E y. Moreover, thetheorem gives us a constructive way to find theleastfixed point.

Putting it into our context, suppose we have a continuous function F:S" ->5". Then define the

sequence of sequences

So = A, Sj = F(jo). S2 = F(5,), ... (6)

Since F is monotonic and the tuple of empty sequences A is a prefix of all other tuples of sequences,

this sequence isa chain. Since S" isa CPO, this chain has aLUB. The fixed-point theorem tells us that

this LUB is the least fixed point of F.

This theorem is very similarto the so-called Knaster-Tarskifixedpoint theorem^ which applies to

complete lattices rather than CPOs [6]. Forthis reason, this approach to semantics is sometimes called

Tarskian. The application of thistheorem to semantics was pioneered by Scott [12] and Kahn [8].

Note that the constractive technique given by (6) might be a reasonable implementation of Kahn

process networks. Begin with all sequences empty, and start iteratively applying functions. If we

choose this constructive technique as the operational semantics, then this theorem tells us that this

operational semantics isconsistent with thedenotational semantics (the leastfixed point semantics), so
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we have full abstraction. For a complete treatmentof full abstraction, see Winskel [14].

Under this least-fixed-point semantics, the value of 5 in figure 2 is A., the empty signal, when

F s 7. Under this semantics, this is the only sequence that satisfies the composite process, so the

composite process is determinate. Intuitively, this solution agrees with a reasonable execution of the

process, in whichwe wouldnot produceany outputfrom F = I becausethereare no inputs.

Another fixed-point theorem deals with monotonicprocesses that are not necessarily continuous.

This theorem states that a monotonic function on a CPO has a unique least fixed point, but gives no

constructive way to find the least fixed point (see [6], page 96). Fortunately, this lack of constructive

solution is not a problem in practice since practical monotonicprocesses are invariably continuous, at

least in the context of Kahn process networks.

2.5 PRACTICAL OPERATIONAL SEMANTICS —SCHEDULING

There are serious practical problems with choosing (6) as the operational semantics. First, the

functions that need to be iteratively appliedmap entire sequences into entire sequences. If any of these

sequences becomes infinite, the computation of a single function will not terminate, precluding itera

tive application. This happens immediately if one of the functions happens to be a source (e.g.

F:iS° s') with an infinite output. In practice, we need to partially compute the functions, carefully

controlling the length of the sequences. Sometimes it is possible to store only finite windows into

potentially infinite sequences and execute a process network in bounded memory.For a complete and

up-to-date exposition on these scheduling issues, see Parks [11].

2.6 HIGHER-ORDER FUNCTIONS

Using the fact that compositions like those in figure 1 preserve continuity, and that feedback as in

figure 2 is determinate under a least-fixed-point semantics, we can conclude that arbitrary finite corn-
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positions of continuous functions are determinate under such semantics. This determinacy, however, is

not constrained tobounded orstatic compositions, where the number ofsequences and functions isa-

priori determined. To generalize the result, we can view the compositions of figures 1 and 2 to be

examples ofhigher order functions. Higher-order functions are functions that take functions as argu

ments andreturn functions. Wecandefine a CPO over functions, andarrive at a very powerful general

ization of the determinacy result. We will then use a similar technique to study dataflow with firing

(Dennis dataflow).

Consider the set of all functions Theprefix order on sequences induces an ordering

on functions in this set. We write F £ F' if for all s € 5", F(s) EF'(s). This is just a pointwise

extension of the prefix ordering. Denote the set of functions with the pointwise prefix order by

{S^ 5"). It is aCPO. To show this, we need to show that all chains in (5*" 5") have aLUB in

(5" 5"). Consider such a chain,

Fo:5"->5",F,:5'"^5",... (7)

where i^7=> F, <F^. Let s be any tuple of sequences in S*". Note that i^ F,.(s) ^ Fj(s), so

Fo(s), Fi(s),... is achain in . Since S"* is known to be aCPO, this chain has aLUB. Define the

function F:S" -> S" by

F(s)=u{Fo(s),Fi(s),...}. (8)

In thepointwise prefix order, this canbe written

F=u{Fo.Fp...}. (9)

Thus, every such chain has aLUB, so the set offunctions with the pointwise prefix order is aCPO.
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Following Davey and Priestley [6], let [5^ —> 5"] denote the set ofcontinuous functions mapping

into S" ordered by the same pointwise prefix order. Clearly, [iS™ 5"] c (5'" -»5").Moreover,

[5*" 5"] is itself a CPO ([6], theorem 3.17), so it is called a sub-CPO of (iS™ —> 5"). This means

that any chain of continuousfunctionshas a least upper bound that is also a continuousfunction.

The bottom element of both (5™ —>5") and [5™->5"] is a function that always

returns A, an n -tuple of empty sequences.

We can of course define aset (5" —» 5")" of tuples of a functions, where cue N. This is also a

CPO under an elementwise extension of the pointwise prefix order. The bottom element of this CPO,

which wedenote by T*, is an a -tuple of functions !{/. Finally, wecan defined sets mixed tuples, for

example 5") x {S^ —> S^). Any member ofthis setisa 2-tuple where the first element isa func

tion from (5" —> S") and the second element isa function from —> S^).

Consider a mapping <j) '.{S"* —> 5")—»—> 5^). Such mappings are sometimes called

als because they map functions into functions. A functional <j) is monotonic if F E F' iniplies that

(|)(F) E <j>(F'). It is continuous if for every chain Wc. (S"* —> S"), ^{W) has a least upper bound

u<l)(lV), and

0(u lV) = u<j)(W). (10)

The notation <|)( W) denotes a set obtained by applyingthe mapping (j) to each element of W.

The compositions of figure 1 can be described as functionals over this new CPO of functions.

Beginning with figure 1(a), denote the composition by F = <1)(F|, Fj). The relevant mappings are
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F^iS-^S, F2:S->S, and An alternative notation that

might bemore familiar tosome readers would write F = Fj x F2, the tensor products inAbramsky*s

interaction categories [1]. It is straightforward toshow that <|) iscontinuous over the CPO offunctions.

Figure 1(b) islittle different from figure 1(a). The only difference isthat F2 isreplaced by aniden-

2 2
tity function. In this case, we can write F' = <I)'(F|), where F|:5—>5, F*:S —>5 , and

(()';(5-»5)(5^ —>5^). Alternatively, we can write this using the tensor product notation,

F' = F, X7, where I:S->S is the identity function.

Figure 1(c) represents a composition of functions. This can also be described as a functional,

F" = <|)"(Fi, F2) = F2*Fi. The relevant mappings here are F, :5->5, F2:5->5, F":5->5,

and 0":(5 S)^ -> (5-»5). With this choice, the sequence ^2 between the two functions is hidden

by the composition (it is not exposed as an output). It is also straightforward to show that this func

tional is continuous.

Using fiinctionals like <)), <|)', and <|)" above, appropriately generalized to operate on functions

with various numbers of input and output sequences, a rich set of compositions can be constructed.

When doing this, it is usually more convenient to use the tensor product notation, F = F, x F2, and

the function composition notation, F" - F2• F|. Forexample, thecomposition in figure 1(d) canbe

given by the functional <|)"' :((S^ —> 5) x(5 S^)) —> —> S^), where (|)'" = (/xF2) • (Fj xI).

More interestingly, such fimctionals make it possible to describe unbounded and data-dependent

compositions of processes. A classic example, used by Kahn and MacQueen [9], is the sieve of Era-

tosthenese, which given an input the sequence [2,3,4,...] outputs the prime numbers. Assume

12 of 24 Edward A. Lee



V = {2,3,4,...} is the set of possible token values, and let G^{s) be a "filter*' process that, given

any sequence s of tokens in V, outputs a subsequence consisting only of those tokens in s that arenot

multiples of v, for some v€ V.The sieve ofEratosthenese isconstmcted by composing such filters,

one for each prime number. Formally,

F(s) _I ^ f ^=^ . (11)
I [v].F(Gy(j')) if s = [v].j' for some V€ V, s'6 5

This recursive definition is easy to understand if we assume that the input is the sequence

s = [2,3,4,... ] and examine the first few unravelings of the recursion:

2.F(G2([3,4,...])) (12)
2.3.F(G3(G2([4,5,...])))
2.3.5.F(G5(G3(G2([6,7,...]))))

Notice that in effect, the recursion specified a cascaded composition of filters, one foreach prime that

hasbeen discovered so far. Thecomposition grows dynamically asmore primes arediscovered.

3. Dataflow with Firing

Continuous fiinctionals onposets offunctions provide a convenient way to study Dennis dataflow,

which is equivalent to Kahn process networks where processes are made up ofa sequence of atomic

computations cdSXtdfirings. The firings themselves can bedescribed as functions, and the invocation of

thesefirings is controlled by^n'ng rules.Wecan nowmakethis precise.

3.1 DATAFLOW ACTORS

First, we need a little more notation. Atuple s e S" ofsequences is said toht finite if each ofthe

sequences in the tuple has afinite number of tokens. Ifse S™ is finite and s' e S"^ is some other tuple
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ofsequences, then s.s' is the concatenation ofthe two tuples ofsequences. This isconstructed in the

obvious way so that s £ s.s'. Concatenation was defined above for single sequences rather than

tuples.

Given two tuples ofsequences s,s' € 5™, their join^ written s u s', if it exists, is defined tobe

least upper bound ofthetwo sequences. If the joinexists, s and s' are said tob&joinable.

We begin with a simpler definition that excludes some useful cases, and then generalize. Adata

flow actor with m inputs and n outputs is a pair{/,/?}, where:

1. f:S" -¥S" isa function mapping called thefiringfimctiony

2. /?c 5™ is a set of finite sequences calledthefiring rules,

3. /(r) is finite for all r e /?, and

4. no two distinct r, r' e R are joinable.

The last constraint implies that for any given s € 5"* there is at most one re/? such that r E s. If

there issuch an r, then there will bea unique s' e 5" such that s = r.s'.

3.2 DATAFLOW PROCESSES

A Kahn process F based onthedataflow actor {/, R} cannow bedefined asfollows:

F(s) =I ^ exists re Rsuch that s=r.s' ^3^
[ A otherwise

Notice that this definitionis self-referential. It is by no means obvious that a function F exists that sat

isfies (13), nor is it obvious that this function isunique. We will show that such a function exists, and

that there is a unique least function in the pointwise prefix order. Consider the functional
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<|) :(iS" —> S") —¥ (5" 5") associated with aparticular dataflow actor {/, /?} defined asfollows.

(<l>(^))(s) =I if there exists r€/? such that s=r.s'
I A otherwise

Theorem 7:The functional <j) is monotonic.

Proof: Consider a particular s £ 5*". We consider twocases. First, assume thatthere exists one

r € /? such that r £ s and s = r.s'. In this case, (<|)(F))(s) = /(r).F(s') and

(<l>(F'))(s) = /(r).F'(s') for any two functions F, F' -» 5". If F E F', then clearly

(<i)(F))(s) E(<|)(F'))(s). (15)

Second, suppose that thereis no r £ R such that r £ s. Then (<|)(F))(s) = (<l>(F'))(s) = A for

any two functions F, F' —> S". Again, if F E F', then (15) holds. Thus, (15) holds forany

s £ S"* and F, F' such that F E F', implying that ^ is monotonic.

Since the functional <j) given in (14) is a monotonic function overa CPO, it has a least fixed point F

such that <i)(F) = F [6]. This least fixed point satisfies (13), so we take it to be the semantics of the

dataflow process.

The existence of a least fixed point is reassuring,but we can go a step further and give a construc

tive procedure for finding that least fixed point. Moreover, this constructive procedure will exactly

match a reasonable operational semantics for single dataflow actors.

Theorem 2:The functional (j) given by (14) is continuous.

Proof: Consider any chain F c (5™ -¥ 5"). We need to show that <|)(uF) = u<l)(F). Write

F = {Fq, Fj,...} and note that for any s £ 5"*
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u (<|)(F))(s) =u {(<|>(fo))(s).{<l>(fi))(s). •••}• (16)

Since <j) is monotonic, this is achain in S", aQPO, and therefore has aLUB. There are two cases

to consider. First, if there exists anre R such that r E s and s = r.s', then

u (<j>(F))(s) =u {/(r).Fo(s'),/(r).Fi(s'),...} = fir).u {Fo(s'),Fi(s'),...}

= /(r).(uF)(s') = (<l>(uF))(s). (17)

The second caseweneedto consider is where there is no r € F suchthat r E s. In thiscase,

u (<l)(F))(s) =u = A =((|)(uF))(s). (18)

Thus, in both cases, <|) (u F) = u <|) (F), so <{) is continuous.

Since <|) is continuous, not only does ithave aleast fixed point, but there is aconstractive procedure for

finding that least fixed point [6]. We start with the "bottom" ofthe poset, which in this case isthe bot

tom function that always retums A, an n-tuple of empty sequences. Let Fq =

F] = ^{Fq) , Fj = <l)(Fj), etc. This forms achain, and the LUB of this chain is the least fixed point

of (|).

Examining this chain more closely, suppose for agiven se S™ there is asequence Fj, Tj, ... e F,

such that s = Fj .Fj Then the chain takes the following form:

Fo(s) = A (19)
F,(s) = /(r,)
FjCs) = /(r,)./(r2)

This exactly describes the operational semantics ofDennis dataflow for a single actor. It says to start

with each actor producing the empty sequence. Then find the prefix ofthe input that matches a firing

rule, and invoke the firing function on that prefix, producing a partial output. Because ofcondition (4)
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on the firing rules,no more than one firing rule can match. Then find the prefix of the remaining inputs

that match anotherfiring rule, invoke the firing function on thatprefix, and concatenate the resultwith

the output.

In general, it is possible that even if s is infinite, there will only be a finite sequence

Tq, rj,..., Fp € /?, for some natural number p, such that s = To-Fi Fp.s',and s' will have nopre

fix in /?. In both our operational and our denotational semantics, the firings simply stop, and the output

is finite.

3.3 CObrriNUITY OF THE DATAFLOW PROCESS

The function F defined by (13) is the least fixed point of the continuous functional defined by

(14). For a given input s, the value of F(s) is the least upper bound of the chain given by (19). This

chain will be finite for some s (certainly for finite s, but also for any s for which after some point, no

more firing rules match), and infinite for other s. Since each F, e [S" —> 5"] isacontinuous function,

and the set [S*" —>S"] of continuous functions is a CPO, then the LUB F is continuous, and hence

describes a valid Kahn process that guarantees determinacy. Note that the firing function / need not be

continuous. In fact, it does not even need to be monotonic. It merely needs to be a function defined and

finite for each of the firing rules.

3.4 EXAMPLES OF FIRING RULES

Consider for example a system where the set of tokens is V = {0,1}. Let us examine some pos

sible firing rules RczS^ for unary firing functions f:S-^S. We will denote a sequence of tokens

using square brackets and commas, so [0,1,1] is a sequence with three tokens. An empty sequence will

be denoted with X, as usual. A set of tuples will be denoted using the usual braces for sets. The follow-
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ing sets offiring rules all satisfy condition (4) above, that notwo distinct r, r' e /? are joinable:

{[0]} . (20)
{[0],[1]}

{[0,0], [0,1], [1,0], [1,1]}

Thefirst of these corresponds to a function that consumes no tokens from its input sequence, andcan

fire infinitely regardless of the length of the input sequence. The second consumes only the leading

zeros from the input sequence, andthen stops firing. Thethird consumes onetoken from theinput on

every firing, regardless of itsvalue. The fourth consumes two tokens ontheinput onevery firing, again

regardless of thevalues. Anexample of a setof firing rules thatdoesnot satisfy condition (4) is:

{^[0],[1]}. (21)

Such firing rules would correspond to an actor that could nondeterministically consume or not con

sume an input token upon firing.

The firing rule in (21) wouldalso be the firing rule of the unit delay defined in Section2.2. In fact,

delays in dataflow process networks are usuallyimplemented directlyas initial tokens on an arc, rather

than trying to use sequences of firings. The run-time cost is lower, and this strategy avoids having to

have specialfiring rales for delays that, if allowed in general, could introduce nondeterminism.

2 2
Let us examine some possible sets of firing rales /?c 5 for binary firing functions f:S —> 5. A

tuple of tokens will be denoted using parentheses, as in ([1], [0]), a 2-tuple with two sequences of

length 1. The following firing rales all satisfycondition (4):

{([0], [0]), ([0], [1]), ([1], [0]), ([1], [1])}
{([0],X),([1],[0]),([1],[1])} (22)

{([0],U([1],X)}

{([1], [0],X),([0],>.,[1]), (^,[1], [0])}
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Thefirst of these corresponds to an actor thatconsumes oneinput token from each of twoinputs. This

could implement, forexample, a logic function such asAND orOR. Thesecond corresponds to a con

ditional actor where the first input provides a control token onevery firing, and if the control token is

then a token is consumed from the second input. Otherwise, no token is consumed from the sec

ond input. The third corresponds to anactor that never consumes a token from the second input. The

last corresponds to the famous Gustave function [4]. It is a particularly interesting set of firing rules

because it caimot beimplemented with the blocking reads of the Kahn-MacQueen implementation of

Kahn process networks [9].

The following firing rules do not satisfycondition(4):

{([0],A.),([1],X),(^(0]).(X,[1])} • (23)

Such would be the firing rules of the famous nondeterminate merge^ a process that can consume a

token on either input and copy it to its output. The nondeterminate merge is not a monotonic process,

andso useof it in a Kahn process network could result in nondeterminism.

While actors satisfying conditions (1) through (4) above result in continuous Kahn processes,

these conditions aremore restrictive than what is really necessary. Thefiring rules in (23), forexample,

are not only the firing rules for the dangerous nondeterminate merge, but are also the firing rules for a

perfectly harmless two-input, two-output identity function, /(s) = s for all s € 5 .It might seem at

first glance that such an identity function could be implemented using the first firing rule of(22), but in

fact this will not work. Thetwo examples in figure 3 show why not. In thefirst of these examples, the

first (top) input and output should bethe empty sequence, X, under the least-fixed-point semantics, so

there will never bea token to trigger thefiring rule of (22). In the second of these examples, the second

(bottom) input and output have the same problem. The firing rules of(23), however, have no difficulty
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with these cases. In the next subsection we replacerule (4) witha more generalrule.

3.5 COMMUTATIVE FIRINGS AND COMPOSmONALITY

Many dataflow models with a notion of firing are not compositional. That is, an aggregation of

actors that can be individually described using firings cannot be collectively described using firings.

This problem was alluded to in the final example of the last section, which is the simplest example

illustrating the problem. Thetwo-input, two-output identity function can be thought of as a aggrega

tion of two one-input, one-output identity functions, as suggested in figure 4. One-input, one-output

identity functions are trivially described as dataflow actors satisfying constraints (1) through (4), but

the two-input, two-output identity cannotbe so described.

Tosolve this problem, wecanreplace rule(4) withthe following morecomplicated rule:

5. forany r, r' € R thatarejoinable, r fir' = A (thegreatest lower bound is thetuple ofempty sig

nals) and/(r)./(r') = /(r')./(r).

FIGURE 3. If F is an identity function, the appropriate firing rales are given in (23).

FIGURE 4. A two-input, two-outputidentity functiondescribedas an aggregation of two one-
input, one-output identity functions.
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This rule generalizes the previous model by allowing a set of firing rules where more than one firing

rule can match the inputs. However, if more than one firing rule matches the inputs, then it should

make nodifference in what order these firing rules areused. Thefiring function, therefore, applied to

these joinable firing rules, should commute with respect to theconcatenation operator.

We will also need to redefine the functional that we used to constract the Kahn process from the

dataflow actor. To do this conveniently, let P/j(s) denote the set ofall firing rules {r|, r2,...»r^}c /?

that are prefixes ofs. This set could be empty ifthere are no prefixes ofs in .Then define the func

tional

mFms) =•! for {r„rj, ...,rp}e Pg(s) ifPg(s)*0 ^^4)
A otherwise•{

Note that because ofproperty (5), itmakes no difference in what order we use the matching the firing

rules {rj, Tj, r^}. In the above, s' is defined by s = Fj-rj

Although the notation gets a bit more tedious, it is straightforward to extend the above results to

conclude that the functional <()' and the function F that is its least fixed point are continuous. The

proofs are very similarto that above.

3.6 PRACTICAL OPERATIONAL SEMANTICS — SCHEDULING

The constructive procedure given by (19) ensures that repeated firings converge to the appropriate

Kahn process defined by the actor. Ifany such sequence offirings is finite, then it isonly necessary to

invoke a finite number of firings. In practice, it iscommon for such firing sequences tobeinfinite, in

which case a practical issue offairness arises. In particular, since there are usually many actors, in

order to have the operational semantics match the denotational semantics, itis necessary that the firing

function of each actor occur infinitely often, if possible.
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It turns out, however, that such a fairness condition is not always desirable. It may result in

unbounded memory requirements for execution of a dataflow process network. In some such cases,

there is an alternative firing schedule that is infinite but requires only bounded memory. That firing

schedule may not match the denotational semantics, and may nonetheless be preferable to one that

does.

A simple example is shown in figure 5.The actor labeled "SELECT' has the firing rule (again

assuming V = {0,1})

{([llA [1]). ([0], [1]), (X, [1], [0]), (X, [0], [0])}, (25)

where theorderof the inputs is top-to-bottom. If thebottom input (the control input) hasvalue "1" (for

TRUE), then a token of anyvalue is consumed from the top input, andno token is consumed from the

middle input. If thecontrol input hasvalue "0" (forFALSE), then no token is consumed from the top

input, and a tokenof any valueis consumed from the middle input.

Suppose thattheactors A,B,andD, all ofwhich aresources (i.e. of type F ), aredefined

to eachproduce an infinite sequence, and thatC (which is of type F ), is defined to consume

an infinite sequence with any token values. Suppose further that the output from D is the constant

sequence [0,0,0,...]. Then tokens produced by actor A will never be consumed. In most practical

FIGURE 5. An example of a dataflow process network where it maybe undesirable froma practi
cal perspective to insistthatthe operational semantics match thedenotational semantics.
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scenarios, it is preferable to avoid producing them if they will neverbe consumed, despite the fact that

this violates the denotational semantics, which state that the output of actor A is an infinite sequence.

Thisproblem is solved by Parks [11], whoshows that the obvious solution for theexample in figure 5,

demand-driven execution, does not solve the problem in general.
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