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Abstract

High-Level Estimation and Sjmthesis
Techniques for Low-Power Design

by

Renu Mehra

Doctor of Philosophy in

Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jan M. Rabaey, Chair

The explosive growth in the computational requirements imposed on current day

digital systems andtherapid proliferation ofportable devices have made low power

a critical design issue. Low-power studies published in the literature indicate that

large power savings are possible by addressing this problem at the higher —algo

rithm and architecture —levels ofabstraction. In fact, high-level design tools and

methodologies are becoming increasingly importantdue to the integration oftens of

miUions oftransistors on single chipsand narrowingtime-to-marketwindows.

This dissertation presents automated techniques and methodologies for power

reduction at the algorithm and architecture levels ofabstraction. The core contribu

tions include mechanisms for power estimation from a behavioral description, and

architecture synthesis techniques forlow-power design.

The key contributions inthefirst partofthiswork aretechniques for algorithm-level

power estimation. The estimates are based on information from an architecture

model anda specified hardware library, and are hence technology-targeted. Each of

the different components ofpower dissipation on a chip isconsidered separately, and

a combination ofanalytic andstochastic schemes is proposed. The estimation meth

ods are encapsulated in an exploration firamework that allows the user to quickly
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quickly evaluate several points in the algorithmic design space without synthesizing

each one.

The primary contributions in the second partofthis work arearchitecture-synthesis

schemes targeting interconnect power reduction. We propose two techniques thatare

based on exploiting algorithm properties for reducing power. The properties consid

ered are thealgorithm's spatial locality, which refers tothe existence oftightly con

nected substructures in it, and its regularity, which refers to the repetition of

computational patterns init.The synthesis approaches suggested exploit these prop

erties to derive a simpler interconnect infrastructure with shorter buses and lower

multiplexor and buffer overhead.

The concepts and ideas developed in this thesis have been embodied in a synthesis

system called Synergy which allows the usertoexplore the algorithmic design space

and synthesize the design to a low-power architecture in an integrated way.

Jan M. Raba^

Committee Chairman
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1
Introduction

For many years, area and performance were the only criteria used in the design of

commercialintegrated circuits. Analysis ofpowerconsumptionwas performed onlyas

an afterthought with the results being used to determine packaging requirements

rather than to driveany designoptimizations. Recently, however, powerconsumption

has begun to play an increasingly important role in digital systems. The principle

driver for this has been the explosive increase in the demand for portable electronics

such as personal digital assistants (PDAs), laptops, and personal communicators.

There has also been an increased desire for lowpowerin the high-performance com

puting market, motivated by reliability and cost issues associated with packaging and

cooling high-power devices.

Existing computer-aided design tools for low-power design focus primarily on low

levels ofabstraction. For example, poweranalysis tools at the gate and circuit levels

are widely available and logic synthesis tools targeted at low power are beginning to

appear as well. Unfortunately, the higher levels ofabstraction, wherethe mostsignif

icant optimizations are possible, have not been explored as much.

In this dissertation, we consider automated computer-aided design techniques for

power reduction in digital electronic systems. Since it is generally accepted that the

largest gains are obtained by working at the highest levels of abstraction, the

approach adopted in this thesis proposes optimizations and design aids at the algo

rithm and architecture levels, identifying and addressing some critical issues. Both



the power estimation andS3aithesis problems are studied and proposed techniques

are implemented in an automated design space exploration and S3mthesis system,

Synergy.

1.1. Low-power design

The last tenyears have seen an explosive growth in the computational requirements

imposed on digital electronic devices. Current consumer applications demand com

plexities and speeds originally seen only in the realm oflargepowerful mainfimies.

Personal computers are now equipped with sophisticated graphics, imaging, and

video capabilities andrun at over 100 MHz speeds. The problem is that theincreasing

complexity and speed are accompanied by growing power dissipation. Table 1.1,

which shows the speed, complexity (number oftransistors), and power consumption

of some recent microprocessors, indicates the enormity of this problem. Increased

power dissipation results in rehability problems due to over-heating, and requires

expensive packaging and sophisticated heat removal techniques. This additional cost

isnotas easily absorbed in thepersonal computer market as in thehigh-priced super

computer business. In fact, in order toavoid high-cost packaging andcooling require

ments, some processors now have advanced heat detection schemes that slow down

the processor's clockif the chip gets too hot [107].

Another important development in recentyears has been the rapid increase in the

deployment of portable versions of previously tethered consumer products. While

original portable applicationswere limited to low-speed devices with restricted func

tionality like wrist-watches and pocket calculators, today's portable devices provide

infinitely more functionality at much higher speeds. Typical examples arelaptop com

puters, which now form thefastest growingsegment ofthecomputer market, personal

digital assistants (PDAs), cellular phones,and pagers. The consumer-oriented nature

of these devices solicits user-fnendly environments with graphics, video, and audio

capabilities and speech and handwriting based user-interfaces, all ofwhich put addi-



Table1.1. Powerconsumptions ofa fewrecent microprocessors.

Microprocessor
Clock
speed
(MHz)

Voltage
(V)

Number of
transistors

(millions)
Year

Power

(W)

Pentium Pro^ (Intel) 150 3.1 5.5 1996 29.4

Pentium with MMX^ (Intel) 300 2.8 7.5 1997 7.8

PA-RISC 8000^ (HP) 180 - 3.9 1996 >40

UltraSparc I^ (Sun Micro^stems) 167 3.3 5.2 1995 <30

PowerPC 604^(IBM, Motorola) 133 3.3 3.6 1995 17.5

PowerPC^ (Exponential Technology) 533 3.6,2.1 2.7 1997 <85

Alpha 21064^ (DEC) 300 3.3 9.3 1995 30

Alpha 21264^ (DEC) 600 2.0 15.2 1997 72

1. Numbers firom vendor information.
2. Numbers from theInternational SolidStateCircuits Cortference.
3. Numbersfrom Compcon.

tional computational and speed requirements on the systems. While the computa

tional requirements have grown considerably, the growthin battery technology has

been relatively slow. This has resulted in a critical need for power reduction tech

niquesto enablebatteries tosupportthese applications forreasonable periods oftime.

Historically, power issueshave beena limiting factor in determining the capabilities

of digital electronic systems and have only been solved through key technology

advances. The computing power ofvacuum tube computers was limited byreliability

and heat dissipation problems.The advent ofthe transistor [6,112] and ofwafer inte

grationtechmques [89] introduced devices withorders ofmagnitude lower power, and

techniques tofabricate a largenumber ofthemona single die. Thebipolar basedTTL

and ECLlogic families niled the digitalsemiconductor market through the 70's. This

technology was again limited by power dissipation problems and was replaced by

CMOS/NMOS devices in the 80*s. Today however, noradically newlow-power device

structures are in the horizon to address the power problems facing the digital elec

tronics community. Therefore, it is critical for designers to limit the power require-



ments through carefuldesign techniques and methodologies. Over the last five years

this topichas gathered increased momentum leading to a large bodyofresearch work

in low-power design.

1.2. High-level design

The surge ofinterest in lowpowerhas spawnednumerous researdbi effortsinto design

tedmiques for reducingpowerconsumption. Several papers have surveyed the work

in this field[27, 85, 99,115]. In particular, designers have reportedlow-power strat

egies at the algorithm and architecture levels that promise orders ofmagnitude sav

ings in power [18,56,80,115], while published results based on gate and circuit-level

optimizations typically offer only a factor of two or less improvement [27, 56], The

reason is that, at the later stages ofa design,many ofthe decisions are already made

which limit the opportunities for optimization at the lower levels of abstraction. The

greater degree offireedom at the higher levels allows for much larger powersavings.

Thissuggests that a top-down approach shouldbeadopted forlow-power design. Spe

cifically, optimization efforts should beginat the algorithm level, proceeding then to

the architecture level,and finallyto the gate, circuit, and layout levelsofabstraction.

Another motivationfor high-level design tools comes from the wideninggap between

the design complexities and designer productivity. While the number of transistors

per chip has gone up by about a lOOOx in the last 15 years (firom 10,000 in 1981 to

about 10 milhon in 1996), the number of transistors designed per staff-month kaa

goneup by onlyabout 20x in the same period (firom about 100 to 2000)[110]. By the

year 2010, the number oftransistors per chip is expectedto rise to 1 billion! This indi

cates an explosion in the number of designers required in a design team for a single

chip. Clearly there is a need for automated approaches to address this problem. In

particular, more effective tools are required at the high levels of abstraction, espe

cially the algorithm and architecture levels. At these levels, most of the work has



focussed on speed and area optimization, and the power optimization arena has

remained largely unexplored.

1.3. Contributions of this work

The key contributions of this work include techniques for estimating power at the

algorithm level and an associated exploration facility, as well as a set of synthesis

techniques aimed at reducing interconnect power with minimal area penalty.

Several power optimizations techniques have been proposed at the algorithm level (an

overview is presented in Chapter 2). Though these techniques have a large potential

for power reduction, it is seen that the power savings obtained are design dependent,

the techniques have different effects on the different design components, and in sev

eral cases they work better in combination with other techniques than alone. A criti

cal design aid at this level is a power estimation mechanism that allows the user to

apply various techniques and evaluate their effects on the overall power without syn

thesizing the entire design. The challengelies in providing reasonably accurate pre

dictions in the face of extremely limited information. One of the key contributions of

this work is a facility to provide such predictions. A set of heterogeneous estimation

techniquesare presented to address the different characteristics ofthe various power-

consuming components on a chip. While for some components, such as functional

units and memory, the power can be computed analytically through algorithm analy

sis, other componentslike registers, interconnect, and control require stochastic tech

niques for power prediction.

To further aid in evaluating the different degrees offreedom and making design deci

sions at the algorithm level, the estimation algorithms are encapsulated into a design

space exploration tool called Explore.

The secondkey contribution of this thesis includes architecture-synthesis techniques

for power reduction. While some synthesis approaches to power optimization have



been proposed, most oftiiem are aimed at reducing signal activity at the inputsofthe

various modules in the final architecture. Comparing manual and synthesized imple

mentations, weidentified that the interconnect component is a significant power bot-

tieneck in automated approaches. Also, this component constitutes overhead power

(notnecessary forthe basic computation) andis significantly lower in mnnnnl designs.

Ourarchitecturesynthesisapproaches capturesome ofthe techniques usedbyhuman

designers and uses them in automated schema to reduce the interconnectpowercom

ponent.

The core contributionin this part is the identificationand exploitationof two struc

tural properties of the algorithm for power reduction. First, we identify tightly con

nected sub-structures in the algorithm and use them to generate a localized

implementation. The existenceoftightly connected sub-slxucturesin the algorithmis

referred to as its spatial locality. Exploitingspatial localityin this way restricts the

interconnect elements to portions of the chip, and helps in reducing the physical

capacitanceand powerdissipation in the buses and buffers.Additionally, the localized

hardware sharing reduces multiplexor overheads. Next, we identify repeated pat

terns of computation in the algorithm, which constitute its regularity, and use them

to synthesize a simpler interconnect structure. In this case, the interconnect ele

ments, once instantiated, can be reused several times without extra multiplexing

overhead. Thetechnique results in power reductions in the buses and multiplexors.

The concepts and ideas introduced in this thesis are encapsulated in a synthesis

system calledSynergy which is targeted at exploiting the large powersavings avail

ableat the higherlevels ofabstraction. Atthe highestlevel, the algorithm level, power

estimation techniques encapsulated in a design space exploration tool provide the

user with enhanced capabilities to evaluate designs and explore the algorithmic

design space. After an algorithm with appropriate parameters is chosen, architecture

S3nithesis techniquesallow the designerto realize a low-power implementation,ho the

end, architectural power analysis can be used to verify and fine-tune the decisions.
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1.4. Scope

For iinplementation and demonstration purposes, the synthesis system presented in

this thesis targets a specific application domain and architecture model. However,

most of the ideas presented here are general and may be applied to other domains.

This section outlines the application domain and architectiure model targeted in the

synthesis system. The input specification and internal representation of the algo

rithm to be S3nithesized are also explained.

1.4.1. Application domain

The Synergysynthesis system is targeted fordigital signal processing (DSP) applica

tions. The main characteristic of these applications is that they are data-flow inten

sive with relatively few control constructs. These algorithms process or transform an

infinite stream of input data in an endlessly repetitive loop in real-time. The rate at

which the input data is receivedand processedis constant, independent ofthe values

ofthe input signals, and is calledthe required throughput or samplingfrequency. This

rate is fixed by the DSP fimction and the surrounding system reqvdrements. The

inverse of the throughput is the sample period, which is the time between the arrival

ofsuccessive input samples.Usually,the timing constraints are stringent and require

parallel architectures for feasible implementations.

Some typical applications include filters (IIR, FIR), transforms (FFT, DOT, Hilbert),

speechand audioprocessing (synthesis,coding, echo cancellation), and video process

ing (compression, decompression).

1.4.2. Input specification

The input algorithm is specifiedin a applicative language calledSilage [48]. This lan

guage is speciallysuited for the DSP algorithms since it is simply a textual represen

tation ofa signal flowgraphwhere each variable represents a signal. The language is

basedonthe single-assignment principle —eachsignalis defined in a uniquewayby

an equation rather than a statement. The language supports control-flow constructs
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such as loops and if-then-else statements, and hierarchical constructs such as subrou

tines.

1*4.3. Internal representation

Thealgorithm in internallystoredin a control-dataflowgraph (CDFG) representation

withnodes, data edges, and control edges. Thenodes representoperations in the algo

rithm, data edges representvariablesor data dependencies, and the control edges rep

resent extra precedence rules between operations. The CDFG serves as the central

data-structure on which synthesis and optimization operations such as complexity

estimations, flowgraph transformations, hardware allocation, and scheduling tasks

are performed and to which results are annotated. It also provides a convenientver-

sioning mechanism to record the history of a design.

Nodes in a CDFG mayrepresentarithmetic operations (addition, multiplication, etc.),

control operations (if-then-else), sample delays, or hierarchical constructs. Hierarchi

cal constructs are represented by nodes that are themselves CDFGs insteadofprim

itive operations.

1.4.4. Targeted architecture

The targeted ASICarchitecture is shownin Figure 1.1.It consists ofa set offunctional

units (the exact number is derived during synthesis) that are connected together

through an interconnect network. Though the network may be complete if needed,

only those connections required fora given design are actuallymade.

Temporary storage (other than backgroimd memory) is provided through a distrib

utedregister file architecture. Aregister file is attached toeach inputofthefunctional

units to store the requisite operands. The register files are assumed to have one write

and one read port though the synthesis scheme can be modified to handle more com

plex register architectures. Avariable is written into a particular registerfile when
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Figure 1.1. The targeted architecture model.

its producer operation is executed and is read when the consumer (the functional unit

to which it is attached) executes.

Since a functional unit may receive data from more than one source, multiplexors are

used whenever needed to select the data from the correct source. Also, buffers are

used at the output of the functional units to drive the global buses. These buffers may

be Ixistated, if needed, to control whichunit drives each bus in a particular clockcycle.

Physically, each functional unit and its associated registers, multiplexors, and buffers

are clustered into a datapath block.

This interconnect structure is the most general and other simplified interconnect

structures may be derived from it, if required. Two simplified schemes that are sup

ported, the multiplexor-based and the tristate-buffer based schemes, are discussed

below.



In the multiplexor based interconnect scheme, each function unit has a dedicated

output bus that may be driven by a buffer if required. However the buffer is not

tristated, and the unit owns the bus at all times. The receiving units select the data

from the correct bus using multiplexors. In the tristate-buffer based interconnect

scheme, each umt has a dedicated source bus for each input. The producer units

decide which busthe data mustbetransmitted on, based onwhere theywantto send

the data. Busselection bythe producer units is done usingtristate buffers.

In this thesis, we adhere to the generalized interconnect model as much as possible.

However, one of the simpler cases may be used sometimes in order to facilitate the

demonstration ofresults from using a particular optimization technique.

The controller is executed as single Moore machine (which implies a single tTirAaH of

control) with a distributed structure as shown in Figure 1.1. A central finite state

machine (FSM), generates the state information which is distributed to a set of local

controllers. Each local controller generates the control signals for a particular datap

ath and is placed close to it in the final layout. Thelocal control signals include read/

write signals for registers, selectsignals for multiplexors, shift amount for shifters,

tristate signals for buffers, etc. This distributed control scheme reduces power dissi

pationsince only the state bitsare globally distributed to the entirechip and the con

trol signals are locallygenerated in the glue-logic blocks.

1.4.5. Hardware libraries

Underljdng the synthesis system is a hardware library parameterized delay, area,

and power information of the different library cells. Parameters include input and

outputwordlengths, supply voltage, maximum shiftvalueforshifters, number ofreg

isters for registerfiles, etc. Thelibraryinformation is usedto drive decisions through

out the synthesis and implementation phases. The Ubrary does not need to be fully

designed, but the accuracy of the numbers provided will affect the overall results.

Library information may be obtained from either post-fabrication test results, pre-
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fabrication cell characterizations, preliminary estimations based on a paper design,

measurements obtained from previous designs, or numbers reported in the literature.

This library-based approach has several advantages: (i) design tools can use informa

tion from of library components to make high-level decisions and (ii) library ceUs are

designed only once, reducing design Qrdes.

1.5. Thesis organization

This thesis is organized into 9 chapters. This chapter has presented the motivation

for the work, its key contributions and scope.

Previous and related works and backgroimdmaterial are presented in Chapters 2 and

3. The various powerrelated issues—the sourcesofpowerdissipation, powermodels,

and the principal powerreduction themes — are introduced in Chapter 2. This chap

ter also extensively describes previous work in power optimization and estimation.

Chapter 3 gives an overview of architecture synthesis and Ihe associated tasks. The

Hyper high-level synthesis system which has been used as a research platform for

experimentation of ideas in this thesis is also described.

Techniques for algorithm-level power estimation, their limitations, and results are

presented in Chapter 4. The associated exploration environment is presented in

Chapter 5, along with several examples illustrating the various degrees offreedom at

this level and an extensive case study.

Architecture synthesis techniques forlow power are treated in Chapters6-8. In Chap

ter 6, the various power consuming components are studied to identify bottlenecks

and qualify the impact ofarchitecture-level techniques on them. Chapter 6 also dis

cusses an extensive set of models for estimating interconnect power at the architec

ture level. Chapter 7 introducesa partitioning-basedscheme forexploiting algorithm

locahty. A synthesis approach for identifying and exploiting algorithm regularity for

interconnectpowerreductionis detailedin Chapter 8. Chapter 9presents an overview

11



ofthe entire synthesis system along with the key concepts, and also indicates possible

future directions.
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Power Optimization and
Estimation: Overview

2

This chapter presents background material in power optimization and estimation.

Section2.1 discusses some ofthe basic concepts related to powerdissipation in inte

grated circuits — the main sources of power, how it is modeled, and the common

themes for power reduction. The next two sections overview related work in power

reduction at the algorithm (Section 2.2) and architecture (Section 2.3) levels.

Section 2.4 survejrs previous work in power estimation at various levels of abstrac

tion.

2.I. Power — sources, models, and themes

Power dissipation in an integrated circuit stems from four main sources — (i) switch

ing or dynamic power dissipated while charging and discharging the capacitances in

the circuit, (ii) short-circuit power consumed due to currents through direct paths

from the supply to ground during switching, (iii) static power due to current flows in

paths from the supply to groimd when the circuit is stable (not switching), and (iv)

leakage power due to sub-threshold and reverse-biased diode currents in the circuit.

At the algorithm and architecture levels, the short-circuit and leakage power are

neglected since they (i) can be reduced to less than 15% of the total chip power by

power conscious circuit design techniques [127], and (ii) are not influenced by the

algorithm or the architecture style used. The static power componentis also ignored
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since the most popular circuit styles exhibit rail-to-rail swings and do not consume

static power. Therefore, onlydynamicpoweris targeted for optimization at the algo

rithm and architecture level. The power dissipation is described by the following

equation:

Power = (Eq. 2.1)

where / is the frequency ofoperation, Vg^; is the switched voltage, Vj)j) is the supply

voltage, and C^ffV& the effective capacitance switched. The effective capacitance, Ceff,

depends on C, the physical capacitance being charged/discharged, and a, the activity

factor:

^eff = (Eq. 2.2)

The activity factor a, associated with a node with capacitance C, is the average

number oftransitions per clock period at that node. Also, due to the assumption of

rail-to-rail swings, Thus the oversdl power equationfurther reduces to:

Power =|aCv2/ (Eq. 2.3)

Based on this power equation, four main degrees offreedom for power optimization

can be easily identified. These correspond to reduction of the various power compo

nents:the supply voltage, activity, physical capacitance, andfrequency. Eachofthese

are briefly discussed below:

1. The recurring theme in low power design is voltage reduction. Since thepower is
quadratically dependent on the supply voltage, changes in supply voltage
potentially have a large impact on power. This powerreduction comes at reduced

speeds, however, since lowering the power supply increases the delay of the
hardware blocks (Figure 2.1). Speed-up techniques at the algorithm and archi
tecture levels can then be used to recover this lossin performance.
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Figure 2.1. Effect of supply voltage: (a) on energy, G>) on delay.

2. Another important theme is avoiding wasteful activity. A computation should

only be performed when absolutely necessary to avoid useless switching of

capacitive nodes. This may be achieved either by optimizing the algorithm so

that minimum number of operations are performed, by power-down techniques

at the architecture level, or by reducing glitching activity at the gate and circuit

levels.

3. Reduction of the physical capacitance is relatively less addressed at the algo

rithm level but forms the basis of a large number of architecture-, gate-, and cir

cuit-level techniques.

4. While frequency reduction is a popular technique for lowering the power and

hence the heat dissipation in a device, it has no effect on the energy used per

operation and does not affect the number ofoperations per battery life. Thus it is

not an attractive alternative for portable apphcations. It also has the associated

problem of reducing the appHcation speed and is not used for real-time (DSP) or

high-performance (microprocessor) applications. However, it is widely used for

reducing heat dissipation during idle periods of a device.
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The rest ofthis chapter surveys various power reduction andestimation techniques

that have been proposed in the literature.

2.2. Algorithm-level power reduction techniques

Thealgorithm-level presentsa largedesign space withseveraldegrees offreedom for

power reduction. Algorithm-level techniques can be dassifLed along the overall

themes for power reduction presented in the last section. Below we revisit the main

themesand mention algorithm-level optimization approaches foreach.

1. Voltage reduction: Several algorithm-level techniquescan be used to increase the

speed ofthe algorithm, enabling voltage reductions. Among the most important
are algorithm selection (Section 2.2.2) and speed-up transformations

(Section 2.2.3). While it is desirable to operate at the lowest possible voltages for

power reduction, the delay penalty involved introduces other effects which are

analyzed in Section 2.2.1.

2. Avoiding wasteful activity: The size and complexity of a given algorithm (e.g.

operation counts, wordlengths) determine its activity. Activity reduction njin be

achieved through algorithm selection (Section 2.2.2) by using a less computa
tionally intensive algorithm; through dataflow transformations (Section 2.2.4) by

reducing operation coimts and substituting compute-intensive operations by
simpler ones; and through memory transformations (Section 2.2.6) by reducing
memory accesses.

3. Reducing physical capacitance: Behavioral decisions may impact the physical

capacitance ofseveral components ofa design byaffecting the area ofthe design

(which changes interconnect capacitances); affecting the resources selected

(which changes fimctional unit capacitances); or by affecting the memory sizes

(which changes memory capacitance). For example, clock selection

(Section2.2.1) affects the overall area of the design and the selection of hard

ware resources, transformations for increasing resource utilization

(Section 2.2.5) reduce the design area, and memory transformation

(Section 2.2.6) can be used to reduce memory size.
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The following sections elucidate the various techniques mentioned above —voltage,

clock, and algorithm selection, as well as the different transformations —explaining

the main concepts and presenting their advantages and disadvantages.

2.2.1. Parameter selection

Someofthe parameters that can beselectedat the algorithmlevelare the supplyvolt

age and the dock period. Below we consider the various effects of the choice of these

parameters on the overall power dissipation.

Voltage selection

For real-time applications with fixed throughput constraints (fixed sample period),

maximum power savings can be obtained by operating at the lowest possible voltage

at which the throughput constraint can be met. It is usefiil to analyze some of the

other effects of voltage reduction (besides a quadratic reduction in power) on such

applications. Firstly, as the voltage is lowered, it may be necessary to use faster mod

ules (usually with higher area and power requirements) to meet the timing con

straints, affecting both the area and the power of the design. Secondly, it may be

necessary to perform more operations concurrently to meet the throughput con

straints at lower voltages. This leads to area increases that may or may not be accept

able depending on the cost constraints, and if acceptable, would impact the

interconnect lengths and power. These effects of voltage reduction are studied in

detail in Chapter 5.

Clock selection

Anotherwayto reduce power is to operate at reducedspeedssincethe powerdissipa

tion is directly proportional to the firequency. This imposes a delay penalty whidi may

be acceptable for low-speed applications but is undesirable for high-performance

applications. In real-time applications that are targeted in this thesis, the overall

algorithm throughput is fixed by system requirements, but the dock rate used in the
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implementation is variable and is selected by the user. In this scenario, the choice of

the clock periodcan impactthe implementation in severalconflicting ways.

Since the overall sample period is fixed, a longer clock period results in fewer clock

cycles available for completing the algorithm. This reduces the total number of dis

tinct states in the design, decreasing the power consumed in the controller. Other

components affected are the interconnectand dock whose powerdependsnot onlyon

the number ofstates (which affects the switchingactivity)but also the overallarea of

the design (which determines thewirelengths). The choice ofthedockperiod canhave

several conflicting effects onthe overall areaofthe design. Since a longer clock period

results in fewer dock cycles persample period, more operations may need to beper

formed concurrently, increasing the number ofhardware resources required. At the

same time, a longer period reduces the number ofclock cycles required bya particular

operation (in case ofmultiple-cyde operations), allowing more operations to be per

formed sequentially and reducing the arearequirements. Also, a longer clock period

gives each operationmore time to complete, allowing slower(and smaller)hardware

units to be used.

The impact ofthe clock period is forther explored through examples in Section 5.2.1.

2.2.2. Algorithm selection

For a given task, many algorithms may beavailable that trade-off complexity versus

quality, area, orsome other cost function. For example, three different speech coding

algorithms with upto50% variation in quality andcomplexity are presented in [63].

Given several algorithms for a particular task, the one with least number of opera

tions is generally preferable for power purposes. Selecting the correct algorithm may

result in large power savings and is a very important step in high-level design space

exploration. Algorithm selection is demonstrated though a case studyin Section 5.3.
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2.2.3. Speed-up transformations

Speed-up transformations (first presented in [18]) reducepower by enablingsupply-

voltagereduction.However, they oftentranslate into larger area requirements. Some

of these transformations are discussed below.

Retimincf and Dinelining;

The most important speed-up transformations are retiming and pipelining. In the

exampleofFigure 2.2, retiming is used to reduce the criticalpath ofa third-order FIR

filter from 3 clock cycles to 2 (assuming each operation takes one clock cyde). Since

the throughput ofthe application is fixed, this speed-up can be used to scale the volt

age firom 5 Vto 3.2V, thereby reducing the power firom 136.3to 53.2 mW,a 61%reduc

tion.

Out^-(+

In—•

retiming ^ ^

(a) critical path = 3 (b)critical path = 2

Figure 2.2. Using retiming to reduce power: (a) original structure,
(b) after retiming.

Often other transformations such as algebraic and loop transformations are per

formed to enable retiming and pipelining. As an illustration, consider a first order IIR

filter with a criticalpath of2 (assuming each operation takes onedock cyde) shown

in Figure2.3a. Thecritical path cannot bereduced byretimingorpipelining and the

simple structure does not provide opportunities for algebraic transformations. How

ever, appljdng loop unrolling (Figure 2.3b) enables these transformations (distiibutiv-

ity, constant propagation, and pipelining) which result in a significant power

reduction. The final transformed block (Figure 2.3d) h£us twice the time available for
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processing eachsample (since it processes 2samples in parallel), and the samecritical

path (2 clock cycles). Based onthe Figure 2.3, this 2xspeed-up canbeusedto reduce

the voltage from 5 V to 2.9 Vwithout changing the overall throughput ofthe filter.

However, the effective capacitance switched has increased since the transfonned

graph requires 3multiply and 3add operations for 2 samples while the initial graph

requires only 1 multiply and 1 addper sample —a 50% increase in complexity and

hence in switched capacitance. Fortunately, the reduced supply voltage more

compensates forthis increaseresultingin an overall reduction ofthe power bya factor

of 2.

•yn
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i p.1-1 •©—^yn-l
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algebraic transformations
and constant propagation
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Figure 2.3. Illustration of speedup transformations on a first-order IIR filter.

The above example shows that a particular transformation can have conflicting

effects onthe different factors in the power equation —it mayenable voltage reduc-
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tion and simultaneously increase capacitance. In the above filter, arbitrary speedup

canbeachieved byfurtherunrolling. Thisspeedup canbeusedtodrop the supply volt

ageforpower reduction at a fixed throughput rate. Butthe capacitance grows linearly

withunrolling factor and soon limits the power gains from reducing the supply volt

age. Thus, the fastest solution is oftennot the lowestpowersolution.

Wordlength Reduction;

Certain transformations changethe numerical stability ofthe algorithm,thus affect

ingthe wordlengths needed to attain the required accuracy. While retiming, pipelin

ing, and commutativity do not affect wordlength, applying associative and

distributive identities may have a dramatic influence [39].

The wordlengths usedin a design strongly affect its keyparameters —speed, area

and power. Smallerwordlengths are desirable forpower optimization since they:

• increase operationspeed and enable voltage scaling

result in fewer switching events and lower capacitance

• reduce the overall area, resulting in lower interconnect lengths and capacitances

Forexample, the parallel-form IIRfilterstructurehashighernumerical stability than

thedirect-form structure. Implementing aneighth-orderAvenhaus bandpass filter [4]

in the parallel-form requires only 11 bits while the direct-form implementation

required 23 bits toget thesame accuracy [25]. As a result ofthis, even though thepar

allel-form has more operations in its critical path (23) compared to the direct-form

(20), the direct-form has a 50% longer critical path and thus a factor offour higher

power consumption. In some cases, however, wordlength reduction comes at the

expense of increased operations.
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2.2.4. Activity-reducing transformations

Severaltransformationsdonot reducethe criticalpath ofthe algorithmbut reduceits

complexity and hence associated switching activity. These transformations were first

presented in [18] and some of them are reviewed below.

Operation Reduction;

The most obvious approach is to reduce the number ofswitching eventsby reducing

the numberofoperations in the algorithm. Transformations which directly reducethe

numberofoperations include common sub-expression elimination, manifest expres

sion elimination, and distributivity. These transformations may, however, increase

the critical path.

algebraic
transformations

Figure 2.4. Operation reduction withoutincrease in critical path: jc^+ouc+b.

algebraic
transformations

* b X c

Figure2.5. Operation reduction with critical path penalty: *^+ajc^+6jc+c.

Figures 2.4 and 2.5 show examples of operation reduction. In Figure 2.4, using the

associative identity reduces the number ofmultiplicationswithout changingthe crit-
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ical pathandtherefore results ina power reduction. InFigure 2.5, applying algebraic

transformations reduces the number ofmultiplications by two, resulting in a lower

effective capacitance but increases the critical path 4 to 5 dock cydes requiring a

higher supply voltage toachieve thesame computational throughput. In tbig case the

transformation has two conflicting effects onpower dissipation that needto be care

fully evaluatedto assess the overall effect onpower.

Operation Substitution;

Operation substitution is usedto replace power hungry (more complex) operations in

the algorithm by low-power Qess complex) ones. A powerful transformation in tbig

category is conversion of multiplications with constants into shift-add operations.

Since multiplications with fixed coefficients are quite common in signal processing

applications suchas transforms (DCT, FFT) and filters (IIR, FIR), the scope ofappli

cation of this transformation is large.

Other transformations can be used in combination to achieve operation substitution.

An example is shown in Figure 2.6, where redundancy manipulation, distributivity,

and common sub-expression elimination are used to replace a multiplication by an

addition. Unfortunately, the power reduction may come at the expense ofan increase

in the critical path.

yr

redundancy manipulation,
distributivity, and ^

common sub-expression elimination ^
Yi

(a)

Figure 2.6. Replacingpower-himgry operations by low-power ones.
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In [20] Chatteijee and Roy studied the effect of operand activity on the power con

sumption ofadditions and constant multiplications and used it to guide architectural

transformations.

2.2.5. Capacdtance-reducing transformations

Transformations that reduce the implementation area save power by reducing the

physical capacitance of global resources like buses [18].

Resource Utilization:

One way to reduce implementation area is to distribute the operations more uni

formly permitting higher resource utilizations. Here power savings come from

reduced overall area and hence lower wiring capacitance. However the increased

hardware sharing may result in higher power in multiplexors and control circuitry.

Therefore the optimization strategy must consider power consumed in interconnect

and control.

—•©
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Figure 2.7. Different retiming schemes with different hardware requirements.
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Transformations for increasing resource utilization include retiming, associativity,

distributivity and commutativity. Figure 2.7 shows two different retimed versions of

a second-order IIR filter. Both the transformed graphs are obtainedfrom retiming and

have a critical path of3. While the graph ofFigure 2.7b can be scheduled in three clock

cycles using only 2 multipliers, the graph of Figure 2.7c needs 4 multipliers. There

fore, Figure 2.7b will result in a smaller implementation with shorter, lower capaci

tance buses than Figure 2.7c.

2.2.6. Memory transformatioxis

Several DSP algorithms, especially those for video and graphics applications, are

memory intensive and their power consumption is often dominated by the memory

component. Transformations for memory play an important role in power reduction

for these apphcations. These transformations differ substantiedly in their goals and

features fromthose discussedin the previoustwosectionsand warrant a separate dis

cussion.

A significant amount of work has been done in memory-related transformations for

area or performance improvement in the compiler [135], computer architecture [47],

and high-level synthesis domains [5,120], but relatively less work has studied their

effects on power. Catthoor et al. were the first to specifically study the effect of

memory transformations on power in the high-level synthesis context [15] and some

of their main techniques are discussed below. First, we consider the factors influenc

ing power dissipation in memories.

The power consumedin memories depends on the size of the memory, the number of

accesses to it, and the activity on its input signals. While memory size and accesses

can be influenced by both algorithm- and architecture-level changes, aignnl activity

predominantly depends on architecture-level decisions. We discuss the first two

aspects here.
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Memory size reduction!

Memory size is affected predominantly by the amount of data that needs to be stored

at a particular time and can be reduced by loop transformations on the algorithm.

Consider the example shownin Figure 2.8a.Arrays A and C are already availablein

memory; when A is consumed another array B is generated; when 0 is consumed a

scalarvalue, D,is produced. Memory sizecanbereduced byexecuting thej loop before

the i loop (Figure 2.8b) so that C is consumed before B is generated and the same

memory space can be used for both arrays.

for i = 1 to N do for j = 1 to N do
Bli]= f (A[i]) ; D = g(C[j],D);

for j = 1 to N do Loop interchange fi = i to n do
D = g{Clj] ,D) ; Bti] = f (A(i] ) ;

(a) (b)

Figfure 2.8. Loop interchange for reducing memory size.

Memory access reduction;

Accesses to memory are expensive since each time a data is read from or written to a

memory location a large capacitance is switched. One way to reduce accesses to

memory is to move variables from background memory to foreground registers as

much as possible since registeraccesses are much cheaper in termsofpower consump

tion. At the algorithm level, this can be enabled by reducing the lifetimes ofvariables.

Consider the example ofFigure 2.9a consisting of two loops; the first loop consumes

array A and produces array B whichis consumed in the secondloop and a new array

0 is produced. This calculation can be done "in-place" using a single n-element

memory to store A, B and then C. However each memory element is accessed four

times—to read A[i], writeB[i], read B[i] and finallywrite C[i]. If the loops are merged

as shown in P^gure2.9b, B[i]can be simply stored in temporary registers thus reduc-
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ing the numberofaccesses to eachmemory element to two. Thesecond implementa

tion reduces the memoiy power consumptionto half.

for i = 1 to N do

B[i]= f(A[i]);

for j = 1 to N do

Cti]= g(B(i]);

(a)

Loop merging

for j = 1 to N do

B[i] = f(A(i]);

C[il = g(B(i]);

(b)

Figure 2.9. Loop merging for reducing memory accesses.

2.2.7. Algorithm-level techniques — lessons learned

The role ofthe various techniques in achievingthe three basicgoals ofvoltage, activ

ity, and capacitance reduction are summarized in the Table 2.1.

Table 2.1. Algorithm techniques to reduce power.

Basic goals Important techniques

Reduce voltage Speed-up transformations: retiming, pipelining, algebraic, loop transfor
mations, wordlength reduction.

Voltage selection.

Algorithm selection.

Avoid wasteful
activity

Activity reducing transformations: operation reduction, operation substi
tution, distributivity, common sub-expression elimination, wordlength
reduction.

Algorithm selection.

Memory transformations.

Reduce physi
cal capacitance

Area reducing transformations: resource utilization, wordlength reduc
tion.

Algorithm selection.

Memory transformations.

Clock selection.
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It is dear that traiisformatioiis can have a l£urge impact on the power consumption.

However, the following facts must be considered before selectinga particular trans

formation for application on a given design:

1. Its effect is design dependent.

2. It may have a bigger impact if used in combination with other transformations.

3. It may have conflicting effects on the differentpowercomponents.

4. It mayhaveadverse effects onthe area or otherquality metrics ofthe Hftgign

Algorithm-level power estimation mechanisms are extremely helpful in evaluating

the variedeffects and exploring the different options for a given design.

2.3. Architecture-level power reduction techniques

Once the algorithm is optimized for low power, it is mapped to an architecture or a

register transfer level description. In this section wepresent an overview ofarchitec

ture synthesis techniques for low power.

Since the voltage is already fixed at the algorithm level, we do not consider voltage

reduction techmques. As mentioned before, the sample frequency is determined by

the required throughput and the clock frequency is fixed at the algorithm level. The

primary component targeted isthe effective capacitance switched, C^ff^ Power reduc

tion at the architecture level is based onfour underlying themes: activity reduction,

localization, specialization, and demanddrivenoperation.

1. Preservation of data correlations: Switching activity is dependent on correla
tions between successive data inputs andincreasing correlations results in large
power savings.

2. Distributed computing / locahty of reference: Accessing global computing

resources (control, datapath, memory, I/O) is expensive: the time-sharing nature
of these resources requires a high switching rate, and the shared nature of such
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a resource typically incurs a capacitive overhead. Distributing the accesses over

many resources relieves both the switching requirements and the overhead. In

particular, accesses to long global buses are costly and keeping data local

reduces power consumption in data communications.

3. Apphcation-specific processing: Specializedunits consume less power tlifln gen

eral-purposeones due to simpler structure and reduced control required to sup

port programmability.

4. Demand-driven operation: Tb avoid wasteful transitions, it is important to per

form operations only when needed. Power down of memory and functional units

when they are not in use is the most popular technique in this category.

These powerreduction conceptswill recur in the rest ofthis section,where weanalyze

the impact of the different sjmthesis tasks on effective capacitance and study power

reduction techniques for each. The capacitance switched by each resource type —

functional units, memory(includingregister files), interconnect (buses, multiplexors,

and buffers), and control — depends on three factors: the resource's physical capaci

tance, the number of times it is accessed, and the correlation of the data that it oper

ates on (the latter two determine the activity factor). While all three factors should be

reduced to lower power consumption, the impact ofreducing any one may depend on

the values of the other factors. For example, it is more effective to reduce accesses to

resources if they have a high physical capacitance.

Each of the above effective-capacitance factors for a resource is affected by decisions

made during synthesis. In this section, we analyze these effects, and describe the rel

evant research efforts. Since the synthesis tasks are highly inter-dependent and may

limit or enhance each other's effects, we present only those tasks which influence each

capacitance factor most directly. Table 2.2 summarizes these influences and the

remainder of this section elaborates upon them.

29



Table2.2. Synthesis tasks affecting the different effective-capacitance factors.

Physical capacitance Resource accesses Data correlation

Functional

units

—
—

Memory
management

Assignment
(functional units,
registers, buses)

Scheduling

Memory Module
selection

Memory manage
ment

Memoiy manage
ment

Registers Register allocation

Memory management

Register assignment

Memoiy manage
ment

Muxes and

buffers

Functional unit

assignment
Functional unit and

Bus assignment

Buses

Placement and routing^
Bus assignment

Allocation (functional units,
registers, buses)

Bus assignment

Controller Assignment, Scheduling

and control Logic synthesis^
wiring Placementand routing^

1. Lower level ta^.

2.3.1. Reducing physical capacitance

Let us consider first the tasks affecting physical capacitance (Table 2.2,column 1).

The physical capacitance offunctional units, memory, registers, miiltiplexors, and

buffers depends on the selection ofmodules from the hardware library. In general,

faster, more capacitive units may be needed in timing-critical situations; less capad-

tive umts are better for cases where the timing requirements are not so critical. For

example, as shown in [80], at higher voltages, a ripple-carry adder leads to more

energy-ef&dent designs than a carry-select adder (Figure 2.10). At lower voltages,

however, the ripple-carry adder may not be fast enough to meet the speed require

ment and the carry-select adder can be used. Goodby [40] used module selection to

speed up non-pipelinable paths tomeetthe timing constraint, usingcheaper unitsfor
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carry select
adder

adder

3 4
Supply voltage (V)

Figure 2.10. Relative power dissipation for an application running at a fixed
throughput using different adders.

Another important trade-off in module selection lies in tihe use of specialized units

instead ofprogrammable ones. For example, it maybeworthwhile to use a specialized

adder instead of an ALU if there are a large number of additions in the algorithm.

Specialized units consume less power for performing a particular operation but pro

vide less flexibility.

While the physical capacitance of library based components depends mostly on

resource selection and the technology used, tlie size of some resources, such as mem

ories and buses, depends on the architecture mapping.

Memory elements;

For memory units, the size, and therefore the physical capacitance switdied per

access, is affected by memory management, while for register files, the size is mainly

influenced by the register allocation. Registerallocation is greatly restricted by the

lifetimes ofthe variables. Reducing variable lifetimes bypreserving temporal locality

duringscheduling candecrease the numberofregisters allocated. Since memory man

agement decides whether variables should be stored in registers or background mem

ory, it alsoinfluences the size ofthe register files and their physical capacitance.
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Interconnect elements;

The physical capacitance ofbuses is directly related totheirlengths, which aremainly

determined by the number and size ofthe hardware units and their placement and

routing. In general a large number ofunits with a lot ofconnections between them will

leadtolong buslines. The number ofhardware units is determined byresource (func

tional unit, register, and bus) allocation.

Busassignment(also called bus merging) affects the physical capacitance sinceit can

affect their lengths and the capacitive loading on them. Bus assignment also influ

ences the power dissipated in the multiplexors and buffers. For example, the bus

capacitance and the associated multiplexors and buffers are increased if a bus is

merged with another one that has different sources and destinations.

The locality ofthe operations in the algorithm canbeutihzed during the binding of

operations to hardwareunits to produce localized designs. Byusinglocalized commu

nication within each localized region, bus and multiplexor power nari be greatly

reduced. This technique is extensively developed in this thesis (Chapter 7). Another

idea presented in this thesis (Chapter 8) is based on preserving the regularity or

repeated patternsofcomputation in an algorithm. This reduces power by enabling a

simpler interconnect structure.

2.3.2. Reducing the number of accesses

Consider next the tasks affecting the number ofaccesses (Table 2.2,column 2).

At the architecture level, power-down ofunused modules is a commonly employed

approach to power reduction. Often this is achieved bydisabling the clock signal to a

resource (clock gating). Another way to "power-down** a resource is to prevent its

inputs from switching, avoidingunnecessary transitions within the module when the

resource is notin use.Two techniques based onthis principle are pre-computation [2]

andguarded evaluation [122]. The techmques differ in thegrEmularity ofcircuits they
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target—pre-computation is used within logic blocks while guarded evaluation is used

to disable an entire block of logic.

In the following paragraphs, we examine various approaches aimed at reducing the

accesses to specific resources.

Memory elements;

Clock gating is especially popular for reducing power consumption in memories

during idle cycles. Sinceall power-down approaches incur someoverhead, its is impor

tant to cluster simultaneously-live operations and/or compact the active time-slots of

a unit into consecutive intervals. In [29], Farrahi presents a memory segmentation

algorithm that addresses this issue. The main idea is to partition the memory space

so that memory accesses that are temporally dose to each other are in the same block.

In this way, only one block needs to be active for a given period of time and the other

memory blocks can be shut off.

Although memory accesses depend mostly on the input algorithm, they can be substi

tuted by accesses to foreground registers using memory management techniques. In

general, accessing a value from the register file is cheaper since the size ofthe register

file is smaller. In the example of Figure 2.11, the array A is the input to the loop and

the array C is the output; array B stores intermediate values. Since only one value of

B needs to be alive at a given time the array can be stored in a register eliminating

the related memory accesses.

for j := 1 to N do

B(i] ;= f(A[i]);

C(i] := g(B[i]);

end

Figure 2.11. Simple loop for explaining memory access reduction.
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Registers;

For register files, the accesses depend on the architecture model being used. For

example, in a single centralizedregister file scenario, writes are determined by the

algorithm (exactly equal to the numberofvariables) whereas for distributedregister

files, a singlevariablemayneedtobestoredin moretlian oneplace. For a givenarchi

tecture model, the numberofreads firom and writesto registersdepends onthe regis

ter assignment and the schedule.

Buffers and multiplexors:

Accesses to buffersdependheavily on the algorithm,since ofteneach data transfer is

buffered.

Operator assignment affects the amount oftime-multiplexing ofthe functional units,

which in turn affects the multiplexing ofdatatransfers and the use ofmultiplexors

and tristate-buffers. Accesses to multiplexors and tristate-buffers are further affected

by bus assignment—ifa unitneeds datafirom two ormore sources, amultiplexor may

or may not be required at the inputs depending on whether the corresponding data

transfers are merged onto the same bus.

Buses:

Accesses tobuses depend on the total number ofdatatransfers in the algorithm. Bus

assignment further affects the accesses since, if a single variable needs to be trans

ferred to more than one destination, one ormore bus transfers may resultbased on

whether theconnections to the two units aremerged into one bus. In this context, it

is importantto note that, if the buses are not all the samesize, all accesses to buses

do notconsume thesame amount ofpower and it ismore important toreduce accesses

to the longer buses. Preserving locality duringbusassignment canreduce accesses to

long global buses (Chapter 7).

34



Control;

The controlrelated powerincludesthe powerconsumed by the controlwiringand the

control logic. Wiringpower depends onthe wirelengths which are determinedby the

placement and routing. The power consumed by the control logic depends on the its

hinctionality (determinedfrom the assignment and scheduleofthe algorithm)and its

implementation (logic-level optimizations). While the problem ofoptimizing power at

the logic-level has been well studied, it is difficult to relate the controller power to

high-level parameters, and therefore, to account for tbia component during architec

ture synthesis. Stochastic models described in Chapter4, relating the control power

to high-level parameters, provide a starting point in understandingvarious parame

ters and tasks affecting the control.

2.3.3. Improving signal correlations

Finally, consider the data correlation component ofpower (Table 2.2, column 3). Input

correlations of all the components are affected by the allocation, assignment, and

schedule. However the effect ofthese tasks onthe correlations cannotbe easilydeter

mined during synthesis because the correlations also depend heavily on the input

data. Some research has been done to minimize switching activity duringhardware

assignment and scheduling. For assignment, the objective is to bind operations onto

hardware so that the input signal activityis minimized. RflgbrnifltbaTi and Jha [102]

propose an assignment scheme to minimize the average number of bit transitions on

the signal inputs to hardware units (obtained from simulations).

.Musoll andCortadella [83] minimize the bit transitions for constants during schedul

ing. Consider, for example, the FIRfilter ofFigure 2.12. There are four multiplica

tions with constants —cq, cj, C2, —which canbescheduled on a single multiplier

suchthat the transition activity at the right input ofthe multiplier is minimized. For

thevalues of the constants given in thefigure, theschedule Cq Cj C2 cq

results in26 transitions for a 12-bit implementation whereas the schedule Cq—^cj—'̂
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C3-^C2-> cq results in 34 transitions. Other methodssuggestedin [83] for increasing

signal transitions include operand sharing(executing operations withcommon inputs

in successive cycles onthe samehardware), loop interchange andoperand reordering.

While the above techniques focus on increasing the correlations for functional units,

Chang [19] proposes a registerassignment scheme that reduces the activity for regis

ter files.

Co = -1870
ci=-1867
02 = -740
03 = -1804

Out

Figure 2.12. Scheduling to minimize the transitions.

The number representation system can have an important impact on the switching

activity. Though common and simpler to implement, two*s complement representa

tionis notalways the bestfor power purposes. Acomparison between switching activ

ity oftwo's complement and signmagnitudedata streams is given in [65]. The latter

is shown tohave less switching transitions, since in going firom a positive-to-negative

number(orvice-versa), only the MSB switches in a sign-magnitude formatwhile sev

eral higher-orderbits are toggled in the 2's complement notation.

In cases where consecutive numbers aresupplied toa resource in sequence, it may be

worthwhile to code the signals in gray code since only one bit transitions when as

numbers change by one. An important application of this technique is in memory

addressing. Since memory locations (addresses) are often accessed in sequence. Gray

coding reduces the overall switching. Upto33% and 12% power savings were obtained

in the instruction and data caches, respectively, byusing this technique [119].
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2.3.4. Architecture synthesis techniques —lessons teamed

In this section we have presented the architecture-synthesis tasks that most directly

affect the different factors comprising physical capacitance. It is important to notice

that the tasks are highly interdependent and therefore the impact ofeach onpower

may be mfluenced by other tasks. For example, though ffie physical capacitance of

busesdepends on bus assignment, the effect ofthis task can be limited byfunctional

unit assignment. Iffunctional units are assigned such that number of destinations of

eachunit are low, bus assignmentcanresult in better solutions than if they are high.

As anotherexample, consider the numberofaccesses to registers in a distributed reg

ister file model described in Section 1.4.1.In this case, the number of register writes

is determmed byvariable assignment to registers, which in turn heavily depends on

the assignment of the operations that need these variables to functional units.

Thelast twosections have dealt withpower reduction techniques. Anequally impor

tant task in an overall power optimization system involves estimation or evaluation

of the power dissipation which is discussed next.

2.4. Power estimation techniques at various abstraction levels

Increased interest in low-power designshas stimulated a lot ofresearch activity in the

area ofpowerestimation. In this section,wereviewthe different techniques that have

been proposed at various abstraction levels. In general there is a direct trade-off

betweenestimation accuracy and estimation speed at the different abstraction levels

—higher-level tools are less accuratebut faster than lower-level ones. Sincehigher-

level tools provide feedback early in the design process, they are better suited for

design guidxincsy while the more accurate lower-level tools are more suitable for

design validation.
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2.4.1. Circniit level

The earliest power estimation approaches SPICE [84] to simulate the circuit over a

range ofinputs and monitor the current drawnfrom the power supply. ThePowermill

tool from EPIC™ [26,50] provides fasttransistor-level simulationusing table lookups

derived from piecewise-linear transistor models and an event-driven simulation

engine to achieve an order ofmagnitude speed-up overSPICE. A feature of this tool

is that it incorporates techniques toidentify "hot-spots" orpower hungry partsofthe

design.

Circuit simulators are slow since they accurately model various device effects. For

power estimation purposes, improved speeds can be obtained by modeling only the

dynamic power in a circuit, which constitutes a mggor part of theoverall dissipation

as explained in Section 2.1. The dynamic power used for charging anddigolinrging a

particular node is given by the following equation:

Power =iaCV^/ (Eq. 2.4)

where a isthe transition probability or activity at the node, Cis its capacitance, V^d

is the supply voltage, and f is the clock frequency. The switching power dissipation

overan entire circuit with several nodesis then givenby:

Power = (Eq. 2.5)

where thesummation is performed over all nodes in thecircuit. For a given voltage

and dock frequency, the problem ofestimating this quantity reduces to evaluating

^a.C.. This can be estimated in switch-level simulators like IRSIM [106] where the
i

switching activity is modeled but the leakage, short-circuit, and static currents are

not.
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Although circuit-level tools mentioned above provide the most accurate estimates, it

is beneficial to estimate power at higher levels ofabstraction, preferably before the

circuit is completely designed, due to the following reasons. Firstly, circuit-level sim

ulations are time consuming andsecondly, these simulations need circuit-level infor

mation and cannot be used early in the design cyde. In the next few sections, we

consider estimation techniques at higher levels of abstraction.

2.4.2. Logic level

At the logic level,the circuit is described as a networkoflogic gates and latches.Power

estimation schemes proposed at this level fall into three main categories — simula

tion-based, probabilistic, and stochastic — each of which are discussed below.

2.4.2.1. Simulation based approaches

These approaches apply Equation 2.5 at the logic level, using logic simulators to

extract transition probabilities at gate inputs and outputs, and gate-libraiy informa

tion fornodecapadtances [8,58]. Thesimulations have to be repeated for several sets

ofinput patterns to get reliable powerfigures covering a typical set of input vectors.

This requires complete informationofall the different input sequenceswhichmakes

these techniques strongly input-pattern dependent.

2.4.2.2. Probabilistic approaches

More recently, probabilistic techniques have been proposed that use input probabili

ties instead ofactual inputs to encompass a whole range ofpossible input sequences

andare hence input-pattern independent. These approaches are basedonpropagating

signal probabilities through the gate-level descriptions and combining them with

node capadtance values to calculatepower. Thevarious techniques proposeddifferin

the amount of information modeled in the probability measure.

In the simplest case[23], the following probability measuresare used; the signalprob

ability, Ps(x)t is defined as the averagefraction ofclock cydes in which a steadystate
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value ofthe signal x is *'1'' and the transition probability,P^x)t is defined as the aver

age fraction of clock cycles in which the steady state value of x is different fi:om its

value in the previous Qrcle. P/x) is thus the activity ofthe signal jc, disregarding any

glitching.Giventhe signal probabihties at the primaiy inputs, those at all other nodes

are calculated byprobabilitypropagation through the gate-levelnetlist. Ignoringtem

poral correlations, transition probabilities for all nodes are derived fi:um their signal

probabilities using:

P^(X) = 2P^(X) (1 {X)) (Eq. 2,6)

and poweris calculated using Equation 2.5. This method ignores glitches as well as

spatial and temporal correlations in the signals.An improved approach is presented

in [87] which allows the user to specify the transition probabilities alongwith signal

probabilities ofprimary inputsusingprobability waveforms, thus accounting for tem

poral correlations in signal sequences.

Amore accurate measure foractivity is given bythe transition density, D(x)y which is

defined as the averagenumber oftransitions per second at a signal* [86]. Note that

this definition accounts for glitching activity. In terms of the transition density,

djmamic power consumption is given by:

Power = (Eq. 2.7)

where thesummation is again done over allnodes inthecircuit. Atechnique toprop

agate transition densities firom the primary inputs to all other nodes of the circuit is

given in [86].

2.4J2.3. Statistical approaches

Anotherset oftechniques, calledstatistical techniques, simulate the circuitwith auto

matically generated input vectors. They use user-specified probability information to
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generate the vectors, and are therefore only weakly pattern-dependent. Statistical

Monte-Carlo techniques can be used to determine when to stop the simulation to

obtain a desired confidence level [13].

Thetechmques discussed above focus onestimating power in combinational logic cir

cuits. For estimation approaches targeting sequential circuits, the reader is referred

to [38,125]. There is a large body of literature addressing power estimation at the

logiclevels and goodsurveys are presented in [85,115].

2.4.3. Register transfer level

Moving up onelevelofabstraction, considerIhe architecture or register-transfer level.

Here the design is described as a set of latches with combinational blocks of logic

between them. The combinational blocks may either be library cells Qibrary-based

designapproach) orfunctional logic descriptions that are later compiled togates using

logic synthesis (synthesis-based design approadi). Estimation techniques for each of

these design approaches discussed in this section.

2.4.3.1. Library-based estimation approaches

In the library-based approach, the internal details of the blocks are abstracted,

making it impossible to get activity numbers or capacitances at the internal nodes.

Also, sincethe internal nodesin eachblock have differentcapacitances and switching

probabilities, a single activity and capacitance number for each block does not suffice.

Therefore a hierarchical approach is used —the combined activity and capacitances

of internal nodes is captured using the effective capacitance for each block, and the

overall power consumption is computed from the usage ofthe variousblocks as spec

ified by the architecture. The power consumption is given by:

Power =={^^fieff^^Yddfs ®<1- 2.8)
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where the summation is done over all blocks i, is the numberofdods: cycles the

block isactivated over the period of consideration and the C^ffd) is itseffective capac

itance.

The effective capacitance of a block, represents die capacitance switched each

time the block is used. While some ofdie approaches represent C^y^usingfixed activity

models, ignoringthe effect ofactivity in the primary inputs ofthe blocks, others have

proposed activity sensitive models that accoimt for the activity at the block inputs.

Fixed activity models

1. Thepower factor approximation (PFA) technique presented in [96] uses parame

terized models for the effective capacitance of blocks such as multipliers, addi

tions, memory, I/O buffers, etc. Parameters (e.g. wordlength) are used to

effectively model a large number of blocks with only few simulations. In that

paper, the effective capacitances are takenfrom numbers previously reported in
ISSCC proceedings, but these could also be obtained from library characteriza

tions.

2. In [70], Liu and Svenson give high-level models ofthe different components ofa

circuit by analyzing the effective capacitance switched when the component is
activated. For logic blocks, they use logic depth, fan-in, fan-out, and the input
capacitance of a minimum sized inverter to derive a model for the effective

capacitance. Similarly, their memory model is based on factors such as the num

ber ofrows, numberofcolumns, capacitance loading ofeachcellon word and bit

lines, number ofbit lines switchedper access, etc.

3. Another approach is to evaluate using uniform white noise inputs which
have equal probability of being inthe "0" and "1" states, and have no temporal or
spatial correlations. This activity model, called the uniform white noise model,
can be easily evaluated by simulating theblock with uniform white noise inputs
until a certain confidence level is attained (Monte-Carlo based approach).
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Activity sensitive models

1. In [108], Sato et al. present a cycle-based simulator for a RISC microprocessor

which also monitors the corresponding power consumption. Since it is based on

simulation, it uses a power model for each block that is a function of the number

of transitions, n, at its primary inputs.

Ptotal = Pconst + <^1- 2-9)

2. For datapath blocks, another activity-sensitive power model, called the Dual-Bit

Type (DBT) model, is used in the SPA power analysis tool [65]. It is based on the

observation that fixed-point two's complement data streams are characterized by

two distinct activity regions. The lower-order bits (LSBs), exhibit activity similar

to uniform white noise data, while the higher-order bits (MSBs) exhibit tempo

rally correlated activity. Based on this observation, each library block is divided

into three regions — the LSB and MSB regions, and the region in between them

— depending on the correlation in its input data stream. While the effective

capacitance of the LSBs is simply that obtained with uniform white noise input

conditions, the effective capacitance of the MSBs is parameterized for different

values of temporal correlation in the input data stream. In between the two

regions the effective capacitance is computed by linear interpolation.

Given a register transfer level description of a design, the tool performs a func

tional simulation to collect sample input streams for each datapath block. The

statistical properties of the input streams at each block are used to demarcate

the LSB and MSB regions for the block and also to compute the effective capaci

tance for the MSB region.

2.4^^. Behavioral estimation approaches

Recently, there has been increased interest in predicting power firom a behavioral,

rather than a structural, description of combinational logic blocks at the register-

transfer level. Most of the techniques proposed in this realm use information theoretic

measures of the computational work such as entropy and informational energy to pre

dict the power consumption. In [88], the transition density of a signal x, is shown to
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beproportional to its entropy, D{x) (x). Asimilar result relatingthe switching

activity in a circuit to the entropy and informational energy of the input signals is

given in [72].

In [88], Nemani and Nsgm used the following approximation to decouple the overall

capacitance of the circuit from the overall activity:

(Xi) - ^C^Yp ^.x^) (Eq. 2.10)
i i i

where Ci is the capacitance at node JCf, andD(Xi) is the transitiondensity at that node.

They usea measure ofthe area ofthe circuit to estimate the totalcapacitance ;
i

the area measure used is derived from another work [21], which showed that for a

boolean function with n inputs, each with a signal probability of 0.5, the output

entropy, H(y), canbeused topredict theareaofits average minimized implementation

as follows:

2"Aoc^Hiy) (Eq. 2.11)

Thus, they use entropy to provide relative measures for both and (i).
i i

2.4.4. Algorithm level

Inthe only algorithm-level work thatwe are aware of, Shanbhag uses the entropy to

establish a lower bound for the power dissipation required toimplement a given algo

rithm with a certain information transfer rate[111]. He assumes theknowledge ofthe

channel capacity of the underlying architecture and its noise power level. In

Chapter 4, we identify the important issues andchallenges at the algorithm level as

well as present techniques for addressing them.
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2.4.5. Instruction level

At a higherlevel ofabstraction, instruction-level power estimation techniques have

been proposed which canbe used for making compiler optimizations for a given pro

grammable processor. Tiwari et al. presented a scheme to measure the power con

sumption associated with each instructionfor an Intel™ 486processor by repeating

the sameinstruction several timesin a loop and measuring the current drawnbythe

chip [121]. Theexperiment was repeated for the Fujitsu™ Spardite™ and Fiijitsu^"

DSP processors. Data gathered from such experiments was used to drive compiler

optimizations for low-power.

2.4.6. Review of power estimation techniques

Overthe last few years, as the power issue has gainedimportance, a large amount of

researchhas concentrated ontechniques to estimatepower at all stages ofthe design

flow. In this section we have reviewed some ofthe techniques toprovide a flavor ofthe

different approaches adopted. Table 2.3 summarizes themaintechniques proposed at

the various abstraction levels.

Table 2.3. Summary ofestimation techniques at various abstraction levels.

Abstraction level Power estimation technique

Circuit level Transistor-level simulation: most accurate, models all sources of
power, but slow and strongly pattern dependent

Switch-level simulation: strongly pattern dependent

Gate level Simulation based: strongly pattern dependent

Probability based: pattern independent

Stochastic techniques: weakly pattern dependent
Register transfer

level
Library block based using fixed activity models

Library blockbased using activity sensitive models

Entropy or informational energy based functional models

Algorithm level Combination ofstochastic and analytic models(refer Chapter 4)
Instruction level Measurement based
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2.5. Summary

Algorithm- and architecture-level techniques result in large reductions in power dis

sipation. Since these techniques are highly inter-related, integrating them into a

single tool is a non-trivial task. However, their application ofthe various techniques

can begreatly enhancedbyestimation mechanismsto predict their effects before they

are applied, allowing the designer to selectthe onesmostsuited to the design at hand.

Although a largenumberofpower estimation schemes havebeenexplored at various

levels of abstraction, estimation at algorithm level remains relatively unexplored.

Chapters 4 and 5 present an estimation and designspaceexplorationfacilitythat can

be used to aid and guide poweroptimization at the highest levels.
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Architecture Synthesis

High-level or architecture synthesis is concerned with deriving an architectural

implementation ofa given algorithm. The inputis a behavioral description ofthe algo

rithm(e.g. in a C++ likelanguage) anda set ofperformance constraints. Thesynthesis

process involves deciding the mapping of the algorithm operations on hardware

resources and determining their order of execution.

TheHyper synthesis system, developed at the University ofCalifornia, Berkeley, kflg

beenusedas a research platform formuchofthe workpresentedin this thesis. In our

initial studies, the system was used to generate designs and study their power con

sumption. This helped us to understand the powerproblemand build detailed models

forestimation (Chapter4). Themodular structure ofHyper allowed us to try out new

ideas by implementing software modules that "hooked" into the main system. The

ideas presented in this thesis were then compiled intoa new low-power synthesis sys

tem, Synergy. Hyper was used as a base for comparisonswith and evaluations of the

newalgorithms. For all these reasons.Hyperwillbe frequentlyreferred to in this the

sis.Therefore it is useful to briefly describe Hyper's design flow and underljdng algo

rithms.

Detailson the Hypersystemcan befound in [97]. Amoregeneraloverview ofthe var

ious high-level synthesis tasks is presented in [34, 126] and a number of available

CAD systems for high-level synthesis are described in [131].
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Figure 3.1. Design flow through the Hyper synthesis system.
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3.1. Hjrper — the base synthesis system

Figure 3.1 presents an overview of basic architecture-synlliesis steps within the

Hypersystem. Theuser provides the algorithm specification, performance constraints

such as the required throughput, and parameters such as the dock period and the

supply voltage. The goal ofHyper's synthesis process is the minimize the area of the

final implementation while meeting the throughput constraint.

The targeted applicationdomainand architecture model are presented in Section1.4.

The input algorithm is first parsed firom the Silage language [48]into the internal con

trol data flow graph format, both of which are also detailed in Section 1.4. The rest of

this section explains the main tasks in the overall synthesis flow.

3.1.1. Memory management

For memory intensive applications, an important synthesis task is memorymanage

ment which includes generation of addresses, dedding whether variables should be

stored in registers or background memory, allocating the number and size of the

memory blocks, and assigning variables to specific memory blocks. Some ofthe algo

rithms used are presented in [128].

3.1.2. Module selection

The moduleselectionprocess chooses appropriate hardware elements firom a library

[14,133] to implement each operation. The '̂ optimal hardware" for each operationis

chosen according to the following strategy:fora given supplyvoltage and clock period,

the hardware unit that can perform the operation in the lowest number of dock

cydes^ is chosen. In case alternate dioices areavailable, the one with smaller areais

selected. The module sdector also determines which operations should be combined

1. Thenumber ofclock Qrcles required by an operation depends onits delay and the dock duty cycle.
THie delay indudes the time required to generate the appropriate control signals, read the operand
register, perform theoperation, and write theresult into diedestination register viaa bus andmaybe
a multiplexor.
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to use more complex units such as multiply-add[22,24]. The area, delay,and capaci

tance values ofselectedresources are annotated onto the flowgraph for use in subse

quent synthesis steps.

3.1.3. Estimation

In orderto optimize the algorithm at this level, one must first be able to predictthe

critical performance metrics. In the Hyper system, oncehardware is selected, useful

information such as the complexity and speed of the algorithm can be derived in the

estimationstep. Some metricsare computed exactly (e.g. criticalpath) while the min

imum and maximum bounds are computed for others (hardware requirements).

Bounds are important since theydelimit the design space andspeed upthe search for

the "optimal" implementation during synthesis. Also, if the bounds are close to the

final solutions they provide good estimatesforcomparing different algorithms or dif

ferent versions of the same algorithm.

As soon as possible (ASAP) and as late as possible (ALAP) execution times for each

operation areobtained byfirst topologically ordering andthenleveling thegraphwith

respect to the inputs and outputs, respectively. Thecriticalpath ofthe algorithm is

derived firom the ASAP times ofthe operations and the number ofclock cycles taken

by each operation. It is defined asthemaximum path length from any primary input

or state to any primaryoutput or state (assuming that all inputs and previous states

areavailable at thestart ofthe iteration). It determines the mflvimnm throughput of

the algorithm andmustbeno greater than the sample period for the algorithm tobe

feasible.

An upper bound on thenumber ofunits of each resource tjqie (execution unit types,

registers, and buses) is easily obtained bycomputing the mflriniql possible usageof

that resource type (in other words, the maximal parallelism available) in each dock

cycle and taking the maximum ofthis value over all clock periods in the sample

period.
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A naive lowerbound on the number ofunits oft3rpe i, can be calculated as follows:

d.
(Eq. 3.1)

where is the number ofoperations ofthat type,di is the number ofdock cycles it

requires, and T is the total number ofclock cycles available per sample period.

This bound is however too optimistic since it assumes that the flow graph contains

sufflcient concurrency to support a 100% utilization of each resource. Better estimates

of resource utilization are obtained by first calculating a fast schedule by relaxing

someofthe constraints [100]. This method, calledrelaxation, turns the NP-complete

scheduling problem into one with complexity N IgN and allows fast estimation. It is

experimentallyshown that the lower bound thus obtained is close to the final Hyper

implementation and provides a good estimate for the niunber of units. The active area

is estimated as the sum of the areas of the units.

3.1.4. Optimizatioii

Even with the best synthesis techniques, the quality of the final result is limited by

the initial specification ofthe algorithm. Transformations providea method to over

come this limitation by changing the computational structure of the algorithm with

out altering its input-output behavior. Hyper provides a host of different

transformations like retiming, pipelining, algebraic transformations, and loop-based

transformations [93, 94, 51, 5]. Transformations fall into three main categories —

block-level transformationsjtiming ordelay-based transformationst and loop transfor

mations.

Block-level transformations use dataflowtechniques for optimizingthe basic blockof

code. Transformations that optimize operations involvingconstants include constant

foldingand propagation (whichevaluate and propagate the value ofknown constants

at compile time), dead-code elimination, common sub-expression elimination, and
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constant multiplication expansion (which replaces multiplications willi constants by

add andshiftoperations). Further, algebraic transformations, based onthe algebraic

properties ofthe operators, are also used. Commonly usedproperties are commutativ-

ity, associativity, and distributivity. For example, since multipHcations are commuta

tive, their inputs canbeswitched without altering the algorithm hmctionality.

(hie oftihe most unportant timing transformations is retiming, which moves sample

delays across operators taking advantage ofthe distributive property ofdelays over

operations. Closely associatedwith retiming is the pipeliningtransformation.This is

not a transformation in the strict sensesince it does not preserve timingbetween the

inputs andoutputs; it inserts extra delays in the control flow, increasing the latency.

However, it is a powerful technique for reducing the critical path and is often used.

Loop transformations [5, 120] include loop merging or jamming and loop unrolling

(these increase the available parallelism by increasing the number of operations

within the loop body), loop interchange (this may change the order ofnested loops to

reduce accesses to background memory), loop splitting, etc. Loop transformations

have a large impact since they change thespeed, area, and power requirements ofthe

most computationally intensive parts of the algorithm.

3.1.5. Synthesis

The core ofthe synthesis process consists of allocation, assignment, and scheduling.

For a given clock speed and algorithm throughput, the allocation task decides the

number ofresources ofeach type to be used, theassignment taskbinds operations and

data transfers in the algorithm to specific hardware resources, and the scheduling

process assigns each operation in the data-flow graph to one ormore time steps.

The Hyper synthesis process [95] starts by allocating the TniTiimnm number of

resources computed during estimation. Several different assignments ofthe opera

tionsto the allocated units are tried withthis allocation. Foreachassignment, several
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schedules are tried. The scheduling uses an enhanced list-based strategy while the

assignment strategy is based on a random initifll assignment withiterative improve

ment.

Ifnofeasible solution is foimd, hardware is re-allocated basedonthe assignment and

scheduling results, and the assignment and scheduling processes are repeated. The

addition or removal of hardware units is based on their "badness" which measures

how a given resource type (adder, multiplier, etc.) affects the scheduling difficulty (for

furtherdetails see [95]). The basic ideais to addunitsofthe resource type withthe

highest badness (they are most responsible for failures in the assigfnment/scheduling

phase) and to remove thosewhose badness is the lowest. To optimize area the alloca

tion sacrifices smallerunits to save on larger ones. The process is repeated several

times until a feasible solution is obtained.

Register andbusassignment usea graphcoloring algorithm. Forexample, in the case

ofbuses, timing conflicts between different data transfers are represented ina conflict

graphofalldata transfersanda simple graphcoloring heuristic isusedforbusassign

ment. Similarly, for register assignment, overlapping variable lifetimes are repre

sented by edges in a conflict graph of all the variables and a coloring heuristic is

adopted.

3.1.6. Hardware mapping

The last step, hardware mapping [9], generates a finite state machine to control the

datapath, and outputs the final architecture netlist in VHDL [52] or SDL [12]. The

SDL format is suitable forsilicon compilation to layout using theLager system [12].

The VHDL format can be fed tocommercial tools like Cadence^^ andSynopsys^^ for

logic-and layout-level optimizations.
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3.1.7. Architectural power analysis

Once the architecture is defined, the Hyper system provides a linkto the SPA power

analysis tool [65]. The main technique used forpowerestimation in t.Tn'g tool been

presented in Section 2.4.3.

3.2. This work

This thesis presents a new synthesis system, Synergy^ targetedfor low-power imple

mentations. While the system uses the same flow as Hyper, several important ideas

are included to address the power issue.

1. Power estimation capabilities are introduced at the algorithm level. Synergy

focuses on providing average estimates because TniniTnnm and TnaviTmini power

bounds can be extremely remote from the actual dissipation and are hence less

meaningfulforpower. Further, the estimates ofthe hardware requirements firom

the Hyper system are used to build extensive models for the overall chip area.
An explicit algorithm-level design exploration fi:amework is designed to guide

the user in makinghigh-level decisions. The estimation and exploration strate

gies are described in Chapters 4 and 5.

2. A new set ofsynthesis techniques targeted for powerreduction are added. Since

the architecture-level optimizations have a greater effect on the interconnect

power than the functional unit power, the new schemes focus on interconnect

power reduction at the expense ofan increase in functional unit area. Two key

sjmthesis techniques are proposed. The first introduces a new partitioning step

in the overall flow and the second proposes new allocation, assignment, and

scheduling algorithms. The main ideas relating to the new S3mthesis schemes

are presented in Chapters 6-8.
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Algorithm-Level Power
Estimation

4

As discussed in chapter 2, the most effective design decisions for power reduction

derive from choosing and optimizing algorithms at the highest levels of abstraction.

A large number of transformations and optimizations are available; however, tLieir

effect on the overall power dissipation is design dependent. A transformation may

reduce the powerconsumptionin somedesignsbut increase it in others. Often, a tech

nique may reduce the power in one component of the chip and increase it in another.

Also, some ofthe techniques produce greats power reduction if used in conjunction

with others rather than alone.

These factors makeit difticult to select the best optimization tedmiques for a partic

ular design. One option is to synthesize the design after each decision and evaluate

its effect on power using an architecture- or gate-level power estimator. Given the

largenumber ofdesign decisions, this process is tedious andtime-consuming cmd pre

cludes an exhaustive exploration. As illustrated in Figure 4.1, an algorithm-level

powerestimator wouldgreatly reduce the time associatedwith this process, enabling

a more effective exploration of the algorithmic design space.

At the algorithm level,several implementationdetails cannot be accurately modeled,

posinga significantchallengein realizing a high-level powerestimator. However, two

main points allow us to work with the reduced accuracy at these levels of abstraction.

Firstly,since the power estimates are usedfor comparing designs and guiding design
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Figure 4.1. Importanceofalgorithm-level powerestimation.

decisions, and not for obtainingprecise power consumption values, onlyrelative power

estimates are required from these predictions. Secondly, since algorithm-level deci

sions can result in orders ofmagnitude changes in power dissipation, the accuracy

requirements onthe estimation tools canbe relaxed, while stillproviding meaningful

power predictions to guide high-level decisions. The work described in this chapter

presents prediction tools that provide relative metrics to be judiciously used in

making high-level design selections.

4.1, Algorithm-level power estimation

At the algorithm level, the design is specified by a functional description with no

implementation details. The challenge in power estimation at this level is to derive

useful estimates with the extremely limited information available. While no work

directly addresses the algorithm-level power estimation problem, some techniques

that havebeenproposed in otherareas maybeappliedforthis task. Below wediscuss

possible approaches that may be used at this level and present the core of our

approach.
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One approach is to predict power from purely behavioral characteristics of the algo

rithm and its inputs. Information theoretic measures ofthe inputs and outputs ofthe

algorithm, like their entropy and informational energy, may be used to characterize

the activity in the circuit. Shanbhag's work on lower bound calculations can be con

sidered as a step in this direction [111]. Though this work starts with extremely

abstract specifications, some assumptions are made about the architecture. Struc

turalproperties ofthe algorithm such as operation counts, concurrency, spatial local

ity, and regularity provide size and complexity measures [41] that could be extended

for power predictions [98]. For example, algorithms with higher operation counts

require more computational work resulting in higher power consumption. Also,more

concurrent algorithms result in larger designs that have longer buses and more inter

connectpower. The degree oflocalityin an algorithm also affectsits powerconsump

tion. Highly localalgorithms lend themselves more easily to partitioning and can thus

result in low-power localized architectures. The concept ofspatial locality is explored

in detail in Chapter 7.Another related metric is the regularity ofthe algorithm which

refers to the occurrence of repeated patterns of computation in it. Regularity in an

algorithm canbeexploited tosimplify the interconnect infrastructure. This concept is

developed extensively in Chapter 8.

Theapproach mentioned above focuses oncharacterizing the algorithm and is elegant

in the sense that the estimates obtained are general and not tied to any implementa

tion style. However, if it to be used in a practical design environment, the algorithm

rankings obtained must hold after the implementation. This may not be true due to

several factors. Firstly, prioritizing and combiningthe various characteristics of the

algorithms to produce a ranking is a non-trivial task. Secondly, the rankingswillnot

holdif the implementation techniques do not exploit the property used to create the

ranking. For example, if algorithm Ais selected over algorithm B due to its higher

locahty but the designer ignores the locality while generating the final design, algo

rithm A may not result in a better implementation.
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4.1.1. Our approach

We present an estimation approach to predict power from a behavioral specification

ofthe algorithm. In addition to the specified behavior, we assume a knowledge ofthe

underl3dng architecture model anda userspecified hardware library. Each operation

in the algorithm can be associatedwith a cell in the hardware library. Sinceour esti

mates are produced with an architecture model and hardware library in mind, they

are technology targeted. The use oftechnology-specific information allowsus to derive

more meaningful estimates, while still maintaining the speed ofthe above methods.

Theeffectiveness ofthe approachis demonstratedbytargeting the architecture model

described in Section 1.4.4. Estimation schemes are extensively studied for all compo

nents in this architecture. The techniques can be extended to other architecture mod

els, but the model must be defined in advance. An underlying hardware library

(discussed in Section 1.4.5) is assumed; however, none ofthe schemes presented are

specific to the library used.

Animportantcharacteristic ofour approach is that it embodies a heterogeneous set

of techniques to analyze the different components. Each architectural component is

treated differently based on its specific features and the information available about

it. The techniques combine dataflow analysis with the stochastic studies to estimate

the overall power.

The total power consumption in an ASIC design is comprised of contributions firom

several components: datapath, registers, interconnect, control, and memory. These

components differ fundamentally in the their dependence onthe algorithm specifica

tion and therefore, in the amount of information available about them at this level.

From the power consumption point ofview, we divide the components intotwo parts:

the algorithm-inherent components and implementation overhead. The algorithm-

inherent components includes the functional units and backgroimd memory. These

are "algorithm inherent"sincethe computation associated with them is necessary for
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the basic fimctionality of the algorithm. Therefore their power consumption is

strongly dependent on the behavioral specification. The implementation overhead

component includes the temporary storage (registers), interconnect elements (buses,

buffers, and mtdtiplexors), and control. The power dissipation in t.hig component

largely depends on the choice of the architectiureand implementation.

4.2. Estimating the algorithm-inherent power dissipation

The algorithm-inherent componentsinclude the functional units and memory. A two

step approach is used for power estimation in this category — characterization of the

library blocks and characterization of the algorithm. While the former is indicative of

the capacitanceswitchedwhen a givenlibrary block is used forsomecomputation, the

latter specifies how often eadi block is active.

The overall power dissipation is estimated as the overall effective capacitance

switched multiplied by the square of the supply voltage times sampling frequency.

The capacitance switched in one iteration (one sample period) of the algorithm is

given by:

(Eq. 4.1)
i

where Ni is the number of operations of type i, Cj is the capacitance switchedwhen

that operation is executed, and the summation is performed over all operation types

i (memory and arithmetic operations).

4.2.1. Gharacterization of the algorithm

llie algorithm is characterized toobtainthe counts ofall the different operation types

(memory and arithmetic operations). This is a measure of the activity in the corre

sponding functional umts. For example, an addition countof100fora given algorithm

indicates that adders will be executed 100 times in one iteration of the algorithm.

Note that the type of an operation is determined by the functional unit selected from
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the hardware library for implementing it andnotbyits functionality. Forexample, 4-

bit additions and 32-bit additions in a graph may use different adders for which dif

ferent count measures will be generated. Also, both additions and subtractions in a

graph may be implemented on ALUs in which case the number of additions and sub

tractions will be added to give a single coimt for ALUs.

For the synchronous data flowdesigns [66] targeted in thesis, a static schedule of

the operations can always be obtained and the operation counts are known beforerun

time. However, for algorithms with data-dependent control flows operation counts

and memory accesses are input-dependent. In this case, either the average or worst

case iteration counts must be provided. Sometimes these may be imposedby the sur

roundingsystemand can thus be specified a priori bythe user. For example, certain

signal processing applications require that a fixed throughput rate be sustained,

enforcing a limit onthe worstcaseiteration counts or criticalpaths. Some other algo

rithms such as speechrecognition algorithms may require someaverage case behav

ior. In caseswhenthese limits are not pre-specified, the algorithms require profiling

with typical input vectors to obtain the average or worst case iteration counts for the

data-dependent loops.

4,2.2. Characterization of library blocks

As described in Section 2.4, a lot of research effort has focused on abstracting the

powerdissipated in blocks ofhardware. However, all the approachesdiscussedin that

section presume detailed knowledge of the architecture, which is not known at the

algorithm level. The most important difference lies in the fact that signal statistics

cannot be estimated at the algorithmlevelevenifsample sequencesare available for

the primary inputs. This is because, the signal statistics at the inputsofa particular

hardware block dependonthe schedule and assignmentofoperations —information

not availableuntil the architecture is finahzed. Therefore a uniformwhite noiseinput

model is used to compute the switching capacitance of different hardware blocks.
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Withthis assumption, an algorithm with five additions consumes the samepower (in

the adders) irrespective of the amount of hardware sharing.

Modules in the hardware library are characterized in terms ofcomplexity parameters

such as wordlength, register size, etc. using uniform white noise inputs. Intuitively,

the total power consumed by a module should be a function of its complexity (i.e.

"size") sincelarger modules containmorecircuitryand, therefore, have highar physi

cal capacitance and activity. One would expect a 16x16 multiplication to consume

morepowerthan an 8x8 multiplication. This leads to a complexity-based capacitance

model that has widely beenused at the architecturelevel[65,96]. Complexily models

used in this work are derived firom [65]. For an extensive discussion on the models and

their derivation the readeris referred tothat work, herewe present the basic concepts

through a few examples.

Hie effective capacitance ofa ripple-carry adder depends onits wordlength, n, which

is a measure of its "complexity", and is given by:

C^ff - cn (Eq. 4.2)

where c is a capacitive coefficient measuring the effective capacitance switched for

each bit ofthe adder. Although several modules —adders, barrelshifters, multiplex

ers, registers, etc. — follow the simple linear model of Equation 4.2, complexity

models are not limitedto this one. For example, the capacitance model fora logarith

mic shifter is given by

C^ff= CqU +c^I +c2nl +CQn^l +c^mnl +c^snl (Eq. 4.3)

where n is the wordlength, s and m are the actual and maximum shift values, while

l=flog2(m+l)] is the number ofshift stages.

In general, capacitance coe£5cients and complexity parametersare storedas vectors,

andthe overall effective capacitance is obtained firom their dotproduct. In the rest of
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thisthesis, thismodel is referred toas thecapacitance complexity model. For the log

arithmic shifter example, the capacitance coefficient vector, the complexity vector,

and the overall capacitance complexity model are shown in Equations 4.4, 4.5, and

4.6, respectively.

C=[cq ®1 C2 <^3 C4] (Eq. 4.4)

^ ~ \n Inl nH mri^ CEq- 4.5)

^eff ~^(Eq. 4.6)

4.3. Estimating the implementation overhead

"Kie powerconsumed by the implementation overhead—registers, interconnectele

ments(buses, buffers, andmultiplexors), andcontrol —depends onthe specific archi

tecture platform chosen and the mapping of the algorithm operations onto specific

hardware units. Since these are not essential to the basic computation in an algo

rithm,several estimation tools ignore their effect for high-level comparisons. However

the power consumed by thesecomponents is often comparable to, ifnotgreater

the algorithm-inherent dissipation. This is illustrated in Figure4.2 which shows the

power breakdowns (architecture-level estimates) obtained firom designs implemented

usingthe Hyper synthesis system. Clearly, estimatesofthe implementation overhead

must be includedto obtain meaningfuloverallpredictions.

The lackofinformation about these components at the algorithm level poses a signif

icant challenge to power estimation. For example, in a high-level synthesis based

design flow, the control is notspecified in thealgorithmic orflowgraph description of

the design and is defined only after the allocation, assignment, and scheduling tasks.

Similarly, the interconnect elements are not defined until very late in the synthesis

process —multiplexors and buffers are addedto the design description only after the
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Figure 4.2. Contribution oftiie various components to the total power.

operations and data transfers have been assigned and scheduled; and bus capaci

tancesGengths) are determined duringthe floorplanning and layoutsteps.

Thus, estimates of the control and interconnect components need to accountfor the

effects ofa wide spectrum ofhigh-level synthesis tasks, such as allocation, assign

ment, scheduling, and partitioning into macro blocks, as well as the effects ofmany

low-level CAD tools, such as logic synthesis, placement, floorplanning and global and

detailed routing. An extensive experimental study, followed by in-depth statistical

analysis andverification is the only viable solution for efficient andaccurate modeling

of these components at the algorithm level.

Power estimation of the implementation overhead is furtiier complicated by tiie

widely varying chEuracteristics ofthesecomponents. We useanalytical models foresti

mating the temporary storagecomponent and stochastic techniques for the intercon-
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nect and control elements. Thenext section describes our methodology forstochastic

modeling ofthese components. Specific models (bothanalyticand stochastic) foreach

ofthe components are describedin Sections4.3.2,4.3.3, and 4.3.4.

4.3.1. Stochastic modeling

Stochastic models for the interconnect and control were derived nRing severalexam

ples which were mapped firom theirSilage descriptions tolayout us^Tig theHyper syn

thesis system andthe LAGER silicon assembler [12]. Figure 4.3shows the design flow

usedfor algorithm mapping and data collection. Thelogic synthesis tool, MIS II [11]

was usedfor optimizing the control logic. The controllers were mapped to a libraryof

standard cells, and the remaining blocks are mapped to datapaths by tiling custom

libraryblocks in a bit-sliced fashion usingthe Timlager layoutgenerator[12]. For the

control model, the capacitances switched persample period were measured usingthe

IRSIM switch-level simulator [106] and for the interconnect model, the areas, bus

lengths, andaccesses were measured from layout. Anumber ofhigh-level parameters

such as the number ofstates, the number offunctional units, wordlengths, etc. are

also collected from the design.

Benchmark set:

The selection ofexamples for building the model was guided by the goal ofincluding

as diverse and as typical examples as possible. The selected examples cover a wide

variety of DSP applications including FIR filters (Wavelet, Hamming, Chebyshev),

IIR filters (direct-form, cascade, parallel, continuous-function, ladder, wave-digital,

polynomial and homomorphic filters), nonlinear filters (Volterra) and fast transfor

mations algorithms (DOT, FFT, convolution). Example sizes ranged firom 13 opera

tions to more than 120 operations. Different instances of these examples were

generated using different transformations (retiming, various extents of pipelining,

algebraic transformations and other block-level transformations), supply voltages,

clock periods and sampling rates. The examples cover a wide variety in the ratio of
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Figure 4.3. Design flow used for statistical modeling.

available time to critical path (also called stress ratio)^ amount ofparallelism, types of

operations used, level of multiplexing, and size of the final implementations.

Regression analysis;

Regression analysis (with the Matlab™ [75] and Mathematica"^" [132] tools) was used

to identify the important relationships and biiild models. The and F-ratio good-



ness-of-fit parameters were used to determine tlie significance of the models. R^, the

coefhcient ofdetermination, is defined as ratio ofthe variability ofexplained by the

model to the variabilityofthe data itself.Theratio variesbetween zero and one, with

a highervalue indicatinga better model. If a model explains all the variabilityin the

data, the wouldbe 1, and if it explainsnoneofthe variability, R^ is 0. The F-ratio

is definedas the ratio of the mean square ofthe variation expleuned by the model to

the meansquare ofthe residuals.For further details, the reader is referred to [10,53].

Since tiie stochastic models capture the nuances introduced bytiie specific synthesis

process, floorplan, and architecture modelused when generating the data, the models

may not be valid for a different synthesis process or floorplanning strategy, or for a

differentarchitecture style. In our methodology, the understanding ofthe basicrela

tionships is specificallyemphasized while building the overall models and we beUeve

that the relationships will hold though the constant coefficients will have be to be

recalibrated.An important benefit ofour approachis that it helps to understand the

underlying dependencies and identify the various contributors to the overall power

budget.

4.3.2. Temporary storage (registers)

Temporary variables in an application maybestoredin several ways. Forexample, a

given implementation may use a centralized register file or a distributed one; com

pletely pipelined designs usepipeline registers insteadofregister files; chaining oper

ations can get rid of registers; delay elements may or may not need registers

dependingthe relative operation times oftheir producerand consumernodes.Thus it

is difficult to estimate the register power without any knowledge of the targeted

implementation. We target one specific architecture model and examine the impor

tant contributors ofregister power. As described in Section1.4.4, the targeted archi

tecture model has a distributed register file organization. Each register file is
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attached to an input port of a functional unit and is said to be associated with the cor

responding operation type.

We also assume that chained operations are merged intoa single node. Thusall edges

in the control data flow graph represent variables to be stored in register filesand all

nodes are purelycombinational and have nostoragecomponents.

Overall register-power model;

Power is dissipated in registers during the read, write, and NOP operations and the

overall power consumption is given by:

^reg ~ ^eff{rd)^rd ^eff{wr)^wr ^eff{nop)^nop^"^ddf

where JVrd* ^wn and N^nop are the number of register reads, writes, and NOPs,

respectively on register files associated with operation type i and C?eff(rd)> ^eff(write)*

and C^effCnop) are the corresponding capacitances switched during these register

accesses. The summation is done over all operation types in the algorithm. Computa

tion ofthe various register accesses (N'rd, and N^^op) and the associated capaci

tance models (C*eff(rd)» ^eff(rd)> ^eff(rd)) are discussed below.

Register access ftgHmaHnii*

With theassumed architecture template, the number ofregister reads, firom reg

ister files associated with operation type, i, is equal to the total number ofinputs of

allnodes of type i, in the graph. This is because each time an operation (specified by

nodes in the CDFG) is executed, it mustreadinputs fi:om its operand register files.

The number ofregister writes depends on the assignment ofnodes onto specific hard

ware units. Figure 4.4 shows a simple case where the resultofthemultiply operation

is usedbytwo additions. Thefigure shows two different assignments ofthe additions.

In Figure 4.4a both additions are implemented on the same adder and the variable x
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is written onlyonce, while in Figure4.4b they are assigned to different addersand the

variable is written in two register £Qes.

An upper bound on the number ofregister writes tofiles associated with a particular

operation type i, canbe computed byassuming that for each node, all its outputs of

type i are assigned to different units. Similarly, a lower boimd can be computed by

assuming that for each node, all its outputs of type i are assigned to the same func

tional unit. The average of the upper and lower bounds is used as an estimate of

number of register-writes.

(a) (b) (c)

Figure 4.4. Register writes depend on assignment.

Since registers are clocked, power is consumed even when they are not reading or

writing. ThenumberofNOPs in each register file, is the total number ofdock cydes

less the number of read and write operations on it.

Register-capacitance;

The effective capadtance assodated with register operations is the computed firom

capadtance complexity models of library blocks similar to those used for functional

units. The model for a register operation — read, write, or NOP — is of the form:

^eff = e^+c^r+ 0271 +e^rn (Eq. 4.8)
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where r is the number ofregisters in the register file and n is the number ofbits per

register.

Thenumberofbits per register is givenbythe wordlength ofthe operandsofthe asso

ciated operation type. The average number of registers r, in the register files associ

ated with a particular operation type is estimated firom the number offunctional units

ofthat type and the total number ofregisters required by them, both ofwhichare com

puted using the discrete-relaxation based technique of the Hyper system (refer

Section 3.1.3). Given the number of fimctional units the number of registers

and the number ofoperands /j-, associated with an operation type i, averagenumber

of registers r, in the associated register files is estimated as:

R:
r = F,./. (Eq. 4.9)

The overall power estimationscheme for registers is summarized in Figure 4.5.

Register power =

power per access * accesses to registers

/
Relaxed
schedule

Calculate ^

lifetimes

i Parameterized
Number of libraries

registers per file

Power per access

\

Reads:

i
^rd=^nputi

Writes:

max + mm

2

NOPs:

total cycles - (N^ +Nj„,)

Figure 4.5. Estimating the power consumption in registers.

69



4.3.3. Interconnect elements

Theinterconnect elements —biises, buffers, and multiplexors —are rapidly becom

ing a significant factorin the overall power dissipation in large designs. This section

presents a stochastic model for the interconnect power and also for the dockpower

which is dosely related.

4.3.3.I. Buses

The buspower consumption depends onthe buslengths, the capacitive load onthem,

and the assodated activity.Models for these components are discussedbelow.

Bus access model:

Assuming a white noise activity model, the number of bus accesses determines their

activity. In the given architecture model (Section 1.4.4), the result ofeachoperation

is written to its destinations via one or more buses. The niunber of the bus accesses

depends directly on the number ofedges in the graphs (same as the numberofvari

ables). Empirically, the following equation was found to hold:

^access = «0 + (Eq. 4.10)

Theregression parameters Oq and aj are 11.35 and 0.97, respectively. Themodel has

a very high goodness-of-fitparameters with an of 0.97 and an F-ratio of 1046.21.

The results of the model are shown in Figure 4.6.

Bus length model:

Buswire capadtances are determined bytheir lengths, which in turn depend onthe

area ofthe overall design. In fact, buslengths havebeen shown to beproportional to

the square-root of the overall area [60,117], which is the model used in this work. We

first develop a stochastic model for the overall chip area, and use it to predict bus

lengths.
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Figure 4.7. Relationship between the total chip area and the active area.

Intuitively, the most important predictor variable is the active area. This includes the

combined area ofall the hardware resoiurces on the chip except the wiring —fimc-

tional units, registers, buffers, multiplexors, etc. Figure 4.7 shows the total chip area

versus the active area for the selected benchmark set.

Regression analysis yielded the following quadratic model ofthe totalchip area

in terms ofthe active area (Equation 4.11).
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Khip =«o+«Act+aAc«^ (Eq- 4.11)

However, the coefficient ofdetermination for this model is only 0.52 which shows that

the active area alone does notexplain the variation in the overall area very well.

Further analysis showed that a large part ofthe overall area is takenbythe intercon

nect, and two parameters —the number ofbuses and the wordlengths —were con

sidered to account for it. Theresultingmodel is specified byEquation 4.12.

Khip = "o+aAe/ +'^bits^buAaot ®q. 4.12)

where is the active area, is the average word length used and is the

number of buses. The regression parameters, Oq, ai, and 02, are 2.302, 0.803, and

0.017 respectively and the goodness-of-fit parameters, and F-ratio, are 0.964 and

150.12, respectively.

Themodel accounts for the two most importantcomponents ofthe chip area —data

path and interconnect —represented bythe second and third term respectively. The

third termis explained as follows. Average bxis lengths are proportional tothe square

root ofthe overall area. It is seen that the square rootofthe total area linearly corre

lates toAflcf (Equation 4.11). Thus, in the third term, A^ct accounts for the average

length of the interconnect and is the total number of interconnect wires.

Figure 4.8 showsthe measured layout area versus that predicted by the model. This

model gives average, median, third quartile, and worstcaseerrors of16.6,14.0,22.2,

and 43.5%, respectively.

Sincethe values ofA^^ and N^us are knownonlyalter final allocation and schedule,

estimatedminimum boimds for the execution units and registersare usedto compute

Aact and those for the buses are used to compute at the algorithm level. These

estimates are obtained using discrete relsixation Euid quick scheduling [ICQ]. The
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Figure 4.8. Layout area model: predictions vs. chip measurements

model is recalibrated to use estimates ofA^ct aiid Nbus instead of their exact values.

Using these estimates instead ofexact values reduced the accuracyofthe modelsand

the averageand worstcaseerrors increaseto 42.6and 96.1%, respectively.

Theaverage buslength, L, is assumed tobeproportional to the square-root ofthe chip

area, and is given by:

L = yJArea (Eq. 4.13)

with the proportionalityconstant, y, determined empirically to be 0.55.

Overall bus power model;

Thetotal bus capacitance switched per sample period is computed as the average bus

capacitance timesthe numberofaccesses to buses. Thisis useddirectly in the power

equation to obtain the total power dissipation in buses.

The capacitance switched peraccess is composed oftwo parts—that due tothe capac

itance ofthe wire itselfand that due to the capacdtive load onit. The capacitance of

the wire directly depends on the wire length, which is empirically determined from

Equations 4.12 and 4.13. Thewiring capacitance is calculated from the wire lengths
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using the average capacitance perunit area and average fringe capacitance per unit

length of metall and metaI2 layers.

The loading on the buses is modeled by a fixed load of50 fF (about 2 minimnm sized

inverters in 1.2 micron technology) for each fan-in and fan-out. The total number of

fan-ins and fan-outs on the buses are assumed to be the half of the estimated mini

mum number of functional units. This is based on the assumption that each bus is

connected tohalfofthe overall unitsonaverage. Thewiring andloadcapacitances are

added to obtain the average physical capacitance per bus wire, which is then com

bined withthe wordlength to get the average physical capacitance per bus.

In this section, empirical models have been used to compute the bus lengths and

accesses. Figures 4.6 and 4.8 demonstrate that such models can achieve reasonable

accuracies to yield valuable high-level estimates. Since the models have identified

some important relationships, theycanalso beusedin cost functions during the opti

mization and synthesis tasks. Both the area and bus access models are used later in

this thesis to evaluatevarious options duringthe synthesis process.

4.3^^. Buffers

Since every bus access is enabled via a buffer, the number of buffer accesses is the

same as the number of bus accesses which is modeled in the previous section. The

effective capacitance switched per buffer access is easily derived from the capacitance

complexity models similar to those used for functional units.

4.3^.3. Multiplexors

Since multiplexors accesses are strongly dependent on the degree of hardware shar

ing, we do not compute this componentat the algorithm level.

4.3^.4. Clock

Thechiparea model presentedin the previous section is alsousedin clock lengthesti

mation. On a set ofexample designs, the length ofthe dock routingto the datapaths

74



was found to vary between one to three times the square root ofthe chip area. Based

on this observations, the total length of the dock wiring is estimated by the following

formula:

length = 2 x tJChipArea (Eq. 4.14)

To estimate the loading on the clock, we assume that the dock is distributed to all the

registers and buffers on the chip and that each offersa capadtive load that is obtained

from the hardware library, and buffers are estimated using the discrete-relaxation

based technique of the Hyper system (refer Section 3.1.3).

The activity or"number ofaccesses" on the dock wires is simply the total number of

clock cycles in the sample period.

4.3.4. Controller

Recall from Section 1.4.4 that the controller consists of a globalfinite state machine

and a set ofdistributed local-controllers. In diis section wepresentpower models for

both the global FSM and the local controllers.

4.3.4.1. Global finite state machine

The globalfimte state machine is implemented as a counter with conditionalsto check

for the iterativestates (loops). No sophisticated state minimization is performed and

a straightforward minimmnencoding is used for state assignment.

The relationship between the effective capadtance switched persample period in the

global FSM, CpsMf the number ofstatesis shown in Figure 4.9. Thestrong linpar

dependency seen was used to build the following regressionmodel:

^FSM - states 4.15)

where Oq = -22.1, aj = 4.9.This model givesnegative values if there are less thfln five

states in the machine in which case the capadtance is approximated to zero. The
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Figure4.9. Relationship between the capacitance switched per sample period in
die global FSM and the number of states.

model has a coefficient ofdetermination of0.999 and an F-ratioof6511.38 indicating

its high prediction potential.

Thestrong dependence onthe numberofstates csui easilybe explained sinceincreas

ingstates result in more state transitions per sampleperiod (higheractivity) and also

a biggerand more complex FSM(morephysical capacitance). In fact, the state tran

sitions are a linear function ofthe numberofstates. Consider, for simplicity, an FSM

withnoiterativeloops which sequentially traverses N states. Over the entire sample

period, the least significant state bit transitions each cyde (N times), the next bit

transitions N/2 times, the next one N/4 times, and so on. The total state-bit transitions

over the entire sample period thus show the following linear dependence on the

number of states:

„ _ . N N N
StateTransitions = N + + 2

= 2iV
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Estimating the number of states:

For non-hierarchical graphs or hierarchical graphs with non-iterative nodes, the

number ofstates is simply the total number oftime steps available (sample period

divided bythe dockperiod). However, if the sample period is extremely large(> total

number ofnodes), then all the dockcycles are notused, and the resulting finite state

machine has several idle cydes. In this case, the number of nodes is used as an esti

mate of the number of used or active states.

Forhierarchical graphswith iterativenodes or loops, the numberofdistinctstates in

the FSM depend on the allocation ofthe total time to the different subgraphs orloops.

Acrude time allocation isrealized by first allocating time to each hierarchy node (sub

graph) equal toits critical path anddistributing theremaining timeover the different

hierarchy nodes in proportion to their concurrency. The number of states for each

hierarchy node is the time allocated to it divided by its iteration count. The total

number ofstates is the sum ofthe number ofstates in all its constituent hierarchy

nodes (since our implementation uses only a single thread of control — refer

Section 1.4.4).

4.3.4.2. Local controllers

Since the global FSM is simply a conditional counter, its power is easily predicted

from the number of states. The local controllers however, have several other depen

dencies that need to be explored. Based on the assignment ofthe operations to specific

hardware umts andtheirschedule, the hardware mapper determines the functional

ityrequired from thecontrollers and creates the truthtables for thecontrol signals.

The boolean functions are optimized using MIS n and mapped toa library ofstandard

cell gates.

We first explored the various dependencies ofthe capacitance switched in the local

controllers per sample period. Thevariables considered werethe numberofstates in

the overall machine, the number of control signals (outputs) in each local controller,
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and the number of transitions on the control signals. These dependencies are shown

in Figure 4.10. It is seen that the number ofstates explains part of the variations in

the data; no dependence is seen on the number of control signals; and a quadratic

dependence is observed on the number of control «igna1 transitions.

The the total capacitance switched in the local controllers in onesampleperiod,

was first modeled in terms ofthe output transitions using the following qua

dratic regression model.

C/c =«0 + «2^rons ®q. 4.17)

Thismodel wasfound tohavelow andF-ratiovaluesof0.78 and 74.0, respectively.

A combined model based on the number ofstates, Ngt^tes* numberofoutput

transitions, Nt^ans* was then considered (Equation 4.18):

C/c =«0 +̂ 1^trans "Xan.+<=^3^States

The values ofthe constants Oq, ai, 02, and 03 are -238.9, 0.25, 0.000025, and 154.03

respectively. This model is able to explain a large amount of the variability in the

data; it has a coefficient of determination of 0.953 and an F-ratio of423.09.

The model has an average error of 11.52% and a maximum error of 41.06% on a set of

46 examples. The correlation between the estimated and measured capacitances is

shown in Figure 4.11.

Estimating intermediate parameters — tiiimher of transitions;

While the number ofstates can be estimated at the high levelusing the methodsmen

tioned earlier in this section, the number oftransitions is not easily estimated from

high-level parameters. Since a large percentage of the controller outputs are the

enabling/disabling signals for registers, a good correlation was found between the
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Figure4.11. Controller model: predictions vs. chipmeasurements.

output transitionsand registeraccesses as shown in Figure4.12. Theresultinglinear

regression model is given by Equation 4.19.

^tram = '̂ 0 +"l^regacc OEq. 4.19)

where cto and ai are 75.32 and 1.20, respectively. This model has reasonably high

goodness-of-fit parameters — is 0.93 andF-ratio is 216.87—but the problem with

it is that the number ofregister accesses is not known at the high leveland must be

estimated (as explained in Section4.3.2)resulting in further inaccuracies.

Due to redundancies in the data collected for each design, we were able to identify

other higher-level parameters to predict the transitions and the following multiple

regression model derived:

^trans ^0 ^^units ' nodes (Eq. 4.20)

where is the estimated minimum bound onthe number offunctional units, T is

the sample period in terms ofthe clock cycles, and iV^nxics i® number ofnodes in
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the algorithm. The constant values are -207.20, 3.14, and 1.20, for Oq, ai, and 02,

respectively.

The intuition behind thechoice ofvariables used in themodel can be explained as fol

lows. At most, each outputtransitions once every cycle (ignoring glitches) and thus

the total number ofdock cydes periteration ofthe algorithm is an upper bound for

the transitions on each output signal. The total number ofoutputs signals ofthe con-
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trollers increases with thenumber of fimctional units used in thedesign. Therefore

the product ofthe number of functional units (estimated TninimnTYi bound) and the

total clock cycles per sample period is considered asa variable. Also, the complexity

ofthe algorithm affects the "work" done by the controllers and hence the output tran

sitions. Therefore, thenumber ofnodes, a measure of thealgorithm's complexity was

also considered as a variable.

This model has reducedgoodness-of-fit parameters with the coefficient ofdetermina

tion being 0.88 and F-ratio being 159.342. However, all the model parameters are

known at the high level and no new intermediate variables are introduced. For tTiip

reason, this model is preferredoverthat ofEquation4.19. The goodness offit ofthis

model is shown in Figure 4.13.

The overall capacitance model for the local controllers is given by Equations 4.18 and

4.20 combined.

4.4, Results

This section compares the algorithm-level estimates obtained using the techniques

described in this chapter with the power estimates from SPA, an architecture-level

power estimator [65]. The SPA estimationtool has been validated against a switch-

level power estimator, IRSIM, and has been found to have errors less 15%. At

architecture level, more information is available about the design. For example,

accesses to all resources —registers, buffers, buses, multiplexors —is known which

is estimated usingbothanalytical and stochastic methods at the algorithm level. Fur

ther assignment ofoperations to resources and their schedule is known, sothat data

streams can be captured at the block inputs to be used with activitysensitive block

models.

Since floorplanning and routing is yet to be completed at the architectme level, bus

lengths are still stochastically modeled using the model ofEquation 4.12. However,
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Figure 4.14. contd. Estimates ofeffective capacitances switched persample period
at the algorithm and architecture levels for various components: (a) functional
units, (b) registers, (c) buses, (d) buffers, (e) total..

parameters required for the model — the active area A^ct and the number ofbuses

Nbus — ^at are estimated at the high level are exactly known at this level. The

number of bus accesses is also exactly determined.

Asample set consisting of23 designs is usedfor these experiments. These examples

are different from those used in generating the stochastic models.



Bar graphs comparing estimates ofthe effective capacitances switched per sample

period ofthe various components at the algorithm and architecture levels are shown

in Figure 4.14. Notice that the algorithm-level estimates track the architecture-level

estimates very closely. As mentioned in the beginning ofthe chapter, since tiie pur

pose ofthe facihty is guidehigh-level decisions, relative accuracy is the tnain concern

as opposedto absolute accuracy. In our results, relative correctness is not achieved in

allcases (e.g., design #9 in Figure 4.14b and#6in 4.14c). Thepercentage ofcases that

doachieverelative accuracyis quantified by the correlationbetweenthe estimates at

the two levels. This in indicated through the correlation coefficients between the two

estimates (shown in Table 4.1) and plotsofthe algorithm-level estimates against the

architecture-level estimates (shown in Figure 4.15). A large number ofpoints fall

extremely dose to the line, indicating the high correlation between the two esti

mates.

Table 4.1. Correlation between algorithm and architecture-level estimates.

Correlation coefficient

Execution imits 0.99

Registers 0.96

Buses 0.96

Buffers 0.97

Total power 0.97

Error statistics ofthe algorithm-level estimates compared to the architecture-level

ones are shown in Table 4.2. Along withthe average and worst case errors, the table

also shows themedian andthirdquartile errors. It isseen that though theworst case

errors are high, the third quartiles are below 20% in allcases showing that 75% ofthe

designs have low errors and large errors arerare. It should be emphasized again that
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Figure 4.15. Correlation between algorithm- and architecture-level estimates of
the effective capacitance switched per sample period for various chip components:
(a) functional units, (b) registers, (c)buses, (d) buffers, (e) total.
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the correlation between the two estimates is more meaningful than tiie percentage

error between them.

Table 4.2. Error statistics of the algorithm-level estimates compared to
architecture-level estimates.

average median third quartile worst case

Functional units 16.7 13.2 16.0 126.0

Registers 12.0 11.2 17.7 35.9

Buses 14.6 10.86 23.33 52.1

Buffers 15.5 9.6 17.4 65.2

Algorithm-inhftrftnt.

components

Execution units
(Operation count

Data memory
(Memory accesses,

memory size)

mm

v~^

/?

Implementfltinn

overhead

Control

(Stochastic)

Registers

(Analytic)

Interconnect:

buses, buffers, muxes

(Stochastic)

\ Algorithm-inherent components
I I Implementation overhead

Figure 4.16. Estimating power: various components and techniques.
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4.5. Summary

In this chapter, a algorithm-level power estimation facility has been presented. In

order to providemeaningful estimates with the limited information available at the

behavioral level, theestimator takes a technology-targeted approach, using informa

tion from an underlying architecture model anduser-specified hardware library. The

various power consuming components on a chip are divided into two parts based on

the amount ofinformation available about them at the algorithm level —the algo

rithm-inherent part and theimplementation overhead. Acombination ofanalytic and

stochastic approaches is used toaddress the different characteristics ofthese compo

nents. An overview of the different components and the corresponding estimation

techmques is given in Figure 4.16 and the specific power models are summarized in

Table 4.3.

The algorithm-level power estimates obtained are compared to estimates from the

SPA architecture-level power estimation tool and about 20% average errors are

observed. Estimates at the two levels are found to be very high correlated which

emphasizes the relative accuracy of the algorithm-level estimates. Extensive use of

the proposed estimation facility is demonstrated in the next chapter.
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Table 4.3. Summary ofthe power models forvarious components^.

Component

Functional

Memory

Registers

Interconnect

(buses)

Interconnact

(buffers)

Interconnact.

(clock)

Cpntrol

(global FSM)

Control

Gocal

controllers)

Critica] parameters

Operation counts

Complexity
parameters

Hardware library
information

Hardware library

Number of edges

Area

Active area

Wordlengths

Number ofbuses

Number of edges

Hardware library

Wordlengths

Number of edges

Area

Registers/buffers

Number of states

Number of states

Output transitions

Number ofunits

Available time

Number ofnodes

Main models

r m

Power =

t = 0

^reg =

^I<^eff{rd)^rd ^eff{wr)^wr ^eff{nop)^no^

^ j = Tn. , ;rd Ad inputs '

^NOPi °^-(^rd*^u>r)

N +N .
_ max mm

L = y.JArea

\hip =

^access **0 ^l^edges

C = cn
eff

^access ~**0**l'̂ edges

length = 2 x JChipArea

^load " buffer ^^registei^
^FSM-^O'^^l^states

C j = a^ + a-N
gl ^ I trans

^tron, = + +

trans 3 states

1. All constants, otj, shown in this table are regression parameters and thore values are given inthe
appropriate section in the text
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Design Space Exploration

A design environment forpoweroptimizationmust provideanalysis and optimization

tools at all levels ofhierarchy. In order to facilitate this, a top-down power optimiza

tion framework in provided in the Synergy synthesis system as shown in Figure 5.1.

The algorithm-level analysis mechanisms presented in the previous chapter are used

to explore the behavioral design space; architecture synthesis techniques^ provide a

sjnithesis path to architecture; and the SPA power analysis tool validates the choices

and provides moreaccuratepower estimates at the sirchitecture level. At all phases,

power predictions are based on data from pre-characterized cell libraries. Each tool

makes use ofthe information available to it at that level ofabstraction. Byapplying

these tools in an integrated, top-down fashion the user is able to beginwith a high-

level description ofthe desired functionality and systematically converge to the opti

mum low-power algorithm and architecture.

At the highest levelofabstraction, several decisions like the algorithm selection, clock

selection, voltage reduction, and transformations leadto largevariations in the power

consumption. In order to rapidly evaluate the myriad design alternatives at this level,

the algorithm-level power estimates presented in the last chapter are encapsulated

into an exploration tool called Explore which is described in the next section. Section

5.2illustrates the use ofExplore to examine various degrees offreedom in the algo-

1. The synthesis algorithms used in theSynergy synthesis system areexplained in Chapters 7and8.
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Figure 5.1. Integrated top-down power optimization approach in the Synergy
synthesis system.

rithmic design space. Finally the effectiveness of the overall CAD environment is

illustrated through an extensive case study in Section 5.3.

5.1. Explore

The goal ofthe Explore design-aid is to help the designer in searching through the

algorithmic design space. This tool evaluates several design points for the given algo

rithm by varying a set ofparameters and iteratively invoking the high-level power

estimator. The output ofthe tool is a set ofgraphs that plot the variation in overall

area and power consumption as a function ofthe chosen parameter.

In the current implementation, two parameters are usedas independent variables,

namely thevoltage supply, andtheclock period, Selecting these parameters
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at the high level allows an accurate evaluation of the delays of the hardware units

that can be used to drive synthesis and optimization. At lower levels, when the archi

tecture and micro-architecture are finalized, the allowed variation in the and

is restricted, which limits a complete exploration of the design space and constrains

the associated power savings.

The effect ofthese two parameters on the power and area ofreal-timeapplications is

discussed in detail in Section2.2.1.One of the important effectsderives from the fact

that different functional units maybe optimal for implementing a givenoperation at

differentvalues of and Toincorporate this effect. Exploremaintains a data

base of the functional units selected for each operation at different v£dues of these

parameters.

Each operation type has an identifier that depends on its functionality and

wordlength. Thus a 4-bit addition operation is called addition#4 and a 6-bit left shift

operation has left_shift#6 as identifier. A hash table indexed by the identifiers of the

various operation types is used to store the hardware modules selected for them. Each

entryofthis table is an array indexed by the value ofthe independent variable (Y^d

orTp^). Eacharray elementstoresa pointerto the librarycelltobeusedto implement

the corresponding function at the given values of and Tp^^. library cell selection

is based on the greedy strategy explained in Section 3.1.2.Each element is also asso

ciated with a duration, which is defined as the number ofclock cycles required for

implementing the operation onthe selected librarycell at the given parametervalues.

Operation durations affect severalaspects ofthe implementation including the criti

calpath ofthe algorithm and the hardware requirementsfor implementing it within

the specified throughput constraint. Though they donot affectthe algorithm-inherent

component of power dissipation, they have a direct impact on the implementation

overhead part, which is influenced bythe critical path, hardwarerequirements, etc.
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Supply-voltage variations start at the highest voltage specified (default is 5V) and

continue with steps of 0.25V down to IV. If a feasible hardware module is not found

for any operation (no hardware cell can complete the operation within an allowed

maximum number of dock cycles) at any voltage level, the search is terminated and

lower voltage levels are invalidated.

Theextremities ofthe dock-period variation are selected bysearching for the maxi

mum andminimum time requirements over alloperations. The miTiimnm dock period

considered corresponds to the fastest speedof the fastest operation. This is because

there isno gain from using a faster clock since alloperations would require multiple

clock cycles toexecute. The maximum clock period considered is theslowest speed of

theslowest operation. This isbecause a longer dock period will only resultinwastage

ofthe added timesince none ofthe operations caneffectively use it.

Estimation ofthe effective capadtance ofall components is iteratively performed at

each ofthe design points starting from themaximum dock period orsupply voltage.

This capadtance is appropriately combined with the operating supply voltage and

user-specified sample frequency to obtain power numbers. Overall area estimates are

also reported.

To speed upthe exploration process, the hardware database tableis analyzed forsim

ilarities across different iterations andestimates ofcomponents are computed only if

they arepredicted tochange from theprevious iteration. Estimation changes arepre

dicted by comparing theselected hardwsire cells andtheirdurations for all the oper

ations between the two iterations. If all the hardware cells selected and their

durations are thesame as in theprevious iteration, no estimations need to be re-per

formed. If the hardware cells selected are the same but the durations are changed,

only the estimates ofthe implementation overhead components are recomputed. In

other cases, all estimates are recomputed.
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During the estimation process, the critical path of the algorithm is compared to the

availablesample periodin each iteration to ensure the feasibililyoftiie dftgign Tn the

case of supply voltage variation, once a design found to be unable to execute within

the giventhroughput constraint, the process is terminated and lowervoltagesare not

explored since the timing requirements of an algorithm only increase at lower volt

ages. However, this is not the case with dock period variations since both the number

of dock cydes required and the number of dock cydes available increase with reduc

ing dock lengths.A design may therefore be infeasible at a particular dock cyde but

may yield a feasible solution at longer or shorter clock periods.

As mentioned above, the output of the tool is a set of curves plotting the area and

powerofthe applicationas a functionoftiie independentvariable selected.The curves

help the user in selecting the implementation that offers the best trade-off between

area and power. Theycan beused to evaluate several designaspects such as the effect

of transformations, technologies, and algorithms. The two parameters also be

variedsimultaneously to plot a 3-dimensional surface sothat globally optimal points

may be selected.

5.2. Investigating various degrees of freedom

The complex interactions of the different factors make it difhcult to analytically

derive the optimal design parameters. Explore offers an easy way to graphically

exploit the various trade-offs. This section studies power optimization on different

examples throughExplore curves. Several degrees offreedom fordesign optimization

are studied —dock selection, voltageselection, transformations, algorithm selection,

and hardware comparison. The degrees offreedom presented here are by no means

comprehensive and the purpose is to illustrate the type ofdesignoptimizations that

can be explored at the high levelusing the estimation capability.
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5.2.1. Clock period selection

Figure 5.2 shows the effect ofvarying the clock period on the power andareaofan 8x8

discrete cosine transform (DCT). The power trend isdominated by thecontrol compo

nent. Atshorter dock periods, thenumber ofdock cycles for theimplementation (and

hence the number of states) increases, leading to the greater power consumption in

the controller. At longer clock periods (>80 ns), the overall power rises due to an

increase in interconnect power but this effect is relatively less pronounced. The area

shows the opposite trend from power and increases with the dock period due to the

fewer dock cycles being available to implement the algorithm.

P 14.3

"^-^vfontrol
others

i. tt • li
30 50" 70 90"

Clock period (ns)

(a)

30 50 70 90"
Clock period (ns)

(b)

Figure 5.2. Clock period exploration for an 8x8 discrete cosine transform (DCT).

Inanother example, consider theclock exploration curves ofa 16-point FFT shown in

Figure 5.3. In this case, the power trend is dominated by the interconnect power

which is highly affected by the overall area. Due to the different conflicting effects of

the dockperiod onthe overall area explained in Section 2.2.1, the area is seentohave

a non-monotonic variation with the clock period.

The difference in the relative importance of different power components in the two

examples can be explained by examining some of their characteristics shown in
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Figure 5.3. Clockexploration curves for a 16-point fast fourier transform (FFT).

Table 5.1. While their sample periods differ only by a factor of2, their complexities,

in terms ofthe number ofoperations,differby a much larger factor. The FFT has 6.9

times more multiply operations and 4.7 times more additions and subtractions.

Therefore, in a particular time period, the FFT performs about3 times more opera

tions than the DOT example on average, and requires a more parallel (and hence

larger) implementation. Further the data transfers (measured by the number of

edges) are much higher in the FFT example. Due to the larger area and more data

transfers, the effect ofthe interconnect is greater in the FFT example.

Table5.1. Characteristics of the two examplesstudied.

Sample
period (ns)

Number of

multiplies
Number of

additions
Number of

subtractions
Number of

edges

8x8 DCT 1.4 16 26 - 53

16-point FFT 0.7 110 99 23 290
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5.2.2. Transformation selection

Figure 5.4 displays some of the effects of transformations on a design. The example

used is a 14^^-order wavelet filter with a throughput constraint of 3.33 MHz, and a
20ns clock period. The original design consumes 133 mW power which canbereduced

to 110 mW by lowering the supply voltage to 4.5 V. However, if the supply voltage is

finilier reduced, thedesign fails tomeet thethroughput constraint. Substituting con

stant multiplications by shifts andadds results in a 50% decrease in power. However

the lowest possible supply voltage is thesame as before since thecritical pathofthe

design is unaltered.

2 3 T

Supply voltage (Volts)
(a)

7

original
constant multiplications expansioi
1-stage pipeline
4-stage pipeline

3 4

Supply voltage (Volts)
(b)

Figure 5.4. Exploring the effect oftransformations on the power and area ofa 14*^-
orderwavelet filterwith 3.33 MHz sampling firequency.

Pipelining the transformed version lowers the critical path ofthe design, malring it

possible to lower voltages to 1.5 Vand get a further 2xpower reduction. The curves

also make it clear that it is notadvantageous to over-pipeline a design. Fora given

supply voltage, 1-stage pipeline haslower areaandpower tlinn a 4-stage pipeline due

to the cost ofextrapipeline registers. It is also seenthat the supply voltage should not
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be indiscriminately decreased. Although using4 pipelinestages allows voltagereduc

tion up to 1.25 V, the power increases when the voltage is decreased from 1.5 V to

1.25 V due to a large rise in area (shown in Figure 5.4b) which causes an increase in

interconnect power. The sudden increase in area is due to increased functional units

needed to implement the same algorithm at a lowersupply voltage.

5.2.3. Algorithm selection

For realizing a given function, the choice ofthe algorithm has a large impact on the

quality of the final implementation. We evaluate two algorithms for comparing the

mean squared distance ofa vector, X, fromeach oftwovectors, and Cj. This oper

ation is the corecomputation in vectorquantization systems [36]. The two algorithms

are given in Equations 5.1 and 5.2 [69].

7 7

MSE^-MSE^ = 5; rc„.-XV- X (C«-^i)(Eq. 5.1)
t =0^ i =0

rj

MSE^-MSE^ =(ef-e6)+ X2(C„j-Cj,.) xX. (Eq. 5.2)
i = 0

The energy versus supply voltage curves of the two algorithms are shown in

Figure 5.5. While the first algorithm has 16multiply, 14add, and 17subtract opera

tions, the second one has 8 multiply and 9 add operations and consumes lower power

in functional units. Secondly, the second algorithm has smaller area and hence

shorter average interconnect lengths and dissipates less power in the interconnect.

Also, due to a shortercritical path, the second algorithm has a feasible implementa

tion at much lower supply voltages. Using the second algorithm and lowering the

supply voltage to 2V reduces the power by a factor of25 compared to the first algo

rithm at 4.5V.
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Figure 5.5. Evaluating two vector comparison algorithms.

5.2.4. Hardware comparison

Explorecan also be used in studying the e£fects ofusing different hardware units for

the same application. The example used here is a Volterra filter with a sampling

speed of 1.9 MHz and a selected dock period of 25 ns. The filter is transformed first

by replacing constant multiplications by adds and shifts to reduce the number ofmul

tiply operations andthenbyusing assodativity toreduce the critical path.Two imple

mentationsofwith different adder implementations —rippleadder (RCA) and carry-

select adder (CSA)— are compared.

Figure5.6shows the Explore curves obtained byvarying the supply voltage. At 5 V,

the RCA implementation performs better than the CSA implementation in terms of

bothpower andarea. However, the area ofRCA implementation increases drastically

at 4.5Vwhich impactsits bus power. Asa result, it has higherpower and area at volt

ages below 4.5 V. Further, it does not yield a feasible implementationbelow 2.75 V

while the CSA version yields a feasible solution even at 2 V, giving about 2x power

and area savings over the best RCA version.
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Figure 5.6. Power and area curves for implementations of a Volterra filter with
carry select and ripple carry adders.

5.3. Case study: the Avenhaus filter

In this section an eighth-order bandpass Avenhaus filter example [4] is used to illus

trate the top-downoptimization fiow, highlighting both general and specific issues at

each stage. We consider the filter structures proposedin [25]to implement the Aven

haus transfer function. While these structures were further studied in [92] for com

plexity and area comparisons, no study has been done to compare these structures

based on power consumption metrics.

We assume that the designer is required to implement an Avenhaus filter with an

overall throughput constraint of 2.75 MHz imposed by the surrounding system. He/

she is firee to select the filter structure, the supply voltage, the clock period, the spe

cific transformations, and the final assignment strategy. Westart with a preliminary

evaluation, comparing various structures that can be used to implement the required

transfer fiinction. Next, we explore the design space appl3dngseveral transformations

and supply voltages,acceptingor rejecting them based on evaluations firom the high-
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level estimators. After narrowing down the design space, we use architecture-level

analysis to verify and refine our design decisions. We conclude with a review of the

power savings achieved at each stage of optimization.

5.3.1. Preliminary evaluation

We first consider different structural implementations ofthe Avenhaus filter pro

posed by Crochiere [25] —cascade, continued-firaction, direct-form n, ladder, andpar

allel structures. We first estimate the power consumption of each aggnmiTig a

straightforward implementation ofeach structure with a 5V supply voltage anddock

firequency chosen so that each operation completes in one dock period. The resulting

estimates are presented in Table 5.2. In order toexplain the differences in power dis

sipation, thetable also presents several key parameters that influence thepower con

sumption — the maximum throughput (critical path and Tna-jrimmm sample

firequency) and the complexity (operation count and required word length). The

throughput is obtained from the Synergy S3^tem using the Lager low-power cell

library [14]. The energy numbers presented are obtained at a firequency correspond

ing to the maximumpossible sample firequency for each structure.

Table 5.2. Preliminary analysis of the various Avenhaus filter structures.

Critical
path (ns)

Max.

sample freq.
(MHz)

Word

Length

Number

of

multiplies

Number

of

additions

Energy
(nJ)

Cascade 340 2.94 13 13 16 27.7

Continued fraction 950 1.05 23 18 16 89.5

Direct form II 440 2.27 19 16 16 59.5

Ladder 1224 0.82 14 17 32 52.1

Parallel 306 3.27 13 18 16 36.1
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It is dear that the complexity ofan algorithm has a msgor impact onthe power con

sumed —the cascade and parallel implementations havethe lowest operation counts

and the smallest word lengths and also the lowest energies. Increased wordlengdis

contribute to largerphysical capacitance andincreased activity andhigher operation

counts result in incresised activity and may also necessitate increased hardware

routing, resulting in larger wiring capacitance.

In the current forms, onlythe cascade and parallel structures canmeet the 2.75MHz

throughput constraint at 5V, the critical pathsofthe olher threebeing too long. Since

transformations canhave a largeimpact onboth the critical paths and the operation

counts, we also evaluate transformed versions of each of the structures instead of

simply eliminating the other three.

5.3.2. Progranunable vs. dedicated hardware

One transformation that canbevery useful in power reduction is expansion ofmulti

plications withconstants into additions andprogrammable shifts. This may result in

lower power requirements since only additions andshifts corresponding to I's in the

coefficient areperformed while an arraymultiplier implementation performs an addi

tion for every bit ofthe coefficient even if it is a 0. On the other hand, the dedicated

array multiplier performs shifts by hard-wired routing, while the add-shift version

uses programmable shifters, latches partial products between stages, and requires

additional control. In certain cases the overhead due to shifters, latches, and addi

tional control can offsetthe gains from the reduced additions. The effectof this trans

formation on the critical path depends on the specific example being considered.

The critical path and energy values (at thecorresponding maximum sample firequen-

cies) afterconstant multiplication expansion are shown in Table 5.3. Not only is the

power consumption increased, all the structures have longercriticalpaths and lower

voltages cannot be tried. This transformation is therefore rejected for all the exam-
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pies. It is important to note that this is not a general conclusion about constant-mul-

tiphcationexpansion and the trade-offs must be evaluatedon a case-by-case basis.

Ikble 5.3.

structures.

Results of constant-multiplication expansion for the Avenhaus

Critical

path (ns)

Max. sample
frequency

(MHz)
Add Sub Shifts Energy (nJ)

Cascade 361 2.77 38 23 51 43.5

Continued fraction 1104 0.91 68 50 116 98.7

Direct form II 440 2.27 54 40 91 95.6

Ladder 1406 0.71 36 31 46 75.4

Parallel 437 2.29 40 30 63 61.3

5.3.3. Critical path reduction and voltage scaling

In their currentforms we cannot reduce the voltage for any ofthese designs and still

meet the throughput constraint. Since decreasing thecritical pathopens thepossibil

ity ofvoltage reduction and canhavea largeimpact onthe power dissipation, we next

try to decrease the critical paths using pipelining. The resulting critical paths

obtained with various levels ofpipelining are shown in Table 5.4. It is seen that some

ofthe filterstructures that could not meetthe throughputconstraintinitiallybecome

feasible, while thosealreadyfeasible become faster. Theoptions that result in feasible

solutions are highlighted.

We generated Explore curves with varying voltages at 2.75 MHz sampling fi-equency

to compare these solutions. Figure5.7shows the curves for the designs that result in

lowest power dissipation for each structure.It is seenthat voltages (andenergies) can

be appreciably reduced for all examples (except the continued fraction) byapplying

pipelming. Further, the optimum level ofpipelining is not always equal to the maxi

mum pipelining due to the overhead introduced by pipeline registers. For example.
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Table 5.4. Critical path reduction throughpipelining^.

Original 1 stage 2 stage 3 stage 4 stage 5 stage

Cascade
- -

Continued fraction 950 850 - -

Direct form II 440 - - - -

Ladder 1224 612 432

Parallel 306
- - -

1.The critical path should beless than 364 nstomeet die 2.75 MHz throughput constraint.

the maximally pipelined version ofthe cascade lead to a miniTmim energy of5.1 nJ,

about 15%more than the two-stage pipelined version which consumes 4.4 nJ.

parallei^^scade

Voltage (Volts)

Figure 5.7. Voltage reduction (and its effect onenergy) after "optimal" pipelining.

The results from the exploration curves are summarized in Table 5.5. It is apparent

that the cascade andparallel versions stillyield the bestquality solutions. Therefore,

at this point we remove the continued-fraction, direct-form, and ladder structures

from consideration. We do not eliminate the parallel form at this stage since it gives

results close to the cascade, and the errors inherent in the high-level estimationtools

does not allow us to resolve differences that are so small.

In ordertoselect the supply voltage weexamine the area penaltyassociated withvolt

age reduction for the cascade and parallel form structures. The area exploration
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Table 5.5. Effect ofreducing voltage for the pipelined versions.

# stages Critical
path

Minimu
m voltage

Energy
(nJ)

Area

(mm^)
Cascade 2 136 1.75 4.4 157

Continued fraction 1 850 - - -

Direct form II 1 132 2.00 12.3 374

Ladder 5 216 2.50 14.5 126

Parallel 2 102 1.50 5.3 411

curves are presented in Fig^e 5.8. It is seen that the mininmTn voltages are accom

paniedbylargearea penalties. However, at slightly higheroperating voltage ofabout

2V, the area penalties are much less severe and, the energies are not significantly

higher (Figure 5.7). The Explore curves allow the designer to evaluate the areapen

alties associated with parallel implementations and make informed decisions based

onthe area-energy trade-offs. In this case study we avoid the large area penalties by

selecting a 2V supply voltage.

parallel

cascade

Voltage (Volts)

Figure 5.8. Area trade-offs forthe pipelined cascade and parallel versions.

A large number ofpower reduction techniques are available for optimization at the

algorithm level (refer Chapter 2). The purpose ofthis case study is to present a gen

eral methodology and show how high-level tools can be used to facilitate the selection
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of these techniques, rather than to enumerate all possible implementations of the

Avenhaus filter. Instead offurther algorithmicexploration, therefore, we nowlookat

architecture-level optimization and analysis to refine and verifythe decisions made

so far.

5.3.4. Architectural exploration

Using algorithm-level powerestimation and explorationtools, we have been able to

narrow the designspace to twofilter structures, the cascade and parallel forms, with

two stages ofpipelining each, operatingat 2.75 MHz samplingspeed 2 V supply

voltage.

We now S3nithesize the selected algorithms and use architectural power analysis to

evaluate and refine the results. Analysis tools at the architecture level provide the

accuracy required to make more fine-grained choices and to evaluate the effects of the

synthesis stepsperformed after algorithm-level exploration. We use sampled speech

data as input for architecture-level simulationand power analysis. A detailedbreak

down of the energy estimates at the algorithm and architecture levels is given in

Table 5.6.

Table 5.6. Comparing algorithm- and architecture-level estimates for the nascade
and parallel forms.

Cascade Parallel

Algorithm Architecture Algorithm Architecture

Exu 2.42 1.65 3.27 2.05

Registers 0.59 0.50 0.64 0.52

Control 0.62 0.62 0.73 0.73

Buffers 0.08 0.06 0.09 0.06

Mux - 0.18 - 0.21

Bus 1.01 1.04 1.31 1.31

Clock 0.31 0.25 0.38 0.33

Tdtal 5.03 4.30 6.42 5.21
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Since it does notaccount for thehighly correlated nature ofthespeech inputdata, the

algorithmic power estimator overestimated the power consmned by the execution

umtsby 47% for the cascade and60% for theparallelversions. It is important tonote,

however, that the errorsin the algorithmic power estimates are systematic over-esti

mates rather than random errors since the input data used for both designs is the

same, showing that relative classifications made during algorithmic design space

exploration are meaningful.

Based on the accurate architecture-level estimates, we are able to select the cascade

filter as ourfinal low-power implementation. This design canbefurtheroptimized at

the architecture level using techniques that will be proposed in the next few chapters

of this thesis: exploiting locality and regularity of the algorithm. Here we simply

present a further improvement obtained firom assigning the operations to hardware

units to maximize the locality ofthe data transfers in the implementation. It is

seen that this approachreduces the powerconsumption of the buses and functional

umts(Table 5.7). The ideaofexploiting locality for low power is developed extensively

in Chapter 7.

Table 5.7. Reducing power at the architecture level through local assignment.

Default assignment Local Assignment
Exu 1.65 1.44

Registers 0.50 0.50

Control 0.62 0.62

Buffers 0.06 0.07

Mux 0.18 0.18

Bus 1.04 0.29

Clock 0.25 0.25

Tbtal 4.30 3.35
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Further improvements can be obtained by logic and circuitlevel optimization ofthe

different components in the architecture which are not discussed here.

5.3.5. Gains from design space exploration

Table 5.8illustrates tiielargegains obtained (27x) byexploring the design space over

different algorithm structures, transformations, and supply voltages. Selecting the

correctalgorithm (cascade) saved a factor of3 in power, compared to the worst case

(direct form). Moreover, the direct form (at 89.5 nJ) could not achieve the required

2.75 MHz sampling rate. If the algorithms were compared for the same throughputs,

the cascade would actually be even more than 3x better. Counter to what we may

expect, expanding multiplications into shifts and adds is not beneficial in tVtig case

and increased the power dissipation. Transformation for reducing critical path, e.g.

pipelining, is found to further reduce the power by a factor ofmore than 6. Finally,

local assignment helped to reduce the power by another 22%.

Table 5.8. Summary of power savings obtained by exploring the algorithmic and
architectural space for the Avenhaus filter implementation.

Inputs Voltage (V) Energy
(nJ)

Overall

power

reduction

Worst algorithm (direct form) UWN 5.0 >89.5 1

Best Algorithm (cascade) UWN 5.0 27.7 3x

Cascade (after constant-multiplication
expansion)

UWN 5.0 43.5 2x

Pipelining (no area constraint) UWN 1.5 4.4 20x

Pipelining (with area 100 mm^) UWN 2.0 5.0 18x

Architecture-Level Estimate Speech 2.0 4.3 21x

Assignment for Locality Speech 2.0 3.3 27x
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5.4. Summary

In this chapter, we have illustrated the importance ofhigh-level exploration andthe

value ofanintegrated top-down design environment for power optimization. An explo

ration framework is presented to rapidly evaluate several points in the algorithmic

design space. Some ofthe various degrees offreedom available at the high levels are

highlighted and orders of magnitude power savings are demonstrated on several

examples.

Lastly, anextensive case study ispresented todemonstrate theuse oftheoverall top-

down CAD environment. The case study takes the reader through the design flow,

indicating the low-power techniques apropos to each stepand describing how a hier

archy of analysis and optimization tools can be used to converge to a desired low-

power solution. The proposed approach is shown tolead tomore than an order ofmag

nitude reduction inpower. This isachieved by a thorough search of the design space,
which would nothave been possible without theassistance ofhigh-level design tools.
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Interconnect Power

Therest ofthe thesis focuses onarchitecture-synthesis approaches forpower minimi

zation.Before considering any techniquesin this direction, it is worthwhileto analyze

somedesigns to identify powerbottlenecksand opportunityareas at the architecture

level. In a given design flow, optimization opportunities at the highest level are unre

stricted by prior decisions, while opportunities at lower levels are limitedby choices

made earlier in the design process. In particular, the effectofarchitecture-level tech

niques is restricted by decisions taken at the system and algorithm levels. For exam

ple, the number ofoperations is flxed bythe algorithm and cannot beaffected bythe

choice ofthe architectiure. Therefore, it would beexpected that the architecture syn

thesis tasks ofallocation, assignment, and scheduling would havevery little effect on

the power consumed by the flmctional units. In fact, architecture synthesis tasks

affect the functional umt power only bychanging the activity oftheir input signals.

Thekey, therefore, is to target those elements that are highly influenced by thearchi

tecture and depend relatively less on the decisions made at higher levels. In the fol

lowing section we compare manual and automated design implementations and

identify the interconnect as a significant bottleneck in automated approaches. We

alsoshow that the interconnect power is greatlyinfluenced byarchitecture-level tech

niques.

Sections 6.2 and 6.3 overview related work in interconnect optimization anH estima

tion, respectively. In Section 6.4, we present extensive models for the interconnect
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power to allow us to evaluate the results ofsynthesis approaches presented in the

next two chapters.

6.1. Interconnect —a bottleneck in overall power dissipation

We begin with a study performed by Wu [133] that compared two different implemen

tations — an automatically-generated maximally time-shared version and a manu

ally-generated fully-parallel version—ofa QMFsub-band coderfilter. This filter is a

typical exampleofDSP applicationsthat are targeted in this thesis.

In the manual design, a number ofoptimizations were used to obtain power savings

in the various components. The powerconsumption ofbothversionsis documented in

Table 6.1 and the layouts are shown in Figure 6.1. Forthe same supply voltage, an

improvement ofa factor of10.5 wasobtained at the expense ofa 20% increase in area.

Table 6.1. Power consumption in the various components for the fiilly-parallel and
maximally time-shared implementations.

Time-shared Fully-parallel Improvement factor
Functional units 8.52 1.03 8.3

Registers 9.76 1.08 9.0

Buses 23.69 1.40 16.9

Multiplexors 3.77 0.25 15.1

Buffers 4.36 0.35 12.5

Others 23.99 2.92 8.2

Total 74.09 7.03 10.5

The breakdown ofthepower consumption ofthe two versions is shown in Figure 6.2.

The interconnect elements (buses, multiplexors, and buffers) consume a large per

centage ofthetotal power (43%) in the time-shared version. Moreover, large improve

ment factors wereobtained forthe interconnect components —16.9,15.1, and 12.5 for

buses, multiplexors, and buffers, respectively —compared to the thosefor other com-
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Figure 6.1. QMF sub-band coder filter [133]: (a) maximally time-shared version,
(b) fully-parallel version.

ponents. These improvements are mainly due to dedicated communication and

reduced usage of multiplexors and buffers in the manual design (Table 6,1). As a

result ofthese optimizations, the contribution ofthe interconnectpowerwas reduced

to 28% of the total power (Figure 6.2b). The above observations point to two facts —

(i)interconnectcomponents mayconsume a largepercentage ofthe totalpowerand (ii)
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Figure 6.2. Percentage power breakdown for the QMF filter: (a) time-shared
version, (b) fully-parallel version.

theirpower consumption ishighly influenced by architecture-level design decisions —

both ofwhich indicate a high potential for power reduction bytargeting the intercon

nect at the architecture level.

It is seenin the above example that maximsd hardware sharingdoes notgive the best

results for power optimization. In fact, typical designs firom the Hyper synthesis

system have shown that buses alone consume 10to 40% ofthe total power and the

interconnect elements together contribute 15-50% of the total power (refer

Figure 4.2). In general, areacan be traded-ofif toa certain extent to reduce the power

consumption in buses, multiplexors, and control. While in the above example, the

fully-parallel implementation resulted in large powersavings withlow areaoverhead,

thismay notalways bethe case. Completely parallel implementations may betoo area

intensive and maynot necessarily result in reduced interconnect power. If the area

overhead is too high, the increase in the required bus lengths (andcapacitances) may

offset power savings due to other factors.
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The architecture-synthesis techniques presented in the nexttwo chapters to cap

ture some of the optimizations made manually in the above example through auto

mated techniques while maintaining a balance between the maximally time-shared

and the fully-parallel implementations.

6.2. Related work in interconnect optimization

Originally, most high-level systems focused on functional-unit optimizations. Inter

connect mapping was performed after scheduling and functional unit allocation and

assignment, and usually even after register allocation. This reduced the degree of

freedom for interconnect optimization. Recently however, there has been a growing

interest in interconnect optimization in the high-level synthesis arena. In [76],

McFarlandshowed that the interconnect can have a first order impacton the quality

of the overall design. The interconnect trade-offs were examined in [591 by studying

several examples synthesized with the Mahal synthesis system.

Several synthesis systems have incorporated interconnect minimization as one of the

primary goals, accountingfor it even during operator assignment. The Facet synthe

sis system attempts to explore the designspaceto minimize the functional units, reg

isters, and interconnectionunits (multiplexors) using clique partitioning schemesfor

each of the optimizations, and user input to determine their priorities [123]. One

drawback is that they donot account for the cost ofbuses. Mandalet al. integrate a

measure of interconnect area into a well-known clique covering algorithm to allow

simultaneous reduction ofregisters and interconnections [71]. In [118], Stokproposes

an annealing-based approach incorporating interconnect costs along with functional

unit costs during scheduling. Park presented an approach to interconnect optimiza

tion based on path sharing [90]. This approach is closely related to some ofthe inter

connect optimization ideas in this thesis and is discussed in Chapter 8. Partitioning

approaches for interconnect cost reduction are explore in APARTY [61] and the
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BUD[77] systems. These are dosely related to the techniques presented in Chapter 7,

where they are discussed in further detail.

Allthe worksmentionedabove have studied the problem ofinterconnectoptimization

for area. Ours is the first work that considers the tasks of interconnect power reduc

tion. The twoproblemsare different in that while area reducing techniques reduce the

number of interconnect wires, power reduction methods must also consider the cost of

accessing them. In other words, for power minimization, it is important to reduce the

accesses to the long buses rather than simply reducing the total number ofbuses. This

topic is addressed in the next two chapters.

6.3. Related work in interconnect estimation

Several research works in the literatiurehave addressed the problemofinterconnect

estimation and the closely related problem of layout area estimation fi:om both the

high and logic levels.

Aclassical approach is basedonthe Rent'srule [62] which gives an empirical relation

ship betweenthe number ofgates in a wellplacedgate array and the number ofexter

nal connections (pins). The rent's parameter is determined empirically for various

classes ofcircuits. Feuer showed that for a circuits that followed the Rent's rule, the

wire length distributions q(r), are of the form q{r) = where p was the

Rent's parameter and r was the wire-length [30]. Masaki also uses a rent's rule based

model for interconnect length estimation in [74].

Some models target a specific cell placement strategy. Forexample. Hellerpresented

a stochastic model forwirelengths assuminga 1-dimensional placement ofcells [45],

and El Gamal extended this model in [33] to address a twn.HiTTiAnaiminl placement

strategy. Standard cell estimation models are presented in [60,117]
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Another approach is based on adding up shape functions of the basic cells in a design

and hierarchically constructing the shape functions ofthe bigger blocks. Interconnec

tions between the child blockscan be incorporated in the shape function model of the

parent blocks. This approach is used in [77, 137]. A hybrid approach combiningthe

shape function based scheme with analytic models is reported in the LASTlayout

area estimation system [60].

We propose a layout area and bus length estimation scheme targeted at our architec

ture model and placement strategy. Several concepts from the techniques mentioned

above are used in our estimations and are explicitlymentioned.

6*4. Bus and clock capacitance models

In this sectionwe present modelsfor predicting the bus and dock power at the archi

tecture level.Sincethe synthesis techniques presented in the next twochapters target

interconnect power reduction, good estimates of these components are important to

derive meaningful condusions. We therefore spent considerable time generatinglay

outs for several designs to build extensive models for the bus power estimation.

The bus power consumption is determined by the physical bus capadtance and the

assodated activity. The capacitance switchedper access is composed oftwo parts —

that due to the capacitive loadon the wire and that due to the capadtance ofthe wire

itself. The loading on the buses is modeledby adding a fixed load of50fF (about 2 min

imum sizedinvertersin 1.2micron technology) for eachfan-out andfan-in. Thecapac

itance of the wire directly depends on the wire length, which is not determined until

after placement and routing and is therefore estimated using an empirical model.

Once the bus lengths are determined, the wiringcapacitance is calculated nging the

average capacitance per unit area and Mnge capacitance per unit length of metall

and metal2 layers. Thewiring and loadcapacitances are addedto obtainthe physical

capacitance ofthe bus which is combined with the activity model to derive the power

dissipation.
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Bus lengths are obtainedfrom overall area estimates whichare based onthe stochas

ticmodels described in Section 4.3.3. These are repeated here for conyeniencei

= S +aAct +«2^6<fc^6„Act (Eq. 6.1)

^ =yj^l (Eq. 6.2)

Fordetails ofthese models andthevalues oftheconstants, ocq, Oj, (X2, andythereader

isreferred to Section 4.3.3. The model parameters, andiVfci^, that areesti

mated at thealgorithm level areexactly known at thearchitecture level. Also, thebus

accesses are exactly known and information onsignal activity at block inputs canbe

obtained from simulation.

Although bus lengths are still modeled stochastically, estimates at the architecture

level can incorporate some effects from the floorplanning androuting stages. In order

toallow this, we use physical model in addition to the architecture specification.

6.4.1. Physical model

Recall that in the architecture model, each functional unit has register files at its

inputsand, ifrequired, inputmultiplexors and output buffers (Figure 1.1). The func

tional unit, along with the associated registers, multiplexors, and buffers is called a

functional unit set. Fimctional unit sets communicatewith other sets via the intercon

nect network.

Keeping this architecture in mind, the physical model shown in Figure 6.3 is used.

The model accounts for the floorplanning strategy used in the Hyper synthesis sys

tem. In this model, two or more functional unit sets may be grouped into the same

datapath. While communication between datapaths occurs through global buses,

within thedatapaths, units arestacked in a bit-slice fashion and over-the-cell wiring

isused for communication between them. Additionally theplacement ofthedatapath

is assumed to be in two rows connected by the interconnect network as shown. This
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Figure 6.3. Routing strategy: (a) typical floorplan with inter-datapath buses and
dock routing, (b) intra-datapath routing in a typical datapath.

inter-datapath routing strategy is depicted in Figure 6.3a and the intra-datapath

routing in Figure 6.3b.

The physical model allows the consideration ofseveral refinements to the area model

to accoimt for changes in the synthesis styles. For example, any desired dustering of

functional unit sets into datapaths can be specified and the physical model can be

used to distinguish between the global and local buses.

6.4.2. Incorporating effects of datapath clustering

Buses are divided into two main categories — inter-datapath and intra-datapath —

and different models are used to estimate their lengths. The estimation is performed

hierarchically, estimating the intra-datapath lengths first, and using this information

in the calculation of the global bus lengths.
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Intra-datapath connection lengths are estimated using a linear model, called the

stacked datapath model. The average length of over-the-cell connections is estimated

to beproportional to the cumulative heightofthe units in the datapath. Theconstant,

Y, is empirically evaluated to be 0.3.

i = r (Eq. 6.3)

Inter-datapath buses are modeled using Equations 6.1 and 6.2.This modelis used for

global buses for the entire chip and also for inter-datapath buses that are concen

tratedon a certain partofthechip. In each case, refers totheregion in question

(whole chip or certaun part).

The user is allowed tospecify any clustering offunctional unitsets into datapaths. If

no clustering is specified, each functional unitsetis assumed tobeina separate data

path and all buses are assumed to beglobal. If a clustering offunctional unit sets is

specified, it is assumed that units that arein thesame cluster areplaced physically

close to each other. In particular, all umts in a cluster, besides arrayelements such

asmemories and array elements, aremerged into a single datapath andthearrayele

ments are placed nearby.

The lengths of thewires within thedatapath use the stacked datapath model. Since

array elements cannot bestacked onto datapaths, tibe wire lengths for clusters with

array elements iscalculated using a hybrid ofthe stacked and inter-datapath models.

For buses between umts other than the array elements, lengths are estimated using

thestacked datapath model. Fortheconnections tothearrayelement, theinter-data-

pathmodel (Equations 6.1 and 6.2) is used whereA^toZ is theestimated cluster area,

the active area, A^cf, is the sum of the areas of all the units in the cluster and the

number of buses includes all buses that transfer data firom the array element toany

other unit in the same cluster.
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Global buses betweenthe variousclusters are modeled by the inter-datapath model.

In this case,Afoto/ refers to the overall area of the chip, A^ is the sum ofthe total

areas of all the clusters (computed as explained above) and is the number of

global buses. The model is thus hierarchical — at the overall chip level, each cluster

is a black boxand only the buses in between them need to be considered;within each

cluster, onlymodules in the cluster and the internal inter-datapath buses are consid

ered.

Figure 6.4 compares the average measured length of the wires in the datapaths with

those predicted by the stacked datapath model. Points on the dotted line indicate

exact estimates.

1500

^1000

500 1000 1500

Measured lengths (X)

Figure 6.4. Validation of the linear model for intra-duster buses.

The inter-datapath bus-length modelwas validated for dustered and non-partitioned

versions of three designs (Table 6.2). Though the model was accurate to within 20%

for non-clustered designs, it overestimated the bus lengths for the dustered designs.

This appears to be due to the fact that undustered implementations have many small

blocks while the clustered designs have few large blocks at each level of hierarchy

leading to a different behavior. This can be addressed by re-evaluating the coeffidents
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ofthe inter-datapath modelfor clustered designs. Note that the over-estimation ofbus

lengths, and therefore the capacitance, in the clustered designs leads to conservative

over-estimates of the power relative to undustered designs.

Table 6.2. Measured and estimatedglobal bus lengthsfora few designs.

Name
Measured bus

lengths
Estimated bus

lengths
Percentage
difference

Non-

partitioned
designs

FFT 3.87 3.89 +0.5

Parallel IIR 3.53 3.34 -5.4

Wave digital 1.56 1.29 -17.3

Cascade 2.10 2.82 +34.3

Partitioned

designs

FFT 1.49 3.01 +102.0

Parallel IIR 2.18 2.24 +2.8

Wave digital 0.41 1.18 +188.0

Cascade 0.95 2.73 +187.4

6.4.3. Incorporating effects of large variances in feui-out/fan-in

At thegate level, wire lengths are modeled as being directly proportional to the fan-

out ofthe wire [74] but this effect is largely ignoredin conventional architecture-level

models [60, 80]. This is because in a bus-based interconnect architecturewith maxi

mal bus multiplexing, the fan-outs andfan-ins ofbuses show very low variances and

thefan-outs ofbuses areassumed tobe constant over the entire design.

Here we consider some scenarios in which this may not be true. In a multiplexor-

based interconnect architecture, each unithas a dedicated output bus and thefan-out

of each bus is thesame as that of the corresponding unit. Therefore, large variances

in bus fan-outs may be seen. Sunilarly, in a tiistate-buffer based interconnectarchi

tecture, each unit has a dedicated bus at each input port and the fan-ins are deter

mined by the sources to that input port. Also, certain design styles or synthesis

schemes may optimize a selected set ofbuses thus producing large variances in bus
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fan-outs. In these cases, the constant fan-out model is not valid. In this section we

present a new model that accounts for the large variances in fan-outs.

After examining several designs we found that the linear relationship between fan-

out and bus length [74] holds even at the high level. The length of any bus, i, is esti

mated asLpp times itsfan-out, Ff, asgiven inEquation 6.4. Lpp represents thelength

ofa bus with single fan-out and is constant over all buses for a given design.

Li = FiLpp (Eq. 6.4)

Thelength,L^p, ofa single fan-out bus is assumed to be proportional to the square

root of the area of the chip (Equation 6.5).

^pp " '̂ *j^chip (Eq* 6*5)

Using equation 6.4, the total wiring area on the chip is given by Equation 6.6, where

Niis the number ofbits in bus i, Wp is the wiring pitch and y is the sum ofthe fan-

outs times the number of bits over all buses.

Kire =
i

P PP^ I I
i

= P PP

The total area ofthe chipis the sum ofthe activearea ofthe datapaths and the area

consumed bythe wires. Sinceour designs are targeted fordatapath intensivedesigns

we ignore the area consumed by the control. The total area is therefore given by

Equation 6.7.

"^chip ~ ^act wire
act p PP''
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Substituting Equation 6.7 for the chip area in Equation 6.5 gives thefollowing qua

dratic equation for L^p :

^Ip = OEq. 6.8)
Solving this equation gives the following closed form expression for :

^pp =—2a''

The constant in the model, y» wasfound experimentally in the following way. Afew

algorithms were synthesized using both theHyper andthe E-template based synthe

sis system and layouts were created iising a silicon compiler. Lpp was determined by

summmgup the lengths ofall buseson each chipand dividing bythe total number of

fan-outs over all buses, and the active area wasmeasured from the layout. Thescalar

constant,%was determined from Equation 6.8 to be 0.72, 0.80, 0.81, 0.88 and 0.80,

0.68for the six chip-layouts generated. Themean value ofy, 0.78, was selectedfor our

model.

6.4.4. Activity model

A critical differencebetween behavioral and architectural estimates lies in the knowl

edge ofthe activity. At the behavioral level, since hardware sharing and scheduling

are not yet performed, the activity at the inputs of the hardware blocks is unknown

and uniform white noise model is used. Under this abstraction, the activity in any

component is given simply by the number of accesses to it. While the number of

accesses to functionalunits is easily determined fromthe behavior, those to buses is

not, and a stochastic model based onthe number ofedges was used (Equation 4.10).

At the architecture level, information ofboththe hardwaresharingand the schedule

is available and the exact number of accesses to each component (functional units.
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buses, registers, etc.) is available. Further, the signal statistics at component inputs

can be captured by simulating the design with typical input sequences (profiling).

This allows us to use an activity-sensitive model for effective capacitance instead of

the white-noise one. We use the DBT activity model fi:om the SPA [65] in our archi

tecture-level estimations.

6.4.5. Clock models

The bus models presented in the previous section were modifiedto calculate the dock

power. The length ofthe clock wire consistsoftwoparts as shownin Figure 6.3—the

lengthofthe routingtothe border ofthe various datapaths and the lengthofthe dock

routing inside the datapaths. On a set ofexampledesigns, the length ofthe dock rout

ing to the datapaths was found to vary anywhere between one to three times the

squarerootofthe chip area. Within eachdatapath, the clock wire-length wasapprox

imately the height ofthe datapath. Based on these observations, the total length of

the dock wiring is estimated by the following formula:

length =2x^ChipArea +^Heightj (Eq. 6.10)
j

where the summation is performed over all functional unit sets j. To estimate the

loading onthe clock, we assume that the dockwasdistributed to aU the registers and

buffers on the chip and each offers a 25 ^ load to the clock (as obtained firom our cell

library).

6.5. Summary

Thischapterhas analyzed the importance ofinterconnect optimization andaddressed

some related issues. By studying the differences between manual and automated

design implementations, it was seen thatcurrent day behavioral synthesis techniques

produce architectures that are power-ineffident in the interconnect. It was also seen
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that thereis a large opportunity for decreasing the interconnect power byworking at

the architecture level.

Some related research in interconnect optinuzation as well as interconnect and

layout-area estimation arediscussed. Detailed interconnect power models incorporat

ing various architecture styles have been developed. These models are critical for

assessing the savings from architecture synthesis schemes targeting interconnect

poweroptimization whichis the topicofthe next twochapters.
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Exploiting Spatial Locality

In the last chapterwesawthe importance ofreducing interconnect power in an auto

mateddesign environment. Thischapterpresentsa specific technique that addresses

this issue. Hie technique is based on exploiting the spatial locality inherent in the

algorithm while synthesizing to architecture. Thechapteris organized as follows. Sec

tion 7.1 describes what exploiting spatial locality of an algorithm implies and dis

cussesits impactoninterconnectpower, Section 7.2reviews someofthe related work,

and Section 7.3 studies some of the main issues in more detail. Sections 7.4 and 7.5

present our approachfor exploiting locality. Results and conclusions are presented in

Sections 7.6 and 7.7.

7.I. The impact of exploiting spatial locality

The concept ofusingdistributed or localized computing for reducing power has been

used previously (e.g. memory and control partitioning). The main idea behind our

approach is to apply this concept to interconnect power reduction by automatically

synthesizing designs with localized communications. We achieve this bydividing the

algorithm into spatially-local clusters andperforming a spatially-local assignment A

spatially-local cluster is a group ofalgorithm operations that are dose to each other

in the flowgraph representation. A spatially-local assignment is a mapping of the

algorithm operations to specific hardware units such that no operations in different

clusters share the same hardware.
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Partitioning the algorithm into spatially-local clusters ensures that the majority of

thsdata transfsrs takeplace within clusters andrelatively few occur between clusters.

The spatially-local assignment restricts intra-cluster data transfers to buses that are

local to a subset ofthe hardware (local buses); thus only inter-duster data transfers

use buses that are sharedbyall resources (global buses). In general, since intra-clus-

ter busesare localized to a part ofthe chip, theyare shorter than the buses in the non-

spatially-local designs, while the global buses in the partitioned and non-partitioned

designs may be comparable in length. Also, since the local buses areconnected toonly

a subset of thefunctional units, th^ have a lower capacitive loadon them, while the

global buses are connected tomore functional units andhavea higher capadtive load.

The combined result is that the shorter, lightly-loaded, localbuses are used more fre

quently than the longer, heavily-loaded, highly-capadtive, global buses. Further,

buffer power is reduced sincesmallerbuffers are requiredto driveshorter wires. The

reduced hardware sharing also results in additional power savings due to fewer

accesses to multiplexors. The partitioning information is passed to the architecture-

netlist generation andfloorplanning tools which place thehardware unitsofeach spa

tially-local cluster close together in the final layout.

Consider the example ofFigure7.1 which shows two alternative mappings ofa single

flowgraph to a hardware configuration consistingof two adders. The two adders are

distinguished bytheir shadings. In Figure7.1a, all operations ofa tightly-connected

group are mapped to the samehardware (for example, a, b, e, and/are allmapped to

adder Aj). This does not hold in the assignment ofFigure 7.1b. Considering data

transfers in which a given adder outputs data toitselfand to its own inputsas local,

and those in which it outputs data to the other adder asglobal, we find that assign

mentsofFigure7.1aand7.1b have1and 9global data transfers,respectively (exclud

inginput and outputconnections). Since global buses are long and highly capacitive

compared to local ones, and also have higher capacitive load (they are connected to
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Figure 7.1. Example of spatially local and non-local assignments of a given
graph: (a) local assignment, (b)non-localassignment.

two adders compared to one for the local buses), reducing accesses to global buses

reduces the power dissipation.

As another example, consider a fourth-order parallel-form IIR filter. Local and non

local assignments ofoperations tohardware unitsareshown inFigures 7.2a and7.2b,

respectively (Aj are adders and Mj are multipliers). The non-local assignment is per

formed with the goal ofminimizing the use offunctional units. In Figure 7.2a, the

filter is partitioned into two spatially-local clusters andthe operations ofeach cluster

are mapped tomutually exclusive hardware units (Aj, A2, and Mx are used for oper

ationsin clusterI and A3, A4, and M2 are usedfor those in clusterII).Asa result, all

communications withinclusterI take place only between hardware units Ax, A2, and

Mx andthose within cluster II takeplace between unitsA3, A4, andM2. There areonly

two data transfers between the clusters which are global to the entire chip. In

Figiure 7.2b, on the other hand, operations are assigned to hardware units without
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Figure 7.2. Differentassignments ofa fourth-order parallel-form IIR filter: (a) local
assignment, (b) non-local assignment.

regard to their closeness. In this case, none of the communications are localized to a

subset ofhardware units and take place on global buses between all five units.

Several factors may affect the quality ofdesigns partitioned in this way. Firstly, the

local assignment may come at the cost ofextra hardw£ure. In the above exsunple, the

local version needs 4 adders and 2 multipliers whereas the non-local assignment

requiresjust 3 adders and 2 multipliers. However, this increase in the number offunc

tionalunits does not necessarily translate intoa corresponding increase in the overall

area since the localization of interconnect makes the design more conducive to com

pactlayout. Secondly, reduced hardware sharing results in additional power savings

in multiplexors and buffers. Thirdly, varying the number of clusters trades off local

and global bus power. In particular, as the number of clusters is increased, the

numberofinter-clustercommunications increases but the local bus lengthsdecrease.

In the following sections we review some ofthe relatedwork in partitioning, studythe
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above issues in greater detail and present a partitioning methodology that addresses

them.

7^. Partitioning — background

The key task in exploiting algorithm locality is partitioning the algorithm into spa

tially local clusters ofcomputation. In this section we present previous work in parti

tioning (Section 7.2.1), and review the main concepts behind spectral partitioning

(Section 7.2.2) which we use in our ssmthesis scheme.

7.2.1. Previous work in partitioning

Previous works in partitioning for high-level synthesis have targeted area minimiza

tion, with a significant portion of the gains resulting firom interconnect reduction. In

the BUD system [77], pairs of nodes are repeatedly merged based on three criteria:

number of common connections, possibility of executing them at the same time, and

possibility ofexecuting them on the same hardware type. In the APARTY system [61],

clusteringis performed in multiplestages: eachstage clusters nodes based on a par

ticular criterion such as reducing the number of control transfer, increasing hard

ware sharing, and decreasing data transfers.

In partitioning for lowpower,the goal is to reduce total dhippowerby reducing inter

connect power. One way in which this is done is by maximizing the number of accesses

to short local buses relative to long global ones. Note that in area minimization, the

number ofglobal buses is minimized. In power minimization, however, it is better to

have two global buses each accessed twice each rather than one bus accessed six

times.

Assuming that global buses are only used for data transfers between partitions, the

numberofaccesses to global buses is equalto the total numberofedges cut bya pro

posed partition, called the cut-size. Therefore, in partitioningforlow-power, the goal

is to minimize the cut-size. Since, in high-level synthesis, the cuts do not translate
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exactly into thenumber ofbuses required due tohardware sharing between unitsand

bus sharing between data transfers, high-level area minimization schemes in donot

aim at reducing the cut-size. Partitioning techniques at lower (logic, layout, andcir

cuit) levels, on theother hand, target cut-size minimization. Thus partitioning tech

niques usedin lower-level CAD are more useful for ourpurposes.

Avariety oftechniques have been used for partitioningat thelogic, circuit, layout

levels. These include iterative improvement methods such asKemighan andlin [54],

Fiduccia and Matheyses [31], and simulated annealing [57]; bottom-up aggregative

algorithms such as [130]; top-down recursive bi-partitioning [28, 103]; and spectral

partitioning techniques [3, 7,16,32,42,46,113,134].

We have developed a new behavioral-level partitioning method for low-power. The

basic idea is to derive anordering ofthenodes by using thespectral properties ofthe

graph and then heuristicallypartition this ordering. The theoretical results that form

the basis ofthis technique are presented in the next section.

7.2.2. Key ideas in spectral partitioning

Spectral partitioning methods use eigenvectors of the Laplacian of the graph to

extract a one-dimensional placement of graph nodes which minimizes the sum of

squares of edge lengths. This placement is then heuristically partitioned. The key

resultthat forms thebasis ofthis technique was presented by Hall [43], andis given

below.

Problem statement: find a one dimensional placements =(xj, ofthe nodes

ofa given weighted-edge graph that minimizes the weighted sum ofsquares ofthe

edge lengths.

Solution: LetAbe the weighted adjacency matrix ofthe graph, whereA,;,- is the weight

ofthe edge between nodes i and7; A,y =0 if there is no edge between i andj. The cost

function, z, that needs to be minimizedis given by:
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The following constraint is used to normalize the placement between -1 and 1:

|I| = = 1 (Eq. 7.2)

Define a degree matrix, D, as the diagonal matrix in which each diagonal element is

the sum ofthe weights ofall the edges connecting to the corresponding node. Thecost

fimction z canberewritten as (D-A) X. Thematrix Q^(D-A)is called the Lapla-

cian ofthe graph. The constrainedcostfimction is givenby the LagrangianL, as:

L=x'̂ QX-x[x'̂ X-l] (Eq. 7.3)

Setting the derivative ofthe Lagrangian, L, to zero gives Equation7.4.

(Q-'U)X = 0 (Eq. 7.4)

The solutionsto Equation 7.4 are those where A, is the eigenvalue and X is the corre

sponding eigenvector. The smallest eigenvalue, 0, gives a trivial solution with all

nodes at the samepoint. Theeigenvector corresponding to the second smallesteigen

value minimizesthe costfimction whilegivinga non-trivial solution. •

7.3. Effect of varjdng levels of partitioning

In the previous section the parallel-form IIR filter was partitioned into two clusters.

In general a designmay be partitioned into any number ofclusters, lii tV>ig sectionwe

studythe effect ofvaryingthe numberofclustersonthree designs —a direct-form IIR

filter, an 8-point DOT, anda fifth-order wave digital filter. Foreach, the power dissi

pation ofthe individualcomponents ofthe interconnection network,the combined bus

and clock, and the totalchip are shown for different numbers ofclusters (Figures 7.3-

7.5). The non-partitioned case is considered as a single cluster implementation.
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Figure 7.3. Effect ofvarying number of clusters on the power dissipation of the
various components: direct form IIR filter.
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Figure 7.4. Effect of varying number of clusters on the power dissipation of the
various components: discrete cosine transform (DOT).
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Figure 7.5. Effect ofvarying number of clusters on the power dissipation of the
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Withincreasing numberofclusters, several trends are seen. Asexpected, the local bus

powerreduces and the global bus powerincreases.This is becausethe Ipngtbsofthe

intra-duster buses reduce as clusters get smaller, and the lengths of global buses

increase as chip area grows. Furthermore, the number of accesses to local buses

decrease while accesses to global buses increase. Another distinct trend is semi in the

multiplexor power which reduces drastically due to increasingly restrictedhardware

sharing. The clockpower remains constant or increases due to an increased number

ofumts and therefore longer clock wiring. Although not shown, the register power

reduced sh^Uy while the power dissipation in the functional units and buffers

remainedthe same.Thereduction in register power canbeexplained as follows. With

more clusters, the number offunctional units is increased and the number ofvariables

to be stored in the register files associated with each unit is reduced. While the total

number ofregister accesses remain the same (determinedbythe number ofreads and

writesrequired). The reduced register file sizes results in lowercapacitance switched

per access and thus reduced register power.
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The total power reduces drastically aswe go from the iion-partitioned design (1 dus

ter) to the partitioned designs. After a certain number ofdusters, however, the total

power starts to increase. Eachexample has an "optimum" number ofdusters 7,4,

and4, for direct-form IIR, DCT, and wave digital filter, respectively. Notice that, in

Figures 7.3-7.5, thecombined bus and clock power fracks the total power dissipation

showing an optimum at the same level ofpartitioning. In our partitioning methodol-

ogy, we use an estimate of this value to decide the optimal number of clusters. Our

partitioning methodology is explained in the next section.

7.4, Overall low-power partitioning methodology

This section describes the partitioning methodology targetedat interconnect localiza

tion for low power. First the algorithm representation and the hyperedge model are

presented, then the overall methodology and the different phases are explained in

detail.

7.4.1. Algorithm representation

The input algorithm is represented internally asa data-flow graph. The nodes repre

sent operations and the edges represent data dependencies. Strictly speaking, the

edges are "hyperedges" since a node may have several fan-outs. Conditionals are

implemented in the datapath — all branches are executed and llie conditional test is

used to select the appropriate result. The representation can behierarchical, that is,

a nodemay itself be a graph havingnodes and edges.

While connections are represented in the algorithm as hyperedges, the partitioning

technique requires a representation in terms ofedges in thestrict sense (an edge isa

connection between only two nodes). Several models toreplace thehyperedge by edges

were examined. All ofthemreplace the hyperedge byedges between pairs ofnodes to

form a clique but differ in the weight assigned to the resulting edges.
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The hyperedge problemis similar to the one discussed in layout partitioning where a

net may connect several pins. In that case, the uniformly weighted clique model [67]

has been widely used. This model assigns a weight of 1/ (ife -1) to all edges in the

clique, where kis the number ofnodes in the clique (Figures 7.6aand7.6b). Ifa hyper

edge is cut, its contribution to the weight ofthe cut is exactly one irrespective ofthe

distribution of nodes across the net. At the layout level, the sum of wei^ts of the

edges cut by a partition under this model, one, exactly corresponds to the number of

nets cut.

Atthe high level, however, due tohardware and bussharing, the hyperedge does not

correspond to a single bus or data transfer. Consider the hjrperedge shown in

Figure 7.6a. Ifa cutremoves nodez from the rest ofthe clique, exactly oneglobal data

transfer will be required. However, if the cut isolates node a from the rest of the

clique, Ihe number ofdata transfers between clusters will he anywhere from 1 to 3

depending onhow the data transfers are assigned to buses. Therefore, a model that

weights the edges between nodes jc, y, and z less than tiie edges connecting a to the

nodes x,y, orz mayresult in better solutions. We propose two newmodels that dothis.

In the first model, we assign a lower weight 1/2 (A -1) on edges between the desti

nationnodes leaving the weights onthe otheredges \mchanged. In the second model,

we increase the weight of the edges that join the source to the destination nodes to

2/(^5 —1) while the weights onedges between the destination nodes is unchanged.

These two models are shown in Figures 7,6 c and d, respectively. Our experiments

showed that different models give the best result in different situations. In our clus

tering methodology, we try all three hjnperedge models and select the best one.

7.4.2. Overall partitioiiing flow

The goal ofthe partitioning methodology is to generate a single promising partition

for the purposes oflow-power synthesis. An overview ofthep£utitioning methodology

is shown in Figure 7.7. The eigenvector of the second smallest eigenvalue of the
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(a) (b) (c) (d)
Figure 7.6. Hyperedge models: (a) initial hyperedge, (b) uniformly weighted clique
model, (c) clique model with lower weights on edges between destination nodes, (d)
clique model with higher weights for edges connected to the source node.

graph's Laplacian is extracted and partitioned. The partitioning is done in two

phases. In phase I, several candidate graph partitions are generated. In phase II,

these partitions are evaluated and the most promising one is selected.

7.4.3. Phase I: finding good partitions

The goal of this phase is to propose a few partitions that are balanced and localized.

Multiple solutions are generated by using the different hyperedge models and by

varyingthe maximum allowed numberofclusters.Aswasseenin Section 7.3, increas

ing the number of clusters increases the number of global accesses and reduces the

size oflocal buses, resultingin lower local-bus and higherglobal-bus power. Generat

ing several solutions with different numberofclusters explores this trade-off.

The eigenvector placement obtained as described in Section 7.2.2 forms the nucleus of

the approach. It provides an ordering in which nodes tightly connected to eachother

are placed dose together. Furthermore, the relative distances are a measure of the

tightness ofconnections. Thespectral technique is specially suited to our needssince

the eigenvector is computed only once and generating several partitioning solutions

from it is computationally inexpensive.

Two main techniques are used to generate partitions from this ordering. This is

because graphrepresentations ofDSP algorithms canhavewidely varyingstructures
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in terms ofspatial locality. Consider the two examples shown in Figure 7.8. In Figure

7.8a there two distinct clusters which are also clearly visible in the corresponding

eigenvector placement. However, not all algorithms have a clearly (dustered struc

ture. Anon-clustered algorithm may still bevery partitionablein that it may be pos

sible to partition it sothat few edges are cut relativeto the total numberofedges. For

example, the graph shown in Figure 7.8b is not clustered but is partitionable since

only three edges are cutwhen it is divided intotwo equal parts.Notice that the eigen

vectoruniformly spaces the nodes in this case. Anothergood example is an FIRfilter
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Figure 7.8. Eigenvectors for sample examples: (a) example with natural clusters,
(b) partitionable example with no natural clusters.

1.0

structure which has no distinct groups ofclustered operations butcan beeasily par

titioned.

The aim of the partitioning methodologyis to detect natural clusters in the clustered

algorithms andfindgood and balancedpartitions in uniform, non-clustered cases. The

eigenvector placement provides a good starting point to address both cases. Large

gaps in the placement can be used as partition points in the first case and the order

of nodes can be used for partitioning in the second.

We first try to detect natural clusters inherent in the algorithm. Large gaps in the

eigenvector placement are used to indicate good points for partitioning. Since the

n

nodes arealways placed between -1 and 1due to the constraint = 1 imposed
i = 1

by Equation 7.2, the absolute values of distances between adjacent nodes vary

depending on the total number of nodes in each example. By a "large gap" we mean

thedistance between two adjacent nodes in theplacement that islarge relative todis

tances between other adjacent nodes inthesame example. The threshold for detecting

thesegaps is therefore relative tothedistances in thesame example. Several different

thresholds for identifying large gaps—m+o, m+2o,and m+3a—where m is the mean
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of the distances between adjacent nodes and a is their standard deviation, were eval

uated. Our experiments showed that although the m-fda threshold found most of the

clusters, some clusters were only detected using m+2a. In our methodology, we there

fore try the m+da threshold first. If no clusters are detected the threshold is reduced

to Smaller thresholds may be tried for a more exhaustive exploration of the

design space.

Solutions targeting up to 2,3,4, and 8 clusters are generated. This is done by varying

the constraint on the number ofnodes allowed in each cluster. Ifa mflYinmiTn ofx clus

ters is targeted, the smallest cluster size is fixed to be (jc+ 1)) where
n is the total number ofnodes in the graph.

Partition pointsare inserted in the 1-dimensional placementto mark large gaps based

onthe m+3oorm+2c metric. Thesepointsmark boundaries between different groups

of nodes. If a group detected has less nodes than allowed by tiie size constraint, it is

merged with oneofthe neighboringgroups.The decisionregarding whichneighboring

group to merge with, is based on the size ofthe gap between the groups (as calculated

fi:om the eigenvector). Thegap between two adjacentgroups in the eigenvector place

ment is the distance from the right-most node of the left group to the left-mostnode

of the right group. Clusters are thus identified using thresholding and subsequent

merging.

The main goal of the thresholding is to detect natural clusters inherent in the algo

rithm. As mentioned before, not all algorithms have natural clusters. Therefore, if no

clusters are found by thresholding, a second technique is appliedin which the eigen

vector placement is used simply as an ordering of the nodes. This placement is uni

formly partitioned into the targeted number ofclusters.Again solutions targeting 2,

3,4, and 8 clustersare generated. Depending onthe quality ofsolutions requiredand
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the time thattheuser wants to spend, agreater number ofpartitioningsolutions may

be tried.

7«4.4. Phase U: evaluating partitions

The generation ofcandidate partitions is based on TniniTni^ng the number ofglobal

bus accesses. The underlying assumption is that intradusterbuses in thepartitioned

implementation are significantly shorter than the buses in the original non-parti

tioned one. This assumption may not bold for designs in which the area ofany one

cluster is too large. The firstgoal ofthe evaluation phase is topruneoutunpromising

partitions based on area estimates. Further, the studies in Section 7.3 demonstrated

that as the number of clusters is increased, the local bus power reduces while the

global bus power grows. Also, the different byperedge models produce solutions of

varying quality.The second goalofthe evaluation phase is to explore these trade-offs.

Basedonthese twogoals, this phasefirst prunes out impromising partitions and then

compares the effectiveness ofremainingones basedon an estimate ofthe bus power.

In order to prune out solutionswith extremely large area overhead, we estimate the

area of the unpartitioned graph and each of the partitioned solutions based on distri

bution graphs [91]. Adistribution graph displays the expected number ofoperations

executed in each timeslot. Figure 7.9ashows a simple algorithm and the correspond

ing distribution graph. For an algorithm withdifferent types ofoperations, the total

weighted distribution graph is obtained by summing up the distribution graphs of

each operation type weighted by the area ofthe corresponding hardware. We use the

maximuni height of the total weighted distribution graph as an estimate ofthe area.

For clustered designs, distribution graphs are constructed for each cluster and the

sum of the area estimates over all clusters is used for the total area. These estimates

are usedto pruneoutsolutions withmore than 100% area overhead. Theallowed per

centage overhead can also be modified by the user.
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Figure 7.9. Distribution graphs for different candidate partitions of a given
algorithm: (a) unpartitioned, (b) candidate partition 1, (c) candidate partition 2.
Each operation's contribution is labeled on the distribution graphs.
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The remaining candidate solutions are compared based on the total bus power esti

mated using the following heuristic measure:

X (Eq. 7.5)
» = 1

where is the estimated areaofthe cluster i, jg munber ofedges (each

fan-outofa hyperedge is coimted as oneedge) local to the cluster, jgthe over

all area ofthe chip, ig the number ofglobal edges,and the summation in the

first termis done over all clusters. Eachterminside the summation canbethought of

as a measure ofthe local bus power in the corresponding cluster. The area ofthe clus

ter, îga measure ofthe lengths ofthe localbuses in it (refer to the bus length

model in Section 4.3.3) and therefore their physical capacitance, and the number of

local edges, ^jg a measure of the accesses to them (refer the bus access model

in Section 4.3.3) and therefore their activity. Thus, each term in the summation rep

resents the total capacitance switched in local buses in the clusterper sample period

andisproportional tothecorresponding power consumption at a given supply voltage

and sampling firequency. By a similar reasoning, the last term is a measure of the

power consumption in global buses, where the overall area, ^jg indicative of

the global bus lengths and the number of global edges, , is a measure of the

accessesto them. The costfunction givenbyEquation 7.5is thus indicative ofthe total

bus power associated with a particular partition. Recall firom Section 7.3 that the bus

power tracks the overall power dissipation as the number of clusters is varied. There

fore, the above heuristic provides a good measure for comparing various partitioning

solutions.
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As mentioned before, we use the height of the distribution graph as an area metric. In

the exampleofFigure 7.9,wesee that though the number ofedgescut bythe partition

in Figures 7.9b and 7.9c is the same (2 edges), the area penalty is higher in the first

case. As a result the total number of accesses to global buses is the same but the local

buses are longer and more capadtive in the first case. In this case the cost fimction of

Equation 7.5 identifies the secondpartition as being more optimal.

7.5. Partitioning based synthesis

This section explains our locality-basedsynthesis methodology and gives an overview

of the synthesis flow.

7.5.1. Design flow from algorithm to layout

Ourtechmques have been integrated into the Synergy^ high-level synthesis system.

The basic synthesis flow of the Synergy system is the same as that of the Hyper

system (refer Chapter 3), exceptthat a new partitioning step is added preceding the

other synthesis steps and the assignment algorithms are modified to exploit spatial

locality.The new synthesis flow is shown in Fig^e 7.10.

The core of the new system is the partitioning methodology describedin Section7.4.

Once the partitioning is complete, all operations have an assodated cluster number

andeach data transferisclassified as eitherglobal orlocal. Hie assignment technique

is basedonthe random initial assignment withiterativeimprovement approach ofthe

Hyper system with the added constraint that there is no hardware sharing between

clusters. The scheduling algoritiim is unchanged.

The concept of 'liadness'' in the Hyper allocation scheme (refer Section 3.1.5) is

extended to define a badness measure for each duster. For a given type ofunit and

cluster, the ''duster-badness'* is defined as the sum of the badnesses of all nodes of

1. The Synergy synthesis system incorporates theestimation and exploration environment explained in
Chapters 4 and 5 and thetwo synthesis approaches developed in thisandthenext chapter.
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that type in the cluster.Whenthe scheduling/assignment process fails, newunits are

allocated based on the badnessmeasure.When a new unit is allocated, it is allotted

to the cluster with the highest cluster-badness. Similarly, the cluster with the lowest

cluster-badness is used when resources are being removed.

Busassignment is also modified to account for the partitioning. Agiven pair ofdata

transfers are merged onto the same bus only if they are either bothglobal transfers,

orboth local transfers in thesame cluster. In theconstruction oftheconflict graph for

bus assignment, extra conflict edges are added to represent these partitioning con

straints in addition to edges due to timing conflicts.

The architecture netlistis furthercompiled to layout. Silicon compilation performs a

numberoftasks suchas tiling, placement, and routing to generate the final layout.
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The Lager silicon compiler [12], is used for this purpose.The partitioning information

is passed to the floorplanning tools which place hardware units of a given partition

close together in the final layout. As much as possible, all units in the same cluster

are placed in the same datapath. The output firom Lager is a physical layout of the

processor core.

7.6. Results

In this section we present the results of our partitioning-based synthesis scheme.

Implementations generated using the Synergy and Hyper systems are compared

using power estimates obtained firom SPA [65]. Bus and dock power estimates are

obtained using models presented in Section 6.4.2.

7.6.1. Cascade filter

Thefirst resultcompares Synergy andHyper implementations ofan eighth-order cas

cade filter. Figure 7.11 shows the eighth-order cascade IIRfilter andthe correspond

ingeigenvector placement. The spacings between the points in the placement dearly

indicate the four dusters that are evident in the structure.Using m+So as the thresh

old to decide the points ofpartition, we obtain dusters delimited bythe arrows. It is

interesting tonote that m+2G also works as a good threshold for this example.

Since all the multiplications in the design are multiplies with constant factors, they

are converted into shift and add operations to avoid the use of area-intensive multi

pliers.Thecritical path ofthe resultinggraphis 19dockcydes,withbothshifters and

adders takmg one clock cyde to execute. Given a throughput constraint of21 clock

cycles, the Hyper implementation uses four adders andthreeshifters while the Syn

ergy implementation uses one adderand one shifter for each cluster resulting in a

total of eight units.

Magic layouts of the two implementations (Figure 7.12) were obtained using the

Lager silicon compiler and the Flint placement and routing tool [12]. In the Hyper
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Figure 7.11. A eighth-order cascade-form IIR filter: (a) the
structure, (b) corresponding eigenvector.

implementation, 2 ofthe 7 functional units are merged by the floorplanning tool. In

the Synergy implementation the 2 units in each clusterare merged intoa single data

path and the 4 datapaths in the layout correspondto the 4 clusters.

The partitioning localizes the computation enabling more compact layouts to be

obtained. In the H3rper implementation, there are seven functional units that commu

nicate heavily with each other (the layout tool has merged two units into the same

datapath resulting in 6 datapaths). The Synergy implementation has eight units

divided into four clusters, with heavy communication within each cluster and few con

nections between the clusters.

Table 7.1 compares the power dissipated in the two implementations. An overall

reduction of35% in the power consumption was realized bythe Synergy approach. As

opposed to 106 accesses to global buses in the Hyper implementation, the Synergy

versionhas 95 accesses to local buses whichare short (0.27 mm)and only3 accesses

to longglobal buses(1.48 mm). Asa result, the bus power reduced3-fold, from 2.9mW
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Figure 7.12. Cascade filter layouts: (a) non-local implementation from Hyper,
(b) local implementation from Synergy.

Table 7.1. Comparison of power consumed in the Hyper and Synergy
implementations of the cascade filter.

Component Hyper Synergy Percentage reduction

Buses

Multiplexors

2.9

3.0

1.0

0.9

65.5

70.0

Clock 1.0 0.8 20.0

Buffers 0.9 0.8 11.1

Functional units 2.6 2.4

Registers .9 4.0

Ibtal 15.2 9.8

to only 1.0 mW. The mxiltiplexor power also reduced 3-foldas the reduced time-shar

ing ofunits resulted in lower usage ofmultiplexors. Note that the contribution of the

interconnect to the total power dissipation was reduced from 44% to 27%.



Forthis example functional unit power also reduced This is because signals within

spatially local clusters tendto be more highly correlated than widely separated sig

nals. Since spatisdly local assignment allows hardware sharing only between opera

tions in the same cluster, the resulting implementation is likely to have more

correlated inputs to each ofthe blocks. This results in lower activity and hence less

powerconsumption in the hmctionalunits. Bufferand register poweralso decreased

due to factors such as improved data correlations, reduced physical capacitance, and

fewer accesses.

7.6.2. Other examples

This section summarizes our experimental results for the cascade and several other

DSPfilter and transform examples. Some are in their original form (DOT, FFT, and

parallel-form IIR) and others are transformed using either constant multiplication

expansion (cascade-form IIR, direct-form IIR, and wavelet) or retiming (wave digital

filter).

Table 7.2shows the numberofaccesses to busesand multiplexors, and the estimated

buslengthsfor bothimplementations ofeach example. Theaccesses to global busesis

reduced drastically for all examples with very little change in the lengths of these

buses. Exploiting spatial locality moves a large percentage of the bus accesses firom

the long global buses tointra-cluster buses whose lengths are 80% shorteronaverage

than those ofthe global buses. In general, dueto reduced hardware sharing, there is

a decrease in the multiplexor accesses for all examples. The total number ofbuffer

accesses (including tristated and non-tristated buffers) is unchangedbecause a buffer

is used to drive every data transfer on a bus.

Table 7.3 shows the bus, multiplexor, and the overall power dissipation for both

implementations ofeach example. Tlie Synergy implementations uniformly dissipate

lesspower than the Hyper implementations. The corresponding percentage improve

ments are summarized in Figure 7.13. Power consumed by buses is reduced drasti-
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Table 7.2. Comparison ofbus lengths and bus and multiplexor accesses in the Hyper
and Synergy implementations.

Name

Hyper Synergy

Bus

accesses

Bus

length^

1.63

Mux

accesses

279

Number

of

clusters

Global
bus

accesses

Local

bus
accesses

Global
bus

length^

Average
local
bus

length^

Mux

accesses

109Cascade 106 4 3 95 1.48 0.27

Direct

form

202 4.93 1319 7 21 183 3.92 0.44 448

Wavelet 71 2.34 247 2 3 69 2.43 1.05 171

Wave

digital
57 1.29 156 4 4 53 1.48 0.20 36

DCT 59 3.52 104 4 7 51 3.49 0.93 75

FFT 38 3.48 58 4 7 33 3.89 0.52 39

Parallel
IIR

40 2.57 82 4 4 36 4.29 1.12 47

1.Buslengths arein millimeters fora 1.2micron technology.

Table 7.3. Power consumption in the Hyper and Synergy systems.

Design
Hyper Synergy

Bus Mux Total Bus Mux Total

Cascade 2.9 3.0 15.2 1.0 0.9 9.8

Direct form 39.5 34.7 120.2 8.2 9.9 57.4

Wavelet 7.1 7.2 33.5 4.3 4.5 27.8

Wave digital 2.5 2.9 13.9 0.9 0.5 10.1

DCT 7.7 2.6 28.4 3.3 1.8 22.4

FFT 9.6 4.5 34.8 4.3 2.5 27.4

Parallel IIR 5.2 2.9 40.7 1 2.9 1.3 38.1

cally in all examples (up to 80%) andlargereductions are also seenin the multiplexor

power(morethan 70% reduction in three ofthe examples). The average reduction in

bus, multiplexor, and total power is 57.8%, 56,0%, and 25.8%, respectively.
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Figure 7.13. Percentage improvements in bus, multiplexor, and total power.

In partitioned implementations, we expect buffer power to decrease since smaller

buffers can be used to drive the data transfers occurring on short local buses. How

ever, our architecture-netlist generation tool currently uses fixed-sized buffersfor all

data transfers, regardless ofbus length, and therefore, our results show negligible

change in buffer power. With necessary modifications, buffer power should contribute

toward further reduction in total power.

These experiments have demonstrated that restrictinghardware sharingtobehavior-

allylocalized operations in the algorithm results in a largereduction in the intercon

nect power. However, this does not necessarily come fi:ee of cost and in several cases

a penalty must be paid in terms ofan increase in the number of functional units. For

tunately, an increase in the number offunctional unitsdoes notnecessarily translate

into anequivalent increase inoverall area. Since thecommunications across thechip

are localized, the design is more conducive to compact layout. This is due tonotonly
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Table 7.4. Comparison of the amount ofhardware and the overall area required in
the Hyper and Synergy implementations.

Hyper Synergy

Name
Units Estimated

active

area

(mm^)

Estimated
total chip

area

(mm2)

Units Estimated

active

area

(mm^)

Estimated

total (hip
area

(mm2)
♦ + » ai: + »

tCascade - 4 3 2.32 8.79 - 4 4 1.78 7.28

Direct form - 15 12 11.77 80.20 - 15 8 7.33 50.82

Wavelet - 6 6 3.88 18.07 - 8 6 4.24 19.55

Wave digi
tal

• 3 2 1.46 5.46 - 4 4 1.66 7.24

DCT 8 15 4 7.70 40.95 7 13 - 6.83 40.30

FPT 2 7 - 6.31 38.95 2 10 - 6.75 49.92

Parallel
IIR

4 3 • 6.04 21.85 9 8 12.40 60.95

reduced global connections and smaller local buses but also due to fewer overhead ele

ments such as multiplexors and buffers. As was seen for the cascade filter of

Section 7.6.1, the new layout may actually be smaller than the original. Table 7.4

showsthe estimated area penalty obtainedin the Synergydesigns. It is seen that the

impact of the increase in functional units is not reflected in the total area. In most

cases, therefore, the total chip area is marginally affected. For one example, the par-

alld form HR filter, about 34.7% areapenalty is seen. In two ofthe examples, the area

is reduced by 47 and 9%. In fact, for the DOT example, the number of components

required was also reduced! This is because partitioning the example into localized

regions serves as a guidance to the assignment tool, and it is able to find a better solu

tion. Note that the assignment tool is heuristic and therefore not guaranteed to find

the global minimum.

All examples in this section have been optimized for power with no limitations on

area. Byvarying the numberofclusters, different design pointswith lower area pen-
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alty can be obtained at thecost oflower power savings. Forexample, theparallel filter

implementation with 2 clusters has lower power savings (30.8%, 24.1%, and 3.7% in

bus, mux, and total power, respectively) but the area penaltyis much lower (30.4%)

than that of the 4-cluster implementation shown in the table.

In summary, exploiting locality ofalgorithms during the high-level synthesis process

greatlyreducesinterconnectpower. For mostexamples a significantreductionin total

chip power is obtained. Though the number offunctional units required is increased

due to restrictedhardwaresharing,iJie penaltyin the total chip area is mflrfnnal

7.7. Summary

Tlie architecture synthesis process can have a large impact on the power dissipated

in a design. In this chapter, we have presented a newtechnique for power reduction

basedonexploiting the locality in a given application. It wasseenthat preserving the

locality improves the implementation in a varietyofdifferent ways. Thepredominant

effectis the reduction ofaccessesto highly capacitiveglobalbuses. Our results showed

up to 80% improvement in the power consumed in buses. Additionally, restricting

hardware sharingledtoreduced usage ofmultiplexors. Though the powersavings can

come at the costofincresised area, this effect is margiTifll. The techniques have been

integrated into the Sjmergy system.

The concept of preserving locality is a special case of a more general class of tech

niques referred to as distributed computing. In general, accesses to global computing

resources —controllers, buses, memory, I/O —are expensive dueto increased capac

itance. Dividing these resources reduces the capacitance being switched per access.

This work cantherefore beapplied tomore general applications suchas memory par

titioning and processor partitioning.
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Exploiting Algorithm
Regularity

The previous chapter presented a partltionmg scheme for reducing interconnect

power and techniques for using the partitioning information during synthesis. How

ever the basic synthesis tasks of allocation, assignment, and scheduling were

unchanged. In this chapter,weprovide a newallocation, assignment, and scheduling

strategy specifically aimed at reducing interconnect power. We target ASIC imple

mentations ofdatapath-intensive, real-time DSP applications. The main idea behind

the approach is to exploit the regularity inherent in the algorithm and derive a sim

plified interconnect structure. Thisleads to power savingsin the buses,mxilUplexors,

and buffers.

Thechapter is organized as follows. In the next twosections, wedefine the regularity

of an algorithm and elaborate on its relevance to interconnect power reduction.

Section8.3presents related workin regularity exploitation. Section8.4givesan over

view of our approach and Sections 8.5 and 8.6 detail our synthesis strategies. The

results are presented in Section 8.7.

8.1. Algorithm regularity

Regularity in an algorithm refers to the repeated occurrence of computational pat

terns in it. Instances ofregularity in two common DSP algorithms are presented in

Figure 8.1—Figure 8.1ashows repeatingshift-add patterns in the error-prediction
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(a)

brward
error

Backward
error

Figure 8.1. Instances ofregularity: (a)error prediction filter, (b)FIRfilter.

filter and Figure 8.1b shows multiply-add patterns in an FIRfilter. Analgorithm is

said to be"more" or "less" regular depending on the degree ofrepetition ofcommon

patterns in it.

Recurring computational patternsmay beeitherlarge-grained orfine-grained. These

differ in their ease of detection by the user. Repetitions of large grain computation

patterns are easily evident to the user and are usually embodiedin the code as sub

routines or loops. Fine-grained patterns includes smaller patterns ofcomputations

spread outthrough the entireprogram andare usually noteasily evident to the user.

The techmques presented here focus on automatically detecting and preserving fine

grained regularity in a given appUcation. We rely on the user to identify the larger

patterns and preserve the associated regularity during synthesis.
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8.2« The impact of exploiting regularity

Ai©
Ai© >0^1
Ai© 0Mi

-»0Si
•^©
A20

(a)

^10—k5)
^2^^
A20 ^ Ml
Ai(+)—#(2) ®l
A2(+) Si

(b)

Figure 8.2. Preserving regularity leads to a simplified interconnect
structure: (a) regular assignment, (b)non-regular assignment.

Exploiting regularity refersto preserving the repeatedpatterns ofcomputation in the

assignment ofoperations to hardware. This entails detecting repetitive patterns in

the algorithm and mapping themsuchthat corresponding nodes in different instances

ofthepatternare mapped to the same hardware unit.We refertosuchan assignment

as a regular assignment. In a regularly assigned set ofpatterninstances, correspond

ing data transfers have the same source and destination hardware units and can use

the same connection without the need ofextra multiplexors. Asa result, the fan-outs

firom the output ports of the hardware units and fan-ins to their input ports are

decreased and multiplexors and tristate buffers are reduced. The overall effect is a

simplified interconnect structure.
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Figure8.2shows two dififerent assignments for a portion ofan algorithm and the cor

responding hardwarenetlists.Thefirst assignmentis moreregular sinceall instances

ofa given pattern (add-multiply or add-shift) are assigned to the same pair ofhard

wareunits. Theassignment ofFigure 8.2b, on the otherhand, does not preserve reg

ularity since additions of different add-multiply patterns are assigned to different

adders. Upon examining the corresponding hardware implementations, we see that

while in the first case, each adder output data onlyto one hardware unit and each bus

has a single fan-out, in the second case, the adders outputs have two fan-outs each.

Also, the second scheme requires multiplexors while the first one does not. Thus, a

regular assignment leads to less fan-outs and fan-ins and lower multiplexing over

head.

We illustrate the above ideas with the second-order error-prediction filter example

shown in Figure 8.3a. Two different assignments, each using2 adders (Aj, A2) and 2

shifters (Sj, S2), are shown in Figures 8.3a and 8.3b. The different adders and shifters

in the circuit are distinguished in the figure by their shadings. In Figure 8.3a, the

shifter Si always outputs data to the adder Ai and 82 outputs to A2 while in

Figure 8.3b eachshifter outputs data to bothadders.The tablesin the figure summa

rize the fan-outs and fan-ins of the output and input ports, respectively, for the four

hardware units. By using a regular assignment, the total fan-outs firom all output

portsis reduced firom 9 to 7 (Figure 8.3c). If the lengthofa bus is assumed to bepro

portional to its fan-out, the total bus-capadtance switched is reduced bya factorof9/

7 since eachoutput bus is used twice. Further the total fan-ins to input ports ofthe

units is also reduced (Figure 8.3d), decreasing the number ofmultiplexors from 5 to

2. Multiplexor accesses are reduced by a factor of5/2 since eachmultiplexor is also

used twice.

Power reduction in a regular implementation stems from two factors. Due to reduced

fan-outs, the interconnect lines can be kept short leading to lower physical capad-

157



(a)

Aj:© Si:©
A2: S2:

K:@ i/o: external i/o

Fan-outs

Output port Assignment (a) Assignment (b)
Ai.out Ai.in2,82, i/o A2.in2, S2.in, i/o
A2.out R, i/o R, i/o

Si.out Al.inl Ai.inl, A2.inl
S2.out

Fan-ins

Input port

A2.ini

(c)

Assignment (a)

A2.ini, Ai.inl

Assignment Ot>)
Ai.inl Sj.out Si.out, S2.out
Ai.in2 i/o, Ai.out i/o, R
A2.inl S2.out Si.out, S2.out
A2.in2 R Ai.out, R
Si.in R R

S2.in i/o, Ai.out i/o, Ai.out

(d)

Figure8.3. Two possible assignments and the corresponding fan-ins and fan-outs
for the second-order error prediction filter: (a) more regular assignment, (b) less
regular assignment, (c) fan-outs ofhardware units, (d)fan-ins ofhardware units.
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tances. Notice that the reducedfan-outbuses correspond to the data transfers in the

recurring patterns and are therefore used repeatedly. This gives the desirable combi

nation of reduced capacitance on the more active buses. Secondly, a regular imple

mentation also has lower multiplesing overhead and dissipates less power in

multiplexors.

Notice that the power improvements may be associated with increased functional

units due to the lower multiplexing.Thus, a regular assignment trades-o£fhardware

resources to obtain a simpler interconnect structure, increasing the functional unit

area while saving power and area associated with the interconnect elements. The

associatedarea costsmust be carefullymonitored, sincethe larger area may increase

bus lengths and bus power.

It is interesting tonotethat thereg^arity in an algorithm nan beincreased byexploit

ing the mathematical properties ofits operations. For example, operation commuta-

tivity can be used to switch the order of operands of an operation to matdi other

computational patterns in the graph. Associativity can be used in the same way. In

this thesis, we consider the structure ofthe graph as a given, andpresenttechniques

for exploiting the regularity inherent in it. Techniques for changing the graph struc

ture to increase its regularity are not considered,although they wouldforma valuable

avenue for research.

In the following sections, we review related researchin regularity exploitation, and

present a sjmthesis strategy that reduces interconnect power by applying t.big con

cept.

8.3. Related work

In high-level synthesis, the regularity issue has been addressed for several different

purposes including partitioning, hierarchical scheduling, and instruction set selec

tion. Raoand Kurdahiusedregularityextractionto partition a digitalsystemin order
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tominimize the overall design effort [104]. The ideawas toreduce the design effort by

maximally "cloning^ a few repeating computational patterns or templates. At the

sametime, theyalso address the problem ofreducing the critical path throu^ inter-

pattem communications in the overall design. Later they used regularity of the

extracted partitions for hierarchical scheduling and allocation waing the area-time

characteristics ofthe component templates [105].

In [24], Corazao et al.usedtemplates from a pre-defined librarytomatchcomputation

patterns in the algorithm forinstructionset selection to maximize speed. Geurtset al.

captured the concept of regularity for the synthesis of application-specific units

(ASUs) for high-performance applications [37]. la their work, the algorithm is parti

tioned into clusters of operations and clusters that have similar structure (similar

computation patterns) are implemented on the same ASU.

Some research works proposed for multiplexor minimization are also based on con

cepts that caneasilybe classified under regularity extractioneventhough the original

work did not specifically state this. In particular. Park presented a method to reduce

interconnect by sharing paths in the input algorithm [90]. This can be looked at as

exploiting regularity where the patterns are limited to be paths instead ofarbitrary

patterns.

Aquantitative measure ofthe regularity ofa givenalgorithmis proposed in [41]. Reg

ularity extraction is also studied in other fields such as code generation [1] and tech

nology mapping [55].

Althoughregularity has been studied firom a variety ofaspects in high-levelsyntiiesis

and other areas, no workhas beendoneto exploit it during assignment for lowpower.

Westudy the poweraspects for the first time; though wedo not directly use any ofthe

tediniques mentioned above,it wouldbe interesting to study whether any ofthem can

be modified to address the power issue and how it affects the results.
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8.4. Overall strategy for exploiting regularity

This section explains our overall approach and provides the necessary background

We first present the targeted architecture model. Section 8.4.2 discusses the main

issues and problems in regularity exploitation, Section 8.4.3 explains some terminol

ogy, and Section 8.4.4 presents the basicideas behindour approach.

8.4.1. Architecture model

In this chapter, the multiplexor-based interconnect model is used instead ofthe gen

eral model with both multiplexors and tristate buffers (refer Section1.4.4). Whilein

thegeneral case, the complexity ofthe overall interconnect is measured by thesum of

the tristate buffers and multiplexors, in the multiplexor-based model, it is measured

by the total multiplexors which allows us to study the improvements more easily.

Note that the generalized interconnect model can be generated by trading-offmulti

plexors for tristate buffers; therefore, the improvements reported here for multiplex
ors would simply be divided overmultiplexors andtristatebuffers inthegeneral case.

8.4.2. Regularity exploitation: issues

Finding a good regular mapping for a given algorithm is complicated by several fac

tors. Detecting regularity involves finding common computationalpatterns ina given

graph and detecting allmatches for eachpattern, both ofwhich are difficult problems.

Enumerating all the patterns ina graph has exponential complexity and finding all

matches of a given pattern ina graph has subgraph isomorphism as a sub-problem

which is known to be NP-complete [35]. Therefore it is not possible toconsider and

match all possible patterns; only few of the patterns can be considered. The impor
tance ofa pattern depends on its matchings since the power saving firom its use in

assignment depends on itsoccurrence ina specific design. Thus, thepattern selection

and matching processes are closelyinter-related.
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Clearly, detecting and matching arbitrary patterns is infeasible. For a practical

implementation, therefore, the search space mustbelimited to only a subset ofpat

terns. In ourmethodology, we detect and matchonly two-nodepatterns. Eachpattern

in simplyan edgein the graph with a sourcenodeand destination node,and the total

number ofpatterns is simply the number ofedges in the graph. Therefore the com

plexity of both the pattern detection and matching tflBks is linear in the number of

edges.

Given a set ofcomputational patterns and their matches in the algorithm, the next

step is to decide the patterns and matches to be used in the assignment. Sincea node

may bepart ofseveral different patterns, the bestmatch (ormatches) for it depends

on the objective function, the overall throughput constraints, and the associatedarea

costs, all of which must be carefully evaluated. We address these issues in detail in

the following sections.

8.4.3. Terminology

Asmentioned in the last section, weconsider only two-node patterns. Each two-node

pattern is called an E-instancef sonamed since it corresponds an edgeofthe graph.

E-instances are classified into types, called E-templates, based on the type of the

source node, the type ofthe destinationnode, and the input port ofthe destination to

which the source is attached. For example, an E-template may be composed ofan

additionconnected to the left input ofa subtract operation (which is differentfrom an

E-template composed ofan addition connected tothe rightinputofa subtraction). The

coverage ofan E-template is defined as the total E-instances ofthat type divided by

thetotal number ofedges in thegraph. This corresponds tothefraction ofthegraph

that is covered bythat E-template andhence represents its frequenQr ofrecurrence.

Since each node may be part of more than one E-template, an E-list of a node is

defined as the list ofE-templates for which the node is a source or destination.
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Figure 8.4. Some E-templates in a fourth-order cascade filterand their coverages.

Figure 8.4a shows E-instancesofdifferentE-templatetypes in a fourth-order cascade

filter; the edgesto the right input ports ofeach operationare indicatedwith a dot.The

coverages ofthe E-templates are shown in Figure 8.4b. For example, the E-template

El, firom an add operationto the right input ofan add operation, covers 4 out ofthe

26 edges in the graph.

8.4.4. The core approach

The main ideabehind ourassignment and allocation scheme is toassignE-templates

as a whole in order topreserve the two-rvode regularity of the algorithm. Thus the data

transfers associated with E-instancesassignedto tiie samepair ofhardware units cfln
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xise the same bus without any extra multiplexors or buffers, and without increasing

the fan-out of the bus.

CDFG

Scheduling

Operator assignment
and allocation ofhardware

Bus assignment
Register assignment

T
CDFG

Figure 8.5. Synthesis flow.

The overall flow ofour synthesis system is shown in Figure 8.5. Since the schedule is

determined first, it has a large impact on the amountofregularitythat can be cap

tured during assignment. Therefore, a new scheduling algorithm which minimizes

the costofthe E-templates alongwith the overall area is alsoproposed. Its aim is to

derive a schedule that enables a regular assignment of operations to hardware.

Sections 8.5and 8.6present the details ofour allocation, assignment, and scheduling

techniques, respectively.

8.5. E-template based assignment and allocation

The input to the assignment tool is the dataflow graph whose operations have been

scheduled to occur in specific time steps or clock cycles in the overall sample period

(refer Figure 8.5). The goal ofthe assignment task is tomapeach operation onto spe

cific hardware resources such that nodes that are scheduled in the same time step
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cannotbe assignedto the same hardware imit. The main idea behindour assignment

strategy is to constrain the assignment process so that data transfers of the same

source anddestination types aremapped onto the same buswithminiTmiTtt multiplex

ing or buffering at their sources or destinations. Resources are allocated based on the

needs ofthe assignment scheme. We begin bybriefly explaining a relatedassignment

approach based on vertex coloring.

Vertex coloring and clique partitioning techniques have been widely usedin the high-

level synthesis literature for assignment tasks [103,116]. In thevertex-coloring based

approach the hardware sharing conflicts imposed bythe schedule are captured in a

conflictgraph where the a node represents a graph operation and an edge between a

pair ofnodes represents a conflict due to which theycannot beassigned to the same

hardware units. Conflicts between a pair ofnodes maybe due to tworeasons: either

the nodes require different type ofhardware, or they have overlapping schedules. A

minimum vertex-coloring of the conflict graph gives a valid assignment of theopera

tions to hardware where each color represents a specific hardware unit.

While the vertex-coloring approach minimizes the numberofhardwareunits usedin

the implementation, it ignores the regularity of the graph. In order to specifically

exploit regularity, we propose a scheme that assigns E-instances as a whole instead

of assigning the nodes individually. Analogous to the vertex-coloring approach,

restrictions on the assignment are represented in conflict graphs. However, since a

node can be part of several E-instances, all E-instances cannot be assigned at the
same time. The coloring is done in stages; in each stage, the most promising E-tem-

plate isselected and the conflict graph ofits E-instances isconsidered for assignment.

Acoloring ofthis conflict graph would give an assignment for all the E-instances of

that E-template such that the minimum number of hardware-unit pairs are used.
However thiswould limithardware-sharing opportunities for theE-instances ofother

E-templates thatshare some of the nodes. Therefore, instead ofa complete vertex col-
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oring on the template's conflict graph, only the maximum independent set (MIS) is

chosenforassignment to the same pair ofhardware units. This schemeallowsthe rest

ofthe E-instances to be compared with E-instances ofother E-templates sothat the

next best E-template can be selectedfor assignment in the next iteration.

The maximum independent set approach concentrates on sharing between a large

niunber of sunilar patterns rather than reducing the overall hardware used. This is

because the maximum gains come from reusing an interconnect, once instantiated, as

much as possible. When only a few instances of each template remain, they are

assigned using conventional vertex coloring. Thisresults in designs in which a few of

thebuses with low fan-outs areused very often while other buses that may have much

higher fan-outs are used less. Notice that the goal is not to minimize the overallfan-

outs (interconnect area),but to reduce fan-outs ofonly the highly used connections.

In Section 8.5.1 we redefine the concept ofthe conflict graph in this context. A tech

nique to find its maximum independent set is presented in Section 8.5.2 and the

assignment and allocation algorithm is described in detail in Section 8.5.3. Finally,

Section 8.5.5 discusses some ofthe characteristics ofthe suggested technique.

8.5.1. Conflict graphs

Atany stage in the assignment algorithm, the conflict graph, Q, for E-template

is derived in the following way. Each unassigned E-instance (for which at least one

node, source ordestination, is unassigned) oftype Ek is represented bya node in the

confhct graph {conflict-node). Each edge in the conflict graph {conflict-edge) repre

sents a conflict between corresponding E-instances due to which they cannot be

assigned to the same pair of hardware units.

Conflicts between E-mstances are derived from conflicts between their constituent

nodes, i.e., if there is a conflictbetween their source nodes or destination nodes. Con

flicts betweentwonodesmay be due to the following four reasons.
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Figure 8.6. The different conflict types: (a) scheduling conflict, (b) register-
bandwidth conflict, (c) assignmentconflict, (d)assign-schedule conflict.

Scheduling conflict

Ascheduling conflict occurs between two nodes if there is an overlap in the time
slots in which they are scheduled. Figure 8.6a shows a scheduling conflict
between nodes a and p.

Register-bandwidth conflict

Due to the distributed, single-ported nature ofregister flies (refer Section 1.4.4)

in our hardware model, there is a register-bandwidth conflictbetween two nodes

if the producers of their left inputs (or right inputs) write their results in the

same time step. In Figure 8.6b there is a register bandwidth conflict between

nodes a and Psincenodeywrites into the right register file ofa at the same time

as 6 writes into the right register file ofnode p.
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Aggifrnment conflict

An assignment conflict occius if the nodes are assigned to different functional

umts. In Figure8.6c Uiere is an assignment conflict between nodes a and p since

they are assigned to different adders(Ajand A2).

Assign-schedule conflict

An assign-schedule conflict arises between two nodes if one of them is already

assigned to a hardware resource and the other has a scheduling or register-

bandwidth conflict with that hardware resource. A node is said to have a sched

uling or register-bandwidth conflict with a hardware resource ifit a schedul

ing or register bandwidth conflict with any of the nodes that are already

assigned to that resource. In Figure 8.6d, there is a assignrschedule conflict

between nodes a and p since p has a scheduling conflictwith hardware resource

that a is assigned to (Ax).

Notice that conflict edges are introduced between two E-instances only if there is a

conflict between their sources or between their destination nodes. A special case

occurs when the source and destination nodes of an E-template are the same lype,

since tiiey can share the same hardware. In this case, two conflict graphs are gener

ated —one that does not allow sharing between sources and destinations and one that

does. In tiie first case, conflicts are checked only between the sources of two E-

instances or between their destinations. In the latter case, additional edges are intro

duced to represent conflicts between the source node of one E-instance and the desti

nation node of the other. These two conflict graphs are compared and the one with

higher MIS cardinality is selected.

8.5.2. Maximum independent set of the conflict graph

The maximum independent set, or MIS, ofa graph is definedas the largest subset of

nodes of the graph, such that are no edges between any pair ofnodes in that subset

[35]. For the conflict graph defined above, the MIS is the maximum set of E-instances
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with no conflict edges between them and th^efore represents the largest set of £-

instances that can be assigned to the same pair of hardware units.

Thft finiwinonality measure

Beforeexplaining the algorithm forselecting the TnaviTnuTn independent set, we intro

ducethe concept ofthe commonality ofa particular E-instanceJ, with respect to a set

of E-instances S. This is a measure of the number of common E-templates between

the nodes ofI and those of the elements ofS.

Let Isource be the source node of E-instance 7, E-listdsoune) be its E-list, and

^source (S> Ek) be the number ofinstances in S that have the E-template, in the E-

list of their source nodes. The source commonality of I with respect to S,

ComnigQj^f^Q (I» EJf is defined as.

= E ®q. 8.1)

Similarly, bethe destination node ofE-instance7, E-list(Idest) beits E-list, and

^dest (S> Ek) bethe number ofinstances in S that have the E-template, E^, in the E-

list of their destination nodes. The destination commonality of7 with respect to S,

Comm^i^t (1, S), is defined as:

= 5; ^dest^S,E^) (Eq. 8.2)
E* e Elist (Ifiggf)

The source (destination) commonality of 7 with respect to S is a measure of the

common E-templates between the sources (destinations) of7 and those of the elements

ofS, The commonality ofan E-instance with respect to a set ofE-instances is the sum

ofits source and destination commonalities with respect to that set.
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MIS algnrlthm

While finding the optimnm solution to the maximum independent set problem is NP-

complete, several greedy heuristics have been proposed for it. In particular, the min

imum-degree greedy heuristic is often used and has been shown to work well for

bounded degree graphs. In fact, it has beenproved that the results are within factors

of (2d +3) /5 and (d +1) /2 ofthe optimal, whered is averagedegree ofthe nodes

in the graph, [44,49], and within A-1 where Ais the maximum degree ofthe graph

[114].

Fortunately, the graphs encounteredin our targeted applications typicallyhave nodes

with limited fan-ins (up to three) and fan-outs (up to three). Therefore, we use the

minimum-degree greedy algorithm. This algorithm iteratively selects the conflict-

node with the least number ofneighbors, adds it to the MIS and removes Hienode and

its neighbors from the conflict graph. In the case of a tie, we select conflict-nodes with

the highest commonality with respect to the conflict-nodes already selected. This

favors the selectwn of a maximum independent set with E-instances whose nodes are

also parts of other common E-templates, Therefore, they can be chosenfor hardware

sharing as part of those other E-templates in future iterations of the algorithm. This

adds a degreeoflook-ahead to the algorithmthat helps in preservinglarger patterns.

This concept is illustrated through the example of Figure 8.7. Assume that the add-

multiply template shown is being considered for assignment and instances C and D

have a scheduling conflict between them. Assume further that E-instances A and B

are already selected in the MIS and there is a tie between C and D since both have the

same number ofneighbors. The source commonality ofC with respect to the set (A, B)

is 4, while that of D with respect to {A, B] is only 2, and therefore C is selected in the

MIS. This choice of the MIS maximizes the chances of further Rkflring of E-instance

in future iterations since all the add-add instances and three of the four shift>add
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Figure 8.7. Using the commonality measure as a look-ahead technique.

instances can be shared later. The commonality measure allows the scheme to look

ahead" and exploit larger recurring patterns to a certain extent.

8.5.3. E-template based assignment strategy

Initially, all theE-templates in thegiven graph are detected andtheircoverages cal

culated. The overall assignment and allocation scheme is divided into two phases. In

the first phase, E-instances are assigned to pairs ofhsurdware units, while in the

second phase, nodes are assigned independently using vertex coloring.

The assignment ofE-instances isdone iteratively. Ineach iteration the most promis

ingE-template is selected based on its coverage andtheMIS cardinality ofits conflict

graph. The E-instances corresponding tothemaximum independent set ofits conflict

graph areassigned andthenremoved from thecorresponding E-template list andthe

coverage oftheE-template is recalculated. Each ofthese steps areexplained below. A

pseudo code for the overall assignment and allocation algorithm isgiven inFigure 8.8.

Selection ofbest E-template

In each iteration, the E-template with the highest coverage is selected for
assignment. In thecase ofa tie,conflict graphs ofthecompeting E-templates are
created, theirmaximum independent sets arederived, andtheE-template with
the independent set ofhigher cardinahty is selected. Although the MIS cardinal
itydetermines thenumber ofE-instances that can be simultaneously assigned to
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ETeinplat_list = Make_ETemplate_list(Original graph)

Ca1cu1ate_coverage(ETemp1ate_li s t)

Remove_ETeinplates_wi th_coverage_below_threshold{ETeiiiplate_list)
BGSt_ETeinplatG = SGlGct_bGst_ETGmplatG (ETemplatG^list)

while (BGst_ETGinplatG != NULL) {

Conflict_graph = CrGatG_conflict_graph(Best.ETemplate -> List)
MIS_list = Max_indGpGndGnt_sGt(Conflict_graph)

AllocatG_and_assign_list(MIS_list)

UpdatG_ETGmplatGS(ETempIate.list)

CalculatG_coveragG (ETeinplate^list)

RGmovG_ETGinplatGs_with_covGragG_bGlow_thrGshold(ETGmplatG_list)

Best.template = SGlGct_best_ETGinplatG(ETempIatG_list)

}

RGsidual_list = Make_list_of_unassignGd_nodGs(Original_graph)

VGrtGX_coloring_based_assigninGnt (RGsiduaI_list)

Figure 8.8. Pseudo-code for the overall assignmentand allocation algorithm.

the same pair of hardware imits^ computing it for all E-templates is time con

suming. Hence,weselect E-templates based on the coverage, and use MIScardi

nality only to resolve ties.

Assignment of E-instances

In this step, the conflict graph of the selected E-template is created and the E-

instances corresponding to its maximum independent set are assigned to a pair
of hardware umts in the following way: the sources of the E-instances are

assigned first. If any of the source nodes are already assigned, all others are

assigned to the same unit. Otherwise, a new hardwcne unit is allocated and

assigned to all the source nodes. The destination nodes are then assigned in the

same way.

Notice that it is not possible for the source nodes (or the destination nodes) ofa

pair ofE-instances in the MIS to be already assigned to different hardware units

since this would have caused an assignment confliict between them. Also, if only
oneofthem is assigned to a unit, the other node can alsobe assignedto the same

unit since there are no assign-schedule conflicts between them.
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Updating remaliiiwyr P^templates

After the instance assignment step, E-instances whose source and destination

nodes areassigned, areremoved andthecoverages oftheremaining E-templates
is re-calculated.

As more nodes in the original graphare assigned, the coverage ofeachofthe remain

ingE-templates reduces, decreasing the inherent regularity in the remaining graph

and reducing the advantages of exploiting it. Also, more assignment and assign-

schedule conflicts are created, reducing the hardware sharing between pattern

instances and introducing significant area overhead. Thus, in each iteration, the

advantages of exploiting regularity reduce while the associated overhead grows.

Therefore, when the coverages of all E-templates falls below a certain threshold,

called the coverage-thresholdt theE-template based assignment phase is terminated

and a vertex-coloring based scheme is used for assignment ofthe remaining nodes.

For implementation efficiency, E-templates whose coverages fall below thecoverage-

threshold are eliminated in each iteration, reducing the search space in the future

iterations of the algorithm. The impact of the coverage threshold is studied in the

results section.

8.5.4. Example

In this section we demonstrate the operation of the algorithm on a small example.

Consider the reverse symmetric FIR filter shown in Figure 8.9a. The numbers in

brackets next to the node names show the timestep that the node is scheduled in.

Figure 8.9b shows theE-templates andtheircoverages. The coverage threshold is set

at 1/8. The iterations in the first phase ofthe algorithm are detailed below.

Iteration 1

E-template Eq is selected for assignment and its conflict graphs are shown in
Figure 8.9c; there is a scheduling conflict between the nodes b and e. Since the

source and destination nodes are ofthe same type, two conflict graphs are cre-
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Iteration 1
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!Iteration 3

(a)

aijum h(2) c(3) cg)d(4) ^4) eg)

a(0 bg) bg) c(3) c(3) d(4) d(4) e(2)

E-template
name

Description Coverage

Eq D->D 4/16

El D -¥ add.left 2/16

E2 D -> add.right 3/16

E3 add mult.left 3/16

E4 mult add.left 2/16

(b)

A-
g(i)/SS\ h(i)/

(c)
scheduling conflict

^..4..^ assignment conflict

Figure 8.9. Fffect of E-template based assignment on a fifth-order reverse-
symmetric FIR filter: (a) E-templates assigned in each iteration, (b) E-templates
and their coverages, (c) conflict graphs ofE-template Ej considered in iteration 1,
allowing (above) and not allowing (below) hardware sharing between sources and
destinations, (d) conflict graph oftemplates E2 (above) andE3 (below) considered in
iteration 2.
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ated — one that allows hardware sharing between the sources and destinations

(top figure) andone that does not(bottom figure). Since both the conflict graphs
have the same MIS cardinality (two), the one which allows source-destination

sharing is chosen due to lower area. Theselected MIS ofE-instances is a-b, b-c,

C'd. A transfer unit, Tj, is edlocated to implement the delay and the source

nodes, a, 6, and c are assigned to it. As a result, some destination nodes get
assigned to Tj and therefore, the rest are also assigned it.

The assigned E-instances are removed from the graph, afterwhich the coverage
ofEq falls below the threshold andit is eliminated from the E-template list.

Iteration 2

E-templates E2 {c-h, d-g, e-f) andE3 if-i, g-j, h-k) have the highest coverage and
theirMIS cardinalities are 1(assignment conflicts between c&e, andd&e; and
scheduling conflict between g &h) and 2 (scheduling conflict between g & h),
respectively. The conflict graphs of these two E-templates is shown in
Figure8.9d. E3 is selected due to its higherMIS cardinality. Since the common
ality measiure ofg-j is larger than h-k (g-j has more templates in common with

the selected set f-i)f the first two mstances are selected and their sources and

destinations are assigned to adder A^ and the multiplier Mj, respectively. The
coverages of unassigned instances ofEj, E2, and E3 drop below the threshold
and they are eliminated.

Iteration 3

E-template E4 is selected and both its instances are assigned to the multiplier.
Ml, and adder, A2, pair. Note thatthe assignment of both instances of E4 to the
same pair of hardware units is made possible due to the consideration of com

monality in the previous iteration.

At this point, all E-templates are ehmmated and the remaining nodes are assigned

using vertex coloring. The final assignment obtained is shown in Figure 8.10a.

Figure 8.10b shows a different assignment of operations that does not consider regu

larity. ComparingFigures 8.10aand 8.10b, it is seen that the total number offan-outs
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Figure 8.10. Final assignments obtained using: (a) E-template based
technique, (b) vertex coloring.

is reduced from 14to 10by exploitingregularity—a 30%reduction. It should be noted

that thisisa small example with limited regularity andisused for demonstration pur

poses only.

8.5.5. Discussion

Although the E-template based approach has its limitations since it ignores larger

recurring computational patterns and limits th.e amount of regularity exploited, is

also has some advantages.

• While detecting and matching arbitrary patterns is NP-complete, these tasks

take linear time for E-templates.
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• Even if largepatterns are detected, it maynot be possible to map all the corre

spondingnodes of the pattern instances to unique hardware units either due to

large area penalties involved or due to restrictions imposed bythe schedule.

• Therepetition ofE-templates is likely to be higher than that oflargerpatterns

and morereuse ofthe same interconnectis possible.

• Thelook-ahead scheme based onthe commonality measure attempts the match

larger patterns in the graph.

8.6. E-template based scheduling

In the assignment and allocation scheme presented in the previous section, it was

assumed that the CDFG is already scheduled. Since the schedule is performed before

assignment, it can greatly impact the amount of regularity that can be exploited

during the assignment phase. This section studies this impact and proposes a modi

fied schedulingapproach that favors a regular assignment.

8.6.1. Impact of the schedule on assignment regularity

The impact ofthe schedule on the regularity exploitation is illustrated in this section

using the force-directed scheduling technique onan example proposed by Paulin and

Kmght [91], The techmque is based on theconcept ofa distribution graph (DG) which

plots the expected number ofresources required as a function oftime. Initially, each

operation is assumed to have equal probability ofbeing scheduled in any time-step

between its as-soon-as-possible (ASAP) andas-late-as-possible (ALAP) timeswiththe

sum ofthe probabilities being one. If an operation takes longer than one dock cycle,

the ASAP and ALAP times correspond to its starting times (for details on how this

case is addressed, the readeris referred to [91]). In any time-step, the height ofthe

DGis a measure of the expected number ofoperators needed. The interval between

the ASAP and ALAP times, or time fiame, ofeach operation represents the time steps

in which theoperation can be scheduled. The main idea is to schedule each operation

into a time slot such that the maximum height of the DG is minimized. The mflvimnm
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height of the final DG (after scheduling) corresponds to the number of resources

required to implement the algorithm with the specified schedule.

Each operation, i, has a force, F(i, j), associated with each time step, y, in its time

firame (a, b), that is defined as follows:

h

(Eq. 8.3)
k = a

whereDGf^ istheheight oftheDG at time step k, and isthe change intheheight

oftheDG at time step kdue to theassignment ofoperation i at time stepy. This force

represents the effect ofscheduling it onto that time step; the lower the value of the

force, thebetter it is toschedule it in thecorresponding time step.

Force-directed scheduling proceeds interactively —evaluating the force associated

withscheduling each node in all its possible time-steps andsdieduling the node and

time-step pair with the least force, in each iteration. Several enhancements to the

basic force-directed scheduling algorithm have been proposed. We use the gradual

time-frame reduction technique proposed by Verhaegh etal. [129] inour implementa

tion.

Consider the impact ofthe force-directed technique on an example with two E-tem-

plates, Ej andE2, with four andtwo instances, respectively, as shown inFigure 8.11a.

From the ASAP and ALAP times (marked next to each node), it isclear thatit ispos

sible to map the multiply operations ofall multiply-add E-instances (Ej) to the same

multipher and similarly those oftheshift-multiply E-instances (E2). The initial dis

tribution graph for multiplications (referred to in this work as functional-unit distri

bution-graph orFDG) isshown in Figure 8.11b anda possible schedule from the force-

directed algorithm is shown in Figure 8.11c.
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The most important point to notice is that nodes 6 and c are scheduled in the same

time-slot and cannot beassigned tothesame hardware resource. Given t.Viig schedule,

it isnot possible to map allinstances ofthemultdply-add template onto thesame pair

ofhardware umts. The schedule thus obviates the regular assignment that was ini

tially possible for the design based on the timing constraints alone.

8.6.2. E-template-based scheduling technique

As shown in this example, a force-directed schedule may preclude a regular assign

mentsince it only minimizes the functional units required and ignores the cost ofcon

nections.Wetherefore modify the costfonction to include connection costs.Wedothis

by introducing a new distribution graph called the connection distribution-graph or

CDG.

Each E-templateis associated with twoCGGs—one forits sources and oneforits des

tinations.For a given E-template, the source-CDG is derived from the time distri

butions ofthe source nodes ofallmstances oftheE-template, while the destination-

CDG is derived from time distributions ofthe destination nodes. These distribution

graphs together represent the costofthe interconnect between the source and desti

nation nodes.

Thetotal force on anynode is the weighted sum ofthe forces from the FDG ofthe rel

evantfunctional unit, the source-GDGs ofall the E-templates for which this node is

thesource node and the destination-CDGs of all theE-templates for which this node

isthe destination node. The weight associated with the FDG isproportional to thecost

of the functional unit while the weight of each CDG isproportional to the coverage of

thecorresponding E-template. This weighting scheme gives preference toconnections

that are repeated more often. This modified cost function produces a schedule that

favors the assignment ofE-instances ofthe same E-template to the same pair ofhard

ware units while also minimizing the total area. Since scheduling sources (ordestina

tions) ofE-instances ofthesame type inthe same time-slot results inincreased height
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Figure 8.11. The effect ofusing connection distribution graphs: (a) instances oftwo
E-templates with their ASAP and ALAP times, (b) initifll PDG for multiply
operations, (c) final distribution graph using only FDGs, (d) inUinl source-CDGs of
E-template Ej, (e) initial destination-CDG of E-template E2, (f) Final distribution
graphs using FDGs and CDGs.
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of the corresponding source-CDG (or destination-CDG), the scheduler tends to avoid

this.

Consider theexample ofFigure 8.11 again. Thesource-CDG ofEi andthedestination-

CDG ofE2 are shown in Figures S.lld andS.lle, respectively, and the distribu

tion graph that minimizes the weighted sum of the FDG and the two CDGs is shown

in Figure 8.1If. In this schedule, since tlie scheduler tries to minimize the height of

the CDGs along with that of the FDG, multiply operations ofall multiply-add E-

instances arescheduled at different time slots andtherefore can be mapped onto the

same hardware unit. Similarly the miiltiply operations of all shift-multiply E-

instances can be mappedto the same multiplier.

In this work, we have only proposed modifications to the force-directed scheduling

scheme, but it is also possible to modify other scheduling schemes to consider cost of

E-template based connections. This may be done by incorporating the cost ofthe E-

templatesto the cost function usedthe scheduling algorithm.

8.7. Results

Inthis section we present the results of our synthesis approach. Asetof 15 examples,

consisting of different structures of FIR filters, IIR filters, and transforms were

selected for experimentation. All the examples were evaluated for TnflviTnnm through

put implementations (total time available equal tocritical path) with no transforma

tions. Overall power estimates were obtained firom the SPA architectural power

analysis tool. The bus power is computed using themodel presented in 6.4.3 for fan-

out optimized designs. In order to separately evaluate the effect of the fan-out and

multiplexors optimizations, we use white noise capacitance models. This excludes any
effects that may arise firom changes in activity.

Aseries ofexperiments studying the different aspects ofthe E-template based synthe

sisapproach aredescribed. Firsttheimpact ofvarying thecoverage threshold isstud-

181



ied in Section 8.7.1. Then the quality ofresults obtained from the E-template based

synthesis methodology is compared withtwo otherscheduling/assignment paradigms

—the HyperS3mthesis scheme and a force-directed schedulingfollowed byvertex col

oring based assignment (FDS-VC). Section 8.7.2 analyzes the power improvements

over these two paradigms and Section 8.7.3 presents the effects on area.

8.7.1. Effect of varying the coverage threshold

Thegraphs in Figure 8.12showthe effect ofthe coverage threshold on the powercon

sumption of buses and multiplexors. The values were obtained on our benchmark set

and normalized with respect to the base casewhere our technique is not used (thresh

old = 100%). Recall that E-instances are assigned as a whole until their coverages

drop below the coverage threshold and the remainder of the graph is assigned using

vertex coloring. It is seen that in most cases loweringthe threshold (using E-template

based assignment for a longer time) results in better solutions since lower thresholds

enable more extensive exploitation of regularity.

In some cases, lower thresholds are seen to have an adverse effecton the bus power

(in example 2, a 20%threshold gives the lowest bus power). This effect is due to the

area overhead associatedwith the technique which can result in longer (more capac-

itive) buses and offset the gains from fan-out reduction. The multiplexors power is

seen to monotonically reduce with reducing thresholds due to reduced hardware shar

ing. We found that further lowering the threshold changed the results of only a few

examples — 2 improved and 3 worsened.

In general, the coverage threshold has a large impact onthe powerconsumption. Low

ering the coverage threshold reduces overallpowerdissipation up to a certain point

after whichthe powerconsumption may increase. The optimumthreshold is different

for each example and needs to be determined separately.
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Figure 8.12. The effect of coverage threshold on the power consumption ofvarious
components: (a) buses^ (b) multiplexors.

8.7*2. Power improvements

As explained before, power improvements in thenew approach stem from a reduction

in the fan-outs of the most frequently used buses and a decrease in a multiplexing
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Table 8.1. Busfan-outs andmultiplexor accesses obtained from the Hyper, FDS-VC,
and E-template based synthesis approaches.

Hyper FDS-VC E-template based approach

Overall
fan-outs

Mux

accesses

Overall
fan-outs

Mux

accesses

Coverage
threshold

Overall
fan-outs

Mux

accesses

paralleU 46 72 38 63 1% 32 22

df 33 55 30 57 20% 28 48

fftll 229 416 151 505 1% 133 275

flftS 49 61 52 51 1% 49 20

firD 91 270 50 190 1% 36 100

firH 70 139 41 123 1% 31 61

gm 37 147 30 210 1% 26 125

dct 97 106 77 102 0.5% 71 55

wavelet 28 96 20 80 20% 18 54

wdf9 30 61 26 47 10% 25 15

DSfir24 84 199 49 161 0.5% 35 110

DSLfirSO 149 608 75 473 1% 47 157

DSfir55Mb 160 665 76 508 0.5% 51 280

cascade32 105 785 52 541 1% 50 394

parallel24 247 137 193 234 1% 162 159

overhead. Table 8.1 shows the total fan-outs and the multiplexor accessesin the three

differentimplementationparadigms.The coverage thresholds used in the E-template

based approach for each example are also given. The percentage reductions in the

overall fan-outs and in multiplexor accessesare shown in the graphs of Figure 8.13.

The total number offan-outs from each unit decrease by40%and 16% on average with

respect to the Hyper and FDS-VC schemes, respectively. Notice that reduction of the

total fan-outs is not the direct goal of our technique since we try to reduce the fan-out

only on buses that are repeatedly used. However, a reduction in total fan-outs is seen

as a result of reduced fan-outs on several of the biises. The nmnber of multiplexor

accesses is also drastically reduced (46% and 45% reduction on average compared to

the Hyper and FDS-VC systems, respectively).
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Table 8.2 shows the total bus and multiplexor power obtained on these examples

using the three different synthesis paradigms. The graphs in Figure 8.14 show the

percentage improvements inbus, multiplexor, andtotal power compared to theHyper

and theFDS-VC implementations. It is seen that thenew approach performs better

that the other two in almost allcases. As compEured toHyper, an average of47% and

49% power savings were obtained for buses andmultiplexors, respectively, while com

pared to FDS-VC, the average reductions in these components were 39% and 49%.
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Table 8.2. Bus, multiplexor, and total power consumptions (mW) for three different
implementation approaches —Hyper, FDS-VC, and E-template based synthesis.

Hyper PDS-VC
E-template based

approach

Bus

19.4

Mux Total Bus Mux Ibtal Bus Mux Total

paralleU 2.4 67.6 16.0 2.1 63.3 10.6 0.7 58.0

df 32.0 2.5 120.9 30.3 2.9 118.1 22.8 2.5 110.4

fitll 256.8 17.5 442.4 247.3 21.9 397.1 161.8 11.7 309.2

fit8 22.0 4.2 63.2 21.6 4.8 65.9 15.7 1.6 58.3

firD 32.9 5.9 90.0 23.4 4.1 70.0 11.3 2.0 55.5

firH 33.7 5.5 94.3 25.2 4.7 78.3 14.8 1.9 65.0

gm 9.6 2.0 36.3 8.0 2.4 35.3 6.5 1.3 32.4

dct 21.3 3.3 68.9 20.5 3.6 66.4 15.3 1.7 61.1

wavelet 14.4 2.9 68.0 11.9 1.8 63.0 8.8 1.2 59.2

wdf9 27.7 4.9 92.7 23.7 3.8 87.4 19.2 1.1 59.2

DSfir24 120.1 10.7 245.3 77.5 8.6 187.2 43.4 5.1 148.7

DSLfirSO 77.6 13.3 175.7 59.1 8.2 129.0 22.7 3.0 84.4

DSfir55Mb 240.0 16.4 384.4 112.1 12.1 225.3 44.5 6.3 150.4

cascade32 66.9 8.9 134.5 28.5 5.4 84.9 24.3 3.5 80.3

parallel24 132.6 3.7 354.9 170.6 8.4 346.2 98.9 5.1 270.8

Overall average power reductions of28% (compared toHyper) and 17% (compared to

FDS-VC) were obtained. We also expect to obtain power savings in buffers since

smaller buffers can be used to drive the low fan-out, short buses.However, our auto

mated architecture-netlist generation tool uses fixed sized buffers for all data trans

fers irrespective of the length of the bus being driven, and we are not able to

demonstrate these savings.

8.7.3. The effect on area

Since the E-template based approach reduces bus fan-outs and multiplexors, the

interconnect areacanbeexpected toreduce. However, as discussed before, the exploi

tation ofregularity adds extra constraints on the assignmentproblem and results in

an increase in the number of functional units used.
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Thegraphs in Figure8.15a and 8.15b show the percentage change in the active area

and total chip area, respectively. A positive change represents an increase in area

using the E-template based scheme compared tothe base case. In each graph, the two

lines represent comparisons with the Hyper and FDS-VC imp!ementatio'"« The

active area includes the area ofthe functional units, multiplexors, buffers, and regis

ters. Though the active area increased with respect to the FDS-VC scheme (12%

increase onaverage), the total area reduced dueto lesswiring in ourapproach result

ing in a 14% decrease in total area on average. In someexamples (such as #10, #14),

it was seen that the overall area increased but the power reduced.

With respect to Hyper, there is a reduction in both the active area and the total area

(26% and 47% average reduction, respectively). Hyperuses an iterative approach for

scheduling and allocation and can trade-off design quality versus synthesis time.

Though these experiments were performed with higher iteration counts than the

default settings, it may be possible to reduce the area by running them for longer

times. On the other hand, these results may be due to the completely different sched

uling and assignment algorithms used in the Hj^er and FDS-VC synthesis schemes.

Somefurther experiments to determine the exact cause would be useful, but are not

done here since the results would not directly affectthe validityofour approach.

8.8. Conclusions and future work

The allocation, assignment, and scheduling techniques presented in this chapter

exploitthe regularity and common computationalpatterns in the algorithm to reduce

the fan-outs and fan-ins of the interconnect wires, resulting in reduced bus capaci

tances and multiplexoraccesses. Asimple and efficient E-template based assignment

and allocation algorithm has been proposed to exploit reg^arity. A modified force-

directed scheduling algorithm is used to produce a schedule favorable for regular

assignment. The new synthesis scheme is integrated into the Synergy^*^ synthesis

system.
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Our approach is able to capture alarge amount ofthe regularity and results insignif

icant reductions in bus and multiplexor power compared to both the Hyper and the

FDS-VC schemes. The synthesis scheme is shown to have 47% and 35% average

reduction inbus power with respect to the Hyper and the FDS-VC schemes, respec
tively, and about 49% average reductions in multiplexor power. Total power reduc-

1. The Synergy synthesis system Incorporates the estimation and exploration environment explained in
Chapters 4 and 5 and thetwo synthesis approaches developed.

2. Synergy allows the user to use either the locality-based synthesis scheme of Chapter 7or the regu
larity-based sjmthesis scheme presented in this chapter.
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tions of28% and 17% were obtained on average with respect to the Hyper andFDS-

VC schemes, respectively without any penalty in the overall area. The results show

that there is a high potential for interconnect power improvements by exploiting the

regularity inherent in the algorithm.

The effect ofvarying the coverage threshold on the quality of the results has been

extensively studied. It wasseenthat different coverage thresholds are optimal fordif

ferent examples. However, no automated method ofdetermining it been proposed.

It would be useful to have an automated approach to predict a good threshold based

on the properties of the algorithm at hand. Importantparameters that may govern

the optimal threshold are the overall regularity in the graph (total number ofE-tem-

plates and there coverages) and the concurrency ofthe algorithm.

Also, the current implementation does not change the structure ofthe graph while

exploiting regularity, which canpotentially havea largeimpactonthe amountofreg

ularity available. Asimpleextension in this direction would be to allow permutations

ofinputs to commutative operations. Permutinginputs mayuncover more regularity

in the graph and lead to better results.
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Conclusions

Inthis chapter, we summanze the work presented inthis thesis and state the key con

tributions and conclusions. We also propose possible directions for future research.

9.1. Summary

This work has addressed various issues in low-power design. Atop-down power opti
mization methodology is advocated and solution techniques targeting the algorithm

and architecture abstraction levels are presented. The key contributions include

extensive studies and models to enable power prediction at the algorithm-level, and

specific synthesis techniques aimed at reducing interconnect power. The ideas pre
sented in this thesis are implemented in a synthesis system called Synergy.

Figure 9.1 overviews the system, presenting the key components and ideas.

One ofthekey components ofSynergy is a high-level estimation tool based on a tech

nology-targeted prediction approach. The tool exploits the knowledge of the architec
turemodel andthehardware Ubrary along with the behavioral characteristics ofthe

algorithm, to obtain meaningful power estimates with limited information. The differ

ent power consuming components of a chip are estimated separately using different

techniques thataddress their specific peculiarities. The components fall into two cat
egories based on their dependence on the algorithm —the algorithm-inherent part
and the implementation overhead. The estimates use analytic techniques based on
algorithm analysis as well as stochastic techniques based on data firom past designs.
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The estimation tool isencapsulated into anexploration tool calledExplore tofacilitate

a more complete search of the design space.

Another key component ofthe system is a set ofsynthesis techniques aimed at mini

mizing interconnect power. The interconnect is selected as theprime targetfor power

optimization based on two observations obtained by comparing nnqTm^l and auto

mated designs —automated techniques produce designs that are power inefdcient in

the interconnect, and the interconnect power is greatly influenced byarchitecture-

level decisions.

After the algorithm and itsassociated design parameters are selected, a partitioning

scheme based on spectral techniques is used to identify spatial locality in the algo

rithm. The synthesis tasks that follow use this partitioning to generate a localized

interconnect architecture that dissipates much less power in global interconnections.

The system also encompasses allocation, assignment, and scheduling algorithms that

identify and exploit repeated patterns ofcomputation in thegraph toreduce themul

tiplexing overhead. The concept is termed regularity exploitation. It reduces accesses

tomultiplexors andtristate buffers as well as fan-outs andfan-ins ofbuses, decreas

ing the overall interconnect power.

9.2. Future directions

While the techniques and methodologies proposed in this dissertation have shown

very positive results, the work inlow-power design ingeneral, and inhigh-level tech

niques for low power inparticular, is far from complete. Though it is not possible to
listallpossible future directions in thisarea,we discuss some directions that aremost

promising and directly related to this work.

9.2.1. Power estimations

This thesis presents a technology-targeted approach to high-level power estimation,

producing estimates for a targeted architecture and hardware library. Abroad classi-
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fication of components into algorithm-inlierent and implementation overhead has

beenpresented.Though the approach can beappUed to any architectureorhardware

library, the analysis in this thesis focuses on a single architecture model. The useful-

ness ofthe approach canbe greatlyenhanced byexamining other architecture styles

and verifying the validity ofthe proposedtechniques for them.

Another dimension to beexplored is the class ofapplications. While mainly datapath-

intensive DSP applications are considered in this thesis, it would be interesting to

apply these estimation techniques to more control-intensiveapplications.

Anapproach that was discussed verybriefly in this thesis is the technology-indepen

dent estimation scheme.As discussed, ideas ofusing entropy [72, 88, 111]and struc

tural properties of algorithms [41, 98] are definitely steps in this direction. Still, a

large amount of work remains to be done to link these behavioral characteristics to

concrete power numbers.

Recently, there has been increased interest in automated system-leveltechniques for

dealing with the increasing complexity ofelectronic systems being designed. Estimat

ing the power at this stage allowsthe user to appropriately budget the system power

requirements and identify bottlenecks tiiat need to be targeted for optimization. The

spreadsheet-based power estimation approach presented in [68] addresses some of

the issues.

9.2.2. Low-power synthesis

This dissertation has presented techniquesforexploiting twoalgorithm properties for

reducing interconnect power. Several other properties such as concurrency, connectiv

ity, etc. may influence the power consumptions of some components, and are worth

examining.

Though the locality and regularity properties have been studied here in the context of

architecture synthesis firom algorithm specifications, tiie concepts are general and
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may be applied more broadly. In fact, these concepts can be used in several other

areas that have large components of their power consumption in the interconnect.

Some good applicationsincludefield-programmable gate arrays, memories, and large

blocks ofcontrol, where a large amount ofpoweris consumed in the global intercon

nections.

Also, it is possible touse theseconcepts forsystem-level power optimization. Locality

may be used to guide system-level partitioning either into different hardware blocks

or into software and hardware components. This is especially useful since the argu

ments of greater power savings at higher abstraction levels hold as we move to the

system level.
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