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Abstract

Progressively Reliable Packet Delivery
For Interactive Wireless Multimedia

by

Richard Yeh-Whei Han

Doctor of Philosophy in Engineering - Electrical Engineering
and Computer Sciences

University of Californiaat Berkeley

Professor David G. Messerschmitt, Chair

In this dissertation, we propose a progressively reliable end-to-end network proto

col for delivery of delay-sensitive visual multimedia over a wireless channel with a time-

varying bit error rate and limited bandwidth. Interactive applications like Web-based

image browsing which operate over a wireless access link to the Internet require inunedi-

ate delivery of image data to the receiver in order to support genuine interactivity. Wired

Internet connections incur roundtrip delays approaching the interactive latency bound.

Reliable protocols thatretransmit lostor corrupt packets over an Internet connection that

also includes a noisy wireless link will be unable to deliver an image by the interactive

latency bound. We derive a lower bound on the latency incurred by an ideal retransmis

sion-based ARQ protocol in a noisy bit error rate (BER) wireless channel, and show that

fiill reliability will cause the transport latency to far exceed the interactive latency bound at

1% BER. We also show that, even by adding powerful Reed-Solomon forward errorcor

rection (EEC) codes with redundancy rates that double or triple the bandwidth, the latency
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penalty due to ARQ retransmissions is too high to achieve the interactive latency bound at

^%BER.

Applications that accept unreliable packet delivery, e.g. packet loss and packet comip-

tion, have a more reasonable chance of achieving the interactive latency bound over a

noisy channel. Practical complexity and delay constraints on FEC and compression cause

the traditional approach of aggressive compression and aggressive FEC to be unable to

deliver images quickly enough at severe BER's. Under these conditions, we show that the

joint source/channel coding ^proach oferror-resilient image coding/decoding combined

with forwarding ofcorrupt packet data can continue to support interactive image display.

We demonstrate that error-tolerant image coding can reconstruct images at 3% BER and

simultaneously compress images down to 0.75 bits/pixel via lossy quantization only.

We propose aprogressively reliable end-to-end protocol designed for ijq)id yet asymp

totically reliable delivery ofdelay-sensitive imagery. Apossibly noisy initial version ofa

packet is forwarded to the receiver quickly to allow the end user to interact immediately

with an initially noisy image. For bursty multimedia applications like Web-based image

browsing, the noisy still-image needs tobe cleaned of any persistent artifacts. Therefore,

the protocol follows its initial delivery with multiple increasingly reliable deliveries of

each packet, leveraging off ofthe retransmission mechanism ofthe protocol. We call this

progressively reliable protocol "Leaky ARQ". We identify through X server simulation

three additional performance-enhancing functions for Leaky ARQ: delaying retransmis

sions by many seconds; cancelling out-of-date retransmissions; and fine-grained schedul

ing of jqjplication data through the use of fiows. Fmally, we show how lype-II Hybrid

ARQ protocols, also called packet combining ormemory ARQ protocols, can bemodified

toimplementJUea^ ARQ.
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1

Introduction

"...Yet all experience is an arch wherethrough gleams that

untravell'd world whose margin fades forever and forever as I move.

— Ulysses, by Lord Tennyson

In this dissertation, we consider the design of an end-to-end network protocol for

delay-sensitive visual multimedia delivered over an Intemet connection that includes a

wireless accesschannel with a time-varying bit error rate and relatively limitedbandwidth.

Interactive applications like Web-based image browsing which operate over a wireless

access link to the Intemet require immediatedeliveryof image data to the receiverin order

to support genuine interactivity. Such delay-sensitive imaging applications can be

designed to toleratechanneldistortion in the formof packetloss and packetcormption. By

tolerating some channel distortion in a reconstructed packetized image, delay-sensitive

applications can reduce the perceptual latency seen by the end user. Error protection

schemes like forward error correction (FEC) and/or reliable retransmission-based proto

cols (also known as ARQ protocols) are designed to mitigate distortion caused by channel

noise, but will introduce additional transport latency either through retransmissions or
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bandwidth expansion. By accepting less than fiilly reliable packet delivery,delay-sensitive

applications don't have to suffer the latency penalty associated with fully reliable packet

delivery over a noisy wireless channel. This dissertation develops a progressively reliable

end-to-end protocol that delivers an initial possibly noisy version of a packet to the

receiver quickly, followed by multiple increasingly reliable versions of that packet. Pro

gressively reliable packet delivery allows the end user to trade off subjective priorities

related to the two dimensions of quality/distortion and delay by initially supporting low-

latency high-distortion delivery of a packetized image, while ultimately supporting low-

distortionhigh-latency reconstruction of a packetizedimage.

1.1 Wireless access to Interactive visual multimedia

Theexpanding demand forInternet connectivity, thegrowth of multimedia computing,

and the rising expectation of portable access to information are symptoms of the trend

towards wireless access to multimedia information "anytime, anywhere". As part of this

increasing integration of computing, communications, and portability, personal computer

laptops can now access the Internet via wireless modems, gaining access toa vast array of

visual multimedia services such as Web-based images, text/graphics, and video. Similarly,

portable "network computers" (Berkeley's InfoPad [90], Xerox PARC's MPad [68], Digi

tal's Web-aware PDA [7]) have been prototyped recently and offer an alternative paradigm

for wireless access to networked visual multimedia. Both the laptop and portable network

computer models attest to thegreat appeal ofcombining portability, connectivity, and mul

timedia into a single computing and communications device. Previously, personal comput

ers (multimedia), workstations (networked multimedia), laptops (portable multimedia),

and personal digital assistants (portable with limited multimedia) supported one or two of
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Figure 1.1 General system supporting wireless access to visual multimedia. Packetlzed
visual multimedia flows from the source coder through the end-to-end net
work prot;>col that implements end-to-end error protection, over an Internet
backbone and concatenated wireless access link, to the portable multimedia
receiver for decoding and display.

these individual elements, butfailed to realize thepotential of combining all three charac

teristics into a single computing and communications paradigm.

In a system which integrates portability, connectivity, and multimedia, the end user

expects rapid response time and sufficiently reliable communication. These expectations

conflict with the reality of delivering high bandwidth image-based data across a connec

tion that includes a wireless link with a relatively low bandwidth and relatively high noise

level. The overall souRie-network-receiver system that supports wireless access to distrib

uted visual multimedia is pictured in Figure 1.1. The multimedia application or source

coder generates images which are compressed, possibly in an error-resilient manner, and

sends the coded image data to the underlying network, e.g. transport protocol, for end-to-

end packet delivery. The transport protocol is responsible for ensuring that the packetized

data arrives at the receiver with sufficient reliability and sufficient speed. The transport



protocol has the option of applying end-to-end error protection, either in the form of FEC

and/or retransmission-based ARQ protocols. The wireless channel represents the weakest

link in the overall connection both in terms of limited bandwidth and relatively severe bit

error rates (BER's). The design of an end-to-end network protocol must recognize the

impairments posed by this weakest link, both in terms of its limited bandwidth and its

heavy channel noise.

The scope of this dissertation is confined to designing an end-to-end protocol for

packet delivery of bursty high-bandwidth delay-sensitive multimedia across connections

containing a bandlimited wireless link with a time-varying and at times severe BER. Our

primary application of interest is interactive Web-based image browsing across a wireless

access link, though we mention later how other applications based on video and audio can

also utilize our proposed protocol. In the remaining paragraphs of this section, we outline

the limiting assumptions that are made with regard to the type of source application con

sidered, the end user's quantitative expectations in terms of delay and distortion, and the

quantitative assumptions regarding the wireless link's bandwidth and BER.

Our end-to-end protocol is primarily designed for the class of interactive multimedia

applications which require remote delivery of stillimages. Thisprotocol is notdesigned to

deliver unrendered text or command-based graphics, though it could be used to deliver

images with pre-rendered text/graphics. In this class of distributed imaging applications,

we include interactive Web-based image browsing, remotely rendered applications like

Framemaker, and portable network computers which download bitmapped frame buffer

updates across thenetwork liketheInfoPad. In each of these examples, images areperiod

ically rendered at the source and downloaded to the receiver, thereby exhibiting bursty

traffic behavior. While our primary objective is supporting rapid delivery of delay-sensi

tive bursty multimedia, we shall mention in Chapter 5 how the proposed protocol can be

parameterized to deliver continuous media audio and video.



In the image browsing application described above, the end user has subjective expec

tations that are stringent in terms of delivery latency but are more relaxed in terms of the

pemussible distortion introducedby channel noise. For real-time video/audio conferenc

ing applications, the maximum acceptable roundtrip delay cannot exceed about 200 ms

[41][132], though some would argue for a tighter roundtrip bound. For point-and-click

bursty-media applications like interactive image browsing, genuine responsiveness will

impose a similar though likely tighter requirement of about 100 ms roundtrip delay. This

constraint on delay plays a key role inthe design ofour progressively reliable protocol. On

the other hand, the subjective tolerance for channel distortion can actually be quite high

for natural images. We demonstrate in Chapter 4 that channel BER'sof about 3% are still

subjectively tolerable for natural images which have been compressed over 10:1 from 8

bits/pixel down to 0.75 bits/pixel. Together, thestringent delay requirement and the toler

ance for channel distortion help motivate thedecision to forward corrupt information as a

means of lowering the perceptual latency within our protocol design.

Wireless channels range from indoor picocellular wireless access links to outdoor

microcellular channels with mobile access from automobiles. The key digital performance

parameters of a wireless channel are its bandwidth and its BER. In addition, the variation

of the BER with time can also affect protocol design. Bit errors arise from analog impair

ments in the wireless channel. A singleuser transmitting its data over a wireless link can

suffer from three roughly independent analog noise phenomena: shadowing, path loss, and

multipath fading [125]. Shadowing occurs when the line-of-sight signal is blocked by an

object such asa mountain orbuilding oreven aperson. Path loss occurs because the power

of the signal falls offexponentially with distance. Multipath fading occurs when multiple

reflections of a transmitted signal arrive at the receiver and add destructively due tophase

shifts. In addition to these single user phenomena, in cellular systems there are multiple

users whose transmissions generate intercell and intracell interference for other users. Fre-



quency reuse in TDMA cellular systems introduces co-channel interference from other

cells. Also, imperfect isolation of users introduces adjacent-channel interference both

within and outside of the user's cell. Direct sequence CDMA spread spectrum systems are

also well known to be interference-limited, in the sense that increased transmission power

dedicated to one user will add interference noise to all other users. Finally, for indoor pic-

ocellular systems, an individual user may also have to deal with prolonged shadowing due

to slow-moving/static objects (e.g. people, cubicle walls, etc.) interfering with line-of-

sight transmission. Indoor channels do not have to deal with Doppler effects characteristic

of outdoor mobile cellular systems. All of these phenomena create time-varying bursts of

errors.

An end-to-end protocol should be designed to handle this heterogeneity in behavior

over a variety of wireless access channels. However, our work makes some limiting

assumptions with regard to the channel bit rate, and the channel BER. Our discussion is

confined to wireless channels whose bit rates range from about 100 kbit/s to 1-2 Mbit/s.

This range of bit rates offers a reasonably sized imagesomechanceof achieving the 100-

200 ms interactive latency bound. In addition, this range of bandwidth is likely to repre

sent the typical wireless access linkof future cellular networks. Currently, second-genera

tion digital cellular standards like IS-54 digital TDMA, IS-95 CDMA, and Europe's GSM

system support voice and data services at bit ratesup to 13kbit/s, though the rawchannel

rates can be more than double these values due to error correction overhead [94]. Current

digital cordless standards, which supportmobility in a more limited manner than cellular

systems, can sustain even higher bit rates. For example, Europe's CT-2 system delivers

voice and data over a 32 kbit/s cordless link [29]. Japan's Personal Handiphone System

(PHS) supports voice at 32 kbit/s and data services up to 64 kbit/s. The European DECT

standard transmits voice at 32 kbit/s, and data up to 384 kbit/s over one connection [121].

Several vendors have begun offering wireless LAN products whose radios operate at hun-



dreds of kbit/s to one Mbit/s peruser [29]. In the future, widely deployed global wireless

access systems will likely offer a similar range of bit rates. Forexample, plans are under

way in Europe for a third-generation Universal Mobile Telecommunications System

(UMTS) that supports cellular, cordless and LAN access through a ubiquitous wireless

access network operating at rates of at least 2B+D ISDN (144 kbit/s), and possibly higher

(up to 2 Mbit/s).

Our second assumption is that wireless channels average at least 10"^ BER within a

fade. Designers of digital cellular systems have often cited 10"^ BER as a typical design

point for wireless audio [31][149]. In addition, the packet loss rate has been measured at

1-2% under realistic fiilly loaded conditions in the IS-95 DS-CDMA digital cellular sys

tem after rate-1 convolutional EEC coding [69]. Our design philosophy is to support con
tinuous interactivity with possibly noisy packetized image dataat BER's up to andslightly

exceeding 10"^.

1.2 Joint source/channel coding for deiay-sensitive wireiess

data

Given the system assumed in Figure 1.1, the traditional approach is to separate the

design of compression/decompression algorithms, also called source coding and decod

ing, from the design of FEC/ARQ errorprotection, alsocalled channel coding anddecod

ing. For example, the still image coding JPEG standard is designed independently from

the underlying network. JPEG does not care whether the underlying error protection is a

linear Reed-Solomon block code, a convolutional code, or a retransmission-based ARQ

protocol with error detection. Conversely, an ARQ protocol like the Internet's TCP has

been designed independently of any source compression standard. This independent

source and channel coding design philosophyis illustratedas the top picture in Figure 1.2.



(a)

Source 1 Channel A Channel 1 Source

Compression hU
1

FEC/ARQ -• / Decoding
1

Decompression

— ><
Error-

Resilient

Compression

Wired + Wireless

Netwoik

Wired + Wireless

>• Network

Unequal Error
Protection

X-
(b)

Source-Aware

Channel

Decoding

-X

><-
Error-Tolerant

Decompression

Figure1.2 Joint source/channel coding (JSCC) (bottomfigure (b)) compared to inde
pendent/separated source and channel coding (top figure (a)). In JSCC,
compression and decompression algorithms "see" the channel's charac
teristics, e.g. its typical BER, and are designed to be robust. Channel FEC/
ARQ coders and decoders "see" the source's statistics, and applyunequal
error protection to the data. In Independent source and channel coding,
source coding/decoding only sees the input data, not the channel. FEC/
ARQ is designed with only the channel in mind, and Is oblivious to the
source's statistics.

The channel coding and decoding modules are designed with only the characteristics of

the network orchannel in mind, i.e. they "see" only the channel impairments, and don't

"see" anything about the source's statistics, thereby simplifying the task of the network

protocol designer. Conversely, the source coding and decoding modules only "see" the

data they are compressing, and are designed without regard to whether the compressed

data isbeing sent over awireless channel, thereby simplifying the task ofthe compression

algorithm designer.



The traditional design philosophy of independent source and channel coding is justi

fied theoreticallyby Shannon's separation theorem[27].The theorem states that transmis

sion of a source (e.g. image) through a noisy channel (e.g. wireless link) can be made

arbitrarily close to reliable (arbitrarily close to zero probability of transmission error) as

long as the source's information rate/entropy is less than the information-theoretic channel

capacity. Consequently, the source's only duty is to aggressively compress the data below

the channel capacity, without regard to any other properties of the channel. Assuming a

suitably compressed source, the channel coder can design its FEC/ARQ errorprotection

independent of any knowledge of the source. The separation theorem implies that no loss

in performance, as measured by the reliability of the reconstructeddata at the receiver, is

suffered by a separated source and channel codingapproach.

In Chapter2, we quantify the latency performance of a traditional ARQ protocol that

has been designed independently of source statistics. Two lower bounds on the delay that

would be suffered by data requiring fully reliable packet delivery overa wireless channel

arederived. At 10" BER, we show thateven an ideally efficient retransmission-based pro

tocol, called ideal SRP, cannotdeliver its data within the interactive latency boundof 200

ms.

In Chapter3, we quantify the minimum redundancy required by a traditional FEC lin

earblock code, again designed independently of the image source, in order to adequately

protecta sequence of datablockscorresponding to an image. Wequantify howmuch more

redundancy is required by binary BCHcodes than optimal binary linearcodes. For non-

binary Reed-Solomon (RS) codes, we show that at 3x10"^ BER^ the minimum redundancy

required will double the bandwidth of the source.

Further, we analyze lype-I Hybrid ARQ protocols which combine FEC and ARQ

together as a form of hybrid error protection. Assuming that RS codes perform the FEC

function, and assuming that ideal SRP performs the ARQ function, then we show that no



sufficiently powerful RS codes of length N<\02A output symbols could be found which

are capablt of reliably delivering a fiill imageby the interactive latency boundof 100ms

at 3% BER for a lype-I Hybrid ARQ protocol.

The analytical results from Chapters 2 and 3 help motivate our search for alternatives

to conventional FEC and ARQ channel coding schemes. In Chapter 4, we examine an

alternative methodfor delivering delay-sensitive data over a wireless channel calledjoint

source/channel coding (JSCC). First,we observe that the separation theorem wasderived

under the following three assumptions:

• stationary memoryless channels

• unconstrained complexity of compression/decompression algorithms and FEC/ARQ

error protection techniques

• unconstrained delay in the operation of source and channel coders and decoders

Since ourapplication of interest is interactive image browsing over time-varying wire

less access links with practical limitations on compression efficiency and FEC errorcor

rection power, then each one of these assumptions of the separation theorem is violated.

Portable access todistributed visual multimedia, which has the potential ofevolving into a

fairly conunon paradigm, calls into question the traditional philosophy of separating the

design ofcompression algorithms from the design of network FEC/protocols.

In addition, the appropriate quality criterion in ourcase is a subjective dual function of

delay and distortion. For example, progressive image transmission is a technique which

exploits the human user's subjective tolerance for significant distortion in an initial version

of an image provided that the end user knows that the image will improve eventually in

quality over time. Progressively reliable packet delivery discussed in Chapter 5 represents

another example of progressivity. The human user's changing tolerance for distortion over

time is difficult to measure in quantitative terms. The separation theorem makes no com-
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ment on suchqualitative evaluation metrics, relying instead onlyon quantitative measures

ofperformance such as the loss probability which fail tocapture the subjective complexity

motivating our themeof progressivity.

When one or more of the theorem's assumptions are not satisfied, an approach called

Joint source/channel coding can be shown to outperform separately designed source and

channel coders. Theoverall JSCC system is illustrated in the bottom portion of Figure 1.2.

The JSCC channel coder and decoder are designed with knowledge of the source as well

as thechannel, i.e. they "see" the source'sstatistics and the variation in errorsensitivity of

different source bits and incorporate this knowledge into the design of an unequal error

protection (UEP) codec. Similarly, the JSCC source coder and decoder are designed with

knowledge of the channel as well as the source, i.e. they "see" the channel's error statistics

and incorporate that knowledge into the design of an error-tolerant compression/decom

pression scheme.

The literature has shown that when compression algorithms are constrained in com

plexity and required to perform their operationsquickly, then residual redundancy is left in

an imperfectly compressed image. Imperfect compression leaves certain bits more sensi

tive to errors than others. Errors in sensitivebits will have a disproportionateeffect on the

distortion in a reconstructed image. Given imperfect compression, Section 4.3.2 and Sec

tion 4.3.3 cite references which show that JSCC channel coders and decoders that have

knowledgeof the source's statistics, e.g. UEP channel coders and source-cognizant chan

nel decoders, produce images with lower end-to-end distortion than independent channel

coders and decoders which have no knowledge of the source's statistics.

The literature has also shown that when the channel FEC coder and decoder are lim

ited in error correction power due to constraints on complexity and the requirement that

they perform their task quickly, then there is some benefit to backing off on aggressive

compression and intentionally leaving some residual redundancy in an image. Section

11



4.3.4 cites the work by Xu, Hagenauer, and Hollman [155]which shows that error-tolerant

image coding is more beneficial than a separated system of aggressive compression and

aggressive ITBC in terms of lowering the end-to-end image distortion when the channel is

very noisy and the error correction power is constrained.

Given error-tolerant image compression, then we claim that packets with corrupt bits

should not be thrown away. Current networks discard packets which have failed an error

detection check, either at the data-link layer of a wireless link, or at the receiver endpoint

of a connection. Discarding corrupt packets is done on the presumption that the payload

data has been aggressively compressed and is therefore not useful at the receiver. How

ever, we havejust shown that there is somebenefit to error-tolerant imagecompression in

constrained-complexity constrained-delay systems. Given error-resiliefit image coding,

then most of the payload is still useful at the receiver despite heavy channel noise. For

example, a 1% BER applied to an 8bits/pixel grayscale image would invalidate onlyabout

8%of the bits in any packet payload, leaving over90%of the pixels as still usable.

We implemented a Discrete Cosine Transform (DCT) compression scheme which

demonstrates the usefulness of error-tolerant compression and error-tolerant decoding of

corrupt image dataat high BER's. The DCT compression scheme was able tocompress the

data from 8 bits/pixel (bpp) grayscale down to 0.75 bpp, a compression ratio of about

10:1. We were able to demonstrate that this error-tolerant encoding scheme could tolerate

BER's of 10"^ without error concealment, and 3x10'̂ with error concealment. Our conclu

sion was that lossy quantization can achieve a reasonable compression ratio and still be

error-resilient. Lossless statistical compression increases the error sensitivity and requires

corresponding increases in FEC channel coding, thereby increasing thecomplexity of the

system. Moreover, the limited strength of FECin practical systems causes the aggressive

compression/aggressive FEC approach to fail at heavy BER% while the error-resilient

image coding is still able to communicate information by the interactive latency bound.

12



The end result of these observations is that payloads bearing error-resilient informa

tion are still useful at the receiver for decoding despite severe BER*s. In addition, in a

JSCC system, UEP onpacket payloads will leave some bits lightly error protected, result

ing in possibly many packets being in error after XJEP decoding. Therefore, in aJSCC sys

tem, it is essential that corrupt information be forwarded to the endpoint application for

decoding. Given error-resilient data, the end-to-end distortion can actually bereduced by

accepting corrupt packet data incomparison to throwing this corrupt data away.

Forwarding and processing of corrupt packet data can also be motivated from the per

spective of delay, not just end-to-end distortion. An end user willing to tolerate noisy

reconstructed images can receive and display corrupt information far faster than an end

user who will only accept fully reliable delivery of images and therefore must wait for an

error-free version due to retransmissions. The end user in a JSCC system will be able to

interact as soon as possible with a noisy representation of an image overa wide range of

, BER's,

The overall conclusion of Chapter 4 is thaterror-tolerant imagecoding, UEP, forward

ingof corrupt error-resilient information, andapplication-level decoding of corrupt packet

data together constitute an approach which is more likely to provide continuous interactiv

ity to the end user over a wide range of BER*s than a system which practices aggressive

compression, aggressive FEC, discards corrupt packets, and insists that anapplication pro

cess only error-free data.

1.3 Progressively reliable packet delivery

Our end-to-end protocol is tightly integrated into theJSCC design philosophy in order

to realize theadvantages of JSCC in terms of reducing thedistortion andperceived latency

of delay-sensitive image data encoded by constrained-complexity systems and delivered

13
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Figure 1.3 Progressively reliable packet transport delivers an initial possibly noisy ver
sion of a packet quickly to the receiver. Later, the protocol employs retrans
missions to progressively improve the reliability of the delivered packet. An
Image-based multimedia application can use a progressively reliable protocol
to display a noisy initial image (left) for immediate interactivity. Later, any per
sistent artifacts on the screen can be removed by displaying progressively
cleaner image data provided by the protocol (right). The 8 bits/pixel color-
mapped image is corrupted at BER10'^.

over very noisy wireless channels. Initially, our protocol forwards a possibly noisy first

versionof a packet to the receiver. For bursty multimedia, artifacts due to reconstructionof

noisy data may persist on the screen for a very long time, until further user activity over

writes or redraws that portion of the screen. To remove long-term artifacts, our protocol

delivers successively refined versions ofa packet to the application bysending retransmis

sion redundancy at some later time. Thus, each packet of image data is delivered to the

application in a progressively reliable fashion.

A multimedia application like Web-based image browsing would employ a progres

sively reliable transport protocol to deliver a noisy initial version of an image for quick

interactivity. Theassumption is that theapplication will code its image datain an error-tol

erant manner in order to make use of corrupt forwarded data at the receiver. Eventually,

progressively reliable packet delivery will deliver a sufficiently clean version of an image

to remove any persistent artifacts.The overall effect perceivedby the end user is shown in



Figure 1.3. Essentially, the protocol is trading off the user's subjective priorities of delay

and distortion. Low-latency high-distortion packet delivery is followed eventually by

high-latency low-distortion delivery. The protocol permits the application to satisfy the

end user's demand for continuous interaction with a possibly noisy initial image over a

wide range ofBER*s. In addition, theprotocol allows theapplication to asymptotically sat

isfy the end user's desire for distortionless packetdelivery.

In Chapter 5, we identify the following four essential properties of progressively reli

able packet delivery:

• Corrupt packets are forwarded to the application

• Multiple versions of each packet are delivered

• The reliability of these multiple versions improvesover time (statistically fewer errors

with each successive version)

• Different packets are delivered out of order

Each of these properties has an impact on the design of the socket interface between

the multimedia application andthe protocol. Applications must frame theirdata intoappli

cation data units (ADU's). In addition, the error detection applied on the ADU header

mustbe distinctfrom theerror detection applied to the ADUpayload. In this way, the pro

tocol can distinguish between packet corruption, i.e. useful ADU's with noisy payloads

and error-free headers, and packet loss, i.e. useless ADU's with errors in the header. Fur

thermore, the property of increasing reliability requires that the receiver have memory so

that it can recall the level of noise in previous versions of ADU's before delivering a newer

version with fewer errors.

Also in Chapter 5, we discuss three key additional features of progressive reliability

which improve its end-to-end delay performance. The transport latency of the first possi

bly noisy version of an ADU can be reduced by:
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• delaying ADU retransmissions to minimize conflict with time-critical delivery of the

initial version of an ADU

• cancelling retransmissions associated with out-of-date ADU*s

• flow-based QOS schedulingof the sender's trafflcby delay and reliabilityconstraints

The firstpossibly corruptversion of an ADUis classified as delay-sensitive, while the

later retransmissions employed to refine the first version are classified as delay-tolerant.

By choosing when to send retransmission redundancy, it is possible to translate retrans

missions to a time when there is littleor no delay-sensitive traffic. Delay-tolerant retrans

missions can afford to be shifted around in time with little or no subjective impact.

Therefore, the progressively reliable protocol biases its delivery toward delay-sensitive

initial delivery of ADU's, and transmits the retransmission redundancy so as not to con

flict with initial delivery.

Furthermore, bursty multimedia has theproperty that new images often overwrite old

images. Because our progressively reliable protocol retains data in order to delay ADU

retransmissions, some ADU's may contain out-of-date image data. Our progressively reli

able protocol allows the user to apply correlation labels to ADU's, sothat the protocol can

identify when a packet has become stale. This allows the protocol to cancel any further

retransmissions ofstale data, freeing up the connection to deliver other packet data.

Finally, flow-based scheduling permits the application todefine more than just asingle

stream of data. Instead, a multimedia application can generate a hierarchically coded

image, and send different parts of this image progressively along multiple substreams.

Each substream has its own quality-of-service (QOS) requirement in terms ofdelay and

reliability. The progressively reliable protocol incorporates a scheduler which can distin

guish between the delay requirements of different substreams, as well as the separate

delay requirements of the initial and final versions of data within the same substream.

16



An X windows serverwas modified to test the validity of these ideas.The X windows

server was modified to implement a progressively reliable encoder/decoder and a random

bit errorchannel model. The effect seen on the screen was similar to Figure 1.3, in which

any portion of the screen was drawn in an initially noisy fashion, followed eventually by

cleanup of artifacts. The X windows serverprovided a real-time platformto test our ideas

concemingthe viabilityof progressive reliability as a concept. Wefound that we could tol

erate the presence of channel distortion in the initial version and still conduct interactive

image browsing. Through experimentation, we discovered that the responsiveness of the

system could be improvedby delaying retransmissions and cancelling stale retransmission

data. We constructed a dynamic software tool called a "performance manager" which

allowed the user to dynamically adjust the various bit rates, BER, and delay parameters

within the modified X server during run-time.

As part of our work on the X windows server, we also implemented a progressive col-

ormap source coding algorithm. This permitted some experimentation with the relation

ship between progressive source coding and progressively reliable packet delivery, i.e.

progressive channel coding. The initial version was allowed to suffer not only channel dis

tortion due to bit errors, but was also encoded in a way that introduced source coding dis

tortion. For example, a typical sequence of events would be that the initial version would

not only be noisy, but wouldalso be drawn as a black and white version of a color image.

Thefollowup redundancy wouldoverwrite the noisy b/w version witha cleancolorimage.

Wefound that the overall effect was tolerable for natural images as long as the luminance

magnitude, i.e. the brightness level of the image, was preserved between the original and

final versions. More sophisticated versions of progressive source coding were not

attempted in this thesis.
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We also experimented with video within our modified X server. The cancellation func

tion proved especially useful and demonstrated how continuous media could exploit a pro

gressively reliable protocol.

In Chapter 6, we discuss end-to-end implementation issues regarding a progressively

reliable transport protocol.Because such a protocol initially forwardscorrupt information,

and later cleans these errors up, we call our proposed progressively transport protocol

**Leaky ARQ". We observe that Leaky ARQ can be implemented as a form of memory

ARQ, also called packet combining^ of which Type-IIHybrid ARQ is the most well-known

example. While implementing Leaky ARQ as a true transport protocol will optimize the

protocol's performance, migrating a new layer 4 protocol in theInternet faces some practi

cal challenges. As an alternative, we describe how Leaky ARQ could be implemented

within the context of the Internet on top of UDP, though certain modifications to UDP

would be required. Finally, we consider the impact of fragmentation, non-sliding win

dows, andacknowledgments on thedesign of Leaky ARQ.
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2

Latency Bounds For Reliable

Network Protocols

In this chapter, we investigate the latency performance of end-to-end network proto

cols which reliably deliver visual multimedia over connections that include a wireless

access link. Multimedia applications, such as Web-based image browsing, often require

rapid delivery of individual images in order to convey a genuine sense of interactivity to

theapplication's user. Our goal is toquantify the time necessary to reliably deliver a finite

burst of packets corresponding to a single image over a noisy connection. In general, net

work connections consist of a sequence of concatenated communication links, each char

acterized by its own distinctive behavior. We consider the special case in which one of

these links is a wireless access link.

Network protocols that provide end-to-end reliability, i.e. reliability over a multi-hop

connection, are also known as Automatic-Repeat-Request (ARQ) protocols. ARQ proto

cols implement a closed-loop retransmission scheme that guarantees reliable delivery of

packets (within error-detection limits).

In this chapter, we quantify the cost in latency associated with fully reliable packet

delivery. First, weconsider the latency cost for reliable delivery of a single packet. Later,

weinvestigate the latency cost for reliable delivery ofa burst ofpackets corresponding toa

packetized image. Two estimates of theimage transfer latency arederived: a "loose" lower
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Hgure 2.1 End-to-end fully reliable delivery over multiple concatenated net
work links (some wired, some wireless) via closed-loop retrans-
mlssion-based ARQ protocols.

bound and a "tight" lower bound.Both boundsare based on the idealizedSelective-Repeat

(SRP) retransmission protocol, the most efficient ARQ protocol. These lower boimds on

delay show that the minimum time to reliably deliver an image over a high bit error rate

channel can be so large that real-time delivery is largely precluded. The ARQanalysis of

this chapter serves as the basis for analyzing the hybrid FEC/ARQ protocol of a later

chapter.

2.1 Introduction to ARQ protocols

Retransmission-based ARQ protocols ensure fully reliable delivery of individual

images over connections which include a noisy wireless channel. Each of these closed-

loop techniques sends and resends packets until they have been correctly acknowledged by

thereceiver. Figure 2.1 illustrates a sender transmitting packets and their repetitions in the

forward direction across a multi-hop connection that includes a wireless link. In the

reverse direction, thereceiver sends theacknowledgments that correspond to thetransmit

ter'spackets. Some well-known examples ofARQ protocols include Stop-and-Wait (SW),

Go-Back-N (GBN), Selective Repeat (SRP) [129], and the Internet's reliable TVansmis-

sion Control Protocol (TCP) [25], each ofwhich will bediscussed later in this chapter.
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In ARQ, after a packet is transmitted to the receiver, the sender waits for an acknowl

edgment for that packet from the receiver. If the receiver sends back a positive acknowl

edgment that the packet has been correctly received, then the protocol proceeds onwards

to send a new packet waiting in the sender*s queue. If the receiver sends back a negative

acknowledgment (NACK) that the packet was corrupted, orif the sender times out waiting

for any acknowledgment, then thesender retransmits theoriginal packet. This describes a

simple Stop-and-Wait (SW)protocol.

Windowed protocols like GBN and SRP improve upon the SW protocol by permitting

multiple packets (i.e. the sender's window size ^ 1) to propagate toward the receiver.

Rather than wait the full roundtrip time until a single packet is acknowledged before send

ingthe next packet, SRP tries to keep the transmission pipe full bycontinuously transmit

ting multiple distinct packets.

SRP's response to the loss of a packet is to retransmit only the lost packet. For other

windowed protocols like GBN and TCP, loss ofa given packet cantrigger retransmissions

ofpackets besides the lost packet. Forexample, inGBN, a packet loss causes the protocol

to go back in the packet sequence to the lostpacket, and start retransmitting sequentially

from theposition of the lostpacket. Scxne packets may wind upbeing retransmitted multi

ple times even though they have already been correctly delivered to the receiver. These

unnecessary retransmissions lead to inefficient management of the connection's band

width. In contrast, the number of unnecessary retransmissions in SRP is zero, just as for

SW. Unlike SW, SRP permits a window size W 1. The combination of windowed per

formance and zero unnecessary retransmissions make SRP the most efficient ARQ proto

col possible. Moreover, the number of retransmissions in SRP for a given packet is

independent of the behavior ofall other packets. This leads toa simplified analysis of the

expected or average number of retransmissions per packet.
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A special form of SRP called Ideal SRP assumes transmitter buffers and receiver buff

ers have infinite length. Ideal SRP also assumes that the sender's window size is larger

than a single packet's roundtrip time (more precisely,its equivalentmeasured in number of

fixed-length packets). This assumption allows the downstream p^ to be continuously

filled or saturated with multiple distinct packets.

How do we quantify the latency cost of a particular retransmission protocol over a

multi-hop connection that includes a noisy wireless link? Our approach is to view the

wireless link as the limiting factor in the connection both in terms of noise and bandwidth.

Hence, weconfine ourprotocol analysis to this single link. This formulation of theprob

lempermits two interpretations. First, ouranalysis could beinterpreted to apply to a link-

layer ARQ protocol operating over a single wireless link. Alternatively, ouranalysis could

beinterpreted as a lower bound on performance ofan end-to-end protocol, inwhich only

the impact of the wireless link is studied, while the contributions tolatency caused by the

other wired links have been abstracted out of the problem.

Our strategy is to develop a lower bound on the image transfer latency that applies

over all protocols, rather than investigate each protocol individually. From our previous

discussion, we observed that SRP is the most efficient protocol among all possible repeti

tion-based non-hybrid ARQ protocols like GBN and SW [78]. Optimal efficiency trans

lates into minimal delivery time. Therefore, by basing our latency analysis of reliable

protocols on ideal SRP, we will have determined a lower bound on latency over all proto

cols. Any other protocol will incur a higher cost in delivery time. Ideal SRP has theaddi

tional property that it ismathematically tractable. We will apply this bounding strategy to

both oursingle-packet and multi-packet analyses of ARQ protocols.
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Figure 2.2 A typical retransmission protocoi is shown. Each (re)transmission off a
packet takes time PTT+RTT, where P7T=packet transmission time due to
the packet's length, and fffTTsroundlrip time that the sender has to wait
affter sending the packet before an aclmowiedgment could arrive, in gen
eral, multiple packets may propagate simultaneously toward the receiver.

2.2 Quantifying the single-packet latency of ideal SRP

In this section, wequantify theaverage latency experienced bya single packet reliably

delivered by an ideal SRP ARQ protocol over a noisy channel. A typical retransmission-

based ARQ protocol is shown in Figure 2.2. Let a packet consist of a block of K bits.

Assuming independent Bernoulli trials anda fixed Bit&ror Rate (BER), theprobability of

aK-bit error-free packet is =(1 -BER)^ .If we define arandom variable Npacket ~*
trials until the first good block is delivered, then Np^cket ^geometric distribution, i.e.

packer 0 = (1 ^»for i positive integers. The expectation ofa geometric

Vpacket is well known, so that the average # of trials until the first good packet is received

is given by

packed " ~(J .BER)" (2-1)

For idealSRP, the number of retransmissions for eachpacket can be considered to be

independent ofallother packets. Aconservative estimate ofthe average delay experienced
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by a single fixed-length packet is simply the product of the average number of transmis

sions E[Npocket^ the time required perpacket. This conservative estimate ignores con

tention at the sender among different packets, which will delay each packet beyond our

cons^vativeestimate. However, aswe shallseein thenextsection, thiscontention among

different packets is automatically taken into account during ouranalysis of thedelay of a

group of packets corresponding to an image.

We can now obtain the average delay perpacket. Define PTTas thefixed packet trans

mission time due to the packet's size. LetRTT be the additional roundtrip time that the

sender has to waitafter eachpacket is sentuntilits acknowledgment returns to the sender

(stating whether or not the packet has been correctly received). Ingeneral, RTT is a sto

chastic quantity consisting ofat least the forward and reverse direction network queueing

delays along the multi-hop connection, the protocol processing and operating system

delays atthe connection endpoints [22], and the reverse and forward direction propagation

delays. Also, even though a sender may be ready toretransmit a packet, congestion at the

sender due to a large number ofpackets awaiting transmission will add stochastic queuing

delay to RTF. It can be easily verified that the typical range ofRTT across a multi-hop

Intemet connection varies from tens of milliseconds to many hundreds of milliseconds.

Let us assume that RTT is fixed, so we can focus our analysis on the retransmission policy.

PTT and RTTare pictured in Figure 2.2.

Define Tp^^j^f as the time between the commencement ofpacket transmissions and the

reception of the packet's positive acknowledgment from the receiver. Our conservative

estimate of the average delay perpacket is given by

packet] = •{PTT +RTT) (2-2)

Inorder to gain some intuition about the effects ofbandwidth, probability ofbit error,

and header overhead on the single-packet latency E[Tpacketl we temporarily make some
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simplifying assumptions. First, let us for the time being assume/?7T=0. This means that

our estimate of the single-packet latency (P77) will be a lower bound, since it will not

incorporate many sources of delay arising from RTF, We will return to the impact ofRTT

on latency in Section 2.4, where weevaluate a tight lower bound onthelatency of a pack-

etized image for several real-world values ofRTT.

Also, let us choose the bandwidth and probability of bit error BER to represent the

weakestlinks in the connection, with the wireless link beingthemost likelylimitingfactor

in both instances. If we define EW= wireless bit rate, // = # headeroverhead bits/packet,

and F = # payload bits in the packet, then we can approximate the average delay until

delivery of the first error-free packet as

packet\^^\.^packet '̂ ~(1BW (2-3)

Equation (2-3) summarizes the impact of bandwidth, bit error rate, and header over

head on the single-packet latency of ideal SRP. It also represents a lower bound on the

expected delay.

Table 1. Minimum average delay estimates (/77T=0, ideal SRP) from
Equation (2-3) for a single packet as a function of packet payload
size P

Payload size(bits) 10 100 500 1000

lower boimd estimate of

^^packet\
0.665 ms 2.99 ms 0.499 sec 139 sec

InTable 1, we illustrate a sampling of the mean delays ElTpackeA given by Equation

(2-3) as a function ofpayload size F. assuming araw BER of10'̂ (a typical design point

of digital cellular systems [28][149]), header size// = 100bits (TCP has at least 20 bytes

of header when uncompressed, UDP has 8 bytes of header), and wireless BW = 500 kbit/s

(on the high end of current wireless bit rates [94]). The results indicate that large packets

that are longer than several hundred bits experience prohibitively large non-real-time
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delay. Since the BER is10'̂ , then on average large packets on the order ofseveral hundred

bits will contain multiple bit errors, forcing many retransmissions and thereby increasing

the delivery time. Also, the single-packet delay rises exponentially as a function of the

payload size P. This exponential behavior suggests that a large image, on the order of

many tens of thousands of bits, should be packetized into many small packets instead of a

few large packets over a noisy wireless link. In the next section, we will examine in more

detail howthisexponential behavior influences multi-packet imagedelivery.

While our protocol analysis has focused on latency performance, previous work on

ideal SRP has focused on characterizing SRP's throughput performance (also called effi

ciency or utilization). The throughput T| is defined as the percentage of time spent trans

mitting new packets [78][145]. High throughput implies that less time is spent on

retransmissions ^ small) and/or waiting for an acknowledgment or time-out,

and proportionately more time is spent on transmitting packets correctly the first time.

Conversely, if the expected number of transmissions per packet E[Npacket\ is large, then

the throughput will be low. Clearly, ii« ^ r, where the precise relation depends
^l^packeti

on the protocol. Therefore, the single packet delay is closely related to the throughput

through E[Npaci^f]. Infact, our estimate ofthe delay has leveraged offofprevious through

put derivations in order toobtain E[Np^i^f]. We will have more to say in the next section

about the relationship between throughput and our loose estimate of multi-packet image

latency.

Finally, single packet latency analyses of SW and GBN have been performed in

[116][134]. Single packet latency analyses of SRP have been performed in [78][145].

Other authors have undertaken a queueing analysis of the average wait time for a single

packet inSRP [72][117]. Our derivation ofEquation (2-3) has been designed toemphasize

the intuitive dependence of latency upon BER, BW and overhead H, which will aid in

understanding the multi-packet SRP analyses of the next two sections.
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2.3 A loose lower bound on the Image transfer latency of Ideal

SRP

In this section, weextend oursingle-packet latency analysis of ideal SRP toconsider a

long image block that may need tobefragmented into multiple smaller packets for deliv

eryby the network protocol. We develop a "loose" lower bound that estimates the image

transfer latency. The loose bound provides insight into the contributions todelay from the

bandwidth, BER^ and header overhead factors. We show how our loose bound is related to

the throughput. The loose bound is also used to determine a closed-form solution that

specifies the optimal way to fragment an image so thatdelay is minimized.

For an image fragmented into multiple packets, the average delivery time for the

image is not simply the sum of the individual packet delivery times, due to overlapping

packet deliveries. Suppose 7} is defined as the interval between the start of packet P/'s

transmissions and final reception of an acknowledgment of error-free delivery for that

packet. Ideal SRP fills any given packet's RTT interval with the transmissions and repeti

tions of other packets, in aneffort to keep the downstream pipe completely filled. There

fore, an estimate for the expected delay ofa multi-packet burst which sums E{Tf\ over the

individual packets will overestimate the delay, since many overlapping times would be

counted multiple times. This overlapping is illustrated inFigure 2.3, inwhich packet Py's

retransmissions overlap withpacket^2'^ repetitions.

Figure 2.3 suggests several ways to estimate the delivery time for a packet burst that

avoids overlapping summations. Afairly conservative estimate would simply sum thetotal

number ofpacket transmission times PIT. By counting the number ofPIT slots occupied

during the transmission of a group of packets corresponding to an image, we obtain a

loose lower bound estimate ofthe average image transfer delay. Note that such an estimate

automatically incoiporates the delay due to contention for bandwidth among different
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packets at the sender. Since packets are interleaved, and ideal SRP tries to keep the trans

mission pipe filled with new transmissions and retransmissions, then the PTT time slots by

which a given packet is delayed due to contention areoccupied by transmission of other

packets. The contention-based delay for each packet isautomatically included by counting

thenumber of occupied PIT slots for theentire image burst.

Our loose lower bound estimate ignores the interstitial space (e.g. between the second

transmission ofP2 and the third transmission of in the figure) caused by the protocol's

inability to keep the transmission pipe filled when the amount of data left to transmit is

less than RTT. In the next section, we will pursue analysis ofa tighter delay estimate that

accounts for the interstitial space or idle time.

Continuing with our loose estimate of the average image delay, we define as the

time to transmit a packetized image burst, including fragment-based retransmissions. Let
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F be the number of fragments that an image is divided into. Define ^ the

expected number ofretransmissions for each fixed-length fragment.

The loose lower bound on delay is obtained by counting the amount of "air time"

when packets are actually transmitting over the channel. This is equivalent to counting the

number ofpacket transmissions PTT that occur, i.e. the time occupied by the shaded pack

ets in Figure 2.3. Each fragment will be repeated on average E[Nfragment thnes. Therefore,

fragment^ *FTT is a conseivative and non-overlapping estimate of the reliable per-

packet delivery time. The non-overlapping characteristic means that the per-packet deliv

ery times can be summed across the F packets. In contrast, the overlapping estimate of

per-packet delay E[Nfragment ' {FTT +RTT) from Equation (2-2) would have precluded

summation of the individual delays. Since all F packet fragments are assumed to be the

same length, then E[Nfragment^ is the same across all packets, then the loose estimate ofthe

average image delay is given by the product of the number of fragments perimage, the

averagenumber of retransmissions per fragment, and PTT, i.e. F •E[N•PTT .

If wefragment the original image size/ bya factor P, where H = number of header bits

then each packetized fragment will be size {HP + H) bits. Then Equation (2-1) is revised

into

fragment^ ~ f

The loose estimate ofthe average reliable image delay is therefore given by

^t^imagel ^ F ' P[A^y>.flgOTen/] *̂ ^^/ragmen/ (2-5)

F F*^ _ 1 I+F H
Bw

{I-BERT*' ^ {l-BERy
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Equation (2-5) neatiy summarizes the various contributions to delay. It can be parti

tioned into aBERfactor (1 -BER) ^ ând aBWfactor ^ ^ wnphasize the
BW

independentcontributions to delay from the channelnoise and the limited channel band

width respectively. The header overheadis shown to affect both factors.

This loose estimate is a lower bound onlatency in two ways. First, it ignores theinter

stitial spaces shown inFigure 2.3 caused by the inability ofa finite image burst tokeep the

protocoFs transmission pipe completely filled. The interstitial spaces i^pearnear the tail

end of the image burst, causing partially empty transmission pipes. Second, it is a lower

boundoverall protocols, because we haveassumed idealSRP, which minimizes the num

ber of unnecessary retransmissions, and hence minimizes average transmission time ofa

packet.

Table 2. Minimum average delay estimates for fragmented ideai SRP deiivery
of a 20kbit image as a function of the image fragmentation factor R

Fragmentation
factor F

10 20 50 100 1000 10000

non-header pay-
load size of packet

(bits)
2000 1000 400 200 20 2

'BERfactof* 1E9 6E4 152 20.4 3.34 2.79

"BWfactor 0.042 0.04 0.05 0.06 0.24 2.04

lower bound esti

mate of
6E7 sec

2.78E3

sec
7.61 sec 1.22 sec 0.802 sec 5.69 sec

In Table 2, we calculate asampling of Equation (2-5) *s lower bound on J for a

fragmented image as afunction ofthe fragmentation factor F. The parameters BER, H, and

BW have the same values as before, and we assume an image size / =20000 bits (say a

200x200 pixel small color image compressed to 0.5 bits/pixel).

Table 2 shows that the delay decreases exponentially as F increases, reaching amini-

mum-delay value Fopt for the fragmentation factor (on the order of F=1000), before rising
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\
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Figure2.4 Log-log plotof average delayof the Image vs. Imagefragmenta
tion factor Fusing Equation (2-5). Image size =20 kl)lts, BE/fs 10'^ BW
= 500 MMt/s, and header H = 100 l)its. A minimum delay of aboiA half a
second emerges around a fragmentation factor of -<300.

again forlarge F. We plotEquation (2-5) asa function of the image fragmentation factor F

in Figure 2.4. The behavior of Figure 2.4 is governed by the two dominant factors due to

BW andBER. The BERfactor declines exponentially asa function ofF, while the BWfac

tor increases only linearly with F. Hence, for very small F (large packets), delay is astro

nomical due to the BER factor (many retransmissions). However, as F increases (smaller

packets), the retransmission delay due to the BER recedes exponentially, so that smaller

packets help todecrease image transfer latency. As F becomes very large (in the extreme,

1 bitpayloads!), theBWfactor causes thelatency torise again, duetotheoverhead caused

by the headerH in comparison to the ultra-small payloads.

For the sake of completeness, we next derive a closed-form solution for the minimum-

delay fragmentation value. First, we take the derivative ofEquation (2-5) with respect to

F. This results in a quadratic in F which can then be set equal to

zero, -^Equationil- 5)) = 0 . Our optimal F is given by
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(2^

where we have eliminated the second root. F^pf is shown to be afunction ofthe image

size I, BER, and header overhead H.

Substituting default values, we obtain F^pf = 324. This value can be verified by con

sulting Figure 2.4, which yields agraphical minimum near F=300. At this value F^p^ our

optimal packet size (payload + header) is about 162 bits. The minimal-delay payload is

somewhat suipiisingly smaller than the header overhead. This is because the protocol

needs to generate very small packets inorder to avoid the ejq)onential delay contributed by

thechannel noise, even at thecostof suffering significant header overhead.

The minimum delay at is *^.53 seconds. If we estimate our real-time delivery

bound tobeabout 500 msec, then we are justbarely meeting our objective. If we assume a

more realistic bound of100 msec isneeded to support "instantaneous" interactivity, then

ideal SRP will fail to meet the interactive delay objective by almost half a second even

under the most optimisticassumptions.

Previous work that derived the optimal packet length has been based on taking the

derivative of a throughput equation with respect to packet length in order to maximize

throughput (for SW [129] and GBN [116]). The maximal-throughput packet length is

found to be primarily afunction of BER and header overhead //, though this depends on

the protocol. This is confirmed by our SRP analysis, in which the optimum payload size

^ is found to be only afunction of BER and H. Another time-based derivation of opti
mal packet length minimizes the expected "wasted time" but does not consider header

overhead [89].

Finally, we relate Equation (2-5) to previous work on ideal SRP thathas focused on

characterizing the protocoPs throughput performance defined as
PTT^SRP ~ j [78][145]. Throughput analyses observe that any given packet's
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roundtrip time RTT is filled with the transmissions and repetitions ofother packets. There

fore, E[TpQckei\ should only count the actual "air time" necessary to transmit and retrans

mit a given packet, i.e. ^ E[N]'PTT. Hence, ^SRP ^ given by
PIT^SRP - £[jv] •PTT ~ effective channel bit rate available to the sender is

' BW. A simple estimate for the delay of an image / obtained from the throughput

^ risJ-BW °F bW °''"F W • ^ essentiaUy Equation (2-5)
% s

minus the overhead. Thus, we see that our time-based derivation is closely related to

throughput expressions. Our delay-based approach e^licitly shows the dependence of

latency on BW^ BER, and H. In addition, our time-based reasoning reveals that Equation

(2-5) (and the equivalent throughput-derived delay) underestimates the delay, foreshadow

ing our analysis of the next section. Reliance on previous throughput-based derivations

would have missed the effect ofa partially empty pipe for finite image bursts.

2.4 A tight lower bound on the image transfer latency of ideal

SRP

We develop in this section a more complete estimate ofa protocol's delivery time fora

finite image burst that also incorporates a measure of the idle time caused by a partially

empty transmission pipe. InFigure 2.5, we depict how a large burst ofpackets correspond

ing to an image can initially keep the pipe full, under certain assumptions. However, the

tail end of the burst eventually causes interstitial spaces to appear in the delivery stream.

This tail effect occurs regardless of the burst size, and is a function of the roundtrip time

RTF. Our goal is toquantify the contribution ofthis tail effect tothe overall latency.

Define RTF as the roundtrip time after a packet transmission until its acknowledgment

retums, and PFF as the fixed-length packet transmission time. We assume RFF is a con

stant value in the upcoming derivation. Define the total roundtrip time FRFF as
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Figure 2.5 Afinite burstofpackets cannot keep thepiotocoi's transmission pipe com
pletely full. Assume thatthe window size IV(#packets allowed In the pipe)
and image burst of length / packetsare large enough to initialiy keep the
protocol's pipe full, i.e. IV^PTT + RTT and / ^ P7T + R7T , where PTT
and RTTare measured in packet units. Evemuaiiy, the final PTTfRTTpack
ets will be delivered through a partially empty pipe, inthe figure, k4, Wb3,
PTTsi, and /?7Ts2 equivalent packet lengths. Ail packets except are
delivered correctly the first time. The significance of tparmion and tw Is
explained later in this section.

TRTT = PTT +RTT. Define the sender's window size Was the number ofpackets that

are allowed to be simultaneously propagating toward the receiver in the transmission pipe.

We optimistically assume that the fixed window size is large enough so that the protocol

can completely fill any roundtrip time with multiple packets. Hence, Wneeds to exceed

the number ofpackets that could fit into TRTT, i.e. W^ IPTT +R7T I
L PTT J'

Furthermore, we assume that only one version of each packet is in the pipe in any

given total roundtrip interval. For example, two retransmissions ofagiven packet are not

allowed simultaneously in the pipe. Certain ARQ protocols do indeed fill the pipe with

multiple copies ofa given packet [13][62][133]. We do not consider such protocols, and

instead note that ideal SRP satisfies our restriction that only one version of each packet

may be allowed in the transmission pipe.
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Each of these packets is formed by fragmenting animage into F packets, where each

packet is of length ^+//, counting header overhead H, Given ideal SRP with sufficiently
large windows, then two scenarios are possible. Either the image size I is large enough to

allow ideal SRP to initially fill the transmission pipe, or the image is too to ever fill

the pipe. Inthe first scenario, there are enough distinct packets from the fragmented image

to fill the transmission pipe during the first TRTT. This condition can be written as

F' PTT ^ TRTT, or equivalently ^1 •Let us define a as the ratio of the total

roundtrip time to image burst size:

0-7)

2.4.1 Image burst is large enough to initially fill the transmis

sion pipe

We begin by analyzing the case in which a ^ 1, namely the image is large enough to

initially fill the pipe during one complete roundtrip time TRTT. For example. Figure 2.5

portrays a situation in which 1. The packetized image burst (4packets long) is larger

than TRTT (equivalent to 3packets). The packetized image is able to initially fill the pipe,

but only until one of the four packets is correctly received. Atthat point, thefinal TRTT (3)

packets wouldbe unableto keep the pipe filled.

As the example suggests, one approach to obtaining a tighter latency bound would be

to try to partition our analysis into two non-overlapping estimates: the delay

accumulated while there is enough image data to keep the pipe full/saturated; then esti

mate the delivery time of the final "tail" packets through a non-saturated pipe. Without

loss ofgenerality, we can set the window size to = IFTT'¥RTT I is the mini-
L PTT J

mal window size that still permits a full pipe, provided there is a sufficient amount of

source data.
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2.4.1.1 Delay due to the first F-IVpackets that keep the pipe full

We observe that the final W packets will be unable to keep the pipe full. Since the

image is fragmented into F packets, then F-Wpackets are transmitted under saturated pipe

conditions. These F-Wpackets arealsothefirst to becorrectly delivered. Each of the first

F-Wcorrectly received packets willbe retransmitted on average E[1V] times, where £[AG is

given by Equation (2-4) . Since the pipe is full, then the expected time per packet is

£[iV] •PTT, and the total delay for the F-Wpackets is given by (F-W)- E[N] •PTT .

This expression matches the conservative P7T-only estimate of the previous section (see

Equation (2-5)) for the firstF-W packets.

2.4.1.2 Delay due to the last Wpackets over a partially empty pipe

As the packetized image flows through the pipe, eventually the first moment in time

will arrive when precisely Wpackets are remaining inthe sender's queue and only one of

these packets stUl awaits its first transmission. We shall label this time %. We contend

that there exists a critical instant tpartition related to tjy that can serve as the partitioning

point which cleanly separates analyses of saturated and non-saturated pipes. First, we

observe that some ofthe Wpackets remaining in the tail may already have ahistory ofsev

eral transmissions by %. For example, in Figure 2.5, %represents the first time that pre

cisely W=3 packets are left in the sender's queue and one packet (P4) has yet to start

transmitting. At this instant, packet F; has already been transmitted twice, and P3 has been

transmitted once. This history ofunsuccessful transmissions could complicate the analysis

ifthere was memory (in the probabilistic sense) in the ARQ process, so that the probabil

ity ofsuccessful transmission varied depending upon apacket's repetition history. Fortu

nately, for any of the Wpackets, the number of attempts Nf (/=1..W0 until the first

successful transmission is governed by a geometric distribution, which is known to be

memoryless [154], i.e. Frob[<A^,.= (M+/)|7V.^/)] = M]. Therefore, a packet
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Pi*s history of J prior unsuccessful transmissions does not affect its future number M of

unsuccessful retransmissions until the first successful attempt. Moreover, the memoryless

property identifies thisfuture distribution as stillbeing geometric.

Based on the memoryless argument, our approach to analyzing the packet tail is to

ignore previous unsuccessful attempts and start our analysis as if packets had just

arrived in the sender's queue at time tpartiv/on •We still need to relate ^ %. Figure

2.5 shows that if we backtrack in time from by one roundtrip time RTT, then the final

group of W packets can be viewed as initiating their transmissions at

^partition - ~R^T. The memoryless property permits us to ignore any unsuccessful

attempts prior to rpar/»7ion»so that the final Wpackets appear from aprobabilistic perspec

tive as if they're starting transmissions for the first time.

In the final group ofWdelivered packets, there will always beone "last" packet which

is the final one to be correctly delivered. LetNia^t defined as the number of transmis

sions experienced by this last packet. First, we would like to determine its distribution

Prob{NMl. From thedistribution, wecanfind the average number of transmissions

ElNias^, which isuseful for deriving the delivery time ofthe entire burst ofWpackets.

IfNi (i=l..UO represent the number ofrepetitions for each ofthe independent and iden-

ticaUy distributed Wpackets, then Most basic probabiHty

texts show how to obtain the distribution of from the distributions ofNi. We mention

the salient steps here. The generic geometric random variable N is used to represent the

i.i.d. geometric A^,-. First, we find thecumulative distribution function for

Prob[Ni^,,^M] = Prob[N^^M, = {Prob[N^M\}^ (2-8)

Next, we obtainthe probability distribution of fromthe c.d.f.:
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Prob[N,^„= Af] = Prob[N^„iM]-ProblN,^„^M
(2-9)

= [Prob[N SM\f - [Prob[N i W-1]]""

Let Pg represent the probability of an error-free (//F+//)-bit packet, defined by

Pg = (l-BH«)'''''*".Thec.d.f.ofA^isgiven by

M

J- 1Prob[Ni.M-\= Y,^l-P^)'-'P^ (2-10)
/-I

Finally, the expected value ofNia^t can be found from Equation (2-9) and Equation (2-

10):

00

= £ ^ •Prob[N,^„ =M] (2-11)
Mil

The expected time required to transmit the last packet is simply the product of the

expected number of repetitions and the total roundtrip delay TRTT per repetition, i.e.

' iPTP+/?7T). This expression also represents the delivery time for the entire

set ofWpackets, because the last packet by definition isdelayed the longest and therefore

spans the delivery periods ofeach of the other W-l packets.

Note that by using the concept of a "last" packet to focus our analysis, we have

avoided the possibly complex task ofhaving to quantify the interstitial spaces that arise in

a partially empty pipe. In addition, we have assumed that the protocol does not try to fill

the interstitial spaces with multiple copies ofa packet, as stutter ARQ is designed to do

[13][62][128][133]. To support multi-copy retransmission, ideal SRP would have to be

modified to recognize when a pipeis aboutto become idle,and would thenhave to initiate

aspecific stuttering strategy. This would likely increase but would also manage to

reduce the latency, because the additional repetitions actually improve the speed ofdeliv-
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ery over a partially empty pipe in a single-user environment. We do not pursue this possi

bility further.

2.4.1.3 Overall tight bound estimate on Image transfer delay

Adding the two contributions to delay from the saturated pipe and the non-saturated

pipe from the preceding two subsections, we obtain the following estimate ofthe delivery

latency for large images:

E\TM^^e\'^{F-W)'E[N] 'PTT^E{Nt^J ♦ {PTT-^-RTT) (a^ 1) (2-12)

The right hand side ofEquation (2-12) is a lower bound onthe image delay for several

reasons. First, we have neglected any retransmissions prior to /porr/non associated with the

final Wpackets, which will contribute to thedelay. Second, weassumed that the window

size was large enough topermit a full pipe, which may not happen inpractice. Third, we

failed to include in Equation (2-12) how long the"last" packet has to wait in the sender's

queue after tpartition before it starts its retransmission cycle. Since the "last" packet could

turn out to be the last in the sequence of Wpackets to begin transmitting after

then this packet will have to wait up to (W -1) •PTT seconds (almost one full TRTT)

before its retransmission cycle can start. The term E[Ni^^f] •{PTT+ RTT) only measures

the delay due tothe retransmission cycle, and fails tocapture this waiting time.

Equation (2-12) is a tighter bound on the image transfer latency than Equation (2-5)

because the effect on delay due toapartially empty pipe isincluded. Also, the assumption

of ideal SRPmakes Equation (2-12) a lower bound over allprotocols.

We should note that Equation (2-12) measures the delay between the start of image

transmission and the final return to the sender of the last packet's acknowledgment. The

perceived delivery time measured from sender to receiver will differ because the final

retum trip (actually, there may be several attempts to return the last packet's acknowledg-
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ment on the reverse channel) of the last acknowledgment is not included in the sender-to-

receiver delivery time. We do not pursue diis alternative definition of image transfer

latency.

2.4.2 image burst is too small to ever fill the transmission pipe

When a > 1, then the image size is too small to initially fill the pipe during the first

TRTT. Thepartially empty pipe suggests again that weapply a "last-packet" latency anal

ysis. First, let W = , so that the window size Wis large enough topermit a

full pipe, even though there is not enough image data. There exists a "last" packet among

the F image fi-agments which is the final one reliably delivered. Define the number of

transmissions of this last packet as >i) = max{N^,N2,, Np). Following the same

reasoning as before, the distribution ofthe number oftransmissions ^/^^for a >1 isgiven

by

Prob[N„,n^> „= M] = [Prob[N SW]]" - [Prob[N -1]]" (o>1) (2-13)

Prob[N can be obtained from Equation (2-10). ,)] can be obtained

from Equation (2-13). Thus, the delay for a small image satisfies the following:

^ >1)1 ' iFPT + RTT) (ot >1) (2-14)

The right hand side ofEquation (2-14) is a lower bound for many ofthe same reasons

that Equation (2-12) was a lower bound. However, Equation (2-14) differs from Equation

(2-12) in two ways: the full-pipe term {F-W)' £[iV] •PTT has been eliminated; and the

distribution of differs from thereby subtly affecting the second term

*{FTT + /?7T). Together, Equation (2-12) and Equation (2-14) constitute the

"tight" boundon the image transfer latency.
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2.5 A comparison of the tight and loose lower bounds on

latency

Howmuchmore accurate is the"tight" boundof Section 2.4 thanthe "loose" boundof

Equation (2-5) ? Toanswer this question* wefirst fix theparameters totheir default values:

7=20 kbits, wireless 5^^=500 kb/s, 77=100 bits, and BER = 10"^. For the loose bound, fix

ing these quantities means that the estimated delay is only a function of the image frag

mentation factor F, which was graphed in Figure 2.4. In contrast, the delay of the tight

bound is still a two-dimensional function ofRTT and F. Our approach is to choose a few

representative values ofRTT, and then plotthe delay given bythe tight bound as a function

ofF for each fixed RTT. Such an approach permits the loose bound shown inFigure 2.4 to

be directly compared with the tight bound on thesame graph.

2.5.1 Average Image transfer latency

Figure 2.6 shows three log-log curves that plot average image transfer latency as a

function offragmentation F. The latency curve L evaluates the loose bound described by

Equation (2-5) at the default parameters, and is almost identical toFigure 2.4, except that

only values F^50 are displayed.^ Two graphs of the tight bound, Tj and T2, are also

shown corresponding to different values ofRTT. Tj isobtained by evaluating Equation (2-

12) and Equation (2-14) at F7T=1(K) ms, while 72 corresponds to/?7T=10 ms. We also

evaluated the tight bound at/?7T=1 ms, though these results are not pictured because they

follow the loose bound soclosely as to bevisually indistinguishable. We chose these val

ues of RTTto roughly correspond to real-worldnetworkconditions. A value of 100ms for

RTT approximates the end-to-end roundtiip delay experienced by packets across a multi-

1. Small values of F<50 caused numerical ccnveigence problems in tbe evaluation oftbe tight bound's
(see Equation (2-11)). For comparismi purposes, both loose and tight bounds were evaluated

over tile same range of 7b»=50.
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Figure 2.6 Log-log plot oftheloose lower bound delay estimate (curve i.) andtwo
tighter bound delay estimates (curves T, (/TTTslOOms) and
(/?7TslOms)) as functions of the Image fragmentation factor E The
loose curve LIs obtained from Equation (2-5) and reproduces Rgure
2.4, but over a slightly smaller range ofEThe more accurate delay esti
mates shown In and T^are obtained from Equation (2-12) and Equa
tion (2-14). The loose bound Is shown to considerably underestimate
the delay when the roundtrip time RTT becomes large relative to the
size of the packetized image(Including overhead).

hop Internet connection. Avalue of 1ms for RTT approximates the roundtrip time experi

enced by packets at the data link layer, i.e. across a single wireless link.

Figure 2.6 shows that the difference between the loose lower bound L and the tight

lower bound can become quite large for sufficiently large RTT. For example, acomparison

ofTi and L atthe loose bound's minimum delay point s 300) shows that there is a

difference ofapproximately three seconds between the two estimates when F7T=100 ms.

For such a large value ofRTT, a considerable portion ofthe image will be delivered over a

partially empty pipe. The loose bound will fail to count the latency introduced by this par

tially empty condition, and therefore will significantly underestimate the image transfer

time compared to the tight bound.
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Rgure2.7 A log-log plotof the ratio of the tight bound on Image transfer delay to
the loose bound on averageImage transferdelay as a function of Image
fragmentation E Thethree curves Ri, R2, and R^ correspond to f?7T=100
ms, 10 ms, and 1 ms respectively. R^ shows that for large values of RTT
(relative to the Image size), the loose l>ound underestimates the delay by
at least a factor of twofor most reasonablevaluesof F-^000. Thisfigure
Is a normalized representation of Rgure 2.6.

2.5.2 Ratio of average image transfer latencies

An alternative and more revealing way of comparing the tight bound to the loose

bound for various values of RTT is to normalize each of the curves with respect to the

loose bound. We form the ratio of the tight bound's average image transfer delay to the

loose bound's average image transfer delay at each pointF, for fixed RTT. This ratiowill

measure the extent to which the tight estimate exceeds the loose estimate. In Figure 2.7,

we plot this ratio as a function ofF, and three values ofRTT. Curves F;, F2, and F5 corre

spond respectively to F7T=100 ms, 10 ms, and 1ms. Figure 2.7 isdirectly related to Fig

ure 2.6since each point F/(F) is obtained bydividing Ti(F) by L(F).
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Figure2.7 summarizes the answer to our original question of howmuchmoreaccurate

thetight bound is than theloose bound. Curve Rj shows that, forrelatively large values of

RTT, the loose bound underestimates the latency by at least a factor of two for almostall

meaningful values of F. Consequently, end-to-end protocols with large RTT relative to the

image sizewould find thetight bound a farmore accurate prediction of theminimnfn cost

in delay than the loose bound. In contrast, R^ shows that, for relatively small values of

RTT, the loose bound does as good ajob as the tight bound inestimating the latenqr for all

values ofF,due tothe negligible amount ofidle time. Therefore, data-link protocols with

a relatively small RTT would find the loose lower bound a useful tool for estimating their

minimum image transfer latency, without having to resort to evaluating the tight bound.

2.5.3 Conditions under which the loose bound is inaccurate

The loose bound isconsiderably easier toevaluate than the tight bound, since

in Equation (2-11) is difficult to calculate. Therefore, we would like to use the loose

bound as often as possible. However, wealso need to know when theloose bound is inac

curate. Specifically, at what value ofRTT causes the loose bound to start to perform

"poorly"? As RTT increases, clearly there will come apoint in which asignificant portion

of the image is delivered over apartially empty pipe, corresponding to apoor estimate by

the loose bound. For example, for either of the cases F7T=l(X)ms, and /?7T=lms, it is

immediately clear from their normalized curves Rj and Fj respectively that either the

loose bound is agood estimate (Fj), or it isapoor estimate (Rj), for all values ofF. How

ever, when /?7T=10ms, there is some ambiguity. Curve R2 shows that the loose bound is

close to the tight bound for some values ofF butnotforothers, i.e. it is notclear whether

F7T=10 ms is "large enough" to start causing the loose bound to perform poorly.

To help us determine when RTT is large enough to affect the accuracy of the loose

bound, weutilize theratio a defined byEquation (2-7). Recall that a is the ratio ofTRTT
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to image size (plus overhead). For values ofa ^ 1, then the roundtrip time is so large as to

cause theentire image tobedelivered over a partially empty pipe. Therefore, for a ^ 1 the

loose bound will significantly underestimate the delay. As a gradually decreases below

one, the percentage ofthe delay caused by the non-saturated pipe gradually decreases, and

the loose bound becomes more and more accurate. Let us define "poor" peifoimance as

any ratio of the tight bound to the loose bound which exceeds a factor of 1.5x to 2x. There

fore, our goal is to find the approximate value otiadicatOT which the tight bound is about

1.5x-2x of the loose bound.

The ratio a is a function ofF and RTT. Table 3 tabulates a for the three values of RTT

represented in Figure 2.7 over a sufficiently comprehensive range of F. For/?7T=100ms,

Table 3. Values of the Indicator a are shown as a function of
image fragmentation factor Fand roundtrip time RTT

Image Fragmentation
Factor F

F7T(ms)

100 10 1

50 a = 2.0 .22 .04

300 1.0 .10 .013

500 .72 .073 .0091

3000 .16 .016 .0019

5000 .096 .0098 .0012

a ^ 0.2 for values of F <3000. Over this range of F, the tight bound exceeds the loose

bound byat least a factor of two according tocurve Rj. For/?7T=10ms, a ^ 0.2 for values

around F ^ 50.Near this range ofF,the tight bound exceeds the loose bound by a factor of

about 1.5 according to curve R2. Thus, in answer to the question concerning when the

loose bound begins to perform poorly, a rough rule of thumb would be that if the total

roundtrip time TRTT exceeds about ^ of the raw "image plus overhead" transmission
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time, then there is a highlikelihood that the looselower bound willconsiderably underes

timate the minimum latency,possibly by a factor of 2x or higher.

2.6 Limitations of practicai end-to-end ARQ protocois

In this section, we discuss several of the limitations to performance e}q)^ienced by

practical realizations ofend-to-end ARQ protocols. First, real-world protocol implementa

tions like TCP often cannot approach the throughput of ideal SRP. Second, in practice it

may bedifficult to determine theoptimal packet fragmentation value. Third, protocol effi

ciency may be limited by small window sizes that are less than the roundtrip time, or by

finite buffer sizes at the receiver.

Practical end-to-end fully reliable protocols will ingeneral deliver data more slowly

than ideal SRP. For example, the end-to-end reliable protocol used over the Internet, TCP,

has been shown tohave a throughput bounded bythe performance ofGBN (for the case of

constant retransmission time-outs) [30][33]. Since GBN's throughput is bounded by SRP

[78], and since throughput is inversely proportional to the expected number of transmis

sions £[AG [78] and then TCP will incur a higher latency cost than SRP. More

over, all of the other real-world implementations of transport protocols besides TCP that

are surveyed in [32] practice either some form of GBN, or some non-ideal form of SRP

(e.g. finite receiver buffers, finite transmit buffers, and limited window sizes [78]). There

fore, all current real-world implementations of transport protocols ultimately incur a

higher latency cost than theideal SRPanalyzed here.

Next, recall that the optimal fragmentation derived in Equation (2-6) is a function of

both the BER and the image size /.Due to lack of feedback from the channel, the BER may

not be known. Or due to alack oftimeliness in feeding back the BER, may be an inac

curate estimate that is not updated with sufficient rapidity. Furthermore, is also a
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function ofthe ovei'all image size /. Unless the interface to the protocol specifically allows

the application to define arbitrary boundaries on the stream of packets that is sent to the

reliable protocol, then the underlying reliable stream protocol won't beable tounderstand

the notion ofan "image" nor of"image size". For example, TCP's reliable stream delivery

service views the data thatit is transporting as a stream of bytes, andhas no sense of the

embedded semantics of the data it is delivering. Hence, there is no means for TCP to

extract image boimdaries.

Another limitation occurs if the protocol's window size is less than theroundtrip time

measured in packet lengths. Under these circumstances, thewindowing mechanism is arti

ficially choking thepipe, thereby forcing interstitial space toappear in every RTF interval.

Forexample, previous implementations of TCPhave hadanupper bound on theirwindow

sizes that is too small to keep thepipefull over satellite links that have a highbandwidth-

delay product [109]. Other concerns include finite receiver buffer space, which can cause

buffer overflow andpacketloss at thereceive, thereby causing retransmissions andreduc

ing throughput. A throughput analysis of finite buffer SRP has been performed [79].

2.7 On proposals to improve the performance of wireless TCP

To complete our examination of reliable protocols, we consider some efforts to

improve TCP forwireless links. The considerable latency costs ofconventional ARQ pro

tocols over connections with wireless access links have been documented in previous sec

tions. TCPsuffers from all of these problems andmore. Another problem specific to TCP

whichlowers its throughput andincreases its delivery latency is that, in a wireless environ

ment, TCP mistakes packet losses caused by bit corruption for packet losses caused by

network congestion. TCP responds to any packet loss by initiating congestion-avoidance

mechanisms like window throttling and "slow start". However, if the packet losses were
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caused bybitcorruption, then there is nocongestion onthe link, and TCP is unnecessarily

lowering its throughput and increasing itsimage transfer latency inresponse to ''phantom"

congestion. Several approaches to fix this problem and improve TCP's wireless perfor

mance have been proposed, and are summarized in [5].

Each proposal to improve TCP has its own drawbacks. One approach, called Indirect

TCP, violates end-to-end semantics, and requires intermediate proxies to be running

throughout the wired/wireless network interface to translate between TCP and the local

wireless transport-layer protocol. A second approach, called the "snoop" protocol, also

requires TCP-aware snoop agents tooperate throughout the network at the wired/wireless

basestation interface, though in a less visible fashion than Indirect TCP. The snoop proto

col also relies on the assumption that return acknowledgments will pass through the same

snoop agents. The presence of multiple forward and return data paths underlying a single

TCP connection may result in the snoop agent failing to filter acknowledgments properly,

thereby failing tohide packet losses fi-om the TCP sender, which will react as before ina

congestion-avoidance manner.^

Athird approach to improving TCP's wireless performance relies upon data-link layer

protocols to improve the error performance of the wireless link, thereby helping out end-

to-end protocols like TCP [4]. End-to-end protocols like TCP are responsible for reliably

delivering apacket across multiple concatenated links. Adata-link layer protocol only

provides error protection (via forward error correction (EEC) and/or ARQ) over asingle
link. ConceptuaUy, a link-layer protocol operates underneath the end-to-end protocol in

the protocol stack, possibly for each link in the connection. We will have more to say on
the use of EEC in the next chapter, and on link-layer issues in alater chapter.

Eor now, we consider several other issues concerning link-layer and end-to-end proto

col interactions. One reference has pointed out that there can be inefficient coupling

1. This observation is gleaned in part from conversatitms with Venkat Padmanabhan at Berkeley.
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between TCPand link-level retransmissions [30]. In addition, we ask: will wireless data-

link layer protocols be able tohandle the heterogeneity ofsource data in anefficient man

ner? Forexample, typically video and audio are delivered using the unreliable User Data

gram Protocol (UDP) over the Internet because TCP is too slow for these stream-based

media. Other forms of data (e.g. file transfers using the ftp implication-level protocol,

anail using smtpy andWeb-related transf^ using http) are all delivered over the reliable

TCP protocol. If wireless link-layer protocols apply uniform error protection to all of

these different forms of data, then this can result in significant latency penalties and/or

inefficiencies. Uniform PEC will overprotect some forms of data and/or simultaneously

underprotect others. Link-layer ARQ reliability applied uniformly to all datacan signifi

cantly slow down UDP-based video.

Ideally, wireless data-link layer protocols would like to be ableto distinguish between

different forms of data, and apply unequal eiror protection (UEP) to these data types to

improve link-layer protocol efficiency. To what granularity should the data-link layer be

informed about these different types of source data? One approach would be for the link-

layer protocol tosimply differentiate between UDP and TC '̂ packets, and thereby provide

a coarse two-tier approximation to UEP. This approach requires the link layer to under

stand IP header semantics at the minimum, which technically violates Internet layering

principles. For IPv4, the data-link protocol must verify first that IPversion 4 isbeing used,

and then to inspect the PROTOCOL field in the IPv4 header to determine if UDP or TCP is

embedded in the IP payload [25]. But for IPv6, determining which upper layer protocol is

being used can be more complicated due to IPv6 header extensions. The IPv6

NEXF HEADER field can be used to specify either various IPv6 header extensions, or

upper layer protocols like TCP/UDP [109]. In the worst case, multiple header extensions

create a linked list of NEXTJiEADER fields that must be searched to its tail before the

correct upper layer protocol can be identified.
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Beyond these difficulties, link-layer protocols that implement protocol-granularity

UEPalsofail to realize that not all UDP datashould be treated the same. For example, a

variety of video coding techniques transmitted over UDP arepossible, including MPEG-2

video, H.261 video, as wellas various hierarchically coded/layered multicast video. Each

of these different video coders may generate multiple streams, with each stream requiring

a different degree of EEC. Multiple coded forms of audio may be delivered over UDP,

some ofwhich may require little tonoPEG, while others may require heavy PEG. Many

other non-audio and non-video applications may also betransmitting on top of UDP. Pro

tocol-granularity PEG would apply the same error protection toeach of these very differ

entforms ofdata, and suffer the same problems asuniform error protection.

Finer granularity application-specific UEP is somewhat problematic because nostan

dard mechanism exists for communicating application-level quality-of-service (QOS)

information down through the Internet protocol stack (i.e. through the transport layer and

IP layer) to the data-link protocols. IPv6 "flow" labels [57] partially solve this problem,

but several issues remain unclear. It is unclear what role the transport layer should play in

mapping application-level QOS toIPv6 flows. Also, it is unclear towhat extent IPv6 rout

ers will be able to store per-flow QOS state information. In addition, the mechanisms for

providing the data-link protocol with access to this flow-based IPstate infonnation do not

currently exist. We discuss some ofthese issues inGhapter 7.

Insummary, a transport layer protocol's reliance on link-layer protocols to solve most

ofits error problems over a wireless link can result inavariety ofinefficiencies. The lack

of apractical mechanism for passing application-level QOS information through the trans

port layer down to the data-link layer forces the link-level protocol to practice either uni

form error protection, or protocol-granularity UEP, both of which can be very inefficient.

Finally, even if TGP is modified to incorporate elements of Indirect TGP and/or the

snoop protocol, the resulting increase in speed for TGP over wireless channels will not
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ultimately be sufficient to support strictly real-time delivery for instantaneous interactivity.

TCP's latency performance will still belower bounded by that of ideal SRP. We showed

earlier that ideal SRP incurs a latency of about halfa second at 10'̂ BER under the loose

bound estimate. Therefore, if our delay budget is 100 ms, i.e. we need to get our image

across the connection inless than 100 ms for interactivity puiposes, then TCP as cuirently

realized with sliding windows and cumulative acknowledgments will be unable to meet

this latency objective.

2.8 Summary and conclusions

In this chapter, we have derived two lower bounds which quantify the minimum

latency required by the most efficient ARQ protocol, ideal SRP, toreliably deliver a frag

mented image over a noisy BER bandlimited link. Since our derivations characterize the

channel generically through its parameters, then our analysis can be applied both to an

individual wireless link (i.e. data-link layer protocols) as well as to end-to-end connec

tions whichincludea wireless access link (i.e. transport protocols).

The loose lower bound is useful for the intuition it provides, and also for its ease of

calculation. We have shown by using the loose lower bound that ideal SRP can take a min

imum ofhalf asecond todeliver a 20 kbit image over a500 kbi</s channel at 10"^ BER.

Thetight lower bound is more accurate than the loose lower bound because the delay

dueto a partially empty transmission pipe is also counted. This also makes the tight lower

bound more difficult to calculate. The tight lower bound should be used in place of the

loose lower bound when the total roundtrip time is a significant fraction (exceeding about

i) of the time it would take to transmit an image (plus protocol overhead) once at the
channel bit rate. Under these conditions, much of the image is delivered over a partially

empty transmission pipe, which the loose lower bound fails to measure. For end-to-end
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protocols with a RTT of approximately 100 ms or more, the tight lower bound is a better

estimate by at least a factor of about two than the loose lower bound.For link-layerproto

cols with a RTTon the order of 1 ms, then the loose lower bound will be adequate.

Also, we have listed practical limitations which will increase the image transfer

latency beyond the half second calculated by the loose lower bound. A real-world trans

port protocol which implements a scheme like GBN will be more inefficient than SRP.

Moreover, non-ideal constraints such as finite receiver/transmit buffers and finite window

sizes will increase thedelay beyond the estimated bounds, even if SRP is the protocol of

choice. Finally, our loose lower bound delay curve shows how imperfectly-sized fi*agmen-

tation can lead to increased latency.

These limitations are all suffered by the current implementation of TCP. In addition,

proposed fixes to TCP for wireless access have their own limitations, some of which we

have outlined here.

In our analysis, we have not addressed the use ofmulti-copy stutter ARQ techniques

which could be used to lower the latency incurred by reliable delivery of a fragmented

image. In addition, our analysis assumes fixed-length payloads and headers, and does not

account for variable-length packets. Finally, we have not considered in this chapter the

impact on the image transfer latency of adding forward error correction (FEC) to protect

against wireless bit errors. In the next chapter, we quantify the minimum FEC redundancy

needed to adequately protect a fragmented image for agiven BER for both open-loop sys

tems and closed-loop ARQ systems.
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3

Minimum Redundancy Evaluation of

Linear Block Codes

Ourprimary interest is the design of digital communication systems to deliver interac

tive visual multimedia rapidly and with sufficient reliability across a noisy wireless chan

nel. Our primary motivation for studying error protection techniques is to quantify the

increase in delay associated with adding error protection. Extra reliability often requires

the transmission of redundancy information in addition to the original data. This added

redundancy increasesthe transmission delay.

In this chapter, we first quantify the minimum amount ofredundancy required by open

loop error protection techniques to adequately protect a fragmented image from the trans

mission errors introduced bya noisy channel. Open loop error protection, also called For

ward Error Correction (EEC), lacks the feedback channel used by ARQ protocols to

guaranteeend-to-endreliability. The scope of our work is confinedto PEC via linear block

codes.

We derive an inequality which shows the minimum amount of error correction redun

dancy that is required by linear block codes in order to keep the loss rates of transmitted

images acceptably low. We develop an algorithm based on this inequality that systemati

cally determines the minimum code length for a wide range of input block sizes. Varia

tions of this algorithm are applied to each of the following classes of codes: optimal
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(maximum code distance) binary linear block codes; binary cyclic codes; binary BCH

codes; and Reed-Solomon (RS) codes. For binary BCH linear blockcodes, we deduce that

theamount ofFECredundancy needed to adequately protect an image cantriple theband

width for moderately long block codes. For RS codes, our analysis shows that the FEC

overhead can double the bandwidth under the same channel conditions.

We complete ourFEC analysis with an investigation oflype-I Hybrid ARQ protocols.

Such hybrid protocols combine FEC with retransmissions. Assuming RS codes are

employed by lype-I Hybrid ARQ protocols, then weshow thatno RS codes of length less

than 1023 output symbols can befound which will adequately protect a fragmented image

and deliver that imagewithin the interactive latency boundof 100ms at a severe 3% BER.

Consider the open-loop FEC system shown in Figure 3.1 that provides end-to-end

errorprotection across a multi-hop connection which includes a noisy wireless link. The

FEC block coder adds redundancy to each input block ofdata bits. These extra error pro

tection bits areused at the FEC decoder to correct any biterrors that may be encountered

during transmission across multiple concatenated links. Since FEC is an open-loop error

protection technique, then no guarantee can made that a packet will arrive with full reli

ability; the lack of a feedback channel means that the sender cannot know whether the

FEC has been sufficient to error-correct the data into a reliable packet. Following our

Packet transmission

FEC wired

encoder linkl

switch 1 . ^ switch 2
wired _ wireless

link 3 decoder

Figure 3.1 End-to-end open-loop error protection via FEC over multiple con
catenated network links (some wired, some wireless). There Is no
guarantee of completely reliable delivery.
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approach to analyzing ARQ protocols, we focus on the impairments introduced by the

weakest link, e.g. the wireless link, and idealize thenoise and packet losses introduced by

the other links of the connection. As noted in the previous chapter, one consequence of

this assumption is that both end-to-end and link-layer interpretations of ourFEC analysis

are possible.

3.1 A review of decoding techniques for iinear biock codes

In this section, we review two techniques for decoding linear block codes: maximum

likelihood decoding; and bounded-distance decoding. Practical decoding of moderately

long tolong block codes isalmost always a form ofbounded-distance decoding. The prob

abilistic performance of bounded-distance coding has been characterized, and we shall

apply those results to determine the minimum redundancy necessary to achieve a given

loss rate for a packetized image across a noisychannel.

The encoding and decoding processes for block codes have easy geometric interpreta

tions. For every Kinput symbols, the {N,K) block coder generates a block ofN>K output

symbols. We assume binary input values for now, i.e. that the symbols are bits. There are

2^ input /sT-bit messages, so that aone-to-one mapping will produce 2^ valid output A^-bit
codewords or vectors. These codewords are scattered throughout the iV-dimensional linear

space, which contains 2^ total vectors. In general, this /ST-bit -> A^-bit mapping can be non

linear. That is, the 2^ codewords in general do not have to form alinear subspace of the N-

dimensional linear space. However, almost all practical block codes are linear, i.e. they do

form linear subspaces (over finite fields) within the A^dimensional space [152]. The prop

erty of linearity simplifies the task ofencoding vectors, which becomes a straightforward

matrix multiplication of the input i^-bit code vector with a. K x N generator matrix that

completely describes all characteristicsof the linear block code [79].
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Figure 3.2 Maximum iikeiihood decoding of linear block codes Is equivalent to mini

mum distance decoding over a binary symmetric channel. The received
vector Is mapped to the nearest codeword. An alternative form of decod
ing, called bounded-distance decoding, only guarantees minimum distance
decoding of i when the number oferrors satisfies |£|| <T, l.e. only if i
lies inside a Tradius sphere. If the received vector i lies outside any of
the codeword spheres, then bounded-distance decoding will make no fur
ther effort at correction.

3.1.1 Maximum-likelihood decoding

The decodingprocess maps the receivedi^-bit vector to the proper codeword. How

ever, a noisy channel will cause bit errors, so that the received vector is the sum of the

original codeword 6 and the error pattern i (with 1*s inthe position ofthe bit errors), i.e.

^ = i +i. The decoder's task is to find a codeword f from ^ that maximizes the con

ditional probability of correct decoding /(lJ|c)) over all codewords c)., also called the

maximum-likelihood (ML) decoding procedure. Assuming a binary symmetric channel

(BSC) that corrupts/flips bits independently of one another, then it can be shown that ML

decoding is equivalent to minimum distance or nearest-neighbor decoding [153]. ML

decoding maps the received vector ll to the "nearest" codeword. The distance between

any two code vectors is measured as the number of vector indices in which the two vectors

have different bit values, also called the Hamming distance. The minimum Hamming dis

tance between any two code vectors is called the minimum code distance For linear
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blockcodes, is also equivalent to the Hamming distance from the zero vector to the

codeword closest to the origin. TheHamming weight of a vector ^ is defined as the num

ber of Ts in that vector, i.e. the distance between the vector and the origin, namely the

norm of the vector 1|̂ ||. Therefore, can also beinterpreted asthe minimum Hamming

weight codeword of the {N,K) linear block code.

In Figure 3.2, we illustrate several of these concepts. Minimum-distance decoding

would map li to the nearest neighboring code vector ^. Also, ifcodewords and ^

happen to be the two closest code vectors among all possible pairs, then the distance

between them is labelled as the minimum code distance

The minimum code distance is a key property of blockcodes which affects their error

correction and detection performance. We focus first ontheerror correction problem. Geo

metrically, it isclear that if the number oferrors (i.e. Hamming weight of the error pattern)

IS less than about , then for any transmitted codeword, the received vector i will be

unambiguously closer to the original codeword than any other codeword. Conceptually,

we can form a sphere around each codeword that has radius about . If the error pat-
D

tems are of Hanuning weight less than about then the received vector i will not

have changedenough to escape the sphere. Undertheseconditions, the received vectoris

guaranteed to be unmistakably corrected to the original codeword.

More precisely, define the error correction power of an {NyK) block code

T= j, where the "floor" function J calculates the greatest integer less than
or equal to a. Every error pattern with Hamming weight ||i|| ^ T can be unambiguously

corrected to theoriginal codeword by the geometric reasoning presented above [153]. The

radius-Terror correcting spheres centered around each codeword are shown inFigure 3.2.

If the error pattern has Hamming weight li| >r, then li will either lie in another T-

sphere, or in the interstitial space outside of all T-spheres. If the received vector lies in

another T-sphere, then minimum distance decoding will map ll to the incorrect codeword
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associated with this other T^sphere. Givenan independent error channelin whichthe prob

ability of bit error is less than one-half, then the distribution of the number of errors in a

block will be biased towards fewer rather than more errors. Consequently, choosing the

closest codeword will help more often than it will hurt. So despite the possibility of incor

rect decoding, the probability of incorrect decoding is relatively low, and minimum dis

tance decoding still maximizes the overall likelihood of correct decoding because the

probability of few errors is high and the probability of many errors is low.

If ^ lies outside of all T-spheres, then either the received vector is unambiguously

closest to a single codeword, or it is equidistant from two or more codewords. In the

former case, nearest neighbor decoding will produce a unique result. In the latter case

where there is ambiguity, ML decoding must choose between two or more equally likely

codewords.

Error detection also lends itself readily to a geometric interpretation. An error is

detected whenever a received vector is not a codeword. An error goes undetected when

ever the error pattern transforms the original codeword into another incorrect codeword.

Forexample, in Figure 3.2 the vector i would be detected as in error. However, anerror

pattern could be added to Cj causing i to be identical to ^, leading to an undetected

error. Figure 3.2 shows that all error patterns with Hamming weight ||i|| < -1 can be

detected. If the number of errors is strictly less than then it is impossible to trans

form the two closest codewords into one another by adding the appropriate error pattern.

By extension, no other pair of codewords which are separated even further can be trans

formed into one another under these conditions. Thus, if the number of errors

Itl ^ D„,„ -1, every received vector with non-zero errors can be detected.

For linear block codes, ML decoding can be thought of as a table lookup operation: for

each received vector 7^, consult the table tofind the pre-computed nearest codeword c).

Rather than a two-column table lookup approach, the linearity of the block code permits
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an array-based ML decoding procedure called standardarray decoding [141]. We men

tion this technique only to note that both table lookup and standard array decoding of

{NyK) linear block codes require the storage of2^ vectors. Therefore, memory require

ments can be prohibitivelylarge for block lengths iV5>20.

A variation of standard array decoding, called syndrome decoding [79], further

exploits the linearity of the code to achieve a significantly smaller storage requirement.

Here, asyndrome S iscalculated from the received vector ^ = i +t. The syndrome has

the property that it is only a function ofthe error pattern t. Also, multiple error patterns

can map to the same syndrome, creating a group of errorpatterns per syndrome called a

coset. Each coset has a minimum Hamming weight error pattern called the coset leader

E{S(^) .Hence, syndrome decoding can also be thought of as atable lookup operation:
calculate the syndrome; then consult the table to find the coset leader associated with this

syndrome. Provided that the decoder tries todecode an output codeword for every possible

syndrome (i.e. every possible coset leader is used), then syndrome decoding is equivalent

to ML decoding.

For an {N,K) block code, it can be shown that there are only 2^"* distinct syn

dromes, a significant memory savings over standard array decoding. However, even syn

drome decoding can result in large storage requirements. Forexample, for a (AT = 90, AT =

60) linear block code, up to 2^"^ =1 Gigaword of memory needs to be stored in the syn

drome lookup table, making syndrome decoding impractical for codes with large redun

dancy [24][153]. In practice, ML decoding is attempted only for a few restricted cases:

either for codes with a small amount ofredundancy; or for certain special classes of linear

block codes that exhibit structural properties that make them amenable to certain ML

decoding algorithms. For example, table-lookup decoding ofsingle-error-correcting Ham

ming codes [79] is an ML decoding technique. Majority logic decoding of Reed-Muller

codes [152] and Meggitt decoding of the (23,12) Golay code [24] are both examples of
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fast, practical ML decoders. However, such codes typically have small error correcting

power, and/or poor performance(large redundancy for the number of errors corrected).

3.1.2 Incomplete bounded-distance decoding

Mostpractical methods for decoding longblockcodeswith largeerror correcting abil

ity sacrifice ML performance for lower complexity decoding, opting instead for what is

called (non-ML) incomplete bounded-distance decoding [24][87][152][153]. Bounded-

distance decoders only promise to correct all errors up to L, where L<T, and T is the

maximum permissible error correction limit T= j.Error sequences with more
than Lerrors ("k lies outside ofany Z^sphere) are not corrected, returning only informa

tion that an error has been detected. This corresponds to applying syndrome decoding to

only someof the coset leaders, i.e. onlycosetleaders whose Hamming weight is less than

or equal to L are usedfor errorcorrection. In Figure 3.2, true bounded-distance decoding

would correspond conceptually to correctingonly those received vectors who fall within

an L-radius sphere (not shown) enclosed by the larger T-radius sphere (shown). Thus,

bounded-distance decoders donotalways correct upto the maximum permissible radius T

determined by the codecs natural distance For the rest of this section, we will assume

that bounded-distance decoders have been designed tocorrect up to themaximum permis

sible number of errors T.

The popular and highly efficient Berlekamp algorithm fordecoding binary BCH cyclic

codes, and the closely related Berlekamp-Massey algorithm for decoding 2-ary Reed-

Solomon cyclic codes, are bounded-distance decoders [9][152]. Peterson's solution for

cyclic codes is also bounded-distance [152].

First, we characterize the performance of bounded-distance decoding of (NyfC) linear

block codes. Given an ^-bit received vector k , then the probability ofcorrectly decoding

k isthe probability that k lies within a T-sphere, i.e. that the error pattern has less than
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or equal to Terrors. The number of error patterns with ierrors in Nbits is j. Therefore,
if we define the BER as the probability of biterror, and assume a BSC memoryless error

model, then the probability, Pqd, of correctly decoding anA^-bit vector is given by [87]

(3-1)
i = 0

Next we consider how MLdecoding would modify Equation (3-1). Since ML decod

ing can correct some error patterns with Hamming weight > T, then the summation for

Pqd would include some additional terms. Hence, Pq) for ML decoding would be larger

than the quantity shown inEquation (3-1). As stated earlier, each syndrome and itscorre

sponding coset leader is needed for ML decoding. Correct decoding occurs if and only if

the error pattern matches the coset leader. Hence, if we can find the distribution A,- of the

Hamming weights of the coset error pattern leaders, i.e. A.- is the numberof coset leaders
N

with weight i, then P^^ = ^ A,. •BER' •(1 -BEPf'' [79].
i = 0

In the rest of our derivation, we assume non-ML bounded-distance decoding of the

general class of linear codes. Even though Berlekamp's iterative bounded-distance

decoder only applies to the subclass of cyclic linear codes, we extend the bounded-dis

tance analysis ofEquation (3-1) to the general class of linear codes because Berlekamp's

method represents the primary means of computationally efficient decoding of the large

powerful efficient linear codes of interest to us. In some special cases, ML decoding of

weak, small, and/or specially structured codes may still be possible and will outperform

bounded-distance decoding. Bounded-distance analysis also has the advantage that knowl

edge of the internal structure and weight distribution of the code's coset leaders is not nec

essary, as evidenced by Equation (3-1).
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3.2 Bounded-distance decoding of a fragmented image

encoded by optimal binary linear block codes

Given bounded-distance decoding, we would like to relate the probability of correctly

decoding a singleiV-bit packet to theprobability of correctly sending anddecoding a much

larger image. Following the same reasoning thatwe ^plied for ARQ protocols in the pre

vious chapter, we fragment an /-bit image into \l/K~\ fragments, each ^bits long. Each

/T-bit fragment is encoded using an {N,K) linear block code.

The probability of correctly sending the entire image over an unreliable link is the

probability that each of the individual ^T-bit fragments was decoded correctly after error

correction. Thereare approximately UK fragments, and assuming a BSCerrormodel, then
rCorrecfi i/jk

Image! ~ ,where is the probability of correctly decoding an iV-bit
fragment defined in Equation (3-1). Suppose we desire that the probability of correctly

transmitting an image equal or exceed some subjectively tolerable threshold P^/, so that
I/K

[Pcd] ^ Pci •Combining this equation with Equation (3-1), we obtain theinequality

T

•BER' •(1 -BERf-'iiPcf^' (3-2)
1=0

Equation (3-2) is the key expression which relates the error correction power Tof the

{N,K) linear block code tothe other parameters ofinterest, namely the image size /, proba

bility ofbit error BER, and desired probability ofcorrect image transmission Pqi For our

purposes, N, K, and T are the only parameters necessary to characterize the error perfor

mance of a linear block code. Under ourprevious "weakest" link assumptions, Equation

(3-2) only captures theeffect of corruption along a single noisy link, anddoes notattempt

to capture the effectof packetlossescausedby congestion alongother links in the connec

tion.
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Equation (3-2) is usedto construct a "minimum-redundancy" function of K. For each

we want to find the binary linear codewith thesmallest amount of redundancy

N-K that stillmanages to satisfy Equation (3-2), i.e. itserrorcorrection power Tis suffi

ciently large to achieve the desired rateof successful image transmission. Fora fixed a

systematic procedure for determining the minimum-redundancy code would be to start

from = ^ +1 and increment iV, testing at each N >Kfor a code which satisfies Equa

tion (3-2). The first suitable code found will be the minimum redundancy code for this

value of K.

AsN is incremented, at eachvalue of N>K it is sufficient to evaluate Equation (3-2) at

a single value of 7, namely at the strongest possible correction power T^pf(N,K) for the

given iN,K) pair. If the testpasses, then we will have found at leastone codeat this {N,K)

pair which is sufficiently powerful to satisfy the inequality and can stop further testing.

This (N^KyT^pfiNyK)) code will have the minimum redundancy. If the test fails at

{N,K,T^pf(N,K)), then no other codes with the same values of N and K and weaker error

correction ability T<T^p,(N, K) will be able to satisfy Equation (3-2), and we can con

tinue to increment N.

The key to finding the strongest possible error correction power T^^pJiNyK) for agiven

{N,K) pair is to observe that theerrorcorrection ability 7 has an upper limit thatis a func

tion ofNand K. Recall that 7is afunction of 7= j. The minimum spac
ing between any two codewords isupper bounded by Nand K. For example, a simple

upper bound would be N,because thedistance between any twocodewords cannot exceed

the number of bits N in the vector. Thus, the minimum code distance Df„i„ has an upper

bound as a function of N and K, ^ f{Ny K), and 7 also has an upper limit. Provided

that tighter more realistic upper bounds can be found for Dj^in and 7, then T^pf can be eval

uated directly at these upper bounds.
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A variety of bounds on Dj^m have beenderived for linearblockcodes, and usually are

expressed in the form of K). No linear block code can have a which

exceeds thesebounds. In later sections, we*ll investigate howmuch the additional imposi

tion of cyclic and BCH structure on linear codes reduces below these upper bound

values. Below, we list someof the moreimportant upperboundson [9][87][153]. For

now, we assume that the number of levelsper symbol G = 2, i.e. that we are dealingwith

binaiy linear block codes. Later, in our analysis of Reed-Solomon codes, we consider

codes for which Q>2.

• Hamming Sphere-Packing Bound

• Plotkin Bound

Singleton Bound

• Griesmer Bound

1 = 0

D . <N (Q-^)
""" Q^-1

D^,,^N-K+l

Z),

1 = 0 Q'

References [9] and [153] plot these bounds on the same graph and show the different

regions where they produce thesmallest Some bounds aretighter for high ratecodes
K K( close to one), while other bounds are tighter for low-rate codes ( ^ close to zero).

Since the of every binary linear code obeys each of these four upper bounds, then the

maximum permissible will also obey the tightest (lowest) of these upper bounds. We

define the tightest of these bounds as = min obtained from the Single

ton, Plotkin, Hamming, and Griesmer bounds).
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Topt{N,K) is obtained from the tightest overall bound D^{N,K). Since there may be

other even tighter bounds than thefour listed above, then it is possible that rep

resentsa fairly loose bound,and in actualityno {NJC) binarylinearcodes exist with a min

imum code distance of D^(N,K). By evaluating T^ptiN^K) at we are

optimistically choosing the theoretically best set of parameters (NyKfT^p^NyK)), even

though a binary linearblockcode may not existat theseupperbounds.

Now, we can summarize the complete algorithm for determining the minimum-redun

dancy function of Kover allbinary linear block codes. Let represent theminimum

number of output bits for which Equation (3-2) is satisfied for a given K. The minimum

amount of redundancy will be - K. Assume that /, BER, and Pa are fixed. Algo

rithm I finds over all binary linear codes based on the previous list of upper

bounds.

Algorithm I:

1. Select a range Initialize K = .

2. Iterate K = jK+1. Initialize N=K,

3. Iterate N=iV+l.

4. Find theoptimal D„i„{NyK) = min obtained from theSingleton,

Plotkin, Hamming, and Griesmer bounds). Let

ToptiN.K) =
2

5. Is Equation (3-2) satisfied at (NyKyT^pi)! Ifno, go back to step 3.

6. If yes, thenwe have obtained the lowest N^(K) thatcreates a large

enough to satisfy Equation (3-2). Go back to step 2 until K

exceeds
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The inner loop finds the minimum code length for a fixed while the outer loop iter

ates over a range of K. Given then we can plot the redundancy ratio as
/k

a function of K. The redundancy ratio measures the minimum bandwidth expansion factor

required by the best binary linear block codes to adequately protect a fragmented image

over a noisy link.

The results fromAlgorithm I for Ar<100 are shown in Figure 3.3, in which threesepa

rate curves are pictured. All three plots assumed an image size I equal to 20 kbits. The

**Baseline" function assumed a BER of 10'̂ and a desired probability ofcorrect image

transmission P(^j of 0.999 (i.e. the user desires that at most 1 out of every 1000 images is

undecodable due to bit errors). The **Worse BER" curve assumed a BERof 3x10"^ and a

Pciof0.999, while the "Relaxed Pd* curve assumed aBER of 10'̂ and a of0.99 (i.e.

the user tolerates loss of at most 1 out of every 1(X) images due to corruption). We evalu

ated the left hand side of Equation (3-2) both by direct Binomial sums and by Poisson

approximations to Binomial sums in order to verify the numerical precision of the our

results.

Considering the baseline function alone, we find that an input packet of size 10 bits

would require at least about three times expansion factor in bandwidth, equivalent to a

minimum code length of AT = 30 output bits. An input packet of size ^ = 100bits would

require at least about 1.5 times more bandwidth, equivalent to a minimum code length of

N=\50y and a minimum redundancy of 50 redundancy bits.

Generally, foreach curve, as the size of the i^-bit input word increases, theredundancy

ratio required to satisfy Equation (3-2) decreases. This trend states that the rela

tive cost in overhead required to successfully error-protect a fragmented image is signifi

cantly smaller for longer linear block codes than for shorter linear block codes. Since all

the codes in Figure 3.3 achieve the same error correction performance (i.e. they all just
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Redundancy ratio
NminiK)

0.00 20.00 40.00 60.00

Number of input bits K
80.00 100.00

Baseline

Worse BER

ReiaxedVci

Figure 3.3 The redundancy ratio —ji— Is plotted vs. the number of input bits K
for different BERs and different desired probabilities of correct image
transmission The redundancy ratio measures the minimum expan
sion factor required by the strongest binary linear codes to adequately
error-protect a fragmented image transmitted across a noisy channel.
^min(^) is fbe minimum number of output bits obtained by running
Algorithm 1. The Baseline, "Worse BER\ and "Relaxed P^/' curves are
the middle, top and bottom functions respectively.

barely satisfy Equation (3-2)), then the designer should choose the longer (N,K) linear

codes in order to achieve reasonably low levels of overhead.

Since we aresearching over all binary linear codes, then any other sub-class of binary

linear codes, such as the binary cyclic linearcodes and binary BCH cyclic linear codes,

will require an even higher bandwidth expansion factor. Therefore, each of the curves

shown in Figure 3.3 represents a lower bound (for its set of parameters) on how much

redundancy is required to successfully error-protect and transmit a fragmented image

across a noisy wireless link.
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The **Worse BER" curve tests the sensitivity of Equation (3-2) and Algorithm I to

variations in BER. The probability ofbit error is increased to 3x10'̂ from the baseline case

of 10"^, while Pqi remains fixed. The resulting dotted (top) curve shows a significant

increase in the redundancy requirement. An input packet of size = 10 bits would require

at least about 4.5x redundancy, or a block code of length N greater than about 45 bits. An

input packet of length AT = 100 bits would require at least about 2x redundancy, or N

greater than about 200 bits. Thus, for K = 100, the increase in BER leads to a hefty 50%

increase in redundancy, requiring a (200,1(X)) code instead of a (150,1(X)) code.

The "Relaxed Pcf curve tests the sensitivity of Equation (3-2) and Algorithm I to

variations in the desired probability of correct image transmission Pqi- The BER remains

the same as the baseline case, while the Pathreshold is relaxed from 0.999 to 0.99, i.e. the

permissible image loss rate is instead of . The result is plotted as the third

dashed curve lying just below the baseline function. Figure 3.3 indicates that this extra tol

erancefor imageerrors does not substantially decreasethe requiredpowerof the error cor

rection code. In fact, a similarcurve (not shown) evaluated for Pa = 0.9999 also showed

very little variation from the baseline function. At /ST = 1(X) bits, large variations in the

probability of image loss (1-Pc/ from 0.01 to 0.0001) result in only small changes

in code size (N=\42 and 151 at therespective bounds). Conversely, a very small increase

in the redundancy ratio, at a fixed BER^ can dramatically lower the probability of a lost

image.

3.3 Bounded-distance decoding of a fragmented Image

encoded by binary BCH codes

In this section, our goal is to quantify how much more redundancy is required by

binaryBCH linearcodes to adequately protecta fragmented imagethan the general binary
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linear codes analyzed in theprevious section. BCH codes areof great practical importance

because a fast bounded-distance decoding algorithm has been developed byBerlekamp for

these codes, as noted in Section 3.1. Binary BCH codes form a subset of the class of

binary cyclic codes, which are themselves a subset of the general class of binary linear

codes. Therefore, the largest code distance that binary BCH codes can attain is limited by

the upperbounds on for general binary linearcodesfor a given N andK.

Practical values of forbinary BCH codes over a wide range of N andKshow that

indeed some error correction power is lost by imposing cyclic structure and then BCH

structure on general binary linearcodes. BCH codes are designed using a lowerboundon

the minimum code distance called the BCH design distance 5 [153]. Up to Terrors are

corrected, where T = ini and the code*s true minimum distance satisfies Z) . >5 .
L 2 J """

Even though the true minimum distance resulting firom the BCH coding structure

may be greater than 6, the bounded-distance decoder is unable to exploit this extra dis

tance, andonly corrects upto Terrors. Theeffective code distance seen at theoutput of the

receiver's decoder is therefore only 8. Hence, fast decoding of binary BCH codes can

wastesome error correction power, resulting in lowerperformance and/orhigheroverhead

than general binary codes. The constraints on and Tsuggest that a minimum-redun

dancy function of Kforbinary BCH codes will lie above thecurves shown inFigure 3.3.

The cumulative efforts of several authors have resulted in an exhaustive tabulation of

the minimum distance for all binary cyclic and binary BCH codes with odd Akl28^ as a

function of N and K [17][98][99]. These tables show thatbinary BCHcodes do not exist

for some (N,K) combinations. These tables also show that there can exist more than one

binary BCH code for a given (N^ pair. The binary BCH code with the largest D„lf^ for a

fixed N andK (if there is more than onecode) should be the candidate tested at each step

1.Only odd-TV codes areconsidered because theconstruction properties of primitive andnon-primitive BCH
codes result in odd-^ overall block lengths [87].
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in the minimum-redundancy search algorithm, for the same reason that the binary linear

code with the largest permissible (taken from the upper bound) was tested at

each step in Algorithm 1.

The procedure employed to obtain the minimum code length function for

binary BCH codes very much resembles Algorithm I from the previous section. The only

significantchange is to step 4. Rather than computing the largestD^{NyK) for a fixedN

and K from the upper bounds, we search the tables to find the largest over all binary

BCH codes with the same values of N and K (e.g. there are thirty-four (85,45) binary BCH

codes but only two (111,75) binary BCH codes)^ Table lookup is a somewhat laborious

procedure and is one of the reasons that we confined our search range of K to 35</Sr<46.

The other reason is that the tables only list block lengths up to 127. As we will show, for

some of the K in this range, we were unable to find any binary BCH codes with N<\2S of

sufficient power to satisfy Equation (3-2). If we were to test values of K>45, the search

algorithm would with increasing likelihood stop at 7V<128 without being able to find a suf

ficiently powerful binary BCH code. Though such a determination is useful, it is less

informative than obtaining a precise value for N^^iK).

Our minimum-redundancy evaluation algorithm for binary BCH codes is summarized

below. Again assume that 7,BER, and ^re fixed.

Algorithm II:

1. Choose a range ^or K. Initialize K= Kf^in 1•

2. Iterate K-K-¥\. Initialize N-K,

3. IterateiV = iV+1.

4. Consult the reference tables to see if an {N,K) BCH code exists. If not,

return to step 3. If so, then let = the minimum distance of the

1. For completeness, expurgated codes (generated by the polynomial (l+X)g(X) and listed as col-
unrns D2 and DB2 in [98][99]) derived from {N,K)codes are included into our calculations.
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code with the largest BCH design distance among all {N^ binary

BCH codes. Let 7=|E!z2|_zJ:j.
5. IsEquation (3-2) satisfied at{NJCJ)! Ifnot, goback tostep 3.

6. Ifyes, then we have obtained the lowest N^{K) such that there exists a

binary BCH code with a large enough to satisfy Equation (3-

2). Go backto step2 until Kexceeds Kf^.

The inner loop finds the minimum code length for a fixed K, while the outer loop iter

ates over a range of K, just as for Algorithm I. The above procedure can be applied to

binary cyclic codes as well, with the small modification in step 4 that is set to the

minimum distance of the code with the largest minimum distance among allbinary cyclic

codes with the same N and K.

Because thereference tables arelimited to block lengths ofAkl28, then forourpartic

ular situation step 3 should be modified to iterate only up to AT = 127. If N> 128 , then

the algorithm should declare that no binary BCH code with length Akl28 could be found

for this K which was sufficiently powerful to satisfy Equation (3-2). The algorithm should

then return to step 2 and iterate K. When the algorithm fails to find a sufficiently powerful

binary BCH code, then the limited conclusion is that >128 for this particular K.

Under these conditions, plotting as a function of K, or even the redundancy ratio

as a function K, becomes more difficult since it is not certain what value should
NminiK)

K

be substituted for for thesepoints. For this reason, we choose to display

in tabular rather than graphical format.

Algorithm n is performed over a range 35<^r<46 for both binary cyclic codes and

binary BCH codes. Assuming values ofBER = 10"^, Pqi=0.999, image size / = 20 kbits,

then the minimum code length results are listed in Table 4. The middle column

lists the minimum number of output bits required by o&A-N binary cyclic codes, and the
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right column lists for binary BCH codes. The left column does the same for the

best possible (Z>mm evaluated at the upper bounds) binary linear codes, using the same val

ues generated earlier by Algorithm I to construct Figure 3.3.

Table 4. The minimum number of output bits M/n/n(fO generated by Algorithm
11 for ail binary cyclic (middle column) and binary BCH codes fright
column) satisfying 35<K<46,A/odd, and Af<128. Let 8E/7= 10'% Pe/=
0.999, /= 20 kbits. For comparison, A^/n(K) generated by Algorithm i
for optimal (Cm/n upper bounds) bmaiy linear codes is shown in
the left column. The error correction power Tof the minimum-length
(^m/nCOffO code is shown in parentheses.

Minimum code length

Number of

input bits K
Optimal Binary
Linear Codes

Binary Cyclic Odd-N
Linear Codes, N<128

Binary BCH
Linear Codes, iV<128

36 66 (7=7) 73 iTcyclic ~ ~ 105 (Tsch- = 17)

37 67 (7) 85 (8,12) 93 (8,14)

38 69 (7) 93 (8,14) 93 (8,14)

39 70 (7) 79 (7,9) 117(10,20)

40 71(7) 79 (7,9) 105 (8,16)

41 72 (7) 105(9,16) none found for Akl28

42 73 (7) 105 (8,16) 127 (14,22)

43 74(7) 105 (8,15) 127 (14,21)

44 76(7) 89 (8,10) none found for N<128

45 77 (7) 89 (8,10) none found for N<128

We interpret the table as follows. At =40, the minimum-redundancy search over all

(M40) optimal binary linear codes employing Algorithm I produces a (71,40) binary lin

ear code with an error correction power T= 7 bit errors. A minimum-redundancy search

employing Algorithm II over odd-iV binary cyclic codes produces a (79,40) code that can

correct T-1 errors. Algorithm II applied to binary BCH codes produces a minimum-

redundancy (105,40) code that can correct 7=10 errors. The error correction capability

corresponding to the code is shown in parentheses. For binary cyclic and
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BCH codes, an additional parameter "^opt is shown paired with T, in the form T^pt

corresponds to the theoretically optimal error correction ability that could be obtained

from theupper bounds onminimum code distance for this pair.

The imposition of cyclic structure and BCH cyclic structure on binary linear block

codescausesthe minimum codedistance of cyclicandBCHcodesto shrinkbelow the the

oretically best upper bounds on for each N and K. This weakens the error correction

ability of {N,K) cyclic and BCH codes relative to optimum-distance {N,K) codes. For

example, the minimum-redundancy (79,40) cyclic code can correct up to Tcyclic =^errors,

while the optimal (79,40) binary code with the maximum permissible can correct up

'̂ opt^ 9 errors. The loss inerror correction performance is even more marked for binary

BCHcodes. The tableshows that the minimum-redundancy (105,40) BCHcodethat satis

fies Equation (3-2) can correct up to T^cH~ ^ errors, while the optimal (105,40) binary

code derived from the upper bounds should be able to correct up to Topt- 16 errors.

As we move from left to right across columns in Table 4, the weaker error correction

performance of binary cyclic and BCH codes relative to optimal binary linear codes

causesan expansion in minimum code length Nf^irSK) and henceincreases the overall cost

in overhead. Forexample, dXK = 40, the (71,40) optimal linear code incurs an overhead of

31 bits, and a redundancy ratio equal to 1.8. The best cyclic (79,40) code

requires an additional 8 bits of redundancy over the binary linear code, and a redundancy

factor of about 2.0. The best binary BCH (105,40) code requires an additional 26 bits of

overhead over thebestcyclic code, and an overall bandwidth expansion factor of 2.6. The

samepattern is exhibited throughout the selected rangeof K.

Table 4 indicates that optimal binary linear codes require about a doubling oftheband

width for this range ofKin order to adequately protect a fragmented image. The perfor

mance of binary cyclic codes varies widely, occasionally approaching thatof theoptimal

codes(e.g. K= 36) butother times matching the poor efficiency of binary BCH codes (e.g.
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K = 38), thoughusuallylyingsomewhere in between (e.g.K=42). For binaryBCH codes,

we can conclude that bounded-distance decoding of moderately long binary BCH codes

requires a minimum bandwidth expansion of about 2.5 in order to satisfy Equation (3-2)

for the chosen range of AT, though the more common case resulted in a tripling of band

width.

Another reason for the high overhead cost of binary BCH codes, besides their rela

tively weak error correction performance, is the relatively sparse distribution of existing

binaryBCH codes in {N^K) space.BinaryBCHcodesdo not exist for all possibleN andK.

For example, the reference tables showthat at AT=41, binary BCH codes only exist for N=

51, 55, 63, 65, 95, and 105 in the rangeiV<128. At AT = 36, binary BCH codes only exist

for A^= 57, 63,65, 69,71,73,77, 85,105,119, and 127in the rangeA^<128. Whileone of

theperceived advantages of BCHcodes is that thereis an ample selection of blocklengths

and code rates [153], for our purposes the scattering of codes is sparse enough to cause

large jumps in calculated redundancy. When Algorithm n was applied at AT = 36, the

(85,36) binary BCH code failed the test in step 5 of Algorithm n. The next largest code

available for testing was the (105,36) binary BCH code, which also turned out to be the

minimum-length code. The sparse distribution of BCHcodes in this case permitted a gap

of 20 bits to arise between tested codes and in general contributes to the sudden jumps in

NfniniK) as we move from left to right in a row in the table.

The scatteringof BCH codes in {N^K) space also is responsible for the unevenness of

as we movedowna columnin Table4. As AT increases, the minimum code length

should also increase. However, is not a monotonically increasing function of AT

dueto the sparseness property, though thegeneral trendis towards lengthening iV^„(AO. In

contrast, for the optimal linearcodes, A/'„/„(A:) (and by extension ) is a relatively
K.

smooth monotonically non-decreasing function of AT, since the optimal codes were
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assumed to exist for each N and AT, N>Ky and were derived from well-behaved mathemati

cal bounds.

Table 4 does not provide sufficient information to determine whether longer BCH

codes are necessarily better (i.e. have ahigher rate for the same error correction perfor

mance) than shortBCHcodes. While roughly increases with AT, we cannot con

clude from the table that the bandwidth expansion factor decreases with
K.

increasing K for binary BCH codes in the same manner as we had found for optimal

binary codes (depicted in Figure 3.3). A number of factors interfere with our ability to

make a definitive statement. First, the sampling range of Kis relatively small. In addition,

for several values of K no sufficiently powerful BCH code could be find for iV<128. This

uncertainty reduces evenfurtherour set of available datapoints. Moreover, the unevenness

of ^so leads to an fluctuating redundancy ratio . por example, the
K.

(105,36) and (127,43) minimum-length codesbothtriple thebandwidth, whilethe (93,37)

code in between only expands thebandwidth bya factor of 2.5,making it difficult to show

that ——— decreases as AT increases. Finally, it is known thatBCH codes are asymptot
ic D •ically weak, in the sense that for a fixed rate ^, the ratio of for BCH codes
N N

approaches zero in the limit as block length increases [24][153]. For these reasons, our

data does not support a conclusion that longer binary BCH codes are necessarily better

than short binary BCH codes.

Next, we consider the sensitivity of Algorithm 11 to variations in the parameters P^j

andBER. We confine ourselves to analyzing binary BCHcodes only. Fourcases are con

sidered and presented in tabular form in Table 5. The baseline case with parameters

BER = 10"^ and Pci=0.999 was same one used to generate Table 4.

If we relax P^j to 0.99, and keep BER at 10"^, then we obtain the far right "Relaxed

Per column. If we are willing to tolerate an image loss rate of 1 in 1(X) instead of 1 in

1000 (baseline P^/), then a significant reduction in overhead can be achieved for many
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values of though not all. For example, the best baseline BCH code at iiT = 42 has

^min(42) = 127. By relaxing the Pa objective, the new 7Vi„/„(42) can be reduced to 93. At-

this higher image loss rate, the binary BCH code with the smallest redundancy ratio is the

(73,36) code, which would require at the minimum a doubling of bandwidth.

Table5. For binary BCH codes only, test the sensitivity of qenerated
by Algorithm II to variations in B£/7and Pci- All codes satisfy
35<K<46, AT odd, and /\k128. Let /= 20 kbits. BER and Pc/vary
across columns.

Minimumcode length Nj„i„(K)

Number

of input
bits a:

Baseline:

BER=\0'\
Pc/= 0.999

"Worse BP/?"

BP/? = 2x10-2,
Pa=0,999

"Worse BP/? &

Relaxed Pa'
BP/? = 2x10-2,

Fc/=0.99

"Relaxed Pg/"
BP/? =10-2,
Pa=0,99

36 105 127 105 73

37 93 NF NF 85

38 93 NF NF 93

39 117 NF NF 105

40 105 NF NF 105

41 None Found for

N<128

NF NF NF

42 127 111 127 93

43 127 127 127 93

44 NF NF NF 117

45 NF NF NF NF

If the BER is increased slightly to 2x10"^, and we keep at its baseline value of

0.999, then we obtain the **Worse BER" column. No sufficiently powerful binary BCH

codes with N<128 could befound for most Kin this column. Incomparison, foronly a few

values of K in the baseline column does exhibit the label "None Found". There

fore, similar to our conclusion for the optimal codes in Section 3.2, the minimum code

length for binaryBCH codes is extremely sensitive to small increases in the probability of
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bit error at these levels of BER, Under these slightly noisierconditions, the binary BCH

code with the smallest redundancy factor is the (127,43) code. In orderto adequately pro

tect an image at this BER using binary BCH codes, the minimum overhead cost would

require approximately a tripling of bandwidth.

3.4 Bounded-distance decoding of a fragmented image

encoded by Reed-Soiomon codes

Reed-Solomon (RS) codes constitute an important subset of G-ary (non-binary) BCH

codes. Reed-Solomon codes derive much of their importance from the fact that the fast

Berlekamp-Massey decoding algorithm can be applied to them. The relative ease of hard

ware implementation of RS coders and decoders has led to their wide application in con

sumer products like compact discs and to their use over deep-space and satellite

communication links [152]. RS codes are also popular because of burst error correction

and erasure detection properties.

The non-binary nature of RS codes means that Equation (3-2) needs to be revised to

account forsymbol-based error correction, where there are MbitsperRS code symbol, i.e.

the number ofpossible symbols Q- 1^. Again assuming a BSC error model, then the

probability ofsymbol error, orsymbol error rate SER, is given by SER = 1- (1 - BER)^.

Some texts have used g-ary symmetric error channel models instead of the BSC model,

where the probability of transitioning to any symbol other than the original symbol is

given by p, and SER=p{Q-\) [87][152]. We do not use this model, and instead continue to

adhere to the BSC model used by other texts [46][100]. For g-ary codes. Equation (3-2)

is transformed into the following relation:

W •(1 -SER)"'' i. [Pcit"' (3-3)
1 = 0
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Next, weevaluate this equation for various values of N, K, and M, applying a proce

dure similar to theone used for binary BCH codes. One key property of RS codes is that

thecode length N is directly related to the finite field size fi by N = g-1 [153]. We con

sider the standard non-extended non-shortened case where 2 =2^ and 2^-1. Another

key property of RS codes is that their minimum code distance is determined directly

by thefollowing relation: = N-K^\. Thus, unlike binary BCH codes, there is no need

to consult tables to find because the of RS codes can be computed precisely

from the Singleton bound [153] (see Section 3.2).

Our minimum-length evaluation algorithm for RS codes is summarized below.

Algorithm III:

1. Choose a range for K. Initialize K = .

2. Iterate K= ^+1.Find 7, the first power of2 such that 2*'-l > AT. Initial

ize Af= 7-1.

3. Iterate: M=M+ 1. Let N=2^-1. (We are increasing Nby powers of 2).

4. Z)„,.„ =Ar-A:+l.Let T= I-

5. Is Equation (3-3) satisfied at{N(M),KJ)1 If no, return to step 3.

6. If yes, then we have obtained the lowest for this K that creates

a large enough for an RScode to satisfy Equation (3-3).

Return to step 2 unless K exceeds

The results of our iterative evaluation algorithm are plotted in Figure 3.4, for the

parameters BER - 10'̂ , arelaxed f =20 kbits. The stairstep pattern is adirect

consequence of thesparseness of theavailable code lengths (separated by powers of two).

Note thaton each "stairstep" the point K farthest to the right just before the step jump is

optimal in terms of reducing the overhead ratio for theconstant "stairstep" code length N.
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symbols Nff.:JK) (x 10^)

0.00

BER 10-2

BER 3x10"2
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# Input symbols K
Figure 3.4 Minimum number of output symbols required by Reed-Soiomon

codes to satisfy Equation (3-3), i.e. deliver images of size 20 kblXs at an
image success rate exceeding 0.99 overa 10'2 BER link (solid plot). A
second dottedplot is also shownfor BER =3x10'2. RS redundancy = N-K.

For 256-ary RS codes (N= 255), the minimum-length code with the lowest redundancy

ratio was found to be the (255,175) code. Therefore, in order to deliver our image data

with acceptably low image loss rates, about 1.5 times bandwidth expansion is required. In

general. Figure 3.4 indicates that longer RScodes more effectively useredundancy, result

ing in lower redundancy ratio , We also note that standard primitive RS codes

have a relatively sparse set of available code lengths that is even more thinly distributed

thanbinaryBCHcodes,an observation that inflates the RS redundancy ratio.

Next, we consider the sensitivity of RS codes to variations in BER. The second dotted

curve in Figure 3.4 evaluates Equation (3-3) for BER =3x10'̂ , at the same P^/ image

size / as the lower curve. The best code for the stairstep length of N = 511 is about a

(511,200) code, or about a 2.5x redundancy code. Similarly, the best (255,*) RS code is
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about a (255,100) code, again about 2.5x redundancy. RS codes exhibit the same sensitiv

ity to small increases in probability of bit error at this level of BER as binary linear block

codes and binary BCH codes. We can arrive at roughly the same conclusion by inspecting

the family of "waterfall" curves [8][46] which plot the output BER performance of a fam

ily of RS codes, say the (64,*) RS codes, as a iunction of the input BER. Because the

curves are tightly packed around 10'̂ input BER^ a slight increase in the input BER can

cause force a large jump in code redundancy in order to preserve the same output BER.

While these waterfall curves are useful in confirmingour intuition, they only consider the

effect of single-packet delivery, and do not consider the impact of multi-packet image

delivery captured in Equation (3-3).

We would also like to compare RS code performance to binary BCH performance.

Since there are M bits per symbol, then a (255,175) RS code is in fact a (255*8,175*8) =

(2040,1400) binary code, though arithmetic operations are performed on a different finite

field. Consequently, these RS codesare considerably longerthan the (N<12S) binaryBCH

codes considered in the previous section. Comparing similarly sized codes, we find that at

^=11 input symbols, the minimum-length RS codes are of length 31, so that they have5

bits per symbol. The (31,11) symbol-based code is equivalent to a (155,55) binary code,

and the overall cost in overhead approximately triplesof the bandwidth. In comparison, at

K = 45, minimum-length binary BCH codes require at least a (128,45) code for a several

different combination of BER and Pa- So both binaryBCH codes and RS codes requirea

minimum tripling of bandwidth for moderate-length codes when the image size is several

tens ofthousands ofbits, the BER is near 10'̂ , and the subjectively acceptable image loss

rates are less than 1 in 100.
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Figure 3.5 lype-i Hybrid ARQ. A fixed-rate PEC coder is embedded within the
retransmission loop of a conventional ARQ protocol. The FEC coder
helps to correct wireless bit errors, and can be applied in both the for
ward and reverse directions.

3.5 Minimum redundancy evaluation of a lype-i Hybrid FEC/

ARQ protocol

So far in this chapter,we have consideredonly open-loopFEC systems based on linear

block codes which lack feedback from the receiver. In this section, we consider a hybrid

FEC/ARQ closed loop error protection schemethat integrates closed-loop ARQ protocols

with FEC.

A straightforward way of combining FEC and ARQ, called Type-IHybrid ARQ, is to

embedan FEC coder operating at a fixed codingrate withinthe retransmission loop of any

repetition-based ARQ protocol [78]. The lype-I Hybrid-ARQ protocol is shownin Figure

3.5, where FEC is applied in both directions over the wireless link. Our goal is to deter

mine the minimum redundancy required by the inner FEC coder in order to deliver an

image reliably across the noisy link within the interactive latency bound.

3.5.1 Optimal binary codes

The performance of a Type-I Hybrid ARQ protocol will depend on the choice of

retransmission protocol as well as the type of FEC employed. Our choice of protocol is
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ideal SRP due to its optimal latency performance. For the type of EEC scheme, we choose

the class of optimal binary linear codes studied in Section 3.2 because they minimize the

redundancy over all binary linear codes. Together, these two choices form an ideal T-IH-

ARQ protocol that serves as a lower bound on the amount of redundancy required for all

T-I H-ARQ protocols. In addition, these two choices are both mathematically tractable,

and we can reapply the equations from Chapter 2 and Section 3.2 here. We must also

decide whether to evaluate the T-I H-ARQ protocol at the loose latency bound or the tight
- ♦

latency bound of the previous chapter. Again, we make the most optimistic choice, namely

the loose lower bound represented by Equation (2-5), in order to maintain the claim that

this section's analysis produces a lower bound on redundancy.

Analyzing T-I H-ARQ requires some modifications to Equation (2-5) in order to

accountfor the embeddedfixed-rate PEGcoder. Equation (2-5) represented a lowerbound

on the minimum amount of delay suffered by retransmission-based protocols over noisy

channels. Two components contributed to the delay in Equation (2-5) : a BERfactor

caused by multiple retransmissions due to bit errors; and a BWfactor due to the wireless

channel's limited bit rate. TheBERfactor dominated thedelay when the protocol's pack

ets were large enough relative to the BER to cause multiple bit errors per transmitted

packet. If PEG were applied tocombat wireless biterrors, then the effective BER affecting

each packet sent by the protocolcould be reduced to the point that the numberof retrans

missions caused by link noise would no longer dominate the protocol's delivery latency.

However, any increase in error correction also expands the bandwidth. Both effects must

be accounted for in our T-I H-ARQ analysis.

First, we investigate how PEG affects the BER factor. If we assume ideal SRP as the

retransmission protocol for T-I H-ARQ, then from the previous chapter the number of

attemptsA required to send one reliable version of an N-bit packet through a noisyBSG is

geometrically distributed, i.e. P[A= /] = (1 •P^, where Pg is the probability of
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correctly receiving the N-bit packet after one transmission. We found that E[A] =^,
8

and later used this result to derive Equation (2-5), the loose lowerbound on the average

amount of time required for reliable image transmission.We summarize the bound here as

^[^imagel ^ ^ fragment^ ' fragment '

In Chapter 2, we assumed that no EEC was applied to each /-bit packet, so that the

BER of the channel directly affected each packet, and = (1 -BER)^. Assume that an

image I is fragmented intoF fragments. Define the sizeof each image fragment »

H = header overhead, and the number of input bits to the EEC encoder K = 7 + /f. In T-I

H-ARQ, each 7-bit image fragment will be protected by an (NJ+H) code. Therefore, Pg

must be modified to account for the error correction abilities of the code.

Theprobability of correctly receiving J+Hbits is theprobability of correctly decoding

an A^-bit packet, which is given by Equation (3-1) under the assumption of bounded-dis

tance decoding and BSC errors. We repeat Equation (3-1) below, and change Pg to the

following value:.

M ]• ira-«• <—«>-' <».
Next, we investigate how EEC affects the BWfactor. We need to account for the band

width expansion caused by EEC. This problem is easily solved by changing the packet

transmission time PTT to ^. Thus, Equation (2-5) is transformed into the following
form for lype-I Hybrid-ARQ:
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^ fragment^ ' fragment (3-5)

„ 1 _ 1 F'N

« ' BW
^ ^ fN\ nr^ni r •, nr^n^N-iW •«£/?' (l-BfiR)'

1 = 0

The number of output bits N=^+H+R, where Requals the number of redundancy
t

bits added, and N>K. Sununarizing, our independent variables are image size /, header

length H, wireless bandwidth BW, wireless probability of bit error BER, the number of

inputbitsK, the number of output bitsN,andthechoiceof linearblockcode. F is a depen

dent variable of 7, H and K. The dependent redundancy variable F is a function of ^ and K.

The dependent error correction power variable T is a function of AT, K, and also of the lin

ear code chosen.

A systematic procedure for determining the minimum redundancy is to follow the dou

ble loop approach developed in previous sections for analyzing open-loop FEC systems.

Fix/, Hy BWy BERy andfix thechoice of linear block code to be theclassof optimal maxi-

mum-permissible-7);„,„ binary codes. The remaining independent parameters that can be

varied areKand N. Iterate Kin the outer loop, and iterate Nin theinner loop. Byfixing AT,

we fix the fragmentation factor also, since K= ^ +H.For each fixed AT, increment Nand
F

test toseeif the latency predicted bytheloose lower bound inEquation (3-5) forthis opti

mal {NyK) code falls below thedesired interactive latency threshold Li^ractive- ^ con

tinue to increase N until the minimum-redundancy code of length ^^^^(AO is found that

produces a small enough image deliverylatency. The algorithmis detailed below.

Algorithm IV:

1. Choose a range Umin^^max^ J. Initialize J = 1.J represents the

number of bits per image fragment, i.e. 7 =4 .
F
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2. Iterate J = 7+1. Set the number of inputbits K = J+H. Initialize N^K.

3. Iterate1.

4. Find the optimal = min obtained from the Singleton,

Plotkin, Hamming, and Griesmer bounds). Let

Dn,in^N,K)-X
2

5. Calculate thedelay from the loose lower bound inEquation (3-5) for

Does the estimated delay fall below the desired interac

tive latency threshold L-mteractive'̂ ' ^ go back to step 3.

6. If yes, then we have obtained the lowest that has sufficient

error correction to reduce the delay predicted by Equation (3-5)

below Linteractive- ^0 back to step2 until 7 exceeds 7^^.

Algorithm IV is performed with the following parameters: / = 20 kbits, BW = 500

kbits/s, BER = 10"^, header size TT = 100 bits, and the desired interactive latency bound

^interactive = lOOm^. Fof thcsc parameters, the resulting behavior of iV„i>,(^0 partitions

the K axis into three regions. In the first region, the header overhead is so large relative to

the size of each image fragment that the delay predicted by Equation (3-5) exceeds

^interactive Tegardless of whether FEC is applied or not, and therefore N^iniK) does not

exist for these K. In the second region, the error correction is insufficient to reduce the

delay below Li^teractive»^g^^" nofinite NminiK) canbe found for theseK.Only for the

third region can a sufficiently powerful codebe found which manages to lower the image

transfer delay below the interactivity threshold. We examine in detail each of these three

regions of K below.

Since K=4+W, then it follows that when the number of image bits 4 is very small
t r

relative to the header overhead H, then the resulting bandwidth expansion can inflate the
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imagedelivery time abovethe desired limit L^^fgractive •P®** example, if there are 50 bits of

image data and 100 bits of header per ^-bit packet prior to FEC, then the header overhead

essentially triples the bandwidth. Since the original 20 kbit image requires a minimum of

40 ms to transmit over the 500 kbit/s channel, then the packetized image with overhead

will require 120 ms, exceeding our objective Li^teractive without even considering FEC.

Thus, Algorithm IV need not even be executed for these K.

To find the valid range of K over which FEC can be applied, we define a bandwidth

I/F -¥ H Iexpansion factor p = . If p •— >L^^tgracuve»bandwidth expansion alone

due to header overheadper fragment will exceed our desired delay. Substitutingparameter

values, we find that when the size of each image fragment I/F < 66 , then the header over

head per fragment pushes the image transferdelay above •Equivalently, when

AT < 166 then Algorithm IV need not be run.

In the range AT > 166,the header overhead is a small enough percentage of eachimage

fragment to permit FEC on each fragment. We executed Algorithm IV in the range

AT > 166 and found thatV^,„(AO could not be obtained for values of N near 166. Specifi

cally, evaluation of Equation (3-5) reveals that for the range 166< AT< 193, no optimal

binary linear {N,K) block code could be found such that the loose lower

bound ^[T'iinage] ^ ^interactive' ^ investigation as towhy the algorithm did not produce a

finite in this narrow region of K shows that the error correction power of any

{N,K) optimal binary code is tooweak to lower theimage transfer delay below the interac

tivity threshold. We come to this conclusion both from theoretical analysis ofEquation (3-

5) as well as empirical inspection of the generated values of delay. For a fixed AT, we

observe that, as N increases, the delay decreases exponentially, since the

improving error correction ability helped reduce the retransmission BER factor

£[A] =^ in Equation (3-5). Eventually, the delay reached aminimal value before start-
ing to rise again for large V, when the linear dependence upon the ^ factor in Equation
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(3-5) begins to dominate. This behavior is very similar toFigure 2.4, and the resemblance

isnot surprising since they are both governed by the same loose lower bound equation. If

image! cxceeds L^^uractive ^ of which minimizes thedelay, then it will be

impossible to find any optimal binary linear (NJC) block code for this value of K that

delivers an image within the L^nteractive bound. An empirical inspection of the values of

delay generated by Algorithm IV verified thispredicted behavior as a function of for the

range of input values 166<K^ 193.

In the range K> 193, Algorithm IV was able to find a finite minimum code length

for each K. In Figure 3.6, we plot two redundancy ratios as a function of AT, the

traditional ^as well as asecond metric .The first metric mea
sures the bandwidth inflation factor caused by an optimal binary block code

embedded within the T-IH-ARQ protocol. The second metric measures the total amount

ofbandwidth expansion due to both the header overhead as well as the FEC overhead. By

comparing the two curves, we can deduce the proportion of overhead due to headers and

the proportion due to blockcoding redundancy.

At AT = 250 input bits, there are ICQ header bits and 150 image-related payload bits.

The lower curve predicts that a minimum of about 1.1 times bandwidth inflation is

required, corresponding to a minimum output code length of about N = 280 bits, or a

(280,250) code. The upper curve represents the ratio of N to the number of payload bits,

and equals yls " ^ at AT =250.
When both block coding redundancy and header overhead are considered, the upper

curve shows thatroughly a doubling of bandwidth is required by a T-I H-ARQ protocol in

order to deliver an image reliably within the interactive latency threshold. Comparing the

two curves, we see that most of the redundancy is due to header overhead, rather than error

correction redundancy. For example, at AT = 250 bits, the per-packet header overhead is

100bits, while the per-packet FEC overhead is only 30 bits.
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Number of input bits K

Figure 3.6 The minimum bandwidth expansion factor for a TVpe-l ideai SRP
Hybrid ARQ protocoi is piotted as a function of the number of input
bits K. The upper curve shows the inflation caused by the combined
overhead of headers and FEC redundancy. The iower curve shows the
bandwidth infiation due to FEC redundancy aione. The curves were
generated by Aigorithm iV.

The closed-loop redundancy rates of Figure 3.6 can be compared with the open-loop

redundancy rates obtained for the best binary linear block codes in Chapter 2. First, the

algorithm of Section 3.2needs to be applied to the appropriate range of K>\9'i. Further

more, this algorithm, as well as Equation (3-2), needs to be modified to account for the

effects of header overhead, in order to achieve a fair comparison. We can redefine N in

Equation (3-2) to equal where R consists of the block code's redundancy bits.

Also, the algorithm is modified to start from K+H inputbits, instead of K bits. The results

of the new header-cognizant open-loop analysis can then be used for comparison. For

example, for R=2()0 (and BER = 10"^, Pqi^ 0.999), the open-loop system would require

about 70 redundancy bits, at an image loss rate of 10'̂ , and a delay of
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Figure 3.7 The expected number of transmissions ^A] for a lype-l Hybrid ARQ
protocol falls off rapidly as the size N of the error correcting (/V,200)
code Is Increased. e[A] »^ (assumes Ideal SRP). Pg Is defined In
Equation (3-4). 8

N 20K 260

" BW ~ 200-100 500K ~ ^ comparison, SLiK =200, the closed-loop T-I H-
ARQ system requires 27 redundancy bits, transmits images with complete reliability, and

delivers the image with a delay of -100 ms. Thus, the closed-loop T-I H-ARQ system

exhibits an improvement overthe open-loop FECsystem in all respects: lowerredundancy

rate, higher reliability, and faster delivery.

To see how the T-I H-ARQ protocol is managing to achieve such a low FEC redun

dancy rate of around 1.1 to 1.2, we examine Equation (3-5). Error correction coding is

responsible for reducing the number of retransmissions E[A] required by the protocol. For

afixed point K=200, we plot E[A] =^ as afunction of the code length Nin Figure
8

3.7. As N is allowed to increase, the error correction power of the optimal binary code

should improve, and the number of retransmissions E[A] should correspondingly fall. Fig-
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ure 3.7 shows that E[A\ falls very rapidly, below a value of 1.5 within the first 30 redun

dancy bits. An optimal (227,200) block code will create a sufficiently clean channel so that

on averageonly -1.1 repetitionsare needed per fixed-size packet to send one clean version

of that packet through the dirty link. Since £[A] = ^ for ideal SRP, then an alternative
8

interpretation is that the probability of error-free decoding of a corrupt packet will rise

above 90%by adding about 30errorprotection bits. Thus, FECcoding is able to dramati

cally reduce E[A] with only a relatively minor cost in overhead.

Thestairstep appearance of Figure 3.7, and theslight rising slope in each step, can be

attributed to the behavior of the error correction variable T. Recall that T is derived from

upperbounds on which happen to change slowly as is increased. For a fixed K, as

N increases the error correction power T will remain constant over a long interval of N

between increments. Each increment in T corresponds to the ability to correct one addi

tional error, and results ina large improvement in the probability ofcorrect packet decod

ing, hence the visible drop in E[A]. Also, all codes along a stair step share the same T, so

that the longest codes (farthest to the right in the figure) will be the least efficient, thereby

causing theslight upwards slope along each stair step.

While Figure 3.6 suggests that about a doubling ofbandwidth is necessary to support

T-IH-ARQ delivery over a noisy link, there are several ways to reduce this bandwidth cost

and make T-I H-ARQ delivery more efficient. First, we note that the upper curve
K — H

decreases as the code length increases, which indicates that longer block codes can help

reduce the overhead penalty. Second, our analysis of T-I H-ARQ has assumed that an

(N,K) code is only applied once per packet, and therefore the header overhead is suffered

for each (NX) encoding operation. It is possible for different sections of a packet to

undergo separate (NK) encodings, so that the header overhead is confined to a single

(N,K) encoding, or equivalently the header overhead is thinly distributed across multiple
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encodings. Under these conditions, then the overall bandwidth expansion may be much

smaller than the doubling derived here.

Finally, we observe that several factors which we ignored in our analysis will tend to

make it more difficult for T-IH-ARQ protocols to meet the interactive latency bound. For

example, we used the looselowerboundon latency to analyze a T-IH-ARQ protocol. For

finite length image bursts, the tightbound on latency derived in Section 2.4may be a much

better estimate of the image transfer delay. The higher delay estimate will further limit

howmuchFEC redundancy can be addedbeforethe interactive latencybound is exceeded.

Also, our derivations assumed that the very best binary linear codes with the maximum

permissible were used. If instead binary BCH codes are employed, then we recall

from Section 3.3 that the error correction performance can suffer, leading to a bandwidth

inflation effect. In addition, if the retransmission schemeof the T-I H-ARQprotocol is not

SRP, or has finite window and/or buffer sizes, then the T-I H-ARQ protocol will have

greaterdifficulty meeting the interactive delaybound. Finally, T-IH-ARQ protocols oper

ate with fixed FEC, and therefore havea well-known problemhandling the burstyerrors of

time-varying wireless channels. We will discuss this classic problem in more detail in

Chapter 6.

3.5.2 Reed-Solomon codes

In this section, we analyzeRS codes withina T-IH-ARQcontext. In particular, we are

interested in the minimum-redundancy RS code for a given K which can deliver a frag

mented image within the delay bound of 100 ms at severe BER's. For RS {N^ codes,

there are M bits per symbol, and the symbol error rate SER differs from the BER, i.e.

SER = 1- (1 -BER)^. However, the rest of the analysis is comparable to the previous

subsection*s analysis for optimal binary codes. Therefore, assuming the same parameters

definitions as before, we can rewrite the expected image transfer delay as follows:
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^ ^ fragment^ ' fragment

N'M

^ rM\ ; V •^^ySER^il'SERf''
i = 0

I N

BW ' K

(3-6)

^ W•SER'•(I-SER)"''
i = 0

Equation (3-6) was evaluated at 3x10"^ BER, an image size of20 kbits, and a band

width of 500 kbit/s. The results for a selected few values of K are shown in Table 6. We

Table 6. Minimum-redundancy RS codes embedded within a T-i H-ARQ
protocoi which can deiiver an image within 100 ms.

Minimum-redundancy RS
(NyK) code

BER

10'^ 3x10-^

Input Symbols = 50 (63,50) None Found (NF)

100 (127,100) NF

150 (255,150) NF

200 (255,200) NF

only searched RS code lengths inpowers oftwo (corresponding toprimitive RS codes) up

toAr=1023, equivalent to 10bits/symbol. At3% BER, RS codes with less than length 1023

output symbols are basically unable to deliver the fragmented image by the interactive

latency bound of 100 ms. Basically, wearenear thefailure point forRS codes. This means

that comparatively large percentages of FEC redundancy must to be added in order to

reduce to an acceptably low level the expected number of retransmissions per fragment

^i^jragment\> which depends on the BER. Unfortunately, increasing the FEC redundancy

inflates the bandwidth faster than retransmission delaycan be reduced, so that the overall

image transfer delay is never reduced below the interactive latency bound.
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For example, consider inTable 7what happens atK=100 input symbols. At N=121, we

find that is 217, while the overheadfactor only registers 50 ms of

delay. However, because the FEC is insufficiently strong, the total image delay is on the

order oftens ofseconds due tothe exorbitant number ofretransmissions. Next, atiV=255,

the number of retransmissions has been dramatically lowered to one, but the bandwidth is

expanded by a factor of-'2.5. Since our 20 kbit image will take 40 ms to transmit through

a 500 kbit/s channel, then theoverall latency will just exceed 100 msdueto theFEC band

width expansion. At N=511, there is no reduction in the number of retransmissions.

Instead, a latency penalty of 204 ms is paid in terms of bandwidth expansions, so that it

will be impossible to deliver the image with redundancy rates of 5 times or higher. The

values in the column farthest to the right do not match theproduct of the middle two col

umns because of integer truncation effects not taken intoaccount by the overhead factor.

Table 7. Contributions to delay in a T-i H-ARQ protocol employing RS
(A/,100) codes at 3% BER. Retransmissions and expanded
bandwIdth/FEC overhead both contribute to delay.

Number of

retransmissions

^i^fragment\

FEC Overhead

factor

(ms)

Total Image
Delay (sec)

N=127 217 50 15.8

255 1.00 102 0.128

511 1.00 204 0.227

1023 1.00 409 0.409

Somefinal qualifying comments shouldbe made. In our analysis of RS codes for T-I

H-ARQ protocols, we have not considered the effect of header overhead, which compli

cated our earlier study of optimal binarycodes for T-I H-ARQ protocols in Section 3.5.1.

Also, while we have concluded that RS codes are unable to meet the stringent 100 ms

latency boundat 3%BER, Table 7 shows that a (255,100) RScodecan lowerthe latency to

128 ms, which may be close enough for interactivity purposes. In this case, two to three
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times bandwidth expansion would be suffered. Finally, while the analytical results of this

subsection assume a constant averageBER, real-world wireless links will produce a time-

varying BER which depends on the depth and frequency of fades. Though 1% BER is

arguably accepted as a design point for digital cellular voice, we lacked the measurement

data to determine whether 1-3% BER constituted a likely or unlikely occurrence over a

wide variety of indoor and outdoor wireless links.

3.6 Summary and conclusions

In this chapter, we have derived an expression (Equation (3-2)) that determines the

(iV^/„,/Q linear block code with the minimum redundancy which keeps the loss rate for a

fragmented image below a desired threshold probability. Forpractical reasons, this expres

sion assumed bounded-distance decoding of FEC linear block codes, instead of maxi

mum-likelihood decoding. This expressionwas evaluatedfor three classes of linear block

codes: optimal binary codes; binary BCH codes; and Reed-Solomon codes.

We found that moderately-sized optimal codes of input length ^<100 bits required an

output length Nat least -1.5 times greater than i.e. a minimum-redundancy (-150,100)

code was required to deliver a fragmented image across a 10'̂ BER channel at an image

loss rate of less than about 1in 1000. At 3x10"^ BER, the output length Nwas multiplied
by afactor ofabout 2, i.e. a (-200,100) optimal code was required for adequate protection.

For binary BCH codes over a small range ofK, we quantified how the imposition of

BCH structure weakens the error correction ability compared to optimal binary codes. For

example, atiT =40input bits, the minimum-redundancy optimal binary code for 10"^ BER

which adequately protects thefragmented image is a (71,40) code (-1.75 times bandwidth

expansion), while the minimum-redundancy binary BCH code at the same BER and

desired loss threshold is a (105,40) code (over 2.5 times bandwidth expansion).

94



For Reed-Solomon codes, we found similarly that at least a doubling of bandwidth

was required at severe BER's. For example, at A" = -200 input symbols, the minimum-

redundancy RS code for a channel BER of3% was a (511,-200) code. This doubling or

tripling of bandwidth was characteristic of all minimum-redundancy RS codes in the

range ofK<255 input symbols. In essence, RS codes are near their point ofcomplete fail

ure at 3% BER,

Finally, we have performed an analysis ofa lype-I Hybrid ARQ protocol which com

bines reliable ARQ delivery with FEC. Our analysis ofRS codes from this chapter iscom

bined with our latency evaluation ofideal SRP protocols from the previous chapter. Using

the loose lower bound on latency, wefound thatno RS codes of length iV<1023 could be

found at 3%BER for a variety of K which could lower the overall image transfer latency

below the desired interactivity threshold of 100 ms. The FECoverhead required to reduce

the delay due to retransmissions didn*t fall fast enough to compensate for the increased

delay due to bandwidth expansion.

In view of the failure of practical FEC codes at severe BER's, we consider in the next

chapter an alternative technique which combines error-tolerant encoding and decoding of

image sources, forwarding of corrupt packet databy the underlying network, andunequal

error protection (UEP-based FEC) to convey delay-sensitive multimedia quickly to the

destination over very noisy channels.
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4

Error-Tolerant Encoding and Decoding for

Delay-Sensitive Wireless Multimedia

Our primary objective is the design of end-to-end communication syst^ns for suffi

ciently rapid and sufficientlyreliable transport of interactivevisual multimediaacross con

nections that include wireless links. One of the major subjective criteria that must be

satisfied is that the visual information needs to be communicated quickly inorder togive

the human user viewing the image atthe receiver agenuine feeling ofinteractivity.

In this chapter, we consider how the constraint of low latency delivery forces delay-

sensitive multimedia applications to accept less than completely reliable packet delivery.

Real-time video/audio conferencing applications accept unreliable packet delivery over

the wired Internet in order toachieve low-latency packet delivery. We assert that the same

principle of accepting increased channel distortion (i.e. image distortion due to channel

impairments) for lower latency applies to interactive Web-based image browsing. Given

the additional constraint of wireless access, we show how error-tolerant image coding,

unequal error protection (UEP), source-cognizant channel decoding, and application-level

decoding ofcorrupt error-resilient packet data are beneficial for delay-sensitive multime

dia operating over wireless links both in terms of lowerend-to-end distortion as well as

lower perceptual delay. Our contention isthat continuous interactivity with a noisy screen

whose distortion varies with channel conditions is subjectively more preferable than inter-
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mittent interactivity depending on channel conditions with a constant quality error-free

imagefor delay-sensitive ^^plications.

4.1 Decreasing transport latency by tolerating packet loss

Distributed interactive multimedia applications and the network protocols that support

them are designed to provide subjectivelyacceptable performance under the resource con

straintsposedby the network connection. The subjective performance of thejoint applica

tion-protocol systemis typically evaluated in terms of the perceived delivery time (either

roundtrip response time or one-way delay) and the quality of the received data. For inter

active image-based applications, the performance metrics are the perceived visual

response time, i.e. how soon the image is displayed, and the perceived end-to-end distor

tion introduced by image quantization coding and transmission errors, i.e. how "good"

does the image look. When the network connection includes a wireless link, then image

coding algorithms and packet delivery protocols are faced with the challenge of meeting

the subjective latency and distortion objectives within the constraints of limited wireless

bandwidth, a high bit error rate, and time-varying noise behavior.

4.1.1 Reliable internet packet delivery can exceed the tolerable

latency bound

For delay-sensitive visually-based multimedia applications, reliable packet delivery

can be too slow to meet interactive latency bounds, and unreliable packet delivery alone

can introduce too much long-term distortion into the reconstructed image. Closed-loop

retransmission-based protocols implement fully reliable end-to-end packet transport but

invariably introduce latency over noisy and/or congested communication links. Distrib

uted multimedia applications like interactive video and audio conferencing require

roundtrip response times of less than about 100-2CX) ms [41][132]. Our measurements of
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average ronndtrip packet latencies on the Internet^ range from '̂ 5 ms on our own LAN, to

~50 ms Berkeley-Southern California, to ~150 ms Berkeley-MIT, and ~300 ms Berkeley-

London, where the observed delays will vary with distance (propagation delay), conges

tion (queueing delay in network switches), etc. For many connections even one retrans

mission will cause the overall delay to exceed the 100-200 ms delay bound. We observed

peak packet loss rates of ~15% for the Berkeley-Southern California, Berkeley-MIT and

Berkeley-London connections, which again vary with congestion conditions. Our mea

surements suggest that packet losses happen frequently enough on the statistically multi

plexed Internet that fully reliable packet delivery cannot be depended upon to deliver a

sufficiently large number of packets below the latency bounds required by conferencing

applications. In addition, most practical reliable protocols like TCPpreserve the order of

delivery of packetized information, a property also known as stream-based delivery. If a

particular packet is lost and must be retransmitted, then all subsequent packets that have

already been correctly received will also bedelayed until thelostpacket is correctly deliv

ered, thereby adding resequencing delay to all thepackets already cached at thereceiver.

4.1.2 Unreliable packet delivery for real-time video conferenc

ing appiications

Faced with these network constraints, designers ofaudio/video conferencing applica

tions have chosen toforgo reliable packet delivery, and instead have opted to transmit real

time continuous media over unreliable packet delivery protocols [83]. Low-latency deliv

ery is achieved at the cost ofcompromising on the reliability ofthe delivered data. Impair

ments into the transported image caused by uncontrolled channel-related distortion, e.g.

packet loss, are tolerated. Error concealment algorithms are used tomitigate the subjective

effect of lost video packets [39][70].

1.Measurements taken using the UNIX ''ping" utility, sending one 6400 byte packet every for 100
seconds.
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Developers ofinteractive Web-based image browsing have also exploited this trade-off

between distortion and latency. Such delay-sensitive applications are also willing tocom

promise onthe amount ofdistortion introduced into an image inorder to obtain faster per

ceptual response time. Forexample, many Web browsers now allow textandimages in a

Web pageto beonlypartially loaded before theusercanjumptoa new Web page. In prin

ciple, theuser is willing to accept higher distortion in thereconstructed Web pagein order

to maintain a higher degree of interactivity with the displayed information. Some older

versions of Web browsers (e.g. Mosaic [56]) didnot have thisability to interrupt the load

ing of a graphics-intensiveWeb page. Frustrated users were either forced to wait for reli

able deliveryof the entirepossiblyimage-laden Webpage,or theycould use an option that

a priori suppressed delivery of any image. Neither option was particularly attractive.

The same subjective trade-off of interactivity and distortion has been applied to the

images that are embedded within a Web page. Web-based image browsers have employed

progressive source coding methods, also called progressive image transmission (PIT)

algorithms [138], in order to lower the perceptual delay seen by the end user, at the cost of

tolerating greater initial distortion. Both partial loading of Web pages and progressive

image codingrepresent examples in whichdistortion is introduced by someform of lossy

quantization of the original somce data in order to improve the perceived interactivity.

4.1.3 Unreliable packet delivery for Interactive Web-based

Image browsing

Whileprogressive imagecodingcan help reduce the perceived delay, currentversions

of Webbrowsers implementthis progressivity on top of a reliablepacketdelivery protocol

[115]. As noted earlier, real-time video conferencing implications have already come to

the conclusion that reliable packet deliverycannotdependablymeet their subjectivedelay

constraints over multi-hop Internet connections and have therefore opted for unreliable
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packet delivery. Since interactive bursty-media ^^plications like image browsing share

essentially the same 100-200 ms delay constraints as video conferencing implications, and

generate the same volume of trafficover the duration of a single image burst, then it is our

contention that a distributed delay-sensitive image browsing application can only hope to

provide consistent interactivity via an unreliable packet delivery protocol over an end-to-

end Internet connection^. Previous work has also suggested that image response time can

be improved by tolerating Internet packet loss [137]. Over noisy access wireless links, it is

even more imcertain whether reliable packet delivery can hope to provide consistent inter

activity. Again unreliable packet delivery appears to be the most reasonable option for

delay-sensitive media.

Properly designed image encoding and packetization algorithmscombined with error-

concealment algorithms should permit int^active image browsers to tolerate the effect of

channel distortion introduced by an unreliable packet protocol. In Figure 4.1, we demon

strate how anintelligent packetization algorithm canhelp mitigate the effect of lostpack

ets.First we explain the encoding process, before describing thepacketization algorithm.

An 8 bits/pixel grayscale image is divided into 8x8 blocks. Each block is transformed into

the frequency domain using a Discrete Cosine Transform (DOT). The resulting DCT fre

quency coefficients F{u, v) are then quantized to the number of bits shown in the quanti

zation matrix in Figure 4.1. The quantissed DCT image is logically transmitted across a

channel which introduces packet losses. An inverse DCT transform is applied to the quan

tized frequency coefficients at the receiver in order to reconstruct the quantized DCT

image.

The middle image shows the effect of lossy quantization on DCT coefficients (no

packet losses). The quantization matrix removes high frequency components (also called

zonal coding), which appears to be reasonably tolerable for natural images (Enya, San

1. It should beclear that unreliable packet delivery isintended Iottransport ofimages and not text
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Rgure 4.1 The effects of quantization and packet loss on a DCT-coded grayscale image
are shown. The original 8 bits/pixel image (top) Is quantized to 0.75 bits/pixel (middle
Image) using the quantization matrix for frequency coefficients on the right. The bot
tom image suffers from packet loss of some of the quantized DCT coefficients. Fre
quency coefficients from the same 8x8 block are placed in different packets. The
coefficients corresponding to the 1's In the drop matrix are assumed to be the only
ones lost during transmission. Packet loss of these few AC coefficients (recon
structed at their average value) does not appear to be too objectionable for DCT-
coded natural images. Both natural and embedded text/graphic images are shown.



Francisco) but does appear to adversely affect the quality of embedded text/graphics

imageswith high frequency edges (Hale-Bopp). The lowestfrequency DC coefficient was

quantized uniformly. All other AC frequency coefficients were non-uniformly quantized

according to the following nilo. Wecalculate each coefficient's mean p(u, v) and average

absolute deviation from the mean AAD(u, v) = V ^*l^("» v) - li(w. v)|, where Nis
allolocks

the total number of blocks in the image. Two quantization levels were reserved for extreme

variations of AC coefficients at ±5 *AAD{u, v) while the remaining quantization levels

were uniformly distributed between [2.5 •AAD{u, v), -2.5 •AAD{u, v)]. This simple non-

uniform quantization scheme improved the quality of the reconstructed image over uni

form quantization of bothACandDC coefficients. This is because non-uniform quantiza

tion is based on the input signal's statistics andgenerallyproduces a smallererror variance

in thequantized signal than uniform quantization [60]. More elaborate optimal Uoyd-Max

non-uniform quantization was notattempted [102]. Thematrix does notcontain any 1-bit

quantization components because we found thata noticeable amount of graininess due to

quantization noise was introduced throughout the image. The fixed quantization matrix

results in 0.75 bits/pixel, or about 11:1 compression.

If allDCT frequency coefficients from the same block are placed in the same packet,

then a lostpacket will cause "holes" to appear in the reconstructed image for each block

that was contained in the lost packet. Our subjective experimentation has shown that

spreading the effect ofchannel noise across an image ismore acceptable than concentrat

ing the distortion into "holes" in the displayed image. A more intelligent packetization

algorithm would distribute the frequency coefficients from the same block acrossdifferent

packets. Similar approaches have been developed for packet video [131] and for pack-

etized stiU image delivery [137]. A single packet loss will cause some coefficients from

many blocks to belost, but each block will hopefully have enough surviving coefficients to

reasonably estimate the affected image block. We canemulate the effect of packet loss on
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such a system bydropping sets ofcoefficients. Our error concealment algorithm consisted

of replacing the lost frequency coefficients with a pre-computed av^age value based on

image statistics that differs for each coefficient. However, analysis of the meanand aver

age absolute deviation of each frequency coefficient showed that all the AC coefficients

had a meanvalue very close to zero. Theerrorconcealment strategy can besimplified and

made image-independentby zeroing lost AC coefficients.

The lowerimagein Figure 4.1 illustrates how dropping the fourcoefficients indicated

in thedropping matrix affects thereconstructed image. As expected, theresults aregener

ally blunier due to the removal of even more high frequency information. However, the

natural images are largely intact and decipherable. Figure 4.1 demonstrates that packet

loss can indeed be tolerated when DCT coefficients are intelligently interleaved across dif

ferent packets, though the method is only effective when the lost components are higher

frequency AC coefficients and not the lowest frequency DC coefficient.

Another method of compensating for packet loss is to code the image in such a way

that geographical information is naturally spread out into each packet due to the coding

technique. For example, subband image coding separates an image into subsampled fre

quency subbands, and is usually applied more than once to generate multiple layers of

multiresolution encoded information [102]. Each frequency subband in each resolution

layer naturally contains geographical elements from every region of the image. Normal

sequential packetization will naturally place these subbands into different packets. Loss of

a single packet that contains one or more subbands will create an effect that resembles Fig

ure 4.1 in the sense that no "holes" will ^pear in the reconstructed image, only a general

blurring effect as high frequency subbands are lost. Subband coding with sequential pack

etization is useful for dealing with packet loss that corresponds to high frequency sub-

bands, but not for the lower frequency 'IX" subband. Hence, packetization algorithms

have been proposed that scatter components of the "LL" subband across different packets
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[76]. Bitot concealment algorithms can then be applied to further improve the error resil

ience of subband encoding and intelligent packetization.

Finally, even though subband coding and DCT frequency coefficient interleaving try to

avoid the creation of '*holes" in the reconstructed image, some elaborate error conceal

ment algorithms deal directly with this problem of lost image blocks. Advanced inteipola-

tion operations that use surrounding blocks are capable of reconstructing a good

approximation of both the DC component and the high frequency edges in lost blocks

[157].

4.1.4 Erasure codes

Wedescribe briefly anPEC technique called erasure coding thathas beenproposed to

combat Internet packet loss. Erasure coding is a form of PEG in which B blocks of user

data (each block of length Wwords) are coded into N packets (each packet of length W

words), where B^N. Theerasure code hastheproperty thattheoriginal B blocks of user

data canberecovered from any Bcoded packets. Therefore, uptoN-B packets canbelost,

or erased, without affectingrecoveryof the originalB blocks of data.

While erasure coding has been proposed to cope with packet loss on theInternet [2],it

isineffective indealing with packet corruption over anoisy wireless link. Many ofthe era-

sure-coded packets will likely suffer some bitcorruption when the BER is high. The error

correction ability oferasure codes is focused on locating and correcting erasures. Conse

quently, much of the ability tocorrect corrupt bits is sacrificed. Corrupt packets that have

been strictly erasure-coded cannot be decoded at the receiver due to the assumption that

received packets will be eiror-free. The corrupt packets would either need an additional

layer ofPEC toprotect against bitcorruption, orperhaps a very long Reed-Solomon code

whichcould simultaneously handlebotherrorcorrectionand erasuredetection and correc-
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tion. In the absence ofsuch error correction, erasure-coded packets would be highly inef

fective over an Internet connection with a wireless access link.

4.2 On the traditional separation of compression algorithm

design from network/error protection design

In this section, we consider the traditional c^)proach of separating the design of com

pression algorithms (source coding) from thedesign of the network's protocols andother

error protection functions (channel coding). This approach is also called independent

source and channel coding. The background provided here will help us compare joint

source/channel codingto independent sourceandchannel codingoverwireless links in the

next section.

The rationale behind the principle of separate source and channel coding is derived

fromShannon'sseparation theorem, alsocalledthe channel coding theorem [27]. The the

orem states that transmission of the source (e.g. image) through a noisy channel (e.g. wire

less link) can be made arbitrarily close to reliable (arbitrarily close to zero probability of

transmission error) as long as the source's informationrate/entropyis less than the infor

mation-theoretic channel capacity. The source coder's primary responsibility is to com

press the input data below the channel's capacity, and the channel coder's primary

responsibility is to adequately protect the compressed data up to the arbitrary limit of

channel distortion tolerated by thesource. Thus, thesource coder's compression algorithm

can be designed independently of all characteristics of the downstream channelexcept its

capacity. Assuming that the post-compression entropy is less than the channel capacity,

then the channel coder can design its and/or ARQ protocols independent of any

information about the upstream source except its maximum tolerance for channel distor

tion. Theseparated source andchannel system is depicted inFigure 4.2. Oneconsequence
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Figure4.2 The four components of an Independent source and channel coding sys
tem: an aggressive source compression algorithm; a unlfbrm FEC/ARQ
channel encoder; an FEC/ARQ ^annel decoder; and source decompres
sion. Ifreliable transmission Is the only concern, then Ideally the only chan
nel Information used In the source coder's design Is the channel capacity.
The only source Information used Inthe channel coder's design Is the toler
ated prcAablllty of transmission error.

of this separability is that there is no need to design error tolerance into the compression

algorithm, since the channel coder can already guarantee an arbitrarily small probability of

transmission error using FEC and/or ARQ if the source entropy is less than the capacity.

While the separation theorem addresses the issues of information rate (source com

pression followed by channel coding redundancy) and distortion (source coding intro

duces controlled distortion while channel coding protects against uncontrolled distortion),

itdoes not deal with the third dimension ofdelay. In order to guarantee an arbitrarily small

probability oftransmission error, the separation theorem basically assumes that the source

coder/decoder and channel coder/decoder can all be arbitrarily complex and that all can

take an arbitrarily long time to implement compression and error protection respectively.

Practical compression algorithms and network FEC/ARQ mechanisms are designed inde

pendently ofone another under the separation principle, but typically also have to operate

under delay constraints imposed by the user. The approach taken tominimize the overall
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delay in such de facto separated systems is to have the source coder and channel coder

independently minimize their individual contributions todelay.

From the source coder's perspective, delay is minimized by minimizing the bitrate of

the compressed data. Lossy quantization and lossless statistical coding are applied in tan

dem to reduce the information rate of the coded source down to the minimum rate which is

still subjectively tolerable. For many images, the subjectively tolerable distortion limit is

taken as the Just-Noticeable Distortion (JND) threshold [20], which is the threshold below

which reconstruction errors are rendered imp^ceptible. The theoretically minimum bit

rate corresponding to a given distortion limit is called the rate-distortion limit [47][102].

In practical systems, minimizing the bit rate subject to the JND threshold helps to mini

mize the transmission delay and also hopefully compresses the source's bit rate below the

channel'scapacity so that the separation theorem holds. A consequence ofminimizing the

bit rate at or near the rate-distortion limit corresponding to the JND threshold is that cor

rupt information tends not to be very useful at the receiver.

From the channel coder's perspective, delay is minimized by increasing the operating

speedof network switches, increasing the bandwidth of the network trunklines (e.g. opti

cal fiber), expanding the buffer sizes in network switches (which reduces packetloss and

therefore retransmission-based latency), improving signal processing techniques to make

each link in the connection appear less noisy, and designingstronger realizableFEC codes

that operate at minimal redundancy.

The independent sourceand channel coding £^proach has beenimplicitly extended to

wireless access to the Web [77]. In this approach, images are heavily compressed for

delivery over the wireless link in order to reduce the transport latency overa bandlimited

wireless link. The implicit assumption is that heavy FEC will keep the channel relatively

clean so that heavily compressed error-sensitive data are still useful at the receiver. In the

next section, we show that heavy compression/heavy FEC does not necessarily equate
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with low latency delivery over a heavy BER wireless link. Constraints on complexity and

the demand for speedy operation limit the power ofFEC, causing FEC tofail and resulting

in a large image transfer delay at a certain BER. For the same BER, error-tolerant image

coding/decoding can still deliver an image successfully with smaller delay since retrans

missions are unnecessary.

4.3 Joint source/channel coding

In this section, we investigate the motivation for each of the four components ofjoint

source/channel coding (JSCC) shown in Figure 4.3. Given complexity and delay con

straints on the design ofFEC channel coding as well as compression algorithms, and given

the often severe raw BER suffered over nonstationary wireless links, then error-tolerant
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coding combined with loss-tolerant and corruption-tolerant decoding of noisy payload

information can be shown to produce images with lower end-to-end distortion than the

classic approach of aggressive image compression, aggressive FEC channel coding, and

decoding of only error-free information. We demonstrate that robust image coding can

achieve a reasonable degree of compression andyet can be tolerant to highBER*s in the

absence of any FEC on the compressed data. Therefore, comipt packets bearing error-

resilientdata are inherently usefuland need not be thrown away. Overwireless links, the

combination ofrobust image coding and application-level decoding ofcomipt packets can

helpreducethe end-to-end distortion as well as reduce theperceptual delay

4.3.1 Introduction

The separationtheoremdiscussed in Section4.2 was derived under the following three

assumptions:

• stationary memoryless channels

• unconstrained complexity of the compression/decompression algorithms and FEC/

ARQ error protection techniques

• unconstrained delay in the source and channel coders and decoders

If any of these assumptions underlying the separation theorem are violated, then it

becomes questionable whether the best design policy is completely separate source and

channel coding. Recent workhas suggested thatcareshould be exercised before applying

the separation theorem to nonstationary channels [142]. Wireless links that suffer time-

varying shadowing and time-varying co-channel interference fit into this category of non-

stationary channels. Moreover, sinceourapplication of interest is interactive image brows

ing over time-varying channels with constraints on the complexity and delay of

compression and network FEC/ARQ, then each one of the three assumptions of the sepa

ration theorem is violated.
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In addition, the appropriatequalitycriterionin our case is a subjective dual function of

delay and distortion. For example, progressive image transmission is a technique which

exploits the human user's subjectivetolerance for significantdistortion in an initial version

of an image provided that the end user knows that the image will improve eventually in

quality over time. Progressively reliable packet delivery discussed in Chapter 5 is a similar

example which introduces significant channel-induced distortion into an initial image, and

follows that up with a cleaner image at some later time. Such subjective tolerances and

their associated metrics are not addressed by the separation theoran.

An approach called joint souredchannel codingQSCC) can be shown to outperform

separate source and channel coding when one or more of the theorem's assumptions are

not satisfied. The JSCC channel coder is designed with some knowledge of the source's

statistics in mind, and conversely the JSCC sourcecoder is designedwith some awareness

of the channel'seiror statistics. In comparison, the onlyknowledge shared between inde

pendently designed source and channel coders are the channel capacity and tolerable

channel distortion limit.

The four major components of a JSCC system are pictured in Figure 4.3. A robust

source encoder generates error-tolerant data, which is then passed to a channel coder

which implements unequal error protection (UEP), protecting themore sensitive source

bits with stronger error protection. After corruption from the transmission channel, the

FEC channel decoder attempts to reconstruct a best estimate of the noisy data using in-

depth knowledge of the source statistics. Finally, a corruption-tolerant and loss-tolerant

source decoder operates on the possibly noisy decoded bits. The information shared

between the source and channel is also shown, and will be desaibed later as we discuss

each ofthe components. Note that there isnoconstraint inFigure 4.3 onthe layer atwhich

the channel encoders and decoders should be placed. This permits data-link and physical

layer source-cognizant chaimel encoding and decoding that can provide some form of
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lower level variable quality-of-service to the application's data. In addition, end-to-end

FEC/ARQ can also bepracticed simultaneously if desired.

In this section, we discuss how the practical constraints ofcomplexity, delay and non-

stationary wireless channels motivate the development ofeach of the four components of

JSCC. We contend that a JSCC system that practices robust image coding and forwards

corrupt error-tolerant information to the receiver is a better means for achieving low-

latency and sufficiently reliable delivery ofvisual multimedia across time-varying wireless

channels than the traditional separated approach ofaggressive ccxnpression and aggressive

channel coding.

4.3.2 Unequal error protection for Imperfectly compressed

data

Standard compression algorithms typically are unable to fiiUy compress images,

speech, and video down to the rate-distortion limit, due to constraints on the complexity

and speed of practical software and/or hardware encoders and decoders, and also due to

imperfect knowledge of the input image/speech/video statistics.This means that the com

pressed data stillcontains some statistical correlation aftercoding. Forexample, theJPEG

image compression standard still leaves some residual redundancy after aggressive lossy

and lossless compression. Differential encoding of DC DCT coefficients does not com

pletely remove correlation among neighboring DC coefficients [113]. There is also resid

ual correlationbetween DC and ACDCT coefficients in the same block [135].

Also,most motion-compensated DCTvideocodingstandards likeMPEG-2and H.261

leave residual redundancy as a compromise for practical implementation. For example,

computing DCT's onan8x8 block basis is done forthesake ofimplmentation simplicity.

However, ideally a DCT should be computed on the entire image to achieve thegreatest

compression, since this will most comprehensively exploit spatial redundancy and pack
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energy in the lower frequency coefficients. In addition, the motion compensation used to

generate differential frames typically only uses a single frame to predict the current frame.

Ideally, we would like the entire sequence of video frames, or at least two or three frames,

in order to generate a more accurate motion-compensated prediction. Again, complexity

constraints force the video coder/decoder to con^romise, resulting in residual redundancy.

Even if there were no complexity constraints, there is still a delay constraint for real-time

applications. In real-time video conferencing, the motion-compensated predictor cannot

queueup more than a fewframes, which is about60-90ms worthof delay, before a coded

frame must be transmitted in order to meet the conferencing application's latency bound

of a couple hundred milliseconds. Thisdelayconstraint forces thecompression algorithm

to con:q)romise and leave residual redundancyin the coded video.

The residual source redundancy left by imperfect compression means thatsomecode

words are more sensitive to channel errors than othercodewords. In this distortion sense,

some bits are perceptually more important than others. All bits are not equal, A natural

approach to channel coding is to place stronger error protection on the perc^tually more

important source bits and weaker error protection on the perceptually less important

source bits. This approach to channel coding is called unequal errorprotection (UEP).

Since thechannel coder has explicit knowledge of the source's different eirorsensitivities,

then clearly UEP is a form of JSCC.

Recent studies have compared the perfonnance of UEPlinear block codes to more tra

ditional equal error protection (EEP) block codes when both are ^plied to compressed

images with residual redundancy transmitted across noisy channels [38][126]. UEP and

EEP block codes with approximately the same redundancy rate are applied to the same

coded image. The eiTor-protected images are then corrupted atthe same BER. Both objec

tive measures (peak signal-to-noise (PSNR) ratios) and subjective measures (reconstructed
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image quality) show that the JSCC approach ofUEP outperforms the EEP channel coding

approach that is designed independentlyof the source's statistics.

While digital block and convolutional codes offer one way toinclement UEP, another

way to support variable reliability is toadjust the analog power of the signal according to

theerrorsensitivity of the data. Several authors have shown thata QAM signal constella

tion that is designed with knowledge of the distribution of a vector quantized Markov

source (i.e. a source with residualredundancy) considerably lowers end-to-end distortion

compared to a standardsystem thatemploys independently designed VQ andQAMmodu

lation signal sets [80][140]. Again, JSCC via UEP outperforms independent source and

EEP channel coding for practicallycompressedsources.

UEP has been implemented or proposed as a channel coding solution for several real-

worldsystems. Working examples ofUEPcanbefound in boththeGSMandIS-54digital

cellular systems. The speech coder in both systems generates two classes of audio data

that are error-protected differently. In bothsystems, theperceptually mostimportant audio

bits are protected with arate i convolutional error correction code, while the perceptu
allyleast important bits areleftcompletely unprotected [85]. Another example of UEPcan

be found in a proposal for the design of broadcastdigital HDTV [104]. Hierarchicalmod

ulation is proposed as a means of providing UEP for multiresolution broadcast of digital

HDTV, so that users far away from a broadcaster can still obtain a coarse vo'sion of the

HDTV signal while users nearer to the broadcaster can obtain a complete "coarse+fine"

HDTV signal.

4.3.3 Source-cognizant channel decoding for imperfectly com

pressed data

In addition to JSCC UEP encoders^ JSCC channel decoders have also been designed

to e^loit a source's residual redundancy. Recent studies have shown that sophisticated
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soft-decision Vlterbi decoders that exploit knowledge of the source's correlated behavior

can substantially improve the quality of a reconstructed image compared to traditional Vit-

erbi decoders that ignore all source characteristics [50][96][114]. Sources with residual

redundancy exhibit memory or correlated behavior, much like the ou^ut of convolutional

coders with memory. Hence, the path metric of Viterbi decoding, normally optimized for

decoding sequences with convolutionally encoded memory, can be modified to incoipo-

rate additional knowledge of source sequences withmemory. Certain sequences of source

codewords may be closely correlated due to spatial or ten^oral relationships, so that cer

tain paths through the trellis will be more likely than others once the source statistics are

taken into account. Again, the conclusion is that JSCC ouq>erfonns separately designed

source and channel coders and decoders when there is residual redundancy to exploit at

the decoder.

4.3.4 Error-tolerant image coding over noisy channels with

constrained-complexity PEG

In the previous section, residual redundancy after compression was viewed as an

unavoidable necessity dictated by practical constraints on complexity and delay. Recent

work has added the constraint ofvery noisy channels to the constraints ondelay and com

plexity. Xu, Hagenauer, and HoUmann show that it is infact desirable topurposely leave

residual redundancy ina coded image over very noisy channels rather than aggressively

compress the data to remove all possible redundancy [155]. The authors compare a base

line JSCC approach to a second approach which practices further compression and FEC

on thecompressed data. In thefirst JSCC approach, a quantized DCTencoder leaves some

redundancy in the AC coefficients. A UEP channel encoder is applied to the quantized

data, and specialized source-cognizant Viterbi decoding helps reconstruct the corrupted

image data. In the second more traditional approach, the AC coefficients in the quantized
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DCT data are further coni|Hessed using Lempel-Ziv variable-length coding, and Chen-rate
^—^ convolution^ error protection is applied. At the decoder, standard Vitwbi decoding

helps reconstruct the noisy image data. In order to compare the two techniques, the overall

sum of the source and channel coding rates in bits/symbol is constrained to be constant

across both the JSCC and independent source and channel coding approaches. The pri

mary difference between the two techniques is that the JSCC approach devotes a higher

proportion ofbits to source coding than channel coding. The reconstructed images show

that the traditional approach ofaggressive compression and aggressive FEC suffers con

siderably more channel distortion over very noisy channels than the JSCC approach of

moderately compressed image coding, UEP, and source-cognizant channel decoding given

the same overall encoding rate.

The intuition behind this result is that the constraint on the overall encoding rate limits

the aggressiveness ofFEC, causing the channel coding to fail frequently atnoise levels at

which error-tolerant coding is still comparatively beneficial. For example, the failure point

of practical linear block codes (e.g. binary BCH and Reed-Solomon codes) limited to

lengths less than about a few thousand bits long and code rates greater than about - is
4

approximately 5x10"^ BER. Around this range of BER, the "waterfall" curves for linear

block codes show that the post-error correction BER is little better than the original chan

nel BER [87] (and sometimes worse!). For example, the failure point for the (63,47) RS

code employed by the Cellular Digital Packet Data (CDPD) standard's MAC layer [122] is

approximately 2x10 ^BER. We believe the same reasoning can be extended to practical
convolutional codes which are limited by small constraint lengths (5 for GSM, 6for IS-54,

9for IS-95 CDMA) and code rates exceeding i on the forward link in all conventional

digital cellular systems [105]. For block codes, once the BER nears 5x10"^ then the com

pressed data will essentially become unusable. On the other hand, for channel error rates

ofthis approximate severity, error-tolerant coding can ideally still exploit residual source
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lundancy, i.e. 95% ofbits are viewed as ideally still being useful at5x10"^ 5£7?, and

99% ofbits at 10'̂ BER. Consequently, for multimedia applications that desire continuous

operation over a wide range of BER^s and for practical networks that have limited FEC

capability to combatrelatively severe fading on wireless channels, the q^proach of eiror-

tolerant image coding integrated with JSCC channel coding anddecoding offers the low

est-distortion solution for encoding and decoding multimedia over wireless links.

Finally, we observe that there are two ways to achieve a reduction in bit rate: lossy

ccxnpression and lossless statistical compression. Lossy image coding achieves its com

pression through dropping of perceptually unimportant information and through fixed-

length scalar and vector quantization of the remaining information. This approach limits

error propagation. Lossless compression removes statistical correlation in the data and is

synonymous with variable-length arithmetic or Huffman coding. This approach will

increase the error sensitivity of the data. Error-tolerant coding typically will concentrate

on lossy techniques and limit the contribution from lossless compression. For example, the

general approach to error-tolerant DCT orsubband coding will drop perceptually unim

portant higher frequency coefficients or subbands, and then apply fixed-length vector

quantization to the remaining lower frequency coefficients or subbands. In the next sec

tion, we demonstrate an example ofeiror-tolerant DCT compression.

4.3.5 Application-level decoding of corrupt image data for

noisy channels

The previous section demonstrated the desirability of error-tolerant image coding

when the channel BER is severe and practical FEC is constrained in its error correction

ability. Fora source that has been encoded in anerror-tolerant manner, the error-resilience

of the coded data will support decoding of corrupt packet payloads at the receiver. In a

noisy packet, only a fraction ofthe codewords are typically in error while the majority of
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codewords are free of bit errors. The error-resilience of the codeddata will localize any

visualartifacts caused by decoding of comiptcodewords. The robustness of the data pre

vents errors from propagating. As a result, error-tolerant source decoders can extract a

great deal of useful information, based on the error-free segments of the payload, from a

noisy packet.

For example,a compression schemethatgenerates fixed-length codewords after quan

tization would allow an error-tolerant decoder to make use of nearly all of the error-free

codewords in a noisy payload. Consider the image from Section 4.1 that is transformed by

a DOT and non-uniformly quantized using the fixed bit allocation matrix shown in Figure

4.1. This is an example of robust image compression, because some residual redundancy

is left within the coded image (e.g. neighboring DC coefficients are not differentially

encoded). We map the non-uniform quantization levels onto binary codewords using a nat

ural binary code (NBC)^ [60]. For example, if two bits are devoted to a frequency coeffi

cient, then the lowest magnitude level is assigned to 'GO* and the highest to'1T. All coded

bits are corrupted at 10"^ BER, a commonly referred to design point for cellular voice

[50][149]. No FEC is applied. At the receiver, the error-tolerant decoding procedure uses

every received fixed-length codeword, whether corrupt or not, in the inverse DCT.

The resulting noisy reconstruction is shown as the top image in Figure 4.4. The major

visible artifacts in the image correspond to corruption of the DC coefficients (not to lost

packets). Despite the heavy BER, lack of FEC, and error sensitivity due to compression

down to 0.75 bpp, our error-resilient image coding technique permits the decoder to recon

struct a reasonable approximation to the transmitted image. &rors are localized due to the

fixed-length coefficients, which limit the ability of errors to propagate throughout the

entire image. For example, an error in one DC coefficient does not propagate to cause

1. Alternative mappugs that would produce less distoiti(ni are the Folded Binaiy Code (FBQ and Gray
code [60].
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errors in other DC orAC coefficients. This localization oferrors p^mits the application-

level error-tolerant decoder toextract all ofthe eiror-free codewords. Consequently, a rea

sonable facsimile of the transmitted quantized DCT image can be reconstructed despite

the heavy BER.

If corrupt packets bearing error-resilient data were discarded by the underlying net

work, then all of the error-free codewords in each noisy packet would be thrown away.

Topically, the proportion of usable error-free codewords will far exceed the fraction of cor

ruptcodewords in a noisy packet. Forexample, if each DCT coefficient were quantized at

8 bits/coefficient, then the overall coefficient error rate would beabout 8% given 1% chan

nelBER. If each coefficient were quantized according to the bit-allocation matrix of Fig

ure 4.1, then the overall coefficient error rate is closer to 4% given 1% channel BER. In

either case, well over 90% of the AC and DC coefficients in each noisy packet are still

usable on average by the decoder at a 1% BER. Channel distortion will be needlessly

introduced intothe reconstructed image if anycoefficients, especially DC coefficients, are

unnecessarily thrown away by the underlying wireless network. Hence, we contend that

corrupt packets identified as containing error-resilient data should be forwarded by the

underlying wireless network to theapplication for error-tolerant decoding.

A survey of the literature on robust image coding confirms that error-resUient images

corrupted at 10"^ BER are still presentable despite the lack of any FEC error protection.

This has beenshown for a variety of DCT [139], subband [18][107], and VQ [58] source

coding techniques thatachieve 0.5-1.0 bpp compression. One property common toeach of

theseerror-resilient compression algorithms is thatsource-based redundancy is distributed

throughout thecoded data. An alternative approach to error-resilient coding is to concen

trate source-based redundancy in a few resynchronizing codewords whose job is to stop

error propagation. For example, JPEG image coding first compresses the data, and then

allows theinsertion ofuniquely identifiable byte-aligned reset markers between groups of
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blocks of entropy-coded DCT coefficients in order to stop error propagation [95]. Other

forms of synchronizing codewords have been described for standards like Fax, H.261

video and MPEG video [74].

While the corrupted image in Figure 4.4 conveys a significant amount of information

despite the visual artifacts, its presentation can be improved significantly by applying error

concealment. Our knowledge of image statistics, specifically spatial correlation, can be

combined with the noisy received data to detect and mask erroneous image artifacts. For

example, we know that neighboring DC coefficients are typically highly correlated. Sud

den isolated changes in the DC coefficient are statistically unlikely, and can be interpreted

as being erroneous.

A simpleerror concealment mechanism resembling medianfiltering was appliedto the

DC coefficients only. If the difference between a DC coefficient and each of its eight clos

est DC neighbors exceeds a given threshold, then we replace the DC coefficient with an

average of the eight neighboring blocks' DC coefficients. We applied this error conceal

ment filter to the corrupted image and the result is shown as the middle image in Figure

4.4. Our elementary filtering removes most of the worst artifacts from the image, leaving

only a few DC artifacts and various AC-related artifacts. More advanced concealment

algorithms could be applied to detect and correct irregularities in AC coefficients, to fur

therreduce the effect of channel distortion. Bror concealment algorithms have also been

applied to heavily compressed JPEG images, and, in conjunction with resynchronizing

markers, have been shown to significantly improve thequality of the reconstructed image

in the presence ofchannel noise [74][148]. We observe that throwing away corrupt packet

payloads will not only discard decodable information, but will also hindftrerror conceal

ment by reducing the amount of error-firee information available at the receiver for mask

ing operations like spatial interpolation.
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Several precedents exist for processing ofcorrupt information in today's digital wire

less systems. As we noted in Section 4.3.2. both the IS-54 and GSM digital cellular

TDMA standards employ UEP on compressed audio data [36][85]. The perceptually more

important speech bits are protected via arate ^ convolutional coder, while the perceptu-
ally least important speech bits have no error protection, not even error detection. There

fore, there is no means for the speech decoder to know whether the perceptually least

important bits are corrupt or not. Hence, possibly noisy data will be used in the audio

reconstruction algorithm, much like noisy frequency coefficients were used in our inverse

DCT example.

Application-level decoding of corrupt information will likely represent the primary

practical means of realizing the benefits of JSCC on the decoding side of a noisy connec

tion. Somce-cognizant channel decoding described in Section 4.3.3 depends upon the

channel TOC decoder having in-depth knowledge of the source's statistics. However, the

multiple protocol layers separating the channel decoder from the application-level source

decoder will likely prevent the channel decoder from obtaining explicit knowledge of the

source's statistics. However, application-level decoding of comipt packet data can be

applied as a surrogate to source-cognizantViterbidecoding due to the similarities in func

tion. Both approaches attempt to reconstruct the best possible estimate of the transmitted

image data given a noisy received data stream and given in-depth knowledge of the

source's statistics. The difference is that source-cognizant \^terbi decoding operates on

soft-decision information, which is more efficient, while application-level decoding of

coiTuptpackets operates on hard-decision bits. The resemblance is close enough for us to

contend that application-level processing of comipt packet payloads can help to minimize

end-to-end distortion in a JSCC system in much the same manner as source-aware channel

decoding of robust data.
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4.3.6 Forwarding corrupt packet data to enhance the per

ceived interactivity

Our analysis of JSCC in preceding sections of this chapter has established that the

combination of error-tolerant encoding, UEP, and eiror-tolerant decoding of corrupt

packet data reduces the end-to-end distortion compared to an independent source and

channel coding {^proach when the wireless channel is very noisy and both PEC and com

pression are constrained in their complexity and delay. One of the major implications of

the JSCC approach is that the perceived interactivity of delay-sensitive distributed multi

media applications will be relatively continuous over a wide range of BER\ while the dis

tortion suffered by packetized images will be vary according to channel conditions.

Forwarding of corruptpacket data to the application for decoding allows the end user to

interact almost immediately with a potentially noisy image, instead of having to wait for

an error-free version of the image to arrived The end user will perceive arelatively con

stanttransport delay dueto the continuous interaction. The impact of time-varying nature

of thewireless channel will be on the quality of thedisplayed image, which will degrade/

improve gracefully as channel conditions worsen/improve.

Compare this continuous interactivity/variable distortion approach to a wireless sys

tem whose focus is on low-distortion delivery. Such a system throws away corrupt packet

data and relies on either link-layer or end-to-end retransmissions to recover discarded

packets. The end user must wait for the underlying network toreliably deliver each packet.

Such a system provides constant minimum-distortion service at the cost ofvariable delay

over a time-varying wireless channel. The JSCC design philosophy offorwarding corrupt

packets in order toprovide continuous interactivity/variable distortion is arguably a better

fit fordelay-sensitive applications than the intermittent interactivity/minimum-distortion.

1. Forwarding ofconupt packet data isonly designed for natural orpre-rendered artificial images, not
for plain textor graphicsdrawingcommands.
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First, we want to establish that forwarding packets with corrupt payloads reduces the

delay close to the interactive latency bound of several hundred milliseconds. Recall from

Chapter 2 that we calculated the loose lower bound on the image transfer latency using

ideal SRP. An image ofsize I bits was divided into F packet fragments, each oflength —

bits. Define the channel bandwidth asBW, probability ofbiterror as BER^ and header size

perpacket asH, Let represent the number of times on average that a fixed-

size packet must be retransmitted. Let represent the time required totransmit a

packet (payload +header bits) once over a link. In Chapter 2, we showed that the average

amount of time toreliably transmit apacketized image was lower bounded by

^ F ' (4-1)

1 I-k-FH

(Uh) fw
{\-BERy^

Byforwarding packets with corrupt payloads, wearein effect requiring that theARQ

protocolonly needs to ensure that the headers on packets are free from errors. Therefore,

the BER factor that triggers the retransmissions is only dependent on the header size,not

the payload size ^. The revised average delay required to reliably transmit an image that
only needs theheadersonall packets to beerror-free is given by

Assume that the imagesizeI is 20 kbits,channel BWis 500 kbit/s, andheadersizeH is

100 bits, thesame parameter values wechose in Chapter 2.Also, assume thatthe payload

length j is 1000 bits (i.e. the number of fragments F=20) and the channel BER is 10"^.

For these values, the image transfer delay for error-free header/corrupt payload delivery
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given by Equation (4-2) is calculated as 120 ms. By forwarding packets with possibly

noisy payloads yet error-free headers, we are able to deliver the entire image close to the

interactive latency bound of a couple hundred milliseconds despite the heavy BER and

without any assistance from FEC. Though practical limitations will push the delay above

this ideal lower bound, we contend that forwarding of corrupt-payload header-valid pack

ets will allow image transfer latencies of close to the interactive latency bound over very

noisy channels without the help ofFEC.

Next, we would like to quantify the reduction in delay achieved by forwarding corrupt

information in comparison to throwing away coirupt packets and retransmitting the dis

carded packets. By taking the ratio p of Equation (4-1) to Equation (4-2), we can com

parethe latency reduction obtained byforw^dingcorrupt packet payloads (requiring only

reliableheadertransmission) to theapproach whichrequires that bothpayload and header

be error-free. This ratio p is given by

P =
'^^liheader +payload) _ \

E{T ,\{header-only) ' {l-BERy^ (4-3)

Note that ponly depends on the BER and payload length j. We tabulate pas afunc
tion of ^ and BER in Table 6.1. The reduction in latency can be quite dramatic, exceeding

Table 6.1: Factor by which delay isreduced by forwarding corrupt information, plotting
p from Equation (4-3) for different BER and payload lengths.

p
factor by which delay is reduced

Payload length Iff (bits)

10 100 1000 10000

BER

5x10-2 1.1 1.7 1.5x10^ 5.9x10^'

10-2 1.1 2.7 2.3x105 4.4x10^3

SxlO"^ 1.7 1.7x10^ 1.9x10" —
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a factor of 100 for various combinations ofBER and payload length. For example, con

sider the point 10'̂ BER and payload length ^ of 1000 bits. For this point, the delay cal
culated earlier as 120 ms is a factor of2.3x10^ less than the latency that would have been

suffered if the entire payload and header were required to be error-free. The table provides

some perspective onhow much faster theresponse time is byforwarding corrupt informa

tion.

4.4 Implications of forwarding corrupt data on the design of

data-iink iayer error protection

Forwarding corrupt error-resilient packets has several implications on the design of

FECchannel coding at thedata-link layer. First, while thepayload maycontain error-resil

ient data, the header is still very sensitive to errors. While we have shown that in the

absence of any FEC it is still possible to transfer a complete image by the interactive

latency bounddespite a heavy BER^ FEC on the header can help improve that probability

of successful packet transmission with a minimal cost in overhead. The overhead cost of

FEC redimdancy is only suffered by the relatively small header, not the entire payload.

This means that very strong FEC block/convolutional codes with coding rates of | or
even less can be applied with little expansion of the bandwidth.

Also, in order to distinguish payload-based corruption from header-based corruption,

theprotocol needs at leastanerrordetection mechanism thatoperates just on theprotocol

header. As we mention below, it is alsohelpful to know whether thepayload is in error at

the channel decoder. Therefore, bothheader errordetection, usually in the form of a cyclic

redundancy code(CRC), andsomeform of payload errordetection (though it neednot be

in theexplicit form of a CRC) arerequired at thedata-link level in order to implement for

warding of corrupt packet payloads.
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In a sense, header-only FEC is a form of UEP,since the header is error-protected while

the payload is not. The JSCC approach permits finer-granularity UEP-based FEC on the

payload as well. However, care should be taken in choosing the type of FEC decoding to

avoid the catastrophiceffect of multiplyingerrors.Recall from Chapter3 that an {NJQlin

ear block decoder attempts to find the code vector in ^-dimensional space that is closest in

Hamming distance to the noisy received vector. If the wrong code vector is chosen, then

even though the transmitted code vector and the received code vector may be neighbors

and differ by only one bit in N-dimensional space, the corresponding decoded /if-dimen-

sional codeword may differ by many bits firom the original /C-dimensional input codeword.

Once the FEC decoder fails, then the effect is catastrophic, causing a multiplicative effect

on the number of channel errors in the decoded corrupt packet. For example, transform-

based decoding of RS codes can completely scramble the decoded packets if the RS

decoder fails tocorrect the sequence [46]. Even though the comipt packets contain robust

encoded data, thismultiplicative effect is stillhighly undesirable.

Fortunately, systematic RS codes offer one solution that permits error correction and

forwarding of corrupt packets whose bit error rate is no worse than the channel BER. Sys

tematic block codes encode a AT-bit input word by appending N-K redundancy bits on to

the original /T-bit input word. Therefore, at the receiver itis possible to extract the original

possibly noisy AT-bit codeword even if the /^-dimensional RS decoding fails. For non-sys

tematic codes, the original codeword is not visible after encoding, and can only be

extracted by decoding the /V-dimensional received vector. With reasonable likelihood, RS

codes can detect when their error coirection ability has been exceeded. Therefore, once a

RS decoder detects that error correction failure, then a suitable policy is to forward the

original AT-bit packet recovered from the noisy /V-bit received codeword, rather than for

warding the possibly noisier AT-bit vector from the output of the RS decoder. Under this

policy, the forwarded corrupt packet willhave noworse BER than thechannel BER.
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We observe that link-level retransmissions are not necessarily incompatible with for

warding of corrupt information. Several authors have described partial retransmission

strategies which do not provide full reliability, but do make some effort to provide a

cleaner version ofeach corrupted packet [69][103], If partial retransmission is still unsuc

cessful after a finite number ofattempts, then the policy is to typically discard dirty pack

ets. Within a JSCC system, this policy can be modified to forward onwards to the

application the final corruptpacketleftover afterpartialretransmission.

Also, whileit may be tempting to employ a fewlink-layer retransmissions, we caution

that over certain cellular links this can lead to large increases in delay. For example, the

interleaving delay is near 40 ms each direction on the GSM system [85]. Given that

roundtrip latencies ofmanymulti-hop Intemetconnections arealready at or near theinter

active latency bound of about 200 ms, then there is very little margin left for additional

retransmissions. If the retransmission loop at the link-level is very tight, then partial link-

layerretransmissions can be employed to use up the rest of the delay budget for time-crit

icaldata.However, eachretransmission over a GSM linkwillincur 80msroimdtrip delay.

Finally, we observethat forwarding corruptinformation acrossa noisy wireless link is

ideal for low-latency packet transport, it can leave artifacts in a reconstructed still image.

The end user of such a bursty media application would prefer that the screenpresentation

ultimately be cleaned of artifacts that were initially tolerated for the sake of interactivity.

In the next chapter, we propose an end-to-end progressively reliable protocol which ini

tially utilizes the corrupt packet payloads forwarded by the data-link layeryet eventually

sends enough end-to-endredundancy to clean up noisy received data. In effect, the parti

tioning of responsibilities between the data-link layer and the end-to-end protocol is to

makethe link-layer responsible for header-valid packet delivery andtheend-to-end proto

col responsible for eventuallyerror-freedeliveryof payload data.
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4.5 Summary and conclusions

First, we have described how real-time distributed audio/video conferencing applica

tions have been designed to tolerate unreliable packet delivery (e.g. packet loss) over the

wired Internet in order to deliver their data quickly. We have shown that end-to-end

roundtrip times on the Internet can exceed 100-200ms and packet loss rates can range up

to 15%, which suggest that reliable delivery via retransmission-based end-to-end proto

cols can take too long to transportpacketsfor delay-sensitive ^plications. We have shown

that bursty imaging applications, such as interactive Web-based imagebrowsing, can also

be designed to tolerate significant packetloss for the sake of rapid delivery.

The same trade-offof accepting increased channel distortion (i.e. imagedistortion due

to channel impairments) for lower latency can be applied to the situation of wireless

access to the Intemet. Rather than waiting for reliable delivery over a noisy wireless link,

the user can interact immediately with apossibly corrupt image. For delay-sensitive appli

cations, we contend that consistent interactivity with a possibly noisy displayed image is

subjectively preferable to intermittent interactivity with an error-free image. Thus, over

wireless access links, the perceived latency can be lowered not only by tolerating packet

loss, but also by toleratingpacket corruption.

We outline the theoretical joint source/channel coding (JSCC) framework which sup

ports the notion offorwarding and displaying corrupt data. We call into question the tradi

tional separation of image compression design from network protocol/FEC design, also

called independent source and channel coding, that isbased on Shannon's separation the

orem. This information-theoretic theorem was derived based on the assumptions of sta

tionary memoryless channels, unconstrained complexity in the design of FEC encoders/

decoders and compression/decompression, as well as unconstrained delay inthe operation

ofeach ofthese elements. Since our application ofinterest is interactive Web-based image
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browsing across time-varying wireless access channels with real-world limitations on

complexity, then each ofthese assumptions is violated inpractice. Moreover, the separa

tion theorem is based on quantitative metrics like the loss probability, while the theme of

progressivity developed in this thesis is motivated laigely by a subjective performance

metric which is a complex function ofperceptual delay and perceived image distortion.

As an alternative, we outline the framework ofjoint sourcelchannel codings in which

image encoders and decoders are designed to be error-tolerant, and FEC/ARQ channel

encoders and decoders aredesigned with some knowledge of the image source's statistics

in mind. The literature shows that theJSCC approach reconstructs images with lower dis

tortion than the independent source and channel coding approach at severe BER*s. An

important outcome of the JSCC approach is that the underlying network should not throw

away corrupt packets containing error-tolerant image data, but instead should forward

packets with corrupt payloads to the destination for decoding/errorconcealment.We dem

onstrate that error-tolerant image coding can achieve reasonable compression via lossy

quantization alone (variable-length statistical compression is left out) as well as tolerate

BER^s up to at least 3% - the same approximate BER at which RS codes that tripled the

bandwidth were determined to fail in the previous chapter. Corrupt yet robust image data

that is forwarded quickly to the receiver can be displayed immediately, thereby improving

the perceivedinteractivity of the systemin comparison to error-free delivery.

Finally, having established the advantages of forwarding corrupt information in a

JSCC framework, we explorethe implications on the designof data-linklayer protocolsof

forwarding corruptdata. In particular, we note that systematic PEC codes are especially

useful overnoisy wireless links, because if the error correction fails, the systematic por

tion of the payload can be forwarded without magnifying the post-decoding BER^ as

would occur for decoding failures in non-systematic FEC codes.
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In the next chapter, JSCC and forwarding of coirupt packet data serve as the founda

tion for the concept of progressively reliable packet delivery.
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5

Progressively Reliable

Packet Delivery

In this chapter, we introduce progressively reliable packet delivery. The observations

made in the previous chapter concerning the usefulness of processing corrupt packetized

image data overwireless channels serve as the starting point. We showed that forwarding

and displaying error-tolerant corrupt image data can reducethe delay and distortion of the

reconstructed image over very noisy channels given constraints on the complexity and

delay of compression algorithms and FEC/ARQ channel coding. Forwarding corrupt

information allows the end user to interact immediately with a possibly noisy image. For

bursty multimedia applications likeWeb-based image browsing, subjectively harmful arti

facts can persist indefinitely on the screen if no mechanism is available to clean up these

initial artifacts. Hence, we add the ideaof eventually reliable packetdelivery to the idea of

initially forwarding and displaying corrupt packetized image data to obtain the overall

concept of progressively reliable packet delivery.

Following the overview. Section5.2 identifies the essentialpropertiesthat describe the

progressively transport service, or socket interface, seen by a multimedia application and

supported by the underlying progressively reliable transport protocol. These properties

include forwarding corrupt information, delivering multiple noisy versions of a given

packet, ensuring that the delivered versions are increasingly reliable, and delivering differ-
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ent packets out-of-order. Section 5.3 describes our modifications to an X windows server

that implement a simple version of progressive reliability which adheres to each of the

essential properties. Section 5.4 proposes that three performance-enhancing functions be

added to the transport service interface in order to improve the end-to-end delay perfor

mance of the underlying progressively reliable protocol. These functions were motivated

by experimentation and subjective evaluation within the X server emulator. These three

newfunctions allow the application to parameterize the protocol to delay retransmissions,

cancel out-of-date, or stale, retransmissions, and partition application data into multiple

flows which areeach served with a different quality of service by theprotocol. Finally, in

Section 5.5 and Section 5.6, we discuss three examples of how multimedia applications

would utilize progressively reliable packet deliveiy. Progressive image transmission for

bursty multimedia is tested in conjunction with progressively reliable packet delivery

within our modified X server. In addition, we consider how continuous video and audio

can parameterize a progressively reliable protocol to suit their needs, and implement this

parameterization for the case of video.

5.1 Overview of progressive reiiabiiity

The advent ofwireless access tothe Intemet poses a new challenge tointeractive mul

timedia applications like Web-based image browsing originally designed to operate over

end-to-end wired Intemet connections. Such delay-sensitive applications require fast

packet transport in order to provide the end user with genuine interactivity. Over a noisy

wireless link that introduces bit errors, there is a fundamental trade-off between the

desired reliability of a packet and the desired speed of delivery. A design philosophy

which emphasizes error-free delivery ofpackets will have to incur variable packet latency

over a time-varying wireless channel. The number of retransmissions generated by an
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ARQ protocol in order toguarantee error-free delivery will vary according tothe severity

of thechannel noise, thereby causing thedelivery latency to fluctuate.

An alternative design philosophy is toback offonthe guarantee ofcomplete reliability

and apply only FEC to mitigate the effect of channel errors. Such anopen-loop approach

supports distortionless delivery up to the point of failure of the error correction code. As

we pointed out in Chapter 4, the failure point for this "brittle" FEC approach is about

1 \ 15x10" BER for rate - linearblockcodes, andabout3%BER for higherrate - practical

FEC codes. From Figure 3.4 in Chapter 3, an RS (255,127) code with 8 bits/symbol fails

around 3x10 BER. Suchan open-loop approach also supports constant transport delay up

until the failure point of the code. However, when heavy channel noise causes the FEC to

fail, packets are catastrophically lost, and the delay becomes exponentially large.

The JSCC design philosophy outlined in Chapter 4 consisted of error-tolerant image

encoding, UEP, forwarding of corrupt packet data, and error-tolerant image decoding of

noisy received packets. JSCC supports constant transport delay by forwarding corrupt

packet data. Moreover, as we showed in the previous chapter, images can still be recon

structed at 3x10'̂ BER given error-tolerant compression to 0.75 bpp. Therefore, the JSCC

design philosophy supports continuous interactivity over a wider range of BER's than

practical FEC systems. Constant transport delay is again achieved at the cost of variable

channel distortion. However, in comparison to the FEC approach that fails catastrophi

cally, the JSCC approach allows the quality of the image to gracefully degrade as a func

tion of BER, over a wider range of BER*s than practical FEC systems.

Our JSCC approach of forwarding and displaying corrupt error-tolerant information

has been tailored for delay-sensitive multimedia applications like interactive Web-based

image browsing. Channel distortion is tolerated initially in order to transmit a quick first

version of an image to the end user. However, for such bursty-media applications, artifacts

caused by channel noise can remain on screen indefinitely, until some user action over-
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Figure 5.1 Progressively reilable packet transport delivers an Initial possibly noisy ver
sion of a packet quickly to the receiver. Later, the protocoi employs retrans
missions to progressively improve the reliability of the delivered packet. An
image-based multimedia application can use a progressively reliable protocol
to display a noisy initial image (left) for immediate interactivity, and later
remove any persistent artifacts on the screen by displaying progressively
cleaner Image data (right). The 8 bits/pixelcoiormapped image is corrupted at
B£fl10-2

writes the displayed noisy image. In contrast, for continuous video, artifacts may not per

sist either because the next frame overwrites the current frame, or because error

concealment has been applied to compressed video to reduce error propagation, e.g. by

interpolating from the previous frame or by leaky motion compensation [54]. In order to

clean up these artifacts and provide eventually distortionless packet delivery, we observe

that an asymptotically reliable cleanup mechanism based on retransmissions can be com

bined with forwarding ofcorrupt packet data to form a progressively reliable end-to-end

protocol for packet delivery.

In Figure 5.1, we demonstrate the perceptual effect seen by the end user ofa progres

sively reliable JSCC system. An application which employs aprogressively reliable proto

col would code itsimage data inerror-tolerant fashion using lossy compression techniques

like fixed-length quantization. The packetized image data would be forwarded to the

receiver even if corrupted by an intervening wireless channel. At the receiver, the applica

tion decoder would display a possibly noisy first version of an image immediately. Over



time, the progressive fiinction of the protocol will eventually deliver a distortionless ver

sionof each packet, thereby cleaning up any artifacts on the screen. It shouldbe clear that

progressive reliability is designed to be used with coded pixel-mapped images, and not

with text or graphics commands, though progressive reliability could be used to deliver

images with pre-renderedembedded text/graphics.

Progressively reliable packet delivery can be seen as a form of progressive channel

coding, analogous to how progressive image transmission is interpretedas a form of pro

gressive source coding. In both cases, an initial high-distortion version of the image is

transmitted and displayed quickly at the receiver in order to lower the perceptual delay

observed by the end user. And in both cases, ultimately enough redundancy is sent to

remove the distortion in the initially "noisy" displayed image. The difference of course is

that progressive source coding introduces controlled distortion into the image while pro

gressive channel coding introduces uncontrolled distortion.

Progressively reliable packet delivery offers an alternative to completely reliable and

unreliable packet services over noisy time-varying channels. Fully reliable delivery will

suffer variable delay, while unreliable delivery will suffer variable distortion and will leave

persistent artifacts. Progressive reliability offers an intermediate solution adapted initially

to meet the latency requirements of the delay-sensitive data, and adapted ultimately to sat

isfy the subjective distortion requirements of the data.

While this technique is primarily designed for natural images, ultimately some images

will includeembeddedtext/graphics. Therefore, we haveincludedembeddedtext/graphics

in Figure 5.1 to illustrate the impact of channel noise on these artificially rendered objects.

The reader can also refer to Figure 4.1 and Figure 4.4 to study the impact of channel noise

at 10'̂ BER on compressed images for both natural and embedded artificial images.
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5.2 Essential properties of a progressiveiy reiiable service

interface

In this section, we identify the core properties which define a progressively reliable

service interface between the multimedia application and the underlying network trans

port protocol that implements progressive reliability. At this point, we are not defining the

precise implementation details of how a progressively reliable end-to-end protocol could

be built, which will be left for the next chapter. Instead, we define the essential list of ser

vices and functions across the application/transport interface (ATI) which an application

subscribing to a progressively reliable packet delivery service would expect to be pro

vided. This distinction between transport service and transport protocol is an important

one [129], and is evident in real-world systems. For example, the UNIX socket service

interface is distinguished from the implementation details of the underlying transport pro

tocol [123]. Applications that set up a reliable stream (in-order) socket connection across

the Internet do not needto understand the protocol implementation details about how TCP

supports reliable stream service. Finally, theservice features outlined in this section only

define the bare minimum ATI. The performance of progressively reliable packet delivery

can beenhanced by adding an extra set of primitives to the ATI that allow the application

tochoose when and if retransmission redundancy should besent. These important "added-

value" ATI functions are described in Section 5.4.

In Figure 5.2, the progressively reliable service interface, or ATI (dotted line), is dis

tinguished from the underlying transport protocol that implements progressive reliability.

The application sends a packet across the source ATI to the transmitting end of the pro

gressively reliable protocol. At the receiver, the application must be prepared to process

multiple noisy versions of each packet which improve in reliability over time across the
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Figure 5.2 The end-to-end progressively reliable protocol provides four core services

to the application through the application/transport Interface (ATI): 1) cor
rupt data Is forwarded to the application 2) multiple versions of each packet
are delivered to the application 3) these multiple versions are Increasingly
reliable (fewer errors with each successive version) 4) different packets will
arrive out of order (not shown). Other added-value functions which
Improve the efficiency of progressivelyreliablepacket delivery(not shown)
are described In Section 5.4.

destination ATI. Therefore, the essential properties ofa progressively reliable packet deliv

ery service are:

• Corruptpacketsare forwarded to the ^plication

• Multiple versions of each packet may be delivered

• The reliability of these multipleversions improves statistically over time (fewererrors

with each successive version)

• Different packets may be delivered out of order

In the restof thesection, wediscuss the implications ofeachof these properties on the

design of the progressively reliable service interface.
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5.2.1 Forwarding corrupt information

At the sender, the multimedia application transfers data through the source ATI to the

underlying protocol for transmission. At the receiver, the transport protocol must support

forwarding of possibly corrupt received data across the destination ATI to the application

decoder.

5.2.1.1 Application-level

framing

Suppose that the application

sends a sequence of two images

through the source ATI. At the

receiver, assume that the two possi

bly corrupt images are forwarded to Corrupt Header

the application through the destina

tion ATI. Also, assume there is no

support from the transport service to

help identify the original image or

packet boundaries. Given a received

Sequence of Delivery to
Application

Corrapted Image #1 Error-free Image #2

Payload #1 (....Lz) Payload #2

T
Error-free Header

Figure 5.3 Lack of framing support from the
transport service means the application can
lose track of where a message begins. Once
the length field Li is corrupted, then all sub
sequent messages (images in this example)
cannot be identified.

sequence of noisy variable-length images, the application decoder can lose trackof where

an image begins and ends. The lack of framing support from the transport service means

that the application must embed its own application-level header within the payload so

that the length of the image can beextracted at the receiver. However, this length field can

still be corrupted, even taking into account error correction, as shown in Figure 5.3. Once

the application-level header is corrupted, then all subsequent information is lost because

the decoder cannot identify the length of the current image, and therefore can no longer

identify where subsequent images begin and end.
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In order to avoid losing synchronization with the data, the application decoder needs

the transport service to preserve q)plication-specified boundaries end-to-end. The source

application must first parse its data into a sequence of variably-sized messages, called

application dataunits (ADU's). Thissegmentation process is alsocalled application-level

framing (ALF) [23]. ALF does not exclude the possibility that the underlying transport

protocol will fragment the ADU into smallerpieces in order to transmit the data. Indeed,

we shall discuss later the roleof ADU fragmentation in thedesign of a progressively reli

able protocol. For now, we note that the ADU is the basic unit of data exchange across

both the source and destination ATFs and a necessary function to support forwarding of

corrupt packetized image data.

In the absence of corruption, reconstruction of an ADU in its entirety end-to-end

despite fragmentation by the underlying transport protocol is relatively straightforward.

Consider the real-world example of IP delivery of a UDP datagram. IP encapsulates a

UDP datagram with an IP header.The combined IP header and UDP datagram is called an

"IP datagram" [124]. The IP datagram may be divided into smaller IP fragments. Each IP

fragment contains a headerfield specifying the lengthof theentireIP datagram. Assuming

a fixed IP header length, then each IPfragment is implicitly aware of the original length of

the higher layer packet entity, or UDP datagram. At the receiver, IP reassembles the IP

datagram, and then strips off the IP headerto reconstruct the UDP datagram. By analogy,

the ADU represents the higher layer packet entity in our scenario which may be frag

mented by the transport layer. Since each transport layer fragment contains implicit infor

mation on the original ADU's length within the fragment header, then the transport

protocol is equipped to identify ADU boundaries and reconstruct each ADU in its entirety

at the receiver.
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5.2.1.2 ADU header and ADU payload

In the presence of bit corruption, preserving ADU boundaries end-to-end becomes a

little more complicated.PreservingADU boundaries is equivalentto communicating each

ADU's lengthto the application decoder free fromerrors. Our approach is to first partition

the ADU into an ADU header and an ADU payload. The ADU header will contain error-

sensitive information like the ADU length, as well as error-sensitive image coding infor

mation likethe image width or starting (x,y) coordinates. The ADU payload will contain

error-tolerant coded image data, such as vector quantized pixels/blocks, frequency coeffi

cients, or subbands. In addition, at the receiver, we propose to forward an ADU only if its

ADU header iserror-free. This combination ofADU partitioning at thesender and header-

valid forwarding ofADU*s at the receiver will permit corrupt ADU payloads to be passed

to the application decoder without suffering our earlier problem of lost synchronization

due to corrupt length fields.

Separating error-sensitive data from error-tolerant data supports the implementation of

UEP on the ADU. Heavy FEC can be confined to the ADU header, thereby avoiding a

large cost inoverhead ifthe entire ADU were protected by heavy FEC. Similarly, minimal

FEC can be applied to the error-tolerant ADU payload, thereby avoid possibly intolerable

channel distortion ifinsufficient FEC were applied to the entire ADU. More generally, the

FEC coding rate can bevaried throughout the ADU payload.

Atthesender, a CRC error detection checksum isappended tothe ADU header and the

combination is encoded via FEC. At the receiver, FEC decoding is followed by error

detection on the post-correction ADU header. The entire ADU (header and payload) is for

warded to the application for further decoding only if the ADU header is error-free. In

part, this is because anerror in theADU header essentially renders the information in the

packet useless, e.g. if the (x,y) starting point ofan image in the ADU header iscorrupted,

then the rest of the image data in the ADU payload will be drawn in the wrong location.
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Figure 5.4 A method for forwarding corrupt packet data which keeps the receiver syn
chronized: (a) the application sends messages called application data units
(ADU's) to the socket buffer. These ADU*s are partitioned into an ADU
header (error-sensitive data) and an ADU payload (error-tolerant data), (b)
UEP is applied by the transport protocol. Header-only FEC can be applied
on both the ADU header (shown) and the transport header (not shown) (c) a
transport header is appended to the expanded ADU (d) the transport ''data
gram" is fragmented for network packet delivery (e) Noisy fragments are
reassembled (f) If after error correction decoding the ADU header is free
from errors, then the ADU header and noisy ADU payload are forwarded to
the receiving socket buffer.

141



More importantly, forwarding only ADU*s with clean headers allows the application

decoder to remain synchronized with the ADU boundaries, because the ADU length field

is cleanly reproduced at the receiver without any errors. The application decoder will per

ceive an alternating sequence of error-freeADU header and possibly noisy ADU payload,

from which the ADU boundaries can always be extracted. Figure 5.4 shows how the con

cepts of application-level framing, ADU headers, ADU payloads, and header-only error

detection can be combined to implement forwarding of corrupt packet payloads to the

receiver in a manner that still preserves ADU boundaries end-to-end.

As part of the transport service of forwarding corrupt packet data, it is necessary to

define thelength of theADU header. This length caneither vary with eachADU, orcanbe

fixed during setup of the progressively reliable connection. We propose that the ADU

header, unlike the payload, be a fixed length that is configurable during setup of the pro

gressively reliable connection. This approach simplifies the EEC decoding required for

each ADU header. Variable-length ADU headers can be emulated by creating multiple

connections that differ in the length of their ADU headers.

Table 7 summarizes the various transportserviceelements and the source and destina

tion ATI boundaries across which they are defined. All three of the elements discussed in

this section - the ADU payload, ADU header, and ADU length field - propagate end-to-

end. The other elements will be described in Section 5.4.

Table 7. A listing of transport service elements and the ATI's across
which they are defined

Source ATI Across Network Destinatioii ATI

ADU payload ADU payload ADU payload

ADU header ADU header ADU header

ADU length ADU length ADU length

ADU correlation label ADU correlation label

ADU flow header ADU flow header
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5.2.2 Multiple versions of each ADU

Another key property of a progressively reliable packet delivery service is that multi

ple noisy versions ofa single ADU may beforwarded tothe application. The application

must be prepared toprocess multiple versions ofthe same ADU. This multiple-copy prop

erty is fundamentally different from the single-copy services offered by today's Internet.

For example, TCP implements single-copy reliable stream service, while UDP supports

single-copy unreliable datagram service. In both of these services, each message sent into

thesystem produces at most one output message. In contrast, progressively reliable packet

delivery generates possibly more than oneoutput version of eachinput message.

The transport serviceshouldallow the application to parameterize progressive reliabil

ity to suit its needs. Whatconstitutes "sufficient reliability" for one application maydiffer

sharply from the tolerance for distortion of another application. The application shouldbe

able to parameterize whether the final version of each packet is completely free of errors,

or whether the final version can contain some residual distortion. In the former case,

retransmissions will be attempted indefinitely, muchlike a conventional ARQprotocol. In

the latter case, the application should be able to specify an upper bound on the number of

retransmission attempts. For example, certain delay-sensitive continuous-media applica

tions like audio and video are not likely to benefit from indefinite retransmissions, and

therefore progressive reliability should stoptrying aftera specified number of attempts.

5.2.3 Increasingly reliable versions of each ADU

Forwarding of multiple corrupt versions of an ADU to the application decoder without

any further filtering has the undesirable property that the quality of more recent ADU ver

sions may actually be worse than earlier ADU versions. The quality of an ADU which is

forwarded directly to the application will dependentirely upon the severity of the channel

noise during the time that this particular version of the ADU was retransmitted over the
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channel. This direct dependence on the channelnoisecan lead to a displayedimagewhose

quality actually degrades over time despite retransmissions.

In order to avoid random fluctuations in ADU quality, a progressively reliable trans

port service needs to ensure that the multiple versions are statistically more reliable over

time. The ADU versions delivered to the application no longer correspond directly to the

data that is retransmitted over the noisy channel. Instead, there is an intervening filter

implemented by the transport protocol which successively refines an ADU as more infor

mation brought by retransmissions arrives at the receiver. The end user will perceive that

successive versions of an ADU have statistically fewer and fewer bit errors. This effect is

pictured in Figure5.2 as packetversions that haveprogressively lightershades.

The requirement of monotonically improving reliability (in a probabilistic sense)

means that the receivermust have some form of memory at the receiver that tracks the his

tory of each packet. The decoding process can only ensurethat the most recentADUver

sion has fewer errors than previous versions if it can remember the noise level of one or

more of the previous noisy ADU versions. This knowledge is obtained bystoring previous

ADU versions, or by storing some noise metric associated with these previous ADU ver

sions. ARQ protocols which exhibit this feature of saving previous packet versions to

improve decoding are called memory ARQ, ofwhich the Type-II Hybrid FEC/ARQ proto

cols are the best known example [78]. Another name for memory ARQ ispacket combin

ing, since ADU's are successively refined by combining the noisy data associated with

several previous packet retransmissions. In order to make clear how successive refinement

can be carried out by employing memoiy at the receiver, we discuss some examples

below.

The simplest two-tiered scheme for ensuring that ADU's improve in reliability is to

forward only one initial noisy versionof an ADU and then wait until a final error-freever

sion can be delivered to the application. The receiver keeps a single bit of memory per
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ADU which remembers whether a noisy version has already beenforwarded to the appli

cation decoder. Once an initial corrupt ADU has been delivered, then any subsequent

retransmitted noisy ADU versions are discarded. The transport protocol waits until the

ADU is successfully retransmitted before forwarding a final error-free ADU version to the

application.

A more advanced approach would cache recent versions of the actual packets, rather

than keeping an indirect noise metric. For example, a simple scheme would cache the two

most recent corrupt packet versions, and combine them with the current received version.

Majority-logic decoding can be applied bit-by-bit on these three packets. Given an odd

number of packets, then for each bit decode a *1' if there are more ones, or a *0' if there

are more zeros. This example illustrates one of the major features of memory ARQ,

namely that by storing the received packet history, the protocol can more quickly converge

to a clean representation of a packet. Consequently, fewer retransmissions are needed

when a protocol employs packet combining compared to a protocol which ignores the

received packet history.

Note that by replacing older ADU versions with more recent ADU versions, the major

ity-logic decoding example does not strictly ensure improving reliability. A necessary

condition for successive refinement requires that the entire history used to decode previous

versions of an ADU be preserved so that subsequent ADU versions can be decoded with

increasing reliability. A recombining algorithm which caches only a partial history of

received packet versions will be unable to ensure monotonically improving reliability.

Unfortunately, this caching requirement can lead to an unbounded need for buffer space at

the receiver. As a practical compromise, limited memory at the receiver may not be able to

strictly ensure monotonically increasing reliability, but for engineering purposes the prop

erty of increasing reliability can be closely enough approximated.
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In the next chapter on protocol implementation issues, more in-depth considerationof

successive refinement based on incremental transmission and combining of FEC coding

redundancy is presented.

5.2.4 Out-of-order delivery of different ADU's

Another property of progressively reliable packet delivery is that different ADU's will

be delivered out of order. Since multiple corrupt versions of each ADU are delivered to the

application, then the sequence of ADU's presented to the applicationwill contain an inter

leaved mixture of multiple noisy versions of multiple distinct ADU's. For example, even

though ADU A is transmitted before ADU 5, the protocol may deliver a sequence like

{noisy A, noisy B, error-free B, error-free A) to the application decoder. If bothA and B

represent images to be displayed in thesameregion on screen, andB represents thenewer

of the two images, then out-of-order multi-version delivery could result in an error-free

version of image A overwriting the newer error-free version of image B. An application

which subscribes to this progressively reliable delivery service must be designed to toler

ate out-of-order delivery ofADU's. This suggests that application-level sequence numbers

should be embedded within ADU headers to determine the most up-to-date ADU. For

example, video sequences label imagesby frame number. This semantic content would be

embedded within the ADU header, and would becompletely transparent to the transport

service.

However, as we shall discover in Section 5.4, by making the progressively reliable

transport service partially aware of ordering precedents, we can improve the performance

of the underlying transport protocol. We will provide a means for the application to iden

tify out-of-date information to the end-to-end protocol. Therefore, in our example, the pro

tocol would automatically stop trying to deliver the overlapped portion of the error-free
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version ofimage A, because it would know that the overlapping portion ofimage Bsuper

sedes the overlapped region of A in relevance.

5.3 An X windows server as a real-time simulator

In this section, we describe the X windows server which we modified to test in real

time our ideas concerning progressive reliability. Our goal is toemulate the visual quality

and interactivity that an end user would experience operating an interactive multimedia

application across a noisy channel that forwards corrupt error-resilient datato theapplica

tion decoder for immediate display. The X windows server [82] provides a real-time plat

form that permits us to evaluate the subjective impact of channel noise on the quality of

reconstructed images as wellas on the perceived responsiveness of the system.

We modified a color X11R6 windows server which employed 8-bit/pixel colormaps.

The X server typically receives drawing commands like DrawText(), DrawRectangle(),

and PutlmageO from X client programs like editors, terminals, Netscape, Framemaker,

and a host of otherapplications. TheX server translates these commands into pixel form

and then draws the rendered pixel-mapped image into the computer*s physical frame

buffer for display on-screen.

5.3.1 Overall structure of the progressively reliable X server

Our task is to inserta channel model, a progressively reliable encoding module, and a

progressively reliable decoding module into the X server. Figure 5.5 summarizes our mod

ifications to the X windows server, which we describe in detail below.

Every rendering action which draws pixels into the frame buffer must be first inter

cepted and diverted into our software coding modules rather than being allowed to write

directly into the physical frame buffer. We created a virtual frame buffer^ {yjh) and redi

rected all pixel-writingactions to the yfb. Each time a drawingcommand intends to update
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Figure 5.5 Xwindows server simulation environment for testing the subjective impact
on the end user of progressively reliable packet delivery. All normal pixel render
ing operations are diverted from the physical frame buffer to a virtual frame buffer.
Newly updated blocks are recorded by a 3-state finite state machine (FSM). The
progressively reliable encoder generates an initial and final version of each image.
The initial version is corrupted using a random BSC error model. The final error-
free version is sent at some later time. Both versions are constrained by a limited
bandwidth channel

a region ofthe screen, the resulting rendered image is deposited in the appropriate position

in thevjb. Equally important, a block-based state matrix is updated to record each block or

region in the vfl> which was recently overwritten. We can label this state as "new data"

which is waiting to be transmitted over our noisy channel model. This state-based infor-

1. XI1R6 has a virtual frame buffer extension, sowe certainly take no credit for the idea. We implemented
our own vfb inorder toembed a state matrix specifically tailored toour block-based progressively reli
able encoder. We would also like to credit Brian Richards of the InfoPad project for modifying our
color server to work with the monochrome InfoPad. Also, we'd like to credit Jeff Gilbert of the InfoPad
project forimplementing a really jazzy multithreaded splitcolor X server with vfb subsequent toourini
tial crude implementation.



mation is used by theprogressively reliable encoder to send updates to the actual physical

frame buffer.

As implemented in UNIX, the X windows server waits in idle mode until there is some

new input data to process from X clients or from user actions (e.g. from a mouse/key

board). TheX server also has a self-wake time-out option which is invoked byprolonged

inaction so that a screen saver can bestarted. We modified the X server toexecute thepro

gressively reliable encoder every time the X server wakes up, whether it is due to a time

out or newinput. When there is no inputdata, then the time-out option permits us to con

tinue to render images in a progressively reliable fashion. We set the time-out to 30 ms in

order to achieve reasonably continuous operation of the progressively reliable encoder/

decoder.

Each time the progressively reliable encoder is invoked, it checks the block-based state

matrix for any blocks thatarein the"new data" state. Ourimplementation avoided a brute-

force search of all blocks by keeping a separate list of recently updated blocks, which

could be quickly consulted. The encoder sends all blocks in the list immediately over the

simulated error channel. The individual pixels in these initial block versions are corrupted

by a binary symmetric channel model, which introduces random bit errors with probabil

ity BER. While a true fading wireless channel will introduce correlated bursty errors, we

did not simulate this effect, though it should be straightforward to replace our memoryless

BSC with a Markov channel model. We simulate the delay due to limited channel band

width that would beexperienced by the corrupt block and then draw the noisy image block

into thephysical frame buffer. The state of the block is then changed from "new data" to

"sent the initial version".

The progressively reliable encoder then searches the state matrix for blocks which

have "sent the initial version". Forall such blocks, the intent is toeventually send an error-

free version which overwrites the noisy version displayed earlier. Afterwards, the state of
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theblock is changed from "senttheinitial version" to "sentthe final version (quiescent)".

All blocks in this final quiescent state are leftundisturbed by the encoder, since they have

already gone through the iterations of noisy and then error-free transmission to the

receiver.

This overall effect perceived by the end user is that an initially noisy version of an

image is displayed, followed by a refresh process which cleans up pixel errors at some

later time. This two-tiered approach provides a crude approximation to progressive reli

ability. It emulates a protocol which forwards a single first noisy version of an ADU fol

lowed by a single final reliable version of an ADU to the receiver. This simple example

was discussed in Section 5.2.3 as a means of guaranteeing increasing reliability.

The decision process that determines which of the "sent the initial version" blocks

shouldbe transmitted may delayeligible blocks for a variety of reasons. In order to avoid

unnecessarily delaying time-critical data, we limit the number of reliable "refresh" blocks

which canbe transmitted by any invocation of the encoder. This avoids clogging the con

nection with a large number of reliable blocks, which would interfere with immediate

delivery of delay-sensitive data. In a sense, we are biasing the modified X server to deliver

delay-sensitive data with higher priority than delay-insensitive cleanup data. This limita

tion on the volume of reliable data is implemented as anupper bound on the refresh rate.

This upper bound is parameterizableby the end user.

In addition, a minimum wait time parameter is associated with each block in the "sent

the initial version" state. Only blocks in this state whose minimum wait times in the yfb

have been exceeded are eligible for transmission. Thus, a minimum delay is established

between the time that the initial version is transmitted and the time the final error-free ver

sion is transmitted. For example, if the wait time is set to zero, then the systemdefaults to

immediatelysending the pertinent blocks. By including a generally parameterizable mini

mum delay,we can adjust the gap in time betweendisplay of the initiallyunreliable image
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anddisplay of the final reliable image. We will use this minimum delay parameter in Sec

tion 5.4 to establish the rationale for spreading retransmission-based redundancy in time.

Once thedecision has been made to senda final reliable block, this block isdelayed by

the limitedbandwidth channel, but is not corrupted withbit errors in order to emulate reli

ablepacketdeliveiy. Our assumption is that the delivery timesfor the refresh versions are

so relaxed that it is not necessary to emulate the effect of FEC expansion on the delivery

time of the final version. That is, if the reliable version takes many seconds to deliver, then

the additional latencyburdenof FEC that may increasethe overalllatencyby several more

second will be largely imperceptible given that the delay is already many seconds long.

Similarly, we assumethat raC is only appliedon the header of all packets associated with

first-time delivery of a noisy image. Weassume that the increase in delay caused by FEC

on the header only is too small to warrant emulation by our modified X server system.

Also, we assume that the FEC is sufficiently strong on the header to reconstruct all pack

ets, and hence all images, at the progressivelyreliable decoder, without packet loss.

The modified X server, with progressively reliable encoding/decoding and channel

model is able to perform in real-time subject to certain qualifications. By diverting pixel

writes into the yfb, we were unable to take advantage of the hardware graphics accelera

tion that the X server typically employs on SUN workstations. This means that all lines,

text, and graphics, along with natural images and block copy functions, had to be rendered

in software.Software rendering slowedour simulationdown to slightly less than real-time

for large screen updates, in which the redrawing of the screen could be seen, rather than

appearing instantaneous as in a hardware accelerated system. This effect was mild enough

that the system could be called interactivefor most practical purposes.
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5.3.2 "Performance manager" tool for real-time evaluation

We took advantage of the interactivity of our modified X server to create a software

tool, which we call a "performance manager", that communicates via a Tcl-DP UDP

socket with theX server during run-time. Theperformance manager allows theenduserto

dynamically control parameters within the color Xserver while it isrunning. For example,

for theinitial noisy version of an image, theusercanvary thechannel BER, thechannel bit

rate, and the average bit depth/pixel. For the final "refresh" or error-free version of an

image, the usercan vary the refresh bit rate, refiresh burst length, andminimum wait time

between the initial and final versions. The Tel interface includes scrollbars for dynamic

adjustment of test parameters and is illustratedin Figure 5.6.

By varying the bit rates of the first and final versions, we can investigate the trade-off

between devoting bandwidth to initialdelivery of noisydelay-sensitive images, also called
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the initial substream, and devoting bandwidth to final reliable delivery of images, also

called the refresh substream. We used this tool to characterize the refresh burst length

threshold at which the perceived interactivityof the system was noticeably slowed down.

Holding the bandwidth of both initial and refresh substreams constant at about 2 Mbit/s,

we varied the maximum refresh burst length or duration, a critical parameter which con

trols how many refresh image blocks can be transmitted upon each invocation of the pro

gressively reliable encoder. If there are a large number of reliable blocks awaiting

transmission, then a large refresh burst duration will occupy the channel with refresh

blocks for a long time and prevent time-critical initial substream data from being dis

played quickly.

The refresh burst duration indirectly establishes a relative proportion of the channel

bandwidth that is devoted to therefresh substream. Thisproportion varies depending upon

the number of initial images blocks that are eligible for transmissionat the time of encoder

operation. When a large burst of initial data needs to be transmitted during a particular

invocation of the progressively reliable encoder, then the refresh burst length limits the

refresh substream to a small percentageof the channel bandwidth.

Our experimentation showed that small refresh burst lengths limited to less than about

30 ms were able to provide reasonable interactivity provided that the refresh bit rates

exceeded 1 Mbit/s. The general intuition is that refresh bursts should be broken up into

very fine-granularity segments so that possibly long bursts of initialsubstream datacan be

interleaved between short refresh packets. The specific numbers produced by the simula

tion are limited by the precision of the bit rate monitors and timers within the X server that

cap thetransmission rate or measure the delay. These monitors and timers perform imper

fectly in a non-real-time operating system like UNIX, in which other processes on the

workstation can arbitrarily steal CPU cycles. Specific values for such parameters as
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refresh bit rate, refresh burst duration, and minimum wait time between first and final

image versions should instead be interpreted as indicating a general range of operation.

The number of "sent the initial version" blocks which can be transmitted per invoca

tion of the encoder can be calculatedas the product of the refresh burst duration and the

refresh bit rate divided by the number of bits per block. Updates of this value are passed

during run-time to the progressively reliable encoder by theTel performance manager.

Using this tool, we also observed that if not enough transmission bandwidth is devoted

to refresh activity, then certain areas on the screen will take a very long time to clean up

theartifacts, on theorder of halfa minute to a minute, rather than in seconds. Forexample,

one of our earliestpolicies for limiting refresh activity was to suppress delivery of refresh

blocks if there was any amount of activity in the initial substream. The rationale for this

approach was that bursty user activity would eventually lead to intervals of no new image

data, allowing the final reliable image versions to be drawn. However, we observed that a

video stream which generated a continuous sequence of new initial image versions for

transmission would starve the refresh bit stream. The lesson learned was that a subjective

balance mustbe maintained between interactivity and distortion, in which delay-sensitive

data is given priority for transmission, but not to the completeexclusion of reliable deliv

ery of data. This starvation issue isclosely related to theconcept offairnessdeveloped for

scheduling policies in operating systems [119] and packetswitches [159].

TheX server checks forany new updates onparameters controlled by theperformance

manager every time it is woken by a time-out related to "prolonged" inaction. Since we

changed the time-out value from minutes to 30 ms, then the updates actually occur quite

quickly. However, if there is continuous new input (e.g. video), then it is possible that the

X server never times out,and therefore never registers the newest updates sent by the per

formance manager. In the current implementation of the X server, new parameter values

from the performance manager can only be registered between video sessions.
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5.4 Enhancing the performance of progressive reiiabiiity

In this section, we extend the set of essential functions described in Section 5.2 to

include new service primitives which improve the end-to-end delay performance of the

progressively reliable transport service. Inparticular, theperceptual delay of an image, as

measured by thedelivery latency of thefirst version of anADU, canbe reduced by:

• delaying ADU retransmissions such thatconflict with delivery of the initial version of

an ADU is minimized

• cancelling retransmissions associated with out-of-date data

• flow-based scheduling of thesender's traffic by delay and reliability constraints

These primitives allow the application and underlying transport protocol to cooperate

to reduce the amount of traffic sent over a wireless channel, and toensure that delay-sensi

tive source traffic, such as the first version of an ADU, be given priority in transmission

over delay-insensitive traffic, such as the retransmitted versions of an ADU. The rationale

behind each of these primitives was developed based on experimentation with our modi

fied X server simulator.

5.4.1 Delaying retransmissions

The progressively reliable transport protocol can control when follow-up redundancy

in the form of retransmissions are transmitted. The protocol shapes its transmitted traffic

pattern by delaying retransmissions so that they don't conflict with the initial transmission

of an ADU's information. Delivery of the initial version of an image is delay-sensitive,

since the end userdesires to interact immediately with that image. Therefore, the sender

side of the protocol prioritizes its transmission to transmit the delay-sensitive traffic first.

The redundancy sent at a later time by the progressively reliable protocol to successively

refine noisy ADU's has a comparatively relaxed latency requirement. Therefore, these
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retransmissions can be delayed in orderto accommodate immediate delivery of delay-sen

sitive initial transmissions.

We implemented a simple mechanism within our modified X serverwhich delayed the

final refresh version of an image from being sent until after a minimum wait time had

expired. The effect emulated by this policy is that all retransmissions are initiated no

sooner than a minimum fixed delay. Given a bursty multimedia source, we reasoned that

this simple mechanism would more often than not translate retransmissions to a time win

dow which is unoccupied by new delay-sensitive data. If the time window is occupied by

delay-sensitive traffic, then the other throttling procedures like therefresh burst length and

refresh bit rate on the refresh substream will in effect delay retransmissions even more

than the minimum wait time. This "Refresh Delay" parameter is adjustable during run

time by oneof the scrollbars in theperformance manager shown inFigure 5.6.

Ourexperiments with theX windows server andperformance manager revealed that it

is perceptually acceptable either to send the retransmission redundancy many seconds

after the initial delivery, orwithin about 100 ms ofthe initial version, but that any delivery

of the reliable version in between 100 ms to a couple of seconds after the initial version

produced subjectively annoying side-effects. The most attractive option is to send enough

retransmission redundancy so that a final reliable version can be reconstructed quickly at

the receiver within about 100ms. However, in the presence of severe channel noise, even

retransmissions protected bypractically constrained FEC will fail, so thatthefully reliable

image will be unable to be delivered by the interactive latency bound.

A second option is to start retransmitting refresh redundancy at the first opportunity

possible, whenever there is no delay-sensitive dataleft to send. This opportunity will usu

ally occur within a few seconds after the initial delivery. However, we found that there

were several annoying subjective side-effects which occurred when retransmissions were

delayed by between 100ms to 1-2seconds. First, for images containing rendered text, as
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the end user started to read the text, the refresh redundancy overwrote the noisy version

with the clean version. This subjective *1iicker*' effect forced the reader to stop and then

start reading again, thereby obviating the perceptual reduction in delay gained by early

noisy delivery of an image. To a lesser degree, the **flicker" effect also interrupted viewing

of natural images. Second, as our mouse cursor was moved around the screen, a "noise

trail" was left in its wake. By sending the refresh redundancy within 1-2 seconds after the

initial noisy version, the noise trail would chase the mouse cursor across the screen like a

"snake" in a videoarcade game. This "snake"effectproved to be subjectively distracting.

Our experimentation suggested that the end user could tolerate very long delivery

latencies for the reliable version of an image, so long as the user had an initial version of

an image with which to interact. Delays on the order of 5 seconds and more were found to

be readily acceptable. Subjectively, the user's desire to eventually see the visual presenta

tion free from artifacts places an upper bound on the delay of the final version. We found

that about a 5 secondcleanup delay was fast enoughto satisfy this distortion criterion and

long enough to avoid the "snake" and"flicker" effects mentioned previously.

Given the end user's tolerance for considerably relaxed delivery of the reliable follow-

up redundancy for an image, then our progressively reliable protocol can smooth the traf

fic that it presents to thenetwork, scheduling retransmissions to minimize their impact on

delay-sensitive delivery of initial packetversions.

Consider in Figure 5.7how a traditional ARQ protocol responds to a high BER noisy

channel. A sequence of application databursts corresponding to separate images is passed

to the underlying transport protocol for packet delivery (a). A traditional ARQ protocol

will concentrate retransmissions of a given packet as closely as possible to the original

transmission of that packet. The presumption is that the user desires reliable delivery as

soon as possible, so there is no reason to delay retransmissions.
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retransmitting older image data, while

the most recent image waits in a queue

at the sender. In contrast, our progres

sively reliable protocol can translate

retransmissions in timeso thateach new image does nothave to waitin thesender's queue

(c). An initial version of each new image is transported quickly to the receiver, and any

needed retransmissions aresentlater. If the overall perceptual latency of image delivery is

measured by the first appearance of an image, noisy or not, then Figure 5.7 indicates that

our retransmission-shifted progressively reliable protocol will on average have a lower

perceptual delay than a conventional ARQ protocol which concentrates retransmissions.

Thus far, delaying retransmissions has been motivated by our subjective observations

of the end user's tolerance for considerable delivery latency in the low-distortion version

of an image provided an initially noisy image is quickly delivered. In the past, protocols

havedelayed retransmissions for other reasons, including congestion avoidance and chan

nel state-dependent scheduling. For example, part of the congestion avoidance policy of

TCP involves exponentially backing off on (e.g. doubling) the time-out value for retrans

mitted segments [25]. The effect is to delay retransmissions so that they don't add conges-
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tion to the already overcrowded network. Recent work has also proposed to effectively

delay the retransmissions of a data-link protocol based on the wireless channel state of a

particular user [10]. The assumption is that the data-link protocol groups the packets from

different users into a single statistically multiplexed stream and attempts to sequentially

deliver the packets in this stream. A packet that is transmitted to a userwith a very noisy

channel will have to be continuously retransmitted. Given a sliding window protocol, then

other users* data will be queued up waiting for this bad-channel packet to be delivered

reliably, so that the window can beallowed toslide forward. The authors propose to adapt

the retransmissions to the state of the channel, and essentially delay retransmissions to

those users with a bad channel, on the presumption that these retransmissions will not get

through error-free anyway, and will only slow down other users* data. Thus, we see that

translating retransmission redundancy in time is not a new phenomenon, but has previ

ously been based only on channel considerations. In contrast, our proposal to delay

retransmissions is basedon the end user*s subjective tolerances.

We propose that the transport service socket interface provide hooks into the progres

sively reliable protocol so that the application can parameterize how long the protocol

should wait before initiating retransmissions of the follow-up image redundancy. This

crude translation approach does not fully prevent conflict with delay-sensitive data, once

retransmission data are eligible to be sent. Our observations of the modified X server

revealed that additional limitations on the refresh burst length and refresh bit rate were

necessary to preserve interactivity. A more sophisticated approach to providing a fairbal

ancebetween interactivity and the paceof cleanup of visual artifacts is to treat the initial/

final trade-off asa packet scheduling issue. Initial header-valid packet versions are labeled

with a small delay budget, while final versions are labelled with a large delay bound.

Given this partitioning of delay sensitivity, packet scheduling algorithms like Earliest-

Due-Date/Least Slack [158] can implement thedesired fairness policy. In general, wepro-
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pose that any fair packet scheduling policy implemented by the protocol be parameteriz-

able to suit the individualmultimediaapplication.

5.4.2 Cancelling "out-of-date" retransmissions

In addition to delaying retransmissions, our progressively reliable protocol also pro

vides the application with the ability to identify out-of-date or stale data, and to stop or

cancel retransmissions at the sender-side of the protocol associated with this out-of-date

data. The ability to annihilate stale retransmissions helps reduce the amount of bandwidth

devoted to unnecessary retransmissions of packet data that are no longer useful at the

receiver. Over a bandlimited wireless link, this bandwidth management tool permitsmore

timely delivery of delay-sensitive data because a sliding window protocol doesn*t have to

occupy itself with sending the final reliable version of an outdated image, and instead can

devote itself to immediate delivery of useful first-time ADU versions.

Experimentation with our modified X server demonstrated the importance of using

retransmission cancellation in conjunction with delayed retransmissions for bursty multi

media. Many multimediaapplications like Web-based image browsing often overwrite the

same region of the screen with new image data. If the protocol delays sending the reliable

retransmission redundancy by many seconds for an image, then the queued image data at

the sender can become out-of-date due to the arrival of new user data passed through the

socketbufferwhich invalidates the queued data. For example, if the final reliable version

of an image is delayed by five seconds, the amount found to be subjectively preferable in

the previous section, then a user who is browsingrapidly through a remote image database

at a rate of an image every few seconds would consistently cause the protocoFs queued

image data to become stale. Moreover, the interactivity of the system would be compro

mised since in many cases retransmissions associated with stale packet data would com

mence just as the end user has chosen a new image and desires its inunediate display.
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Figure 5.8 illustrates how packet cancellation would work across the transport service

interface. The application segments its data into ADU's for transmission as before. Each

ADU is assigned a correlation label by the application. The sender-side of the protocol

inspects the correlation label (Z) of the incoming ADU, and checks if it is currently

retransmitting any information with the same correlation label. If so, then the protocol

stops retransmitting this old data immediately, and removes this out-of-date data from the

sender's queue, replacing it with thenew ADU's payload.

The modified X server emulated this cancellation function through itsthree-state FSM.

Recall from Figure 5.5 that each 16x16 block on the screen is described by one of three

states: "new data", "sent initial version," and "sent final version (quiescent)". As new

image data arrives, the states corresponding to the redrawn blocks are updated to "new

data", regardless of whether their previous state was "sent initial version" or "quiescent".

Inaddition, the affected blocks in the yfb are redrawn with new data overwriting orreplac-
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ing the previous image. If the previous statewas "sent initial version", then newly drawn

image blocks are in effect cancelling the retransmissions associated with the previous

image.

In this implementation of the cancellation function, the (x,y) drawing location of a

block implicitly serves as a correlation label which identifies this block as out-of-date,

stops retransmission of stale data by purgingthis block's associated state, and replacesthe

old ADU (i.e. block) with the new ADU's information. Application of correlation labels

on a geographic block basis as implemented by the X server is depicted in Figure 5.9 (a)

and (b). Only those blocks which require redrawing will trigger annihilation of stale

retransmissions associated with overwritten.image data.

Recall from Section 5.2.4 that we suggested correlation labels would be useful to can

cel an out-dated image A with a new image B. Given the context of the block-based corre

lation labels described in this section, then it should now be clearthatonly theoverlapped

portion of A that is overwritten by image B wiU trigger annihilation of stale retransmis

sions. The non-overlapped portion of A will continue to be delivered in asymptotically

reliable fashion. Hence, images A and B need not coincide in order for correlation labels

to be effective. In Figure 5.9 (b), the new launched shuttle image completely overlaps the

old unlaunched shuttle image. Therefore, out-of-date retransmissions of the entire old

image will be halted, and no non-overlapped portion of the imageremains to be delivered

with progressive reliability.

We verified that this block-based implementation of the cancellation function per

formed as expected within the X server. For interactive bursty multimedia, ourexperimen

tation showed that the combination of FSM, yfb, and (x,y) correlation labels always

stopped retransmission of out-of-date reliable redundancy. For example, we delayed

retransmission of the final reliable version of an image by five seconds. Recall that our

progressively reliable encoder operates on pixel-mapped images, and not commands.
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Figure 5.9 Possible uses of correlation labels by a multimedia Imaging application, (a)
The screen/Image Is subdivided Into blocks, each designated by a unique correla
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drawn and overwriting the old object.
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Therefore, paging in a text editor causes new pixel-mapped images with rendered text to

be redrawn over the same region of the screen. Frequent paging at a rate faster than one

page every five seconds should result in cancellation of retransmissions associated with

theoverwritten out-of-date images. We verified that this indeed took place. Also, by wait

ing longer than the minimum wait time of five seconds, the final reliable version of an

image was appropriately drawn, indicating that theFSM was functioning as expected.

An alternative way of applying correlation labels is to associate each label with a

semantically-defined objectwithin the image.As the object is moved, resized,or redrawn,

each new ADU with that object's correlation label cancels any retransmissions associated

with stale drawing information for the object.For example, in Figure 5.9 (c) and (d), cor

relation label B associated with the shuttle object is used to stop retransmissions that

would draw theunlaunched shuttle. In theirplace, new "launched shuttle" drawing datais

transmitted which rendersthe shuttle in a newscreenposition and overwrites the old shut

tle image. Object-based ADU's can be adapted to track moving objects anderase the trail

of rendered images left by the moving object. These could be applied to animation

sequences. For example, a distributed video game could draw a moving snake on screen

via object-based correlation labels. In addition, the correlation labels pose no restriction

on the shape of thedrawn image data, so that these objects can be arbitrarily shaped, and

need not be block-basedas in our X server implementation.

Correlation labels are not only applied at the sender; they are also propagated to the

receiving endof thetransport protocol. Thishastheadvantage of ensuring thatout-of-date

ADU's are not forwarded to the receiving application. If only source-based annihilation

were carried out, then it is possible for a stale ADU to arrive at the receiver after a more

up-to-date ADU, dueto network delay jitter. Without correlation labels, the receiving end

of the transport protocol would be unable to identify stale ADU's, and hence would for

ward out-dated information to the application. The destination application would have to
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implement its own sequencing scheme to detect stale ADU's. We can eliminate out-of-date

delivery at the receiver by forwarding correlation labels to the receiver*s transport layer so

it can identify and discard stale ADU's as they arrive. Another potential benefit of propa

gating correlation labels is that stale ADU's could possibly be purged at any point along

the connection, provided that sufficiently intelligent transport-aware agents were present

in the network as suggested in [5]. Since the labels are already available at the receiver,

then no additional cost is incurred by forwarding these labels to the receiver's transport

layer. We previously indicated the propagation of correlation labels across the network

connection in Table 7.

Though not shown in Figure 5.8, our transport service also permits an ADU to annihi

late multiple other ADU's that have different correlation labels. The source application

mighthavemultiple hierarchically codedversions of an image beingserviced by the trans

port layer. When a new image is transmitted, the application would like to simultaneously

cancel any of these out-of-date ADU's. Or an image may be packaged as a macroblock,

andthe application would liketo annihilate a collection of smaller images thatwere previ

ously packetized into ADU's. In each case, we conveniently provide a primitive that can

cels multiple other ADU's. The convention is that each ADU may contain a list of

correlation labels. The first label is associated withthe parent ADU. AnystaleADU's with

correlation labels on thelistareannihilated. Forexample, inFigure 5.8 thenewly arriving

ADU identified with thecorrelation label Zcould alsocontain otherlabels, e.g. both Z and

X. In this case, the newly arrived ADU will stop retransmissions on both ADU's Z and X

queued in the sender's buffer. In addition, since Z is the first correlation label listed, then

the newly arrived ADU willbe queued at the senderunder the parent labelZ, and not X.

From a practical perspective, it is not certain whether the list of correlation labels

should also be propagated alongwith the ADU to the receiving end of the transport layer

to cancel any remaining stale data. While we proposed propagating correlation labels to
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the receiver when there is only onecorrelation label per ADU, the disadvantages of com

plexity and overhead for propagating a list of correlation labels to the receiver for each

ADU may overwhelm the advantage gained in consistency by cancellingout-of-date at all

points along the connection.

5.4.3 Flow-based scheduling

Rescheduling retransmission traffic to minimize conflict with delay-sensitive initial

ADU deliveries represents a form a scheduling which discriminates between initial and

final versions of a packet. Scheduling initial transmissions and final retransmissions can be

interpreted asa two-flow scheduling problem. Thisscheduling problem canbe generalized

to include scheduling multiple flows of data generated by a single application.

Traffic capacity canbe improved bynoting thatmultimedia applications often generate

heterogeneous data which have inherently different requirements for timely delivery and

end-to-end error protection. Recently, multimedia compression algorithms have started to

encode their data streams into multiple flows, or layers, where eachflow requires a differ

ent end-to-end QOS. Some examples of flow-based coding include asynchronous delay-

cognizant video coding [75][106] and multilayered multicast video coding [84]. In addi

tion, hierarchical and progressive image transmission techniques can easily be adapted to

multi-substream transport services. Hence, our protocol should be ablenot only to sched

ule initial transmissions and retransmission redundancy differently, butshould also permit

flow-based multiplexing. This flow-based approach can result in retransmission redun

dancy from one flow being servicedwith differenturgency than another flow's retransmis

sions.

To support traffic shaping of retransmissions, quality-of-service (QOS) configuration

information is communicated between the application and the underlying transport proto

col across the ATI. Some socket interfaceshave already begun to support QOS [11]. Other
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protocolsalso support somedegreeof QOS configuration at the transportlevel, as noted in

[26] and for 0SI/TP4 [32]. A full discussion of QOS (setup, admission control, profiles,

etc.) is beyond the scope of this thesis, but we mention those items most relevant to our

progressively reliable wireless protocol. QOS parameters control the scheduling of

retransmission redundancy with initial transmissions but also permit finer grades of ser

vice within the data stream.

We introduce 2iflow header to identify individual substreams within the general data

stream; these substreams at the transport level resemble IPv6 flows [57]. The flow header

alone completely characterizes the service required by that data; no knowledge of the

internal semantics of the packetized data is required. The per-flow QOS parameters that

we have found most useful include how much scheduling delay the first-time transmis

sions can tolerate, how muchinitialcorruption can be tolerated (i.e. how muchFEC over

head should be applied to the payload), how soon retransmissions can begin after

confirmed initial delivery, how much multiplexing delay that retransmission redundancy

can tolerate, and when to terminate retransmissions (e.g. after a finite number of trials, or

after a finite amount of time, or after a sufficiently reliable packet has been received).

Nearly every QOS parameter is specified either in terms of delay or reliability. We do not

explicitly support "priorities" across the ATI, since we believe that priorities and classes

can bederived from delay-based and reliability-based QOS parameters. The QOS parame

ters are passed to ourprogressively reliable protocol, which can then employ anappropri

ate schedulingpolicy to decide what packet to transmit next over the connection.

The protocoFs scheduling policy, in combination with the behavior of the wireless

channel, will dictate whether guaranteed service can be provided to the application across

the ATI. Deterministic guarantees ofbounded delay cannot bemade for certain multiplex

ing disciplines like Fair Queueing and Virtual Clock, but can be made for others like HDD

for well-behaved sources practicing admission control overbackbone networks [3][158].
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Even if a service discipline can guarantee delay bounds at the source, the wireless access

link will introduce uncontrollable delay. In wireless systems, delay is caused by random

shadowingand random multipatheffects, leading to bit corruption,packet loss and uncon

trollable retransmission delay. At best, a statistical characterization of the fading maypro

vide a statistical bound on delay, but this assumes that the channel is predictable. We

prefer to view QOS parameters as passing useful hints from the application onto our pro

gressively reliable protocol to help improve non-guaranteed performance. The protocol's

scheduler will decide how best to meet these QOS objectives, but may occasionallyfail to

satisfy them.

Flow headers are needed at the receiver by the transport layer, but not necessarily by

the receivingapplication. Over the network, transport-level flow headers are not necessary,

since QOS is properly provided by IPV6 flow headers. But at the receiver, the transport

layer will need flow headers to identify per-flow QOS parameters, like the ADU header

size, and the residual reliabilitycriterion (which determineswhen to generate an acknowl

edgment to cut off the source's retransmissions). However, the receiving application does

not require the flow header. Since a flow is definedby its QOS parameters only, then it is

possible for multiple compressionalgorithms, or perhaps the same compression algorithm

operating at different quantization depths, to transmit different forms of encoded data over

the same flow. In order to differentiate and correctlydecodeeach distinctdata type within

the same flow, the destination application would need to agree a priori with the source

applicationon an application-level protocol that would label data so that the proper decod

ing algorithm would be invoked. Hence, application-level identifiers would already pro

vide the functionality to properly extract coded data, and transport-level flow identifiers

would not need to be passed across the destination ATI. Since there may still be a reason

for passing flow headers to the receiving application, such as reducing labelling overhead.
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then we do not dogmatically rule out passing flow headers to the application, even though

Table 7 would seem to recommend that.

Note that correlation labels can operate across flows, cancelling other flows* data. A

hierarchically coded image (say progressive JPEG) may have partitioned its layers into

different flows. A correlation label need not be constrained to only annihilate within its

parent ADU*s flow. For example, suppose a given image is hierarchically coded into three

layers I, U, and III, and each layeris transmitted along a separate flow. Suppose also that

the three different layers also have three separate correlation labels A,B, and C, respec

tively. If layer I of each new hierarchically coded image contains all three correlation

labels A,B, and C, then the retransmissions for all layers of the previous image will be

cancelled across different flows.

Though it may appear from the previous example that there is a one-to-one mapping

between source coding layers and flows, this is not necessarily the case. It should be

stressed that flows are a QOS concept, not a source codingconcept. Therefore, each of the

three layers in our hierarchically coded image could have been sentalong the same flow,

thereby receiving thesame level of service from theunderlying network protocol.

5.5 Progressive source and channel coding

Our progressively reliable packet protocol can be interpreted as a form ofprogressive

channel coding. As an analogy, progressive image transmission (PIT) constitutes a form of

progressive source coding. A natural research question is how the two concepts can be

integrated into a single system which achieves the advantages of both techniques in terms

of improved interactivity at the cost of high initial distortion, and in terms of eventually

low-distortion delivery. The work outlined in this section is a preliminary attempt to

address this issue of combined progressive source and channel coding. Specifically, we
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modified the X server to incorporate a progressive sourcecoding algorithmfor images, in

addition to the progressively reliable encoder described previously. We implemented a

rudimentary progressive colormap algorithm to explore the impact of progressively reli

able delivery on progressive source transmission.

5.5.1 Limitations of conventionai PiT aigorithms

We begin by outlining some of the limitations of traditional PIT algorithms [138]

when applied to images that include embedded text/graphics.Again, it should be clear that

our modifiedX server is emulatingprogressively reliable transmissionand delivery of ren

dered images, and not of plain text nor graphics conunands. In general, our interactive

image browsing application emulated by the modified X server will display both natural

images and images with embedded text/graphics. A PIT algorithm should be chosen so

that it can support both types of visual data.

Many PIT algorithms depend on a pyramidal decomposition of the image, performed

either in the multiresolution [143], quantization [71], or transform [35] domains. Pyrami

dal coders produce a multi-layered representation of an image. For example, a "coarse"

initial version of an imagecould be representedby the highest layer in the hierarchy, while

the "fine" version of an image could be represented by the lowest layer in the pyramid

with the fullest definition of the image. Only a few such pyramidal decompositions are

suitablefor windows-based graphics, since the initial representation needs to support rea

sonably legible text. In addition, this initial version needs to be error-tolerant, as discussed

previously.

Human users* subjective and objective requirements for windowed graphics form an

important consideration in the choice of the PIT technique. Subjective image quality and

perceptual delay must be satisfied by any PIT method. In terms of image quality, interac

tive graphics requires a reasonably high degree of fidelity in the coarse image if PIT is to
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be successful. This is true because much of the windowing environment is artificially and

procedurally generated and rendered. Text is an important component of all such applica

tions. Normally text appears as a simple foreground and background two-color mixture

that is sufficiently contrasting to appear legible. Hence text consists of relatively high-fre

quency information with extremely "important" information content to the human user.

Therefore, any PIT technique supporting windowed graphics should also support a coarse

representation which must be substantially legible

In view of these characteristics, not all PIT techniques are suitable for windowed

graphics. For example, transform-based progressive methods [35][95] like the JPEG algo

rithm do not support graphics well. Most frequency domain approaches send low fre

quency information first, resulting in blurry illegible initial versions. JPEG includes two

options for progressive transmission of DCT coefficients, namely spectral selection and

bit-plane separation. In both cases, observations of the initial coarse reconstructions of

progressive JPEG images reveal two phenomena. The low-frequency-only contentsmears

the visual data per block. One alternative could be to reverse the order of coefficient trans

mission, and communicate high-frequency information first. However, such an approach

tailored for text would clearly backfire for natural images, which must also be supported

within the windowing milieu.

Progressive multiresolution coding offers an alternative to progressive DCT frequency

coding. Multiresolution coding can be defined either in wavelets/subband domain, or spa

tial resolution domain. Subbands are filtered frequency bands which have beendownsam-

pled since they have reduced frequency content [102]. Subbands can be recursively

filtered and subsampled, to create a multi-layered hierarchy of low frequency to high fre

quency subbands. Unfortunately, this type of multiresolution algorithm, whileperforming

well for natural images, poorly supports text legibility when only the lowest frequency

coarsest resolution subbands are viewed first.
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spatial subsampling techniques also suffer from the same inability to support legible

reproduction of text in the coarselow-resolution version. Progressive pyramidal subsam

plingschemes in the spatial domain, whiledesigned for natural images, are not well-suited

for the highly artificial windows environment [44][71].

5.5.2 Progressive colormap algorithm

Instead, we have settled on a simple spatial domain technique similar to tree-structured

VQ [102] which is robust to errors, can favorably depict text, can be 2q)plied to both natu

ral and artificial images, and is easily implementable in the X server environment.

5.5.2.1 Description of aigorithm

Arguments in favor of spa

tially-based VQ coding are its rel

ative robustness [127][136], R

compatibility with the X server's

internal representation, and its

ability to confer initial text legibil

ity. Colormaps represent a form of

per-pixel VQ, since the (Red,

Green, Blue), or RGB, color space

is quantized into a few color vec

tors. We create a palette of

"coarse" colors, represented by a

coarse colormap smaller than the

default colormap. For each pixel, the graphics server will initially transmit the index of the

closest "coarse" color to the pixel's color. Later, the final set of bits will arrive, specifying

one of the full colors in the default colormap. In Figure 5.10, we picture how this progres-

FigureS.IO Progressive colormap aigorithm in
RGB space, (a) inHiai color vector for
each pixel (b) final color vector for
each pixel (c) displacement vector
between initial and final versions.
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sive colormap scheme works in RGB color space for each pixel. Since the initial vector

could be corrupted by noise, then our assumption was the final colormap value for each

pixel would contain the full information vector (b), rather than the displacement vector (c).

Instead of defining a separate "coarse" colormap, the default colormap could be tree-

structured,so that the tree's coarse elements inherentlydefineour "coarse" palette. We did

not implement this extension. Also, we did not extend pixel-VQ to two-dimensional VQ,

whichcan achieve greater compression withoutcompromising robustness, at somecost in

legibility.

In our case, we havechosen a palette of 16"coarse" colors, or 4 bits of informationfor

thecoarse colormap. Early colormonitors were limited to approximately 16colors. Color

quantization attempts in the range of approximately 16colors appear to give subjectively

reasonable reconstruction for certain natural and most artificial images [16][45]. Hence

the size iV^=16 of the coarse colormap was recognized as the lower bound capable of

coarse image definition

The next stage is to properly choose this set of Nc=l6 colors. Fundamentally, this

involves the issue ofcolor quantization, i.e. choosing a smaller setofcolors to represent a

much larger color space. A wide variety of algorithms are available, including the fre

quency and Median Cut algorithm [55], several variance-based methods [146][147], and

others [6][93]. Each of these methods seeks to partition RGB space by using a single

image's statistics. Many of these techniques arecomputationally intensive, and hence ill-

suited to our latency-constrained environment.

An interesting alternative is to choose the set of coarse colormap data independent of

image statistics. Again, a wide variety of algorithms can be designed, many of which take

advantage ofcertain characteristics ofthe human visual system(HVS). One algorithm pro

poses theuniform quantization ofUVW luminance-chrominance space thatispsychovisu-

ally uniform, based on HVS characteristics [73]. However, by simple experimentation, we
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found that a simple heuristically-defined palette of "likely" colors, based upon our accu

mulated experience of human usage patterns for both natural and artificial images, was

subjectively reasonable. This is primarily due to the extremely limited size iVj.=16 of the

static color palette.

Given a quantized set of colors, the final step in colorquantization is the mapping of

the original image to the quantized image [146][147]. To do this, each color must be

mapped in somesense to its "closest"representative color, which is defined by its tristim-

ulus components or luminance and chrominance components.

In our case, given the size and constitution of the coarse colormap, the final step in

color quantization is to map each color in the default colormap to one of the 16 coarse col

ors. Many techniques choose to minimize over an RGB Euclidean distance measure. It is

well-known that equal distances in RGB space do not reflect equal "just noticeable" sub

jective color differences [97]. Hence, in order to emphasize certain HVS tendencies, a

luminance-chrominance color space waschosenas the basis for comparison.

The color metricchosen here minimizes the weighted YUV-distance between a given

color and the set of coarse colors:

m//i(0.6|cy-i y\ +0.2|cy - iy\ +02\cy -1^1)
c=l..l6

where i is the index intothedefault colormap, with color components iyj and and

c is the coarse color index. The weighting factors reflect the HVS characteristics of the

eye, which is more sensitive to spatialvariation in intensity than variation in chromaticity

[6]. While emphasizing nearness in luminance, the color metric also attempts to resolve

among colors with approximately equivalent luminance.

It has been recognized that this final mapping of original image to quantized image

requires a computationally intensive search, especially for large quantization maps [1].

Most of the time in color quantization is taken up by the latter search and remapping

phase, and not by the initial quantized color determination phase. In the worst case, each
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pixel must be compared to all quantized colors before an optimum match can be made.

However, the relatively small quantized set size of 16 should decrease search latency con

siderably, in comparison to the normal search size of 256.

More importantly, this search needs only to be run once when the original color is first

allocated in the default colormap, and thus need not be run for every pixel referencing this

color. Observe that the colormap scheme requires all colors to first be allocated before

they can be used. Since all further references to the color are by index, then the search

need only be conducted once. This is in sharp contrast to the normal problem of mapping

a 24-bit RGB image into a 256-color colormap, where each original pixel stores a 24-bit

color instead of an index, so that the search must be conducted anew for each pixel. In

fact, the colormapschemedefers all of this quantization work to the application. Thus, the

colormap scheme allows us to effectively removes theworst contribution to coding latency

from color quantization.

The overall drawing process implemented by the X server is encapsulated in a simple

lookup table, pictured in Figure 5.11. When a pixel uses a value in the default 256-color

colormap, then the X server draws that pixel into the virtual frame buffer, and in addition

does a quick lookup to find the index for the 4-bit coarse color. This coarse color is drawn

immediately into the physical frame buffer. The effect seen by the end user is a progres

sive transmission algorithm, within an initial color for each pixel closely followed by a

final color. From the source's perspective, the 4-bit coarse color is first transmitted to the

receiver, and followed by a later progressive transmission of the final 8-bit color vector.

5.5.2.2 Lessons learned

We constructed a simple two-substream example to gain some intuition about the sub

jective behaviorof asymptotically reliableand progressively coded graphics that tradesoff

reliability, delay and bandwidth across substreams. We modified an X11R6 windows
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Coarse colormap

Rest of the colors in

colormap

Colormap Coarse (R,G,B)
Value Color Color

0
1

0
1

(R,G,B)o

1 1 1

l^c-1

1

1

(R,(j3)nc-1

Nc [O.Nc-1] (R»G3)nc

1 1 1

1 1 1

1 1 1

1
1

1
1

1
1

Nf-1 [O.Nc-1] (R,G,B)Nf.i

Figure 5.11 Lookup table that Implements progressive colormap algorithm. For each
pixel, the X server saves the actual colormap value In the virtual frame
buffer, and writes the coarse colormap value Into the physical frame
buffer. At some later time, the full colormap value stored In the vfb Is sent
through the progressively reliable encoder to be displayed on screen. Let
Nc = # coarse colors, Nf = # total colors. In our Implementation, the
coarse colormap Is embedded wHhln the Nf (=256)-color colormap, occu
pying the first Nc positions.

server to implement the progressive colormap algorithm and asymptotic reliability using

two substreams. A simulated channel introduces errors and constrains the bandwidth.

We experimented with several depths of initial colormap size. First, we found that

coarse colormaps of 16 colors were ill-suited for progressive transmission of natural

images. The coverage of the 16colors overRGB space was too sparse to permit accurate

representation of both luminance, and hue/chrominance color components. Consequently,

both the luminance andcolorof theimage would change between the initial andfinal rep

resentation. As a compromise, we fixed the coarsecolormap to only allow grayscale val

ues. This would limit the change between initial and final versions of an image to only a
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color change, rather than a luminance change as well. We observed that this change signif

icantly improved our PIT algorithm.

We also experimented with a l-bit/2-color black and white coarse colormap. We found

that text could be easily reproduced in legible form by this two-tone initial colormap. This

is because the foreground and background colors of a text-based application are usually

chosen by the user to appear as highly contrasted, i.e. the luminance difference between

text and background is extreme. While natural images were less well reproduced, by and

largethe essential subjective features of most such images were still easily discernible. By

expanding to 2-4 bit grayscale coarse colormaps, the coarse versions of natural images

were able to start conveyingfine detail in addition to coarse detail reasonably well.

Interactivity of the progressive server at 100kbit/s was much improved over the nor

mal X server. Bursty activity like menupulldown is conveyed quickly, thanks to the low-

quantization black and white initial version. We modified a second X server to incorporate

rate-limiting only, with no progressivity either in the source or channel coding domains.

This "normal" X server rate-limited at the same channel capacity experienced significant

interactivity problems by trying to send thefiilly quantized color version. At higher chan

nel capacities exceeding 1 Mbit/s, the improvement in interactivity wasless noticeable.

Unreliability of the initial image was tolerable despite a severe BER, Even text-based

images tolerated the noise, thanks to the robustness of the progressive colormap scheme.

We found that thepixel error rate at the limit of text legibility for noisy 12-point text was

about 3%. However, this legibility threshold depends onpixel resolution, pixel depth, and

text size, in addition to the channel noise, so it should not taken as an absolute. It was

derived by corrupting pixels for an 8-bit -100 dpi display until a normal shell terminal's

12-point textwas no longer readable. Natural images could tolerate higher BER's.

We found that the end user soon became accustomed to the transition effect from ini

tial to final image. The most pronounced effect occurs for heavy quantization, i.e. the
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monochrome to color transition. Wefound this crude system usable, though certainly not

ideal. Clearly, more clever PIT algorithms could mitigate this transition effect. We also

tried grayscale "coarse" colormaps, which reduced the transition effect. Color-based

"coarse" colormaps werefound to perform slightly worse subjectively than theirgrayscale

counterparts. We believe this to be a consequence both of the eye*s greater sensitivity to

luminance than chrominance (plus our mapping metric*s biases toward a luminance

match) and of the lack of dynamicityin the "coarse" colormap.

Another conclusion we came to is that two substreams insufficiently partition the

graphics source. For example, we ran mpeg_playto see how video performs.We observed

a pronouncedannihilation effectdue to the 5 secondminimumdelay ~ the reliable version

is never sent thanks to the fast overwriting action of the video stream. However, we were

forced to watch a blackand white video presentation indefinitely! Clearly, the progressive

colormap algorithm should not be applied uniformly to all applications' data. To avoid

this, in the future we believe that data-dependent or application-dependent partitioning of

the graphics stream is needed, which is one of the motivating reasons for the development

of the flow labels described in Section 5.4.3.

To experiment with application-dependent source coding within the X server, we

included two hooks into the X server through the Tcl-based performance manager. First,

in Figure 5.6 we showthat a "separate imagecoding" button is incorporated into the per

formance manager. Withthis button, we wereable to turnoff progressive colormap coding

for video sequences, and natural images in general. For example, we could edit text in one

window, which would be sent in progressive colormap fashion, while the video in another

windowwould be playing at full color depth. The overalleffect was far more pleasing than

applying a single coding scheme to all applications* data.

In addition, we also incorporated a "progressive cursor" button in the performance

manager in order to remedy another subjective artifact introduced by uniform progressive
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colormap coding. We found that if progressive colormap coding is applied to cursor

redrawing, then as the mouse cursor is moved across the screen, it leaves not only a noise

trail due to progressive reliability (which produced the "snake"effectdescribed in Section

5.4.1), but it also leaves a much more objectionable source coding trail. In the case of a

black and white coarse colormap, the blocks redrawn in black and white due tothepassing

of the mouse cursor stood out in stark contrast to the surround color versions. To fix this

problem, we addedstate in the progressive encoderof the X serverto detectwhena cursor

was being drawn. If a mouse cursor was drawn into an affected block, then the previous

state was used to decide what depth the mouse cursor should be drawn at. If the previous

block state was "sent final data", then we know that the final color version is being dis

played for that block at the receiver. In this case, the mouse cursor is drawn a fiill color-

map depth rather thancoarse colormap depth. If instead theprevious block state was "sent

initial data", then we assume that the receiver isviewing a coarse colormap version of that

block, andtherefore the least objectionable approach is to redraw thecursor-affected block

at coarse colormap depth. The overall effect is that the cursor again leaves only a noise

trail, and no longer leaves a blackand white, or grayscale, trail in its wake. If the cursor is

viewed as a separate application, then we see again that application-dependent coding can

reap large subjective benefits in terms of perceived quality.

Finally, we note that our progressive colormap scheme is quite simple, and that more

sophisticated progressive source coding schemes are possible that reproduce both embed

ded text and natural images well, tolerate errors well, and achieve a larger degree ofcom

pression in their first version. Forexample, we did not experiment in-depth with wavelet

image bases which might be able to capture text and natural images well. The objective

would be to find a transform that packs much of its energy into high and low frequency

components, but not much into middlefrequency components.
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Figure 5.12 Video is delivered over a progressive reliable protocol. While video is
streaming continuously, progressive retransmissions are shut off by com
bining delayed retransmission redundancy with the ADU cancellation func
tion. Each new frame effectively cancels any attempt to retransmit the
previous frame's data. When video is suddenly paused, the progressively
reliable protocol naturally kicks In its retransmissions to clean up artifacts
on the final frozen frame.

5.6 Other application exampies

In this section, we consider how continuous multimedia applications like video and

audio can parameterize ourprogressively reliable protocol to deliver theirdata sequences.

While progressively reliable packet delivery was designed with bursty multimedia in

mind, both video and audio can make use of two of progressive reliability's functions,

controlling when retransmissions are sent (Section 5.4.1) and whether retransmissions are

initiated at all (Section 5.4.2).

5.6.1 Video

Video exhibits a natural cancellation property. As each new frame is displayed, the

previously visible frame is overwritten. We observe that a progressively reliable protocol

which implementscancellationof stale ADU's and delayed retransmission of ADU redun

dancy could be parameterized to deliver video unreliably without having to invoke pro

gressive retransmissions on each frame. Consider the example shown in Figure 5.12.

Videois passed to the protocol as a sequence of image frames. Suppose the video applica-
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tion tells the protocol to delay retransmissions on a given frame by about 3 frame times, or

equivalently about 100 ms. Suppose that the video application subdivides its image into

blocks, and identifies each block in a frame by a separate correlation label (defined in Sec

tion 5.4.2). Since a new video frame arrives every 30 ms, then the correlation labels cause

each new block associated with the next frame to cancel retransmissions of each corre

sponding block in the old frame. Integrated over all blocks, each new frame effectively

cancels retransmissions of the old frame. In this way, a progressively reliable protocol can

be parameterized to shut off progressive retransmissions and delivervideo withoutrequir

ing each noisy frame to be cleaned up by reliable follow-up redundancy.

Many video applications allowthe user to pause the video in order to capture and edit/

composite a single image. As soon as the video is paused, retransmissions will no longer

be cancelled by the next frame. Followingthe minimum wait time, which is 100 ms in our

example, progressive retransmissions will automatically be initiated to clean up the arti

facts in the freeze-frame image, as shown in Figure 5.12. The application need not estab

lish a separate TCP connection to transmit the fully reliable freeze-frame image. Thus,

when a video application sends a continuous sequence of images, the progressively reli

able protocol behaves like an unreliable datagram protocol and suppresses retransmis

sions. When the video application is paused, the progressively reliable protocol behaves

like a reliable protocol and employs retransmissions to deliver a reliable version of the

freeze-frame image.

5.6.2 Audio

The cancellation and delayed retransmission functions of our progressively reliable

protocol can also be parameterized to deliver continuous media audio. The intent is to cus

tomize the progressively reliable protocol to partially retransmit audio until the desired

latency bound expires^ e.g. due to conversational interaction. In some connections, the
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Figure 5.13 Circular cancellation of audio packets. The progressively reliable protocol
attempts retransmissions for each audio packet up until the conversational
latency bound Is exceeded. Suppose that by the time packet 4 Is ready to
be transmitted, any further retransmissions of packet 1 will arrive too late
at the receiver. Therefore, packet 4 can be used to cancel retransmissions
of packet 1, and packet 5 to cancel retransmissions of packet 2, and so on
In circular fashion. The protocol Is parameterized so that retransmissions
of an audio packet are sent Immediately, rather than being delayed as for
Interactive image browsing.

propagation and queueing delays may still be small enough to leave slack in the latency

budgetfor several end-to-end retransmission attempts.

In Figure 5.13, we illustrate how circular annihilation of progressively reliable pack

etized audio works. Consider an audio sequence of fournumbered packets or ADU*s. Sup

pose that by the time packet four is ready to be sent that any further retransmissions of

packet one will arrive too late at the receiver, i.e. afterthedesired latency bound hasbeen

exceeded. The time interval during which partial retransmissions can be attempted is

1. This idea of using a circular cancellation scheme for audio was proposed by Sanjoy Paul, currently at
Lucent Bell Labs, in a conversation with the author.
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therefore three packet lengths in our example. Within this window of threepackets, each

new audio packet displaces the oldest of the three queued packets, cancelling retransmis

sions associated with the oldest packet. For example, packet four will be labelled by the

application with the samecorrelation labelA as packetone, packetfive with the samecor

relation label B as packet two, etc. This enables the protocol to stop retransmitting packet

one(two) as soon as packet four(five) has been passed to it through the transport service

interface. Cancellation proceeds in a circular fashion through thecorrelation labels, transi-

tioning from A->B->C->A->B->...

The sameapproach described herefor audio can alsobe applied to partially retransmit

a frame of video. However, unlike the example of video in the previous section, retrans

missions in this sectionare tightlyconcentrated withina couplehundredmillisecond inter

val, and the cancellation function is applied over multiple frames spread in time. By

analogy with the audio example above, video frame four would cancel video frame one. In

contrast, the previous section delivered video by parameterizing progressive reliability to

delay retransmissions by many seconds, and cancellation was employed for each succes

sive frame, i.e. frame two cancels frame one, frame three cancels frame two, etc. The two

examples recounted here illustrate how parameterization of a progressively reliable proto

col allows multiple applications to flexibly adapt this protocol to suit their individual

needs.

5.7 Summary and conclusions

In this chapter, we have discussed the following: our definition of progressively reli

able packet delivery; the fundamental properties which characterize a progressively reli

able delivery service; our modified X windows server that emulates in real-time a crude

version of progressive reliability; three added-value functions which improve the latency
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performance of a progressively reliable protocol; and examples of how multimedia appli

cations (image, video, voice) could exploit a progressively reliable transport service.

Progressively reliable packet delivery delivers an initial possibly corrupt version of a

packet to the receiver immediately. Later, successively refined versions of that packet are

delivered with statistically fewer and fewer errors. An interactive Web-based image

browser would exploit progressively reliable packet delivery to display an initial possibly

noisy version of an image. Later, the displayed image would gradually be cleaned of any

persistent artifacts caused by channel noise.

There are four key properties to a progressively reliable service/socket interface as

seen by the application. First, corrupt information is forwarded to the application. This

requires that the application frame its data into application data units (ADU's). Further, to

permit forwarding of ADU's withcorrupt payloads, there need to be separate error detec

tion checksums for theADU header and ADU payload. Second, multiple versions ofeach

ADU areforwarded. Third, these multiple versions have theproperty that they aremono-

tonically increasing in reliability, i.e. each successive ADU version is guaranteed to have

statistically fewer errors than previous versions. Fourth, the application must be able to

tolerate out-of-order delivery of different ADU's.

We modified an X windows server to implement progressive reliability in real-time.

We also created aTcl-based "performance manager" tool which could dynamically adjust

a variety ofdelay, bandwidth, and BER parameters asthe X server was running.

Through experimentation, we discovered three additional functions which can be

incorporated into the socket interface to help parameterize the underlying progressively

reliable protocol and improve its latency performance. First, retransmissions of an ADU

that are used to provide successive refinement can be delayed so that they don't conflict

with initial delivery of an ADU. Subjectively, once the end userhas a noisy initial image

version with which to interact, then the final reliable version of that image can be retrans-
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mitted with a more relaxed delay objective, on the order ofmany seconds. This flexibility

can beexploited byourprotocol to give priority to delivering thedelay-sensitive first ver

sion of an ADU. Second, retransmissions that have been delayed by theprotocol can also

be cancelled if they are associated with out-of-date image data. This unique feature per

mits an application sender to stop the protocol from retransmitting old image data that is

no longer useful to the receiver. We propose the use of "correlation labels" to implement

cancellation of stale ADU data. Third, we propose that applications be allowed to subdi

vide their data into multipleflows, which are then scheduled differently according to their

delay and reliability quality-of-service (QOS) parameters by a progressively reliable pro

tocol. Flow-based scheduling is a natural extension of progressive reliability, which inher

ently makes a two-flow scheduling distinction between the virtual flow of initial delay-

sensitive ADU versions and the virtual flow of final relaxed-delay ADU retransmissions.

Finally, we describe several examples of how multimedia applications can take advan

tage of progressively reliable packet delivery. Progressive image transmission (i.e. pro

gressive source coding) can be combined with progressively reliable packet delivery (i.e.

progressive channel coding), and we describe a simple progressive colormap algorithm

which we implemented within the X server. In addition, video applications can make use

of the cancellation function to allow each succeeding frame to cancel retransmissions of

data associated with previous frames. Finally, audio applications can make use of the can

cellation function to create a circular buffer, which partially retransmits packets within a

sliding window of eligible packets.

In the next chapter, we discuss some issues related to implementing a progressively

reliable end-to-end protocol, which we call Leaky ARQ.
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6

Leaky ARQ

Implementation Issues

In this chapter, ourintent is to consider how a progressively reliable transport protocol

could be implemented to support theprogressively reliable transport services desaibed in

theprevious chapter. The survey of implementation issues presented here is notintended

tobe arigorous treatment ofthe topic. Instead, specific implementation options are target-

ted and some of the trade-ofifs associated with these options are outlined. In Section 6.1,

we introduce Leaky ARQ and outline the modifications to a traditional retransmission-

based ARQ protocol needed tosupport the essential properties and added-value functions

of the progressively reliable transport service interface. In Section 6.2, we consider how

progressive reliability, particularly the successive refinement property, can be imple

mented as a true transport protocol by appropriately modifying Hybrid FEC/ARQ proto

cols. In Section 6.3, we detail some of the advantages and difficulties ofimplementing

progressive reliability as anend-to-end protocol lying above TCP and UDP in the Internet

stack. Finally, we consider other implementation issues such as fragmentation ofADU's,

non-sliding windows, and acknowledgments.
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6.1 Leaky ARQ: a progressively reliable end-to-end protocol

Recallfrom the previous chapter that the essential properties that a progressively reli

able end-to-end protocol must support at the transport service interface are:

• Corrupt ADU*s are forwarded to the application

• Multiple versions of each ADU are delivered

• The reliabilityof thesemultiple ADU versions improves over time (fewer errors with

each successive version)

• Different ADU's are delivered out of order

In addition, theprogressively reliable protocol should support thethree following per

formance-enhancing functions:

• delaying ADU retransmissions such thatconflict with delivery of the initial version of

an ADU is minimized

• cancelling retransmissions associated with out-of-date ADU's

• flow-based scheduling ofthe sender's traffic by delay and reliability constraints

A retransmission-based ARQ protocol can be modified at the receiver to "leak" for

ward corrupt ADU's. We caU such a protocol "Leaky ARQ" [51]. The retransmissions

contain the reliable redundancy which allow Leaky ARQ to improve the reliability of the

delivered dataover successive versions. Atthesender, Leaky ARQ needs tobemodified to

support delaying of retransmissions, cancellation of retransmissions, and scheduling of

multi-flow application data. Figure 6.1 summarizes each of the major modifications that

need to be made to a traditional ARQ protocol in order to support progressively reliable

packet delivery. In order to support unordered delivery of packets, cancellation ofspecific

data, and successive refinement of packets, then the internal structure of Leaky ARQ

should beimplemented as anacknowledged datagram protocol.
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Hgure 6.1 Leaky ARQ is a progressively reliable packet delivery protocol that modi
fies a traditional ARC protocol In four ways: (1) at the receiver, noisy
packets are Initially forwarded to the multimedia application and then
successively refined to remove errors (2) retransmissions are delayed at
the sender's queue, while Initial transmissions are sent Immediately (3)
multiple flows are scheduled with different delay objectives (4) out-of-
date retransmissions can be annihilated at the sender.

6.2 Implementing Leaky ARQ as a hybrid FEC/ARQ transport

protocol

In this section, we consider implementing Leaky ARQ as a true transport protocol, i.e.

as a third altemative to either TCP or UDP for the Intemet. Implementation as a true trans

port protocol gives us the flexibility to employ a sophisticated hybrid FEC/ARQ scheme

for implementing the successive refinement property. Hybrid FEC/ARQ protocols com

bine a retransmission-based ARQ protocol with FEC, either in the form of linear block

codes or convolutional codes. In the following subsections, we discuss lype-I Hybrid

ARQ, adaptive lype-I Hybrid ARQ, and lype-II Hybrid ARQ.
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Hybrid FEC/ARQ protocols are applied in situations where only one form of error

protection, e.g. FEC or ARQ, by itself would be insufficient to meet the end user's reliabil

ityanddelay objectives. In the absence ofFEC, a retransmission-based network ARQ pro

tocol can take too long to reliably deliver an error-free packet to the destination. We

quantified in Chapter 2 theminimum latency introduced by an ideal protocol over a noisy

wireless link and showed that the delivery time for an enror-free packetized image far

exceeded the interactive latencybound of 100ms. Similarly, in the absence of ARQ-type

feedback, open-loop FEC can introduce considerable overheadin order to adequatelypro

tect an image over a noisy wireless link. As we showed in Chapter 3, fixed open-loopFEC

can double or triple the bandwidth. Moreover, practical limitations on the complexity of

FEC limit its effectivenessat high BER*s. A hybrid FEC/ARQ protocol can achieve higher

throughput and/or lower overhead compared to ARQ or FEC operating alone. In Table 8,

Table 8. A summary of digital error protection techniques

Description Examples

Conventional

ARQ
Retransmit lost packets SRP,GBN,SW,TCP

Open-loop FEC Linear block codes, convolutional codes Reed-Solomon codes

Stutter ARQ Conventional ARQ + multiple transmis
sions of unacknowledged packets

see Chapter 2
references

lype-I Hybrid
ARQ

Fixed FEC within a conventional ARQ
retransmission loop

TCP over digital cel
lular with fixed con

volutional coding

Adaptive lype-I
Hybrid ARQ

Adaptive FEC within a conventional ARQ
retransmission loop

see Chapter 6
references

lype-II Hybrid
ARQ (also

called Memory
ARQ or Packet

Combining)

At sender, initially transmit packet with lit
tle/no FEC, only send FTC redundancy
if original packet was corrupted.

At receiver, save noisy packets and decode/
error correct by combining previous his
tory of noisy received packets.

see Ch^ter 6
references
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we summarize in advance the major forms of digital error protection surveyedso far, and

also those to be explained later in this section. These comprise the menu of error protec

tions options available for the design of Leaky ARQ. We shall see that Leaky ARQ can be

interpreted as a modified form of TVpe-II Hybrid ARQ.

6.2.1 Limitations of Type-i Hybrid ARQ over time-varying chan-

neis

A lype-I Hybrid ARQ protocol is defined as having a FEC coder/decoder pair with

fixedcoding rate embeddedwithin theretransmission loop of an ARQ protocol.For exam

ple, if an end-to-endARQ protocollike TCP [25] is employed overan IS-54 digitalcellu

lar wireless link that has implemented afixed rate ^ convolutional FEC code [36], then
together this TCP-FEC combination conceptually forms a TVP®'! Hybrid ARQ protocol,

even though the FEC and ARQ were designed separately and operate at different layers.

For T-IH-ARQ protocols, we showed in Chapter 3 that header overheadand FEC redun

dancy can together double the bandwidth under certain assumptions, though FEC redun

dancy alone only added about 15% redundancy. However, we pointed out several

optimistic assumptions in ourderivation thatwould make it more difficult forT-I H-ARQ

protocols to meet the interactive latency bound, either because of protocol inefficiencies,

increased overhead when non-optimal binary codes are considered, or severe BER*s that

cause the FEC to fail.

A potentially more objectionable problem with T-I H-ARQ is its relative inefficiency

over non-stationary fading wireless channels with time-varying probabilities of bit error.

Sincethe coding rate is fixed for T-I H-ARQ protocols, then when theBER is too low, the

FEC overhead is excessive and unnecessary. When the BER is too high, the error correc

tion is insufficient. Forexample, practical digital cellular systems design theerror correc

tion to protect against heavy BER% resulting in a doubling and even tripling of the
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number of transmitted bits due to FEC overhead [29][36][101]. The fixed overhead will be

wasteful when the channel is in a relatively benign lowBER state,which is often the case

[78]. If the protocol designer tries to compromise and reduce the overhead cost suffered

during goodchannel conditions, then thecode willfail to sufficiently protect thedatadur

ing most wireless fades. OnceFEC fails, then therepetition-based ARQ protocol will also

fail because most retransmissions will be corrupted by bit errors [8]. Under these condi

tions, reliable packet delivery will suffer the exponential delays which we observed in

Chapter 2.

To help analyze the performanceof T-IH-ARQ protocols over time-varying channels,

researchers have developed stochastic channel models. Real-world wireless channels

exhibit correlated or bursty errors, and hence exhibit a form of memory, unlike the random

memoryless BSC. The basic Gilbert-Elliott two-state Markov model assumes that the

wireless channel transitions back and forth between a "good BER*' state and a "bad BER"

state. The transition probabilities control how often a given state is entered and exited.

More sophisticated multi-state Markov models [21] [42], as well as other channel charac

terizations like "gap error" models, have also been developed based on empirical measure

ments of different types of wireless links, and are summarized in [67]. Previous work has

demonstrated that Markov-modeled channels are much better at predicting the probability

of decoding error for open-loop FEC block codes over actual wireless channels than the

memoryless BSC model [34][92]. Similarly, Markov models have been implied in the

study of the throughput performance of non-hybrid ARQ protocols like ideal SRP, GBN,

and SW over channels with memory [19][48][81].

The performance of T-I H-ARQ protocols in bursty error wireless environments has

been investigated by a number of authors [43][52][59][61][150]. Each of these studies dif

fer in their choice of ARQ protocol, I'EC type, underlying analog modulation technique,

and assumed channel fading behavior. The general consensus appears to be that a T-I H-
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ARQ protocol can outperform ARQ or FEC operating alone, but is still subject to the over

head problem mentioned above.

6.2.2 Adaptive Type-I Hybrid ARQ

Recognizing the fixed overhead costs suffered by a T-IH-ARQ scheme when the chan

nel is relatively clean, several authors have proposed heuristics to ad^t the depth of FEC

channel coding to the level of noise, or the probability of bit error, posed by the time-vary

ing channel [40][66][108][144]. Key design parameters of adaptive T-I H-ARQ protocols

include what metric(s) (e.g.BER,analogreceived signal strength indicator(RSSI), analog

signal-to-noise rate (SNR)) to use for adaptation, the granularity of adaptation rate, the

states of the metric that trigger adaptation, and the level of FEC overhead that is ^plied

for a givenvalue of the metric. While such adaptive hybrid protocols holdgreatpromise,

there are some practical limitations to consider. A partitioned communications system

design may hide the physical layer's received analog "soft" symbol values from higher

layer"hard-decision" bit decoding. Even if the analog RSSiySNR values are known to the

upper layers, the channel may be changing too rapidly for these values to represent the

current state of the channel. Also, the raw BER of the channel may be difficult to infer

from the received bit stream, because failure of FEC decoders can cause the number of

errors to be unknown in a packet, or even worse can magnify the number of errors in a

packet. One author has proposed deriving the BER from correctly decoded packets only,

and ignoring incorrectly decoded packets with too many errors. Such a metric is precise

onlyup to theBER failure pointof theerrorcorrecting code[118].

6.2.3 Type-ll Hybrid ARQ Incorporates variable-rate FEC

The progressively reliable protocol design is arguably best accomplished by basing it

onanother type of adaptive hybrid ARQ protocol called the TVpe-II Hybrid ARQ protocol

[78]. In this type ofscheme, redundancy is sent incrementally perpacket as dictated bythe
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channelnoise conditions. At the sender, the original packetis transmitted with little or no

FEC. If the original packet cannot be decoded free from errors, then the sender transmits

more FEC redundancy bits, rather than simply repeating the original packet as practiced

by conventional ARQ. At the receiver, noisy packet versions are saved rather than dis

carded. The possibly noisy FEC redundancy is combinedwith the noisy originalpacket in

order to decode the packet. Each time the decoded version is in error, inoementally more

redundancy is conveyed to the receiver,which continues to store a history of received pay-

load and error correction bits in order to successively refine the decodedpacket.

By sendingFEC redundancyonly when the channelBERis sufficiently severe, the T-II

H-ARQ approach is able to adapt to time-varying chaimelconditions, and thereforeis sub

stantially more efficient than a fixed FEC T-I H-ARQ protocol. In addition, caching of a

packet's received history for packet combining further improves the performance of T-II

H-ARQ by reducing the number of retransmissions needed to decode a given packet.

Another outcome of packet combining is that the most recent estimate of a packet's trans

mitted bits is guaranteed to be statistically less error-prone than previous estimates, at the

cost of greater memory and processing at the receiver, a characteristic we wiU use to

implement progressive reliable delivery of images. The T-II H-ARQ approach is also

called memory ARQ [86][120], and/or packet combining.

A well-known example of T-II H-ARQ is Lin & Yu's protocol, which alternates

between sending the original packet (say Pj) of length N bits and the N error correction

bits (say P2) generated by a (2NJ^ linear block code [78]. The receiver either caches a

corrupted P^ and then uses the newly arrived P2 to correct the cached Pj, or caches a cor

rupted P2 to correct the next Pi. This approach has been generalized to cache and combine

more than two versions of a packet. Creneralized maximum-likelihood code combining of

multiple cached packets is described in the literature [14][15].
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Both of the aforementioned techniques only consider the special case where the

retransmissions containing the FEC redundancy are all the same length as the original

payload. An alternative is to send FEC redundancy incrementally at granularities other

than strictly the payload length. Rate-compatible punctured convolutional (RCPC) codes

support incrementally redundant transmission and maximum-likelihood code recombina

tion and have been proposed for use in T-IIH-ARQ protocols [49]. In addition to support

ing incremental transmission, RCPC codes also support unequal error protection (UEP),

i.e. different sectionswithin a packetmay be protectedwith varying degrees of error cor

rection. Moreover, the diverse range of error correctionsupported by RCPC codes can be

generated by a single encoder and a single decoder. A mixed approach which integrates

payload-length repetition with incremental redundancy wasproposed in [65]. The perfor

mance of several T-U H-ARQ schemes over Markov-modeled channels has been studied

in[63][91][112].

Another form of packet combining called time diversity combining that is less power

ful than code combining has also been discussed in theliterature [151]. In time diversity

combining, decoding of a given packetfrom multiple cached versions is performed on a

bit-by-bit or symbol-by-symbol basis. For example, if thereare threecachedversions of a

packet at thereceiver, then conceptually each bitcanbethought ofas having been encoded

with a (3,1) eiTor correcting code, i.e. the redundancy is limited toerror collecting a spe

cific bit or symbol. In comparison, code combining permits redundancy bits to apply

across all bits in the original packet. For the same percentage of overhead, theconceptu

ally simpler time diversity combining isweaker than code combining. An example ofdig

ital "hard-decision" time diversity combining is majority-logic bit-by-bit decoding.

Suppose that all retransmissions are the same length as the original packet, and that the

receiver stores an odd number of received versions ofeach packet. Foreach bit, a major

ity-logicdecoder will decode the value0 or 1 that has the most occurrences, i.e. that is in
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themajority [12]. An example of an analog "soft-decision" timediversity combiner would

be computinga weightedenergyaverage representation for each symbol in a packet.That

is, given multiple received copies ofa packet stored in terms of theiranalog received sym

bol values,compute an averaged representation of each symbolin a packet.This averaged

analog packet representation can then be fed into a maximum-likelihood soft-decision Vit-

erbi decoder [53]. An advantage of this analog technique is that the post-decoding output

will not fail catastrophically and magnify errors, as would occur for hard-decision decod

ing of non-systematic linearblockcodes. A comparison of theefficiency of diversity com

bining vs. code combining is found in [66] for the case of repetition coding with multiple

copy decoding.

Note that both time-diversity combining and code combining algorithms which do not

preserve the complete history of received packets will be unable to guarantee statistically

improving reliability. As discussed in Section 5.2.3, a necessary condition for successive

refinement requires that the entire history used to decode previousversionsof an ADU be

preserved so that subsequent ADU versions can be decoded with increasing reliability. For

example, Lin & Yu's T-II H-ARQ alternating parity protocol only preserves the most

recent corrupt packet at the receiver, and is therefore unable to strictly guarantee improv

ing reliability. Unfortunately, the caching required to retain the entire history can lead to

an unbounded need for buffer space at the receiver. As a practical compromise, limited

memory at the receiver may not be able to strictly ensure monotonically increasing reli

ability, but for engineering purposes the property of increasing reliability can be closely

enough approximated.

T-n H-ARQ schemes differ from adaptive T-I H-ARQ protocols in three areas:

whether receiver memory is used for packet combining; the metric used for adaptation;

and the rate of PEC adaptation. A common characteristic of all T-II H-ARQ protocols,

whether they apply code combining or time diversity combining, is that noisy packets are
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saved and the received history is used to enhance the power and efficiency of error decod

ing. Adaptive T-IH-ARQschemes do not employ this kind of memory at the receiver.

T-n H-ARQ methods also use a very simple error detection metric to estimate the

channel state; whether a packet has been detected in error or not is the only channel infor

mation used by the protocol to adapt the level ofFEC. In comparison, adaptive T-I H-ARQ

techniques can measure the channel state by a variety of more sophisticated analog (SNR,

RSSI) or digital {BER within a time window) metrics. Yet, the error detection metric can

be quite effective when used in conjunction with memory at both the transmitter and

receiver of a T-II H-ARQ protocol. The sender remembers how many retransmissions of a

packet have occurred and how much FEC redundancy has been incorporated in these

retransmissions. The sender can integrate this memory with the feedback from the receiver

about whether the latest version of the reconstructed packet still has errors to adjust the

incremental amount of redundancy incorporated in the next retransmission. Combining

error detection with memory is arguably as effective a metric as using a sophisticated

channel estimator withoutmemory. Moreover, from a practicalperspective, error detection

is considerably easier to implement than other analog SNR/RSSI or windowedBER met

rics.

T-n H-ARQ protocols adapt the level of FEC on a per-packet granularity. Both the

channel estimation (error detection) and the decision whether to send more/no FEC are

carried out each time a packet is transmitted. In contrast, adaptive T-I H-ARQ schemes

have a great deal of latitude in choosing how often to estimate the channel state, under

what conditions to change the level of FEC, and to whatdegreeFEC should be ina*eased/

decreased. Most proposals for adaptive T-I H-ARQ that we listed in the previous section

continuously update the channel state estimate for each transmitted packet, but differ on

the criteria and depth for adaptation.
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Performance comparisons of ad^tive T-IH-ARQ andT-IIH-ARQ protocols areavail

able in [64][111], which show that inca-ementally redundant transmission plus codecom

bining help T-n H-ARQ outperform even adaptive T-I H-ARQ protocols in terms of

throughput. Table 8 summarizes thedifferent forms of digital errorprotection thatwehave

reviewed so far.

Leaky ARQ can be impl^ented by modifying any of the time-div^sity combining,

maximum-likelihood code combining, and T-II H-ARQ schemes described above at the

receiver to forward noisy intermediate representations ofa packet totheapplication. Such

memory ARQ protocols naturallyrefinethe packets stored at the receiver. Rather than hid

ing these intermediate representations from the application, these memory ARQ protocols

canbemodified to forward intermediate noisy representations ofpacket data. Delivery of

multiple noisy yet increasingly reliable versions of a packet is a natural outcome obtained

by leveraging offof the successive refinement implemented by packet combining. In addi

tion to modifying the receiver to forward corrupt information, the memory ARQ sender

can also be modified to implement delayed retransmissions, cancellation of out-of-date

data, and flow-based scheduling. In this way, T-II H-ARQ protocols represent a useful

template for constructing ourLeaky ARQ progressively reliable protocol.

6.3 Implementing Leaky ARQ above the transport layer

While implementing Leaky ARQ as a true transport protocol ideally maximizes its

performance potential, the reality ofpropagating a new transport protocol throughout the

Internet may force Leaky ARQ tobe implemented as an application-level protocol built on

top of UDP and/or TCR We discuss in the following subsections some of the disadvan

tagesof layeringLeakyARQ on top of UDPand/orTCP.
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6.3.1 Limitations of the combination of TCP and UDP

An end-to-end progressively reliable protocx>l can be layered on top of the combina

tion of TCP and UDP. The initial version of an image can be sent via UDP, and a reliable

version can be transmittedat some later time via TCP. Unfortunately, once a packet is sent

to TCP,there is no way to stop TCP from sending that packetreliably to the receiver. This

poses two problems: we cannot stop TCP retransmissions from conflicting with the more

urgent delivery of the UDP image data (for immediate interactivity); and we cannot stop

retransmissions of out-datedimagedata.First, retransmissions of TCPpacketswill uncon

trollably steal bandwidth from newly arrived UDP packets, increasing the delay of time-

sensitive UDP data. Hence, the combinationof TCP and UDP cannot promise consistent

interactivity. Second, TCP can waste scarce wireless resources trying to reliably transport

out-datedinformation. Web-based image browsers and ronotely rend^ed bitmapped edi

tors like Framemaker overwrite the same screen location frequently with newly delivered

image data, so thatvisual data can become stale or out-of-date. After rapid image brows

ingorpaging/scrolling, theprotocol's buffers may contain a sizable backlog ofstale image

data awaiting reliable delivery, especially if the channel is in a long fade. TCP does not

permit us to identify and "cancel" this stale redundancy, i.e. to stop further retransmis

sions. Our protocol remedies both of these problems by cancelling staleretransmissions,

and by rescheduling redundancy/retransmissions so as not to conflict with initial delivery

of data. Finally, wenote thatTCP only provides full reliability. Image applications may be

able to tolerate a small degree of lasting residual errors. Therefore, our protocol should

support less than fully reliable asymptotic service. As wenoted in Chapter 5, retransmis

sions can be terminated after a finite number of trials, or a finite amount of time.
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6.3.2 Limitations of UDP

To avoid the limitations of TCP outlined in the previous subsection, an application-

level end-to-end protocol could implonent progressive reliability entirely on top ofUDP,

much like the application-level Real-Ume Protocol (R1T) used by multicast video tools

[83]. However, UDP checksumming will have tobeturned offin order tosupport forward

ing of corrupt packet payloads. Once UDP checksums are turned off, then an application-

level protocol will have great difficulty confirming the validityof the IP and UDP headers

for received datagrams.

The UDP checksum is computed over the IP pseudoheaderplus the entireUDP data

gram (UDP header plus UDP payload) [25]. IP routers often don't calculate checksums;

IPv6doesn't even have IP-level checksums! [57]. Normally, UDP checksumming is relied

upon to eliminate packets that may have been accidentally routed to the application after

corruption of their IP and/or UDP headers. The application-level protocol that receives

UDP datagrams won't have access to the source IP addressor the sourceUDP address (the

destination IP address and destination UDP ports can be inferred). Once UDP checksum

mingis turned off, then the application won't be able to verify whether the datagram has

suffered IP and/or UDP header corruption, even if the application-level protocol imple

ments its own error detection policy.

A solution practiced by designers of UDP is to incorporate the IP pseudoheader into

checksum calculations, thereby violating Intemetlayering principles. An analogous solu

tion for an application-level protocol would require UDP to forward both the IP pseudo

header as well as the UDP header to the application-level protocol for header verification.

A final difficulty is that once UDP is modified to turn offchecksumming, other applica

tions using UDP may not expect corrupt packet delivery, even though this is a clearly

specified option of UDP. Some poorly designed UDP applications may have built-in

assumptions that tolerate out-of-order andlostUDP datagrams, butbecause they assume
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UDP checksumming, they do not tolerate bit corruption within UDP payloads. Note that

building progressive reliability on top of the combination of TCP and UDP would suffer

many of these same problems.

Anew version ofUDP, dubbed "UDP-lite", is in the process ofdevelopment^ at the

time of writingthis dissertation. In this version of UDP, the UDPchecksum is only calcu

lated on the UDP and IP headers. The UDP payload is not included in the checksum calcu

lation. A progressivelyreliable transportprotocol could be built on top of UDP-lite, since

only header-valid payloads will be forwarded from UDP-lite to the progressively reliable

protocol. Corruption willbe confined to the UDP payload. Application-level Leaky ARQ

will need to implement its own error detection on the Leaky ARQ protocol headers

embedded within the UDP-lite payload. In order to improve the chances of header-valid

reception, FEC should be applied on headers throughout theprotocol stack. Leaky ARQ

can apply FEC onitsown protocol headers, but will beunable toprotect lower layer UDP-

lite and IPheaders. Therefore, UDP-lite can improve the chances ofheader-valid transport

over wireless links by implementing end-to-end FEC on the combination of UDP header

and IP pseudo-header. Linear block codes are ideally suited for FEC on fixed-length

packet headers.

Implementing an end-to-end protocol as an application-level library of functions on

top ofUDP has been discussed in the literature [88]. Leaky ARQ built on top ofUDP-lite

would require a similar set of design trade-offs. Of course, the socket interface between

Leaky ARQ and UDP-lite will introduce an additional level of indirection which will

reduce the efficiency of Leaky ARQ.

1.From conversations withSteve Pink, currently with theSwedish Institute SICS, ontheend-to-end mailing
list in late 1996.
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6.3.3 SACK-TCP

Current implementations of TCP employ cumulative acknowledgments. Recently, a

new proposal to improve the performance of TCP has been made which replaces cumula-

tive acknowledgments with selective acknowledgments, called SACK-TCP [110]. A

selective-repeat (SRP) TCP sender combined with selective acknowledgments provides

the fundamental structure to implement a progressively reliable acknowledged datagram

protocol required by Leaky ARQ (observation by K.K. Ramakiishnan of AT&T Labs).

The ability to selectively identify specific fragments of a data stream is essential in order

to practice successive refinement or packet combining on these packet fragments, and to

support forwarding of multiple noisy versions of an ADU to the application.

6.4 Implementing transport services within Leaky ARQ

In this section, we survey several other issues related to Leaky ARQ implementation,

including fragmentation of ADU's, acknowledgments, and non-sliding windows. Other

important design issues such as a complete time-out strategy, NAKs vs. ACKs, adaptive

resizing of congestion and flow control windows, and state machine design for both the

transmitter and receiver are not addressed in this dissertation.

6.4.1 Fragmentation of ADU's

^plication-level framing constrains leaky ARQ to operate as an acknowledged data

gram protocol. Since Chapter 2 argued that fragmentation of large ADU's into smaller

packets for transmission and reassembly can dramatically reduce transport latency, we

would like to fragment anADU intosmaller datagrams. Inmany respects, ADU fragmen

tation is similar to the IP datagramfragmentation problem [25].

Internal to the protocol we define an ADUfragment. Figure 6.2 shows that each frag

ment's header will contain at least ADU-related information (flow header, correlation
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ADU ADU ADU ADU fragment fragment fragment fragment fragment
sequence flow correla length offset header total header payload

# header tion

label(s)
pointer length length CRC CRC

Figure 6.2 A subset of the header fields defined for each fragment The fragmented ADU
payload Is concatenated to the end of the fragment header.

labels, ADU length, ADU sequence number), fragment-related fields (fragment offset,

fragment total length, fragment header length, fragment payload CRC), and a fragment

header CRC that is calculated over all the non-CRC header fields. Recall from Figure 5.4

that the ADU header contains both application-dependent error-sensitive data, like (x,y)

location coordinates, in addition to control information like the ADU's length field. The

protocol will extract only the control fields from the ADU header that are needed in the

fragment header to reassemble the fragmented ADU at the receiver. These fields are the

first four startingfrom the left shownin Figure 6.2, and do not include application-specific

data such as location information. The rest of the fields are fragment-specific. FEC is

applied on the header at a depth which is dependent upon the prenegotiated depth associ

ated with that application's fiow. FEC may also be applied on the fragment payload

depending on how successive refinement is implemented and the prenegotiated depth

associated with that application flow.

Retransmissions, acknowledgments, and code combining can all be performed on

fragments rather than ADU's. The variousretransmission options are shownin Figure 6.3,

where an additional distinction is made between retransmission with and without incre

mental redundancy. The initial transmission contains sufficient information to reconstruct

the payload, since the initial payloadmay be clean of errors and not require retransmission

at all. Subsequent retransmissionsmay only contain incrementalparity check bits.
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As the receiver tries to reassemble an ADUfrom its fragments, the receiver firsterror

corrects the fragment header and thencompares a computed fragment header CRC to the

received fragment header CRC (computed only on all non-CRC header fields). If the frag

ment header is error-free, then the ADU sequence number in conjunction with the frag

ment offsetpointer are used to identify the individual fragment. The fragment's payload

undergoes packet combining and the successively refined fragment is cached with the

other fragments of the same ADU, some of which may be corrupt and others clean. As

each fragment is successively refined, the reconstructedfragment is compared to the frag

ment payload CRC (computed on the originalfragment payload, not the current fragment

payload, which may only contain incrementalredundancyused for payload combining). If

the fragment payload is error-free, or if the refined fragment payload is sufficiently reli

able, then the fragment is acknowledged as having been correctly received. Since each

fragment payload converges toward a more correct representation due to packet combin

ing, then the ADUpayloadwill alsoconverge towards an error-free representation, fulfill

ing our promise of successive refinement of ADU's.

The ADU length field determines ADU framing boundaries. This helps the receiver

identify when all the fragments for an ADU have been received. The fragment total length

Original ADU

fragment 1 fragment 2 fragment 1 fragment 2

I 1 I—I I 1 I—I
transmission ' ' ' ' ' ' ' •

Retransmission #1 I I • nu • I I nu

Retransmission #2 I I • • D I 1 •

(a) (b) (c) (d)

Figure 6.3 Retransmission granularity, (a) Fragment ratransmission without Incre
mental redundancy (IR) (b) Fragment retransmission with IR (c) ADU
retransmission without IR (cQ ADU retransmission with IR.
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field only describes the size of the fragment, not the size of the ADU. Without further

infonnation, the receiver would not know at what point all data for an ADU had been

received. IP solves this problem by using a '*more-fragments'* bit in conjunction with the

fragment offset. However, the IP approach can create a complicated reconstruction prob

lem if one or more segments are lost. The receiver will be unable to determine the size of

the ADU for variably-sizedsegments, or for fixed-size segmentswhen the final (variably-

sized) segment is lost. This unnecessarily delays delivery of the initial corrupt version of

the ADU. Hence, we explicitly specify the size of the ADU.

Variable-sized headers are supported by thefragment header length field. Observe that

once any of the fragments of an ADU have been received with valid headers, then much of

the information contained in the fragment header is redundant. For example, per-ADU

header fields Hke the ADU header, ADU length, flow header and correlation labels need

only becorrectly transmitted once. Provided that a valid fragment header has already been

received, then only the ADU sequence number plus the per-fragment header fields are

needed to uniquely identify the fragment (along with portnumbers, host addresses, etc.).

This minimal information is used to define a minimal fragment header with a fixed well-

known size. When the sender sets the fragment header length field to this minimal size,

then it is signalling that a compact header is being sent, instead ofafull-fledged header. In

this way, retransmissions needonly contain compact headers. Thismechanism can be fur

ther extended totransmit the ADU header only in the first fragment, instead ofeach frag

ment.

6.4.2 Non-sliding windows

The sliding windows characteristic ofmost ARQ protocols can result indeo-eased per

formance for bursty visual multimedia. InTCP, the sender isrestricted not justby the win

dow size Wofoutstanding unacknowledged bytes, but also by the sliding property of the
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sender's window. The sender cannot transmitbeyond Wbytespast the lowest unacknowl

edged byte. If H^-l of the previous words have been correctly received, but the oldest

sequence number has not been acknowledged, then the window stays fixed on this

sequence number until it has been acknowledged. Hence, available bandwidth is under

utilized even as additional data may be queued waiting for transmission. The analogy

holds for ADU's as well. The Leaky ARQ window merely specifies the number of bytes

outstanding at any given time, and not any additional ordering relationships among

ADU's.

6.4.3 Acknowledgments

Since we're supporting fragmentation of ADU's, acknowledgments must be able to

identify individual fragments. In addition, acknowledgments should distinguish between

reception of a valid header with a dirty payload and a valid header with a sufficiently reli

able payload. Such a distinction would enable abbreviated retransmission headers and

incremental redundancy. Once the transmitter has been informed that the first header-valid

payload has been reconstructed with errors, then it can begin sending incrementally coded

redundancy and/or shortened retransmission headers. Without this additional precision,

the sender would not know when to send the smaller-sizedpackets; retransmissions would

be limitedto segment-sized granularity andretransmission headers wouldrepeatedly carry

possibly unnecessary fields.

6.5 Summary and concluslons

In this chapter, we have presented Leaky ARQ, a progressively reliable end-to-end

protocol, designed for conveyingdelay-sensitive image data quickly across noisy wireless

links, yet with eventual reliability. We have illustrated what modifications need to be made

to conventional ARQ in order to support Leaky ARQ. We have shown that Leaky ARQ
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can be implemented by modifying lype-II Hybrid ARQ protocols (also called memory

ARQ and/or packet combining) to forward corrupt intermediate renditions of a packet. We

have described briefly the drawbacks of implementing Leaky ARQ on top of UDP, possi

bly in combination with TCR Finally, we have discussed other implementation issues such

as fragmentation of ADU's, acknowledgments, and non-sliding windows.
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7

Future Work

In this dissertation, wehave proposed a progressively reliable end-to-end network pro

tocol, which we call Leaky ARQ, for delay-sensitive high-bandwidth visual multimedia

delivered overa noisy and limitedbandwidth wireless channel with time-varying bursts of

errors. Leaky ARQforwards corrupt information to the implication andeventually delivers

a sufficiently reliable final version of all forwarded data.We have justified Leaky ARQ's

forwarding of corrupt information from a theoretical joint source/channel coding pointof

view. We have also discussed practical implementation issues regarding Leaky ARQ. In

thischapter, wedescribe some of themoreinteresting theoretical andpractical challenges

uncovered by ourresearch into the concept of progressively reliable packetdelivery.

7.1 Theoretical "Holy Grail" challenges

Information theory only addresses the issues of rate and reliability/distortion and

ignores the dimension of delay and subjective quality. The channel coding theorem

assumes that arbitrarily close to zero distortion delivery is possible provided the entropy

rate of the source lies below the channel capacity, and assumes that source and channel

encoders anddecoders are unconstrained in delay, i.e. they cantake arbitrarily long toper-

207



Packet

Arrivals

\
Source & \ Queue

Channel

Encoding

Queueing
Theory

Information

Theory

Server Emp
ties Queue at
Channel Rate

Noisy
Channel

Source &

Channel

Decoding

Hgure 7.1 Information theory and queueing theory address diffmnt issues. Informa
tion theory addresses the two elements of cflstortlon/iieliablllty and Infor
mation rate, txit Ignores the third element of delay. Queueing theory
addresses the issues of delay and information rate, but Ignores the third
dimension of unreliable noisy channels. The next great "Holy Grail" for
Information and communication theorists Is to develop a single theory
which encompasses delay, reliability, and rate. Such a theoretical frame
work should be able to characterize progressive source and channel cod
ing, which combine each of these three dimensions.

form their tasks. Thus, information theory essentially ignores the critical role of delay in

the performance of the communication system.

On the other hand, queueing theory only concerns itself with delay/waiting time and

the rates of arrival (source) and servicing (channel), but ignores the unreliability intro

duced by the downstream channel. In Figure 7.1, we illustrate how queueing theory and

information theory address different issues. No comprehensive theory exists which

encompasses simultaneously all three elements of rate, reliability/distortion, and delay.

Recently, an initialattempt has beenmade to combine the two theories [130].

Given the theme of progressivity in this dissertation, we observe that progressive

source coding and progressive channel coding represent techniques which combine all
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three elements of delay, distortion, and information rate into a single practical paradigm.

Any all-encompassing theory for delay, reliability, and information rate should be able to

characterize the theme of progressivity within its framework. We believe that a single

coherent theory which combines all three dimensions is thenext "Holy Grail" forinforma

tion and communication network theorists.

Progressive source coding, also called successiverefinementof source data, has been

characterized in information-theoretic terms in the literature [37]. This work establishes

conditions under which successive source refinement is theoretically possible, i.e. that the

rate-distortion limitis attained at each refinement step. Conceptually, overtime, theuser is

moving up the rate-distortion curve. However, this workdoes not fundamentally integrate

the notion of progressivity over time, and only considers successiverefinementin the dis

tortion domain. For example, we would like to know: can a given informationrate suffer

inga given level of source coding distortion can bedelivered within a given delay bound?

Moreover, for progressive coding, we would like to know if a sequence of three-dimen-

sionally constrained questions is achievable. Currently, even a single three-dimensionally

constrained question is only answerable bymeans of heuristic guesswork.

Similarly, progressively reliable packet delivery is a form of successive refinement

spread over time, though the distortion is introduced in a more uncontrolled fashion by

channel noise. Given a metric for measuring the impact of channel distortion, we would

again like to know if a giveninformation rate suffering a given levelof channeldistortion

can be delivered within a given latency bound.

In fact, sincewe havedemonstrated via our X serverexperimentation that progressive

image transmission can be combined with progressively reliable delivery, then our final

question is: can a progressive sequence of (information rate, source+channel distortion,

delay) points be achieved in (rate, reliability, delay) three-dimensional space? These are

all questions for theorists to answer.
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7.2 Lower-level infrastructure for Leaky ARQ

In the process of developing Leaky ARQ» we chose to analyze only a few design

issues, and deferred many design decisions until the future. In this section, we conjecture

about future research in the area of communicatinglink-levelwireless state information up

the protocol stack to the endpoints of a Leaky ARQ connection, and conversely communi

cating application-level source information down the protocol stack to the data-link level

for selective UEP and scheduling of multi-flow multi-user applicationdata over the wire

less link.

7.2.1 Communicating QOS parameters down to IP and data-

link iayers

By emphasizing the virtues of joint source/channel coding (JSCC) in a constrained-

complexity constrained-delay non-stationary wireless environment, we have been con

tending that equal error protection (EEP) is aninherently inefficient worst-case technique

thatis poorly matched totheapplications* wide range oferror anddelay sensitivities. Con

sequently, an important component of the JSCC architecture is that QOS information is

communicated up and down theprotocol stack, so thatUEP canbeemployed at thedata-

link layer for the wireless channel.

Both IPV6 flow headers as well as the Protocol ID bit field in IP can furnish the data-

link protocol with some information about the error protection requirements ofthe appli

cation data encapsulated within an IPdatagram. These two pieces of information provide

part of the structure for communicating information from the transport layer down to the

data-link layer. Ideally, we would like to be able to communication enough information

down to the data-link layer ofthe wireless link sothat fine-grained UEP via power control

[156] and scheduling could bepracticed over the wireless link. Open issues include deter

mining what else needs to bein place tocommunicate application-level QOS parameters
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through transport, network layers down to thedata-link, and determining what parameters

will be most useful to the application at theconnection endpoints.

7.2.2 Communicating channei state up to end-to-end proto-

cois and appiication endpoints

Finally, as we notedin Chapter 5, Leaky ARQ can not onlydelay retransmissions due

to the end user's subjective tolerances, but our progressively reliable protocol can also

delay retransmissions in response to channel conditions. Moreover, feedback of the chan

nel state to LeakyARQcan alsohelp the protocol distinguish between corruption-induced

loss and congestion-induced loss. This is one of the key practical problems which limits

TCP overwireless links,due to TCP's implicitassumption that all packetlossesare due to

congestion. We would like to avoid repeating the same mistake for Leaky ARQ, i.e. we

wish to avoid building in the assumption that all losses aredue to bit corruption. Feeding

backchannelstatistics to the channel endpoints can helpLeaky ARQdistinguish between

congestion and corruption.

In addition, it may also be helpful to feedback channel conditions all the wayup to the

application. A wireless-aware multimedia application may be able to adapt its image/

speech/video coding in response to varying channel conditions. Or a wireless-awaremulti

mediaapplication may be able to change the parameterization of Leaky ARQin response

to a prolonged wireless fade.

Open research questions include: How should thechannel statebepassed back? What

parameters are useful? For example, a running windowaverageof the BER could be main

tained by the data-link layer, or a windowed packet loss count. How often should channel

updates be fed back? For example, channel statecouldbe communicated onlyduring con

nection setup, i.e. long-term channel statistics, or channel state could be updated fre

quentlyduring the connection. Weleave thesequestions as openresearchissues.
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