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Abstract

Visual servoing, i.e. the use ofthe vision sensor infeedback control hcis been ofincreasing

interest. Work has been done by applications in autonomous driving, manipulation, mobile

robot navigation and surveillance. However, theoretical aspects of the problem have not

received much attention. The problem of estimation of necessary quantities from the vi

sion measurements has been considered separately from the design ofthe control strategies.

Instead ofaddressing the estimation and control problems separately, we attempt to charac

terize the types ofcontrol tasks which can be achieved using purely the quantities directly

measurable in the image, bypassing the estimation phase. We consider a navigation task

of a nonholonomic ground mobile base cast as a problem of tracking zm arbitrarily shaped

continuous ground curve. The control problem is formulated as one ofcontrolling the shape

of the curve in the image plane. We study the controllability of the system characterizing
the dynamics of the image curve, and show that the shape of the image curve is controllable

only up to its linear curvature parameters. We present stabilizing control laws for tracking
piecewise analytic curves, and propose to track arbitrary curves by approximating them by

piecewise linearcurvaturecurves. Simulation results are given for thesecontrol schemes. The

observability of the curve dynamics by using direct measurements from vision sensors as the

outputs is studied and an Extended Kalman Filter is proposed to dynamically estimate the

image quantities needed for the feedback controls from the actual noisy images.
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1 Introduction

"Which world is true, the one you see or the one you think?"

Sensing of the environment and subsequent control are pertinent components of a successful

navigation of zin autonomous mobile agent. In spite of the fact that there has been an

increcised interest in the use of visual servoing in the control loop, the sensing and control

problems have been often studied separately. The literature in computer vision has mainly

concentrated on the process of estimating the necessary information about the state of the

agent in the environment and the structure of the environment, e.g., [7] [9] [19] [22]. The

control issues are often not relevant or are addressed separately. On the other hand control

approaches typically assume the full specification of the environment and the task as well as

the availability of the state estimate of the agent.

The dynamic vision approach proposed by Dickmanns, Mysliwetz and Graefe [2] [3] [4]
makes the connection between the estimation and control tighter by setting up a dynamic

model of the evolution of the curvature of the road in a driving application. However the

curvature estimates are used only for estimation of the state of the vehicle with respect to

the road frame where the control objective is formulated. Control for steering along a curved
road directly using themeasurement ofthe projection ofthe road tangent and it's optical flow

has been previously considered by Raviv and Herman [16]. Stability and robustness issues

have not been addressed, and no statements have been made as to what extent these cues

are sufficient for general road scenarios. Avisual servoing framework proposed in [5] [17] by
Espiau etaladdresses thecontrol issues directly intheimage plane and outlines thedynamics
ofcertain simple geometric primitives. Further extensions ofthis approach for nonholonomic

mobile platforms has been made by Pissard-Gibollet and Rives [15]. Generalization of the
curve tracking and estimation problem outlined in Dickmanns for arbitrarily shaped curves

addressing both the estimation ofthe shape parameters as well as control has been explored
in [6] by Frezza and Picci. They used an approximation ofan arbitrary curve by a spline, and
proposed a scheme for recursive estimation ofshape parameters of the curve and designed
control laws for tracking the curve.



For a theoretical treatment of the problem, the understanding of the dynamics of the

image ofan arbitrary ground curve is crucial. In a computer vision seminar given at Berkeley

in October 1996, Dr. Stefano Soatto [20] formulated the problem of tracking as that of

controlling shape of the ground curvein the imageplane. In spite of the fact that the system

characterizing the image curve seems to be infinite-dimensional, we show that for linear

curvature curves the system is of finite dimension. Since the control problem is formulated

as one of controlling the image curve dynamics, we prove that the controllabilty distribution

has dimension 3 and show that the system characterizing the image curve dynamics is fully

controllable only up to the linear curvature term regardless of the kinematics of the mobile

robot base.

The controllability results indicate that the parameters characterizing the images of linear

curvature curves (to be defined in Section 2.2.3) can be controlled using the driving and

steering inputs. We show that the dynamics of the images of linear curvature curves can be

transformed to a canonical chained-form, which already has existing point-to-point steering

control scheme in Murray and Sastry [13] [14].

We formulate the task of tracking ground curves as a problem of controlling the image

curves in the image plane. We design stabilizing feedback control laws for tracking any

piecewise analytic curves (for general treatments of stabilizing trajectory tracking control

of nonlinear systems, one could refer to, e.g., [8] [23]). We also propose to approximate

general curves by piecewise linear curvature curves. We present how to compute the image

parameters for such approximating virtual curves so as to obtain the appropriate controls to

track them. Simulation results are given for these control schemes.

We also study the observability of the curve dynamics from the direct measurements of

the vision sensors. Based on the sensor models, an extended Kalmau filter is proposed to

dynamically estimate on-line the image quantities needed for the feedback control from the

actual noisy images. We thus obtain a complete closed-loop vision-guided navigation system

for non-holonomic systems.



Report Outline

Section 2 derives the dynamics of image curves, i.e, how the shape of the image of a

ground curve evolves in the imageplane. Section 3 studies controllability issues for the dy

namic systems obtained in Section 2. Section 4 shows how to formulate specific control tasks

for the mobile robot in the image plane. Corresponding control designs and their simulation

results are also presented in the same section. Section 5 develops an extended Kalman filter

to estimate on-line the image quantities needed for the feedback control. Observability is

sues of the sensor models are also presented. Some simulations and animations are done for

the entire closed-loop vision-guided navigation system in Section 6. Section 7 concludes the

report with some discussions and directions of future work.



2 Curve Dynamics

"The introduction of numbers as coordinates...is an act of violence...^

— H. Weyl, Philosophy of Mathematics
and Natural Science, 1949

We derive equations of motion for the image curve under motions of a ground-based mobile

robot. We begin with a unicycle model for the mobile robot and consider the general cases

later.

2.1 Mobile Robot Kinematics

Consider the case where gjm(t) € 5j&(3) is a one parameter curve (parameterized by time)

representing a trajectory of a unicycle: more specifically, the rigid body motion of the mobile

frame Fm attached to the unicycle, relative to a fixed spatialframe Fj, as shown in the Figure

Xf

yf

Figure 1: Model of the unicycle mobile robot.

Let Pfm(t) G be the position vectorof the origin of frame Fm from the origin of frame

Ff. The homogeneous coordinates^ of a point q attached to the unicycle frame Fm in spatial

systematical introduction of using homogeneous coordinates to describe rigid body motion is given in

[13].



frame Fj are given by

^ r4\ — r4\ f4\ _ I Pjm(^) I . .9/(0 ~Qfmifyflmit} —I ^ 9m(0 (1)

where qj^qm € i?* are the homogeneous coordinates ofthe point q relative to frames Fj and

Fm respectively, and

^ cos^(0 0 sin^(0 ^
Rsm(t)=010 (2)

^ —sin^(0 0 cos^(0 ^

represents the rotation of the mobile frame Fm with respect to Fj and the rotation angle 9

is defined in the counter-clockwise sense about the t//-axis, as shown in Figure 1. For the

unicycle kenimatics, B(t) and pjm{i) satisfy:

PSm =

9 =

/ • >u sin y

0

ucos^

(Jj

(3)

where the steering input lj controls the angular velocity, 9\ the driving input v controls the

linear velocity along the direction of the wheel. From (1) (2) and (3), we thus have

^ —wsin^ 0 wcos^ usin^ ^

0 0 0 0

—a?cos 9 0 —tjjsin 9 v cos 9

0 0 0 0

^Rjm{i) Pjm(t) ^
9Sm —

0 0 y

We then express the velocity of the point q in the (instantaneous) mobile frame F„

-1
9m —Q/mQfmqm —

0 0 a; 0

0 0 0 0

—LJ 0 0 u

{ 0 0 0 0 y

9m.

(4)

(5)

Now, suppose a monocular camera mounted onthe mobile robot which isfacing downward

with a tilt angle <^ > 0 and the camera is elevated above the ground plane by distcince d, as



shown in Figure 2. The camera coordinateframe Fc chosen for the camera is such that the

2:-axis of Fc is the optical axis of the camera, the a;-axis of Fc and x^-axis of Fm coincide,

and the optical center of the camera coincides with the origins of both Fm and

ym

F,

/y

/Fc

Image Plane

z= 1

Figure 2: The side-view of the unicycle mobile robot with a camera facing downward with a

tilt angle 0 > 0.

Then, through the adjoint transformation which transforms the twists from the mobile

frame Fm to the camera frame Fc, the velocity ofa point q attached to the camera frame Fc

is given in the (instantaneous) camera frame by

9c — 9mc9jm9jm9mcQc —

R((, 0where Qmc = | ^ ^ | and G50(3) represents the rotation of the camera frame Fc
relative to the mobile frame Fm (by the tilt angle <!>).

Now extracting the individual coordinates of qc in the camera frame Fc and (6) can be

rewritten as

^ 0 wsin a; cos 0 ^

—LJ sin^0 0 u sin <l>

—u cos <j> 0

0 0

0 Vcos </>

0 0

9c (6)

/ ^ ^X 0 ^ ^ysm4>-\- zcos 0 ^
y

= sin<^ V + —X sin (j) U), (7)

\ ^J ^ cos (j> j ^ —X cos <l> y

^Without loss of generality, we assume the camera is in such a position that such a choice ofcoordinate
frame is possible.



For a unit focal length camera, the image plane is z = 1 in the camera coordinate frame,

as shown in Figure 2.

2.2 Image Curve Dynamics Analysis

In this section, we consider a planar curve F on the ground, and study how the shape of

the image of the curve T evolves under the motion of the mobile robot. For the rest of this

paper, we make the following assumptions:

Assumption 1 The ground curve F is analytic.

Assumption 1 means F can be locally expressed by its convergent Taylor series expansion.

Assumption 2 The ground curve F is such that it can be parameterized by y in the camera

coordinate frame Fc.

Assumption 2 guarantees that the task of tracking the curve F can be solved using a smooth

control law. For example, if the curve is orthogonal to the direction of the heading of the

mobile robot, such as the curve F2 shown in Figure 3, it can not be parameterized by y.

y

A 3.

F, /•
®Fc

Figure 3: An example showing that a ground curve F2 cannot be parameterized by t/, while

the curve Fi can be.

Obviously, in this case, if the mobile robot needs to track the curve F2, it hsis to make a

decision as to which direction to track the curve: turning right or turning left. This decision

cannot be made using smooth control laws.



2.2.1 Relations between Orthographic and Perspective Projections

According to Assumption 2, at any time the curve F can be expressed in the camera

coordinate frame as (7a:(2/,0)2/j7z(2/>0) '̂ Since F is a planar curve on the ground, 7^(1/, i)
is given by

d + t/ cos (j)
iz(y,t) =

sin<^ (8)

which is a function of only y. Thus only 7x(y,0 changes with time and determines the

dynamics of the ground curve. In order to determine the dynamics of the image curve we

consider both orthographic and perspective projection cases and show that under certain

conditions they are equivalent.

The orthographic projection image curve of F in the image plane z = 1 given by

(7x(p,i),g, 1)^ is denoted by F, as shown in Figure 4.

. y

Itari'(^)
/ Z

X

\
/ z=1

h7 Fc

Figure 4: The orthographic projection of a ground curve on the z = 1 plane. Here

and 6 =

F is not yet the real image curve which is usually meant by the perspective projection

image of the curve F on the image plane z = 1. The perspective projection image curve,

denoted by A, is given in the image plane coordinates by

Ytif — 2* — 'Yx(y.Osin.^

Y(y t) = JL =v"' / 7, (2+ycos^
(9)

Notice, in equation (9), that V(y,t) is a function ofonly y and the derivative of y(y,i)

8



with respect to y is

dY(y^i) rfsin<^
dy (</+ ycos<^)^ ^ ^

so long as <^ > 0 and y ^ —d/ cos<^. Using the inverse function theorem, locally, the image

curve A can be re-parameterized by Y when ^ 0. A can then be represented by

[^xiY^Vj^YY in the image plane coordinates, where the function \x{Y,t) can be directly
measured. However, since, as we will soon see, for the given ground curve F, it is easier to

get an explicit expression for the dynamics of its orthographic image F than the perspective

projection image A. Thus, it will be helpful to find out the relations between these two

image curves F and A, i.e. relations between the two functions 7^ and A;^.

First, let us simplify the notation. Define

s»+i — Qyi 2—0,1,2,...
^ d'\x(Y,t) • nio nn

Ct+l — Qyi 2—0,1,2 (11)

and

C = (Ci,C2,..MC.rei?'' C= C~ (12)

If 7x(y,0 analytic function ofy, 7x(2/, is completely determined by the vector f
evaluated at any y; similarly for Xx{Y,t). Thus, the relations between f and Aare given by
the relations between f and ^ for the case of analytic curves.

Lemma 1 (Equivalence of ^ Coordinates) Consider the orthographic projection im

age curve F = (7x(y,05 2/» I)^ perspective projection image curve A= (Ax(yii),
with f and f defined in (11) and (12). Assume that the tilt angle (f>> 0 and y ^ —dj cos (j>.
Then for any fixed y,

C = An{y)C Vn € AA (13)

where An(y) G is a n x n nonsingular lower triangular matrix.



Proof We prove this lemma by using mathematical induction. For n = 1, from (9),

= (i+ycos4>^^^ lemma is true for n = 1. Now suppose that the lemma is true for all
n < k, i.e.

C = An{y)C n = l,2,...,fc (14)

where all An(y) is a nonsingular lower triangulcir matrix. Clearly, in order to prove that for

n = A; + 1 the lemma is still true, it suffices to prove that ^k+i is a linear combination of

i-e.

k+l

C/fc+i = £ A(!/)&
»=1

(15)

and in order for y4fc+i(i/) to be nonsingular, /3k+i(y) needs to be non-zero. Differentiating

(14) with respect to y, we have

dY dy

gC* _ Ai(y) At{y) 9^'
QY - SYML^ dy'

dy dy ^

where the last entry of the column vector ^ is (k+i and

= (6? &? •••» (k+l )^.

dy

(16)

(17)

Therefore, according (16), Cfc+i is a linear combination of and, since Ak{y) is a fc x Ar

nonsingular lower triangular matrix, Ak(y)kk i=- 0,^ the coefficient ^+1(2/) = is non-
8y

zero. •

Example We calculate the matrix ^4(2/) G to be

C =

f sin <i)
d+y cos <t>

\

COS(t>
d

0

0

0

d+y cos <l>
d

0

0

0

0

<Psin^

q cos cos ^ (d-t-ycos^)^
d^ sin' 4> d® sin^ 6 /

(18)

Lemma 1 tells us that under certain conditions, the dyncimics of the system f for the

orthographic projection image curve and that of f for the perspective projection image

^Ak{y)kk is the {kyk) entry of the matrix i4fc(y).

10



curve are algebraically equivalent. We may obtain either one of them from the other, f

are quantities that we can directly measure from the perspective projection image A. Our

ultimate goal is to design feedback control laws exclusively using these image quantities.

However, as we will soon see, it is much easier to analyze the curve's dynamics in terms of f,

the quantities in the orthographic projection image. It also turns out to be easier to design

feedback control laws in terms of f. For these reasons, in the following sections, we choose

system f [i.e. the orthographic projection image) to study our problem and design control

laws since it simplifies the notation.

2.2.2 Dynamics of General Analytic Curves

While the mobile robot moves, a point attached to the spatialframe F/ moves in the opposite

direction relative to the camera frame Fq. Thus, from (7), for points on the ground curve

r = (lx{y,t),y,lz(y)Y, we have

ix{y,t) =-{ys\n(l>-\-cos(j>)u). (19)

Also, by chain rule

Uy,t) = ^ +
= ^ +^(-(usin(;6-7xa;sin<^)). (20)

The shape of the orthographic projection image f = (7x(j/,^),2/, 1)^ then evolves in the
image plane 2 = 1 according to the following Riccati-type partial differential equation ^

^Ix / . d^x— = -(ysin0 + 7iCos<^)a;+ — (i;sin<^- 7a,a;sin<^). (21)

Using the notation f from (11) and the expression (8) for 7^, thispartial differential equation

can be transformed to an infinite-dimensional dynamic system f through differentiating

"^This equation is called a Riccati-type PDE since it generalizes the classical well-known Riccati equation
for the motion ofa homogeneous straight line under rotation around the origin [6] [?].

11



equation (21) with respect to y repeatedly:

^ fif2 sin<^ + dcot -I-^ ^ f2sin<^
fif3sin<;6 + f|sin<^+;T^ & sin <f>

fa
= —

$1^4 sin <^ + 3^26 sin
w-l-

U sin

ii f,+isin<^

\ ^ / 1 • / I ^ /

(22)

where 5,(6) •••?ft) are appropriate functions (polynomials) of only fi,..., f,-.

In the general case, the system (22) is an infinite-dimensional system .

2.2.3 Dynamics of Linear Curvature Curves

In this section, we look at a special case: the ground planar curve F is a linear curvature

curve (defined below). Its image dynamics f can then be reduced to a three-dimensional

system, which turns out to be controllable (as will soon be shown in the following sections).

Definition 1 We say that a planar curve has linear curvature if the derivative of its

curvature k{s) with respect to its arc-length parameter s is a non-zero constant, i.e. k'{s) =

c ^ 0. Ifk'{s) = 0, the curve is a constant curvature curve.

Note that, according to this definition, both straight lines and circles are constant cur

vature curves, but not linear curvature curves. Constant curvature curves can be regarded

as degenerate cases of linear curvature curves. For linear curvature curves, we have

Lemma 2 For a ground curve F of linear curvature, i.e. k'(s) = c ^ 0, for any i > 4, f,-

can be expressed as a function of only ^1,^2, and (3.

Proof Consider the ground curve F = (7®(2/,f),J/,7z(2/,f))^ where yziyit) is given in (8).

For the arc-length parameter s and the curvature k, the following relationships hold

Ay) = (23)

12



Ky) =
"Wlir'(y) X r"(y)||:

s'(yf +itr)
where a is defined as a = y/l + cot^ <j> = (sin<^)~^ Thus the derivative of the curvature k
with respect to the arc-length parameter s is given by

Using the definition of f,, from (25) ^4 can be expressed by

c _ + ^2)^/Q + 3^2^3
a2 + f 2

(24)

= c. (25)

(26)

Therefore, ^4 is a function of only {1,^2, and fa. According to the definition of f,-, it follows

that, for all i > 4, f, are functions of only fi, f25and fa as well. •

Using Lemma 2, for a ground linear curvaturecurve P, the dynamics of its orthographic

projection image P, i.e. system (22) for f, can then be simplified to be the following three-

dimensional system f®:

/

6 = —

\

f2f1sin 0 -f- d cot <t> -1-

fafi sin<?!>-l-f|sin<?5>-f ^

\ ^f2 sin <t>
LJ -f f3 sin (l>

/ ^ Usin<l> j

(27)

where f4 is given by (26).

Combining Lemma 1 and Lemma 2, we have the following remark

Remark 1 For a ground curve of linear curvature, the dynamics of f for the perspective

projection image of the curve are completely determined by three independent states fi,f2,f3,

or equivalently, for i > 4, Q is a function of only (1,(2, and fa- The two systems =

(Ci?C25C3)^ and f^ = (fi,f2,f3)^ are equivalent and related by equation (18). This implies,
for instance, that these two systems have the same controllability.

Comments In the case that P is a constant curvature curve, i.e. A;'(s) = 0, one can show

that fa is actually a function of only fi,f2, so for all fi,2 > 3 are functions of only fi,f2.

There are then only two independent states fi,f2 for the dynamics of system f.

13



Linear curvature is an intrinsic property (which is preserved under Euclidean motions

i.e. 5E(2)) of planar curves. Thus, the expression (26) always holds under robot's planar

motions. However, some other seemingly natural and simple assumptions that people are

prone to take for the ground curve (so as to simplify the problem) might fail to be preserved

under the robot's motions. Forexample, if, in order to simplify (22), one assumes f,- = 0 for

i > 4, i.e. 7x(t/,<) is of the form

ix(y, t) =6(yo,0+6(2/0, t)[y - yo) +^6(yo, t)(y - yof (28)
This property is not preserved under rotations. More generally, it is actually not an in

trinsic property for a planar curve that its Taylor series expansion has a finite number of

terms. Therefore, one cannot simplify system (22) to a finite-dimensional system by assum

ing that the curve's Taylor series expansion is finite (which might be the case only at special

positions).®

^Essentially, it only "simplifies" the initial conditions ofthe system (22), not the system dimensions.

14



3 Controllability Issues

"The paradox is now fully established that the utmost abstractions are
the true weapons with which to control our thought of concrete fact"

— A. N. Whitehead, Science and
the Modem World, 1925

We are interested in being able to control the shape of the image curves. From the above

discussions, this problem is equivalent to the problem of controlling system f (22) in the

unicycle case. For linear curvature curves, the infinite-dimensional system f is reduced

to the three-dimensional system (27). In this section, we look at controllability of such

systems. If the systems characterizing the curve F are controllable, we essentially means that

given our control inputs we can steer the mobile base in order to achieve desired position

and shape of the curve in the image plane. Controllability of system (27) is directly checked

in Section 3.1; controllability of system (22) is obtained through studying the controllability

for arbitrary ground-based mobile robots in Section 3.2.

Note that f and f are still functions of y (or V). They need to be evaluated at a fixed

y (or Y). Since the ground curve F is analytic, it does not matter at which specific y to

evaluate them (as long as the relation between f and ( are well-defined according to Lemma

1).® However, evaluating f or f at some special y might simplify the formulation of some

control tasks.

For example, suppose a mobile robot is to track the given ground curve F. According

to Figure 5, let A' be the orthographic projection image of the point A where the wheel

of the mobile robot touches the ground. Obviously, the coordinates of A' are given by

(0, —dcos <^, 1)^. When the mobile robot is perfectly tracking the given curve F, i.e. the

wheel keeps touching the curve, the orthographic projection image f = (7ar(j/,0»2/51)^ of
the curve F should satisfy

7®(2/» Oly=~<'cos^ = 0. (29)

Furthermore, the tangent to the curve F at t/ = —d cos (j) should be in the same direction of

®For analytic curves, there is a one-to-one correspondence between the two sets of coefficients of the

Taylor series expanded at two different points.
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Image Plane
Zin / z = 1

Figure 5: The orthographic projection image of the point A where the wheel touches the

ground.

the mobile robot. This requires

dy y——dcos4> —0* (30)

Thus, if f is evaluated at j/ = —dcos<^, the task of tracking T becomes a control problem of

steeringboth and ^2 to 0 for the system (22). For these reasons, from now on, we always

evaluate f (or () at y = —dcos4> unless explicitly stated.

3.1 Controllability in the Linear Curvature Curve Case

If the given ground curve F is a linear curvature curve, the dynamics of its image is given

by (27).

Theorem 1 Consider the system (27)

^ - fi(^ + f2V

where the vectorfields (/i,/?) are

fif2sin<;6 + dcot</>+ ^

sin^/i = -

sin^

fif3sin(^ + f|sin(^+

\ ^f2 sin <l> ^
/z = & sin <l>

/ ^ f4sin<^ j

(31)

(32)

and ^4 = ^ y ~ then the distribution Ac spanned by

the Lie algebra jC(/i,/2) generated by (/i,/?) is of rank 3 when c^O, and is of rank 2 when

c = 0.
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Proof Directly calculate the Lie bracket [/i,/2]

[/i,/2] = {-l,0,0f. (33)

The determinant of matrix (/i,/2, [/i,/2]) is

det(fuf2, [/i, /2]) = -c{a' + (34)

Therefore, the distribution spanned by £(/i,/2) is of rank 3 if c 0, and of rank 2 if

c = 0. •

Comments Since Ac is of full rank at all points, it is involutive as a distribution. Chow's

Theorem [13] states that the reachable space of system (27) for is of 3 dimensions when

c 7^ 0, and 2 when c = 0. This makes sense since, when c = 0, i.e. the case of constant

curvature curves, there are only two independent parameters, and ^2? needed to describe

the image curves, the reachable space of such system has to be of at most 2 dimensions.

In the next section, we study the general case and show that, for an arbitrary analytic

ground curve under the motion of an arbitrary mohWe robot, the dimension of the reachable

space of the system f (and f) is at most 3. This highlights the importance of Theorem

1 from two aspects: the controllability is at most 3 for controlling the shape of the image

of an arbitrary curve, which means linear curvature curves already capture all the features

(?i) ^2? fs)^ that may betotally controlled; on theother hand, any other nonholonomic mobile
robot cannot do essentially "better" in controlling the shape of the image curve than the

unicycle.

3.2 General Case

In this section, we study how the image of an arbitrary (analytic) ground curve changes

under the motion of an arbitrary ground-bcised mobile robot. Since the dynamics of the

mobile robot are now assumed to be general, one can no longer get an explicit expression of

the dynamics of the system f as we did in the unicycle case. However, the set of all possible

motions of any ground-based mobile robot, regardless of the dynamics, turns out to be in a

same space: i.e. the group of planar rigid body motions SE(2). Denote this group by G-
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There exists an explicit representation for Q in the camera coordinate frame Fc. Choose

n = (0, cos 0, —sin <j>Y^ which, in thecamera coordinate frame Fc, isanorthogonormal vector

to the ground, and choose vectors ei,e2 such that (n, ei, 62) forms an orthonormal basis for

the camera coordinate frame. Thus, in the camera coordinate frame, the matrix M which

describes the rotation of the mobile robot about the ym-Bxis is given by

M = (n, 61,62)

1 0 0

0 cos 6 — sin 9

0 sin 9 cos 9

\ / r \
n

T

/ \^2 J

(35)

where 9 is the rotation angle. Each motion g (including rotation 2ind translation) then

can be represented by three parameters (^,ai,a2) as the following transformation

f " \
X

y
A

\ ^ }

= go y

\ ^ /

= M

( \
X

y

\^ /

-f- ai6i + CX2^2' (36)

Consider a planar analytic curve T = (7x(2/)7 J/,7«(y))^ in the camera coordinate frame

Fc where "fxiy) is expressed by Taylor series expansion at t/ = —dcos<l> as:

/ \ ^ ^i(-dcos<j>) . 1
i':iy) = J2—n—TTr~(y + <'cosi^)'

(i-l)!

Then after motion g, according to equation (36), the new parameterization 7x» ^ of the curve

can be written as

7i = hi{y,9,ai,Qi)

y = h2(y,6,ai,a2)

(37)

(38)

(39)

for some smooth real functions hi and ^2 which satisfy hi{y^ 0,0,0) = 7a:(y) and ^2(3/, 0,0,0)

= y. By Assumption 2, h2(y,9,ai,a2) is invertible as a function of y. Thus,

% = hi(h2^{y,e,ai,a2),9,ai,Q2)

= h{y,6,ai,Q2)

(40)

(41)

for some smooth real function h which satisfies h(i/, 0,0,0) = 73.. Now we can expand % at

y = —dcos<j) the same as (37) and get

* /"X ^^^5*^)/-^ , j jlM-1
My) = z^—n—+ ^cos<^)* V

«=i
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Clearly, each coefficient <icos0) is a function of (^,01,02). Therefore ^ may be param

eterized by ai, cind ©2 and the reachable space (or the configuration space) of f is of at
most three-dimensional. We have proved the following theorem:

Theorem 2 Consider an arbitrary ground-based mobile robot and an arbitrary ground an

alytic curve r = (lx(y)',y-,lz(y)V 7^ given by (8). f is defined as the vector of the

coefficients of the Taylor series of^x(y) expanded at y = —dcos0/ Then (i) the (locally)
reachable space off under the motion of the mobile robot has at most 3 dimensions; (ii) if
under the motion of the mobile robot, f (and C^) is also a dynamic system, the rank of the

distribution spanned by the Lie algebra generated by the vector fields associated to such a

system is at most 3.

Combining this theorem with the previous results about the unicycle and the linear

curvature curves, we have the following corollaries:

Corollary 1 Consider a linear curvature curve (i.e. k'(s) = c ^ 0) and an arbitrary max

imally nonholonomic ground-based mobile robot, the reachable space of (and under

the motion of the robot is (locally) ofdimension 3. Furthermore, if under the motion of this

mobile robot, (and C,^) is itself a dynamic system, then the rank ofthe distribution spanned
by the Lie algebra generated by the vector fields associated to such a system is exactly 3.

This corollary is true because, for a special nonholonomic mobile robot: the unicycle,

according to Theorem 1, the local reachable space has exactly 3 dimensions in the case of

linear curvature curves. For two maximally nonholonomic ground-based mobile robots, their

motion spaces are the same as SE{2). Thus they have the same ability in controlling the

shape of the image curve.

In the case of the unicycle, as already derived in section 2.2.2, f is a dynamic system

given by (22), therefore

'̂ This definition of ^ turns out to be exactly the same as we defined in (11) and (12).
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Corollary 2 The rank of the distribution spanned by the Lie algebra generated by the vector

fields associated to the system (22) is at most 3. And in the case of linear curvature curves,

the rank is exactly 3 (as previously declared in Theorem 1).

Comments In the case of constant curvature curves, there are only two independent

parameters and ^2 needed to decide the image curve. Obviously, all the above corollaries

still hold by changing 3 to 2.
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4 Control Design in the Image Plane

"It is with logic that one proves,
it is with intuition that one invents."

— Henri Poincare

In this section, we study the design of control laws bcised on controlling the shape of the

image curve in the image plane so as to facilitate successful navigation of the ground-based

mobile robot.

4.1 Controlling the Shape of Image Curves

According to thecontrollability results presented in theprevious section, one can only control
up to three parameters (65656)^ of the image of a given ground curve. This means the

shape of the image curve can only be controlled up to the linear curvature features of the

given curve. In this section, we study how to obtain control laws so as to arbitrarily control

the image of a linear curvature curve, as well as propose how to control the image of an
general curve.

For a unicycle mobile robot, thedynamics ofthe image ofa linear curvature ground curve
is given by system (27). According to Theorem 1, this two-input three-dimensional system is
controllable (i.e. has one degree of nonholonomy) for c ^ 0. Thus, using the algorithm given
in Murray and Sastry [13] [14], system (27) can be transformed to the canonical chained-form.

The resulting change of coordinates is

xi = 6

= -c(a5+|5)3
X3 = (fi - c(o°+(|)2) (43)
- =
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where a = (sin0) Then, the transformed system has the chained-form:

Xi = Ui

X2 = U2 (44)

is = X2U1

For the chained-form system (44), using piecewise smooth sinusoidal inputs [14], one can

arbitrarily steer the system from one point to another in Therefore, one can arbitrarily

control the shape of the image of a linear curvature curve.

As for controlling the image of an arbitrarily given ground (analytic) curve, the best we

can do is to approximate this curve locally by a linear curvature curve (if k"(s) « 0) and

then, the controls for controlling the image of this approximating linear curvature curve can

approximately control the image of the original curve freely up to its first three parameters

(6»?25 6)^ in a local range.

Note that when c = 0, i.e. the curve is of constant curvature, the above transformation

is not well-defined. This is because the system f now only has two independent states and

^2- It is much easier to steer such a two-input two-state system than the above chained-form

system.

Remark 2 Using Lemma 1, the dynamic system f^ of the perspective projection image of a

linear curvature curve can be also transformed to the chained-form.

4.2 Tracking Ground Curves

4.2.1 Tracking Analytic Curves

In this section, we formulate the problem of mobile robot tracking a ground curve as a

problem of controlling the shape of its image with the dynamics described by (22). We

design a state feedback control law for this system such that the mobile robot (unicycle)

asymptotically tracks the given curve.
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First, let us study the necessary and sufficient conditions for perfect tracking ofa given

curve. As already explained in the beginning ofSection 3, when the mobile robot isperfectly

tracking the given curve

^1 — ^x{,y^i^\y=—dcos4> ~ ®

6 = B 0. (46)

From (27) when fi = ^2 = 0, we have

6 = —f3vsin<^ + a;/sin<^ = 0. (47)

This gives the perfect tracking angular velocity

w= fa sin^ (jyv. (48)

It is already known that system (22) is a nonholonomic system. According to Brockett

[1], there do not exist smooth state feedback control laws which asymptotically stabilize a

point of a nonholonomic system. In the following theorem, we givea piecewise smooth state

feedback control law which stabilizes the system f around the subset {f G : fi = {2 = 0},

i.e. the mobile asymptotically tracks the given curve, and as we will soon see, under certciin

conditions, this control law may become a smooth one.

Theorem 3 (Tracking Control Laws) Consider closing the loop of system f (22) with

control (w,u) given by

a; = fasin^ <^uo + sin^ <^fiUo +

u = uo + sin^ <;6fi(fi + f3)vo - Ky(2sign(^i + fa) (49)

where ATu,, Ky are strictly positive constants. The closed-loop system asymptotically converges

to the subset

{f 6 ir : fi = f2 = 0} (50)

for initial conditions with fi and ^2 o,Te small enough. Once on the subset, the mobile robot

has the given linear velocity vq and the perfect tracking angular velocity wq = fasin^<^uo-
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Proof Consider the "partial" Lyapunov function V = d-ff- Through direct calculation,

we get

V = — K^/sin(^(2 ~ A^u/sin</>f2

- sin 4> [(iifu/fi +6 sin^ <^vo) +Kysign(^i +&)] (fi +&)• (51)

There exists c > 0 such that, when |{i| < c and 1^21 < c,

\KM + 6 sin^ <^uo)| < Ky. (52)

Thus, in the set We = {f € R°° : + fl <

V < —A'u,/ sin < 0. (53)

For any initial value in We, V(t) is a non-increasing function and is bounded from below,

therefore it has a limit as / —> oo. Let

= (54)

We claim that cq has to be zero. We prove this by contradiction. Suppose that cq > 0 for a

trajectory f(/) starting from some initial value f(0) in We. Let

+ = (55)

Consider the projection tt from R°° to R^:

T : e -> (56)

Then 7r(f(i)) is bounded and has a non-empty limit set L in ftco- Thus, n~^{L) is the largest

set to which the trajectory ^(t) must converge in We. From the inequality (53), for any

(fi»6)^ in L, we have {2 = 0. Thus, in 7r~^(I), {2 = 0 so that ^2 = 0. For the closed-loop
system, when ^2 = 0, we have ^2 = —sin<^fiUo- This implies that = 0 for f € 7r~^(L).

This is a contradiction to relationship > 0 f G7r"^(L) since L C 0^^. •

Comments Although Theorem 3 only guarantees local stability of the control law (49),

combining it with the results obtained in Section 4.1, we can track a given linear curvature

curve from an arbitrary initial position by a two-step control scheme: first, using sinusoidal
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inputs, steer the system to a position with fi,f2 close to zero; then, switch to the tracking

control law (49). In fact, it can be shown by simulation that, with appropriately choosing
Ky and A'̂ ,, the tracking control law (49) itselfhas a very large stable region. Thus, in most

Ccises, the first step is not quite necessary.

4.2.2 Tracking C^-Smooth Piecewise Analytic Curves

Although Theorem 3only concerns about analytic (C^) curves, it actually can begeneralized

to -smooth piecewise analytic curves^.

Corollary 3 Consider an arbitrary -smooth piecewise analytic (ground) curve. If the
maximum curvature |A;|r„ax exists for the whole curve, then, when > 0 and Ky > 0 the

feedback control law given by (49) guarantees that the mobile robot locally asymptotically
tracks the given curve.

Proof Consider the same Lyapunov function as the one chosen in Theorem 3. Then, V

is still given by (51). Since \k\max exists, from (24), Ifsl is bounded. Then, according to
(51), if A'u; > 0 and Ky > 0, there exist e > 0, which is independent of fa, such that when

y < -K^/sm <i>^l < 0. (57)

The rest of the proof follows that of Theorem 3. •

Comments It is very important to note that, in the proof of the Theorem 3, the choice

of c is independent of fa. For a C^-smooth piecewise analytic curve, fi and f2 are always

continuous. Only fa may not change continuously. But the proof shows that the V does

not depend on fa when fi and fa are small enough. Therefore the (C^-smooth) switching
between different analytic pieces ofthe curve does not affect the convergence ofthe system.
In the Corollary 3, since fa is bounded, Ky can then be set to 0 and the inequality (53) for
V still holds locally. In the case of Ky = 0, the control (49) becomes a smooth one.

®"C^-smooth'' means that the tangent vector along the whole curve iscontinuous.

25



Remark 3 Using Lemma 1, the control (49) can be converted to a stabilizing tracking control

lawfor ^ of the perspective projection image.

4.2.3 Tracking Arbitrary Curves

Corollary 3 suggests that, for tracking an arbitrary continuous (C^-smooth) ground curve

(not necessarily analytic), one may approximate it by a C^-smooth piecewise analytic curve,

a virtual curve^ and then track this approximating virtual curve by using the control law

(49). However, since the virtual curve cannot be "seen" in the image, how could oneget the

estimates of f for the "image" of the virtual curve so as to get the feedback controls v and

w subsequently? It turns out that, the virtual f is exactly the solution of the differential

equation of the closed-loop system (22) with v and w given by (49). The initial conditions

for solving such differential equation can be obtained from when designing the virtual curve.

Now, the control becomes an open-loop scheme, and in order to track this virtual curve,

one hcis to solve the differential equation (22) (with v and lj given by (49)) in advance and

then get the desired controls v and w. It is computationally expensive to approximate a

given curve by an arbitrary analytic curve in which case, principally, we have to solve the

infinite-dimensional differential equation (22).

However, as argued in Section 2.2.2, a special classof analytic curves, the linear curvature

curves, can reduce the infinite-dimensional system (22) to a three-dimensional system (27),

and the three states of the system (27) alsohavecaptured all the controllablefeatures of the

system f, according to Theorem 2. Therefore, it is much more computationally economical

to approximate the given curve by a C^-smooth piecewise linear curvature curve and, then,

solve the three-dimensional differential equation (27) to get the appropriate controls v and

u.

Few applications do require tracking of arbitrary (analytic) curves. The target curves

usucdly can be modeled as piecewise linear curvature curves. For instance, in the case of

vehicle control, in the United States, most highways axe designed to be of piecewise constant

curvature, and in Europe, of piecewise linear curvature. Therefore, piecewiselinear curvature
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curves are simple cis well as good models for most tracking tasks.

Comments Strictly speaking, when approximating a given curve by a piecewise polyno
mial curve, for example by using splines [6], inorder to get the estimate of^ for the evolution

oftheapproximating virtual curve, one has tosolve theinfinite-dimensional differential equa
tion (22). What the "polynomial" property really simplifies is just the initial conditions of

the differential equation but not the dimension ofthe problem, as already argued in Section

2.2.3.

Example (Mobile Robot Tracking Corridors) For illustration, let us consider a sim

ple example: the mobile robot is supposed to track a piecewise linear curve consisting of

intersection of li and I2 (as a reasonable model for corridors inside a building), as shown in

Figure 6. A natural and simple way to smoothly connect them together is to use a piece of

arc AB which is tangential to both of the straight lines (at points A and B respectively).

From point A, the mobile robot switches to track the virtual curve, arc AB until it smoothly

steers into the next piece, i.e. the line I2. The f^(<) for tracking this virtual arc AB is then

given by the solution of the closed-loop system of (27) with c = A;'(s) = 0 and the initial

conditions at point A: f^(0) = (0,0, —a^/r)^.

Xm

Figure 6: Using arcs to connect curves which are piecewise straight lines.

Since the approximating virtual curve is to be as close to the original curve as possible,

the radius r of the arc AB should be as small as possible. But, in real applications, the

radius r is limited by the maximal curvature that the mobile robot can track (r = 1/|A:|).
Thus, one needs to consider this extra constraint when designing the virtual curves. The

following result tells us a way to decide the maximal curvature |/:|ma® that the mobile robot
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can track:

Pact 1 Consider the unicycle mobile robot. If its linear velocity v and angular velocity u)

satisfy |u| > ci and < c^, then the maximal curvature that it can track is

\k\<^Qf-l. (58)

Consider now that the image curve obtained is not even continuous, i.e. the robot "sees"

several chunksof the image of the real curve that it is supposed to track. Basically, there are

two different approaches that one might take in order to track such a curve: first, one may

use some estimation schemes and based on the estimated features of the real curve to apply

the feedback control law (as studied by Frezza and Picci [6]); second, one may just smoothly

connect these chunks of the image curve by straight lines, arcs or linear curvature curves

and then apply the virtual tracking scheme cis given in the above to track the approximating

virtual curves.

4.3 Simulation Results of Tracking Ground Curves

In this section, we show simulation results of the mobile robot tracking some specific ground

curves with using the control schemes designed in previous sections. We assume that all the

image features f are already available. In next section, we discuss how to actually estimate

f from the real (probably noisy) images. For all the following simulations, we choose the

camera tilt angle </> = 7r/3, and the control parameters = l^Ky = 0.5, and uo = 1. The

reference coordinate frame Ff is chosen such that the initial position of the mobile robot is

zjQ = 0,x/o = 0 and = 0.

4.4 Tracking a Circle

A circle is a constant curvature curve, i.e. c = k'(s) = 0. For the simulation results shown

in Figure 7, the initial position of the nominal circle given in the image plane is ^lo = 1,

f20 = 1) and fso = 1.
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Figure 7: Simulation results for tracking a circle. Subplot 1: the trajectory of the mobile

robot in the reference coordinate frame; subplot 2: the image curve parameters fi and ^25

subplot 3 and 4: the control inputs v and w.

4.5 Tracking a Linear Curvature Curve

For the simulation results given in Figure 8, the nominal trajectory is chosen to be a linear

curvature curve with the constant curvature varying rate c = k'{s) = —0.05. Its initial

position given in the image plane is fio = 0.1, f20 = 0.1, and fao = 2.

4.6 Tracking Piecewise Straight-Line Curves

Consider now the example discussed in Section 4.2.3: the mobile robot is to track a piecewise

linear curve consisting of intersection of /i and I2 as shown in the Figure 9. We compare the

simulation results of two schemes: 1. Using only the feedback tracking control law; 2. Using

a pre-designed approximating virtual curve (an arc in this case) around the "broken" point.

From Figure 9, it is obvious that, by using the pre-designed virtual curve, the over-shoot can

be avoided. But the computation is more intensive: one needs to design the virtual curve

and calculate the desired control inputs for tracking it.
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Figure 8: Simulation results for tracking a linear curvature curve (c = fc'(s) = —0.05).
Subplot 1: the trajectory of the mobile robot in the reference coordinate frame; subplot 2:

the image curve parameters and ^2] subplot 3 and 4: the control inputs v and w.

Feedback coi^ only

racking by a virtual airc

Figure 9: Comparison between two schemes for tracking a piecewise straight-line curve: 1.

Using only the feedback tracking control law; 2. Using a pre-designed approximating virtual

curve (an arc in this case) around the "broken" point.
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5 Observability Issues and Estimation of Image Quan

tities

"Upon the exactness with which we pursue phenomenon into the infinitely
small, does our knowledge of their causal connections essentially depend."

— G. R. B. Riemann, On the Hypotheses Which Lie
at the Foundations of Geometry, 1854

As we have discussed in Section 2.2.1, f are features of the orthographic projection image
fof the ground curve F, and are not yet the real image (which, by convention, means the
perspective projection image A) quantities (. However, f and Care algebraically related by

Lemma 1. In principle, one can obtain ^ from the directly-measurable

In order to apply the tracking control law (49), one need to know the values offi, ^2, and

fs, i.e. CiiC2 and (3. Suppose, at each instant t, the camera provides N measurements of

the image curve A:

{(Ax(>i,0,>A)} k = l,...,N (59)

where {Vi, >2, •••, Yn} are fixed distances from the origin. If the distances between Yk are
small enough, one can estimate the values of Ci(^)i C2(F)b), and C3(^a) simply by:

6(^) = '̂ .Y(V)k,<)
CjW = k = l,...,JV-2. (60)
Un) =

However, in practice, the measurements {(Ajf (1^,^),!^)} are noisy and the estimates

(60) for become very inaccurate, especially for the higher order terms C2 and ^3. It is
thus appealing to estimate or by only using the measurements {(A;f (>ib,<),y^)} but
not their differences.
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5.1 Sensor Models and Observability Issues

5.1.1 General Analytic Curves

The curve dynamics are already given by (22). Ifwe only use themeasurement (i = Xx{Y,t)

as the output of the vision sensor, then we have the following sensor model:

^ fif2sin«^ +dcot<^+^ ^ ^2 sin (j> ^
6 fif3sin<;6 + $|sin(;6+ fa sin

&
— —

^1^4 sin <;6 + 3^26 sin 0
w +

(4 sin <!>

ii fifi+i sin<?^ + p,(fi,...,f,) sin0

\ : I ^ / I ^ /
M?) = Ci = 34^6

where h(^) is the measurable output.

(61)

Theorem 4 (Observability of the Camera System) Consider the system given by (61).
Let

fi = -

^ fif2sin<^ +dcot0+^ ^ ^2 sin ^
(1(3 s\n <!>-{• & sin <!>

^1^4 sin </>+3^26 sin <?i>
/2 =

$4 sin

f.+i sin<^

\ •• / I ^ /

(62)

If (j) ^ 0, then the annihilator Q of the smallest codistrihution Q invariant under fi, /2 and

which contains dh(^) is empty.

Proof Through direct calculations, the k-th order Lie derivative ofthe covector field dh(^)

along the vector field /z is

L%dh(0 = A: = 0,1,2,...,oo.
a -r y cos <p
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Thus, ft contains all rff,-, i € N and therefore is an empty distribution. •

Comments According to the Theorem 1.9.8 in Isidori [10], Theorem 4 guarantees that
the system (61) is observable. Or, in other words, the (locally) maximal output zeroing

manifold ofthesystem (61) does not exist, according to the Proposition 10.16 in Sastry [18].
Since this system is observable, ideally, one then can estimate the f from the output h(f).
However, the observer construction may be difficult.

5.1.2 Linear Curvature Curves

The sensor model (61) is an infinite-dimensional system. In order to build an applicable esti

mator for (so as to apply the tracking control law (49)), one has to assume some regularity

on the given curve F so that the sensor model becomes a finite-dimensional system. In other

words, one has to approximate F by simpler curve models which have finite-dimensional

dynamics.

In Frezza and Picci [6], the models are chosen as third-order B-splines. However, as

we have pointed out in Section 2.2.3, the polynomial form is not an intrinsic property of

a curve and it cannot be preserved under the motion of the mobile robot. Furthermore,

simple curves like a circle cannot be expressed by third-order B-splines. We thus propose

to use (piecewise) linear curvature curves as the models. The reasons for this are obvious

from the discussions in previous sections: the dynamics of a linear curvature curve are a

three-dimensional system (27); such a system has verynice control properties; and piecewise

linear curvature curves are also natural models for highways in the case of using vision for

autonomous vehicle control. However, a most important reason for using linear curvature

curves is that, according to Theorem 3, oneactually only needs the estimation ofthree image

quantities, i.e. fi,f2 and ^3 to be able to tracking any analytic curve. All the "higher order

terms" f,- i> 4 are not necessary.

For a linear curvature curve, since we do not havea priori knowledge about the constant

curvature varying rate c = k'(s)^ we also need to estimate it. Let ?/ = c and we have the
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following sensor model for linear curvature curves:

'' f26sin(^ +dcot<^+;iJ^ ^ ^2 sin (j) ^

(jj +
fs sin <l>

is (4^1 sin<^+ 3f2&sin<^ ^4 sin <l>

\ VJ I 0 J K 0 /
hi.e,rii) = C. = 3&«i

where {4 = and h{^^,r)) is the measurable output.

Theorem 5 Consider the system (64)' Let

' f2fisin(^ +dcot^+5^ ' sin (j) ^

/i = -
^3^1 sin </> + sin </> +

h =
fa sin

f4Cisin(/> + 3f2f3sini^ ^4sin <j)

0 J K 0 >

V

(64)

(65)

If <f> ^ 0, then the smallest codistribution ft invariant under /i,/2 and which contains

dh(^^,r)) is of constant rank 4.

Proof Through direct calculations, we have

and

rk 11/^3 X sin^"^^*^
L%dh(e,v) = A: = 0,1,2

d 4-y cos

L/^dh(( ,7/) =3 _ (g^ + g2)^sin^</>drj.
d-\-y cos (f)

Thus, ft contains all dfi,df2,df3, and drj and it heis constant rank 4.

(66)

(67)

•

Therefore, the system (64) is observable according to the Theorem 1.9.8 in Isidori [10] or
the Proposition 10.16 in Sastry [18].

5.2 Estimation of Image Quantities by Extended Kalman Filter

The sensor model (64) is a nonlinear observable system. The extended Kalman filter (EKF)
is a widely used scheme to estimate the states of such systems. In the computer vision
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community, estimation schemes based on Kalman filter have been commonly used for dy

namical estimation of motion [19] [21] or road curvature [4] [3], etc. Here, we use the EKF

algorithm to estimate on-line the fi, ^2? ?3j and ff- Alternatives to the EKF, which are bcised
on nonlinear filtering, are quite complicated and are rarely used.

5.2.1 Multiple-Measurement Sensor Model

In order to make the EKF converge faster, we need to use more than one mecisurements (in

the sensor models (61) and (64)). From the N measurements

{(A;,(n,f),n)} = l,...,Ar

we have N outputs

hk(o = Ci(n) =
a-\-yk cos <p

where Yk and yu are related by (9) Yk =

A: = 1,...,A

(68)

(69)

For linear curvature curves, all ^i(yk) are functions of only and 77 since all the Taylor

series expansion coefficients f,-, i € Af are functions of only and rj according to Lemma 2.

Let

^liVk) are then given by fi(yt) = h{f,r),yk).

The sensor model (64) can be modified as

(y + dcos(i)Y

^6fisin<;^-hdcot<j{>-f-^ ^6 sin <!>
f36sin(?^ + f|sin0-}- ^

w +
fa sin <!>

is f4fi sin <l> + 3^26 sin <!> f4 sin <!>

VVJ 1 0 ) [ 0 )
hk{e,v) = W) = Ti^Ke,v,yk)

where ^4 = ^and hk are the measurable outputs.
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5.2.2 Noise Analysis

In order to track the variations in the rate of change of the curvature of a curve, we choose

»? = (72)

where /x,, is white noise of appropriate variance.®

The output measurements are inevitably noisy, and the actual ones are given by

sin<^
hk{e,v) = Ci(n) = [Mf k = i,...,N

d + Vk cos <j>

where fikk are appropriate noise models for the N outputs. Strictly speaking, /x/i^ are color

noise processes since image quantization errors^® are main sources for fihk which generically

produce color noises. The explicit forms for the output hk are given by the Taylor series

expansion (70). In real applications, one has to truncate it. This can be regarded as another

color noise source for the output noises However, in order to approximately estimate

the states and 77, we may simplify fihk by white noise processes and then can actually

build an EKF (Jazwinski [11], Mendel [12]) to get the estimates and t] for the states of

the nonlinear stochastic model:

^ f26sin<75» + dcot<7{>+ ^6 sin <j> ^ (q\

6
= —

66 sin<^ + f|sin<7!>H- ^
66 sin<?!> +366sin(7!>

w +
6 sin (j>

6 sin (j>
V +

0

0

V ^ ) 1 0 I [ 0 J

(73)

(74)

Mf.'?) = Ci{n) = i4^h(e,n,yk) +fik, k= i,...,N

where ^4 = ^ f^hk are white noises with appropriate variances.

5.2.3 The Extended Kalman Filter Algorithm

In order to have a clearer description of the EKF algorithm for system (74), we change the

notation:

371 — ^1) ^2 — 373 —^3, 374 —77 (75)

®One may also model 77 as a second order random walk.
^°Including the errors introduced by the image-processing algorithms used to process the original images.
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X

u

h

X4(a^ + x^Y/a + 3x23^3
+ X2

(xi,X2,iC3,a?4)^

(w, vf

(/ii,...,/ijvr

(M/»i 5••• •

Thus, system (74) can be rewritten as

X = {{x,u)Gflr,

z = h(x,u) + //h

where G = (0,0,0,1)^ and

f(x,u) =

^ —(x2Xisin<^ +dcot<^+X2sm<j>
-(x3Xisin<^ + x|sin<^+X3sin<^

—(X5X1 sin 0 +8x2X3sin </>) X5sin<^

\ 0 0

u.

(76)

(77)

(78)

(79)

(80)

(81)

(82)

Assume the noise variances = a and £'{//h/^h} = E. Let T —tk+i —tk be

the discretization time-step. The resulting EKF estimator equations are summarized in the

following:

System Linearization and Discretization:

and

8x{k -{-1)

Sz[k -I-1)

^k^l.k)

^(k -f 1,k)Sx(k) + ^(A: -f l,k)Su(k) firjdik)

Hji{k l)Sx{k + 1) + Hu(k 4- l)^u(A; -|-1)) -f ^h(A: -|-1)

•L ^{tk+i,T)CkdT «CkT +FkCk^

_ ^(x,u)
Fk = Ck =

^(x,u)

H^(k)

Qd

dx

5h(x,u)
ax

x=x(/;),u=u(A;)

Hu{k)
x=x{k),u=u{k)

E{fir,d{k)fi'̂ Ak)} « (tGG'T.
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dh(x, u)
du

X=x(A;),u=:u(fc)

x=x{k),n=u(k)

(83)

(84)

(85)

(86)

(87)

(88)

(89)



Extended Kalman Filter:

• Prediction Equations:

where

x(fc + l|/:) = x(/:|A;) + -f l,A:)u(A:); x(0|0) = Xo (90)

P(A; + 1|A:) = $(A: + l,A:)P(fc|A:)$'(A; + l,Ar) + (5d; P(0|0) = Po (91)

(92)H.(k+1) =
dx x=x(/;+l|fc),u=u(A;)

$(A: + 1,A;) = (93)

^(x,u)

— CkTFkCk— (94)

Fk =

Ck =

dx

df{x^u)
du

x=x(A;|A;),u=u(A;)

x=x(A;|/;),u=u(A;)

(95)

(96)

• Estimation Equations:

Sz(k-\-l) = z(A; + 1)- h(x(A;+l|A:),u(A; + 1)) (97)

x(A; + l|A:+l) = x(A: + 1|A:) + ir(A: + l)<Jz(A; + 1) (98)

P(A; + 1|A: + 1) = [/- A^(A; + l)Px(A: + 1)]P(A; + l|fc) (99)

• Gain:

A'(fc + 1) = P(A: + l|A:)P;(A: + l)[Px(A: + l)P(A: + l|A;)Pi(A: + l) + P]-^(100)

Comments The computation complexity of Kalman filter is O(n^) where n is the system

dimension [12]. Although, in some sense, both linear curvature curves and third-order B-

splines (Frezza and Picci [6]) are third-orderapproximations forgeneral curves, the dimension

of the Kalman filter for estimating the B-spline parameters is AT + 2 where N is the number

of mecisurements. However, the kalman filter we propose here is only 4-dimensional. Since

the number of measurements N is usually larger than 4, the scheme proposed above is less

computationally expensive.
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5.2.4 Simulation Results of the Extended Kalman Filter

For illustration, we here give some simulation results ofusing theEKF to estimate the image

quantities and r/ (i.e. the states of the system (74)). The Matlab source codeof the EKF

is given in Appendix A.

We first show by a simple example that the EKF converges. The curve is simply chosen

to be a constant curvature curve (a circle) i.e. c = k'(s) = 0. The initialvalues chosen for the

estimates are f^(0) = (0,0,0)^ and 77(0) = 0.1, and for the nominal states f®(0) = (0.1,1,1)^.
The number ofoutput measurements N is 5. The feedback tracking control laws (49) now

use the estimates for v and w. For clarity, we do not put the noises on. The EKF then

serves as a nonlinear observer. The simulation results are shown in Figure 10.

« 0.2

X 1

00.5L

5000
Time step = 0.001

5000
Time step ss0.001

10000

10000

i 0.5

—0.5

0.6

u

•B 0.4
0

1 0-2
o

^ na 0

-0.2

5000
Time step = 0.001

5000
Time step = 0.001

10000

10000

Figure 10: Thesimulation results ofusing the Extended Kalman Filter to estimate the image

quantities and r](= c = k'(s)) with the number of output meeisurements N = b: Solid

curves are for true states; dashed curves are for estimates.

These results show that the estimates and rj converge to the nominal values and
A A

7/(= c). and $2 converge especially quickly to and ^2 and their curves almost coincide.

The results also show that the mobile robot eventually tracks the circle byusing theestimates
A

^ for the tracking control laws (49) since both and ^2 eventually converge to zero.
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As mentioned in Section 5.2.1, more output mezisurements might make the kalman filter

converge faster. For comparison, we did the simulation for the case that there is only one

output measurement, i.e. N = 1 (and all the other simulation conditions are still the Scime).

The simulation results given in Figure 11 show that, compared to the simulation results for

the N = b case, the convergence speed of the EKF is much slower.
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Figure 11: The simulation results of using the Extended Kalman Filter to estimatethe image

quantities and rj(= c = k\s)) with the number of output meaisurements N = 1: Solid

curves are for true states; dashed curves are for estimates.
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6 Simulation and Animation of the Vision Guided Nav

igation System

"Who changed the world more, Disney or Einstein?"

In the previous sections, we have developed control and estimation schemes for mobilerobot

navigation (tracking given curves) by using vision sensors. The image parameters needed
for the tracking control schemes can be efficiently estimated from direct, probably noisy,
measurements on the images. With combining thecontrol and estimation schemes together,
we thusobtain a complete closed-loop vision-guided navigation system which can bedescribed

in the following Figure 12.

Ground Curve
Mobile Robot
with Camera

X= f (x ,v ,(0 )
r

V, CO

Tracking Control

V(5,,52.53)
f(5..C53) I

Image
X J

,,Ax(Yk.t)

Extended Kalman

Filter

Figure 12: The closed-loop vision-guided navigation system for a ground-based mobile robot.

In order to know how this system works in real applications, we simulate it by us-

Iftg synthetic images of the ground curve. A synthetic image of a ground curve F =

{lx{y-,i)',y',lz[y-,t))^ is to be a set of image points:

^= {(Ax (K-, <). Yif •• (Ax (K-, t), Yif = TO (7^(2/;, t), yi, 7,(y.., t)f,i = l,2,...,M} (101)

where n denotes the perspective projection map and the number of image points Mmaybe
different for different time t. The output measurements from this synthetic image I are taken
at N pre-fixed distances: Linear interpolation is used to obtain approximate
value of A^(yjt,f) if there is no point in I whose Y coordinate is V^.

Simulation results show that the control and the estimation schemes work well with each
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other in the closed-loop system. For illustration, Figure 13 gives out the simulation results

for the simple case when F is a circle.
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Figure 13: Simulation results for the closed-loop vision-guided navigation systemfor the case

when the ground curve is a circle: In subplot 7, the solid curve is the actual mobile robot

trajectory (in the spaceframe F/) and the dashed one is the nominal circle; subplot 8 is the

image of the circle viewed from the camera (at the last simulation step).

We can also make animations out of these synthetic images and simulation data. It is

helpful for people to see how the entire closed-loop system works through different animated

views. Figure 14 shows a synthetic image of a circular road viewed from the camera, which

is from a single frame in the animation movie.

^^The Matlab code for generating this synthetic imageis from Dr. Jana Kosecka.
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pitch = 18, height = 2m , a = 1000, b = 0, r = 1000
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Figure 14: A synthetic image of a piece of circular road viewed from the camera.
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7 Discussion and Future Work

"/ will think about this tomorrow... After all, tomorrow is another day."

— Scarlett O'Hara, Gone with the Wind

In order to use the vision sensors inside the control servo loop, one first need to study the

dynamics of the image. The dynamics of certain simple geometric primitives, like points,

planes and circles, have been studied as well as exploited by people, Espiau [5] Pissard-

Gibollet and Rives [15] et al. In this paper, we show that, for ground-based mobile robot, it

is possible to study the dynamics of the image of a more general class of objects: analytic

curves. Basedon the understandingofimagecurvedynamics, we design controllaws for tasks

like controlling the shape of a image curve or tracking a given curve. Our study indicates

that the shape ofthe image curve is controllable only up to its linear curvature terms (in the

2-dimensional case). However, Theorem 3 states that there exists a state feedback control

law enabling the mobile robot to track arbitrary analytic curves. Such control laws are not

necessarily unique. In real applications, other control laws may be designed and used to

obtain better control performances.

Generally speaking, there are two basic ways to use information from vision sensors

for control purposes: using vision sensors to provide environmental information for higher
level decisions (so called open-loop planning); or using them directly in the feedback control

loop as servoing sensors. As we show in Section 4.2.3 (Tracking Arbitrary Curves), the

understanding of the image dynamics can also help to design appropriate open-loop control

when the vision sensor does not provide enough information for applying feedback control.

In the cases that onehave to approximate a general curve (which has infinite-dimensional

dynamics) by simpler models, it is crucial to usemodels with properties which are invariant

under the Euclidean motion (so-called intrinsic properties). We propose that linear curvature

curves are very good candidates for being such models. In some sense, linear curvature curves

area third-order approximation for general curves, soare third-order B-splines used byPrezza

and Picci [6]. However, the Extended Kalman Filters needed to estimate their parameters

are 4-dimensional and (N -j- 2)-dimensional respectively (where N is the number of output

measurements). The computation intensities of the two schemes therefore are different.
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Although the visual servoing for ground-based mobile robot navigation has been exten

sively studied, its applications in aerial robot navigation have not received much concern.

In the aerial robot case, the motions are 3-dimensional rigid body motions SE(S) instead

of SE(2) for ground-based mobile robots. Intrinsically, a mathematical formulation of this

problem can be addressed as follows:

Consider r(s) to be a curve to be tracked in R^. The way to track this curve is through

a projection to the camera plane

TT: -> RK (102)

TT is either an orthographic or perspective projection. Further, g(t) G SE(Z) represents the

position and orientation of the camera respect to the spatial coordinate frame. Thus the

curve A(s,t) in the image plane is

A(s,t) =
^A2(5,t)

Given a mathematical model of the kinematics of the mobile robot

/

= TTO^ ^(t)or(s).

P = /(5^,«)

(103)

(104)

where /(^, u) : 5F^(3) x T{SE(S)) is a vector field on 5'F?(3), the kinematics can then

be lifted to a dynamical system (the Riccati-type PDE)

dt

d>^2(s,t)
dt

(105)

for the curvein the imageplane. The results in this paper relate the controllability properties

of (104) to the controllability properties of the new system (105) for the 2-dimensional case.

A study of the more general 3-dimensional case is also necessary and important considering

its potential applications in autonomous helicopter or aircraft navigation.
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A Matlab Source Code for the Extended Kalman Fil

ter

The following source code is used for estimating the image quantities and 77 (the

curvature varying rate c). The parameters shown are the ones used for the simulation of

Section 5.2.4 Figure 10.

Main File: kalman.m

^Simulation Steps:
N = 15000;
step = 0.001;
^System dimensions:
n =4;
•/Number of outputs:
no =5;
^Measurements distances:
by = 0.1;
•/Variance of the disturbance on \eta:
sigmaeta = 1;

•/Initialization of the estimate states:
Xf = zeros(n, N);
Pf = zeros(n, n*N);
Xi = [0; 0; 0; 0.1];
Pi = 10.*eye(n,n);
Xf(:, 1) = Xi;
Pf(:, l:n) = Pi;

^Initialization of the nominal states:
xi = zeros(3, N);
xiO = [0.1; 1; 1];
xi(:, 1) = xiO;

•/Parameters for the system:
phi = pi/3;
a = l/sin(phi);
C =0;
Kv = 0.5;
Komega = 1;
vO = 1;

^Simulation Loop:
for L = 1 : N-1

omegaO = Xf (3,L)*sin(phi)''2*vO;
V = vO + sin(phi)"2*Xf(l,L)*(Xf(1,L) + Xf(3,L))*vO -

Kv*Xf(2,L)*sign(Xf(l,L)+Xf(3,L));
omega = omegaO + sin(phi)"2*Xf(l,L)*vO + Komega*Xf(2,L);
Ut = [omega; v];

•/linearize and discretize the nominal system:
xi4 = (C*(a"2 + xi(2,L)''2)"3/a + 3*xi(2,L)»xi(3,L)''2)

/(a"'2 + xi(2,L)*2);
xi42 = 2*xi(2,L)*C*(a"2 + xi(2,L)*2)/a + 3*(a"2 - xi(2,L)~2)

*xi(3,L)/(a-2 + xi(2,L)*2)''2;
xi43 = 6*xi(2,L)*xi(3,L)/(a"2 + xi(2,L)''2);
Fxi = [-xi(2,L)*sin(phi)»omega, -xi(l,L)*sin(phi)*omega +
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sin(phi)*omega, 0;
-xi(3,L)*sin(phi)*omega, -2*xi(2,L)*sin(phi)*omega,
-xi(l,L)*sin(phi)*omega + sin(phi)*v;
-xi4*sin(phi)*omega, -xi42*xi(l,L)*sin(phi)*omega -
3*xi(3,L)*sin(phi)*omega + xi42*sin(phi)*v,
-xi43*xi(l,L)*sin(phi)*omega - 3*xi(2,L)*sin(phi) +
xi43*sin(phi)*v];

Fxit = expm(step*Fxi);
Dxiu = C-xi(l,L)*xi(2,L)*sin(phi), xi(2,L)*sin(phi);

-(xi(l,L)*xi(3,L)*sin(phi) + xi(2,L)"2*siii(phi) +
l/sin(phi)), xi(3,L)*sin(phi);
-(xi4*xi(1,L)*sin(phi)+3*xi(2,L)*xi(3,L)*sin(phi)),
xi4*sin(phi)];

Dxiut = Dxiu*step + Fxi*Dxiu*step''2/2;
xi(:,L+l) = xi(:,L) + Dxiut*Ut;

'/•linearize and discretize the kalman system:
xif4 = (Xf(4,L)*(a~2 + Xf(2,L)~2)'3/a + 3*Xf(2,L)*Xf(3,1)^2)

/(a-2 + Xf(2,L)-2);
xif42 = 2*Xf(2,L)*Xf(4,L)*(a-2 + Xf(2,L)^2)/a + 3*(a-2 -

Xf(2,L)-2)*Xf(3,L)/(a~2 + Xf(2,L)-2)-2;
xif43 = 6*Xf(2,L)*Xf(3,L)/(a-2 + Xf(2,L)-2);
xif44 = (a-2 + Xf(2,L)-2)-2/a;

Fxf = [-Xf(2,L)*sin(phi)*omega, -Xf(l,L)*sin(phi)*omega +
sin(phi)*omega, 0, 0;
-Xf(3,L)*sin(phi)*omega, -2*Xf(2,L)*sin(phi)*omega,
-Xf(l,L)*sin(phi)*omega + sin(phi)*v, 0;
-xif4*sin(phi)*omega, -xif42*Xf(l,L)*sin(phi)*omega -
3*Xf(3,L)*sin(phi)*omega + xif42*sin(phi)*v,
-xif43*Xf(l,L)*sin(phi)*omega - 3*Xf(2,L)*sin(phi) +
xif43*sin(phi)*v, -xif44*Xf(l,L)*sin(phi)*omega +
xif44*sin(phi)*v; 0, 0, 0, 0];

Ft = expm(step*Fxf);
Gt = [0; 0; 0; 1];
Du = C-Xf(l,L)*Xf(2,L)*sin(phi), Xf(2,L)*sin(phi);

-(Xf (l,L)*Xf (3,L)*sin(phi) + Xf(2,L)''2*sin(phi) +
l/sin(phi)), Xf(3,L)*sin(phi);
-(xif4*Xf(l,L)*sin(phi)+3*Xf(2,L)*Xf(3,L)*sin(phi)),
xif4*sin(phi); 0, 0];

Dt = Du*step + Fxf*Du*step'"2/2;

ViFive output measurements:
Yt = [1, 1, 1, 1, 1;

Dy, 2*Dy, 3*Dy, 4*Dy, 5*Dy;
Dy-2/2, (2*Dy)^2/2, (3*Dy)^2/2, (4*Dy)-2/2, (5*Dy)-2/2;
Dy*3/6, (2*Dy)-3/6, (3*Dy)-3/6, (4*Dy)^3/6, (5*Dy)-3/6]»;

XOne output measurement:
y.Yt = [1, Dy, Dy-2/2, Dy-3/6] ,•

Hx = [1, 0, 0, 0;
0, 1, 0, 0;
0, 0, 1, 0;
0, xif42, xif43, xif44];

Ht = Yt*Hx;
Qt = sigmaeta;
^Output noise covariance matrix:
Rt = l*eye(no,no);

ViExtended kalman filter algorithm:
Xp = Xf(:,L) + Dt*Ut;
Pp = Ft*Pf(:, (n*(L-l)+l):(n*L))*Ft' + Gt*Qt*Gt»;
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HP = Ht*Pp;
Kg = HPV(HP*Ht»+Rt);

xip4 = (Xp(4)*(a-2 + Xp(2)-2)-3/a + 3*Xp(2)*Xp(3)-2)/(a''2 +
Xp(2)-2);

xi4 = (C*(a"2 + xi(2,L+l)~2)"3/a + 3«xi(2,L+l)»xi(3,L+l)"2)
/(a~2 + xi(2,L+l)"2);

Zh = Yt*CXp(l);Xp(2);Xp(3);xip4];
Z = Yt*[xi(l,L+l);xi(2,L+l);xi(3,L+l);xi4];

Xf(:, L+1) = Xp + Kg*(Z - Zh);
trap = Pp - Kg*HP;
Pt = tmp-tmp*Ht'♦Kg' + Kg+Rt+Kg';
tmp = (triu(Pt) + triu(PtO)/2.0;
Pf(:,(n+L+l):(n+(L+l))) = -diag(diag(Pt)) + tmp + tmp';
end

'/•Plot the outputs: nominal states v.s. estimate states:
figure(l);
clf;
w = 10000;
subplot(2,2,l), plot(l:w,xi(l,i:w), 'y-'), hold on,
plot(l:w,Xf(l,l:w),'g—'), ylabel('xi_l and estimate of xi_l'),
xlabeK'Time step = 0.001'), grid;
subplot(2,2,2), plot(l:w,xi(2,l:w), 'y-'), hold on,
plot(l:w,Xf(2,l:w),'g—'), ylabel('xi.2 and estimate of xi_2'),
xlabeK'Time step = 0.001'), grid;
subplot(2,2,3), plot(l:w,xi(3,l:w), 'y-'), hold on,
plot(l:w,Xf(3,l:w),'g—'), ylabel('xi_3 and estimate of xi_3'),
xlabeK'Time step = 0.001'), grid;
subplot(2,2,4), plot(l:w,2eros(l,w), 'y-'), hold on,
plot(l:w,Xf (4,l:w),'g—'), ylabelCc and estimate of c'),
xlabeK'Time step = 0.001'), grid;

*/*/•*/• End of file kalman.m
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