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Abstract

High-Level Estimation and Synthesis
Techniques for Low-Power Design

by
Renu Mehra

Doctor of Philosophy in
Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Jan M. Rabaey, Chair

The explosive growth in the computational requirements imposed on current day
digital systems and the rapid proliferation of portable devices have made low power
a critical design issue. Low-power studies published in the literature indicate that
large power savings are possible by addressing this problem at the higher — algo-
rithm and architecture — levels of abstraction. In fact, high-level design tools and
methodologies are becoming increasingly important due to the integration of tens of

millions of transistors on single chips and narrowing time-to-market windows.

This dissertation presents automated techniques and methodologies for power
reduction at the algorithm and architecture levels of abstraction. The core contribu-
tions include mechanisms for power estimation from a behavioral description, and

architecture synthesis techniques for low-power design.

The key contributions in the first part of this work are techniques for algorithm-level
power estimation. The estimates are based on information from an architecture
model and a specified hardware library, and are hence technology-targeted. Each of
the different components of power dissipation on a chip is considered separately, and
a combination of analytic and stochastic schemes is proposed. The estimation meth-

ods are encapsulated in an exploration framework that allows the user to quickly
1



quickly evaluate several points in the algorithmic design space without synthesizing

each one.

The primary contributions in the second part of this work are architecture-synthesis
schemes targeting interconnect power reduction. We propose two techniques that are
based on exploiting algorithm properties for reducing power. The properties consid-
ered are the algorithm’s spatial locality, which.refers to the existence of tightly con-
nected substructures in it, and its regularity, which refers to the repetition of
computational patterns in it. The synthesis approaches suggested exploit these prop-
erties to derive a simpler interconnect infrastructure with shorter buses and lower
multiplexor and buffer overhead.

The concepts and ideas developed in this thesis have been embodied in a synthesis
system called Synergy which allows the user to explore the algorithmic design space

and synthesize the design to a low-power architecture in an integrated way.
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Introduction

For many years, area and performance were the only criteria used in the design of
commercial integrated circuits. Analysis of power consumption was performed only as
an afterthought with the results being used to determine packaging requirements
rather than to drive any design optimizations. Recently, however, power consumption
has begun to play an increasingly important role in digital systems. The principle
driver for this has been the explosive increase in the demand for portable electronics
such as personal digital assistants (PDAs), laptops, and personal communicators.
There has also been an increased desire for low power in the high-performance com-
puting market, motivated by reliability and cost issues associated with packaging and

cooling high-power devices.

Existing computer-aided design tools for low-power design focus primarily on low
levels of abstraction. For example, power analysis tools at the gate and circuit levels
are widely available and logic synthesis tools targeted at low power are beginning to
appear as well. Unfortunately, the higher levels of abstraction, where the most signif-

icant optimizations are possible, have not been explored as much.

In this dissertation, we consider automated computer-aided design techniques for
power reduction in digital electronic systems. Since it is generally accepted that the
largest gains are obtained by working at the highest levels of abstraction, the
approach adopted in this thesis proposes optimizations and design aids at the algo-
rithm and architecture levels, identifying and addressing some critical issues. Both
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the power estimation and synthesis problems are studied and proposed techniques
are implemented in an automated design space exploration and synthesis system,

Synergy.

1.1. Low-power design

The last ten years have seen an explosive growth in the computational requirements
imposed on digital electronic devices. Current consumer applications demand com-
plexities and speeds originally seen only in the realm of large powerful mainframes.
Personal computers are now equipped with sophisticated graphics, imaging, and
video capaBilities and run at over 100 MHz speeds. The problem is that the increasing
complexity and speed are accompanied by growing power dissipation. Table 1.1,
which shows the speed, complexity (number of transistors), and power consumption
of some recent microprocessors, indicates the enormity of this problem. Increased
power dissipation results in reliability problems due to over-heating, and requires
expensive packaging and sophisticated heat removal techniques. This additional cost
is not as easily absorbed in the personal computer market as in the high-priced super-
computer business. In fact, in order to avoid high-cost packaging and cooling require-
ments, some processors now have advanced heat detection schemes that slow down

the processor’s clock if the chip gets too hot [107].

Another important development in recent years has been the rapid increase in the
deployment of portable versions of previously tethered consumer products. While
original portable applications were limited to low-speed devices with restricted func-
tionality like wrist-watches and pocket calculators, today’s portable devices provide
infinitely more functionality at much higher speeds. Typical examples are laptop com-
puters, which now form the fastest growing segment of the computer market, personal
digital assistants (PDAs), cellular phones, and pagers. The consumer-oriented nature
of these devices solicits user-friendly environments with graphics, video, and audio

capabilities and speech and handwriting based user-interfaces, all of which put addi-



Table 1.1. Power consumptions of a few recent microprocessors.

Microprocessor sCI:::l; Vol%ge tlj‘alnmsli):;:: Year P(t‘);,v)er
(MHz) (millions)
"~ Pentium Pro! (Inte) | 180 | 3.1 | 55 | 1996 | 204 |

Pentium with MMXZ (Intel) 300 | 28 75 1997 | 7.8
PA-RISC 8000° (HP) 180 - 3.9 1996 >40
UltraSparc IZ (Sun Microsystems) | 167 | 3.3 5.2 1995 | <30
PowerPC 604! (IBM, Motorola) 133 33 3.6 1995 17.5
PowerPC? (Exponential Technology) | 533 | 3.6, 2.1 2.7 1997 | <85
Alpha 210642 (DEC) 300 | 33 9.3 1995 30

Alpha 212642 (DEC) 600 | 20 152 1997 72

1. Numbers from vendor information.
2. Numbers from the International Solid State Circuits Conference.
3. Numbers from Compcon.

tional computational and speed requirements on the systems. While the computa-
tional requirements have grown considerably, the growth in battery technology has
been relatively slow. This has resulted in a critical need for power reduction tech-
niques to enable batteries to support these applications for reasonable periods of time.

Historically, power issues have been a limiting factor in determining the capabilities
of digital electronic systems and have only been solved through key technology
advances. The computing power of vacuum tube computers was limited by reliability
and heat dissipation problems. The advent of the transistor [6, 112] and of wafer inte-
gration techniques [89] introduced devices with orders of magnitude lower power, and
techniques to fabricate a large number of them on a single die. The bipolar based TTL
and ECL logic families ruled the digital semiconductor market through the 70’s. This
technology was again limited by power dissipation problems and was replaced by
CMOS/NMOS devices in the 80’s. Today however, no radically new low-power device
structures are in the horizon to address the power problems facing the digital elec-

tronics community. Therefore, it is critical for designers to limit the power require-



ments through careful design techniques and methodologies. Over the last five years
this topic has gathered increased momentum leading to a large body of research work

in low-power design.

1.2. High-level design

The surge of interest in low power has spawned numerous research efforts into design
techniques for reducing power consumption. Several papers have surveyed the work
in this field [27, 85, 99, 115]. In particular, designers have reported low-power strat-
egies at the algorithm and architecture levels that promise orders of magnitude sav-
ings in power [18, 56, 80, 115], while published results based on gate and circuit-level
optimizations typically offer only a factor of two or less improvement [27, 56). The
reason is that, at the later stages of a design, many of the decisions are already made
which limit the opportunities for optimization at the lower levels of abstraction. The
greater degree of freedom at the higher levels allows for much larger power savings.
This suggests that a top-down approach should be adopted for low-power design. Spe-
cifically, optimization efforts should begin at the algorithm level, proceeding then to
the architecture level, and finally to the gate, circuit, and layout levels of abstraction.

Another motivation for high-level design tools comes from the widening gap between
the design complexities and designer productivity. While the number of transistors
per chip has gone up by about a 1000x in the last 15 years (from 10,000 in 1981 to
about 10 million in 1996), the number of transistors designed per staff-month has
gone up by only about 20x in the same period (from about 100 to 2000) [110]. By the
year 2010, the number of transistors per chip is expected to rise to 1 billion! This indi-
cates an explosion in the number of designers required in a design team for a single
chip. Clearly there is a need for automated approaches to address this problem. In
particular, more effective tools are required at the high levels of abstraction, espe-
cially the algorithm and architecture levels. At these levels, most of the work has



focussed on speed and area optimization, and the power optimization arena has

remained largely unexplored.

1.3. Contributions of this work
The key contributions of this work include techniques for estimating power at the
algorithm level and an associated exploration facility, as well as a set of synthesis

techniques aimed at reducing interconnect power with minimal area penalty.

Several power optimizations techniques have been proposed at the algorithm level (an
overview is presented in Chapter 2). Though these techniques have a large potential
for power reduction, it is seen that the power savings obtained are design dependent,
the techniques have different effects on the different design components, and in sev-
eral cases they work better in combination with other techniques than alone. A criti-
cal design aid at this level is a power estimation mechanism that allows the user to
apply various techniques and evaluate their effects on the overall power without syn-
thesizing the entire design. The challenge lies in providing reasonably accurate pre-
dictions in the face of extremely limited information. One of the key contributions of
this work is a facility to provide such predictions. A set of heterogeneous estimation
techniques are presented to address the different characteristics of the various power-
consuming components on a chip. While for some components, such as functional
units and memory, the power can be computed analytically through algorithm analy-
sis, other components like registers, interconnect, and control require stochastic tech-

niques for power prediction.

To further aid in evaluating the different degrees of freedom and making design deci-
sions at the algorithm level, the estimation algorithms are encapsulated into a design
space exploration tool called Explore.

The second key contribution of this thesis includes architecture-synthesis techniques
for power reduction. While some synthesis approaches to power optimization have



been proposed, most of them are aimed at reducing signal activity at the inputs of the
various modules in the final architecture. Comparing manual and synthesized imple-
mentations, we identified that the interconnect component is a significant power bot-
tleneck in automated approaches. Also, this component constitutes overhead power
(not necessary for the basic computation) and is significantly lower in manual designs.
Our architecture synthesis approaches capture some of the techniques used by human
designers and uses them in automated schemes to reduce the interconnect power com-

ponent.

The core contribution in this part is the identification and exploitation of two struc-
tural properties of the algorithm for power reduction. First, we identify tightly con-
nected sub-structures in the algorithm and use them to generate a localized
implementation. The existence of tightly connected sub-structures in the algorithm is
referred to as its spatial locality. Exploiting spatial locality in this way restricts the
interconnect elements to portions of the chip, and helps in reducing the physical
capacitance and power dissipation in the buses and buffers. Additionally, the localized
hardware sharing reduces multiplexor overheads. Next, we identify repeated pat-
terns of computation in the algorithm, which constitute its regularity, and use them
to synthesize a simpler interconnect structure. In this case, the interconnect ele-
ments, once instantiated, can be reused several times without extra multiplexing

overhead. The technique results in power reductions in the buses and multiplexors.

The concepts and ideas introduced in this thesis are encapsulated in a synthesis
system called Synergy which is targeted at exploiting the large power savings avail-
able at the higher levels of abstraction. At the highest level, the algorithm level, power
estimation techniques encapsulated in a design space exploration tool provide the
user with enhanced capabilities to evaluate designs and explore the algorithmic
design space. After an algorithm with appropriate parameters is chosen, architecture
synthesis techniques allow the designer to realize a low-power implementation. In the
end, architectural power analysis can be used to verify and fine-tune the decisions.
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1.4. Scope

For implementation and demonstration purposes, the synthesis system presented in
this thesis targets a specific application domain and architecture model. However,
most of the ideas presented here are general and may be applied to other domains.
This section outlines the application domain and architecture model targeted in the
synthesis system. The input specification and internal representation of the algo-
rithm to be synthesized are also explained.

1.4.1. Application domain

The Synergy synthesis system is targeted for digital signal processing (DSP) applica-
tions. The main characteristic of these applications is that they are data-flow inten-
sive with relatively few control constructs. These algorithms process or transform an
infinite stream of input data in an endlessly repetitive loop in real-time. The rate at
which the input data is received and processed is constant, independent of the values
of the input signals, and is called the required throughput or sampling frequency. This
rate is fixed by the DSP function and the surrounding system requirements. The
inverse of the throughput is the sample period, which is the time between the arrival
of successive input samples. Usually, the timing constraints are stringent and require

parallel architectures for feasible implementations.

Some typical applications include filters (IIR, FIR), transforms (FFT, DCT, Hilbert),
speech and audio processing (synthesis, coding, echo cancellation), and video process-

ing (compression, decompression).

1.4.2. Input specification

The input algorithm is specified in a applicative language called Silage [48). This lan-

guage is specially suited for the DSP algorithms since it is simply a textual represen-

tation of a signal flowgraph where each variable represents a signal. The language is

based on the single-assignment principle — each signal is defined in a unique way by

an equation rather than a statement. The language supports control-flow constructs
7



such as loops and if-then-else statements, and hierarchical constructs such as subrou-
tines.

1.4.3. Internal representation

The algorithm in internally stored in a control-data flowgraph (CDFG) representation
with nodes, data edges, and control edges. The nodes represent operations in the algo-
rithm, data edges represent variables or data dependencies, and the control edges rep-
resent extra precedence rules between operations. The CDFG serves as the central
data-structure on which synthesis and optimization operations such as complexity
estimations, flowgraph transformations, hardware allocation, and scheduling tasks
are performed and to which results are annotated. It also provides a convenient ver-

sioning mechanism to record the history of a design.

Nodes in a CDFG may represent arithmetic operations (addition, multiplication, etc.),
control operations (if-then-else), sample delays, or hierarchical constructs. Hierarchi-
cal constructs are represented by nodes that are themselves CDFGs instead of prim-

itive operations.

1.4.4. Targeted architecture
The targeted ASIC architecture is shown in Figure 1.1. It consists of a set of functional

units (the exact number is derived during synthesis) that are connected together
through an interconnect network. Though the network may be complete if needed,

only those connections required for a given design are actually made.

Temporary storage (other than background memory) is provided through a distrib-
uted register file architecture. A register file is attached to each input of the functional
units to store the requisite operands. The register files are assumed to have one write
and one read port though the synthesis scheme can be modified to handle more com-
plex register architectures. A variable is written into a particular register file when

>
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Figure 1.1. The targeted architecture model.

its producer operation is executed and is read when the consumer (the functional unit

to which it is attached) executes.

Since a functional unit may receive data from more than one source, multiplexors are
used whenever needed to select the data from the correct source. Also, buffers are
used at the output of the functional units to drive the global buses. These buffers may
be tristated, if needed, to control which unit drives each bus in a particular clock cycle.
Physically, each functional unit and its associated registers, multiplexors, and buffers
are clustered into a datapath block.

This interconnect structure is the most general and other simplified interconnect
structures may be derived from it, if required. Two simplified schemes that are sup-

ported, the multiplexor-based and the tristate-buffer based schemes, are discussed

below.



In the multiplexor based interconnect scheme, each function unit has a dedicated
output bus that may be driven by a buffer if required. However the buffer is not
tristated, and the unit owns the bus at all times. The receiving units select the data
from the correct bus using multiplexors. In the tristate-buffer based interconnect
scheme, each unit has a dedicated source bus for each input. The producer units
decide which bus the data must be transmitted on, based on where they want to send
the data. Bus selection by the producer units is done using tristate buffers.

In this thesis, we adhere to the generalized interconnect model as much as possible.
However, one of the simpler cases may be used sometimes in order to facilitate the

demonstration of results from using a particular optimization technique.

The controller is executed as single Moore machine (which implies a single thread of
control) with a distributed structure as shown in Figure 1.1. A central finite state
machine (FSM), generates the state information which is distributed to a set of local
controllers. Each local controller generates the control signals for a particular datap-
ath and is placed close to it in the final layout. The local control signals include read/
write signals for registers, select signals for multiplexors, shift amount for shifters,
tristate signals for buffers, etc. This distributed control scheme reduces power dissi-
pation since only the state bits are globally distributed to the entire chip and the con-
trol signals are locally generated in the glue-logic blocks.

1.4.5. Hardware libraries

Underlying the synthesis system is a hardware library parameterized delay, area,
and power information of the different library cells. Parameters include input and
output wordlengths, supply voltage, maximum shift value for shifters, number of reg-
isters for register files, etc. The library information is used to drive decisions through-
out the synthesis and implementation phases. The library does not need to be fully
designed, but the accuracy of the numbers provided will affect the overall results.
Library information may be obtained from either post-fabrication test results, pre-

10



fabrication cell characterizations, preliminary estimations based on a paper design,

measurements obtained from previous designs, or numbers reported in the literature.

This library-based approach has several advantages: (i) design tools can use informa-
tion from of library components to make high-level decisions and (ii) library cells are
. designed only once, reducing design cycles.

1.5. Thesis organization
This thesis is organized into 9 chapters. This chapter has presented the motivation

for the work, its key contributions and scope.

Previous and related works and background material are presented in Chapters 2 and
3. The various power related issues — the sources of power dissipation, power models,
and the principal power reduction themes — are introduced in Chapter 2. This chap-
ter also extensively describes previous work in power optimization and estimation.
Chapter 3 gives an overview of architecture synthesis and the associated tasks. The
Hyper high-level synthesis system which has been used as a research platform for

experimentation of ideas in this thesis is also described.

Techniques for algorithm-level power estimation, their limitations, and results are
presented in Chapter 4. The associated exploration environment is presented in

Chapter 5, along with several examples illustrating the various degrees of freedom at

this level and an extensive case study.

Architecture synthesis techniques for low power are treated in Chépters 6-8. In Chap-
ter 6, the various power consuming components are studied to identify bottlenecks
and qualify the impact of architecture-level techniques on them. Chapter 6 also dis-
cusses an extensive set of models for estimating interconnect power at the architec-
ture level. Chapter 7 introduces a partitioning-based scheme for exploiting algorithm
locality. A synthesis approach for identifying and exploiting algorithm regularity for
interconnect power reduction is detailed in Chapter 8. Chapter 9 presents an overview

11



of the entire synthesis system along with the key concepts, and also indicates possible
future directions.

12



n

Power Optimization and
Estimation: Overview

This chapter presents background material in power optimization and estimation.
Section 2.1 discusses some of the basic concepts related to power dissipation in inte-
grated circuits — the main sources of power, how it is modeled, and the common
themes for power reduction. The next two sections overview related work in power
reduction at the algorithm (Section 2.2) and architecture (Section 2.3) levels.

Section 2.4 surveys previous work in power estimation at various levels of abstrac-

tion.

2.1. Power — sources, models, and themes

Power dissipation in an integrated circuit stems from four main sources — (i) switch-
ing or dynamic power dissipated while charging and discharging the capacitances in
the circuit, (ii) short-circuit power consumed due to currents through direct paths
from the supply to ground during switching, (iii) static power due to current flows in
paths from the supply to ground when the circuit is stable (not switching), and (iv)

leakage power due to sub-threshold and reverse-biased diode currents in the circuit.

At the algorithm and architecture levels, the short-circuit and leakage power are
neglected since they (i) can be reduced to less than 15% of the total chip power by
power conscious circuit design techniques [127], and (ii) are not influenced by the

algorithm or the architecture style used. The static power component is also ignored
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since the most popular circuit styles exhibit rail-to-rail swings and do not consume
static power. Therefore, only dynamic power is targeted for optimization at the algo-
rithm and architecture level. The power dissipation is described by the following

equation:
Power = Ceff(sz'VDD) ! (Eq. 2.1)

where f is the frequency of operation, Vy, is the switched voltage, Vpp is the supply
voltage, and C,zis the effective capacitance switched. The effective capacitance, Cesr

depends on C, the physical capacitance being charged/discharged, and c, the activity
factor:

C.pr = 50C (Eq. 2.2)
The activity factor o, associated with a node with capacitance C, is the average
number of transitions per clock period at that node. Also, due to the assumption of

rail-to-rail swings, V,, = Vpp. Thus the overall power equation further reduces to:

Power = %aCVfl df (Eq. 2.3)

Based on this power equation, four main degrees of freedom for power optimization
can be easily identified. These correspond to reduction of the various power compo-
nents: the supply voltage, activity, physical capacitance, and frequency. Each of these

are briefly discussed below:

1. The recurring theme in low power design is voltage reduction. Since the power is
quadratically dependent on the supply voltage, changes in supply voltage can
potentially have a large impact on power. This power reduction comes at reduced
speeds, however, since lowering the power supply increases the delay of the
hardware blocks (Figure 2.1). Speed-up techniques at the algorithm and archi-

tecture levels can then be used to recover this loss in performance.
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Figure 2.1. Effect of supply voltage: (a) on energy, (b) on delay.

2. Another important theme is avoiding wasteful activity. A computation should
only be performed when absolutely necessary to avoid useless switching of
capacitive nodes. This may be achieved either by optimizing the algorithm so
that minimum number of operations are performed, by power-down techniques
at the architecture level, or by reducing glitching activity at the gate and circuit
levels.

8. Reduction of the physical capacitance is relatively less addressed at the algo-
rithm level but forms the basis of a large number of architecture-, gate-, and cir-
cuit-level techniques.

. While frequency reduction is a popular technique for lowering the power and
hence the heat dissipation in a device, it has no effect on the energy used per
operation and does not affect the number of operations per battery life. Thus it is
not an attractive alternative for portable applications. It also has the associated
problem of reducing the application speed and is not used for real-time (DSP) or
high-performance (microprocessor) applications. However, it is widely used for
reducing heat dissipation during idle periods of a device.
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The rest of this chapter surveys various power reduction and estimation techniques

that have been proposed in the literature.

2.2, Algorithm-level power reduction techniques

The algorithm-level presents a large design space with several degrees of freedom for
power reduction. Algorithm-level techniques can be classified along the overall
themes for power reduction presented in the last section. Below we revisit the main

themes and mention algorithm-level optimization approaches for each.

1. Voltage reduction: Several algorithm-level techniques can be used to increase the
speed of the algorithm, enabling voltage reductions. Among the most important
are algorithm selection (Section 2.2.2) and speed-up transformations
(Section 2.2.3). While it is desirable to operate at the lowest possible voltages for
power reduction, the delay penalty involved introduces other effects which are
analyzed in Section 2.2.1.

2. Avoiding wasteful activity: The size and complexity of a given algorithm (e.g.
operation counts, wordlengths) determine its activity. Activity reduction can be
achieved through algorithm selection (Section 2.2.2) by using a less computa-
tionally intensive algorithm; through dataflow transformations (Section 2.2.4) by
reducing operation counts and substituting compute-intensive operations by
simpler ones; and through memory transformations (Section 2.2.6) by reducing

memory accesses.

3. Reducing physical capacitance: Behavioral decisions may impact the physical
capacitance of several components of a design by affecting the area of the design
(which changes interconnect capacitances); affecting the resources selected
(which changes functional unit capacitances); or by affecting the memory sizes
(which changes memory capacitance). For exzample, clock selection
(Section 2.2.1) affects the overall area of the design and the selection of hard-
ware resources, transformations for increasing resource utilization
(Section 2.2.5) reduce the design area, and memory transformation
(Section 2.2.6) can be used to reduce memory size.
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The following sections elucidate the various techniques mentioned above — voltage,
clock, and algorithm selection, as well as the different transformations — explaining

the main concepts and presenting their advantages and disadvantages.

2.2.1. Parameter selection

Some of the parameters that can be selected at the algorithm level are the supply volt-
age and the clock period. Below we consider the various effects of the choice of these

parameters on the overall power dissipation.

Voltage selection

For real-time applications with fixed throughput constraints (fixed sample period),
maximum power savings can be obtained by operating at the lowest possible voltage
at which the throughput constraint can be met. It is useful to analyze some of the
other effects of voltage reduction (besides a quadratic reduction in power) on such
applications. Firstly, as the voltage is lowered, it may be necessary to use faster mod-
ules (usually with higher area and power requirements) to meet the timing con-
straints, affecting both the area and the power of the design. Secondly, it may be
necessary to perform more operations concurrently to meet the throughput con-
straints at lower voltages. This leads to area increases that may or may not be accept-
able depending on the cost constraints, and if acceptable, would impact the
interconnect lengths and power. These effects of voltage reduction are studied in

detail in Chapter 5.

Clock selection

Another way to reduce power is to operate at reduced speeds since the power dissipa-
tion is directly proportional to the frequency. This imposes a delay penalty which may
be acceptable for low-speed applications but is undesirable for high-performance
applications. In real-time applications that are targeted in this thesis, the overall
algorithm throughput is fixed by system requirements, but the clock rate used in the
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implementation is variable and is selected by the user. In this scenario, the choice of

the clock period can impact the implementation in several conflicting ways.

Since the overall sample period is fixed, a longer clock period results in fewer clock
cycles available for completing the algorithm. This reduces the total number of dis-
tinct states in the design, decreasing the power consumed in the controller. Other
components affected are the interconnect and clock whose power depends not only on
the number of states (which affects the switching activity) but also the overall area of
the design (which determines the wirelengths). The choice of the clock period can have
several conflicting effects on the overall area of the design. Since a longer clock period
results in fewer clock cycles per sample period, more operations may need to be per-
formed concurrently, increasing the number of hardware resources required. At the
same time, a longer period reduces the number of clock cycles required by a particular
operation (in case of multiple-cycle operations), allowing more operations to be per-
formed sequentially and reducing the area requirements. Also, a longer clock period
gives each operation more time to complete, allowing slower (and smaller) hardware

units to be used.

The impact of the clock period is further explored through examples in Section 5.2.1.

2.2.2. Algorithm selection

For a given task, many algorithms may be available that trade-off complexity versus
quality, area, or some other cost function. For example, three different speech coding
algorithms with up to 50% variation in quality and complexity are presented in [63].
Given several algorithms for a particular task, the one with least number of opera-
tions is generally preferable for power purposes. Selecting the correct algorithm may
result in large power savings and is a very important step in high-level design space
exploration. Algorithm selection is demonstrated though a case study in Section 5.3.
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2.2.3. Speed-up transformations
Speed-up transformations (first presented in [18]) reduce power by enabling supply-

voltage reduction. However, they often translate into larger area requirements. Some

of these transformations are discussed below.

Retiming and pipelining:

The most important speed-up transformations are retiming and pipelining. In the
example of Figure 2.2, retiming is used to reduce the critical path of a third-order FIR
filter from 3 clock cycles to 2 (assuming each operation takes one clock cycle). Since
the throughput of the application is fixed, this speed-up can be used to scale the volt-
age from 5 V to 3.2 V, thereby reducing the power from 136.3 to 53.2 mW, a 61% reduc-

tion.

(a) critical path = 3 (b) critical path = 2

Figure 2.2. Using retiming to reduce power: (a) original structure,
(b) after retiming.

Often other transformations such as algebraic and loop transformations are per-
formed to enable retiming and pipelining. As an illustration, considér a first order IIR
filter with a critical path of 2 (assuming each operation takes one clock cycle) shown
in Figure 2.3a. The critical path cannot be reduced by retiming or pipelining and the
simple structure does not provide opportunities for algebraic transformations. How-
ever, applying loop unrolling (Figure 2.3b) enables these transformations (distributiv-
ity, constant propagation, and pipelining) which result in a significant power
reduction. The final transformed block (Figure 2.3d) has twice the time available for
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processing each sample (since it processes 2 samples in parallel), and the same critical
path (2 clock cycles). Based on the Figure 2.3, this 2x speed-up can be used to reduce
the voltage from 5 V to 2.9 V without changing the overall throughput of the filter.
However, the effective capacitance switched has increased since the transformed
graph requires 3 multiply and 3 add operations for 2 samples while the initial graph
requires only 1 multiply and 1 add per sample — a 50% increase in complexity and
hence in switched capacitance. Fortunately, the reduced supply voltage more than

compensates for this increase resulting in an overall reduction of the power by a factor
of 2.

Xn ® Yn :
Qg loop unrolling

a
(a)
algebraic transformations
and constant propagation
Xy —> (DD —> ¥n X, —> —» Yn

pipelining a2

Xp.1 D] (D> Yna1 Xp1 Yn1
(c) ()]

Figure 2.3. Illustration of speedup transformations on a first-order IIR filter.

The above example shows that a particular transformation can have conflicting

effects on the different factors in the power equation — it may enable voltage reduc-
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tion and simultaneously increase capacitance. In the above filter, arbitrary speedup
can be achieved by further unrolling. This speedup can be used to drop the supply volt-
age for power reduction at a fixed throughput rate. But the capacitance grows linearly
with unrolling factor and soon limits the power gains from reducing the supply volt-

age. Thus, the fastest solution is often not the lowest power solution.

Wordlength Reduction:
Certain transformations change the numerical stability of the algorithm, thus affect-

ing the wordlengths needed to attain the required accuracy. While retiming, pipelin-
ing, and commutativity do not affect wordlength, applying associative and
distributive identities may have a dramatic influence [39].

The wordlengths used in a design strongly affect its key parameters — speed, area

and power. Smaller wordlengths are desirable for power optimization since they:

® increase operation speed and enable voltage scaling
®: result in fewer switching events and lower capacitance
® reduce the overall area, resulting in lower interconnect lengths and capacitances

For example, the parallel-form IIR filter structure has higher numerical stability than
the direct-form structure. Implementing an eighth-order Avenhaus bandpass filter [4]
in the parallel-form requires only 11 bits while the direct-form implementation
required 23 bits to get the same accuracy [25]. As a result of this, even though the par-
allel-form has more operations in its critical path (23) compared. to the direct-form
(20), the direct-form has a 50% longer critical path and thus a factor of four higher
power consumption. In some cases, however, wordlength reduction comes at the

expense of increased operations.
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2.2.4. Activity-reducing transformations
Several transformations do not reduce the critical path of the algorithm but reduce its
complexity and hence associated switching activity. These transformations were first

presented in [18] and some of them are reviewed below.

Operation Reduction:

The most obvious approach is to reduce the number of switching events by reducing
the number of operations in the algorithm. Transformations which directly reduce the
number of operations include common sub-expression elimination, manifest expres-
sion elimination, and distributivity. These transformations may, however, increase
the critical path.

X e x
x D@ — — a”
X y algebraic
(%) transformations y
a b X

b

Figure 2.4. Operation reduction without increase in critical path: x?+ax+b.

algebraic . © ©
rai
transformations O ;: y

Figure 2.5. Operation reduction with critical path penalty: x>+ax®+bx+c.

Figures 2.4 and 2.5 show examples of operation reduction. In Figure 2.4, using the

associative identity reduces the number of multiplications without changing the crit-
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ical path and therefore results in a power reduction. In Figure 2.5, applying algebraic
transformations reduces the number of multiplications by two, resulting in a lower
effective capacitance but increases the critical path 4 to 5 clock cycles requiring a
higher supply voltage to achieve the same computational throughput. In this case the
transformation has two conflicting effects on power dissipation that need to be care-
fully evaluated to assess the overall effect on power.

Operation Substitution:

Operation substitution is used to replace power hungry (more complex) operations in
the algorithm by low-power (less complex) ones. A powerful transformation in this
category is conversion of multiplications with constants into shift-add operations.
Since multiplications with fixed coefficients are quite common in signal processing
applications such as transforms (DCT, FFT) and filters (IIR, FIR), the scope of appli-

cation of this transformation is large.

Other transformations can be used in combination to achieve operation substitution.
An example is shown in Figure 2.6, where redundancy manipulation, distributivity,
and common sub-expression elimination are used to replace a multiplication by an

addition. Unfortunately, the power reduction may come at the expense of an increase

in the critical path.

8r 8; - 8y

Xy
Yy
8 redundancy manipulation,
distributivity, and -

Xr yi common sub-expression elimination 1 ¥r
Xj !

ar & +Xp

(a) b)

Figure 2.6. Replacing power-hungry operations by low-power ones.
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In [20] Chatterjee and Roy studied the effect of operand activity on the power con-
sumption of additions and constant multiplications and used it to guide architectural

transformations.

2.2.5. Capacitance-reducing transformations
Transformations that reduce the implementation area save power by reducing the

physical capacitance of global resources like buses [18].

Resource Utilization:

One way to reduce implementation area is to distribute the operations more uni-
formly permitting higher resource utilizations. Here power savings come from
reduced overall area and hence lower wiring capacitance. However the increased
hardware sharing may result in higher power in multiplexors and control circuitry.
Therefore the optimization strategy must consider power consumed in interconnect

and control.

(c)

Figure 2.7. Different retiming schemes with different hardware requirements.
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Transformations for increasing resource utilization include retiming, associativity,
distributivity and commutativity. Figure 2.7 shows two different retimed versions of
a second-order IIR filter. Both the transformed graphs are obtained from retiming and
have a critical path of 3. While the graph of Figure 2.7b can be scheduled in three clock
cycles using only 2 multipliers, the graph of Figure 2.7c needs 4 multipliers. There-
fore, Figure 2.7b will result in a smaller implementation with shorter, lower capaci-
tance buses than Figure 2.7c.

2.2.6. Memory transformations

Several DSP algorithms, especially those for video and graphics applications, are
memory intensive and their power consumption is often dominated by the memory
component. Transformations for memory play an important role in power reduction
for these applications. These transformations differ substantially in their goals and

features from those discussed in the previous two sections and warrant a separate dis-

cussion.

A significant amount of work has been done in memory-related transformations for
area or performance improvement in the compiler [135], computer architecture [47],
and high-level synthesis domains [5, 120}, but relatively less work has studied their
effects on power. Catthoor et al. were the first to specifically study the effect of
memory transformations on power in the high-level synthesis context [15] and some
of their main techniques are discussed below. First, we consider the factors influenc-

ing power dissipation in memories.

The power consumed in memories depends on the size of the memory, the number of
accesses to it, and the activity on its input signals. While memory size and accesses
can be influenced by both algorithm- and architecture-level changes, signal activity
predominantly depends on architecture-level decisions. We discuss the first two
aspects here.



Memory size reduction:

Memory size is affected predominantly by the amount of data that needs to be stored
at a particular time and can be reduced by loop transformations on the algorithm.
Consider the example shown in Figure 2.8a. Arrays A and C are already available in
memory; when A is consumed another array B is generated; when C is consumed a
scalar value, D, is produced. Memory size can be reduced by executing the j loop before
the i loop (Figure 2.8b) so that C is consumed before B is generated and the same

memory space can be used for both arrays.

for i =1 to N do for j = 1 to N do
Blil= £(Ali)); | ——— D = g(C[§],D);
for j = 1 to N do Loop interchange for i = 1 to N do
D = g(C{j],D); Bli) = £(A[i));
(a) (b)

Figure 2.8. Loop interchange for reducing memory size.

Memory access reduction:

Accesses to memory are expensive since each time a data is read from or written to a
memory location a large capacitance is switched. One way to reduce accesses to
memory is to move variables from background memory to foreground registers as
much as possible since register accesses are much cheaper in terms of power consump-

tion. At the algorithm level, this can be enabled by reducing the lifetimes of variables.

Consider the example of Figure 2.9a consisting of two loops; the first loop consumes
array A and produces array B which is consumed in the second loop and a new array
C is produced. This calculation can be done “in-place” using a single n-element
memory to store A, B and then C. However each memory element is accessed four
times — to read Ali], write B[i], read B[i] and finally write C[i]. If the loops are merged
as shown in Figure 2.9b, B[i] can be simply stored in temporary registers thus reduc-
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ing the number of accesses to each memory element to two. The second implementa-

tion reduces the memory power consumption to half,

for i =1 to N do for j =1 to N do
Blil= £(A[i]); |:> Bli) = £(A[i));
for j = 1 to N do Loop merging Cli] = g(B[i));
Cli)= g(Bli));
(a) )

Figure 2.9. Loop merging for reducing memory accesses.

2.2.7. Algorithm-level techniques — lessons learned
The role of the various techniques in achieving the three basic goals of voltage, activ-

ity, and capacitance reduction are summarized in the Table 2.1.

Table 2.1. Algorithm techniques to reduce power.

Basic goals Important techniques

I
Reduce voltage |Speed-up transformations: retiming, pipelining, algebraic, loop transfor-
mations, wordlength reduction.

Voltage selection.
Algorithm selection.

Avoid wasteful] Activity reducing transformations: operation reduction, operation substi-
activity tution, distributivity, common sub-expression elimination, wordlength
reduction.

Algorithm selection.
Memory transformations.

Reduce physi-JArea reducing transformations: resource utilization, wordlength reduc-
cal capacitance Jtion.

Algorithm selection.
Memory transformations.
Clock selection.
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It is clear that transformations can have a large impact on the power consumption.
However, the following facts must be considered before selecting a particular trans-

formation for application on a given design:

1. Its effect is design dependent.

2. It may have a bigger impact if used in combination with other transformations.
3. It may have conflicting effects on the different power components.

4. It may have adverse effects on the area or other quality metrics of the design.

Algorithm-level power estimation mechanisms are extremely helpful in evaluating

the varied effects and exploring the different options for a given design.

2.3. Architecture-level power reduction techniques
Once the algorithm is optimized for low power, it is mapped to an architecture or a
register transfer level description. In this section we present an overview of architec-

ture synthesis techniques for low power.

Since the voltage is already fized at the algorithm level, we do not consider voltage
reduction techniques. As mentioned before, the sample frequency is determined by
the required throughput and the clock frequency is fixed at the algorithm level. The
primary component targeted is the effective capacitance switched, Cefr. Power reduc-
tion at the architecture level is based on four underlying themes: activity reduction,

localization, specialization, and demand driven operation.

1. Preservation of data correlations: Switching activity is dependent on correla-
tions between successive data inputs and increasing correlations results in large

power savings.

2. Distributed computing / locality of reference: Accessing global computing
resources (control, datapath, memory, I/O) is expensive: the time-sharing nature
of these resources requires a high switching rate, and the shared nature of such
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a resource typically incurs a capacitive overhead. Distributing the accesses over
many resources relieves both the switching requirements and the overhead. In
particular, accesses to long global buses are costly and keeping data local

reduces power consumption in data communications.

3. Application-specific processing: Specialized units consume less power than gen-
eral-purpose ones due to simpler structure and reduced control required to sup-
port programmability.

4. Demand-driven operation: To avoid wasteful transitions, it is important to per-
form operations only when needed. Power down of memory and functional units
when they are not in use is the most popular technique in this category.

These power reduction concepts will recur in the rest of this section, where we analyze
the impact of the different synthesis tasks on effective capacitance and study power
reduction techniques for each. The capacitance switched by each resource type —
functional units, memory (including register files), interconnect (buses, multiplexors,
and buffers), and control — depends on three factors: the resource’s physical capaci-
tance, the number of times it is accessed, and the correlation of the data that it oper-
ates on (the latter two determine the activity factor). While all three factors should be
reduced to lower power consumption, the impact of reducing any one may depend on ‘
the values of the other factors. For example, it is more effective to reduce accesses to

resources if they have a high physical capacitance.

Each of the above effective-capacitance factors for a resource is affected by decisions
made during synthesis. In this section, we analyze these effects, and describe the rel-
evant research efforts. Since the synthesis tasks are highly inter-dependent and may
limit or enhance each other’s effects, we present only those tasks which influence each
capacitance factor most directly. Table 2.2 summarizes these influences and the

remainder of this section elaborates upon them.
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Table 2.2. Synthesis tasks affecting the different effective-capacitance factors.

Physical capacitance Resource accesses Data correlation
Functional — —_
" units
Memory manage- Memory manage-
Memory Modt}le ;yent age Zent 28 Memory
selection management
Registers Register allocation | Register assignment Assignment
Memory management| Memory manage- (fu!}chona] units,
ment registers, buses)
Scheduling
Muxes and Functional unit Functional unit and
buffers assignment Bus assignment
Placement and routing® Bus assignment
B Bus assignment
ses
v Allocation (functional units,
registers, buses)
Controller Assignment, Scheduling
and control Logic synthesis!
wiring Placement and routing!

1. Lower level tasks.

2.3.1. Reducing physical capacitance

Let us consider first the tasks affecting physical capacitance (Table 2.2, column 1).

The physical capacitance of functional units, memory, registers, multiplexors, and

buffers depends on the selection of modules from the hardware library. In general,

faster, more capacitive units may be needed in timing-critical situations; less capaci-

tive units are better for cases where the timing requirements are not so critical. For

example, as shown in [80], at higher voltages, a ripple-carry adder leads to more

energy-efficient designs than a carry-select adder (Figure 2.10). At lower voltages,

however, the ripple-carry adder may not be fast enough to meet the speed require-

ment and the carry-select adder can be used. Goodby [40] used module selection to

speed up non-pipelinable paths to meet the timing constraint, using cheaper units for
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Figure 2.10. Relative power dissipation for an application running at a fixed
throughput using different adders.

Another important trade-off in module selection lies in the use of specialized units
instead of programmable ones. For example, it may be worthwhile to use a specialized
adder instead of an ALU if there are a large number of additions in the algorithm.
Specialized units consume less power for performing a particular operation but pro-

vide less flexibility.

While the physical capacitance of library based components depends mostly on
resource selection and the technology used, the size of some resources, such as mem-

ories and buses, depends on the architecture mapping.

Memory elements:

For memory units, the size, and therefore the physical capacitance switched per
access, is affected by memory management, while for register files, the size is mainly
influenced by the register allocation. Register allocation is greatly restricted by the
lifetimes of the variables. Reducing variable lifetimes by preserving temporal locality
during scheduling can decrease the number of registers allocated. Since memory man-
agement decides whether variables should be stored in registers or background mem-

ory, it also influences the size of the register files and their physical capacitance.
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Interconnect elements:

The physical capacitance of buses is directly related to their lengths, which are mainly
determined by the number and size of the hardware units and their placement and
routing. In general a large number of units with a lot of connections between them will
lead to long bus lines. The number of hardware units is determined by resource (func-
tional unit, register, and bus) allocation.

Bus assignment (also called bus merging) affects the physical capacitance since it can
affect their lengths and the capacitive loading on them. Bus assignment also influ-
ences the power dissipated in the multiplexors and buffers. For example, the bus
capacitance and the associated multiplexors and buffers are increased if a bus is

merged with another one that has different sources and destinations.

The locality of the operations in the algorithm can be utilized during the binding of
operations to hardware units to produce localized designs. By using localized commu-
nication within each localized region, bus and multiplexor power can be greatly
reduced. This technique is extensively developed in this thesis (Chapter 7). Another
idea presented in this thesis (Chapter 8) is based on preserving the regularity or
repeated patterns of computation in an algorithm. This reduces power by enabling a

simpler interconnect structure.

2.3.2. Reducing the number of accesses

Consider next the tasks affecting the number of accesses (Table 2.2, column 2).

At the architecture level, power-down of unused modules is a commonly employed
approach to power reduction. Often this is achieved by disabling the clock signal to a
resource (clock gating). Another way to “power-down” a resource is to prevent its
inputs from switching, avoiding unnecessary transitions within the module when the
resource is not in use. Two techniques based on this principle are pre-computation [2]

and guarded evaluation [122]. The techniques differ in the granularity of circuits they
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target — pre-computation is used within logic blocks while guarded evaluation is used
to disable an entire block of logic.

In the following paragraphs, we examine various approaches aimed at reducing the

accesses to specific resources.

Memory elements:

Clock gating is especially popular for reducing power consumption in memories
during idle cycles. Since all power-down approaches incur some overhead, its is impor-
tant to cluster simultaneously-live operations and/or compact the active time-slots of
a unit into consecutive intervals. In [29], Farrahi presents a memory segmentation
algorithm that addresses this issue. The main idea is to partition the memory space
so that memory accesses that are temporally close to each other are in the same block.
In this way, only one block needs to be active for a given period of time and the other
memory blocks can be shut off.

Although memory accesses depend mostly on the input algorithm, they can be substi-
tuted by accesses to foreground registers using memory management techniques. In
general, accessing a value from the register file is cheaper since the size of the register
file is smaller. In the example of Figure 2.11, the array A is the input to the loop and
the array C is the output; array B stores intermediate values. Since only one value of
B needs to be alive at a given time the array can be stored in a register eliminating

the related memory accesses.

for j :=1 to N do
B{i]) := f(A[i});
Cli) := g(B[i));

end

Figure 2.11. Simple loop for explaining memory access reduction.
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Registers:

For register files, the accesses depend on the architecture model being used. For
example, in a single centralized register file scenario, writes are determined by the
algorithm (exactly equal to the number of variables) whereas for distributed register
files, a single variable may need to be stored in more than one place. For a given archi-
tecture model, the number of reads from and writes to registers depends on the regis-
ter assignment and the schedule.

Buffers and multiplexors:

Accesses to buffers depend heavily on the algorithm, since often each data transfer is
buffered.

Operator assignment affects the amount of time-multiplexing of the functional units,
which in turn affects the multiplexing of data transfers and the use of multiplexors
and tristate-buffers. Accesses to multiplexors and tristate-buffers are further affected
by bus assignment — if a unit needs data from two or more sources, a multiplexor may
or may not be required at the inputs depending on whether the corresponding data

transfers are merged onto the same bus.

Buses:

Accesses to buses depend on the total number of data transfers in the algorithm. Bus
assignment further affects the accesses since, if a single variable needs to be trans-
ferred to more than one destination, one or more bus transfers may result based on
whether the connections to the two units are merged into one bus. In this context, it
is important to note that, if the buses are not all the same size, all accesses to buses
do not consume the same amount of power and it is more important to reduce accesses
to the longer buses. Preserving locality during bus assignment can reduce accesses to

long global buses (Chapter 7).
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Control:

The control related power includes the power consumed by the control wiring and the
control logic. Wiring power depends on the wire lengths which are determined by the
placement and routing. The power consumed by the control logic depends on the its
functionality (determined from the assignment and schedule of the algorithm) and its
implementation (logic-level optimizations). While the problem of optimizing power at
the logic-level has been well studied, it is difficult to relate the controller power to
high-level parameters, and therefore, to account for this component during architec-
ture synthesis. Stochastic models described in Chapter 4, relating the control power
to high-level parameters, provide a starting point in understanding various parame-
ters and tasks affecting the control.

2.3.3. Improving signal correlations

Finally, consider the data correlation component of power (Table 2.2, column 3). Input-
correlations of all the components are affected by the allocation, assignment, and
schedule. However the effect of these tasks on the correlations cannot be easily deter-
mined during synthesis because the correlations also depend heavily on the input
data. Some research has been done to minimize switching activity during hardware
assignment and scheduling. For assignment, the objective is to bind operations onto
hardware so that the input signal activity is minimized. Raghunathan and Jha [102]
propose an assignment scheme to minimize the average number of bit transitions on

the signal inputs to hardware units (obtained from simulations).

.Musoll and Cortadella [83] minimize the bit transitions for constants during schedul-
ing. Consider, for example, the FIR filter of Figure 2.12. There are four multiplica-
tions with constants — ¢y, ¢;, ¢z, ¢3 — which can be scheduled on a single multiplier

such that the transition activity at the right input of the multiplier is minimized. For

the values of the constants given in the figure, the schedule ¢y — ¢; cg—>Cc3—Cy

results in 26 transitions for a 12-bit implementation whereas the schedule ¢y — ¢; —
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€3 —> ¢g = cg results in 34 transitions. Other methods suggested in [83] for increasing
signal transitions include operand sharing (executing operations with common inputs
in successive cycles on the same hardware), loop interchange and operand reordering.
While the above techniques focus on increasing the correlations for functional units,

Chang [19] proposes a register assignment scheme that reduces the activity for regis-
ter files.

In
ORNORIOLNOL
Cp= -1870
OO ¢; = -1867
Co= -740
O cg = -1804

Out
Figure 2.12. Scheduling to minimize the transitions.

The number representation system can have an important impact on the switching
activity. Though common and simpler to implement, two’s complement representa-
tion is not always the best for power purposes. A comparison between switching activ-
ity of two’s complement and sign magnitude data streams is given in [65]. The latter
is shown to have less switching transitions, since in going from a positive-to-negative
number (or vice-versa), only the MSB switches in a sign-magnitude format while sev-

eral higher-order bits are toggled in the 2’s complement notation.

In cases where consecutive numbers are supplied to a resource in sequence, it may be
worthwhile to code the signals in gray code since only one bit transitions when as
numbers change by one. An important application of this technique is in memory
addressing. Since memory locations (addresses) are often accessed in sequence, Gray
coding reduces the overall switching. Up to 33% and 12% power savings were obtained
in the instruction and data caches, respectively, by using this technique [119].
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2.3.4. Architecture synthesis techniques — lessons learned

In this section we have presented the architecture-synthesis tasks that most directly
affect the different factors comprising physical capacitance. It is important to notice
that the tasks are highly interdependent and therefore the impact of each on power
may be influenced by other tasks. For example, though the physical capacitance of
buses depends on bus assignment, the effect of this task can be limited by functional
unit assignment. If functional units are assigned such that number of destinations of
each unit are low, bus assignment can result in better solutions than if they are high.

As another example, consider the number of accesses to registers in a distributed reg-
ister file model described in Section 1.4.1. In this case, the number of register writes
is determined by variable assignment to registers, which in turn heavily depends on
the assignment of the operations that need these variables to functional units.

The last two sections have dealt with power reduction techniques. An equally impor-
tant task in an overall power optimization system involves estimation or evaluation

of the power dissipation which is discussed next.

2.4. Power estimation techniques at various abstraction levels
Increased interest in low-power designs has stimulated a lot of research activity in the
area of power estimation. In this section, we review the different techniques that have
been proposed at various abstraction levels. In general there is a direct trade-off
between estimation accuracy and estimation speed at the different abstraction levels
— higher-level tools are less accurate but faster than lower-level ones. Since higher-
level tools provide feedback early in the design process, they are better suited for
design guidance, while the more accurate lower-level tools are more suitable for
design validation.
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2.4.1. Circuit level

The earliest power estimation approaches SPICE [84] to simulate the circuit over a
range of inputs and monitor the current drawn from the power supply. The Powermill
tool from EPIC™ [26, 50] provides fast transistor-level simulation using table lookups
derived from piecewise-linear transistor models and an event-driven simulation
engine to achieve an order of magnitude speed-up over SPICE. A feature of this tool

is that it incorporates techniques to identify “hot-spots” or power hungry parts of the
design.

Circuit simulators are slow since they accurately model various device effects. For
power estimation purposes, improved speeds can be obtained by modeling only the
dynamic power in a circuit, which constitutes a major part of the overall dissipation

as explained in Section 2.1. The dynamic power used for charging and discharging a
particular node is given by the following equation:

Power = %aCVi af (Eq. 2.4)

where a is the transition probability or activity at the node, C is its capacitance, V;

is the supply voltage, and f is the clock frequency. The switching power dissipation

over an entire circuit with several nodes is then given by:
13

where the summation is performed over all nedes in the circuit. For a given voltage

and clock frequency, the problem of estimating this quantity reduces to evaluating

ZaiCi . This can be estimated in switch-level simulators like IRSIM [ 106] where the
i

switching activity is modeled but the leakage, short-circuit, and static currents are

not.
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Although circuit-level tools mentioned above provide the most accurate estimates, it
is beneficial to estimate power at higher levels of abstraction, preferably before the
circuit is completely designed, due to the following reasons. Firstly, circuit-level sim-
ulations are time consuming and secondly, these simulations need circuit-level infor-
mation and cannot be used early in the design cycle. In the next few sections, we

consider estimation techniques at higher levels of abstraction.

2.4.2. Logic level

At the logic level, the circuit is described as a network of logic gates and latches. Power
estimation schemes proposed at this level fall into three main categories — simula-
tion-based, probabilistic, and stochastic — each of which are discussed below.

2.4.2.1. Simulation based approaches

These approaches apply Equation 2.5 at the logic level, using logic simulators to
extract transition probabilities at gate inputs and outputs, and gate-library informa-
tion for node capacitances [8, 58). The simulations have to be repeated for several sets
of input patterns to get reliable power figures covering a typical set of input vectors.
This requires complete information of all the different input sequences which makes

these techniques strongly input-pattern dependent.

2.4.2.2. Probabilistic approaches

More reéently, probabilistic techniques have been proposed that use input probabili-
ties instead of actual inputs to encompass a whole range of possible input sequences
and are hence input-pattern independent. These approaches are based on propagating
signal probabilities through the gate-level descriptions and combining them with
node capacitance values to calculate power. The various techniques proposed differ in

the amount of information modeled in the probability measure.

In the simplest case [23], the following probability measures are used: the signal prob-
ability, Py(x), is defined as the average fraction of clock cycles in which a steady state

39



value of the signal x is “1” and the transition probability, Px), is defined as the aver-
age fraction of clock cycles in which the steady state value of x is different from its
value in the previous cycle. P/%) is thus the activity of the signal x, disregarding any
glitching. Given the signal probabilities at the primary inputs, those at all other nodes
are calculated by probability propagation through the gate-level netlist. Ignoring tem-
poral correlations, transition probabilities for all nodes are derived from their signal
probabilities using:

P,(x) = 2P (x) (1-P,(x)) (Eq. 2.6)

and power is calculated using Equation 2.5. This method ignores glitches as well as
spatial and temporal correlations in the signals. An improved approach is presented
in [87] which allows the user to specify the transition probabilities along with signal
probabilities of primary inputs using probability waveforms, thus accounting for tem-

poral correlations in signal sequences.

A more accurate measure for activity is given by the transition density, D(x), which is
defined as the average number of transitions per second at a signal x [86]. Note that
this definition accounts for glitching activity. In terms of the transition density,

dynamic power consumption is given by:
Power = %(ZCiD (i) )Vid Eq. 2.7)
1

where the summation is again done over all nodes in the circuit. A technique to prop-
agate transition densities from the primary inputs to all other nodes of the circuit is
given in [86).

2.4.2.3. Statistical approaches

Another set of techniques, called statistical techniques, simulate the circuit with auto-
matically generated input vectors. They use user-specified probability information to
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generate the vectors, and are therefore only weakly pattern-dependent. Statistical
Monte-Carlo techniques can be used to determine when to stop the simulation to
obtain a desired confidence level [13].

The techniques discussed above focus on estimating power in combinational logic cir-
cuits. For estimation approaches targeting sequential circuits, the reader is referred
to [38, 125]. There is a large body of literature addressing power estimation at the
logic levels and good surveys are presented in [85, 115).

2.4.3. Register transfer level

Moving up one level of abstraction, consider the architecture or register-transfer level.
Here the design is described as a set of latches with combinational blocks of logic
between them. The combinational blocks may either be library cells (library-based
design approach) or functional logic descriptions that are later compiled to gates using
logic synthesis (synthesis-based design approach). Estimation techniques for each of
these design approaches discussed in this section.

2.4.3.1. Library-based estimation approaches

In the library-based approach, the internal details of the blocks are abstracted,
making it impossible to get activity numbers or capacitances at the internal nodes.
Also, since the internal nodes in each block have different capacitances and switching
probabilities, a single activity and capacitance number for each block does not suffice.
Therefore a hierarchical approach is used — the combined activity and capacitances
of internal nodes is captured using the effective capacitance for each block, and the
overall power consumption is computed from the usage of the various blocks as spec-

ified by the architecture. The power consumption is given by:

Power = (ZNiCeff(i) )V:d s (Eq. 2.8)
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where the summation is done over all blocks i, N; is the number of clock cycles the
block is activated over the period of consideration and the Cep(d) is its effective capac-
itance.

The effective capacitance of a block, C,g, represents the capacitance switched each
time the block is used. While some of the approaches represent Cefrusing fixed activity

models, ignoring the effect of activity in the primary inputs of the blocks, others have
proposed activity sensitive models that account for the activity at the block inputs.

Fixed activity models

1. The poﬁer factor approximation (PFA) technique presented in [96] uses parame-
terized models for the effective capacitance of blocks such as multipliers, addi-
tions, memory, I/O buffers, etc. Parameters (e.g. wordlength) are used to
effectively model a large number of blocks with only few simulations. In that
paper, the effective capacitances are taken from numbers previously reported in
ISSCC proceedings, but these could also be obtained from library characteriza-
tions.

2. In [70], Liu and Svenson give high-level models of the different components of a
circuit by analyzing the effective capacitance switched when the component is
activated. For logic blocks, they use logic depth, fan-in, fan-out, and the input
capacitance of a minimum sized inverter to derive a model for the effective
capacitance. Similarly, their memory model is based on factors such as the num-
ber of rows, number of columns, capacitance loading of each cell on word and bit

lines, number of bit lines switched per access, etc.

3. Another approach is to evaluate Cer using uniform white noise inputs which
have equal probability of being in the “0” and “1” states, and have no temporal or
spatial correlations. This activity model, called the uniform white noise model,
can be easily evaluated by simulating the block with uniform white noise inputs
until a certain confidence level is attained (Monte-Carlo based approach).
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Activity sensitive models
1. In [108], Sato et al. present a cycle-based simulator for a RISC microprocessor
which also monitors the corresponding power consumption. Since it is based on
simulation, it uses a power model for each block that is a function of the number
of transitions, n, at its primary inputs.

P P

const ¥ np change (Eq. 2.9)

total =

2. For datapath blocks, another activity-sensitive power model, called the Dual-Bit
Type (DBT) model, is used in the SPA power analysis tool [65]. It is based on the
observation that fixed-point two’s complement data streams are characterized by
two distinct activity regions. The lower-order bits (L.SBs), exhibit activity similar
to uniform white noise data, while the higher-order bits (MSBs) exhibit tempo-
rally correlated activity. Based on this observation, each library block is divided
into three regions — the LSB and MSB regions, and the region in between them
— depending on the correlation in its input data stream. While the effective
capacitance of the LSBs is simply that obtained with uniform white noise input
conditions, the effective capacitance of the MSBs is parameterized for different
values of temporal correlation in the input data stream. In between the two
regions the effective capacitance is computed by linear interpolation.

Given a register transfer level description of a désign, the tool performs a func-
tional simulation to collect sample input streams for each datapath block. The
statistical properties of the input streams at each block are used to demarcate
the LSB and MSB regions for the block and also to compute the effective capaci-
tance for the MSB region.

2.4.3.2. Behavioral estimation approaches

Recently, there has been increased interest in predicting power from a behavioral,
rather than a structural, description of combinational logic blocks at the register-
transfer level. Most of the techniques proposed in this realm use information theoretic
measures of the computational work such as entropy and informational energy to pre-

dict the power consumption. In [88], the transition density of a signal x, is shown to
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be proportional to its entropy, D (x) = H (x) . A similar result relating the switching
activity in a circuit to the entropy and informational energy of the input signals is
given in [72].

In [88], Nemani and Najm used the following approximation to decouple the overall

capacitance of the circuit from the overall activity:
Py CD(x;) o ZCzED (x;) (Eq. 2.10)
i i i

where C; is the capacitance at node x;, and D(x;) is the transition density at that node.

They use a measure of the area of the circuit to estimate the total capacitance ZCi ;
t

the area measure used is derived from another work [21], which showed that for a
boolean function with n inputs, each with a signal probability of 0.5, the output
entropy, H(y), can be used to predict the area of its average minimized implementation

as follows:

2n
A ;H () (Eq. 2.11)

Thus, they use entropy to provide relative measures for both $'C, and YD (i) .
- l »
14 13

2.4.4. Algorithm level

In the only algorithm-level work that we are aware of, Shanbhag uses the entropy to
establish a lower bound for the power dissipation required to implement a given algo-
rithm with a certain information transfer rate [111]. He assumes the knowledge of the
channel capacity of the underlying architecture and its noise power level. In
Chapter 4, we identify the important issues and challenges at the algorithm level as

well as present techniques for addressing them.



2.4.6. Instruction level

At a higher level of abstraction, instruction-level power estimation techniques have
been proposed which can be used for making compiler optimizations for a given pro-
grammable processor. Tiwari et al. presented a scheme to measure the power con-
sumption associated with each instruction for an Intel™ 486 processor by repeating
the same instruction several times in a loop and measuring the current drawn by the
chip [121]). The experiment was repeated for the Fujitsu™ Sparclite™ and Fujitsu™
DSP processors. Data gathered from such experiments was used to drive compiler

optimizations for low-power.

2.4.6. Review of power estimation techniques

Over the last few years, as the power issue has gained importance, a large amount of
research has concentrated on techniques to estimate power at all stages of the design
flow. In this section we have reviewed some of the techniques to provide a flavor of the
different approaches adopted. Table 2.3 summarizes the main techniques proposed at

the various abstraction levels.

Table 2.3. Summary of estimation techniques at various abstraction levels.

Abstraction level Power estimation technique

Circuit level  [Transistor-level simulation: most accurate, models all sources of]
power, but slow and strongly pattern dependent

Switch-level simulation: strongly pattern dependent
Gate level Simulation based: strongly pattern dependent
Probability based: pattern independent

Stochastic techniques: weakly pattern dependent

Register transfer | Library block based using fixed activity models
level

Library block based using activity sensitive models

Entropy or informational energy based functional models
Algorithm level §Combination of stochastic and analytic models (refer Chapter 4)
Instruction level {Measurement based
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2.5. Summary

Algorithm- and architecture-level techniques result in large reductions in power dis-
sipation. Since these techniques are highly inter-related, integrating them into a
single tool is a non-trivial task. However, their application of the various techniques
can be greatly enhanced by estimation mechanisms to predict their effects before they
are applied, allowing the designer to select the ones most suited to the design at hand.
Although a large number of power estimation schemes have been explored at various
levels of abstraction, estimation at algorithm level remains relatively unexplored.
Chapters 4 and 5 present an estimation and design space exploration facility that can
be used to aid and guide power optimization at the highest levels.
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Architecture Synthesis

High-level or architecture synthesis is concerned with deriving an architectural
implementation of a given algorithm. The input is a behavioral description of the algo-
rithm (e.g. in a C++ like language) and a set of performance constraints. The synthesis
process involves deciding the mapping of the algorithm operations on hardware

resources and determining their order of execution.

The Hyper synthesis system, developed at the University of California, Berkeley, has
been used as a research platform for much of the work presented in this thesis. In our
initial studies, the system was used to generate designs and study their power con-
sumption. This helped us to understand the power problem and build detailed models
for estimation (Chapter 4). The modular structure of Hyper allowed us to try out new
ideas by implementing software modules that “hooked” into the main system. The
ideas presented in this thesis were then compiled into a new low-power synthesis sys-
tem, Synergy. Hyper was used as a base for comparisons with and evaluations of the
new algorithms. For all these reasons, Hyper will be frequently referred to in this the-
sis. Therefore it is useful to briefly describe Hyper's design flow and underlying algo-
rithms.

Details on the Hyper system can be found in [97]. A more general overview of the var-
ious high-level synthesis tasks is presented in [34, 126] and a number of available
CAD systems for high-level synthesis are described in [131].
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8.1. Hyper — the base synthesis system

Figure 3.1 presents an overview of basic architecture-synthesis steps within the
Hyper system. The user provides the algorithm specification, performance constraints
such as the required throughput, and parameters such as the clock period and the
supply voltage. The goal of Hyper’s synthesis process is the minimize the area of the
final implementation while meeting the throughput constraint.

The targeted application domain and architecture model are presented in Section 1.4.
The input algorithm is first parsed from the Silage language [48] into the internal con-
trol data flow graph format, both of which are also detailed in Section 1.4. The rest of
this section explains the main tasks in the overall synthesis flow.

3.1.1. Memory management

For memory intensive applications, an important synthesis task is memory manage-
ment which includes generation of addresses, deciding whether variables should be
stored in registers or background memory, allocating the number and size of the
memory blocks, and assigning variables to specific memory blocks. Some of the algo-
rithms used are presented in [128].

3.1.2. Module selection

The module selection process chooses appropriate hardware elements from a library
[14, 133] to implement each operation. The “optimal hardware” for each operation is
chosen according to the following strategy: for a given supply voltage and clock period,
the hardware unit that can perform the operation in the lowest number of clock

cycles! is chosen. In case alternate choices are available, the one with smaller area is

selected. The module selector also determines which operations should be combined

1. The number of clock cycles required by an operation depends on its delay and the clock duty cycle.
The delay includes the time required to generate the appropriate control signals, read the operand
register, perform the operation, and write the result into the destination register via a bus and maybe
a multiplexor.
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to use more complex units such as multiply-add [22, 24]. The area, delay, and capaci-
tance values of selected resources are annotated onto the flowgraph for use in subse-

quent synthesis steps.

3.1.3. Estimation

In order to optimize the algorithm at this level, one must first be able to predict the
critical performance metrics. In the Hyper system, once hardware is selected, useful
information such as the complexity and speed of the algorithm can be derived in the
estimation step. Some metrics are computed exactly (e.g. critical path) while the min-
imum and maximum bounds are computed for others (hardware requirements).
Bounds are important since they delimit the design space and speed up the search for
the “optimal” implementation during synthesis. Also, if the bounds are close to the
final solutions they provide good estimates for comparing different algorithms or dif-

ferent versions of the same algorithm.

As soon as possible (ASAP) and as late as possible (ALAP) execution times for each
operation are obtained by first topologically ordering and then leveling the graph with
respect to the inputs and outputs, respectively. The critical path of the algorithm is
derived from the ASAP times of the operations and the number of clock cycles taken
by each operation. It is defined as the maximum path length from any primary input
or state to any primary output or state (assuming that all inputs and previous states
are available at the start of the iteration). It determines the maximum throughput of
the algorithm and must be no greater than the sample period for the algorithm to be

feasible.

An upper bound on the number of units of each resource type (execution unit types,
registers, and buses) is easily obtained by computing the maximal possible usage of
that resource type (in other words, the maximal parallelism available) in each clock
cycle and taking the maximum of this value over all clock periods in the sample

period.
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A naive lower bound on the number of units of type i, N;, can be calculated as follows:

di
N;20;¢7 (Eq. 3.1)

where O; is the number of operations of that type, d; is the number of clock cycles it

requires, and T' is the total number of clock cycles available per sample period.

This bound is however too optimistic since it assumes that the flow graph contains
sufficient concurrency to support a 100% utilization of each resource. Better estimates
of resource utilization are obtained by first calculating a fast schedule by relaxing
some of the constraints [100). This method, called relaxation, turns the NP-complete
scheduling problem into one with complexity N I[gN and allows fast estimation. It is
experimentally shown that the lower bound thus obtained is close to the final Hyper
implementation and provides a good estimate for the number of units. The active area

is estimated as the sum of the areas of the units.

3.1.4. Optimization

Even with the best synthesis techniques, the quality of the final result is limited by
the initial specification of the algorithm. Transformations provide a method to over-
come this limitation by changing the computational structure of the algorithm with-
out altering its input-output behavior. Hyper provides a host of different
transformations like retiming, pipelining, algebraic transformations, and loop-based
transformations [93, 94, 51, 5]. Transformations fall into three main categories —
block-level transformations, timing or delay-based transformations, and loop transfor-

mations.

Block-level transformations use dataflow techniques for optimizing the basic block of
code. Transformations that optimize operations involving constants include constant
folding and propagation (which evaluate and propagate the value of known constants
at compile time), dead-code elimination, common sub-expression elimination, and
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constant multiplication expansion (which replaces multiplications with constants by
add and shift operations). Further, algebraic transformations, based on the algebraic
properties of the operators, are also used. Commonly used properties are commutativ-
ity, associativity, and distributivity. For example, since multiplications are commuta-

tive, their inputs can be switched without altering the algorithm functionality.

One of the most important timing transformations is retiming, which moves sample
delays across operators taking advantage of the distributive property of delays over
operations. Closely associated with retiming is the pipelining transformation. This is
not a transformation in the strict sense since it does not preserve timing between the
inputs and outputs; it inserts extra delays in the control flow, increasing the latency.

However, it is a powerful technique for reducing the critical path and is often used.

Loop transformations [5, 120] include loop merging or jamming and loop unrolling
(these increase the available parallelism by increasing the number of operations
within the loop body), loop interchange (this may change the order of nested loops to
reduce accesses to background memory), loop splitting, etc. Loop transformations
have a large impact since they change the speed, area, and power requirements of the

most computationally intensive parts of the algorithm.

3.1.5. Synthesis

The core of the synthesis process consists of allocation, assignment, and scheduling.
For a given clock speed and algorithm throughput, the allocation task decides the
number of resources of each type to be used, the assignment task binds operations and
data transfers in the algorithm to specific hardware resources, and the scheduling

process assigns each operation in the data-flow graph to one or more time steps.

The Hyper synthesis process [95] starts by allocating the minimum number of
resources computed during estimation. Several different assignments of the opera-

tions to the allocated units are tried with this allocation. For each assignment, several
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schedules are tried. The scheduling uses an enhanced list-based strategy while the
assignment strategy is based on a random initial assignment with iterative improve-

ment.

If no feasible solution is found, hardware is re-allocated based on the assignment and
scheduling results, and the assignment and scheduling processes are repeated. The
addition or removal of hardware units is based on their “badness” which measures
how a given resource type (adder, multiplier, etc.) affects the scheduling difficulty (for
further details see [95]). The basic idea is to add units of the resource type with the
highest badness (they are most responsible for failures in the assignment/scheduling
phase) and to remove those whose badness is the lowest. To optimize area the alloca-
tion sacrifices smaller units to save on larger ones. The process is repeated several

times until a feasible solution is obtained.

Register and bus assignment use a graph coloring algorithm. For example, in the case :
of buses, timing conflicts between different data transfers are represented in a conflict
graph of all data transfers and a simple graph coloring heuristic is used for bus assign-
ment. Similarly, for register assignment, overlapping variable lifetimes are repre-
sented by edges in a conflict graph of all the variables and a coloring heuristic is
adopted.

3.1.6. Hardware mapping

The last step, hardware mapping [9], generates a finite state machine to control the
datapath, and outputs the final architecture netlist in VHDL [52]‘or SDL [12]. The
SDL format is suitable for silicon compilation to layout using the Lager system [12].
The VHDL format can be fed to commercial tools like Cadence™ and Synopsys™ for
logic- and layout-level optimizations.
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8.1.7. Architectural power analysis

Once the architecture is defined, the Hyper system provides a link to the SPA power
analysis tool [65]. The main technique used for power estimation in this tool has been
presented in Section 2.4.3.

3.2. This work
This thesis presents a new synthesis system, Synergy, targeted for low-power imple-

mentations. While the system uses the same flow as Hyper, several important ideas

are included to address the power issue.

1. Power estimation capabilities are introduced at the algorithm level. Synergy
focuses on providing average estimates because minimum and maximum power
bounds can be extremely remote from the actual dissipation and are hence less
meaningful for power. Further, the estimates of the hardware requirements from
the Hyper system are used to build extensive models for the overall chip area.
An explicit algorithm-level design exploration framework is designed to guide
the user in making high-level decisions. The estimation and exploration strate-
gies are described in Chapters 4 and 5.

2. A new set of synthesis techniques targeted for power reduction are added. Since
the architecture-level optimizations have a greater effect on the interconnect
power than the functional unit power, the new schemes focus on interconnect
power reduction at the expense of an increase in functional unit area. Two key
synthesis techniques are proposed. The first introduces a new partitioning step
in the overall flow and the second proposes new allocation, assignment, and
scheduling algorithms. The main ideas relating to the new synthesis schemes
are presented in Chapters 6-8.



Algorithm-Level Power
Estimation

As discussed in chapter 2, the most effective design decisions for power reduction
derive from choosing and optimizing algorithms at the highest levels of abstraction.
A large number of transformations and optimizations are available; however, their
effect on the overall power dissipation is design dependent. A transformation may
reduce the power consumption in some designs but increase it in others. Often, a tech-
nique may reduce the power in one component of the chip and increase it in another.
Also, some of the techniques produce greater power reduction if used in conjunction

with others rather than alone.

These factors make it difficult to select the best optimization techniques for a partic-
ular design. One option is to synthesize the design after each decision and evaluate
its effect on power using an architecture- or gate-level power estimator. Given the
large number of design decisions, this process is tedious and time-consuming and pre-
cludes an exhaustive exploration. As illustrated in Figure 4.1, an algorithm-level
power estimator would greatly reduce the time associated with this process, enabling

a more effective exploration of the algorithmic design space.

At the algorithm level, several implementation details cannot be accurately modeled,

posing a significant challenge in realizing a high-level power estimator. However, two

main points allow us to work with the reduced accuracy at these levels of abstraction.

Firstly, since the power estimates are used for comparing designs and guiding design
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Figure 4.1. Importance of algorithm-level power estimation.

decisions, and not for obtaining precise power consumption values, only relative power
estimates are required from these predictions. Secondly, since algorithm-level deci-
sions can result in orders of magnitude changes in power dissipation, the accuracy
requirements on the estimation tools can be relazed, while still providing meaningful
power predictions to guide high-level decisions. The work described in this chapter
presents prediction tools that provide relative metrics to be judiciously used in

making high-level design selections.

4.1. Algorithm-level power estimation

At the algorithm level, the design is specified by a functional description with no
implementation details. The challenge in power estimation at this level is to derive
useful estimates with the extremely limited information available. While no work
directly addresses the algorithm-level power estimation problem, some techniques
that have been proposed in other areas may be applied for this task. Below we discuss
possible approaches that may be used at this level and present the core of our

approach.
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One approach is to predict power from purely behavioral characteristics of the algo-
rithm and its inputs. Information theoretic measures of the inputs and outputs of the
algorithm, like their entropy and informational energy, may be used to characterize
the activity in the circuit. Shanbhag’s work on lower bound calculations can be con-
sidered as a step in this direction [111). Though this work starts with extremely
abstract specifications, some assumptions are made about the architecture. Struc-
tural properties of the algorithm such as operation counts, concurrency, spatial local-
ity, and regularity provide size and complexity measures [41] that could be extended
for power predictions [98]. For example, algorithms with higher operation counts
require more computational work resulting in higher power consumption. Also, more
concurrent algorithms result in larger designs that have longer buses and more inter-
connect power. The degree of locality in an algorithm also affects its power consump-
tion. Highly local algorithms lend themselves more easily to partitioning and can thus
result in low-power localized architectures. The concept of spatial locality is explored
in detail in Chapter 7. Another related metric is the regularity of the algorithm which
refers to the occurrence of repeated patterns of computation in it. Regularity in an
algorithm can be exploited to simplify the interconnect infrastructure. This concept is
developed extensively in Chapter 8.

The approach mentioned above focuses on characterizing the algorithm and is elegant
in the sense that the estimates obtained are general and not tied to any implementa-
tion style. However, if it to be used in a practical design environment, the algorithm
rankings obtained must hold after the implementation. This may not be true due to
several factors. Firstly, prioritizing and combining the various characteristics of the
algorithms to produce a ranking is a non-trivial task. Secondly, the rankings will not
hold if the implementation techniques do not exploit the property used to create the
ranking. For example, if algorithm A is selected over algorithm B due to its higher
locality but the designer ignores the locality while generating the final design, algo-

rithm A may not result in a better implementation.
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4.1.1. Our approach

We present an estimation approach to predict power from a behavioral specification
of the algorithm. In addition to the specified behavior, we assume a knowledge of the
underlying architecture model and a user specified hardware library. Each operation
in the algorithm can be associated with a cell in the hardware library. Since our esti-
mates are produced with an architecture model and hardware library in mind, they
are technology targeted. The use of technology-specific information allows us to derive
more meaningful estimates, while still maintaining the speed of the above methods.

The effectiveness of the approach is demonstrated by targeting the architecture model
described in Section 1.4.4. Estimation schemes are extensively studied for all compo-
nents in this architecture. The techniques can be extended to other architecture mod-
els, but the model must be defined in advance. An underlying hardware library
(discussed in Section 1.4.5) is assumed; however, none of the schemes presented are

specific to the library used.

An important characteristic of our approach is that it embodies a heterogeneous set
of techniques to analyze the different components. Each architectural component is
treated differently based on its specific features and the information available about
it. The techniques combine dataflow analysis with the stochastic studies to estimate
the overall power.

The total power consumption in an ASIC design is comprised of contributions from
several components: datapath, registers, interconnect, control, and memory. These
components differ fundamentally in the their dependence on the algorithm specifica-
tion and therefore, in the amount of information available about them at this level.
From the power consumption point of view, we divide the components into two parts:
the algorithm-inherent components and implementation overhead. The algorithm-
inherent components includes the functional units and background memory. These

are “algorithm inherent” since the computation associated with them is necessary for
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the basic functionality of the algorithm. Therefore their power consumption is
strongly dependent on the behavioral specification. The implementation overhead
component includes the temporary storage (registers), interconnect elements (buses,
buffers, and multiplexors), and control. The power dissipation in this component

largely depends on the choice of the architecture and implementation.

4.2, Estimating the algorithm-inherent power dissipation

The algorithm-inherent components include the functional units and memory. A two
step approach is used for power estimation in this category — characterization of the
library blocks and characterization of the algorithm. While the former is indicative of
the capacitance switched when a given library block is used for some computation, the

latter specifies how often each block is active.

The overall power dissipation is estimated as the overall effective capacitance
switched multiplied by the square of the supply voltage times sampling frequency.
The capacitance switched in one iteration (one sample period) of the algorithm is

given by:
Crotar = 2N:C; (Eq. 4.1)
i .

where N; is the number of operations of type i, C; is the capacitance switched when

that operation is executed, and the summation is performed over all operation types

i (memory and arithmetic operations).

4.2.1. Characterization of the algorithm

The algorithm is characterized to obtain the counts of all the different operation types
(memory and arithmetic operations). This is a measure of the activity in the corre-
sponding functional units. For example, an addition count of 100 for a given algorithm
indicates that adders will be executed 100 times in one iteration of the algorithm.
Note that the ¢ype of an operation is determined by the functional unit selected from
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the hardware library for implementing it and not by its functionality. For example, 4-
bit additions and 32-bit additions in a graph may use different adders for which dif-
ferent count measures will be generated. Also, both additions and subtractions in a
graph may be implemented on ALUs in which case the number of additions and sub-
tractions will be added to give a single count for ALUs.

For the synchronous data flow designs [66] targeted in this thesis, a static schedule of
the operations can always be obtained and the operation counts are known before run-
time. However, for algorithms with data-dependent control flows operation counts
and memory accesses are input-dependent. In this case, either the average or worst
case iteration counts must be provided. Sometimes these may be imposed by the sur-
rounding system and can thus be specified a priori by the user. For example, certain
signal processing applications require that a fixed throughput rate be sustained,
enforcing a limit on the worst case iteration counts or critical paths. Some other algo-
rithms such as speech recognition algorithms may require some average case behav-
ior. In cases when these limits are not pre-specified, the algorithms require profiling
with typical input vectors to obtain the average or worst case iteration counts for the

data-dependent loops.

4.2.2. Characterization of library blocks

As described in Section 2.4, a lot of research effort has focused on abstracting the
power dissipated in blocks of hardware. However, all the approaches discussed in that
section presume detailed knowledge of the architecture, which is not known at the
algorithm level. The most important difference lies in the fact that signal statistics
cannot be estimated at the algorithm level even if sample sequences are available for
the primary inputs. This is because, the signal statistics at the inputs of a particular
hardware block depend on the schedule and assignment of operations — information
not available until the architecture is finalized. Therefore a uniform white noise input
model is used to compute the switching capacitance of different hardware blocks.
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With this assumption, an algorithm with five additions consumes the same power (in

the adders) irrespective of the amount of hardware sharing.

Modules in the hardware library are characterized in terms of complexity parameters
such as wordlength, register size, etc. using uniform white noise inputs. Intuitively,
the total power consumed by a module should be a function of its complexity (i.e.
“size”) since larger modules contain more circuitry and, therefore, have higher physi-
cal capacitance and activity. One would expect a 16x16 multiplication to consume
more power than an 8x8 multiplication. This leads to a complexity-based capacitance
model that has widely been used at the architecture level [65, 96]. Complexity models
used in this work are derived from [65]. For an extensive discussion on the models and
their derivation the reader is referred to that work, here we present the basic concepts

through a few examples.

The effective capacitance of a ripple-carry adder depends on its wordlength, n, which

is a measure of its “complexity”, and is given by:

C, ¢ = CR ! (Eq. 4.2)

where c is a capacitive coefficient measuring the effective capacitance switched for
each bit of the adder. Although several modules — adders, barrel shifters, multiplex-
ers, registers, etc. — follow the simple linear model of Equation 4.2, complexity
models are not limited to this one. For example, the capacitance model for a logarith-

mic shifter is given by

Ceff = cqn+cyl+conl+ csnzl +eymnl+cgsnl (Eq. 4.3)

where n is the wordlength, s and m are the actual and maximum shift values, while

2] logo(m+1)1is the number of shift stages.

In general, capacitance coefficients and complexity parameters are stored as vectors,

and the overall effective capacitance is obtained from their dot product. In the rest of
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this thesis, this model is referred to as the capacitance complexity model. For the log-
arithmic shifter example, the capacitance coefficient vector, the complexity vector,

and the overall capacitance complexity model are shown in Equations 4.4, 4.5, and

4.6, respectively.
T
&= [c0 ¢y Cg Cg c4] (Eq. 4.4)
T
n = [n Inln2 mnl] (Eq. 4.5)
Ce f =C-Nl (Eq. 4.6)

4.3. Estimating the implementation overhead

The power consumed by the implementation overhead — registers, interconnect ele-
ments (buses, buffers, and multiplexors), and control — depends on the specific archi-
tecture platform chosen and the mapping of the algorithm operations onto specific
hardware units. Since these are not essential to the basic computation in an algo-
rithm, several estimation tools ignore their effect for high-level comparisons. However
the power consumed by these components is often comparable to, if not greater than,
the algorithm-inherent dissipation. This is illustrated in Figure 4.2 which shows the
power breakdowns (architecture-level estimates) obtained from designs implemented
using the Hyper synthesis system. Clearly, estimates of the implementation overhead
must be included to obtain meaningful overall predictions.

The lack of information about these components at the algorithm level poses a signif-
icant challenge to power estimation. For example, in a high-level synthesis based
design flow, the control is not specified in the algorithmic or flowgraph description of
the design and is defined only after the allocation, assignment, and scheduling tasks.
Similarly, the interconnect elements are not defined until very late in the synthesis
process — multiplexors and buffers are added to the design description only after the

62



»

NNN Algorithm inherent

Registers
Interconnect elements and clock
80 T v v Control —_—
Total implementation overhead .
§ 60 | \ i
2 \ . \
i |glrnlh ' BN B
s LN \ \ : \ \
& 40 \ \ \ \ i
= [N AR IR ‘H BN BB I
\ \ \ \
§° NENEN R r Y I N AN QRN &
20 F R \ \ N \ \ N N
o \ \ \ \ \ \ \
n" . B ‘5»53 oy ‘ . ~ . E . . “S:
: \ N | : g =z§: :
\ J
1 3 4 b 6 8 9

Example number

Figure 4.2. Contribution of the various components to the total power.

operations and data transfers have been assigned and scheduled; and bus capaci-

tances (lengths) are determined during the floorplanning and layout steps.

Thus, estimates of the control and interconnect components need to account for the
effects of a wide spectrum of high-level synthesis tasks, such as allocation, assign-
ment, scheduling, and partitioning into macro blocks, as well as the effects of many
low-level CAD tools, such as logic synthesis, placement, floorplanning and global and
detailed routing. An extensive experimental study, followed by in-depth statistical
analysis and verification is the only viable solution for efficient and accurate modeling

of these components at the algorithm level.

Power estimation of the implementation overhead is further complicated by the
widely varying characteristics of these components. We use analytical models for esti-
mating the temporary storage component and stochastic techniques for the intercon-
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nect and control elements. The next section describes our methedology for stochastic
modeling of these components. Specific models (both analytic and stochastic) for each
of the components are described in Sections 4.3.2, 4.3.3, and 4.3.4.

4.3.1. Stochastic modeling

Stochastic models for the interconnect and control were derived using several exam-
ples which were mapped from their Silage descriptions to layout using the Hyper syn-
thesis system and the LAGER silicon assembler [12]. Figure 4.3 shows the design flow
used for algorithm mapping and data collection. The logic synthesis tool, MIS II [11]
was used for optimizing the control logic. The controllers were mapped to a library of
standard cells, and the remaining blocks are mapped to datapaths by tiling custom
library blocks in a bit-sliced fashion using the Timlager layout generator [12]. For the
control model, the capacitances switched per sample period were measured using the
IRSIM switch-level simulator [106] and for the interconnect model, the areas, bus
lengths, and accesses were measured from layout. A number of high-level parameters
such as the number of states, the number of functional units, wordlengths, etc. are
also collected from the design.

Benchmark set:

The selection of examples for building the model was guided by the goal of including
as diverse and as typical examples as possible. The selected examples cover a wide
variety of DSP applications including FIR filters (Wavelet, Hamming, Chebyshev),
IIR filters (direct-form, cascade, parallel, continuous-function, ladder, wave-digital,
polynomial and homomorphic filters), nonlinear filters (Volterra) and fast transfor-
mations algorithms (DCT, FFT, convolution). Example sizes ranged from 13 opera-
tions to more than 120 operations. Different instances of these examples were
generated using different transformations (retiming, various extents of pipelining,
algebraic transformations and other block-level transformations), supply voltages,

clock periods and sampling rates. The examples cover a wide variety in the ratio of
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available time to critical path (also called stress ratio), amount of parallelism, types of

operations used, level of multiplexing, and size of the final implementations.

Regression analysis:

Regression analysis (with the Matlab™ [75] and Mathematica™ [132] tools) was used

to identify the important relationships and build models. The R? and F-ratio good-
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ness-of-fit parameters were used to determine the significance of the models. R2, the
coefficient of determination, is defined as ratio of the variability of explained by the
model to the variability of the data itself. The ratio varies between zero and one, with
a higher value indicating a better model. If a model explains all the variability in the

data, the RZ would be 1, and if it explains none of the variability, R2 is 0. The F-ratio
is defined as the ratio of the mean square of the variation explained by the model to

the mean square of the residuals. For further details, the reader is referred to [10, 53].

Since the stochastic models capture the nuances introduced by the specific synthesis
process, floorplan, and architecture model used when generating the data, the models
may not be valid for a different synthesis process or floorplanning strategy, or for a
different architecture style. In our methodology, the understanding of the basic rela-
tionships is specifically emphasized while building the overall models and we believe
that the relationships will hold though the constant coefficients will have be to be
recalibrated. An important benefit of our approach is that it helps to understand the
underlying dependencies and identify the various contributors to the overall power
budget.

4.3.2. Temporary storage (registers)

Temporary variables in an application may be stored in several ways. For example, a
given implementation may use a centralized register file or a distributed one; com-
pletely pipelined designs use pipeline registers instead of register files; chaining oper-
ations can get rid of registers; delay elements may or may not need registers
depending the relative operation times of their producer and consumer nodes. Thus it
is difficult to estimate the register power without any knowledge of the targeted
implementation. We target one specific architecture model and examine the impor-
tant contributors of register power. As described in Section 1.4.4, the targeted archi-
tecture model has a distributed register file organization. Each register file is
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attached to an input port of a functional unit and is said to be associated with the cor-
responding operation type.

We also assume that chained operations are merged into a single node. Thus all edges
in the control data flow graph represent variables to be stored in register files and all

nodes are purely combinational and have no storage components.

Overall register-power model:

Power is dissipated in registers during the read, write, and NOP operations and the

overall power consumption is given by:

Preg = (Z( (feff (rd) N:d + ;ff (wr) er + C:ff (nop) Iv;op J)Vfldf (Eq. 4.7)

[ 4

where N',3, N*,,,, and Ni,,op are the number of register reads, writes, and NOPs,
respectively on register files associated with operation type i and C‘ieﬁc(,d), Cieﬁr(w,ite),

and C",_,ff (nop) @re the corresponding capacitances switched during these register
accesses. The summation is done over all operation types in the algorithm. Computa-

tion of the various register accesses (N*,4, N*,,,, and Ni,wp) and the associated capaci-

tance models (Cieﬁr(,d), Cieff(,d), C‘ieﬁr(,d) ) are discussed below.

Register access estimation:

With the assumed architecture template, the number of register reads, Ni,d, from reg-
ister files associated with operation type, i, is equal to the total number of inputs of
all nodes of type i, in the graph. This is because each time an operation (specified by
nodes in the CDFG) is executed, it must read inputs from its operand register files.

The number of register writes depends on the assignment of nodes onto specific hard-

ware units. Figure 4.4 shows a simple case where the result of the multiply operation

is used by two additions. The figure shows two different assignments of the additions.

In Figure 4.4a both additions are implemented on the same adder and the variable x
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is written only once, while in Figure 4.4b they are assigned to different adders and the

variable is written in two register files.

An upper bound on the number of register writes to files associated with a particular
operation type i, can be computed by assuming that for each node, all its outputs of
type i are assigned to different units. Similarly, a lower bound can be computed by
assuming that for each node, all its outputs of type i are assigned to the same func-
tional unit. The average of the upper and lower bounds is used as an estimate of

number of register-writes.

(a) b ()
Figure 4.4. Register writes depend on assignment.

Since registers are clocked, power is consumed even when they are not reading or
writing. The number of NOPs in each register file, is the total number of clock cycles

less the number of read and write operations on it.

Register-capacitance;

The effective capacitance associated with register operations is the computed from
capacitance complexity models of library blocks similar to those used for functional

units. The model for a register operation — read, write, or NOP — is of the form:

C, ¢ = Cq+CT +CyR +cgrn (Eq. 4.8)
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where r is the number of registers in the register file and n is the number of bits per

register.

The number of bits per register is given by the wordlength of the operands of the asso-
ciated operation type. The average number of registers r, in the register files associ-
ated with a particular operation type is estimated from the number of functional units
of that type and the total number of registers required by them, both of which are com-
puted using the discrete-relaxation based technique of the Hyper system (refer
Section 3.1.3). Given the number of functional units F;, the number of registers R;,
and the number of operands I;, associated with an operation type i, average number

of registers r, in the associated register files is estimated as:

r= ! . (Eq. 4.9)

The overall power estimation scheme for registers is summarized in Figure 4.5.

Register power =
power per access * accesses to registers

/ \

schedule Reads: Writes: NOPs:

v !

Calculate ;

lifetimes Na= z input;
1

* Parameterized ]
Number of libraries mex + min
registers per file 2 v

\ / total cycles - (N,q +N,,,)

Power per access

Figure 4.5. Estimating the power consumption in registers.
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4.3.3. Interconnect elements

The interconnect elements — buses, buffers, and multiplexors — are rapidly becom-
ing a significant factor in the overall power dissipation in large designs. This section
presents a stochastic model for the interconnect power and also for the clock power
which is closely related.

4.3.3.1. Buses

The bus power consumption depends on the bus lengths, the capacitive load on them,

and the associated activity. Models for these components are discussed below.

Bus access model:

Assuming a white noise activity model, the number of bus accesses determines their
activity. In the given architecture model (Section 1.4.4), the result of each operation
is written to its destinations via one or more buses. The number of the bus accesses
depends directly on the number of edges in the graphs (same as the number of vari-

ables). Empirically, the following equation was found to hold:

B access — %ot alNe

dges (Eq. 4.10)

The regression parameters o and o, are 11.35 and 0.97, respectively. The model has

a very high goodness-of-fit parameters with an R2 of 0.97 and an F-ratio of 1046.21.
The results of the model are shown in Figure 4.6.

Bus length model:

Bus wire capacitances are determined by their lengths, which in turn depend on the
area of the overall design. In fact, bus lengths have been shown to be proportional to
the square-root of the overall area [60, 117], which is the model used in this work. We
first develop a stochastic model for the overall chip area, and use it to predict bus

lengths.
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Intuitively, the most important predictor variable is the active area. This includes the
combined area of all the hardware resources on the chip except the wiring — func-
tional units, registers, buffers, multiplexors, etc. Figure 4.7 shows the total chip area

versus the active area for the selected benchmark set.

Regression analysis yielded the following quadratic model of the total chip area Achip
in terms of the active area A, (Equation 4.11).
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2
Achip = Qo+ alAact + aZAact (Eq. 4.11)

However, the coefficient of determination for this model is only 0.52 which shows that

the active area alone does not explain the variation in the overall area very well.

Further analysis showed that a large part of the overall area is taken by the intercon-
nect, and two parameters — the number of buses and the wordlengths — were con-

sidered to account for it. The resulting model is specified by Equation 4.12.
ACMP = Ot u’lAacg + 0.2N bitsN busAact (Eq. 4.12)

where A,; is the active area, Ny, is the average word length used and Ny, is the
number of buses. The regression parameters, oy, o3, and oy, are 2.302, 0.803, and

0.017 respectively and the goodness-of-fit parameters, R2 and F-ratio, are 0.964 and
150.12, respectively.

The model accounts for the two most important components of the chip area — data-
path and interconnect — represented by the second and third term respectively. The
third term is explained as follows. Average bus lengths are proportional to the square
root of the overall area. It is seen that the square root of the total area linearly corre-

lates to A, (Equation 4.11). Thus, in the third term, A,.; accounts for the average

length of the interconnect and Ny, «Np;, is the total number of interconnect wires.

Figure 4.8 shows the measured layout area versus that predicted by the model. This
model gives average, median, third quartile, and worst case errors of 16.6, 14.0, 22.2,
and 43.5%, respectively.

Since the values of A, ; and Nj,s are known only after final allocation and schedule,
estimated minimum bounds for the execution units and registers are used to compute

Agc and those for the buses are used to compute Ny, at the algorithm level. These

estimates are obtained using discrete relaxation and quick scheduling [100]. The

72

(2]

{r



«~ 150 . . O
N rd
g
B
F
S 100 0.’
[ J ¢‘;‘

“ b "
: 50 A e
—_ o %

0o 50 100 150

Predicted area after scheduling (mm?)

Figure 4.8. Layout area model: predictions vs. chip measurements

model is recalibrated to use estimates of A,.; and N, instead of their exact values.

Using these estimates instead of exact values reduced the accuracy of the models and

the average and worst case errors increase to 42.6 and 96.1%, respectively.

The average bus length, L, is assumed to be proportional to the square-root of the chip

area, and is given by:

L = yJArea (Eq. 4.13)

with the proportionality constant, y, determined empirically to be 0.55.

Overall bus power model:

The total bus capacitance switched per sample period is computed as the average bus
capacitance times the number of accesses to buses. This is used directly in the power

equation to obtain the total power dissipation in buses.

The capacitance switched per access is composed of two parts — that due to the capac-
itance of the wire itself and that due to the capacitive load on it. The capacitance of
the wire directly depends on the wire length, which is empirically determined from
Equations 4.12 and 4.13. The wiring capacitance is calculated from the wire lengths
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using the average capacitance per unit area and average fringe capacitance per unit
length of metall and metal?2 layers.

The loading on the buses is modeled by a fixed load of 50 fF (about 2 minimum sized
inverters in 1.2 micron technology) for each fan-in and fan-out. The total number of
fan-ins and fan-outs on the buses are assumed to be the half of the estimated mini-
mum number of functional units. This is based on the assumption that each bus is
connected to half of the overall units on average. The wiring and load capacitances are
added to obtain the average physical capacitance per bus wire, which is then com-
bined with the wordlength to get the average physical capacitance per bus.

In this section, empirical models have been used to compute the bus lengths and
accesses. Figures 4.6 and 4.8 demonstrate that such models can achieve reasonable
accuracies to yield valuable high-level estimates. Since the models have identified
some important relationships, they can also be used in cost functions during the opti-
mization and synthesis tasks. Both the area and bus access models are used later in

this thesis to evaluate various options during the synthesis process.

4.3.3.2. Buffers

Since every bus access is enabled via a buffer, the number of buffer accesses is the
same as the number of bus accesses which is modeled in the previous section. The
effective capacitance switched per buffer access is easily derived from the capacitance

complexity models similar to those used for functional units.

4.3.3.3. Multiplexors

Since multiplexors accesses are strongly dependent on the degree of hardware shar-

ing, we do not compute this component at the algorithm level.

4.3.3.4. Clock

The chip area model presented in the previous section is also used in clock length esti-

mation. On a set of example designs, the length of the clock routing to the datapaths
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was found to vary between one to three times the square root of the chip area. Based
on this observations, the total length of the clock wiring is estimated by the following

formula;

length = 2 x JChipArea (Eq. 4.14)

To estimate the loading on the clock, we assume that the clock is distributed to all the
registers and buffers on the chip and that each offers a capacitive load that is obtained
from the hardware library. and buffers are estimated using the discrete-relaxation
based technique of the Hyper system (refer Section 3.1.3).

The activity or “number of accesses” on the clock wires is simply the total number of

clock cycles in the sample period.

4.3.4. Controller
Recall from Section 1.4.4 that the controller consists of a global finite state machine

and a set of distributed local-controllers. In this section we present power models for
both the global FSM and the local controllers.

4.3.4.1. Global finite state machine
The global finite state machine is implemented as a counter with conditionals to check |

for the iterative states (loops). No sophisticated state minimization is performed and

a straightforward minimum encoding is used for state assignment.

The relationship between the effective capacitance switched per sample period in the
global FSM, Crg)s, and the number of states is shown in Figure 4.9. The strong linear

dependency seen was used to build the following regression model:

CFSM = a0+a1Nstates (Eq‘ 4.15)

where 09 = -22.1, o = 4.9. This model gives negative values if there are less than five

states in the machine in which case the capacitance is approximated to zero. The
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Figure 4.9. Relationship between the capacitance switched per sample period in
the global FSM and the number of states.

model has a coefficient of determination of 0.999 and an F-ratio of 6511.38 indicating
its high prediction potential.

The strong dependence on the number of states can easily be explained since increas-
ing states result in more state transitions per sample period (higher activity) and also
a bigger and more complex FSM (more physical capacitance). In fact, the state tran-
sitions are a linear function of the number of states. Consider, for simplicity, an FSM
with no iterative loops which sequentially traverses N states. Over the entire sample
period, the least significant state bit transitions each cycle (N times), the next bit
transitions N/2 times, the next one N/4 times, and so on. The total state-bit transitions

over the entire sample period thus show the following linear dependence on the

number of states:
StateTransitions = N + 1;’+ %’ + %’ +..+2
1 1 2 (Eq. 4.16)
N(l 3+t *Kr)
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Estimating the number of states:
For non-hierarchical graphs or hierarchical graphs with non-iterative nodes, the

number of states is simply the total number of time steps available (sample period
divided by the clock period). However, if the sample period is extremely large (> total
number of nodes), then all the clock cycles are not used, and the resulting finite state
machine has several idle cycles. In this case, the number of nodes is used as an esti-

mate of the number of used or active states.

For hierarchical graphs with iterative nodes or loops, the number of distinct states in
the FSM depend on the allocation of the total time to the different subgraphs or loops.
A crude time allocation is realized by first allocating time to each hierarchy node (sub-
graph) equal to its critical path and distributing the remaining time over the different
hierarchy nodes in proportion to their concurrency. The number of states for each
hierarchy node is the time allocated to it divided by its iteration count. The total
number of states is the sum of the number of states in all its constituent hierarchy
nodes (since our implementation uses only a single thread of control — refer

Section 1.4.4).

4.3.4.2. Local controllers

Since the global FSM is simply a conditional counter, its power is easily predicted
from the number of states. The local controllers however, have several other depen-
dencies that need to be explored. Based on the assignment of the operations to specific
hardware units and their schedule, the hardware mapper determines the functional-
ity required from the controllers and creates the truth tables for the control signals.

The boolean functions are optimized using MIS II and mapped to a library of standard
cell gates.

We first explored the various dependencies of the capacitance switched in the local
controllers per sample period. The variables considered were the number of states in

the overall machine, the number of control signals (outputs) in each local controller,
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Figure 4.10. Exploring various dependencies of the capacitance of local controllers.
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and the number of transitions on the control signals. These dependencies are shown

in Figure 4.10. It is seen that the number of states explains part of the variations in
the data; no dependence is seen on the number of control signals; and a quadratic

dependence is observed on the number of control signal transitions.

The the total capacitance switched in the local controllers in one sample period, Cj,,
was first modeled in terms of the output transitions N,,,,, using the following qua-

dratic regression model.

C. = o+, N + aszmns (Eq. 4.17)

trans

This model was found to have low R2 and F-ratio values of 0.78 and 74.0, respectively.

A combined model based on the number of states, Ny, and the number of output

transitions, Ny,,,s, was then considered (Equation 4.18):

Cp.=0og+ alems + athZr ans + 0gN States (Eq. 4.18)

The values of the constants oy, a3, 0, and og are -288.9, 0.25, 0.000025, and 154.03

respectively. This model is able to explain a large amount of the variability in the
data; it has a coefficient of determination of 0.953 and an F-ratio of 423.09.

The model has an average error of 11.52% and a maximum error of 41.06% on a set of
46 examples. The correlation between the estimated and measured capacitances is

shown in Figure 4.11.

Estimating intermediate parameters — number of transitions:

While the number of states can be estimated at the high level using the methods men-
tioned earlier in this section, the number of transitions is not easily estimated from
high-level parameters. Since a large percentage of the controller outputs are the

enabling/disabling signals for registers, a good correlation was found between the
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Figure 4.11. Controller model: predictions vs. chip measurements.

output transitions and register accesses as shown in Figure 4.12. The resulting linear

regression model is given by Equation 4.19.

N,

trans = a0+ u’lN

regacc

(Eq. 4.19)

where 0 and @; are 75.32 and 1.20, respectively. This model has reasonably high

goodness-of-fit parameters — R? is 0.93 and F-ratio is 216.87 — but the problem with
it is that the number of register accesses is not known at the high level and must be

estimated (as explained in Section 4.3.2) resulting in further inaccuracies.

Due to redundancies in the data collected for each design, we were able to identify
other higher-level parameters to predict the transitions and the following multiple

regression model derived:

N

trans = o+ Oy Ny - T) + %N, odes (Eq. 4.20)

where Ny, is the estimated minimum bound on the number of functional units, T'is

the sample period in terms of the clock cycles, and N, odes is the number of nodes in
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Figure 4.13. Goodness-of-fit of the output transitions model.

the algorithm. The constant values are -207.20, 3.14, and 1.20, for 0o, 03, and oy,

respectively.

The intuition behind the choice of variables used in the model can be explained as fol-

lows. At most, each output transitions once every cycle (ignoring glitches) and thus

the total number of clock cycles per iteration of the algorithm is an upper bound for

the transitions on each output signal. The total number of outputs signals of the con-
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trollers increases with the number of functional units used in the design. Therefore
the product of the number of functional units (estimated minimum bound) and the
total clock cycles per sample period is considered as a variable. Also, the complexity
of the algorithm affects the “work” done by the controllers and hence the output tran-
sitions. Therefore, the number of nodes, a measure of the algorithm’s complexity was

also considered as a variable.

This model has reduced goodness-of-fit parameters with the coefficient of determina-
tion being 0.88 and F-ratio being 159.342. However, all the model parameters are
known at the high level and no new intermediate variables are introduced. For this
reason, this model is preferred over that of Equation 4.19. The goodness of fit of this
model is shown in Figure 4.13.

The overall capacitance model for the local controllers is given by Equations 4.18 and
4.20 combined.

4.4. Results

This section compares the algorithm-level estimates obtained using the techniques
described in this chapter with the power estimates from SPA, an architecture-level
power estimator [65]. The SPA estimation tool has been validated against a switch-
level power estimator, IRSIM, and has been found to have errors less than 15%. At
architecture level, more information is available about the design. For example,
accesses to all resources — registers, buffers, buses, multiplexors — is known which
is estimated using both analytical and stochastic methods at the algorithm level. Fur-
ther assignment of operations to resources and their schedule is known, so that data
streams can be captured at the block inputs to be used with activity sensitive block
models.

Since floorplanning and routing is yet to be completed at the architecture level, bus
lengths are still stochastically modeled using the model of Equation 4.12. However,
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Figure 4.14. Estimates of effective capacitances switched per sample period at the
algorithm and architecture levels for various components: (a) functional units, (b)
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Figure 4.14. contd. Estimates of effective capacitances switched per sample period
at the algorithm and architecture levels for various components: (a) functional
units, (b) registers, (c) buses, (d) buffers, (e) total..

parameters required for the model — the active area A, and the number of buses
Npys — that are estimated at the high level are exactly known at this level. The

number of bus accesses is also exactly determined.

A sample set consisting of 23 designs is used for these experiments. These examples

are different from those used in generating the stochastic models.
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Bar graphs comparing estimates of the effective capacitances switched per sample
period of the various components at the algorithm and architecture levels are shown
in Figure 4.14. Notice that the algorithm-level estimates ¢rack the architecture-level
estimates very closely. As mentioned in the beginning of the chapter, since the pur-
pose of the facility is guide high-level decisions, relative accuracy is the main concern
as opposed to absolute accuracy. In our results, relative correctness is not achieved in
all cases (e.g., design #9 in Figure 4.14b and #6 in 4.14¢). The percentage of cases that
do achieve relative accuracy is quantified by the correlation between the estimates at
the two levels. This in indicated through the correlation coefficients between the two
estimates (shown in Table 4.1) and plots of the algorithm-level estimates against the
architecture-level estimates (shown in Figure 4.15). A large number of points fall
extremely close to the x=y line, indicating the high correlation between the two esti-

mates.

Table 4.1. Correlation between algorithm and architecture-level estimates.

Correlation coefficient
Ezxecution units 0.99
Registers 0.96
Buses 0.96
Buffers 0.97
Total power 0.97

Error statistics of the algorithm-level estimates compared to the architecture-level
ones are shown in Table 4.2. Along with the average and worst case errors, the table
also shows the median and third quartile errors. It is seen that though the worst case
errors are high, the third quartiles are below 20% in all cases showing that 75% of the

designs have low errors and large errors are rare. It should be emphasized again that
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the correlation between the two estimates is more meaningful than the percentage

error between them.

Table 4.2. Error statistics of the algorithm-level estimates compared to
architecture-level estimates.

average median third quartile} worst case
Functional units 16.7 13.2 16.0 126.0
Registers 12.0 112 17.7 35.9
Buses 146 10.86 23.33 52.1
Buffers 15.5 9.6 174 65.2
components overhead
Control
(Stochastic)
Registers
(Analytic)
Execution units
(Operation count,
Y Interconnect:
— buses, buffers, muxes
(Stochastic)

Data memory
(Memory accesses, g
memory size)

: Algorithm-inherent components
I:J Implementation overhead

Figure 4.16. Estimating power: various components and techniques.
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4.5. Summary

In this chapter, a algorithm-level power estimation facility has been presented. In
order to provide meaningful estimates with the limited information available at the
behavioral level, the estimator takes a technology-targeted approach, using informa-
tion from an underlying architecture model and user-specified hardware library. The
various power consuming components on a chip are divided into two parts based on
the amount of information available about them at the algorithm level — the algo-
rithm-inherent part and the implementation overhead. A combination of analytic and
stochastic approaches is used to address the different characteristics of these compo-
nents. An overview of the different components and the corresponding estimation
techniques is given in Figure 4.16 and the specific power models are summarized in
Table 4.3.

The algorithm-level power estimates obtained are compared to estimates from the
SPA architecture-level power estimation tool and about 20% average errors are
observed. Estimates at the two levels are found to be very high correlated which
emphasizes the relative accuracy of the algorithm-level estimates. Extensive use of

the proposed estimation facility is demonstrated in the next chapter.
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Table 4.3. Summary of the power models for various components?.

Component [ Critical parameters Main models
—— S S L ———
Operation counts m
Functional Complexity Power = ( Z N;C, f(i) )Vfldfs
units and parameters i=0
Memory Hardware li.brary C e =8N
information €
Registers Hardware library V2
Preg = Vadlx
Number of edges £
; , ; . ; .
(Z(ceff (rd) N:-d * Ceff (wr) ler + Ceff (nop) N:top)J
|13
Ceff = cg*eyr+con+cgrn
N +N_.
. _ " max "'min
Nrd = ZNinputs 4 Nwr - 2
Nyops = T- (Nrd * Nwr)
Area L = yJArea
Active area
(buses) Wordlengths Achip =0t alAact M aZN bitsNbusAact
Number of buses B ccess = o+ a’lNedges
Number of edges
Hardware library c, = cn
Interconnect Wordlengths B o +aN
(buffers) Number of edges access 0" "1 edges
Area length = 2x JChipArea
Registers/buffers _
(clock) Cload = c(‘h"l)u)"fer +Nregister)
Control Number of states Crsm = % *%1Nsates
(global FSM)
Number of states
Control Output transitions
C ,= N
(local Number of units 8" 0T 1 prams asz" ans* aaNstates
controllers) Available time Nirans = %o * al(N units’ TJ + %N, odes
Number of nodes

1. All constants, o, shown in this table are regression parameters and there values are given in the
appropriate section in the text.
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Design Space Exploration

A design environment for power optimization must provide analysis and optimization
tools at all levels of hierarchy. In order to facilitate this, a top-down power optimiza-
tion framework in provided in the Synergy synthesis system as shown in Figure 5.1.

The algorithm-level analysis mechanisms presented in the previous chapter are used

to explore the behavioral design space; architecture synthesis techniques! provide a
synthesis path to architecture; and the SPA power analysis tool validates the choices
and provides more accurate power estimates at the architecture level. At all phases,
power predictions are based on data from pre-characterized cell libraries. Each tool
makes use of the information available to it at that level of abstraction. By applying
these tools in an integrated, top-down fashion the user is able to begin with a high-
level description of the desired functionality and systematically converge to the opti-
mum low-power algorithm and architecture.

At the highest level of abstraction, several decisions like the algorithm selection, clock
selection, voltage reduction, and transformations lead to large variations in the power
consumption. In order to rapidly evaluate the myriad design alternatives at this level,
the algorithm-level power estimates presented in the last chapter are encapsulated
into an exploration tool called Explore which is described in the next section. Section

5.2 illustrates the use of Explore to examine various degrees of freedom in the algo-

1. The synthesis algorithms used in the Synergy synthesis system are explained in Chapters 7 and 8.
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Figure 5.1. Integrated top-down power optimization approach in the Synergy
synthesis system.

rithmic design space. Finally the effectiveness of the overall CAD environment is
illustrated through an extensive case study in Section 5.3.

5.1. Explore

The goal of the Explore design-aid is to help the designer in searching through the
algorithmic design space. This tool evaluates several design points for the given algo-
rithm by varying a set of parameters and iteratively invoking the high-level power
estimator. The output of the tool is a set of graphs that plot the variation in overall

area and power consumption as a function of the chosen parameter.

In the current implementation, two parameters are used as independent variables,

namely the voltage supply, V4, and the clock period, T'y;. Selecting these parameters
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at the high level allows an accurate evaluation of the delays of the hardware units
that can be used to drive synthesis and optimization. At lower levels, when the archi-
tecture and micro-architecture are finalized, the allowed variation in the V ; and T,
is restricted, which limits a complete exploration of the design space and constrains

the associated power savings.

The effect of these two parameters on the power and area of real-time applications is
discussed in detail in Section 2.2.1. One of the important effects derives from the fact
that different functional units may be optimal for implementing a given operation at
different values of V35 and T, To incorporate this effect, Explore maintains a data-
base of the functional units selected for each operation at different values of these

parameters.

Each operation type has an identifier that depends on its functionality and
wordlength. Thus a 4-bit addition operation is called addition#4 and a 6-bit left shift
operation has left_shift#6 as identifier. A hash table indexed by the identifiers of the
various operation types is used to store the hardware modules selected for them. Each
entry of this table is an array indexed by the value of the independent variable Vaa
or Tc,). Each array element stores a pointer to the library cell to be used to implement

the corresponding function at the given values of Vg; and T.;;. Library cell selection

is based on the greedy strategy explained in Section 3.1.2. Each element is also asso-
ciated with a duration, which is defined as the number of clock cycles required for
implementing the operation on the selected library cell at the given parameter values.
Operation durations affect several aspects of the implementation including the criti-
cal path of the algorithm and the hardware requirements for implementing it within
the specified throughput constraint. Though they do not affect the algorithm-inherent
component of power dissipation, they have a direct impact on the implementation

overhead part, which is influenced by the critical path, hardware requirements, etc.
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Supply-voltage variations start at the highest voltage specified (default is 5V) and
continue with steps of 0.25V down to 1V. If a feasible hardware module is not found
for any operation (no hardware cell can complete the operation within an allowed
maximum number of clock cycles) at any voltage level, the search is terminated and

lower voltage levels are invalidated.

The extremities of the clock-period variation are selected by searching for the maxi-
mum and minimum time requirements over all operations. The minimum clock period
considered corresponds to the fastest speed of the fastest operation. This is because
there is no gain from using a faster clock since all operations would require multiple
clock cycles to execute. The maximum clock period considered is the slowest speed of
the slowest operation. This is because a longer clock period will only result in wastage

of the added time since none of the operations can effectively use it.

Estimation of the effective capacitance of all components is iteratively performed at
each of the design points starting from the maximum clock period or supply voltage.
This capacitance is appropriately combined with the operating supply voltage and
user-specified sample frequency to obtain power numbers. Overall area estimates are
also reported.

To speed up the exploration process, the hardware database table is analyzed for sim-
ilarities across different iterations and estimates of components are computed only if
they are predicted to change from the previous iteration. Estimation changes are pre-
dicted by comparing the selected hardware cells and their durations for all the oper-
ations between the two iterations. If all the hardware cells selected and their
durations are the same as in the previous iteration, no estimations need to be re-per-
formed. If the hardware cells selected are the same but the durations are changed,
only the estimates of the implementation overhead components are recomputed. In

other cases, all estimates are recomputed.
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During the estimation process, the critical path of the algorithm is compared to the
available sample period in each iteration to ensure the feasibility of the design. In the
case of supply voltage variation, once a design found to be unable to execute within
the given throughput constraint, the process is terminated and lower voltages are not
explored since the timing requirements of an algorithm only increase at lower volt-
ages. However, this is not the case with clock period variations since both the number
of clock cycles required and the number of clock cycles available increase with reduc-
ing clock lengths. A design may therefore be infeasible at a particular clock cycle but

may yield a feasible solution at longer or shorter clock periods.

As mentioned above, the output of the tool is a set of curves plotting the area and
power of the application as a function of the independent variable selected. The curves
help the user in selecting the implementation that offers the best trade-off between
area and power. They can be used to evaluate several design aspects such as the effect
of transformations, technologies, and algorithms. The two parameters can also be
varied simultaneously to plot a 3-dimensional surface so that globally optimal points
may be selected.

5.2. Investigating various degrees of freedom

The complex interactions of the different factors make it difficult to analytically
derive the optimal design parameters. Explore offers an easy way to graphically
exploit the various trade-offs. This section studies power optimization on different
examples through Explore curves. Several degrees of freedom for design optimization
are studied — clock selection, voltage selection, transformations, algorithm selection,
and hardware comparison. The degrees of freedom presented here are by no means
comprehensive and the purpose is to illustrate the type of design optimizations that
can be explored at the high level using the estimation capability.
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6.2.1. Clock period selection

Figure 5.2 shows the effect of varying the clock period on the power and area of an 88
discrete cosine transform (DCT). The power trend is dominated by the control compo-
nent. At shorter clock periods, the number of clock cycles for the implementation (and
hence the number of states) increases, leading to the greater power consumption in
the controller. At longer clock periods (>80 ns), the overall power rises due to an
increase in interconnect power but this effect is relatively less pronounced. The area
shows the opposite trend from power and increases with the clock period due to the

fewer clock cycles being available to implement the algorithm.
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Figure 5.2. Clock period exploration for an 8x8 discrete cosine transform (DCT).

In another example, consider the clock exploration curves of a 16-point FFT shown in
Figure 5.3. In this case, the power trend is dominated by the interconnect power
which is highly affected by the overall area. Due to the different conflicting effects of

the clock period on the overall area explained in Section 2.2.1, the area is seen to have

a non-monotonic variation with the clock period.

The difference in the relative importance of different power components in the two

examples can be explained by examining some of their characteristics shown in
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Figure 5.3. Clock exploration curves for a 16-point fast fourier transform (FFT).

Table 5.1. While their sample periods differ only by a factor of 2, their complexities,
in terms of the number of operations, differ by a much larger factor. The FFT has 6.9
times more multiply operations and 4.7 times more additions and subtractions.
Therefore, in a particular time period, the FFT performs about 3 times more opera-
tions than the DCT example on average, and requires a more parallel (and hence
larger) implementation. Further the data transfers (measured by the number of
edges) are much higher in the FFT example. Due to the larger area and more data

transfers, the effect of the interconnect is greater in the FFT example.

Table 5.1. Characteristics of the two examples studied.

Sample | Number of | Number of | Number of | Number of
period (ns)| multiplies | additions |subtractions edges

8x8 DCT 14 16 26 - 63
16-point FFT 0.7 110 99 23 290
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6.2.2. Transformation selection
Figure 5.4 displays some of the effects of transformations on a design. The example

used is a 14"M.order wavelet filter with a throughput constraint of 3.33 MHz, and a
20 ns clock period. The original design consumes 133 mW power which can be reduced
to 110 mW by lowering the supply voltage to 4.5 V. However, if the supply voltage is
further reduced, the design fails to meet the throughput constraint. Substituting con-
stant multiplications by shifts and adds results in a 50% decrease in power. However
the lowest possible supply voltage is the same as before since the critical path of the
design is unaltered.
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Figure 5.4. Exploring the effect of transformations on the power and area of a 14th-
order wavelet filter with 3.33 MHz sampling frequency.

Pipelining the transformed version lowers the critical path of the design, making it
possible to lower voltages to 1.5 V and get a further 2x power reduction. The curves
also make it clear that it is not advantageous to over-pipeline a design. For a given
supply voltage, 1-stage pipeline has lower area and power than a 4-stage pipeline due
to the cost of extra pipeline registers. It is also seen that the supply voltage should not
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be indiscriminately decreased. Although using 4 pipeline stages allows voltage reduc-
tion up to 1.25 V, the power increases when the voltage is decreased from 1.5V to
1.25 V due to a large rise in area (shown in Figure 5.4b) which causes an increase in
interconnect power. The sudden increase in area is due to increased functional units

needed to implement the same algorithm at a lower supply voltage.

6.2.3. Algorithm selection

For realizing a given function, the choice of the algorithm has a large impact on the
quality of the final implementation. We evaluate two algorithms for comparing the
mean squared distance of a vector, X, from each of two vectors, C, and Cj. This oper-
ation is the core computation in vector quantization systems [36]. The two algorithms

are given in Equations 5.1 and 5.2 [69].

7 7
MSE,-MSEy = 3 (Coi-X,J'- ¥, (Cy-X)* (Eq. 5.1)
i=0 i=0
9 7
MSE,-MSE, = (82-22)+ 3 2(C,,-C,) xX, (Eq. 5.2)
i=0

The energy versus supply voltage curves of the two algorithms are shown in
Figure 5.5. While the first algorithm has 16 multiply, 14 add, and 17 subtract opera-
tions, the second one has 8 multiply and 9 add operations and consumes lower power
in functional units. Secondly, the second algorithm has smaller area and hence
shorter average interconnect lengths and dissipates less power in the interconnect.
Also, due to a shorter critical path, the second algorithm has a feasible implementa-
tion at much lower supply voltages. Using the second algorithm and lowering the
supply voltage to 2V reduces the power by a factor of 25 compared to the first algo-
rithm at 4.5V.
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Figure 5.5. Evaluating two vector comparison algorithms.

65.2.4. Hardware comparison

Explore can also be used in studying the effects of using different hardware units for
the same application. The example used here is a Volterra filter with a sampling
speed of 1.9 MHz and a selected clock period of 25 ns. The filter is transformed first
by replacing constant multiplications by adds and shifts to reduce the number of mul-
tiply operations and then by using associativity to reduce the critical path. Two imple-
mentations of with different adder implementations — ripple adder (RCA) and carry-

select adder (CSA) — are compared.

Figure 5.6 shows the Explore curves obtained by varying the supply voltage. At 5V,
the RCA implementation performs better than the CSA implementation in terms of
both power and area. However, the area of RCA implementation increases drastically
at 4.5 V which impacts its bus power. As a result, it has higher power and area at volt-
ages below 4.5 V. Further, it does not yield a feasible implementation below 2.75 V
while the CSA version yields a feasible solution even at 2 V, giving about 2x power

and area savings over the best RCA version.
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Figure 5.6. Power and area curves for implementations of a Volterra filter with
carry select and ripple carry adders.

5.3. Case study: the Avenhaus filter

In this section an eighth-order bandpass Avenhaus filter example [4] is used to illus-
trate the top-down optimization flow, highlighting both general and specific issues at
each stage. We consider the filter structures proposed in [25] to implement the Aven-
haus transfer function. While these structures were further studied in [92] for com-
plexity and area comparisons, no study has been done to compare these structures

based on power consumption metrics.

We assume that the designer is required to implement an Avenhaus filter with an
overall throughput constraint of 2.75 MHz imposed by the surrounding system. He/
she is free to select the filter structure, the supply voltage, the clock period, the spe-
cific transformations, and the final assignment strategy. We start with a preliminary
evaluation, comparing various structures that can be used to implement the required
transfer function. Next, we explore the design space applying several transformations
and supply voltages, accepting or rejecting them based on evaluations from the high-
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level estimators. After narrowing down the design space, we use architecture-level
analysis to verify and refine our design decisions. We conclude with a review of the
power savings achieved at each stage of optimization.

5.3.1. Preliminary evaluation

We first consider different structural implementations of the Avenhaus filter pro-
posed by Crochiere [25] — cascade, continued-fraction, direct-form II, ladder, and par-
allel structures. We first estimate the power consumption of each assuming a
straightforward implementation of each structure with a 5V supply voltage and clock
frequency chosen so that each operation completes in one clock period. The resulting
estimates are presented in Table 5.2. In order to explain the differences in power dis-
sipation, the table also presents several key parameters that influence the power con-
sumption — the maximum throughput (critical path and maximum sample
frequency) and the complexity (operation count and required word length). The
throughput is obtained from the Synergy system using the Lager low-power cell
library [14]). The energy numbers presented are obtained at a frequency correspond-

ing to the maximum possible sample frequency for each structure.

Table 5.2. Preliminary analysis of the various Avenhaus filter structures.

Critical Max. Word Number | Number Energy

path (ns) sample freq. Length of of (nd)
(MHZz) multiplies | additions

Cascade 340 2.94 13 13 16 27.7
Continued fraction 950 1.05 23 18 16 89.5
Direct form II 440 2.27 19 16 16 69.5
Ladder 1224 0.82 14 17 32 52.1
Parallel 306 3.27 13 18 16 36.1
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It is clear that the complexity of an algorithm has a major impact on the power con-
sumed — the cascade and parallel implementations have the lowest operation counts
and the smallest word lengths and also the lowest energies. Increased wordlengths
contribute to larger physical capacitance and increased activity and higher operation
counts result in increased activity and may also necessitate increased hardware and

routing, resulting in larger wiring capacitance.

In the current forms, only the cascade and parallel structures can meet the 2.75 MHz
throughput constraint at 5V, the critical paths of the other three being too long. Since
transformations can have a large impact on both the critical paths and the operation
counts, we also evaluate transformed versions of each of the structures instead of

simply eliminating the other three.

5.3.2. Programmable vs. dedicated hardware

One transformation that can be very useful in power reduction is expansion of multi-
plications with constants into additions and programmable shifts. This may result in
lower power requirements since only additions and shifts corresponding to 1’s in the
coefficient are performed while an array multiplier implementation performs an addi-
tion for every bit of the coefficient even if it is a 0. On the other hand, the dedicated
array multiplier performs shifts by hard-wired routing, while the add-shift version
uses programmable shifters, latches partial products between stages, and requires
additional control. In certain cases the overhead due to shifters, latches, and addi-
tional control can offset the gains from the reduced additions. The effect of this trans-

formation on the critical path depends on the specific example being considered.

The critical path and energy values (at the corresponding maximum sample frequen-
cies) after constant multiplication expansion are shown in Table 5.3. Not only is the
power consumption increased, all the structures have longer critical paths and lower

voltages cannot be tried. This transformation is therefore rejected for all the exam-
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ples. It is important to note that this is not a general conclusion about constant-mul-

tiplication expansion and the trade-offs must be evaluated on a case-by-case basis.

Table 5.3. Results of constant-multiplication expansion for the Avenhaus
structures.

Critical Max. sample
ath (ns) frequency Add Sub Shifts | Energy (nJ)
P (MHz)

Cascade 361 2.77 38 23 61 43.5
Continued fraction 1104 0.91 68 50 116 98.7
Direct form II 440 2,27 54 40 91 95.6
Ladder 1406 0.71 36 31 46 75.4
Parallel 437 2.29 40 30 63 61.3

5.3.8. Critical path reduction and voltage scaling

In their current forms we cannot reduce the voltage for any of these designs and still
meet the throughput constraint. Since decreasing the critical path opens the possibil-
ity of voltage reduction and can have a large impact on the power dissipation, we next
try to decrease the critical paths using pipelining. The resulting critical paths
obtained with various levels of pipelining are shown in Table 5.4. It is seen that some
of the filter structures that could not meet the throughput constraint initially become

feasible, while those already feasible become faster. The options that result in feasible
solutions are highlighted.

We generated Explore curves with varying voltages at 2.75 MHz sampling frequency
to compare these solutions. Figure 5.7 shows the curves for the designs that result in
lowest power dissipation for each structure. It is seen that voltages (and energies) can
be appreciably reduced for all examples (except the continued fraction) by applying
pipelining. Further, the optimum level of pipelining is not always equal to the maxi-
mum pipelining due to the overhead introduced by pipeline registers. For example,
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Table 5.4. Critical path reduction through pipelining?.

Continued fraction
Direct form II
Ladder
Parallel

the maximally pipelined version of the cascade lead to a minimum energy of 5.1 nJ,

about 15% more than the two-stage pipelined version which consumes 4.4 nJ.

30

Energy (nd)

[ory
(=4

3 3 4
Voltage (Volts)
Figure 5.7. Voltage reduction (and its effect on energy) after “optimal” pipelining.

The results from the exploration curves are summarized in Table 5.5. It is apparent
that the cascade and parallel versions still yield the best quality solutions. Therefore,
at this point we remove the continued-fraction, direct-form, and ladder structures
from consideration. We do not eliminate the parallel form at this stage since it gives
results close to the cascade, and the errors inherent in the high-level estimation tools

does not allow us to resolve differences that are so small.

In order to select the supply voltage we examine the area penalty associated with volt-

age reduction for the cascade and parallel form structures. The area exploration
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Table 5.5. Effect of reducing voltage for the pipelined versions.

# stages C::lt:lal é‘ii,‘i.i‘:;e E?for)gy (émmﬁ%)

Cascade 2 136 | 175 44 157
Continued fraction 1 850 - - -

Direct form 11 1 132 2.00 12.3 374

Ladder 5 216 2.50 14.5 126

Parallel 2 102 1.50 5.3 411

curves are presented in Figure 5.8. It is seen that the minimum voltages are accom-
panied by large area penalties. However, at slightly higher operating voltage of about
2V, the area penalties are much less severe and, the energies are not significantly
higher (Figure 5.7). The Explore curves allow the designer to evaluate the area pen-
alties associated with parallel implementations and make informed decisions based
on the area-energy trade-offs. In this case study we avoid the large area penalties by

selecting a 2V supply voltage.

500
400}
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100} \gallel
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0; 2 7 5
Voltage (Volts)

Figure 5.8. Area trade-offs for the pipelined cascade and parallel versions.

A large number of power reduction techniques are available for optimization at the
algorithm level (refer Chapter 2). The purpose of this case study is to present a gen-
eral methodology and show how high-level tools can be used to facilitate the selection
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of these techniques, rather than to enumerate all possible implementations of the
Avenhaus filter. Instead of further algorithmic exploration, therefore, we now look at
architecture-level optimization and analysis to refine and verify the decisions made

so far.

5.3.4. Architectural exploration

Using algorithm-level power estimation and exploration tools, we have been able to
narrow the design space to two filter structures, the cascade and parallel forms, with
two stages of pipelining each, operating at 2.75 MHz sampling speed and 2 V supply
voltage.

We now synthesize the selected algorithms and use architectural power analysis to
evaluate and refine the results. Analysis tools at the architecture level provide the
accuracy required to make more fine-grained choices and to evaluate the effects of the
synthesis steps performed after algorithm-level exploration. We use sampled speech
data as input for architecture-level simulation and power analysis. A detailed break-
down of the energy estimates at the algorithm and architecture levels is given in
Table 5.6.

Table 5.6. Comparing algorithm- and architecture-level estimates for the cascade
and parallel forms.

Cascade I Parallel
Algorithm Architecture I Algorithm ' Architecture

Exu 2.42 "~ 165 3.27 2.05
Registers 0.59 0.50 0.64 0.52
Control 0.62 0.62 0.73 0.73
Buffers 0.08 0.06 0.09 0.06
Mux - 0.18 - 0.21
Bus 1.01 1.04 131 - 131
Clock 0.31 0.25 0.38 0.33
Total 5.03 4.30 6.42 5.21
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Since it does not account for the highly correlated nature of the speech input data, the
algorithmic power estimator overestimated the power consumed by the execution
units by 47% for the cascade and 60% for the parallel versions. It is important to note,
however, that the errors in the algorithmic power estimates are systematic over-esti-
mates rather than random errors since the input data used for both designs is the
same, showing that relative classifications made during algorithmic design space

exploration are meaningful.

Based on the accurate architecture-level estimates, we are able to select the cascade
filter as our final low-power implementation. This design can be further optimized at
the architecture level using techniques that will be proposed in the next few chapters
of this thesis: exploiting locality and regularity of the algorithm. Here we simply
present a further improvement obtained from assigning the operations to hardware
units to maximize the locality of the data transfers in the final implementation. It is
seen that this approach reduces the power consumption of the buses and functional
units (Table 5.7). The idea of exploiting locality for low power is developed extensively
in Chapter 7.

Table 5.7. Reducing power at the architecture level through local assignment.

Default assignment Local Assignment
Exu 1.65 144
Registers 0.50 0.50
Control 0.62 0.62
Buffers 0.06 0.07
Mux 0.18 0.18
Bus 1.04 0.29
Clock 0.25 0.25
Total 4.30 3.35
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Further improvements can be obtained by logic and circuit level optimization of the

different components in the architecture which are not discussed here.

5.3.6. Gains from design space exploration

Table 5.8 illustrates the large gains obtained (27x) by exploring the design space over
different algorithm structures, transformations, and supply voltages. Selecting the
correct algorithm (cascade) saved a factor of 3 in power, compared to the worst case
(direct form). Moreover, the direct form (at 89.5 nJ) could not achieve the required
2.75 MHz sampling rate. If the algorithms were compared for the same throughputs,
the cascade would actually be even more than 3x better. Counter to what we may
expect, expanding multiplications into shifts and adds is not beneficial in this case
and increased the power dissipation. Transformation for reducing critical path, e.g.
pipelining, is found to further reduce the power by a factor of more than 6. Finally,
local assignment helped to reduce the power by another 22%.

Table 5.8. Summary of power savings obtained by exploring the algorithmic and
architectural space for the Avenhaus filter implementation.

Ir Ene Overall
Inputs | Voltage (V) (n;)gy power
reduction
—_— — — .
Worst algorithm (direct form) UWN 5.0 > 89.5 1
Best Algorithm (cascade) UWN 5.0 27.7 3x
Cascade (after constant-multiplication UWN 5.0 435 2x
expansion)
Pipelining (no area constraint) UWN 1.5 44 20x
Pipelining (with area 100 mm?) UWN 2.0 5.0 18x
Architecture-Level Estimate Speech 2.0 4.3 21x
Assignment for Locality Speech 2.0 3.3 27x
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5.4. Summary

In this chapter, we have illustrated the importance of high-level exploration and the

value of an integrated top-down design environment for power optimization. An explo-
ration framework is presented to rapidly evaluate several points in the algorithmic

’ design space. Some of the various degrees of freedom available at the high levels are

highlighted and orders of magnitude power savings are demonstrated on several

examples.

Lastly, an extensive case study is presented to demonstrate the use of the overall top-
down CAD environment. The case study takes the reader through the design flow,
indicating the low-power techniques apropos to each step and describing how a hier-
archy of analysis and optimization tools can be used to converge to a desired low-
power solution. The proposed approach is shown to lead to more than an order of mag-
nitude reduction in power. This is achieved by a thorough search of the design space,
which would not have been possible without the assistance of high-level design tools.
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Interconnect Power

The rest of the thesis focuses on architecture-synthesis approaches for power minimi-
zation. Before considering any techniques in this direction, it is worthwhile to analyze
some designs to identify power bottlenecks and opportunity areas at the architecture
level. In a given design flow, optimization opportunities at the highest level are unre-
stricted by prior decisions, while opportunities at lower levels are limited by choices
made earlier in the design process. In particular, the effect of architecture-level tech-
niques is restricted by decisions taken at the system and algorithm levels. For exam-
ple, the number of operations is fixed by the algorithm and cannot be affected by the
choice of the architecture. Therefore, it would be expected that the architecture syn-
thesis tasks of allocation, assignment, and scheduling would have very little effect on
the power consumed by the fanctional units. In fact, architecture synthesis tasks
affect the functional unit power only by changing the activity of their input signals.

The key, therefore, is to target those elements that are highly influenced by the archi-
tecture and depend relatively less on the decisions made at higher levels. In the fol-
lowing section we compare manual and automated design implementations and
identify the interconnect as a significant bottleneck in automated approaches. We
also show that the interconnect power is greatly influenced by architecture-level tech-

niques.

Sections 6.2 and 6.3 overview related work in interconnect optimization and estima-

tion, respectively. In Section 6.4, we present extensive models for the interconnect
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power to allow us to evaluate the results of synthesis approaches presented in the
next two chapters.

6.1. Interconnect — a bottleneck in overall power dissipation
We begin with a study performed by Wu [133] that compared two different implemen-
tations — an automatically-generated maximally time-shared version and a manu-
ally-generated fully-parallel version — of a QMF sub-band coder filter. This filter is a
typical example of DSP applications that are targeted in this thesis.

In the manual design, a number of optimizations were used to obtain power savings
in the various components. The power consumption of both versions is documented in
Table 6.1 and the layouts are shown in Figure 6.1. For the same supply voltage, an

improvement of a factor of 10.5 was obtained at the expense of a 20% increase in area.

Table 6.1. Power consumption in the various components for the fully-parallel and
maximally time-shared implementations.

Time-shared Fully-parallel Improvement factor
Functional units 8.52 1.03 8.3
Registers 9.76 1.08 9.0
Buses 23.69 140 16.9
Multiplexors 3.77 0.25 15.1
Buffers 4.36 0.35 12.5
Others 23.99 2.92 8.2
Total 74.09 7.03 10.5

The breakdown of the power consumption of the two versions is shown in Figure 6.2.
The interconnect elements (buses, multiplexors, and buffers) consume a large per-
centage of the total power (43%) in the time-shared version. Moreover, large improve-
ment factors were obtained for the interconnect components — 16.9, 15.1, and 12.5 for

buses, multiplexors, and buffers, respectively — compared to the those for other com-
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Figure 6.1. QMF sub-band coder filter [133]: (a) maximally time-shared version,
(b) fully-parallel version.

ponents. These improvements are mainly due to dedicated communication and
reduced usage of multiplexors and buffers in the manual design (Table 6.1). As a
result of these optimizations, the contribution of the interconnect power was reduced
to 28% of the total power (Figure 6.2b). The above observations point to two facts —

(1) interconnect components may consume a large percentage of the total power and (ii)
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Figure 6.2. Percentage power breakdown for the QMF filter: (a) time-shared
version, (b) fully-parallel version.

their power consumption is highly influenced by architecture-level design decisions —
both of which indicate a high potential for power reduction by targeting the intercon-

nect at the architecture level.

It is seen in the above example that maximal hardware sharing does not give the best
results for power optimization. In fact, typical designs from the Hyper synthesis
system have shown that buses alone consume 10 to 40% of the total power and the
interconnect elements together contribute 15-50% of the total power (refer
Figure 4.2). In general, area can be traded-off to a certain extent to reduce the power
consumption in buses, multiplexors, and control. While in the above example, the
fully-parallel implementation resulted in large power savings with low area overhead,
this may not always be the case. Completely parallel implementations may be too area
intensive and may not necessarily result in reduced interconnect power. If the area
overhead is too high, the increase in the required bus lengths (and capacitances) may

offset power savings due to other factors.
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The architecture-synthesis techniques presented in the next two chapters aim to cap-
ture some of the optimizations made manually in the above example through auto-
mated techniques while maintaining a balance between the maximally time-shared
and the fully-parallel implementations.

6.2. Related work in interconnect optimization

Originally, most high-level systems focused on functional-unit optimizations. Inter-
connect mapping was performed after scheduling and functional unit allocation and
assignment, and usually even after register allocation. This reduced the degree of
freedom for interconnect optimization. Recently however, there has been a growing
interest in interconnect optimization in the high-level synthesis arena. In [76],
McFarland showed that the interconnect can have a first order impact on the quality
of the overall design. The interconnect trade-offs were examined in [59] by studying
several examples synthesized with the Mabal synthesis system.

Several synthesis systems have incorporated interconnect minimization as one of the
primary goals, accounting for it even during operator assignment. The Facet synthe-
sis system attempts to explore the design space to minimize the functional units, reg-
isters, and interconnection units (multiplexors) using clique partitioning schemes for
each of the optimizations, and user input to determine their priorities [123]. One
drawback is that they do not account for the cost of buses. Mandal et al. integrate a
measure of interconnect area into a well-known clique covering algorithm to allow
simultaneous reduction of registers and interconnections [71]. In [118]), Stok proposes
an annealing-based approach incorporating interconnect costs along with functional
unit costs during scheduling. Park presented an approach to interconnect optimiza-
tion based on path sharing [90). This approach is closely related to some of the inter-
connect optimization ideas in this thesis and is discussed in Chapter 8. Partitioning
approaches for interconnect cost reduction are explore in APARTY [61] and the
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BUD [77] systems. These are closely related to the techniques presented in Chapter 7,
where they are discussed in further detail.

All the works mentioned above have studied the problem of interconnect optimization
for area. Ours is the first work that considers the tasks of interconnect power reduc-
tion. The two problems are different in that while area reducing techniques reduce the
number of interconnect wires, power reduction methods must also consider the cost of
accessing them. In other words, for power minimization, it is important to reduce the
accesses to the long buses rather than simply reducing the total number of buses. This
topic is addressed in the next two chapters.

6.3. Related work in interconnect estimation
Several research works in the literature have addressed the problem of interconnect

estimation and the closely related problem of layout area estimation from both the
high and logic levels.

A classical approach is based on the Rent’s rule [62] which gives an empirical relation-
ship between the number of gates in a well placed gate array and the number of exter-
nal connections (pins). The rent’s parameter is determined empirically for various

classes of circuits. Feuer showed that for a circuits that followed the Rent’s rule, the

wire length distributions g(r), are of the form ¢ (r) = r2(2-p) where p was the
Rent’s parameter and r was the wire-length [30]. Masaki also uses a rent’s rule based

model for interconnect length estimation in [74].

Some models target a specific cell placement strategy. For example, Heller presented
a stochastic model for wirelengths assuming a 1-dimensional placement of cells [45],
and El Gamal extended this model in [33] to address a two-dimensional placement
strategy. Standard cell estimation models are presented in [60, 117]
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Another approach is based on adding up shape functions of the basic cells in a design
and hierarchically constructing the shape functions of the bigger blocks. Interconnec-
tions between the child blocks can be incorporated in the shape function model of the
parent blocks. This approach is used in [77, 137). A hybrid approach combining the
shape function based scheme with analytic models is reported in the LAST layout

area estimation system [60).

We propose a layout area and bus length estimation scheme targeted at our architec-
ture model and placement strategy. Several concepts from the techniques mentioned

above are used in our estimations and are explicitly mentioned.

6.4. Bus and clock capacitance models

In this section we present models for predicting the bus and clock power at the archi-
tecture level. Since the synthesis techniques presented in the next two chapters target
interconnect power reduction, good estimates of these components are important to
derive meaningful conclusions. We therefore spent considerable time generating lay-

outs for several designs to build extensive models for the bus power estimation.

The bus power consumption is determined by the physical bus capacitance and the
associated activity. The capacitance switched per access is composed of two parts —
that due to the capacitive load on the wire and that due to the capacitance of the wire
itself. The loading on the buses is modeled by adding a fixed load of 50 fF (about 2 min-
imum sized inverters in 1.2 micron technology) for each fan-out and fan-in. The capac-
itance of the wire directly depends on the wire length, which is not determined until
after placement and routing and is therefore estimated using an empirical model.
Once the bus lengths are determined, the wiring capacitance is calculated using the
average capacitance per unit area and fringe capacitance per unit length of metall
and metal2 layers. The wiring and load capacitances are added to obtain the physical

capacitance of the bus which is combined with the activity model to derive the power

dissipation.
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Bus lengths are obtained from overall area estimates which are based on the stochas-

tic models described in Section 4.3.3. These are repeated here for convenience:
Atotal =0t alAact + %NbitsN busAact (Eq. 6.1)

L = VAt (Eq. 6.2)

For details of these models and the values of the constants, oy, a3, 0, and ythe reader
is referred to Section 4.3.3. The model parameters, A, Ny,,, and Nj;,.,, that are esti-
mated at the algorithm level are exactly known at the architecture level. Also, the bus

accesses are exactly known and information on signal activity at block inputs can be
obtained from simulation.

Although bus lengths are still modeled stochastically, estimates at the architecture
level can incorporate some effects from the floorplanning and routing stages. In order
to allow this, we use a physical model in addition to the architecture specification.

6.4.1. Physical model

Recall that in the architecture model, each functional unit has register files at its
inputs and, if required, input multiplexors and output buffers (Figure 1.1). The func-
tional unit, along with the associated registers, multiplexors, and buffers is called a
functional unit set. Functional unit sets communicate with other sets via the intercon-

nect network.

Keeping this architecture in mind, the physical model shown in Figure 6.8 is used.
The model accounts for the floorplanning strategy used in the Hyper synthesis sys-
tem. In this model, two or more functional unit sets may be grouped into the same
datapath. While communication between datapaths occurs through global buses,
within the datapaths, units are stacked in a bit-slice fashion and over-the-cell wiring
is used for communication between them. Additionally the placement of the datapath

is assumed to be in two rows connected by the interconnect network as shown. This
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Figure 6.3. Routing strategy: (a) typical floorplan with inter-datapath buses and

clock routing, (b) intra-datapath routing in a typical datapath.

inter-datapath routing strategy is depicted in Figure 6.3a and the intra-datapath

routing in Figure 6.3b.

The physical model allows the consideration of several refinements to the area model

to account for changes in the synthesis styles. For example, any desired clustering of

functional unit sets into datapaths can be specified and the physical model can be

used to distinguish between the global and local buses.

6.4.2. Incorporating effects of datapath clustering

Buses are divided into two main categories — inter-datapath and intra-datapath —

and different models are used to estimate their lengths. The estimation is performed
hierarchically, estimating the intra-datapath lengths first, and using this information

in the calculation of the global bus lengths.
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Intra-datapath connection lengths are estimated using a linear model, called the
stacked datapath model. The average length of over-the-cell connections is estimated
to be proportional to the cumulative height of the units in the datapath. The constant,
v, is empirically evaluated to be 0.3.

L=y (;Hi) (Eq. 6.3)

Inter-datapath buses are modeled using Equations 6.1 and 6.2. This model is used for
global buses for the entire chip and also for inter-datapath buses that are concen-
trated on a certain part of the chip. In each case, A;,,,; refers to the region in question
(whole chip or certain part).

The user is allowed to specify any clustering of functional unit sets into datapaths. If
no clustering is specified, each functional unit set is assumed to be in a separate data-
path and all buses are assumed to be global. If a clustering of functional unit sets is
specified, it is assumed that units that are in the same cluster are placed physically
close to each other. In particular, all units in a cluster, besides array elements such
as memories and array elements, are merged into a single datapath and the array ele-

ments are placed nearby.

The lengths of the wires within the datapath use the stacked datapath model. Since
array elements cannot be stacked onto datapaths, the wire lengths for clusters with
array elements is calculated using a hybrid of the stacked and inter-datapath models.
For buses between units other than the array elements, lengths are estimated using
the stacked datapath model. For the connections to the array element, the inter-data-
path model (Equations 6.1 and 6.2) is used where A,,,,; is the estimated cluster area,
the active area, A,;, is the sum of the areas of all the units in the cluster and the

number of buses includes all buses that transfer data from the array element to any

other unit in the same cluster.
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Global buses between the various clusters are modeled by the inter-datapath model.
In this case, A,,;,; refers to the overall area of the chip, A, is the sum of the total
areas of all the clusters (computed as explained above) and Nj,, is the number of
global buses. The model is thus hierarchical — at the overall chip level, each cluster
is a black box and only the buses in between them need to be considered; within each

cluster, only modules in the cluster and the internal inter-datapath buses are consid-

ered.

Figure 6.4 compares the average measured length of the wires in the datapaths with
those predicted by the stacked datapath model. Points on the dotted line indicate

exact estimates.
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Figure 6.4. Validation of the linear model for intra-cluster buses.

The inter-datapath bus-length model was validated for clustered and non-partitioned
versions of three designs (Table 6.2). Though the model was accurate to within 20%
for non-clustered designs, it overestimated the bus lengths for the clustered designs.
This appears to be due to the fact that unclustered implementations have many small
blocks while the clustered designs have few large blocks at each level of hierarchy
leading to a different behavior. This can be addressed by re-evaluating the coefficients
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of the inter-datapath model for clustered designs. Note that the over-estimation of bus
lengths, and therefore the capacitance, in the clustered designs leads to conservative
over-estimates of the power relative to unclustered designs.

Table 6.2. Measured and estimated global bus lengths for a few designs.

Name Measured bus Estimated bus Pgrcentage
lengths lengths difference
FFT 3.87 3.89 +0.5
l‘{op- Parallel IIR 3.53 3.34 -5.4
pﬁ;e";'lf‘g";‘:d Wave digital 156 129 173
Cascade 2.10 2.82 +34.3
FFT 149 3.01 +102.0
Parti!;ioned Parallel IIR 2.18 2.24 +2.8
designs Wave digital 041 1.18 +188.0
Cascade 0.95 2.73 +187.4

6.4.3. Incorporating effects of large variances in fan-out/fan-in

At the gate level, wire lengths are modeled as being directly proportional to the fan-
out of the wire [74] but this effect is largely ignored in conventional architecture-level
models [60, 80]. This is because in a bus-based interconnect architecture with maxi-

mal bus multiplexing, the fan-outs and fan-ins of buses show very low variances and

the fan-outs of buses are assumed to be constant over the entire design.

Here we consider some scenarios in which this may not be true. In a multiplexor-
based interconnect architecture, each unit has a dedicated output bus and the fan-out
of each bus is the same as that of the corresponding unit. Therefore, large variances
in bus fan-outs may be seen. Similarly, in a tristate-buffer based interconnect archi-
tecture, each unit has a dedicated bus at each input port and the fan-ins are deter-
mined by the sources to that input port. Also, certain design styles or synthesis

schemes may optimize a selected set of buses thus producing large variances in bus
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fan-outs. In these cases, the constant fan-out model is not valid. In this section we

present a new model that accounts for the large variances in fan-outs.

After examining several designs we found that the linear relationship between fan-
out and bus length [74] holds even at the high level. The length of any bus, i, is esti-
mated as Lp, times its fan-out, F;, as given in Equation 6.4. L, represents the length

of a bus with single fan-out and is constant over all buses for a given design.

The length, L,,, of a single fan-out bus is assumed to be proportional to the square
root of the area of the chip (Equation 6.5).

Using equation 6.4, the total wiring area on the chip is given by Equation 6.6, where
N; is the number of bits in bus i, W), is the wiring pitch and ¥ is the sum of the fan-

outs times the number of bits over all buses.

Awire = WpZLiNi
i

= WprpzNiFi (Eq. 6.6)
[ 4

= Wplpp¥

The total area of the chip is the sum of the active area of the datapaths and the area
consumed by the wires. Since our designs are targeted for datapath intensive designs
we ignore the area consumed by the control. The total area is therefore given by

Equation 6.7.

Achip = Aact +Awire

(Eq. 6.7)
=A, ..+ WPLPP:F
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Substituting Equation 6.7 for the chip area in Equation 6.5 gives the following qua-

dratic equation for L, :

2 2
Ly, =7 A+ WL, 5 (Eq. 6.8)

Solving this equation gives the following closed form expression for Ly,:

72W F+ ,j(yzw 9’)2+472A
Lpp = P 2P act (Eq. 6.9)

The constant in the model, v, was found experimentally in the following way. A few
algorithms were synthesized using both the Hyper and the E-template based synthe-
sis system and layouts were created using a silicon compiler. L,, was determined by
summing up the lengths of all buses on each chip and dividing by the total number of
fan-outs over all buses, and the active area was measured from the layout. The scalar
constant, ¥, was determined from Equation 6.8 to be 0.72, 0.80, 0.81, 0.88 and 0.80,
0.68 for the six chip-layouts generated. The mean value of y, 0.78, was selected for our

model.

6.4.4. Activity model

A critical difference between behavioral and architectural estimates lies in the knowl-
edge of the activity. At the behavioral level, since hardware sharing and scheduling
are not yet performed, the activity at the inputs of the hardware blocks is unknown
and uniform white noise model is used. Under this abstraction, the activity in any
component is given simply by the number of accesses to it. While the number of
accesses to functional units is easily determined from the behavior, those to buses is

not, and a stochastic model based on the number of edges was used (Equation 4.10).

At the architecture level, information of both the hardware sharing and the schedule

is available and the exact number of accesses to each component (functional units,
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buses, registers, etc.) is available. Further, the signal statistics at component inputs
can be captured by simulating the design with typical input sequences (profiling).
This allows us to use an activity-sensitive model for effective capacitance instead of
the white-noise one. We use the DBT activity model from the SPA [65] in our archi-
tecture-level estimations.

6.4.5. Clock models

The bus models presented in the previous section were modified to calculate the clock
power. The length of the clock wire consists of two parts as shown in Figure 6.3 — the
length of the routing to the border of the various datapaths and the length of the clock
routing inside the datapaths. On a set of example designs, the length of the clock rout-
ing to the datapaths was found to vary anywhere between one to three times the
square root of the chip area. Within each datapath, the clock wire-length was approx-
imately the height of the datapath. Based on these observations, the total length of
the clock wiring is estimated by the following formula:

length = 2 x JChipArea + ZHeightj (Eq. 6.10)
J

where the summation is performed over all functional unit sets j. To estimate the
loading on the clock, we assume that the clock was distributed to all the registers and
buffers on the chip and each offers a 25 fF load to the clock (as obtained from our cell
library).

6.5. Summary

This chapter has analyzed the importance of interconnect optimization and addressed
some related issues. By studying the differences between manual and automated
design implementations, it was seen that current day behavioral synthesis techniques

produce architectures that are power-inefficient in the interconnect. It was also seen
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that there is a large opportunity for decreasing the interconnect power by working at
the architecture level.

Some related research in interconnect optimization as well as interconnect and
layout-area estimation are discussed. Detailed interconnect power models incorporat-
ing various architecture styles have been developed. These models are critical for
assessing the savings from architecture synthesis schemes targeting interconnect
power optimization which is the topic of the next two chapters.
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Exploiting Spatial Locality

In the last chapter we saw the importance of reducing interconnect power in an auto-
mated design environment. This chapter presents a specific technique that addresses
this issue. The technique is based on exploiting the spatial locality inherent in the
algorithm while synthesizing to architecture. The chapter is organized as follows. Sec-
tion 7.1 describes what exploiting spatial locality of an algorithm implies and dis-
cusses its impact on interconnect power, Section 7.2 reviews some of the related work,
and Section 7.3 studies some of the main issues in more detail. Sections 7.4 and 7.5
present our approach for exploiting locality. Results and conclusions are presented in

Sections 7.6 and 7.7.

7.1. The impact of exploiting spatial locality

The concept of using distributed or localized computing for reducing power has been
used previously (e.g. memory and control partitioning). The main idea behind our
approach is to apply this concept to interconnect power reduction by automatically
synthesizing designs with localized communications. We achieve this by dividing the
algorithm into spatially-local clusters and performing a spatially-local assignment. A
spatially-local cluster is a group of algorithm operations that are close to each other
in the flowgraph representation. A spatially-local assignment is a mapping of the
algorithm operations to specific hardware units such that no operations in different

clusters share the same hardware.
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Partitioning the algorithm into spatially-local clusters ensures that the majority of
the data transfers take place within clusters and relatively few occur between clusters.
The spatially-local assignment restricts intra-cluster data transfers to buses that are
local to a subset of the hardware (local buses); thus only inter-cluster data transfers
use buses that are shared by all resources (global buses). In general, since intra-clus-
ter buses are localized to a part of the chip, they are shorter than the buses in the non-
spatially-local designs, while the global buses in the partitioned and non-partitioned
designs may be comparable in length. Also, since the local buses are connected to only
a subset of the functional units, they have a lower capacitive load on them, while the
global buses are connected to more functional units and have a higher capacitive load.
The combined result is that the shorter, lightly-loaded, local buses are used more fre-
quently than the longer, heavily-loaded, highly-capacitive, global buses. Further,
buffer power is reduced since smaller buffers are required to drive shorter wires. The
reduced hardware sharing also results in additional power savings due to fewer
accesses to multiplexors. The partitioning information is passed to the architecture-
netlist generation and floorplanning tools which place the hardware units of each spa-

tially-local cluster close together in the final layout.

Consider the example of Figure 7.1 which shows two alternative mappings of a single
flowgraph to a hardware configuration consisting of two adders. The two adders are
distinguished by their shadings. In Figure 7.1a, all operations of a tightly-connected
group are mapped to the same hardware (for example, g, b, ¢, and f are all mapped to
adder A;). This does not hold in the assignment of Figure 7.1b. Considering data
transfers in which a given adder outputs data to itself and to its own inputs as local,
and those in which it outputs data to the other adder as global, we find that assign-
ments of Figure 7.1a and 7.1b have 1 and 9 global data transfers, respectively (exclud-
ing input and output connections). Since global buses are long and highly capacitive

compared to local ones, and also have higher capacitive load (they are connected to
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Global data transfer:
...... Local data transfers

Figure 7.1. Exzample of spatially local and non-local assignments of a given
graph: (a) local assignment, (b) non-local assignment.

two adders compared to one for the local buses), reducing accesses to global buses

reduces the power dissipation.

As another example, consider a fourth-order parallel-form IIR filter. Local and non-
local assignments of operations to hardware units are shown in Figures 7.2a and 7 2b,
respectively (A; are adders and M; are multipliers). The non-local assignment is per-

formed with the goal of minimizing the use of functional units. In Figure 7.2a, the
filter is partitioned into two spatially-local clusters and the operations of each cluster

are mapped to mutually exclusive hardware units (A;, Ay, and M; are used for oper-
ations in cluster I and Ag, A4, and M, are used for those in cluster II). As a result, all
communications within cluster I take place only between hardware units Ay, Ay, and
M, and those within cluster II take place between units Ag, Ay, and My. There are only
two data transfers between the clusters which are global to the entire chip. In
Figure 7.2b, on the other hand, operations are assigned to hardware units without
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Figure 7.2. Different assignments of a fourth-order parallel-form IIR filter: (a) local
assignment, (b) non-local assignment.

regard to their closeness. In this case, none of the communications are localized to a

subset of hardware units and take place on global buses between all five units.

Several factors may affect the quality of designs partitioned in this way. Firstly, the
local assignment may come at the cost of extra hardware. In the above example, the
local version needs 4 adders and 2 multipliers whereas the non-local assignment
requires just 3 adders and 2 multipliers. However, this increase in the number of func-
tional units does not necessarily translate into a corresponding increase in the overall
area since the localization of interconnect makes the design more conducive to com-
pact layout. Secondly, reduced hardware sharing results in additional power savings
in multiplexors and buffers. Thirdly, varying the number of clusters trades off local
and global bus power. In particular, as the number of clusters is increased, the
number of inter-cluster communications increases but the local bus lengths decrease.

In the following sections we review some of the related work in partitioning, study the
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above issues in greater detail and present a partitioning methodology that addresses
them.

7.2. Partitioning — background

The key task in exploiting algorithm locality is partitioning the algorithm into spa-
tially local clusters of computation. In this section we present previous work in parti-
tioning (Section 7.2.1), and review the main concepts behind spectral partitioning

(Section 7.2.2) which we use in our synthesis scheme.

7.2.1. Previous work in partitioning

Previous works in partitioning for high-level synthesis have targeted area minimiza-
tion, with a significant portion of the gains resulting from interconnect reduction. In
the BUD system [77], pairs of nodes are repeatedly merged based on three criteria:
number of common connections, possibility of executing them at the same time, and
possibility of executing them on the same hardware type. In the APARTY system [61],
clustering is performed in multiple stages: each stage clusters nodes based on a par-
ticular criterion such as reducing the number of control transfers, increasing hard-

ware sharing, and decreasing data transfers.

In partitioning for low power, the goal is to reduce total chip power by reducing inter-
connect power. One way in which this is done is by maximizing the number of accesses
to short local buses relative to long global ones. Note that in area minimization, the
number of global buses is minimized. In power minimization, however, it is better to

have two global buses each accessed twice each rather than one bus accessed six

times.

Assuming that global buses are only used for data transfers between partitions, the
number of accesses to global buses is equal to the total number of edges cut by a pro-
posed partition, called the cut-size. Therefore, in partitioning for low-power, the goal
is to minimize the cut-size. Since, in high-level synthesis, the cuts do not translate
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exactly into the number of buses required due to hardware sharing between units and
bus sharing between data transfers, high-level area minimization schemes in do not
aim at reducing the cut-size. Partitioning techniques at lower (logic, layout, and cir-
cuit) levels, on the other hand, target cut-size minimization. Thus partitioning tech-

niques used in lower-level CAD are more useful for our purposes.

A variety of techniques have been used for partitioning at the logic, circuit, and layout
levels. These include iterative improvement methods such as Kernighan and Lin [64],
Fiduccia and Matheyses [31], and simulated annealing [57]; bottom-up aggregative
algorithms such as [130]; top-down recursive bi-partitioning [28, 103]; and spectral
partitioning techniques [3, 7, 16, 32, 42, 46, 113, 134).

We have developed a new behavioral-level partitioning method for low-power. The
basic idea is to derive an ordering of the nodes by using the spectral properties of the
graph and then heuristically partition this ordering. The theoretical results that form
the basis of this technique are presented in the next section.

7.2.2. Key ideas in spectral partitioning

Spectral partitioning methods use eigenvectors of the Laplacian of the graph to
extract a one-dimensional placement of graph nodes which minimizes the sum of
squares of edge lengths. This placement is then heuristically partitioned. The key
result that forms the basis of this technique was presented by Hall [43), and is given

below.

Problem statement: find a one dimensional placement x = (xj, xg......., x,,) of the nodes

of a given weighted-edge graph that minimizes the weighted sum of squares of the
edge lengths.

Solution: Let A be the weighted adjacency matrix of the graph, where A;; is the weight
of the edge between nodes i and j; A;j= 0 if there is no edge between i and j. The cost
function, z, that needs to be minimized is given by:
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nn
= %ZZ (x;-x)) 2Aij Eq. 7.1)
i J
The following constraint is used to normalize the placement between -1 and 1:

7l = 2 = 1 ®q. 7.2)

Define a degree matrix, D, as the diagonal matrix in which each diagonal element is
the sum of the weights of all the edges connecting to the corresponding node. The cost

function z can be rewritten as xT(D —A)X. The matrix @ = (D - A) is called the Lapla-
cian of the graph. The constrained cost function is given by the Lagrangian L, as:

L=2"Qz-2"2-1) (Eq. 7.3)
Setting the derivative of the Lagrangian, L, to zero gives Equation 7.4.

Q-ADz2 =0 (Eq. 7.4)

The solutions to Equation 7.4 are those where A is the eigenvalue and % is the corre-
sponding eigenvector. The smallest eigenvalue, 0, gives a trivial solution with all
nodes at the same point. The eigenvector corresponding to the second smallest eigen-

value minimizes the cost function while giving a non-trivial solution. l

7.3. Effect of varying levels of partitioning

In the previous section the parallel-form IIR filter was partitioned into two clusters.
In general a design may be partitioned into any number of clusters. In this section we
study the effect of varying the number of clusters on three designs — a direct-form ITR
filter, an 8-point DCT, and a fifth-order wave digital filter. For each, the power dissi-
pation of the individual components of the interconnection network, the combined bus
and clock, and the total chip are shown for different numbers of clusters (Figures 7.3-

7.5). The non-partitioned case is considered as a single cluster implementation.
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Figure 7.3. Effect of varying number of clusters on the power dissipation of the
various components: direct form IIR filter.
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Figure 7.4. Effect of varying number of clusters on the power dissipation of the
various components: discrete cosine transform (DCT).
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Figure 7.5. Effect of varying number of clusters on the power dissipation of the
various components: wave digital filter.

With increasing number of clusters, several trends are seen. As expected, the local bus
power reduces and the global bus power increases. This is because the lengths of the
intra-cluster buses reduce as clusters get smaller, and the lengths of global buses
increase as chip area grows. Furthermore, the number of accesses to local buses
decrease while accesses to global buses increase. Another distinct trend is seen in the
multiplexor power which reduces drastically due to increasingly restricted hardware
sharing. The clock power remains constant or increases due to an increased number
of units and therefore longer clock wiring. Although not shown, the register power
reduced slightly while the power dissipation in the functional units and buffers
remained the same. The reduction in register power can be explained as follows. With
more clusters, the number of functional units is increased and the number of variables
to be stored in the register files associated with each unit is reduced. While the total
number of register accesses remain the same (determined by the number of reads and
writes required). The reduced register file sizes results in lower capacitance switched

per access and thus reduced register power.
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The total power reduces drastically as we go from the non-partitioned design (1 clus-
ter) to the partitioned designs. After a certain number of clusters, however, the total
power starts to increase. Each example has an “opﬁmum” number of clusters — 7, 4,
and 4, for direct-form IIR, DCT, and wave digital filter, respectively. Notice that, in
Figures 7.3-7.5, the combined bus and clock power tracks the total power dissipation
showing an optimum at the same level of partitioning. In our partitioning methodol-
ogy, we use an estimate of this value to decide the optimal number of clusters. Our
partitioning methodology is explained in the next section.

7.4. Overall low-power partitioning methodology
This section describes the partitioning methodology targeted at interconnect localiza-
tion for low power. First the algorithm representation and the hyperedge model are

presented, then the overall methodology and the different phases are explained in
detail.

7.4.1. Algorithm representation

The input algorithm is represented internally as a data-flow graph. The nodes repre-
sent operations and the edges represent data dependencies. Strictly speaking, the
edges are “hyperedges” since a node may have several fan-outs. Conditionals are
implemented in the datapath — all branches are executed and the conditional test is
used to select the appropriate result. The representation can be hierarchical, that is,

a node may itself be a graph having nodes and edges.

While connections are represented in the algorithm as hyperedges, the partitioning
technique requires a representation in terms of edges in the strict sense (an edgeisa
connection between only two nodes). Several models to replace the hyperedge by edges
were examined. All of them replace the hyperedge by edges between pairs of nodes tov
form a clique but differ in the weight assigned to the resulting edges.
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The hyperedge problem is similar to the one discussed in layout partitioning where a
net may connect several pins. In that case, the uniformly weighted clique model [67]
has been widely used. This model assigns a weight of 1/ (k- 1) to all edges in the
clique, where k is the number of nodes in the clique (Figures 7.6a and 7.6b). If a hyper-
edge is cut, its contribution to the weight of the cut is exactly one irrespective of the
distribution of nodes across the net. At the layout level, the sum of weights of the

edges cut by a partition under this model, one, exactly corresponds to the number of

nets cut.

At the high level, however, due to hardware and bus sharing, the hyperedge does not
correspond to a single bus or data transfer. Consider the hyperedge shown in
Figure 7.6a. If a cut removes node 2 from the rest of the clique, exactly one global data
transfer will be required. However, if the cut isolates node a from the rest of the
clique, the number of data transfers between clusters will be anywhere from 1 to 8
depending on how the data transfers are assigned to buses. Therefore, a model that
weights the edges between nodes x, y, and 2 less than the edges connecting a to the
nodes x, y, or z may result in better solutions. We propose two new models that do this.
In the first model, we assign a lower weight 1/2(k-1) on edges between the desti-
nation nodes leaving the weights on the other edges unchanged. In the second model,
we increase the weight of the edges that join the source to the destination nodes to
2/ (k-1) while the weights on edges between the destination nodes is unchanged.
These two models are shown in Figures 7.6 ¢ and d, respectively. Our experiments
showed that different models give the best result in different situations. In our clus-
tering methodology, we try all three hyperedge models and select the best one.

7.4.2. Overall partitioning flow
The goal of the partitioning methodology is to generate a single promising partition
for the purposes of low-power synthesis. An overview of the partitioning methodology

is shown in Figure 7.7. The eigenvector of the second smallest eigenvalue of the
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Figure 7.6. Hyperedge models: (a) initial hyperedge, (b) uniformly weighted clique
medel, (c) clique model with lower weights on edges between destination nodes, (d)
clique model with higher weights for edges connected to the source node.

graph’s Laplacian is extracted and partitioned. The partitioning is done in two
phases. In phase I, several candidate graph partitions are generated. In phase II,

these partitions are evaluated and the most promising one is selected.

7.4.3. Phase I: finding good partitions

The goal of this phase is to propose a few partitions that are balanced and localized.
Multiple solutions are generated by using the different hyperedge models and by
varying the maximum allowed number of clusters. As was seen in Section 7.3, increas-
ing the number of clusters increases the number of global accesses and reduces the
size of local buses, resulting in lower local-bus and higher global-bus power. Generat-

ing several solutions with different number of clusters explores this trade-off.

The eigenvector placement obtained as described in Section 7.2.2 forms the nucleus of
the approach. It provides an ordering in which nodes tightly connected to each other
are placed close together. Furthermore, the relative distances are a measure of the
tightness of connections. The spectral technique is specially suited to our needs since
the eigenvector is computed only once and generating several partitioning solutions

from it is computationally inexpensive.

Two main techniques are used to generate partitions from this ordering. This is
because graph representations of DSP algorithms can have widely varying structures
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Figure 7.7. Overview of the partitioning methodology.

in terms of spatial locality. Consider the two examples shown in Figure 7.8. In Figure
7.8a there two distinct clusters which are also clearly visible in the corresponding
eigenvector placement. However, not all algorithms have a clearly clustered struc-
ture. A non-clustered algorithm may still be very partitionable in that it may be pos-
sible to partition it so that few edges are cut relative to the total number of edges. For
example, the graph shown in Figure 7.8b is not clustered but is partitionable since
only three edges are cut when it is divided into two equal parts. Notice that the eigen-
vector uniformly spaces the nodes in this case. Another good example is an FIR filter
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Figure 7.8. Eigenvectors for sample examples: (a) example with natural clusters,
(b) partitionable example with no natural clusters.

structure which has no distinct groups of clustered operations but can be easily par-
titioned.

The aim of the partitioning methodology is to detect natural clusters in the clustered
algorithms and find good and balanced partitions in uniform, non-clustered cases. The
eigenvector placement provides a good starting point to address both cases. Large
gaps in the placement can be used as partition points in the first case and the order

of nodes can be used for partitioning in the second.

We first try to detect natural clusters inherent in the algorithm. Large gaps in the
eigenvector placement are used to indicate good points for partitioning. Since the

n
nodes are always placed between -1 and 1 due to the constraint 2 x? = 1 imposed

i=1
by Equation 7.2, the absolute values of distances between adjacent nodes vary
depending on the total number of nodes in each example. By a “large gap” we mean
the distance between two adjacent nodes in the placement that is large relative to dis-
tances between other adjacent nodes in the same example. The threshold for detecting
these gaps is therefore relative to the distances in the same example. Several different

thresholds for identifying large gaps — m+0, m+20, and m+36 — where m is the mean
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of the distances between adjacent nodes and ¢ is their standard deviation, were eval-
uated. Our experiments showed that although the m+3c threshold found most of the
clusters, some clusters were only detected using m+26. In our methodology, we there-
fore try the m+3c threshold first. If no clusters are detected the threshold is reduced
to m+20. Smaller thresholds may be tried for a more exhaustive exploration of the
design space.

Solutions targeting up to 2, 3, 4, and 8 clusters are generated. This is done by varying

the constraint on the number of nodes allowed in each cluster. If a maximum of x clus-

ters is targeted, the smallest cluster size is fixed to be I-( (x—tl)-) + l-l nodes, where

n is the total number of nodes in the graph.

Partition points are inserted in the 1-dimensional placement to mark large gaps based
on the m+30 or m+2c metric. These points mark boundaries between different groups
of nodes. If a group detected has less nodes than allowed by the size constraint, it is
merged with one of the neighboring groups. The decision regarding yvhich neighboring
group to merge with, is based on the size of the gap between the groups (as calculated
from the eigenvector). The gap between two adjacent groups in the eigenvector place-
ment is the distance from the right-most node of the left group to the left-most node
of the right group. Clusters are thus identified using thresholding and subsequent

merging.

The main goal of the thresholding is to detect natural clusters inherent in the algo-
rithm. As mentioned before, not all algorithms have natural clusters. Therefore, if no
clusters are found by thresholding, a second technique is applied in which the eigen-
vector placement is used simply as an ordering of the nodes. This placement is uni-
formly partitioned into the targeted number of clusters. Again solutions targeting 2,
3,4, and 8 clusters are generated. Depending on the quality of solutions required and
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the time that the user wants to spend, a greater number of partitioning solutions may
be tried.

7.4.4. Phase II: evaluating partitions

The generation of candidate partitions is based on minimizing the number of global
bus accesses. The underlying assumption is that intracluster buses in the partitioned
implementation are significantly shorter than the buses in the original non-parti-
tioned one. This assumption may not hold for designs in which the area of any one
cluster is too large. The first goal of the evaluation phase is to prune out unpromising
partitions based on area estimates. Further, the studies in Section 7.3 demonstrated
that as the number of clusters is increased, the local bus power reduces while the
global bus power grows. Also, the different hyperedge models produce solutions of
varying quality. The second goal of the evaluation phase is to explore these trade-offs.
Based on these two goals, this phase first prunes out unpromising partitions and then

compares the effectiveness of remaining ones based on an estimate of the bus power.

In order to prune out solutions with extremely large area overhead, we estimate the
area of the unpartitioned graph and each of the partitioned solutions based on distri-
bution graphs [91]. A distribution graph displays the expected number of operations
executed in each time slot. Figure 7.9a shows a simple algorithm and the correspond-
ing distribution graph. For an algorithm with different types of operations, the total
weighted distribution graph is obtained by summing up the distribution graphs of
each operation type weighted by the area of the corresponding hardware. We use the
maximum height of the total weighted distribution graph as an estimate of the area.
For clustered designs, distribution graphs are constructed for each cluster and the
sum of the area estimates over all clusters is used for the total area. These estimates
are used to prune out solutions with more than 100% area overhead. The allowed per-

centage overhead can also be modified by the user.
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Figure 7.9. Distribution graphs for different candidate partitions of a given
algorithm: (a) unpartitioned, (b) candidate partition 1, (c) candidate partition 2.
Each operation’s contribution is labeled on the distribution graphs.
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The remaining candidate solutions are compared based on the total bus power esti-

mated using the following heuristic measure;

n
2 ( Aﬁocal . N:ocal) + Aglobal . Nglobal (Eq. 7.5)
i=1

where A:ocal is the estimated area of the cluster i, N:ocal is the number of edges (each

fan-out of a hyperedge is counted as one edge) local to the cluster, Agh)bal is the over-

all area of the chip, N? lobal is the number of global edges, and the summation in the
first term is done over all clusters. Each term inside the summation can be thought of
as a measure of the local bus power in the corresponding cluster. The area of the clus-

local
i

ter, A , is a measure of the lengths of the local buses in it (refer to the bus length

model in Section 4.3.3) and therefore their physical capacitance, and the number of
local edges, N:ocal , is a measure of the accesses to them (refer the bus access model

in Section 4.3.3) and therefore their activity. Thus, each term in the summation rep-
resents the total capacitance switched in local buses in the cluster per sample period
and is proportional to the corresponding power consumption at a given supply voltage
and sampling frequency. By a similar reasoning, the last term is a measure of the

Aglobal .

power consumption in global buses, where the overall area, , is indicative of

the global bus lengths and the number of global edges, N& lobal , is a measure of the
accesses to them. The cost function given by Equation 7.5 is thus indicative of the total
bus power associated with a particular partition. Recall from Section 7.3 that the bus
power tracks the overall power dissipation as the number of clusters is varied. There-

fore, the above heuristic provides a good measure for comparing various partitioning

solutions.
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As mentioned before, we use the height of the distribution graph as an area metric. In
the example of Figure 7.9, we see that though the number of edges cut by the partition
in Figures 7.9b and 7.9¢ is the same (2 edges), the area penalty is higher in the first
case. As a result the total number of accesses to global buses is the same but the local
buses are longer and more capacitive in the first case. In this case the cost function of

Equation 7.5 identifies the second partition as being more optimal.

7.5. Partitioning based synthesis

This section explains our locality-based synthesis methodology and gives an overview

of the synthesis flow.

7.6.1. Design flow from algorithm to layout

Our techniques have been integrated into the Synergy! high-level synthesis system.
The basic synthesis flow of the Synergy system is the same as that of the Hyper
system (refer Chapter 3), except that a new partitioning step is added preceding the
other synthesis steps and the assignment algorithms are modified to exploit spatial
locality. The new synthesis flow is shown in Figure 7.10. B

The core of the new system is the partitioning methedology described in Section 7.4.
Once the partitioning is complete, all operations have an associated cluster number
and each data transfer is classified as either global or local. The assignment technique
is based on the random initial assignment with iterative improvement approach of the
Hyper system with the added constraint that there is no hardware sharing between
clusters. The scheduling algorithm is unchanged.

The concept of “badness” in the Hyper allocation scheme (refer Section 8.1.5) is
extended to define a badness measure for each cluster. For a given type of unit and

cluster, the “cluster-badness” is defined as the sum of the badnesses of all nodes of

1. The Synergy synthesis system incorporates the estimation and exploration environment explained in
Chapters 4 and 5 and the two synthesis approaches developed in this and the next chapter.
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Figure 7.10. Synthesis steps from algorithm to layout.

that type in the cluster. When the scheduling/assignment process fails, new units are
allocated based on the badness measure. When a new unit is allocated, it is allotted
to the cluster with the highest cluster-badness. Similarly, the cluster with the lowest

cluster-badness is used when resources are being removed.

Bus assignment is also modified to account for the partitioning. A given pair of data
transfers are merged onto the same bus only if they are either both global transfers,
or both local transfers in the same cluster. In the construction of the conflict graph for
bus assignment, extra conflict edges are added to represent these partitioning con-
straints in addition to edges due to timing conflicts.

The architecture netlist is further compiled to layout. Silicon compilation performs a
number of tasks such as tiling, placement, and routing to generate the final layout.
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The Lager silicon compiler [12], is used for this purpose. The partitioning information
is passed to the floorplanning tools which place hardware units of a given partition
close together in the final layout. As much as possible, all units in the same cluster
are placed in the same datapath. The output from Lager is a physical layout of the

processor core.

7.6. Results

In this section we present the results of our partitioning-based synthesis scheme.
Implementations generated using the Synergy and Hyper systems are compared
using power estimates obtained from SPA [65]. Bus and clock power estimates are

obtained using models presented in Section 6.4.2.

7.6.1. Cascade filter

The first result compares Synergy and Hyper implementations of an eighth-order cas-
cade filter. Figure 7.11 shows the eighth-order cascade IIR filter and the correspond-
ing eigenvector placement. The spacings between the points in the placement clearly
indicate the four clusters that are evident in the structure. Using m+36 as the thresh-
old to decide the points of partition, we obtain clusters delimited by the arrows. It is
interesting to note that m+2c also works as a good threshold for this example.

Since all the multiplications in the design are multiplies with constant factors, they
are converted into shift and add operations to avoid the use of area-intensive multi-
pliers. The critical path of the resulting graph is 19 clock cycles, with both shifters and
adders taking one clock cycle to execute. Given a throughput constraint of 21 clock
cycles, the Hyper implementation uses four adders and three shifters while the Syn-
ergy implementation uses one adder and one shifter for each cluster resulting in a

total of eight units.

Magic layouts of the two implementations (Figure 7.12) were obtained using the
Lager silicon compiler and the Flint placement and routing tool [12]. In the Hyper
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Figure 7.11. A eighth-order cascade-form IIR filter: (a) the
structure, (b) corresponding eigenvector.

implementation, 2 of the 7 functional units are merged by the floorplanning tool. In
the Synergy implementation the 2 units in each cluster are merged into a single data-
path and the 4 datapaths in the layout correspond to the 4 clusters.

The partitioning localizes the computation enabling more compact layouts to be
obtained. In the Hyper implementation, there are seven functional units that commu-
nicate heavily with each other (the layout tool has merged two units into the same
datapath resulting in 6 datapaths). The Synergy implementation has eight units
divided into four clusters, with heavy communication within each cluster and few con-

nections between the clusters.

Table 7.1 compares the power dissipated in the two implementations. An overall
reduction of 35% in the power consumption was realized by the Synergy approach. As
opposed to 106 accesses to global buses in the Hyper implementation, the Synergy
version has 95 accesses to local buses which are short (0.27 mm) and only 3 accesses

to long global buses (1.48 mm). As a result, the bus power reduced 3-fold, from 2.9 mW
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Figure 7.12. Cascade filter layouts: (a) non-local implementation from Hyper,
(b) local implementation from Synergy.

Table 7.1. Comparison of power consumed in the Hyper and Synergy
implementations of the cascade filter.

Component Hyper Synergy Percentage reduction
Buses 2.9 1.0 65.5
Multiplexors 3.0 0.9 70.0
Clock 1.0 0.8 20.0
Buffers 0.9 0.8 111
Functional units 2.6 2.4 i
Registers 4.9 4.0 184
Total 15.2 9.8 35.5

to only 1.0 mW. The multiplexor power also reduced 3-fold as the reduced time-shar-
ing of units resulted in lower usage of multiplexors. Note that the contribution of the

interconnect to the total power dissipation was reduced from 44% to 27%.
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For this example functional unit power also reduced. This is because signals within
spatially local clusters tend to be more highly correlated than widely separated sig-
nals. Since spatially local assignment allows hardware sharing only between opera-
tions in the same cluster, the resulting implementation is likely to have more
correlated inputs to each of the blocks. This results in lower activity and hence less
power consumption in the functional units. Buffer and register power also decreased
due to factors such as improved data correlations, reduced physical capacitance, and

fewer accesses.

7.6.2. Other examples

This section summarizes our experimental results for the cascade and several other
DSP filter and transform examples. Some are in their original form (DCT, FFT, and
parallel-form ITR) and others are transformed using either constant multiplication
expansion (cascade-form IIR, direct-form IIR, and wavelet) or retiming (wave digital
filter).

Table 7.2 shows the number of accesses to buses and multiplexors, and the estimated
bus lengths for both implementations of each example. The accesses to global buses is
reduced drastically for all examples with very little change in the lengths of these
buses. Exploiting spatial locality moves a large percentage of the bus accesses from
the long global buses to intra-cluster buses whose lengths are 80% shorter on average
than those of the global buses. In general, due to reduced hardware sharing, there is
a decrease in the multiplexor accesses for all examples. The total number of buffer
accesses (including tristated and non-tristated buffers) is unchanged because a buffer
is used to drive every data transfer on a bus.

Table 7.3 shows the bus, multiplexor, and the overall power dissipation for both
implementations of each example. The Synergy implementations uniformly dissipate
less power than the Hyper implementations. The corresponding percentage improve-

ments are summarized in Figure 7.13. Power consumed by buses is reduced drasti-
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Table 7.2. Comparison of bus lengths and bus and multiplexor accesses in the Hyper

and Synergy implementations.
Hyper Synergy
Name | Bus | Bus | Mux [Nomber| Global | Local | Global |AVeTeES|
accesses| length! |accesses of bus bus bus 1] bus |accesses
clusters |accesses|accesses| length length!
Cascade] 106 1.63 279 4 3 95 148 0.27 109
Direct 202 4.93 1319 7 21 183 3.92 0.44 448
form
Wavelet 71 2.34 247 2 3 69 2.43 1.05 171
Wave b7 1.29 156 4 4 53 148 0.20 36
digital
DCT 59 3.52 104 4 7 51 3.49 0.93 75
FFT 38 3.48 58 4 7 33 3.89 0.52 39
Parallel 40 2.57 82 4 4 36 429 1.12 47
IIR
1. Bus lengths are in millimeters for a 1.2 micron technology.
Table 7.3. Power consumption in the Hyper and Synergy systems.
Hyper Synergy
Design
: Bus Mux Total Bus Mux Total
Cascade 29 3.0 15.2 1.0 0.9 9.8
Direct form 39.5 34.7 120.2 8.2 9.9 574
Wavelet 7.1 7.2 33.5 43 4.5 27.8
Wave digital 2.5 2.9 13.9 0.9 0.5 10.1
DCT 7.7 2.6 28.4 3.3 18 224
FFT 9.6 4.5 34.8 43 2.5 274
Parallel IIR 5.2 2.9 407 | 29 13 38.1

cally in all examples (up to 80%) and large reductions are also seen in the multiplexor

power (more than 70% reduction in three of the examples). The average reduction in

bus, multiplexor, and total power is 57.8%, 56.0%, and 25.8%, respectively.
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Figure 7.13. Percentage improvements in bus, multiplexor, and total power.

In partitioned implementations, we expect buffer power to decrease since smaller
buffers can be used to drive the data transfers occurring on short local buses. How-
ever, our architecture-netlist generation tool currently uses fixed-sized buffers for all
data transfers, regardless of bus length, and therefore, our results show negligible
change in buffer power. With necessary modifications, buffer power should contributg
toward further reduction in total power.

These experiments have demonstrated that restricting hardware sharing to behavior-
ally localized operations in the algorithm results in a large reduction in the intercon-
nect power. However, this does not necessarily come free of cost and in several cases
a penalty must be paid in terms of an increase in the number of functional units. For-
tunately, an increase in the number of functional units does not necessarily translate
into an equivalent increase in overall area. Since the communications across the chip

are localized, the design is more conducive to compact layout. This is due to not only
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Table 7.4. Comparison of the amount of hardware and the overall area required in
the Hyper and Synergy implementations.

Hyper Synergy

Name Units Estim.ated Estimat?d Units Estim.ated Estimat?d

active | total chip active | total chip
* 2 omd | @md |* Y ] cmd | cmmd

tCascade | - 4 3 | 2.32 879 | - 4 4| 118 | 728 |
Direct form} - 15 12 11.77 80.20 - 16 8 7.33 50.82
Wavelet - 6 6 3.88 18.07 - 8 6 424 19.55
Wavedigi-| - 3 2 | 146 546 |- 4 4| 166 7.24

tal

DCT 8§ 15 4 7.70 40.95 7 13 - 6.83 40.30
FFT 2 7 - 6.31 38.95 2 10 - 6.75 49.92
Pa;‘;élel 4 3 - 6.04 21.85 9 8 12.40 60.95

reduced global connections and smaller local buses but also due to fewer overhead ele-
ments such as multiplexors and buffers. As was seen for the cascade filter of
Section 7.6.1, the new layout may actually be smaller than the original. Table 7.4
shows the estimated area penalty obtained in the Synergy designs. It is seen that the
impact of the increase in functional units is not reflected in the total area. In most
cases, therefore, the total chip area is marginally affected. For one example, the par-
allel form IIR filter, about 34.7% area penalty is seen. In two of the examples, the area
is reduced by 47 and 9%. In fact, for the DCT example, the number of components
required was also reduced! This is because partitioning the example into localized
regions serves as a guidance to the assignment tool, and it is able to find a better solu-
tion. Note that the assignment tool is heuristic and therefore not guaranteed to find

the global minimum.

All examples in this section have been optimized for power with no limitations on
area. By varying the number of clusters, different design points with lower area pen-
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alty can be obtained at the cost of lower power savings. For example, the parallel filter
implementation with 2 clusters has lower power savings (30.8%, 24.1%, and 3.7% in
bus, mux, and total power, respectively) but the area penalty is much lower (30.4%)
than that of the 4-cluster implementation shown in the table.

In summary, exploiting locality of algorithms during the high-level synthesis process
greatly reduces interconnect power. For most examples a significant reduction in total
chip power is obtained. Though the number of functional units required is increased
due to restricted hardware sharing, the penalty in the total chip area is marginal.

7.7. Summary

The architecture synthesis process can have a large impact on the power dissipated
in a design. In this chapter, we have presented a new technique for power reduction
based on exploiting the locality in a given application. It was seen that preserving the
locality improves the implementation in a variety of different ways. The predominant
effect is the reduction of accesses to highly capacitive global buses. Our results showed
up to 80% improvement in the power consumed in buses. Additionally, restricting
hardware sharing led to reduced usage of multiplexors. Though the power savings can
come at the cost of increased area, this effect is marginal. The techniques have been

integrated into the Synergy system.

The concept of preserving locality is a special case of a more general class of tech-
niques referred to as distributed computing. In general, accesses to global computing
resources — controllers, buses, memory, I/O — are expensive due to increased capac-
itance. Dividing these resources reduces the capacitance being switched per access.
This work can therefore be applied to more general applications such as memory par-

titioning and processor partitioning.
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.4

Exploiting Algorithm
Regularity

The previous chapter presented a partitioning scheme for reducing interconnect
power and techniques for using the partitioning information during synthesis. How-
ever the basic synthesis tasks of allocation, assignment, and scheduling were
unchanged. In this chapter, we provide a new allocation, assignment, and scheduling
strategy specifically aimed at reducing interconnect power. We target ASIC imple-
mentations of datapath-intensive, real-time DSP applications. The main idea behind
the approach is to exploit the regularity inherent in the algorithm and derive a sim-
plified interconnect structure. This leads to power savings in the buses, multiplexors,
and buffers.

The chapter is organized as follows. In the next two sections, we define the regularity
of an algorithm and elaborate on its relevance to interconnect power reduction.
Section 8.3 presents related work in regularity exploitation. Section 8.4 gives an over-
view of our approach and Sections 8.5 and 8.6 detail our synthesis strategies. The

results are presented in Section 8.7.

8.1. Algorithm regularity

Regularity in an algorithm refers to the repeated occurrence of computational pat-
terns in it. Instances of regularity in two common DSP algorithms are presented in
Figure 8.1 — Figure 8.1a shows repeating shift-add patterns in the error-prediction
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Figure 8.1. Instances of regularity: (a) error prediction filter, (b) FIR filter.

filter and Figure 8.1b shows multiply-add patterns in an FIR filter. An algorithm is
said to be “more” or “less” regular depending on the degree of repetition of common

patterns in it.

Recurring computational patterns may be either large-grained or fine-grained. These
differ in their ease of detection by the user. Repetitions of large grain computation
patterns are easily evident to the user and are usually embodied in the code as sub-
routines or loops. Fine-grained patterns includes smaller patterns of computations
spread out through the entire program and are usually not easily evident to the user.
The techniques presented here focus on automatically detecting and preserving fine-
grained regularity in a given application. We rely on the user to identify the larger

patterns and preserve the associated regularity during synthesis.
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8.2. The impact of exploiting regularity
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Figure 8.2. Preserving regularity leads to a simplified interconnect
structure: (a) regular assignment, (b) non-regular assignment.

Exploiting regularity refers to preserving the repeated patterns of computation in the
assignment of operations to hardware. This entails detecting repetitive patterns in
the algorithm and mapping them such that corresponding nodes in different instances
of the pattern are mapped to the same hardware unit. We refer to such an assignment
as a regular assignment. In a regularly assigned set of pattern instances, correspond-
ing data transfers have the same source and destination hardware units and can use
the same connection without the need of extra multiplexors. As a result, the fan-outs
from the output ports of the hardware units and fan-ins to their input ports are
decreased and multiplexors and tristate buffers are reduced. The overall effect is a
simplified interconnect structure.
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Figure 8.2 shows two different assignments for a portion of an algorithm and the cor-
responding hardware netlists. The first assignment is more regular since all instances
of a given pattern (add-multiply or add-shift) are assigned to the same pair of hard-
ware units. The assignment of Figure 8.2b, on the other hand, does not preserve reg-
ularity since additions of different add-multiply patterns are assigned to different
adders. Upon examining the corresponding hardware implementations, we see that
while in the first case, each adder output data only to one hardware unit and each bus
has a single fan-out, in the second case, the adders outputs have two fan-outs each.
Also, the second scheme requires multiplexors while the first one does not. Thus, a

regular assignment leads to less fan-outs and fan-ins and lower multiplexing over-
head.

We illustrate the above ideas with the second-order error-prediction filter example
shown in Figure 8.3a. Two different assignments, each using 2 adders (A;, A,) and 2
shifters (S, S2), are shown in Figures 8.3a and 8.3b. The different adders and shifters
in the circuit are distinguished in the figure by their shadings. In Figure 8.3a, the
shifter S; always outputs data to the adder A; and S, outputs to A, while in
Figure 8.3b each shifter outputs data to both adders. The tables in the figure summa-
rize the fan-outs and fan-ins of the output and input ports, respectively, for the four
hardware units. By using a regular assignment, the total fan-outs from all output
ports is reduced from 9 to 7 (Figure 8.3c). If the length of a bus is assumed to be pro-
portional to its fan-out, the total bus-capacitance switched is reduced by a factor of 9/
7 since each output bus is used twice. Further the total fan-ins to input ports of the
units is also reduced (Figure 8.3d), decreasing the number of multiplexors from 5 to

2. Multiplexor accesses are reduced by a factor of 5/2 since each multiplexor is also

used twice.

Power reduction in a regular implementation stems from two factors. Due to reduced

fan-outs, the interconnect lines can be kept short leading to lower physical capaci-
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Figure 8.3. Two possible assignments and the corresponding fan-ins and fan-outs
for the second-order error prediction filter: (a) more regular assignment, (b) less
regular assignment, (c) fan-outs of hardware units, (d) fan-ins of hardware units.




tances. Notice that the reduced fan-out buses correspond to the data transfers in the
recurring patterns and are therefore used repeatedly. This gives the desirable combi-
nation of reduced capacitance on the more active buses. Secondly, a regular imple-

mentation also has lower multiplexing overhead and dissipates less power in

multiplexors.

Notice that the power improvements may be associated with increased functional
units due to the lower multiplexing. Thus, a regular assignment trades-off hardware
resources to obtain a simpler interconnect structure, increasing the functional unit
area while saving power and area associated with the interconnect elements. The
associated area costs must be carefully monitored, since the larger area may increase

bus lengths and bus power.

Itis interesting to note that the regularity in an algorithm can be increased by exploit-
ing the mathematical properties of its operations. For example, operation commuta-
tivity can be used to switch the order of operands of an operation to match other
computational patterns in the graph. Associativity can be used in the same way. In
this thesis, we consider the structure of the graph as a given, and present techniques
for exploiting the regularity inherent in it. Techniques for changing the graph struc-
ture to increase its regularity are not considered, although they would form a valuable

avenue for research.

In the following sections, we review related research in regularity exploitation, and
present a synthesis strategy that reduces interconnect power by applying this con-
cept.

8.3. Related work

In high-level synthesis, the regularity issue has been addressed for several different
purposes including partitioning, hierarchical scheduling, and instruction set selec-
tion. Rao and Kurdahi used regularity extraction to partition a digital system in order
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to minimize the overall design effort [104]. The idea was to reduce the design effort by
maximally “cloning” a few repeating computational patterns or templates. At the
same time, they also address the problem of reducing the critical path through inter-
pattern communications in the overall design. Later they used regularity of the
extracted partitions for hierarchical scheduling and allocation using the area-time
characteristics of the component templates [105].

In [24], Corazao et al. used templates from a pre-defined library to match computation
patterns in the algorithm for instruction set selection to maximize speed. Geurts et al.
captured the concept of regularity for the synthesis of application-specific units
(ASUs) for high-performance applications [37]. In their work, the algorithm is parti-
tioned into clusters of operations and clusters that have similar structure (similar
computation patterns) are implemented on the same ASU.

Some research works proposed for multiplexor minimization are also based on con-
cepts that can easily be classified under regularity extraction even though the original
work did not specifically state this. In particular, Park presented a method to reduce
interconnect by sharing paths in the input algorithm [90]. This can be looked at as
exploiting regularity where the patterns are limited to be paths instead of arbitrary

patterns.

A quantitative measure of the regularity of a given algorithm is proposed in [41]. Reg-
ularity extraction is also studied in other fields such as code generation [1] and tech-

nology mapping [55].

Although regularity has been studied from a variety of aspects in high-level synthesis
and other areas, no work has been done to exploit it during assignment for low power.
We study the power aspects for the first time; though we do not directly use any of the
techniques mentioned above, it would be interesting to study whether any of them can
be modified to address the power issue and how it affects the results.
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8.4. Overall strategy for exploiting regularity

This section explains our overall approach and provides the necessary background.
We first present the targeted architecture model. Section 8.4.2 discusses the main
issues and problems in regularity exploitation, Section 8.4.3 explains some terminol-
ogy, and Section 8.4.4 presents the basic ideas behind our approach.

8.4.1. Architecture model

In this chapter, the multiplexor-based interconnect model is used instead of the gen-
eral model with both multiplexors and tristate buffers (refer Section 1.4.4). While in
the general case, the complexity of the overall interconnect is measured by the sum of
the tristate buffers and multiplexors, in the multiplexor-based model, it is measured
by the total multiplexors which allows us to study the improvements more easily.
Note that the generalized interconnect model can be generated by trading-off multi-
plexors for tristate buffers; therefore, the improvements reported here for multiplex-
ors would simply be divided over multiplexors and tristate buffers in the general case.

8.4.2. Regularity exploitation: issues

Finding a good regular mapping for a given algorithm is complicated by several fac-
tors. Detecting regularity involves finding common computational patterns in a given
graph and detecting all matches for each pattern, both of which are difficult problems.
Enumerating all the patterns in a graph has exponential complexity and finding all
matches of a given pattern in a graph has subgraph isomorphism as a sub-problem
which is known to be NP-complete [35). Therefore it is not possible to consider and
match all possible patterns; only few of the patterns can be considered. The impor-
tance of a pattern depends on its matchings since the power saving from its use in
assignment depends on its occurrence in a specific design. Thus, the pattern selection

and matching processes are closely inter-related.
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Clearly, detecting and matching arbitrary patterns is infeasible. For a practical
implementation, therefore, the search space must be limited to only a subset of pat-
terns. In our methodology, we detect and match only two-node patterns. Each pattern
in simply an edge in the graph with a source node and destination node, and the total
number of patterns is simply the number of edges in the graph. Therefore the com-
plexity of both the pattern detection and matching tasks is linear in the number of
edges.

Given a set of computational patterns and their matches in the algorithm, the next
step is to decide the patterns and matches to be used in the assignment. Since a node
may be part of several different patterns, the best match (or matches) for it depends
on the objective function, the overall throughput constraints, and the associated area
costs, all of which must be carefully evaluated. We address these issues in detail in

the following sections.

8.4.3. Terminology

As mentioned in the last section, we consider only two-node patterns. Each two-node
pattern is called an E-instance, so named since it corresponds an edge of the graph.
E-instances are classified into types, called E-templates, based on the type of the
source node, the type of the destination node, and the input port of the destination to
which the source is attached. For example, an E-template may be composed of an
addition connected to the left input of a subtract operation (which is different from an
E-template composed of an addition connected to the right input of a subtraction). The
coverage of an E-template is defined as the total E-instances of that type divided by
the total number of edges in the graph. This corresponds to the fraction of the graph
that is covered by that E-template and hence represents its frequency of recurrence.
Since each node may be part of more than one E-template, an E-list of a node is

defined as the list of E-templates for which the node is a source or destination.
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E-template Coverage
E; (add — add.right) 4/26
E; (mult — add.left) 4/26
E; (mult — add.right) 2/26
E,4 (add — add.left) 3/26
(b)

Figure 8.4. Some E-templates in a fourth-order cascade filter and their coverages.

Figure 8.4a shows E-instances of different E-template types in a fourth-order cascade
filter; the edges to the right input ports of each operation are indicated with a dot. The
coverages of the E-templates are shown in Figure 8.4b. For example, the E-template

E,, from an add operation to the right input of an add operation, covers 4 out of the

26 edges in the graph.

8.4.4. The core approach

The main idea behind our assignment and allocation scheme is to assign E-templates
as a whole in order to preserve the two-node regularity of the algorithm. Thus the data

transfers associated with E-instances assigned to the same pair of hardware units can
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use the same bus without any extra multiplexors or buffers, and without increasing

the fan-out of the bus.

CDFG
d

Scheduling

:

Operator assignment
and allocation of hardware

|

Bus assignment
Register assignment

CDFG
Figure 8.5. Synthesis flow.

The overall flow of our synthesis system is shown in Figure 8.5. Since the schedule is
determined first, it has a large impact on the amount of regularity that can be cap-
tured during assignment. Therefore, a new scheduling algorithm which minimizes
the cost of the E-templates along with the overall area is also proposed. Its aim is to
derive a schedule that enables a regular assignment of operations to hardware.
Sections 8.5 and 8.6 present the details of our allocation, assignment, and scheduling
techniques, respectively.

8.5. E-template based assignment and allocation

The input to the assignment tool is the dataflow graph whose operations have been
scheduled to occur in specific time steps or clock cycles in the overall sample period
(refer Figure 8.5). The goal of the assignment task is to map each operation onto spe-

cific hardware resources such that nodes that are scheduled in the same time step
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cannot be assigned to the same hardware unit. The main idea behind our assignment
strategy is to constrain the assignment process so that data transfers of the same
source and destination types are mapped onto the same bus with minimum multiplex-
ing or buffering at their sources or destinations. Resources are allocated based on the
needs of the assignment scheme. We begin by briefly explaining a related assignment

approach based on vertex coloring.

Vertex coloring and clique partitioning techniques have been widely used in the high-
level synthesis literature for assignment tasks [103, 116). In the vertex-coloring based
approach the hardware sharing conflicts imposed by the schedule are captured in a
conflict graph where the a node represents a graph operation and an edge between a
pair of nodes represents a conflict due to which they cannot be assigned to the same
hardware units. Conflicts between a pair of nodes may be due to two reasons: either
the nodes require different type of hardware, or they have overlapping schedules. A
minimum vertex-coloring of the conflict graph gives a valid assignment of the opera-

tions to hardware where each color represents a specific hardware unit.

While the vertex-coloring approach minimizes the number of hardware units used in
the implementation, it ignores the regularity of the graph. In order to specifically
exploit regularity, we propose a scheme that assigns E-instances as a whole instead
of assigning the nodes individually. Analogous to the vertex-coloring approach,
restrictions on the assignment are represented in conflict graphs. However, since a
node can be part of several E-instances, all E-instances cannot be assigned at the
same time. The coloring is done in stages; in each stage, the most promising E-tem-

plate is selected and the conflict graph of its E-instances is considered for assignment.

A coloring of this conflict graph would give an assignment for all the E-instances of
that E-template such that the minimum number of hardware-unit pairs are used.
However this would limit hardware-sharing opportunities for the E-instances of other

E-templates that share some of the nodes. Therefore, instead of a complete vertex col-
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oring on the template’s conflict graph, only the maximum independent set (MIS) is
chosen for assignment to the same pair of hardware units. This scheme allows the rest
of the E-instances to be compared with E-instances of other E-templates so that the
next best E-template can be selected for assignment in the next iteration.

The maximum independent set approach concentrates on sharing between a large
number of similar patterns rather than reducing the overall hardware used. This is
because the maximum gains come from reusing an interconnect, once instantiated, as
much as possible. When only a few instances of each template remain, they are
assigned using conventional vertex coloring. This results in designs in which a few of
the buses with low fan-outs are used very often while other buses that may have much
higher fan-outs are used less. Notice that the goal is not to minimize the overall fan-

outs (interconnect area), but to reduce fan-outs of only the highly used connections.

In Section 8.5.1 we redefine the concept of the conflict graph in this context. A tech-
nique to find its maximum independent set is presented in Section 8.5.2 and the
assignment and allocation algorithm is described in detail in Section 8.5.3. Finally,
Section 8.5.5 discusses some of the characteristics of the suggested technique.

8.5.1. Conflict graphs

At any stage in the assignment algorithm, the conflict graph, C;, for E-template E},
is derived in the following way. Each unassigned E-instance (for which at least one
node, source or destination, is unassigned) of type E}, is represented by a node in the
conflict graph (conflict-node). Each edge in the conflict graph (cénﬂict-edge) repre-
sents a conflict between corresponding E-instances due to which they cannot be

assigned to the same pair of hardware units.

Conflicts between E-instances are derived from conflicts between their constituent
nodes, i.e., if there is a conflict between their source nodes or destination nodes. Con-

flicts between two nodes may be due to the following four reasons.
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Figure 8.6. The different conflict types: (a) scheduling conflict, (b) register-
bandwidth conflict, (c) assignment conflict, (d) assign-schedule conflict.

Scheduling conflict

A scheduling conflict occurs between two nodes if there is an overlap in the time

slots in which they are scheduled. Figure 8.6a shows a scheduling conflict
between nodes o and p.

Register-bandwidth conflict

Due to the distributed, single-ported nature of register files (refer Section 1.4.4)
in our hardware model, there is a register-bandwidth conflict between two nodes
if the producers of their left inputs (or right inputs) write their results in the
same time step. In Figure 8.6b there is a register bandwidth conflict between
nodes o and B since node y writes into the right register file of o at the same time
as § writes into the right register file of node p.
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Assignment conflict

An assignment conflict occurs if the nodes are assigned to different functional
units. In Figure 8.6¢ there is an assignment conflict between nodes o. and P since
they are assigned to different adders (A; and A).

Assign-schedule conflict

An assign-schedule conflict arises between two nodes if one of them is already
assigned to a hardware resource and the other has a scheduling or register-
bandwidth conflict with that hardware resource. A node is said to have a sched-
uling or register-bandwidth conflict with a hardware resource if it has a schedul-
ing or register bandwidth conflict with any of the nodes that are already
assigned to that resource. In Figure 8.6d, there is a assign-schedule conflict
between nodes o and p since p has a scheduling conflict with hardware resource
that o is assigned to (A;).

Notice that conflict edges are introduced between two E-instances only if there is a
conflict between their sources or between their destination nodes. A special case
occurs when the source and destination nodes of an E-template are the same type,
since they can share the same hardware. In this case, two conflict graphs are gener-
ated — one that does not allow sharing between sources and destinations and one that
does. In the first case, conflicts are checked only between the sources of two E-
instances or between their destinations. In the latter case, additional edges are intro-
duced to represent conflicts between the source node of one E-instance and the desti-
nation node of the other. These two conflict graphs are compared and the one with
higher MIS cardinality is selected.

8.6.2. Maximum independent set of the conflict graph
The maximum independent set, or MIS, of a graph is defined as the largest subset of

nodes of the graph, such that are no edges between any pair of nodes in that subset

[35]. For the conflict graph defined above, the MIS is the maximum set of E-instances
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with no conflict edges between them and therefore represents the largest set of E-

instances that can be assigned to the same pair of hardware units.

The commonality measure

Before explaining the algorithm for selecting the maximum independent set, we intro-
duce the concept of the commonality of a particular E-instance I, with respect to a set
of E-instances S. This is a measure of the number of common E-templates between

the nodes of I and those of the elements of S.

Let Iy ,urce be the source node of E-instance I, E-list(I,,,, ) be its E-list, and
Nsource (S, Ep) be the number of instances in S that have the E-template, E;, in the E-

list of their source nodes. The source commonality of I with respect to S,

Commiggyree (I, S), is defined as:

Comm I,8) =

source

Nsource (S, Ek) (Eq. 8.1)
E,e Elist(1,

ource

Similarly, let Iz,5; be the destination node of E-instance I, E-list(I ;) be its E-list, and
Ngest (S, Ep) be the number of instances in S that have the E-template, Ej, in the E-

list of their destination nodes. The destination commonality of I with respect to S,

Commg,s; (1, S), is defined as:

Comm,,(I,8) = Y N, (S.E,) (Eq. 8.2)

E,e Elist(,,,)
The source (destination) commonality of I with respect to S is a measure of the
common E-templates between the sources (destinations) of I and those of the elements
of S. The commonality of an E-instance with respect to a set of E-instances is the sum

of its source and destination commonalities with respect to that set.
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MIS algorithm

While finding the optimum solution to the maximum independent set problem is NP-
complete, several greedy heuristics have been proposed for it. In particular, the min-
imum-degree greedy heuristic is often used and has been shown to work well for

bounded degree graphs. In fact, it has been proved that the results are within factors
of (2d+3)/5 and (d +1) /2 of the optimal, where d is average degree of the nodes

in the graph, [44, 49], and within A-1 where A is the maximum degree of the graph
[114].

Fortunately, the graphs encountered in our targeted applications typically have nodes
with limited fan-ins (up to three) and fan-outs (up to three). Therefore, we use the
minimum-degree greedy algorithm. This algorithm iteratively selects the conflict-
node with the least number of neighbors, adds it to the MIS and removes the node and
its neighbors from the conflict graph. In the case of a tie, we select conflict-nodes with
the highest commonality with respect to the conflict-nodes already selected. This
favors the selection of a maximum independent set with E-instances whose nodes are
also parts of other common E-templates. Therefore, they can be chosen for hardware
sharing as part of those other E-templates in future iterations of the algorithm. This
adds a degree of look-ahead to the algorithm that helps in preserving larger patterns.

This concept is illustrated through the example of Figure 8.7. Assume that the add-
multiply template shown is being considered for assignment and instances C and D
have a scheduling conflict between them. Assume further that E-instances A and B
are already selected in the MIS and there is a tie between C and D since both have the
same number of neighbors. The source commonality of C with respect to the set {A, B}
is 4, while that of D with respect to {A, B} is only 2, and therefore C is selected in the
MIS. This choice of the MIS maximizes the chances of further sharing of E-instance
in future iterations since all the add-add instances and three of the four shift-add
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Figure 8.7. Using the commonality measure as a look-ahead technique.

instances can be shared later. The commonality measure allows the scheme to “look

ahead” and vexploit larger recurring patterns to a certain extent.

8.5.3. E-template based assignment strategy

Initially, all the E-templates in the given graph are detected and their coverages cal-
culated. The overall assignment and allocation scheme is divided into two phases. In
the first phase, E-instances are assigned to pairs of hardware units, while in the

second phase, nodes are assigned independently using vertex coloring.

The assignment of E-instances is done iteratively. In each iteration the most promis-
ing E-template is selected based on its coverage and the MIS cardinality of its conflict
graph. The E-instances corresponding to the maximum independent set of its conflict
graph are assigned and then removed from the corresponding E-template list and the
coverage of the E-template is recalculated. Each of these steps are explained below. A
pseudo code for the overall assignment and allocation algorithm is given in Figure 8.8.

Selection of best E-template
In each iteration, the E-template with the highest coverage is selected for
assignment. In the case of a tie, conflict graphs of the competing E-templates are
created, their maximum independent sets are derived, and the E-template with
the independent set of higher cardinality is selected. Although the MIS cardinal-
ity determines the number of E-instances that can be simultaneously assigned to
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ETemplat_list = Make_ETemplate_list (Original_graph)
Calculate_coverage (ETemplate_list)
Remove_ETemplates_with_coverage_below_threshold(ETemplate_list)
Best_ETemplate = Select_best_ETemplate(ETemplate_list)
while (Best_ETemplate != NULL) {
Conflict_graph = Create_conflict_graph(Best_ETemplate -> List)
MIS_list = Max_independent_set (Conflict_graph)
Allocate_and_assign_list (MIS_list)
Update_ETemplates (ETemplate_list)
Calculate_coverage (ETemplate_list)
Remove_ETemplates_with_coverage_below_threshold(ETemplate_list)
Best_template = Select_best_ETemplate(ETemplate_list)
}
Residual_list = Make_list_of_unassigned_nodes(Original_graph)
Vertex_coloring_based_assignment (Residual_list)

Figure 8.8. Pseudo-code for the overall assignment and allocation algorithm.

the same pair of hardware units, computing it for all E-templates is time con-
suming. Hence, we select E-templates based on the coverage, and use MIS cardi-
nality only to resolve ties.

In this step, the conflict graph of the selected E-template is created and the E-
instances corresponding to its maximum independent set are assigned to a pair
of hardware units in the following way: the sources of the E-instances are
assigned first. If any of the source nodes are already assigned, all others are
assigned to the same unit. Otherwise, a new hardware unit is allocated and

assigned to all the source nodes. The destination nodes are then assigned in the
same way.

Notice that it is not possible for the source nodes (or the destination nodes) of a
pair of E-instances in the MIS to be already assigned to different hardware units
since this would have caused an assignment conflict between them. Also, if only
one of them is assigned to a unit, the other node can also be assigned to the same

unit since there are no assign-schedule conflicts between them.
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Updating remaining E-templates
After the instance assignment step, E-instances whose source and destination

nodes are assigned, are removed and the coverages of the remaining E-templates
is re-calculated.

As more nodes in the original graph are assigned, the coverage of each of the remain-
ing E-templates reduces, decreasing the inherent regularity in the remaining graph
and reducing the advantages of exploiting it. Also, more assignment and assign-
schedule conflicts are created, reducing the hardware sharing between pattern
instances and introducing significant area overhead. Thus, in each iteration, the
advantages of exploiting regularity reduce while the associated overhead grows.
Therefore, when the coverages of all E-templates falls below a certain threshold,
called the coverage-threshold, the E-template based assignment phase is terminated
and a vertex-coloring based scheme is used for assignment of the remaining nodes.
For implementation efficiency, E-templates whose coverages fall below the coverage-
threshold are eliminated in each iteration, reducing the search space in the future
iterations of the algorithm. The impact of the coverage threshold is studied in the
results section.

8.5.4. Example

In this section we demonstrate the operation of the algorithm on a small example.
Consider the reverse symmetric FIR filter shown in Figure 8.9a. The numbers in
brackets next to the node names show the time step that the node is scheduled in.

Figure 8.9b shows the E-templates and their coverages. The coverage threshold is set
at 1/8. The iterations in the first phase of the algorithm are detailed below.

Iteration 1

E-template E, is selected for assignment and its conflict graphs are shown in
Figure 8.9c; there is a scheduling conflict between the nodes b and e. Since the
source and destination nodes are of the same type, two conflict graphs are cre-
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Figure 8.9. Effect of E-template based assignment on a fifth-order reverse-
symmetric FIR filter: (a) E-templates assigned in each iteration, (b) E-templates
and their coverages, (c) conflict graphs of E-template E; considered in iteration 1,
allowing (above) and not allowing (below) hardware sharing between sources and

destinations, (d) conflict graph of templates E, (above) and Eg (below) considered in
iteration 2.
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ated — one that allows hardware sharing between the sources and destinations
(top figure) and one that does not (bottom figure). Since both the conflict graphs
have the same MIS cardinality (two), the one which allows source-destination
sharing is chosen due to lower area. The selected MIS of E-instances is a-b, b-c,
c-d. A transfer unit, T, is allocated to implement the delay and the source
nodes, a, b, and ¢ are assigned to it. As a result, some destination nodes get
assigned to T; and therefore, the rest are also assigned it.

The assigned E-instances are removed from the graph, after which the coverage
of Eq falls below the threshold and it is eliminated from the E-template list.

Iteration 2

E-templates Ey (c-h, d-g, e-f) and Eg (f-i, g-j, h-k) have the highest coverage and
their MIS cardinalities are 1 (assignment conflicts between ¢ & e, and d & e; and
scheduling conflict between g & %) and 2 (scheduling conflict between g &h),
respectively. The conflict graphs of these two E-templates is shown in
Figure 8.9d. Eg is selected due to its higher MIS cardinality. Since the common-
ality measure of g-j is larger than A-k (g-j has more templates in common with
the selected set f-i), the first two instances are selected and their sources and
destinations are assigned to adder A; and the multiplier M;, respectively. The
coverages of unassigned instances of E;, Ey, and E5 drop below the threshold
and they are eliminated.

Iteration 3

E-template E, is selected and both its instances are assigned to the multiplier,
M, and adder, A,, pair. Note that the assignment of both instances of E,4 to the
same pair of hardware units is made possible due to the consideration of com-

monality in the previous iteration.

At this point, all E-templates are eliminated and the remaining nodes are assigned
using vertex coloring. The final assignment obtained is shown in Figure 8.10a.
Figure 8.10b shows a different assignment of operations that does not consider regu-
larity. Comparing Figures 8.10a and 8.10b, it is seen that the total number of fan-outs
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Figure 8.10. Final assignments obtained using: (a) E-template based
technique, (b) vertex coloring.

is reduced from 14 to 10 by exploiting regularity — a 30% reduction. It should be noted
that this is a small example with limited regularity and is used for demonstration pur-
poses only.

8.5.5. Discussion

Although the E-template based approach has its limitations since it ignores larger
recurring computational patterns and limits the amount of reguiarity exploited, is
also has some advantages.

® While detecting and matching arbitrary patterns is NP-complete, these tasks
take linear time for E-templates.

176



¢ Even if large patterns are detected, it may not be possible to map all the corre-
sponding nodes of the pattern instances to unique hardware units either due to
large area penalties involved or due to restrictions imposed by the schedule.

® The repetition of E-templates is likely to be higher than that of larger patterns
and more reuse of the same interconnect is possible.

® The look-ahead scheme based on the commonality measure attempts the match
larger patterns in the graph.

8.6. E-template based scheduling

In the assignment and allocation scheme presented in the previous section, it was
assumed that the CDFG is already scheduled. Since the schedule is performed before
assignment, it can greatly impact the amount of regularity that can be exploited
during the assignment phase. This section studies this impact and proposes a modi-
fied scheduling approach that favors a regular assignment.

8.6.1. Impact of the schedule on assignment regularity

The impact of the schedule on the regularity exploitation is illustrated in this section
using the force-directed scheduling technique on an example proposed by Paulin and
Knight [91]. The technique is based on the concept of a distribution graph (DG) which
plots the expected number of resources required as a function of time. Initially, each
operation is assumed to have equal probability of being scheduled in any time-step
between its as-soon-as-possible (ASAP) and as-late-as-possible (ALAP) times with the
sum of the brobabi]ities being one. If an operation takes longer than one clock cycle,
the ASAP and ALAP times correspond to its starting times (for details on how this
case is addressed, the reader is referred to [91]). In any time-step, the height of the
DG is a measure of the expected number of operators needed. The interval between
the ASAP and ALAP times, or time frame, of each operation represents the time steps
in which the operation can be scheduled. The main idea is to schedule each operation

into a time slot such that the maximum height of the DG is minimized. The maximum

177

e



height of the final DG (after scheduling) corresponds to the number of resources
required to implement the algorithm with the specified schedule.

Each operation, i, has a force, F(i, j), associated with each time step, j, in its time
frame (a, b), that is defined as follows:

F@,j = zb" DG, +ADG, (Eq. 8.3)
k=a
where DGy, is the height of the DG at time step %, and ADG}, is the change in the height
of the DG at time step % due to the assignment of operation i at time stepj. This force
represents the effect of scheduling it onto that time step; the lower the value of the
force, the better it is to schedule it in the corresponding time step.

Force-directed scheduling proceeds interactively — evaluating the force associated
with scheduling each node in all its possible time-steps and scheduling the node and
time-step pair with the least force, in each iteration. Several enhancements to the
basic force-directed scheduling algorithm have been proposed. We use the gradual
time-frame reduction technique proposed by Verhaegh et al. [129] in our implementa-

tion.

Consider the impact of the force-directed technique on an example with two E-tem-
plates, E; and E,, with four and two instances, respectively, as shown in Figure 8.11a.
From the ASAP and ALAP times (marked next to each node), it is clear that it is pos-
sible to map the multiply operations of all multiply-add E-instances (E,) to the same
multiplier and similarly those of the shift-multiply E-instances (E5). The initial dis-
tribution graph for multiplications (referred to in this work as functional-unit distri-
bution-graph or FDG) is shown in Figure 8.11b and a possible schedule from the force-
directed algorithm is shown in Figure 8.11c.
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The most important point to notice is that nodes b and ¢ are scheduled in the same
time-slot and cannot be assigned to the same hardware resource. Given this schedule,
it is not possible to map all instances of the multiply-add template onto the same pair
of hardware units. The schedule thus obviates the regular assignment that was ini-
tially possible for the design based on the timing constraints alone.

8.6.2. E-template-based scheduling technique

As shown in this example, a force-directed schedule may preclude a regular assign-
ment since it only minimizes the functional units required and ignores the cost of con-
nections. We therefore modify the cost function to include connection costs. We do this

by introducing a new distribution graph called the connection distribution-graph or
CDG.

Each E-template is associated with two CDGs — one for its sources and one for its des-
tinations. For a given E-template, Ej, the source-CDG is derived from the time distri-
butions of the source nodes of all instances of the E-template, while the destination-
CDG is derived from time distributions of the destination nodes. These distribution

graphs together represent the cost of the interconnect between the source and desti-

nation nodes.

The total force on any node is the weighted sum of the forces from the FDG of the rel-
evant functional unit, the source-CDGs of all the E-templates for which this node is
the source node and the destination-CDGs of all the E-templates for which this node
is the destination node. The weight associated with the FDG is proportional to the cost
of the functional unit while the weight of each CDG is proportional to the coverage of
the corresponding E-template. This weighting scheme gives preference to connections
that are repeated more often. This modified cost function produces a schedule that
favors the assignment of E-instances of the same E-template to the same pair of hard-
ware units while also minimizing the total area. Since scheduling sources (or destina-

tions) of E-instances of the same type in the same time-slot results in increased height
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Figure 8.11. The effect of using connection distribution graphs: (a) instances of two
E-templates with their ASAP and ALAP times, (b) initial FDG for multiply
operations, (c) final distribution graph using only FDGs, (d) initial source-CDGs of
E-template Ey, (e) initial destination-CDG of E-template E,, (f) Final distribution
graphs using FDGs and CDGs.
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of the corresponding source-CDG (or destination-CDG), the scheduler tends to avoid
this.

Consider the example of Figure 8.11 again. The source-CDG of E; and the destination-
CDG of E; are shown in Figures 8.11d and 8.11e, respectively, and the final distribu-
tion graph that minimizes the weighted sum of the FDG and the two CDGs is shown
in Figure 8.11f. In this schedule, since the scheduler tries to minimize the height of
the CDGs along with that of the FDG, multiply operations of all multiply-add E-
instances are scheduled at different time slots and therefore can be mapped onto the
same hardware unit. Similarly the multiply operations of all shift-multiply E-

instances can be mapped to the same multiplier.

In this work, we have only proposed modifications to the force-directed scheduling
scheme, but it is also possible to modify other scheduling schemes to consider cost of
E-template based connections. This may be done by incorporating the cost of the E-
templates to the cost function used the scheduling algorithm.

8.7. Results

In this section we present the results of our synthesis approach. A set of 15 examples,
consisting of different structures of FIR filters, IIR filters, and transforms were
selected for experimentation. All the examples were evaluated for maximum through-
put implementations (total time available equal to critical path) with no transforma-
tions. Overall power estimates were obtained from the SPA architectural power
analysis tool. The bus power is computed using the model presented in 6.4.3 for fan-
out optimized designs. In order to separately evaluate the effect of the fan-out and
multiplexors optimizations, we use white noise capacitance models. This excludes any

effects that may arise from changes in activity.

A series of experiments studying the different aspects of the E-template based synthe-
sis approach are described. First the impact of varying the coverage threshold is stud-
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ied in Section 8.7.1. Then the quality of results obtained from the E-template based
synthesis methodology is compared with two other scheduling/assignment paradigms
— the Hyper synthesis scheme and a force-directed scheduling followed by vertex col-
oring based assignment (FDS-VC). Section 8.7.2 analyzes the power improvements
over these two paradigms and Section 8.7.3 presents the effects on area.

8.7.1. Effect of varying the coverage threshold
The graphs in Figure 8.12 show the effect of the coverage threshold on the power con-

sumption of buses and multiplexors. The values were obtained on our benchmark set
and normalized with respect to the base case where our technique is not used (thresh-
old = 100%). Recall that E-instances are assigned as a whole until their coverages
drop below the coverage threshold and the remainder of the graph is assigned using
vertex coloring. It is seen that in most cases lowering the threshold (using E-template
based assignment for a longer time) results in better solutions since lower thresholds

enable more extensive exploitation of regularity.

In some cases, lower thresholds are seen to have an adverse effect on the bus power
(in example 2, a 20% threshold gives the lowest bus power). This effect is due to the
area overhead associated with the technique which can result in longer (more capac-
itive) buses and offset the gains from fan-out reduction. The multiplexors power is
seen to monotonically reduce with reducing thresholds due to reduced hardware shar-
ing. We found that further lowering the threshold changed the results of only a few

examples — 2 improved and 3 worsened.

In general, the coverage threshold has a large impact on the power consumption. Low-
ering the coverage threshold reduces overall power dissipation up to a certain point
after which the power consumption may increase. The optimum threshold is different

for each example and needs to be determined separately.
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Figure 8.12. The effect of coverage threshold on the power consumption of various
components: (a) buses, (b) multiplexors.

8.7.2. Power improvements
As explained before, power improvements in the new approach stem from a reduction

in the fan-outs of the most frequently used buses and a decrease in a multiplexing

183

[{]

ta



Table 8.1. Bus fan-outs and multiplexor accesses obtained from the Hyper, FDS-VC,
and E-template based synthesis approaches.

I Hyper FDS-VC I E-template based approach
Overall Mux Overall Mux [ Coverage | Overall Mux

fan-outs | accesses | fan-outs | accesses | threshold | fan-outs | accesses
paralleld | 46 | 12 38 63 1% 32 22
df 33 55 30 57 20% 28 48
fitll 229 416 151 605 1% 133 275
fit8 49 61 52 651 1% 49 20
firD 91 270 §0 190 1% 36 100
firH 70 139 41 123 1% 31 61
gm 37 147 30 210 1% 26 125
dct 97 106 i 102 0.5% 71 55
wavelet 28 96 20 80 20% 18 54
wdf9 30 61 26 47 10% 25 15
DSfir24 84 199 49 161 0.5% 36 110
DSLfir50 149 608 75 473 1% 47 157
DSfir55Mb 160 665 76 508 0.5% 51 280
cascade32 105 785 b2 541 1% 50 394
parallel24 247 137 193 234 1% 162 159

overhead. Table 8.1 shows the total fan-outs and the multiplexor accesses in the three
different implementation paradigms. The coverage thresholds used in the E-template
based approach for each example are also given. The percentage reductions in the
overall fan-outs and in multiplexor accesses are shown in the graphs of Figure 8.13.
The total number of fan-outs from each unit decrease by 40% and 16% on average with
respect to the Hyper and FDS-VC schemes, respectively. Notice that reduction of the
total fan-outs is not the direct goal of our technique since we try to reduce the fan-out
only on buses that are repeatedly used. However, a reduction in total fan-outs is seen
as a result of reduced fan-outs on several of the buses. The number of multiplexor
accesses is also drastically reduced (46% and 45% reduction on average compared to
the Hyper and FDS-VC systems, respectively).
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Figure 813. Percentage reductions with respect the Hyper and FDS-VC
schemes: (a) total fan-outs, (b) multiplexor accesses.

Table 8.2 shows the total bus and multiplexor power obtained on these examples
using the three different synthesis paradigms. The graphs in Figure 8.14 show the
percentage improvements in bus, multiplexor, and total power compared to the Hyper
and the FDS-VC implementations. It is seen that the new approach performs better
that the other two in almost all cases. As compared to Hyper, an average of 47% and
49% power savings were obtained for buses and multiplexzors, respectively, while com-
pared to FDS-VC, the average reductions in these components were 39% and 49%.
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Table 8.2. Bus, multiplexor, and total power consumptions (mW) for three different
implementation approaches — Hyper, FDS-VC, and E-template based synthesis.

E-template based
Hyper I FDS-VC approach

Mux Mux | Total Bus Mux | Total

[ paralleld | 633 | 106 | 07 | 58.0 |
af 320 | 25 | 1209 ] 303 | 29 | 181 | 228 | 25 | 1104
11 | 256.8 | 175 | 442.4 | 247.3 | 219 | 397.1 | 1618 | 1.7 | 3092
8 220 | 42 | 632 | 216 | 48 | 669 | 157 | 16 | 533

firD 32.9 5.9 90.0 234 4.1 70.0 ns3 2.0 65.6

firH 33.7 5.5 94.3 25.2 4.7 78.3 14.8 19 65.0

gm 9.6 2.0 36.3 8.0 24 36.3 6.6 13 32.4

det 21.3 3.3 68.9 20.5 3.6 66.4 15.3 17 61.1

wavelet 144 2.9 68.0 11.9 18 63.0 8.8 12 59.2

wdf9 27.7 4.9 92.7 23.7 3.8 874 19.2 11 59.2

DSfir24 120.1 | 10.7 | 2453 | 775 8.6 1872 | 434 5.1 148.7

DSLfir50 § 77.6 133 | 175.7 | 59.1 8.2 129.0 § 22.7 3.0 84.4

DSfir55Mb | 2400 | 164 | 3844 | 112.1 | 121 | 2253 | 445 6.3 150.4

cascade32 | 66.9 8.9 1345 | 285 54 84.9 243 3.5 80.3

parallel24 | 132.6 3.7 354.9 | 170.6 84 346.2 | 98.9 5.1 270.8

Overall average power reductions of 28% (compared to Hyper) and 17% (compared to
FDS-VC) were obtained. We also expect to obtain power savings in buffers since
smaller buffers can be used to drive the low fan-out, short buses. However, our auto-
mated architecture-netlist generation tool uses fixed sized buffers for all data trans-
fers irrespective of the length of the bus being driven, and we are not able to

demonstrate these savings.

8.7.3. The effect on area

Since the E-template based approach reduces bus fan-outs and multiplexors, the
interconnect area can be expected to reduce. However, as discussed before, the exploi-
tation of regularity adds extra constraints on the assignment problem and results in
an increase in the number of functional units used.
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The graphs in Figure 8.15a and 8.15b show the percentage change in the active area
and total chip area, respectively. A positive change represents an increase in area
using the E-template based scheme compared to the base case. In each graph, the two
lines represent comparisons with the Hyper and FDS-VC implementations. The
active area includes the area of the functional units, multiplexors, buffers, and regis-
ters. Though the active area increased with respect to the FDS-VC scheme (12%
increase on average), the total area reduced due to less wiring in our approach result-
ing in a 14% decrease in total area on average. In some examples (such as #10, #14),

it was seen that the overall area increased but the power reduced.

With respect to Hyper, there is a reduction in both the active area and the total area
(26% and 47% average reduction, respectively). Hyper uses an iterative approach for
scheduling and allocation and can trade-off design quality versus synthesis time.
Though these experiments were performed with higher iteration counts than the
default settings, it may be possible to reduce the area by running them for longer
times. On the other hand, these results may be due to the completely different sched-
uling and assignment algorithms used in the Hyper and FDS-VC synthesis schemes.
Some further experiments to determine the exact cause would be useful, but are not

done here since the results would not directly affect the validity of our approach.

8.8. Conclusions and future work

The allocation, assignment, and scheduling techniques presented in this chapter
exploit the regularity and common computational patterns in the algorithm to reduce
the fan-outs and fan-ins of the interconnect wires, resulting in reduced bus capaci-
tances and multiplexor accesses. A simple and efficient E-template based assignment
and allocation algorithm has been proposed to exploit regularity. A modified force-
directed scheduling algorithm is used to produce a schedule favorable for regular

assignment. The new synthesis scheme is integrated into the Synergy!-2 synthesis

system.
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Our approach is able to capture a large amount of the regularity and results in signif-
icant reductions in bus and multiplexor power compared to both the Hyper and the
FDS-VC schemes. The synthesis scheme is shown to have 47% and 35% average
reduction in bus power with respect to the Hyper and the FDS-VC schemes, respec-

tively, and about 49% average reductions in multiplexor power. Total power reduc-

1. The Synergy synthesis system incorporates the estimation and exploration environment explained in
Chapters 4 and 5 and the two synthesis approaches developed.

2. Synergy allows the user to use either the locality-based synthesis scheme of Chapter 7 or the regu-
larity-based synthesis scheme presented in this chapter.
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tions of 28% and 17% were obtained on average with respect to the Hyper and FDS-
VC schemes, respectively without any penalty in the overall area. The results show
that there is a high potential for interconnect power improvements by exploiting the
regularity inherent in the algorithm.

The effect of varying the coverage threshold on the quality of the results has been
extensively studied. It was seen that different coverage thresholds are optimal for dif-
ferent examples. However, no automated method of determining it has been proposed.
It would be useful to have an automated approach to predict a good threshold based
on the properties of the algorithm at hand. Important parameters that may govern
the optimal threshold are the overall regularity in the graph (total number of E-tem-
plates and there coverages) and the concurrency of the algorithm.

Also, the current implementation does not change the structure of the graph while
exploiting regularity, which can potentially have a large impact on the amount of reg-
ularity available. A simple extension in this direction would be to allow permutations
of inputs to commutative operations. Permuting inputs may uncover more regularity

in the graph and lead to better results.
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Conclusions

In this chapter, we summarize the work presented in this thesis and state the key con-

tributions and conclusions. We also propose possible directions for future research.

9.1. Summary

This work has addressed various issues in low-power design. A top-down power opti-
mization methodology is advocated and solution techniques targeting the algorithm
and architecture abstraction levels are presented. The key contributions include
extensive studies and models to enable power prediction at the algorithm-level, and
specific synthesis techniques aimed at reducing interconnect power. The ideas pre-
sented in this thesis are implemented in a synthesis system called Synergy.

Figure 9.1 overviews the system, presenting the key components and ideas.

One of the key components of Synergy is a high-level estimation tool based on a tech-
nology-targeted prediction approach. The tool exploits the knowledge of the architec-
ture model and the hardware library along with the behavioral characteristics of the
algorithm, to obtain meaningful power estimates with limited information. The differ-
ent power consuming components of a chip are estimated separately using different
techniques that address their specific peculiarities. The components fall into two cat-
egories based on their dependence on the algorithm — the algorithm-inherent part
and the implementation overhead. The estimates use analytic techniques based on
algorithm analysis as well as stochastic techniques based on data from past designs.
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The estimation tool is encapsulated into an exploration tool called Explore to facilitate

a more complete search of the design space.

Another key component of the system is a set of synthesis techniques aimed at mini-
mizing interconnect power. The interconnect is selected as the prime target for power
optimization based on two observations obtained by comparing manual and auto-
mated designs — automated techniques produce designs that are power inefficient in
the interconnect, and the interconnect power is greatly influenced by architecture-

level decisions.

After the algorithm and its associated design parameters are selected, a partitioning
scheme based on spectral techniques is used to identify spatial locality in the algo-
rithm. The synthesis tasks that follow use this partitioning to generate a localized

interconnect architecture that dissipates much less power in global interconnections.

The system also encompasses allocation, assignment, and scheduling algorithms that
identify and exploit repeated patterns of computation in the graph to reduce the mul-
tiplexing overhead. The concept is termed regularity exploitation. It reduces accesses
to multiplexors and tristate buffers as well as fan-outs and fan-ins of buses, decreas-

ing the overall interconnect power.

9.2, Future directions

While the techniques and methodologies proposed in this dissertation have shown
very positive results, the work in low-power design in general, and in high-level tech-
niques for low power in particular, is far from complete. Though it is not possible to
list all possible future directions in this area, we discuss some directions that are most

promising and directly related to this work.

9.2.1. Power estimations

This thesis presents a technology-targeted approach to high-level power estimation,
producing estimates for a targeted architecture and hardware library. A broad classi-
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fication of components into algorithm-inherent and implementation overhead has
been presented. Though the approach can be applied to any architecture or hardware
library, the analysis in this thesis focuses on a single architecture model. The useful-
ness of the approach can be greatly enhanced by examining other architecture styles
and verifying the validity of the proposed techniques for them.

Another dimension to be explored is the class of applications. While mainly datapath-
intensive DSP applications are considered in this thesis, it would be interesting to
apply these estimation techniques to more control-intensive applications.

An approach that was discussed very briefly in this thesis is the technology-indepen-
dent estimation scheme. As discussed, ideas of using entropy [72, 88, 111] and struc-
tural properties of algorithms [41, 98] are definitely steps in this direction. Still, a
large amount of work remains to be done to link these behavioral characteristics to

concrete power numbers.

Recently, there has been increased interest in automated system-level techniques for
dealing with the increasing complexity of electronic systems being designed. Estimat-
ing the power at this stage allows the user to appropriately budget the system power
requirements and identify bottlenecks that need to be targeted for optimization. The
spreadsheet-based power estimation approach presented in [68] addresses some of

the issues.

9.2.2. Low-power synthesis
This dissertation has presented techniques for exploiting two algorithm properties for

reducing interconnect power. Several other properties such as concurrency, connectiv-
ity, etc. may influence the power consumptions of some components, and are worth

examining.

Though the locality and regularity properties have been studied here in the context of
architecture synthesis from algorithm specifications, the concepts are general and
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may be applied more broadly. In fact, these concepts can be used in several other
areas that have large components of their power consumption in the interconnect.
Some good applications include field-programmable gate arrays, memories, and large
blocks of control, where a large amount of power is consumed in the global intercon-

nections.

Also, it is possible to use these concepts for system-level power optimization. Locality
may be used to guide system-level partitioning either into different hardware blocks
or into software and hardware components. This is especially useful since the argu-

ments of greater power savings at higher abstraction levels hold as we move to the

system level.
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