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Abstract

The Integer Combinational/Sequential Concurrency {ICS) Model [HB95] uses integer variables, in-
terpreted and uninterpreted integer functions and infinite memory to represent datapaths. By modeling the
datapaths of hardware systems such as microprocessors in this way, verifying the control logic of such sys-
tems becomes a simpler computational task. In this thesis, four new contributions are made, outlined below,
for verifying ICS Models.

First, an overview of ICS Models are given. In its original definition, the operational semantics of
ICS Models allowed invalid behavior to occur for which we were unable to remove in its symbolic language.
A new definition of ICS symbolic languages is given such that this inconsistency is removed.

For a certain class of ICS models, the symbolic representation of the datapath can be replaced with
a datapath whose width is as small as one or a few bits. [HB95] presented an abstraction technique, called
finite instantiations, for performing this reduction, and gave a lower bound on the number of bits needed. A
new abstraction technique, called dara shifting derivations, is proposed, which has a state space smaller than
what can be achieved using finite instantiations. In addition, an open problem is solved by showing that ver-
ification of a certain class of ICS Models, with predicate x < y, is decidable. In [HB95], it was shown that no
finite instantiation exists for this class. Finally, for cases where automatic abstraction cannot be performed,
ICS reachability analysis can be used to perform verification. In this report, the implementation of our first

generation ICS reachability tool is presented. Experimental results are given for verifying two simple micro-
processors.
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Chapter 1

Introduction

As the engineer’s quest to build a faster computer continues, she is forced to employ increasingly more ad-
vanced computer architectural techniques and algorithms in her design. These techniques, some of which
were previously only implemented in expensive supercomputers, can now be found in most desktop micro-
processors [HP90]. One of the most popular architectural approaches used to minimize the time it takes a
computer to execute a sequential program, is to design computers that can take advantage of instruction level
parallelism. Here, the intuition is that for some sequences of instructions, the order in which they are exe-
cuted by the computer may not change the final result of the program. This added degree of flexibility can be
- exploited to optimize program execution time, since each instruction may require a different computational
resource or may take a varying number of clock cycles to complete. Some common techniques that take ad-
vantage of this “fine grain parallelism” include executing multiple instructions simultaneously (superscalar
microprocessors), executing instructions out of order, completing instructions out of order, and performing
branch predication. Designs can be further complicated by the addition of other architectural features, such
as precise interrupt handling. As a result of these complexities, the engineer typically has a very difficult
time insuring that her design executes instructions in such a way that the correct result is always produced.
In fact, insuring that a computer always sequences instructions correctly can dominate its design cycle, and
usually results in a validation problem that is significantly more difficult (in practice) than simply checking
the correctness of a particular computational element (i.e. checking if the arithmetic logic unit (ALU) in the
datapath adds two numbers correctly). Thus, most bugs that occur during the design of a modern micropro-
cessor are because of errors in control logic where these advanced architectural features are typically imple-
mented [Rho95].

The validation of modern microprocessors is currently performed via simulation. Here, the architectural mod-
€l and the implementation are simulated in parallel using a common set of instructions. If, after executing the
same program, the output of the architectural model differs from the output of the implementation, then abug
in the microprocessor exists!. It is, however, mathematically intractable to simulate all possible input se-
quences a design may be subject to in a reasonable amount of time. Thus, in reality, simulation cannot guar-
antee the absence of bugs even for small designs.

Formal verification is a body of techniques and algorithms that allows the engineer to mathematically prove
whether certain properties hold for a design. Verification is complete since it has the ability to show that no
bugs (with respect to the property being verified) exists in a design for all inputs and all sequences of inputs.

L-This may not be the case if the instruction set architecture allows for more than one acceptable behavior.



In addition, using Binary Decision Diagrams (BDDs) [Bry86] technology, designs that have very large state

spaces (] 020 states or more) can be verified in only a few CPU hours [BCMD90, Cou89, Tou90]. These tech-
niques are limited, however, in that they can only handle relatively small designs. This is because most au-
tomatic verification algorithms work by visiting, either explicitly or implicitly, every state of the design.
However, it can be shown that the size of the reachable state space of a design is, in the worst case, exponen-
tial in the size of its description. This “blowup” in the number of states is called the state explosion problem.
In microprocessors, this problem is particularly aggravated by the existence of wide datapath elements and
memories. However, since most microprocessor bugs occur in the control part of the circuit, the computation-
al complexity of the verification task can be significantly reduced by abstracting away the least-error prone
portion of the design: the datapath. The Integer Combination/Sequential concurrency (ICS) Model, first in-
troduced in {HB95], is a paradigm for performing verification using an abstract representation of the datapath.

ICS Models use integer variables, interpreted and uninterpreted integer functions, integer predicates, and in-
finite memory to abstract away functional units, register files, and memory, thereby substantially reducing
the complexity of the datapath. Because abstract data types and operators are used, the state space of systems
modeled using ICS is, in general, infinite. Despite this, two approaches can still be used for verification. In
certain cases, depending of the type of design and property being verified, a system modeled using ICS can
be automatically abstracted into a equivalent system where the width of the datapath has been reduced to only
one or a few bits. Traditional state exploration techniques can then be used to check properties on the design.
For cases where this is not possible, ICS reachability analysis can be used for verification. This algorithm
uses a novel hybrid approach for generating the set of reachable states. Here, BDDs are used to represent tran-
sitions in the control portion of a design, and a special form of symbolic simulation is used to represent tran-
sitions in the integer datapath. Since the state space may be infinite, reachability analysis may not always
terminate. However, the reachable state set, or an approximation of it, can be used for complete or partial
verification using model checking or language containment. This thesis makes new contributions to both ap-
proaches for verifying ICS models.

1.1 An Outline of this Work

In Chapter 2, ICS Models are formally defined. The original definition appeared in /HB95]. Subsequently,
it was discovered that there is an inherent problem in the model. This problem occurs because the symbolic
representation of the datapath used in ICS Models, allows behavior that may not have a concrete representa-
tion [HIB97]. A redefinition of symbolic ICS automata and languages is given in this chapter and it is
proved that the language of the composition of two machines is equal to the intersection of the languages of
the two machines. In addition, Boolean operations on languages, such as union and intersection, have also be



redefined.

In Chapter 3, three new results are presented which give bounds on the minimum mumber of values needed
in the datapath to accurately verify certain types of ICS Models. {HB95] introduced an automatic abstraction
technique, called finite instantiations, where the integer domains are automatically replaced with finite val-
ues consisting of only one or a few bits, without any loss of accuracy in verification. First, we show that for
aclass of ICS Models called Data Semi-Sensitive Controllers (DSSC’s), where only integer predicates of the
form x = y are used, the number of bits needed in the integer datapath for verification can be reduced sig-
nificantly from what was earlier reported [HB95]. Next, a new abstraction technique, called data shifting der-
ivations, is proposed that allows the number of bits needed in the datapath to be reduced even further, when
compared to finite instantiations. Finally, a previously open problem in the verification of ICS Models is
solved by showing that verification of DSSC’s with predicates x<y and x = y is decidable, and an exact
data shifting derivation exists. Previously, it was proved that no finite instantiations exist for this type of con-
troller [HB95]. Proofs and bounds are given for all the approaches described in this chapter.

Finally, in chapter 4, the reachability algorithm, as first described in /HB95], is explained with minor
modifications to the original definition. Experimental results, produced by the first generation ICS
reachability tool, is then presented. In particular, results are given for computing the set of reachable states
on a simple design. A major bottleneck, associated with this algorithm, is also discussed. Finally, it is
demonstrated how ICS reachability can be employed in solving the specific problem of pipelined processor
verification. Here, one would like to verify that a pipelined microprocessor implements its instruction set
architecture. In /BD94], Burch and Dill presented a unique approach for solving this problem, ICS
reachability can be used to approximate this approach. Experimental results are given for two simple
 pipelined microprocessors. Comparisons to other approaches are given.



Chapter 2

An Introduction to ICS Models

2.1 Introduction

In this chapter, an introduction is given to the mathematical framework upon which the key results in this
thesis are based: ICS Models. ICS Models extend traditional C/S Models [Hoj96] by modeling hardware at
a higher level of abstraction using integer variables, integer functions and infinite memory. Modeling hard-
ware at this higher level simplifies the verification process by removing some of the lower level details of a
design that may not be needed to verify certain properties. ICS Models represent hardware by dividing it into
three separate components: control, datapath and memory. Control consists of finite gates and latches, and
its semantics is very similar to C/S models. The datapath consists of gates and latches whose functionality is
defined over integer variables with infinite domains. Finally, memory represents an infinite table of address/
data pairs. As with datapath, addresses and data are represented using integer values. A diagram of these three
components and their interactions is shown in figure 2.1.

gm Jocation ICS Models consist of three
1 separate components: Con-
] valy trol, Datapath and Memory.
Control | Datapath . Memory This closely resembles the
Data < ' structure of modern hard-
Values ware systems.
Figure 2.1: ICS Models

The verification of ICS Models can proceed along two paths. Depending on the functionality of the system
and the property to be verified, automatic abstraction techniques have been developed that reduce a system
modeled using ICS to an equivalent system modeled using C/S semantics. A traditional state exploration
based verification tool can then be used to verify the simplified design. This type of automatic abstraction,
called finite instantiations, cannot work for all types of systems modeled with ICS. In these cases, an ICS
reachability algorithm can be used to symbolically generate the state space. In general, since systems modeled
using ICS have infinite state spaces, reachability will not always terminate. In cases, however, where reach-
ability does terminate, a model checking or language containment algorithm can be used to prove properties
on the state space. Otherwise, the reachability tool can be used to partially generate the state space for a finite
number of cycles. Here again, model checking or language containment can be used to perform verification
on the portion of the state space that has been explored. Hence, one can only guarantee that error traces of a
certain length do not exist. Since, in practice, most error traces are short, this type of partial verification may



still prove useful for catching bugs.

The outline of the rest of this chapter is as follows. In Section 2.2, ICS terms, which are a symbolic repre-
sentation used to describe the behavior of the datapath and memory is defined. Section 2.3 discusses the
syntax of ICS models and the types of operations and gates that are allowed in each of the three ICS compo-
nents. Section 2.3 defines state space of ICS models, and Section 2.4 describes the ICS semantics. Finally,
Section 2.5 discusses how ICS Models are verified. Note that the definition of ICS Models and how to verify
them is slightly different than what was first given in [HB95]. The motivation for this re-definition is given
and comparisons to the old definitions are made.

2.2 ICS Terms: A Symbolic Representation of the Datapath Behavior.

ICS Models consist of variables that are either integer or finite. If a variable v is finite and has an n valued
domain, then it can be assigned values {0, 1, ...,n—1}.If v is an integer variable, then it can take on an
infinite number of values. Here, in order to efficiently represent behavior in the datapath, symbolic expres-
sions called ICS terms are assigned to integer variables instead of concrete values. ICS terms are defined re-
cursively and consist of symbolic constants, interpreted integer functions and uninterpreted integer functions
applied to ICS terms. Each of these mathematical objects is described below:

Symbolic Constants. A symbolic constant is a symbol which represents any integer value. Intuitively, one
can think of symbolic constants as symbols that can be assigned an integer value only once. Thus, the rela-
tionship between multiple symbolic constants can never change once a particular relationship has been as-

sumed. For example, if ¢ 1 and c, are symbolic constants, and in state 5; it is assumed that ¢ 1 = €2 then
in all successor states of $;1€ =€y must be true (this would also be the case if €7 <€y, €y >C, Orany
other relationship between ¢ 1 and ¢y assumed in 5; ).

Interpreted functions. Interpreted functions are integer functions that only have a single interpretation. ICS
Models only permit a small subset of all such functions to be used. These functions are z:=x + y, z:=x + ¢,
x:=y, z:=mux(b, x,y), and z:=if(b,x) , where x, y are symbolic integer variables, ¢ is an integer and b is

abinary variable. Examples of ICS terms that contain interpreted functions include Co* ¢ and
mux(0, € I) , assuming that Cp» € are also ICS terms.
Uninterpreted functions. An n -ary uninterpreted function, f (xo, S 1) , takes n integer variables as

input and returns a symbolic integer value. Thus, if i is an ICS term that is the input of an unary uninterpreted

function symbol f, then the output would be the ICS term f(i) . Since no interpretation of f is given, it can
be used to represent all possible interpreted functions. Uninterpreted functions are very useful for abstracting



away details of a design that are not needed for verification. This is particularly important when verifying, for
example, the control logic of a superscaler microprocessors. Here, verification is independent of the func-
tional units in the datapath, since one only needs to check whether the processor executes each instruction in
the proper sequence and writes back the result to the correct location. Therefore, the detailed functionality
of the datapath is not relevant and can be replaced with uninterpreted functions.

An example of a property of a microprocessor that one may want to verify is that the control logic fetches,
decodes and write backs the instruction I:R 3¢ R 1 sub R, correctly. Here, I subtracts the values in the

registers R 1 and R2 and places the result in the register R 3. The control logic can be verified by replacing
the subtraction hardware with an uninterpreted function f. Assuming that €p and ¢ are the correct values
assigned to registers R 7 and R, when [ isissued, then one only has to check that when I retries,R 3 contains

the ICS term f (co. c 1) - Note that replacing a concrete function with an uninterpreted function is conserva-

tive, i.e, more behavior is modeled using uninterpreted functions.

In order to describe the relationship between ICS terms, predicates are used. Predicates are special functions
that, when given ICS terms as arguments, return a binary value. Two examples of these functions are

€= f(c I) and f(c 1) < g(cz) . Predicates can either be interpreted or uninterpreted. The only interpreted

predicates allowedare x = y,x<y,x = ¢,(xmody) = r and (x mod y) <r , where x and y are sym-
bolic integer variables and r and ¢ are integers. An 7 -ary uninterpreted predicate, p(xo, e X 1) , takes

n integer variables as inputs and returns a binary value. Note that since no interpretation of p is given, it can

be used to represent all possible interpreted predicates.

A concrete interpretation of an ICS term ¢, is performed by replacing all symbolic constants in ¢ with inte-

ger values, replacing all uninterpreted integer functions in # with interpreted integer functions and replacing
all uninterpreted integer predicates with interpreted integer predicates. Here, any interpreted function or pred-
icate can be used, not just those described above.

Given a set of ICS terms {¢ P tn} , and assuming that R p is an interpreted or uninterpreted predicate, one

can determine if R P(t e tu) is true with respect to another predicate p (denoted Rp(t P tn) or
P

(tI RP tz) , , if RP is a binary predicate) if the formula p — RP('I’ e tn) is valid. Such a formula is



valid, if it is true for all concrete interpretations. For example, if ¢ 1= f(c I)’ 1, = f(cz) and

PS(cp=cy),thent; =1, i is valid since (¢, = cz) - (f(cl) = f(cz)) is always true no matter

what interpretations are given to f, € and cy. A formula p = RP(‘I’ vees tu) is said to be satisfiable if

there exist an interpretation for which p — R P(t P tn) is true. Determining if two ICS terms are equal,

subject a predicate (or set of predicates), is decidable and can be determined using the algorithms given by
[Sho79] and [Sho82]. Note that checking if the binary predicate (¢; Rp #,) is true, with respect to two

predicates p and ¢, denoted ¢ II R p tzl can be found by checking the validity of the formula
P q

(PAq)—)(tI Rp tz)'

2.3 The ICS Model Syntax

Systems modeled using ICS models are described by a network of circuit primitives. Using these primitives,
a wide variety of hardware systems that operate on integer data can be modeled without having to specify the
number of bits in the datapath of the actual hardware implementation. A circuit primitive can either be a gen-
eralized gate or a latch. Generalized gates can be classified into those that control data, gates that allow inte-
ger data to be moved around in the datapath, gates that perform computation on data, data constant creator
gates that simulate integer inputs, and memory gates that allow for the storage of data, Generalized gates can
have multiple input variables but only a single output variable. ICS Models are closed,i.e. they have no inputs.
In the following, each of these types of gates is described in detail.

Control gates. A control gate defines a relation over a set of finite variables.These gates can be placed only
in the control portion of the model. A gate is considered deterministic if there is only one output for any set
of input variable assignments. For simplicity, it is assumed that each relation is over multiple input variables
and a single output variable. Primary control inputs are represented using non-deterministic gates that have
no inputs and a single output, and can produce any value in the domain of the input variable.

Data comparison gates. A data comparison gate can be either an interpreted or uninterpreted predicate. Since
predicates take a set of symbolic integers and return a finite binary value, they provide the only mechanism
by which the datapath can communicate with the control.

Data movement gates. A data movement gate can be used to move integer values around in the datapath.

There are three data movement operations allowed in the datapath: x:=y, z:=mux(b, x, y) , and z:=if(b,x) .
Here b is a binary variable and x, y and z are symbolic integer variables, The control can manipulate the

flow of integer data by changing the value of b. The control inputs of the data movement gates provide the

only means of communication from the control to the datapath.



Data computation gates. A data computation gate is used to represent a function that, given a set of symbolic
integer variables as inputs, returns an integer value. Such a gate can consist of the interpreted integer functions
Z!=Xx +y, z'=X + ¢ or an uninterpreted function. These gates provide the only means by which computation
can be performed on integer data in the datapath,

Data constant creator gates. A data constant creator gate has no input variables and a single symbolic inte-
ger output variable. This gate creates a new symbolic constant each time it is called. This constant is called
afresh constant, and denotes a new symbolic constant that has never been previously assigned and does not
currently occur as a formula or sub-formula in any of the integer variables in the model. Data constant creator
gates are used to model unconstrained integer inputs.

Memory Gates. A memory gate can either be of type read or write. As discussed in Section 2.1, in ICS mod-
els, memory represents an infinite set of address/data pairs!. A read takes a memory (ICS allows for circuits
with multiple memories) and an ICS term representing an address and returns a ICS term that was last written
to that location. If the location being accessed has never been written to before, a fresh constant is returned.
Write takes a memory, an address, and a data value and sets the address in memory to hold that particular
value.

Latches are defined using two variables called the present state variable and the next state variable. The
present and next state variables of latches must be over the same domain and can be either finite or integer.
The initial state of a latch is a value or subset of values of the state variables domain. Ifa latch has an integer
domain, then a constant and predicates can be used to describe a subset of the integer domain that are valid
initial states.

2.4 The ICS State Space

Astate s = (latches, memories, predicates) is a triple of assignments to latches, memories and predi-

cates. Since the set of all ICS terms that can be assigned to latches, memories or predicates in infinite, the

0 -
state space may also be infinite. Two states 59 = (lo, {m 0 m" 0 1}. po) and

5 = (l I {mg, oo m’l ; I}, D 1] are equal in a given model M, denoted 5o = $;.if the following three

conditions hold.

1.For the i -thlatch in M, assume 50 assigns it the value a; and s, assigns it the value a; If oc; is finite

i ‘Although ICS memory represents an infinite set of address values pairs, the ICS operational semantics re-
quires the explicit representation of only those memory locations that have been written to on a previous cycle.
Thus, for a finite number of cycles, the number of memory locations that have to be stored is always finite.
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latches in M.

2.5 The Operational Semantics of ICS Models

The operational semantics of ICS Models defines how transitions are made between states. The semantics
is very similar to that of C/S models. Here, a topological sort of the gates in the model is first chosen. Then,
starting from the primary inputs and present state latch variables, values are propagated through the network.
The key difference between C/S and ICS occurs when simulating the datapath. Here, ICS terms are assigned
to symbolic integer variables instead of concrete finite values. When an integer predicate is evaluated, if the

. set of predicates defined at the current state implies the gate output value, then it is assigned that value, Oth-
erwise, two paths of propagation are created. One path assumes that the value of the predicate to be 0, the
other assumes it to be 1.

2.5.1 Definition of ICS Operational Semantics

A gate graph G, of a ICS Model M, is a graph where each vertex v represents a gate in M and each edge
(u, v) represents a variable that is the output of gate 4 and the input of a gate v . A topological sort is then
created by starting from latches and gates that have no inputs (control primary inputs and constant creators)

and visiting each vertex in breath first order. Since their can be no combinational cycles in M, G also con-
tains no cycles. Given a topological sort O of G, andastate s = (J, m, p), the operational semantics of ICS

Models is given below, and defines a set S, where each (I j m Iz P j) € § is anextstate of 5. In the follow-



ing, let V be the set where each v f € V is a set of assignments to a subset of state and non-state variables of
M made during the symbolic execution of its gate graph. Intuitively, one can think of each v f as an alterna-

tive “path” of execution starting from s.

1. Initially, let z = 1 andnote that in the following that z = |V|. Create v 1 € V andassign to the present
state variables in v 1 values assigned 1o the corresponding variables in s.
2 Propagate values through M, by assigning values to the output of each generalized gate, g, in the order
given by O. In particular, for each v j € V, and for each generalized gate o = g(i), where i is the set of
input variables and o is the output variable of g, and 0; is the set of assignments to i by v j (
(i=o)ev | ), the following cases may occur.

2a. If g is atable that represents the relation R(i, 0), then assign o a finite value o, such that
(ai, ao) € R andlet vj = vj v{o= ao}. Ifthere are multiple values, a‘o , Such that (“i’ a'o) € R, then
Jor each such value where o 0 # o, let z = z+ 1, and create a new set of assignments v, such that
V= Vuvz and v, = vju {o = a’o}. Finally, if there are no values o, such that (ai, ao) € R, let
v = v j U {0 = @}. This corresponds to stopping value propagations along this path.

2b. if g is an interpreted or uninterpreted function, then let o. p = g(a i) , Where both o; and o, 0
are ICS terms. Let vj = vju{o = ao}.

2c. If g is an interpreted or uninterpreted predicate R pletp j be the predicates associated with
vj.lfpj—> (Rp(a,) = b) isvalid, then assign o, = b and let vj=vju {o= ao} (where o; isaset
of ICS terms and b is a binary value). Otherwise, let z = z + 1, and create a new set of assignments v,

suchthat V = Vuvz, v, = vju{o =ao}, p, = ij(RP(ai) =a0).lnaddixion, let

v; = vju{o =ao} andpj = ij(RP(ai)=ao).

2d. If g is a constant creator, then let o, =¢; andvj = vj vio= ao} . Here c; isafreshcon-
stant: a symbolic constant that has never been assigned to an integer variable in v j orany state reachable

Jrom s. A sufficient, but not necessary condition to guarantee this is to return a unique fresh constant each
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time the gate is called.
2e. If g is a read memory gate, let m j be the memory associated with g and assigned by v ., and

a € 0., the address being read. If there is a location a' in memory, suchthat a = @ |p isvalid, then assign
J

o, = mj[a'] andvj = vju{o = ao}.Othenw‘se,foreachlocation a' in memory where a¢a‘|p isnot
J
valid, let z = z + 1, and create a new set of assignments v, where v, =V j (note that this implies that

m, = m; and p, = pj), p, = pzA(a=a'), o, =mlalandv, = v,Uu{o=a,}. Let

V = Vuv,. Thecasewhere (a = @) isnot validfor any a' also has to be considered. For each location

a' in memory where a¢a'|p is not valid, let pj=pjA (a=a'), create a new fresh constant d, set
J

‘ mj[a] =d, o, = d andvj = vju {o= ao}. This corresponds to reading a location that has never
been written to before.

2f. If g is awrite memory gate, let m y be the memory associated with g and assigned by v g Also,

assume that a is the address and d is the data. If there is a location @' in memory, suchthat a = a' lp is
J

valid, then assign m j[a‘] = d. Otherwise, for each location a' in memory where a # a' Ip isnot valid, les
J

z = z + 1 and create a new set of assignments v, where v, = Vi» Py = Py A (a=a) andm,la] = d.
LV =Vu v, . The case where (a = a') is not valid for any @' also has to be considered. For each lo-

cation a' in memory where a¢a‘|p is not valid, let Pj = PjA (a#a') andlet mj[a] =d.
J

3. Foreach v ;€ V,assignto s j' = (I j" m j" )4 j') the corresponding values given to the next state latch val-

ues, memory and predicate variables in v i

Note that at the end of 2, z is finite, i.e. s always has a finite number of next states.

2.52 Comparison to ICS Operational Semantics Defined in /HB95]
The operational semantics of ICS Models given in [HB95] is defined in terms of configuration graphs. A con-

figuration graph, G M for a model M, is an acyclic graph where each node (or state) is a pair u = (s, n).

Here, s was equivalent to the definition of a state of M, given in Section 2.3, and n is a defined as the number

of fresh constants created in all states proceeding . The initial state of M is represented by a vertex
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(so, no) , Where 5o is also defined as in Section 2.3 and ny is the number of constants in 50 Given, a topo-

logical sort O of M, and a state with ¥ = ((L, M, P), n), a transition to a state v = (L', M, P'),n) is de-
fined in a similar fashion to that in Section 2.5.1. The difference is that each state is defined as a pair (s, n)

instead of just s as given in Section 2.3. In addition, every time a constant creator is called, a new fresh con-
stant named Cp isreturned and n' = n' + I (initially, n' = n). This definition insures that along any path
of the configuration graph, no two fresh constants were ever given the same name. The operational semantics

in Section 2.5.1 also guarantees that no two fresh constants are given the same name along the same path.
However, it does not require a counter to be used nor does it specify a particular name.

2.6 The Verification of ICS Models.

The verification of ICS Models is performed using the language containment paradigm (/VW86],{Kur87]).
Language Containment allows a property to be described using an automaton called a property automaton.

Verifying that an ICS Model M satisfies a property P can be performed by showing that the language of M

is contained in the language of P, denoted L(M)  L(P). In this section, the definition of ICS languages
presented is different that was first given in [HB95]. It is then proved that for this new definition, that com-
position of two models has a language that is equal to the language intersection of both models

2.6.1 ICS Automata and Languages
The symbolic automaton of an ICS Model M, A ) » 18 @ graph of states and transitions between states defined

by the operational semantics described in Section 2.4. The alphabet of A M’ z u » is the Cartesian product

of the alphabets of non-state variables and the predicate state variable. Following [Kur87], we refer to these
variables as selection variables. For finite variables, the assignments come from their finite ranges. For inte-
ger variables and predicates, this is infinite (but countable) set. An @-string is an infinite sequence of as-

signments to the selection variables of M . Let the @-string x = Og O Oy, ... be given. An @-run

€= SpSpSy .. of x is an infinite sequence of states in AM,where 50 isaninitialsmeofAM, and for
every i >0 thereis atransition (s; _ ;,6; _ ;. 5;) in A, . Edge-Street [HSB94] fairness constraints are used
to define the set of acceptable runs of A M by placing restrictions on the values of finite latches. A run e of
A g 18 considered fair if all fairness constraints are satisfied. This implies that the set of assignments that

occur infinitely often to the latch control variables in e satisfies all fairness constraints. The symbolic lan-

guage of A M+ L(M), is the set of all w-stings that have fair runs.
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In order to define boolean operations on symbolic languages of automata, it is necessary to first define a no-
tion of equivalence between two ICS @-strings.

Definition 2.6.1.1 Two @-strings x = G, 6,0, ... and X = 66,6, ... are equivalent, denoted
x = X , if the following two conditions hold for all i:

1. For each finite selection variable v, c;lv j] = éi[v j] and

2. The formula [ ] (p; 7 5; (0{v;] = &;[v;1)) must be satisfisble. Here, v; is an integer se-
Vi, j

lection variable and (oi[v j] and 5i[v j] are ICS terms). Also, p; ¢ ; ) represents assignments to the pred-

icate selection variable by o; (6;).

The definition of containment for two languages follows naturally from the above definition. Let L I L2 ,
and L3 be three symbolic languages. L 1 iscontaired in L, ,denoted L 1S L2 ,if forevery @-string x € L 1’
there exist an @-string y € L2 suchthat x=y . L 3 is the intersection of L 1 and Lz , denoted

L3 =L, an, if for every o-string x € L3, there exists two @-strings y € LI and z€ l.2 such that
x=y and x=2z. L3 is the union of L; and Lz,denotedL3 = LI uLz.ifforevery @-string x € L3,
there exists an @-string y such that y € LI and x =y, or there exist an @-string z € Lz suchthat x=z.
If L, is the complement of L 1 » denoted L2 =L 1 then L2 contains the set of all @-strings x such that

there does not existay € L] where x=y.

Given two ICS models M and N, their composition, denoted M ¢ N, can be constructed as follows. If M
and N have no selection variables in common, then their composition is simply their syntactic composition.
If, however, M and N do have selection variables in common, then for each such pair of variables both

named X;, rename one of them ¥; and add a new gate g and a new variable z;, which implements the func-
tion z; ;= if (xi = ¥ %;) . The initial states of M e N are composed in a similar fashion. Observe that except
for g, the new variable z; is not connected to any other gates. Also note that the behavior of the function

z:=if (b, x) isempty if b = 0. The language of M e N is defined over the selection variables that were
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Bot renamed. An example is given in Figure 2.6.1.1.

In order for language containment to be useful in practice, it is important that the language of the machine
created by the composition of two models be equal to the intersection of the languages of both models. Lem-
ma 2,6.1.1 proves this.

r————— = - AP = = = e e e e ———— )
IN ’ x || MeN I
| I z |
| £ I ‘ |
I I i+ - |
| ' Il |
| Co L |
I, J | X y |
D = ((10e) D) 1) D c9h D))} |
| e e e | | I
I M x || f Co I
: :' ' '

| |
I o ¥ “ |
L0 T (oD DD M U D Ut )

M and N are both one state automata. The selection variable x of M is always assigned co,butthuama variable
X of N is always assigned f(co) « In the composition M o N , the variable corresponding to M is renamed y and
X isalways assigned f (co).Note, kowever, that the predicate = f(co) is assigned in the only string in L(M ¢ N)

Figure 2.6.1.1: An Example of ICS Composition

Lemma 2.6.1.1 Given two ICS Models M and N and their composite machine C = Mo N,
L(C) = L(M)nL(N).

Proof L(C) = L(M)NL(N) implies that for every string xc € L(C), there exist two strings

xM € L(M), xN € L(N) suchthat xC = xM and xC = xN . The reverse has to hold, but will not be proved

here, since its proof is similar,

Let GC = Gf{; v Gf, v GgQ where Gg’; are the gates in C that came from M, G;", are the gates in C

that came from N, and GgQ are the gates in C of the form z; := if (x,. =Yp x‘.) introduced by the compo-
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sition. Defire the set of variables in C, VC, where VC = Vﬁ ) Vg v VgQ in a similar fashion.

To prove the above result, it will be shown that for every accepting run eC = sg. sf, sg, .. Of xc in C,

there exist a string xwaC such that xM has an accepting run eM = sg,sllu, s;", ... in M. Note that

the same argument below can be used for the existence of xN . Eachstate s;” € eM has the following two
properties.
40)1 v;: € Vf{ then vf = v;." , where va € VM is the variable corresponding to v]c." . More spe-

cifically, if v‘}l is an integer variable, it will be assigned an ICS term that is syntactically equivalent to the

one given to vf . If the variables are finite, then they will be given the same value. Observe that if there is

a syntactic equivalence, then vf = v;” is valid under all predicates p .
p
M N C . .
) p; — (P = b) implies that p; = (P = b) where P isany predicate, b = 0 orb = 1,and

pi-u ( pic) are the state predicates assigned in s)}l (sf ). Note that if this is true, then pi.u A pf is always

satisfiable.

The existence of eM can be shown by induction on its length.

For the initial state sg ,if a present state latch variable ng € Vfl is a finite variable, then by definition, there

exist an sgl such that vf = vJM . In addition, if a latch variable vf € Vﬁ is an integer, then clearly

vf = v“?l is also trivially valid, since when C was constructed, it was given initial constants with the exact

same names as in M . Note that by the definition of initial states in ICS Models, pg = pg = .

Now assume that at a given state sf: , there exists a corresponding state s?{ , where the above two properties

holds. We will show that these properties will also hold for all assignments going from s:-w to state sﬁ 1

Choose a topological sort of M that is consistent with the ordering given to the gates Gf, in the topological
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sort of C. In the following, §C denotes the last gate that was symbolically executed in C before gf ,and

i)c the predicate given after §C was executed. This distinction is necessary because it may be true that

§C € Gf, U GgQ and thus §C has no corresponding gate in M . Also, let g?l_ 1 denote the last gate in M

that was symbolically executed before g‘liu . Let’s assume that for all gates gzl, ggl (k < j ) the above prop-
erties hold. Then, the properties must also hold after processing g?’ » because of the following cases:

1) gj.” is a constant creator. Assign v‘I;I the same fresh constant that was given to vj.: . Also, let

p?l = p‘?{__ 1 Note that C sets pj(-: = i)C . Clearly, property 1 holds. Property 2 also holds. To show this,

let’s assume the reverse: p;'! — (P = b) validand pJ(-: — (P = b) is valid for some predicate P . This case

cannot occur and can be argued as follows. If pjfl__ 1~ (P = b) is valid, then at the corresponding gate in

C, gj(.:_ I pj.:_ 1~ (P = b) is, by inductive assumption, also valid. This means that there was some gate

gc € GS v GEQ was symbolically executed after gj-:_ I but before g;: , that eventually forced
plq — (P = b). This, however, is not allowed by the operational semantics of ICS Models, since it earlier

was assumed at g;'?_ 7 that pf.: — (P = b) was valid. The case where p‘li" = (P = b) valid but neither

pj-: — (P = b) nor pf — (P = b) is valid can also not occur and can be argued in a similar fashion.

2) gj.w represents an interpreted or uninterpreted function. Just apply the function to the inputs and let
PM M . . s . . M .
i = P i1 By inductive assumption, since the ICS terms assigned at the inputs of g j are syntactically

equivalent to those given at the inputs of gJ(.: , property 1 will be valid for vf . Property 2 also holds by using

the same argument given in (1).

3 gj!l is a table. Just apply the relation to the inputs and let P.I;l = ‘1,"_ 1+ Once again, by inductive as-

sumption, since the finite values given at the inputs of gJM and 31(‘: are the same, then so are the outputs.

Property 2 also holds by using the same argument given in (1).
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“) g‘?{ represents an interpreted or uninterpreted integer predicate, P(i) . When g‘);! is executed, several
cases may occur. In the following, assume that b = O or b = 1

da) j';c = (P(i) = b) and pﬁ."_ 1~ (P(i) = b) are valid. Simply assign v}" the value b.
(4b) Neither i‘)c—> (P(i) = b) or pljn_ 1~ (P(i) = b) are valid, but both are satisfiable. Then as-

sign o = v;: and p;" = p.l;!_ 1 APG) = vf) . Note that the operational semantics gave

p; = " AP =55).

(4c) i)c—> (P(i) = b) is valid, but neither pljw_l - (P@i)=b) or p?l_l — (P(i) = b) are
valid. Assign pl;l = p?_ 7 A(P(i) = b) and v}” the value b.

44d) I)C—) (P(i) = b) valid and p}u_ = (PG) = b) is valid. This case cannot occur by using
the same argument in (1).
. -C , -C . . . M , R
(4c) Neither p~ — (P(i) = b) or p~ — (P(i) = b) is valid, but p j-17 (P(i) = b) is valid.

This case cannot occur by using the same argument in (1).

6)) g?! is a write of a value 4 and location @ to a memory R?l_ 1 - First, set P}” = PI;{_ 1 - By inductive

assumption gf also wrote the value d to alocation a to a corresponding memory Rf_ I Also, by induction

assumption, the ICS terms (both address and values) in R;l_ ] are syntactically equivalent to those in

RJ(."_ 7 - For each address a' in RJ(." for which pf—) a#a' is valid, set p?l = p;" Aaza) if

py — (a#a') is not valid (as with case (4), no other possibilities are allowed). There is one address a' in

Rf for which pf—)(a = a’).I.ctRy - Y

location &' . Clearly both properties hold.

j_l.lfa' does not exist in R}" then create it. Write d to

©) g;” is a read. This case is similar to (5).

If both properties hold for the state sf.” , then they must also hold for sﬁ 1 This is because the values as-

17



signed to the present state variables at s?{'_ I ( s?_'_ 1 ) are the same as the values assigned to the next state

functions at sf.” ( sf ).

Finally, it needs to be shown that xC = xM . By property 1, the assignment of all finite selection variables

is the same, thus part (1) of definition 2.6.1.1 is satisfied. If v‘l;’ is an integer selection variable in M and

vf € Vf{ is the corresponding selection variable in C, then vf = v;” is valid by property (2). Otherwise,

the selection variable in C is some variable iC € Vg , and there is a gate in C of the form

zj:= if(i"c = vf,i"c).'lhus, if C assigns ﬁc = @ and vf = ( atstate sf,lhen a=a C is val-
Piv1

id. As a result of this and property (2), part (2) of definition 2.6.1.1 also satisfied.

(QED)

2.6.2 Comparison to Language Definition Given in [HB95]

In [HBY5], languages, and operations on languages, are defined in terms of concrete interpretations. A con-
crete language of a symbolic language L, for a given interpretation I, is denoted by LC(L, I) andis ob-
tained by giving a concrete interpretation to all constants, uninterpreted functions and predicates for each
string x € L. Given two languages L and L', L ¢ L' is only true if for all possible interpretations, /,
LC(L, hclL C(L', I) . This definition is problematic because the semantics of ICS Models allows for fair
runs to have no concrete interpretations. Determining if a fair run has a concrete interpretation is still an open
problem. Thus, the language and automata definitions given in 2.5.1 were redefined such that they would
not be based on the existence of such interpretations. It is conjectured, however, that for models where all

fair runs have concrete interpretations, the definition given in [HB95] is equivalent to the definition in section
25.1.

2.6.3 Property Automata and Language Containment
M can be verified using the language containment paradigm. Here, a property P is represented using an
automaton, A p Checking L(M) g L(A p) for a model M can be performed by first complementing A P

and then checking for language emptiness, L(M) N L(A P) = @ . Unfortunately, there are no known tech-

nique that can always find the complement of any language in the class of all symbolic ICS Languages. In-
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deed, there is no result that shows that this problem is even decidable. [HB95], however, defined a class of
automata called property automata, whose symbolic langauge can be complemented and can be used to de-

scribe useful properties of ICS systems. Here, a property P is represented using a property automaton, A P’
which is a complete edge-Rabin automaton. A p can have integer constant creators but all state variables are

finite. The only operations allowed on integer variables are interpreted predicates. [HB95] showed that prop-
erty automata can be complemented by first replacing the integer predicates with binary variables, performing
standard edge-Rabin automata complementation, and finally replacing the binary variables that were intro-
duced with the corresponding integer predicates that were in the original automaton.

2.64 Automatic Abstraction of ICS Models

Depending on the types of gates and predicates in an ICS Model M and the type of property P specified, the
integer datapath can be automatically replaced with a datapath circuit that only has finite variables. This tech-
nique is a type of aufomatic abstraction. Once M has been abstracted, traditional automatic verification tech-
niques can be used to verify that P holds. Abstractions can be classified into there different categories. Exact
abstractions are those in which if the property holds on the abstracted model, if and only if it also holds in
M . Clearly, this is the best type of abstraction to have, since no accuracy in verification is sacrificed. A con-
servative abstraction is one in which if the property passes when verification is performed on the abstracted
system, then the property holds for M . However, if the property does not hold in the abstracted system, then
no claims can be made about the correctness of M . Thus, it is possible for verification on the abstracted sys-
tem to return false negatives. False negatives are bugs reported by the verification tool that are not real bugs
in M. An aggressive abstraction is one in which if the property fails when verification is performed in the
abstracted system, then the property also does not hold for M (but not vise-versa). In this case, it is possible
to produce false positives. Here, verification incorrectly reports that the design has passed a property. If exact
abstractions of M cannot be found, conservative abstractions may be desirable. This is particularly true for
safety critical situations where it is important to insure that M has no bugs with respect to P . Aggressive
abstractions are useful if one simply wants to find real bugs in a design, and thus is willing to trade coverage

for greater efficiency in verification. They may be necessary because formal verification may blow up, in
which case an aggressive abstraction may give better coverage than simulation.

A particular type of automatic abstraction technique, called finite instantiations, has been used successfully
for abstracting certain classes of ICS Model.

Definition 2.6.4.1 Let amodel M not have any uninterpreted functions or uninterpreted predicates. The k -
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ary finite instantiations of M, denoted M X is formed by replacing all integer variables with variables that can

take a range of values from 0, ..., k- 1.

Chapter 3 will discuss finite Instantiations of ICS Models in more detail. Table 1, however, lists different au-
tomatic abstraction techniques for classes of ICS Models that have been published in the literature [HB9S5,
HIKB96, HDB97]. The table columns include the name of the class, the datapath functions allowed in the
class, the types of predicates allowed on data, the types of properties that can be verified and the type of ab-
straction technique that can be used.
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Table 1: Abstraction Techniques for ICS Models

Name Eizp;m Datapath Property tobe | Abstraction
Functions Predicates verified Technique
_—_—_——————eeeeeeeeeeeee—————— e e e
DIC DM, CC none General LTL | FI(EA)
properties
built from
x=y
[HDB97]
DSSC DM, CC x=y, PA FI(EA)
x= cl,x<d jt
(x mod ’”k)) <r
(x mod ’”k)) =T
DSSC CcC x=y,x<y PA FI(EA)
x= cl,x<d i
(x mod mk)) <
(x mod mk)) =T
DCC DM, CC,UF | none x = term Sub-formula
decomposi-
tion/exact
abstraction
DCC DM, CC, none if b = 1 then | Linear
UF x=y Expansion/
aggressive
abstraction

The following terms are used in the table above:

DM - data movement gates
CC - constant creators
FI - finite instantiations

UF - uninterpreted functions

EA - exact abstraction
PA - property automata

DIC - data insensitive controller
DSSC - data semi-sensitive controller
DCC - data computation controller
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Chapter 3
Finite Instantiations: Improving the Bounds.

3.1 Introduction

Depending on the type of the system to be verified, verification can be performed by first replacing integer
variables in the datapath with finite variables with ranges as small as only a few values. This type of automatic
abstraction technique for ICS models is called fimite instantiations. Once a system is finitely instantiated, tra-
ditional state exploration algorithms can be employed to perform reachability analysis. A property of the
system can be verified by either language containment [HSIS94] or model checking [BCMD90, VIS96].
There are three primary advantages of using finite instantiations. First, the infinite state space of the system
can be abstracted (with respect to the property to be verified) to an equivalent finite state space. Second, since
many finite instantiations produce exact abstractions, o accuracy is sacrificed when verification is performed
on the instantiated model. Finally, unlike ICS symbolic simulation, finite instantiations allow traditional ver-
ification engines to be used to perform reachability analysis and language emptiness checking. Thus, previ-
ously well studied techniques and software, developed for verification of C/S models, can be leveraged when
performing the verification of systems modeled with ICS using finite instantiations.

In this chapter, three new results are presented which give bounds on the minimum number of values needed
in the datapath to accurately verify certain types of ICS Models. In Section 3.2, it is shown that for Data Semi-
Sensitive Controllers (DSSC'’s), where only predicates of the form x = y are used, the number of values
needed in the integer datapath can be reduced significantly from what was earlier reported [/HB95]. Section
3.3 introduces a new abstraction technique, called data shifting derivations, that allows the bounds given in
Section 3.2 to be reduced even further. Finally, in Section 3.4, a previously open problem is solved by show-
ing that verification of DSSC’s with predicate x < y is decidable, and an exact data shifting derivation exists.
This result is important because in [HB95] it was proved that no finite instantiations exist for this type of con-
troller. Proofs and lower bounds are given for the approaches in each section.

3.2 Bound Reductions for DSSC’s with x = y Using Finite Instantiations

A Data Comparison Controller, as shown in Figure 3.2.1, is a DSSC that can move integer data around in
the datapath and perform equality comparisons on such data. The datapath can contain integer variables, in-
teger latches, data movement gates and equality predicates. Communication from the datapath to the control
is performed via integer equality predicates. Communication from the control to the datapath is performed
via finite control signals fed to integer data movement gates. Previously, it was shown that for these types

of controllers, n integer values were needed to verify language emptiness, where n is the number of integer
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variables in the datapath. In this section, we prove that this bound can be reduced further to k¥ values, where

k is the number of constant creators and integer latches in the datapath. The intuition for this reduction can
be seen by making the following observations. First, the control is only sensitive to the relationship between
integer variables in the datapath and not to the exact values these integer variables may take. For a given set
of assignments to integer variables, the control can only distinguish between assignments where all integer
values are distinct, assignments where all integer values are the same, or any other combination of equal/non
equal predicate values applied to integer variables. Second, at any given state, there can be only a finite num-
ber of integer values in the datapath, since there are only a finite number of integer variables in the model.
Finally, for data comparison controllers, the datapath can move data around but it cannot transform it (there
are no interpreted or uninterpreted integer functions in the datapath), so the number of latches and constant
creators dictate how may integer values can exist in the datapath,

A Data Comparison Controller is a DSSC
with predicate x = y. The datapath
contains only data movement gates,
equality predicates and integer latches.

Figure 3.2.1: A Data Comparison Controllers.

A bound can be obtained by noting that control behavior is preserved as long as the number of values in the
instantiated system is equal to, or greater than, the maximum number of distinct integer values that can be in

the datapath at any given time. By proving that this number is at most &, the correctness of performing ver-

ification using k -ary finite instantiations follows.

Lemma 3.2.1 Let M be a data comparison controller, with k integer latches and constant creators. No more

than k distinct values can exist in the datapath at any given time.

Proof The only gates in the datapath, other than latches or constant creators, are data movement gates. If an
integer variable, x, is the output of a data movement gate, it must, by definition, be equal to one of its integer

inputs. By using the operational semantics of ICS models, the value of x can be traced back to its source:
either a constant creator or an integer latch in its transitive fanin. Thus, the value of all integer variables must
be equal to a constant creator or an integer latch (QED).

Theorem 3.2.1 Let M be a data comparison controller with k integer latches and constant creators, and

M, its k -ary instantiation. Then L(M) = @ if and only if L(M =9
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Proof The proof follows directly from lemma 4.1 in [HB95]. The bound in the proof for lemma 4.1 is equal

to the number of distinct values in the datapath at any given time. By lemma 3.1, this values is equal to k
(QED).

Similar bound reductions can be made for lemmas 4.4, 4.5, 4.6 and 4.7 in [HB95].
3.3 Bounds for DSSC’s with x = y using data shifting derivations

The finite instantiation techniques used in Section 3.2 and reported in [HB95 Jare based on the fact that there
can only be a distinct number of integer values in the datapath at any given time. In this section, a new au-

tomatic abstraction technique is introduced, called data shifting derivations, that still requires k values for

non-state integer variables as in Section 3.2, but only r of these values for integer latch variables, where r is
the number of latches in the datapath. This optimization can be performed by noting that at each state, ¢ new
values can be introduced into the system (where ¢ is the number of constant creators). Since it is possible that

all of these new values are distinct from what is stored in the latches, k& = r + ¢ values are needed in the

datapath as discussed in 3.2. However, when the system performs a transition from a state s; toastates; ;.

only r values will be assigned to the next state variables in state s ;- The range of the integer latches can there-

fore be reduced to take values between 0 and r - I by “packing” the data given at the output of the next state
functions. In order to facilitate this data shifting, the transition relation of the datapath has to be modified.
The advantage of this approach is that it can reduce the number of reachable states in the abstracted model,

since each datapath state variables has a range of r instead of k.

movement control [ data
Data shifting derivations are performed by insert- : * predicates a%‘;le:g,em &
ing a data shifting function B g Detween the next predicates
state functions in the datapath and their corre-

sponding datapath latches. The integer latches ’ ]
variables can then be given arange of I . All other : @ ]

‘ges

datapath variables are given a range of k .

dataj
latc

---------------------

Figure 3.3.1: Data shifting derivations

The reductions that data shifting derivations provide can be helpful when performing explicit state explora-
tion. This is because the complexity of this method is a function of the number of states in the system. How-
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ever, the advantage of this approach for BDD-based reachability techniques is less clear. Since the transition
relation of the datapath has to be modified in the derived model, the size and complexity of the BDDs needed
to represent this relation may grow. On the other hand, the reduction in range of the datapath state variables
may reduce the size and complexity of the BDDs for the reachable sets. Experiments need to be performed
to determine if and when these abstractions are useful.

The data shifting derivation technique is first created by constructing a & -ary finite instantiation of M, M &

as described in the Section 3.2. Next, as shown in Figure 3.3.1, a data shifting function, B eq’ is inserted be-

q
tween the datapath next state functions in M i and their corresponding latches. Finally, the domains of the

datapath latches are reduced to r. The formal definition of this procedure is given below.

Definition 3.3.1 B eq is any multi-variable output function B e q:kr — 1" that is defined such that the fol-
lowing two conditions hold. First, the values that B eq assigns to the integer latch variables,

Y = {yo, s Yp_ I} , must always be less than r. Thus, given a set of input variables

X = {xo, X __ 1}, where Vi, x; <k,and Y = Beq(X) then Vi, ¥;< r . Second, equality must be pre-
served between all input variables and output variables: Vi, j, Y=y j if and only if X; = X;. Figure 3.3.2

J
presents a graphical representation of a B eq shifting data.

¥; values ch:lu'ﬁl data values assigned to the vari-
ables 78 i<r (where the x; variables have
been assigned at values between 0 and k )and

B places the results in the y; variable’s (where
€q

\\\t\ cach variable is assigned values between 0
r——0—
r

] ]
|
|
I .
o —© L X; values ::;; :; f;“la:,:':;: wn;“?;::z
k ables. Note that order between values does not

. . have to be preserved, i.e. X <x; does not im-
Figure 3.3.2: a B, function. ply that y<y;. !

()

Formally, a data shifting derivation is defined as follows:
Definition 3.3.2 A data shifting derivation, M B.,’ can be constructed from M, a DSSC with predicate only
@

of the form x = y, as follows:

(1) Create M k"



(2) Insert a data shifting function, p eq’ between the next state functions in the datapath
and their corresponding latches.
(3) Set the range of the datapath latch variables to take on any value from 0 to r— 1.

(4) Use the exact same fairness constraints as given in M, since they are placed only on the

control variables.

(5) The initial states of M, are computed by taking each initial state in M, and
BCQ k
applying B eq to the datapath variables assignments such that

each has a value less than r. The control component of the initial states remain the same.

Theorem 3.3.1 proves that this data shifting derivation provides an exact abstraction when checking for lan-
guage emptiness.

Theorem 3.3.1 Let M be adata comparison controller with r integer latches, ¢ constant creators and M B
eq

its data shifting derivation. Then, L(MB ) = (@ ifand only if L(M) = @.
eq

Proof Let’s assumethat L(M) # @ , such that there exists a fairrun ¢ = 5SpPpap Sy Ppay ... in M
where each S; P a; triple is an assignment to the latch variables, integer predicate variables and integer non-
state variables, respectively. It will be proved that there exists a fairrun € = § p8pSyd,, ... in

M B where the following two conditions hold for all i.
€q

(1) The assignment of values to the control (finite) variables are the same for both s o Pp ai and § » a i Note

that there is no p ; in M B, * since it has no explicit integer predicate variables. Since the fairness constraints
eq

of M and M B are the same, by showing that the assignments to the control variables are the same for both
eq

e and é then ¢ will be proven fair.
(2) The assignment of the datapath variables in & is made such that equality between assignments is main-

tained. Let # be the number of datapath variables and O it Oy i &0’ e ~n-1, ; be assignments

to datapath variables in 5pa; and Ei’ &i ,respectively. In addition, let Op jooos Oy g i

be the assignment

to the new variables introduced by Beq.Then forall k, j<n,if & ; = &j jhenoy =0, .1 .
td ’ t4 ’ pi
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The existence of & can be proved as follows:

Fori = 1,wehaves ;= B e q(s 1) , which by the definition of B eq implies the above two conditions hold

for 5y and 5

For any i, given a state .'s". that satisfies the above two properties, there exist an &i such that all variables (let’s
exclude, for now, those created by the introduction of eq ) also satisfy the above two properties. This can be
shown by induction on the gate graph associated with M 5eq .
Assume that there are m gates and that the hypothesis holds for variables of gates 8 fork< 1. Note that

gates associated with B eq will come last in any topological sort of the gate graph of M, B Thus, assume
€q

also, that g 1 is not one of those gates. We have the following cases.

g 1 is a finite table in the control. Using the induction hypothesis and property 1, its output is the same
value that was given to it in a ;-

Qg I is an equality predicate. By property 2 and the induction hypothesis, its output will have the same value
asin q;.

OF4 I is a datapath input. First, let’s define a predicate, U e’ associated with the run e, that gives the inter-

section of all the predicates in e,i.e. U e = H p;ce. By the induction hypothesis and property 1, if a;
Vi

assigns g i the value o ; and there is a datapath latch value or some other previously processed gate g i that

was given the value 0 i where o ;=0 iI , then give to 8 the value &k i Note that only & such
» » » U ¢
e

values are needed.
OF4 ; is a datapath data movement gate. Assign it a value equivalent to one of its datapath inputs. By the

induction hypothesis and property 1, this value corresponds to the one given to g 1 ina Iz
If the two properties hold for state .'vi , then they must also hold for the state § i+l This is because:

(1) the values assigned to the control next state functions at Ei are the same as the values assigned to the con-
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trol present state values at Ei + 7+ Thus, property 1 will be preserved.

(2) The values assigned to the datapath next state functions in M, B (the output of B eq ) are assigned such
eq

that property 2 is preserved. This implies that if o, 0, ; are assignments to the next state functionsin M ,

if

and &W’ i &x’ ; are assignments to the corresponding next state functions in M, Beq , then 0 ;= o, ; ,
i

andonlyif &, ; = @ x, i- Note that only r values are needed, since there are only r state variables.

The reverse direction of the proof is similar and not shown here.
(QED)

3.4 Bounds for DSSC’s with x<y using data shifting derivations.

In this section, it is proven that checking for language emptiness of DSSC’s that use predicates of the form
x = y and x<y is decidable and that an exact data shifting derivations exist. In /HB9S5], it was shown
that there exists such a DSSC controller, M , with a non-empty language, where all its finite instantiations
had an empty language. M only accepts runs that consist of infinite sequences of increasing integers.
Since the finite instantiation associated with this machine can only accept runs consisting of a finite
sequence of increasing values, M X cannot preserve all control behavior of M and hence no exact finite
instantiations exists. When dealing with DSSC’s with x = y and x <y predicates, note that at each state,
¢ new values can be introduced into the system (where ¢ is the number of constant creators). Each new
value, can be 1) equal to one of the values stored in the latches, 2) between two values stored in the latches,
3) less than all values stored in the latches, or 4) greater than all values stored in the latches.

Intuitively, our approach is similar to that presented in Section 3.3. Enough values are allowed in the datap-
ath such that each of the above cases can occur. Data is then shifted at the next state functions so that these
cases can occur again in the next state. Since we are using the predicate x <y, a new function, B j¢ »is intro-
duced that guarantees that there are (1) always at least ¢ values in between any two distinct assignments to
latch variables, (2) there are at least ¢ values greater than any assignment and (3) there are at least ¢ less
than any assignment. Thus, the total number of values needed in the datapath are ¢ = c(r + I) + r (where
r is the number of datapath latches). Unlike the Section 3.3, all datapath variables are instantiated with the
same number of values (¢ ). The advantage of this approach is, of course, that it allows an exact abstraction
to be performed on DSSC’s with predicates of the form x <y where finite instantiations cannot be used.

Definition 3.3.1 B ;; is any multi-variable output function f§ It:'r -1 thatis defined such that the fol-
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lowing four conditions hold.

(1) The values that Bk assigns to the integer latch variables, ¥ = { Yo ¥y 1} , must always be greater
than ¢ - 1 and less than ¢ — ¢ . Thus, given a set of input variables X = {xo, . 1} , where Vi, x;<t,
and Y = B“(X) then Vi,c-1 <y;<t-c.
(2) Equality must be preserved between all input and output variables: Vi, j, y ;=Y f if and only if
x‘- =X j o
(3) Order must be preserved between all input and output variables: Vi, j , ¥;<y j if and only if
x;<x j -
(4) There should always be at least ¢ values between any two distinct assignments to output variables: Vi, j ,

y;<y j if and only if y i~ ¥;>c . Figure 3.4.1 contains an example of Bh shifting values.

|<—c ~>I
r ,. —. 1 y; values Butlu'ﬁ: data values assigned to the vari-
I ables xi,i<r(wh¢nlhc x‘.vau‘ablahan
been assigned values between Oand t-1)
/ \ I B audplacaﬂnnndtxinﬂwyivaiablu
] It (where there is a distance of at least C be-
‘ bxi values tween all distinct assignments). Bh preserves

equality and order between the set of x; vari-
ables and corresponding y; variables

ﬁ
N

t-c-1 t-1

Figure 3.4.1: the B, function.

Formally, data shifting derivations for DSSC’s with predicates x<y and x = y are defined as follows:
Definition 3.4.2 A data shifting derivation, M Bl , can be constructed from M, a DSSC with predicates of
t

the type x<y and x = y, as follows:
(1) Create M.

(2) Insert a data shifting function B It between the next state functions in the datapath

and their corresponding latches.

(3) Use the same fairness constraints as in M , since they are placed only on the control

variables.

(4) The initial states of M Bl are computed by taking each initial state in M and applying
4
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B  toit.
(4) The initial states of M, BI are computed by taking each initial state in M It and
t

applying B ;¢ 10 the datapath variables. The control component of the initial states

remains the same.

Theorem 3.4.1 proves that language emptiness checking on DSSC with predicates x <y and x = y is decid-
able and that data shifting derivations will always provide an exact abstraction when performing this check.

Theorem 3.4.1 Let M be a data comparison controller with predicates x<y, x = y, r integer latches and

)=2 it

¢ constant creators.Let t = ¢(r+ 1) +r and M, BI its data shifting derivation. Then, L(MBI
4 1

and only if L(M) = @.

Proof Let'sassumethat L(M)+#@ and there exists a symbolic fairrun e = s pPpo r S Ppr Gy ... i0

M whereeach s 2 P9 triple is an assignment to the latch variables, predicate variables and non-state vari-

ables, respectively. It will be proved that there exists a fairrun € = § 1A pSp g ... in Mﬂl where the
t

following two conditions hold for all i.

(1) The assignment of values to the control variables are the same for both 5p P ai and .'c'i, i'z,-. Note that

thereisno p i in M Bl , since it has no explicit predicate variables. Since the fairness constraints of M and

t

M BI are the same by showing that the control variables in ¢ and é are the same, the run & will be proven
t

fair.

(2) The assignment of the datapath variables in & is made in such a way that equality and order between as-

signments is maintained. Let n be the number of datapath variables and O s Oy _p i

a, j» +++» @, _; ; bedatapath assignments to spa; and Ei’ @, » respectively. Let 0y s @ be the

n+r,i
assignment to the new variables introduced by B, . Then for all k, j <n, if o ;= i is valid then
¢ ’ pi

“k,i =0, i‘Alsolf“k,i<“‘,i

i, y is valid then &k,i<a',’ .

L )

To prove the existence of €, observe that the predicates in e may only imply a partial order on the symbolic

values assigned to datapath variables. The run €, however, can only produce a total order on assignments to
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the datapath variables, since only concrete values in M 51 are used to represent datapath behavior. Thus,
t

it must be shown that assuming a total order on symbolic values in the datapath will not change the assign-
ment of any values to variables in the run e . To show this, define a predicate, U o' that gives the intersection

of all the predicates in e, i.e. U e = H p;ee. Next, define another predicate, 0e , that is constructed as
Vi
follows:

MLet O, = U,.

(2) For each @, 0L, that has been assigned to integer variables in e, if

O,- ((aI < “2) v (al = a2) v (“I > az)) is not valid, then arbitrarily choose one of these, say

o, = ay,andlet ¥, = U, A () = 0,).

Note that U ¢ Tepresents a total order on all the ICS terms assigned to variables in the run e . Let’s now assume

that for some state Spp;in e that p; = f]e . Also, let 3, @ . be the assignment of state and non state vari-

ri
ables for all successor states j (i < j). For all assignments Sj, a]. it must be true that 3j = sj and aj = aj.
This can be argued as follows. Assume that this is not true. This implies that at some state 3 Ik apredicate gate

0 = g(i) is executed such that pj—o = b buti)j—w = b (b = 0 or b = 1). Without loss of gener-
ality, assume that this gate executes the predicate o 1<% Therefore, p j —»0p <0, is valid. However, if
this were true, it would imply that U e 0y <0y isvalid. Since U e P is valid implies that U e P
is valid for all predicates p, we have a contradiction.

Let’s nowdefine therun & = 3;,a;, p;, 35, @5, P, ..., such that for all i, §; =s;, 8; = a; and

P; = U,.Observe that 2 preserves both properties 1 and 2 with respect to e .

The existence of € can now be shown by performing induction on the length of the run 2 and showing that

€ preserves both properties 1 and 2.

For i = I,wehave§; = B 11(3 1) » which by the definition of B,, implies the above two conditions hold

ofsl andsl.

For any i, given a state § f that satisfies the above two properties, there exist an @ i such that all variables (let’s

exclude, for now, those created by the introduction of B 1 ) also satisfy the above two properties. This can be
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shown by induction on the gate graph associated with M ﬂl .
t

Assume that they are m gates and that the hypothesis holds for variables of gates g i for k<l .Note that
gates associated with B;, will come last in any topological sort of the gate graph, Thus, assume also, that g i
is not one of those gates. We have the following cases.

(1)g ! is a finite table in the control. Using the induction hypothesis and property 1, it is assigned the same

value that was given to it in ai.

2)g 1 is an equality predicate. By the induction hypothesis and property 2, its output will have the same value
asin 2 i

3)g 1 is aless than predicate. B y the induction hypothesis and property 2, its output will have the same value
asin &i .

g 1 is a datapath constant creator. Assume that z 1 is the number of datapath constant creator assignments

o ; givenby ai such that 0y <y il and z, is the number of datapath constant creator assignments
t] t] td 08

%y ; such that 0y <0y il . . Four cases for &) may occur.
e

4a)Ifa i assigns g i the value 0 i and there is a datapath latch value or some other previously processed

gate g, , that was given the value Oy i where o =0l then give to g the value &k, i
e

(4b) There are two datapath latch values, o. i and O ;o assigned in 3 f such that o i is the greatest value

where aj, i< “l, i o is valid and ak, i is the least value where al, i< “‘k, i

is valid. Assign &, ; any
e o, ,

value where &j j+2)<0; ;<@ ;-z holds. Notethatonly ¢ such values are needed between &j ; and

& ;-

(4c) There is no datapath latch value, o j i,where o j <%l . but there exist at least one datapath latch

o,

value o ; assigned in Si such that o <0y is valid. Let o ; be the smallest such value where this

o,

is true. Assign &l ; @ value such that zI-I<&Li<c-zu.Note that only ¢ such cases may occur.
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(4d) There is no datapath latch value o i, i where o ;< is valid, but there exist a datapath latch

o. .
1
Oe

value o, . assignedin 8. suchthat &, .<a, .| isvalid. Let o, . be the largest such value where this
k, i i ki i o K, i
e

is true. Give &, ; @ value such matt—c+zl—1<&, i<t-zu.Againnotethatonlyc such cases may oc-

cur.
It is thus evident, that only ¢ = ¢(r + 1) + r values are needed.
(&)F i is a datapath data movement gate. Assign g i the value equivalent to one of its datapath inputs. By the

induction hypothesis and property 1, this value corresponds to the one given to g i in a,. .
If the two properties hold for the state 3,- , then they must also hold for the state Ei 4+ ] This is because:

(1) the values assigned to the control next state functions at .'ii are the same as the values assigned to the con-
trol present state values at E‘. + 7+ Thus, property 1 will be preserved.

(2) The values assigned to the datapath next state functions in M B, (the output of B,, ) are assigned such
t

that property 2 is preserved. This implies that if a, » 0, ; areassignments to the next state functionsin M,

and &w P &x ; are assignments to the corresponding next state functions in M ﬁz , then if
’ ¢ ‘

@, = av,il

u, i then aw,i = “x,i andlfau’i<a .

Vi
b;

then &, ;<@ ;. Note that only ¢ values are

b,
needed.

For completeness, the reverse will also be proved. Assume L(M BI ) #@ , such that there exists a fair run
t
€ =5,8,5,4a,,..in My whereeach 5, a. is an assignment to the latch variables and non-state vari-
rer°2*2 B It e

ables, respectively. It will be proved that there exists a fairrun ¢ = s PPp8pSpPyty ... in M where

1
the following two conditions hold for all i.

(1) The assignment of values to the control variables are the same for both 5pPp ai and E? iii.
(2) The assignment of the datapath variables in 5pPp ai is made in such a way that equality and order be-

tween assignments is maintained. Let ao, FREL M and “0, s O 1i be datapath assignments to

Spa; and x-i, &i , respectively. Let &n oo &n +ri be the assignment to the new variables introduced by

33



ﬂh.'fhenforallk,j<n,ifak,i = (lj i then ak,i = aj,ip. .AISOif &k,i<&j,i then

4

0, .<0O. .
k’ 1
1 ] 'IP‘-

The existence of the run e can be proved as follows.

For i = 1 (forallk, j<n,if &k,l = &-,1 thenlet p, = p; A (ak,l = j,I) (by definition of
DSSCs, all assignments to latches are fresh constants). Also, if &k, 1<¢ L then let

Py =p "(“k,1<°‘j,1)'

The resulting pair, 5p D is a valid initial state of M , since each initial state in M Blt was constructed such

that the above two constraints were valid.

For any i, given a state s j» P; satisfying the above two properties, there exist an a; such that all variables
also satisfy the above two properties. This can be shown by induction on the gate graph associated with M .
Assume that there are m gates and that the hypothesis holds for variables of gates 8 for k<! . Also, let
p'.' be the insertion of p i and all the predicates created thus far during the symbolic execution of this gate
graph. If ¢ I is

(1) a finite table in the control, then it is assigned the same value that was given toitin & 50 using the induction
hypothesis and property 1.

(2) an equality predicate, then its output will have the same value as in a; , by the induction hypothesis and
property 2.

(3) a less than predicate, then its output will have the same value as in a; by the induction hypothesis and

property.
(4)a datapath constant creator, then assign it a new fresh constant, ¢ i If &i assigned it to a value equal to one

of the variables processed so far (let’s say a ICS term p corresponds to that value), then let

p; = p‘-' A(c j= |) . If the value is distinct from all other terms processed thus far, then for each such term
K, let pi' = pi' A (cjar:u) . If the value is less than all terms processed so far, then for all such terms, p,
assign p/ = p; A (c ;< W) . Similarly, if the value is greater than all term processed thus far, assign

p{ = p; A (c > I) . If the value is distinct, but between two terms, p ; and p, , then assign
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(5) a datapath data movement gate, then assign it a value equivalent to one of its datapath inputs. This value
will be equivalent to the one corresponding assigned i a i by the induction hypothesis and property 1.

If the two properties hold for the state Sp Py then they must also hold for the state SierPiv1 (where
Py =P ‘.' at end of the symbolic execution of the gate graph). This is because the values assigned to the
control and datapath next state functions at Spp; are the same as the values assigned to the control and data-
path present state values at S;erPiv1 (QED)

I
I | This circuit takes a fresh constant given by input
<

| I and assigns it to latch L, ifits value is between
L the terms stored in L]ansz.Othemi:e,ﬂn
2 current value ofLI will not change. Tkis process
I_| | - is repeated at every state. A run consisting of an
infinite sequence of increasing values that are
J| 2 greater than ¢ and less than c., is accepted by
this circuit. This run, kowever, kas no concrete in-
1 terpretation, since between any two integers there
can only be a finite number of values. Although
‘ this run will not be accepted by any finite instanti-
I ation of this circuit, it will be accepted by its data
shifting derivation.

Figure 3.4.2: An ICS Circuit accepting runs with
no concrete interpretation.

It is important to note that some ICS models accept runs that do not have concrete interpretations
[HIKB96]. A concrete interpretation of the behavior of an ICS Model can be performed by first replacing all
uninterpreted functions (if any) by interpreted functions, and then taking each fair run accepted by the sys-
tem and replacing all ICS terms with their appropriate integer values. For example, consider the circuit in
Figure 3.4.2. This ICS circuit takes two symbolic integers ¢ 7 and ¢, and can accept an infinitely increasing
sequence of symbolic integers that are between these two values. Such runs of this system do not have a con-
crete interpretations, since between any two concrete integers, there can only be a finite number of values in
between. Its data shifting derivation preserves this behavior.
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Chapter 4

Reachability Analysis of ICS Models

4.1 Introduction

For those cases where equivalent finite instantiations cannot be found, ICS reachability analysis can be
used to generate the ICS state space. A traditional state exploration based verification tool can then be used
to verify properties on the set of reachable states generated. Since some ICS models may have an infinite
number of reachable states, ICS reachability analysis may not always terminate. In such cases, however,

reachability can be performed for a finite number of steps (let’s say n ). Partial verification can then be
used to show that no error trace up to length n exists. Since, in practice, most error traces are short, this

may be useful for finding bugs. In addition, partial verification can provide a level of confidence in a
design (higher coverage) that may not be available by regular simulation,

ICS reachability can also be used for performing processor verification. Here, one would like to verify that
a pipelined microprocessor implements its instruction set architecture. Burch and Dill [BD94] presented a
unique approach for solving this problem, and ICS reachability can be used to approximate their approach.

An overview of the ICS reachability algorithm can be described as follows. The set of all reachable states
generated by ICS symbolic simulation can be represented using Multi-valued Decision Diagrams (MDDs)
[Kam90]. To represent values (ICS terms) assigned to integer latch variables, they are encoded using a
finite domain, i.e. a set of bits. This is possible, because, although the set of all ICS terms is infinite, the set

of all ICS terms that have been assigned to latches after n steps of reachability is always finite. Transitions
between ICS states are computed using a combination of implicit techniques for the control, and explicit
techniques for the integer datapath and memory. Assume that b is the set of predicates going from the
datapath to the control, and w is the set of control signals going to the datapath (both b and w are bit

vectors). For the control portion of the design, an MDD is used to represent its transition relation, and the
standard MDD image computation is used to get an approximation of the possible next control states. It is

an over approximation since it is assumed that b and w are free inputs and outputs, respectively, of the
control part. For each next state computed using the image computation, the corresponding (b, w) pair
that made the transition possible is recorded. For the integer datapath, the next state is computed through
a special form of symbolic simulation. Here, the integer datapath is simulated using each (b, w) pair and
current state assignments (ICS terms) to integer latches, predicates, and memory. If the values for b and

w are not consistent with the datapath, then the pair is invalid and thrown out. Finally, the next states in
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the datapath are combined with the appropriate next states in the control to form a composite set of next
states of the machine. Note that by throwing out invalid (b, w) pairs, we have reduced the over
approximation to an exact computation. This composite set of next states is again represented using an
MDD. Figure 4.1.1 provides a graphical description of this process.

This chapter focuses on an analysis of the ICS reachability algorithm, the implementation of our first
generation ICS reachability tool, and experimental results generated by the tool. The outline for the rest of
this chapter is as follows. A detailed explanation of the ICS reachability algorithm is first given in Section
4.2, In Section 4.3, experimental results, produced by the tcol, are presented. In particular, results are given
for computing the set of reachable states on a simple design. A major bottleneck associated with this
algorithm is also discussed. Finally, in Section 4.4, it is demonstrated how ICS reachability can be used for
solving the problem of pipelined processor verification, by approximating the approach described in
[BD94]. Experimental results are given for two simple pipeline microprocessors, and comparisons to
other approaches are made.
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ICS Reachability is described as follows: (1) the reachable states at step i are represented using an MDD. Assume that the
variables x5, yp, %y, and y; are the present and next state variables of the finite control and integer datapath, respectively.
Here, ICS terms assigned to integer latches, memories, and predicates are encoded into MDD variables. (2) The communication
variables, (b, w), are assumed free and the transition relation, TF' of the control (also represented as an MDD) is used to get the
next control states, as well as their corresponding (b, w) pairs. (3) While ignoring the control, each integer state and (b, w) pair
is simulated through the datapath. Invalid (b, w) pairs detected during simulation are thrown away. (4) New ICS terms created
during simulation are re-encoded, and an MDD representing the composite control and datapath next states is created. (5) The
next state MDD variables are replaced with present state MDD variables to get the reachable states atstep i + 1 .
Figure 4.1.1: ICS Reachability, Step by Step.
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4.2 Reachability Analysis Algorithm

The algorithm presented in this section is based on the algorithm of [HB95]. Recall that an ICS state
contains three components: assignments to latches, predicates and memories. In order to represent the set
of reachable states as an MDD, three tables are used to encode ICS terms assigned to the datapath state

variables, H I is a table of all ICS terms which have been assigned to latches, and their corresponding

MDD encoded values. An example is given in figure 4.2.2,

ICS term MDD Encoding |  The term table, H , stores each
oy ICS term that has been previously
R f(a) 0 assigned to an integer latch during
a symbolic simulation. In general, the
1 nrumber of all possible ICS terms is
8 a+b infinite. However, since the
8 symbolic simulation algorithm can
e f(f(b)) 2 only can exscute a finite number of
2 steps, this table is always finite.
Y 3 . 3 The size of the table is expanded as
more terms are assigned to latches.
Figure 4.2.1 The Term Table H i

H p is a table of predicates that have been enumerated thus far and their MDD encoding. Finally, H M is2

table of memories encountered in the states enumerated so far. Here, each memory is a table of pairs of

ICS terms. Memories and predicates are encoded in a similar fashion to integer latch assignments in H I

where each unique memory or predicate is given a unique finite value. Note that since these three tables
are continually expanding, the range of the MDD variables representing these encodings also has to
expand. The MDD representing the reachable state set consists of one MDD variable for each finite latch,

one MDD variable for each integer latch that ranges over all encodings in H > one MDD variable p
representing the state predicates, ranging over the encodings in H p»and one variable m representing the

state memory and ranging over all encodings in H M-

In the following, assume that the variables x Fr YF 5 and y 7 are the present and next state variables of

the control and datapath, respectively. The transition relation of the finite part, denoted T Flx rIp b,w),

is computed in a fashion similar to C/S models: take the intersection of all finite tables in the control. The

transition relation of the integer datapath, denoted T';(x;, ¥,, b, w), must be computed incrementally by
nre’r
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the algorithm since it may consist of an infinite number of transitions. If R '.(x % I) is the set of states

reached after i steps, then

Ri+1(yF'yI) = EIbEIwaIEIxF(TF(xF,yF, b, w)ARi(xF,xI)ATI(xI, Yp b,w))
By rearranging the terms it can equivalently be expressed as

Ri+ I(yF,yI) = 3b3w3xI(3xF(TF(xPyP b, w)ARi(xF,xI))ATI(xI,yI, b,w))

The symbolic simulation algorithm proceeds in a fashion similar to the operational semantics described in
Chapter 2. First, the function U i(y P Xp b,w) = BxF(TF(xF, e bw)a Ri(x P "I)) is computed.

This gives all possible next control states, assuming that communication with the integer datapath is free.
Each minterm (x 7 b,w)e 3y rU i(y P Xp b, w) is then simulated through the integer datapath,

Inconsistent (x I b, w)’s are ignored, and the remaining minterms are used to compute the integer portion

of the transition relation T‘I +1CpYp b, w) , where T‘, + ] Tepresents the set of transitions of the

datapath reachable in i + 1 steps. Ri + 10p ¥p) is then computed using the equation above. The

algorithm is given below.

2. For each (xp, bw)e aypUi(yF, Xp b, w),

2a. Propagate values through the integer datapath. If an integer predicate gate is encountered, then assign it
the value given to it by b, if possible. If not, the tuple 'x I’ b, w) is invalid. Stop value propagation.
2b. If a new ICS term has been assigned to a next state integer variable, add it to H 1 along with a unique encoding.
Extend the range of all integer latch MDD variables.
2c. Add the new integer predicates to the predicate table. If the new predicate table is not in H p then add it to

H p @long with a unique encoding. Extend the range of p .
2d. If the new memory has not been encountered before, add it to H M along with a unique encoding. Extend the

rangeof m.

3.LeIT’

iy 1ZpYpbiw) = Yibawa (Xp YD} Here, y; represents the encoded next state assignments
to latch, predicate and memory assignments generated from step 2 (due to propagation of (X I b, w)).

4. Let Ri+ I(yF’yI) = BbBWHxI(Ui(yF, Xp b, w)A7{+1(xI, Yp b, w)).

The details of step 2 above are as follows.

1. In 2a, if the gate executed represents a predicate Q, then, if @, A ... AQ, = (@ = b,,) is valid,
1 k (4]
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allow propagation to continue, If, however, Q A A (4] ;> Q= b_Q) is valid, then stop propagation. If
neither are valid, thenlet Q = b 0 and add it to the predicate table. Note that when propagation is started,
the predicate table is taken from x L

2. If the gate executed corresponds to a read(x) , find an address y in the memory table such that

QIA... AQk—»(x=y) is valid. If such a case exists, return the data value corresponding to y . Otherwise,

for each address y, where QI A A Qk -»(x=y) is not valid, add a new predicate x = y to the predicate

table and return the data value corresponding to x . The case where all such predicates are false must also
be considered. In this case, add y to the memory table, along with a new fresh constant as the data value.
Return this fresh constant. This case corresponds to reading a location that has never been written too.
Note that when propagation is started, the memory table is taken from x5

3. If the gate executed corresponds to a write(x, d) , find an address y in the memory table such that

Ql A A Qk" (x = y) is valid. If such a case exists, write d to the memory location associated with y .
Otherwise, for each address y, where Q A A Qk - (x+Y) is not valid, add a new predicate x = y to
the predicate table and write d to the memory location associated with x . For the case where all such

predicates are false, add location y to the memory table, with data 4. An example is given in Figure 4.2.2.

4. Our implementation disallows arithmetic functions and predicates. Thus, congruence closure ({/NO8OJ)
is sufficient for validity checking of ICS terms.

write(cs, k)

M, Ms_ :

— = Address] _Data In the diagran to the lef, a
Tm = _* g, _&{e)L write(cy, k) is performed to memory
) 5%55 c’ M,. Since ¢, is not equal to the
P, = 1c.%¢) 3 kK 1 3

1 1772 P4 = {(cj ¢02), (c] #(.’3), (6‘2¢c3)} addresses ¢, and 2 currently stored in

v Ml,aﬂmahavetobeuplond:

M, M; c3=c), c3mcy and cprey#cy.

— This creates three mew paths of

‘A—:d““l :‘)a!a %ressl Da;a propagation, along with the associated
177" - ﬁ-)— memory tables M, Mz, and M ;.

Figure 4.2.2: Performing a write during symbolic simulation



4.3 Experimental Reachability Analysis Results

The algorithm presented in Section 4.2 has been implemented in the VIS environment (/VIS95]), UC
Berkeley's and the University of Colorado’s second generation, BDD-based verification system. In Section
4.3.1, a bottleneck associated with this algorithm is presented. Next, in Section 4.3.2, reachability results
are given for a simple three stage microprocessor, referred to as CMU that was first published in
[BCMD90].

4.3.1 A Major Bottleneck in Computing Reachable States of Microprocessors

There is a significant bottleneck that occurs when symbolically executing memory gates during ICS
reachability analysis. In particular, when writing to or reading from a particular memory location that is
not equal to any other location in memory, all possible locations have to be explored. This can lead to a
case explosion. This is particularly the case in microprocessors, where each instruction generates two reads

and one write. For example, suppose there are two locations a 1 and a, to be read, and there is one

location a 3 to be written. Assume a 1282 and a 3 are all different constants. The ICS reachability
algorithm must consider five possible cases: a,#a,#a3,a; = a,,a; = 43,08, = a3,-and
a; = a, = ay. Let’s now consider the situation where there are n addresses. Here, the number of

cases that have to be considered is equal to the number of sets of subsets of elements of n (denoted p(n)).
In table 4.3.1.1, p(n) is calculated for small values of n . Note that this is a lower bound on the number of

cases, since there may be more memory configurations for each trace. This case explosion is the primary
bottleneck in the algorithm.

Table 4.3.1.1 Memory Configuration Explosion

n 1121314 |5 )16 |7 |8 9

pm) F 11215 ]|15]|52] 2131877 | 4175 | 21707

4.3.2 Reachability Analysis Results

In performing reachability analysis, experiments were performed on the CMU pipeline. CMU is a three
stage pipeline. In the first stage, instructions are fetched from memory and then decoded. In the second
stage, instructions are executed and in the third stage instructions are written back to memory. The ALU is
abstracted away and replaced with a single uninterpreted function. Note that CMU has only memory and
no register file. Although simple, most instructions in CMU can cause a read of two locations and a write
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to a third location. Therefore, after n steps of reachability, at most 32 memory locations are stored
(remember a read can cause the creation of a memory location, if that location has not previously been
written), The results of the experiment are shown in table 4.3.2.1, The columns include the number of
reachable states, the maximum number of memory locations created, the number of present state BDD
variables, the number of ICS terms, and the simulation time (in CPU seconds). The MDD package used in
the ICS reachability tool, encodes MDD variables into a set of BDD variables. Thus, the increase in
present state BDD variables reflects the increase in MDD variable ranges. Note that only 3 cycles were
executed. The experiment was performed on a DECStation Alpha 21064, 182MHz, with 1 gigabyte of
main memory.

Table 4.3.2.1: Reachability Analysis Results on CMU

steps | reachablestates | Max MemOps | PS Vars | ICS Terms Time
_ e —_——

1 12 3 32 16 0.1
2 378 6 45 32 1.6
3 33525 9 73 148 170.8

4.4 Pipelined Microprocessor Verification

The goal here is to verify if a pipelined implementation of a microprocessor implements its unpipelined
specification. The unpipelined version, called the architectural model, represents the instruction set
architecture, which consists of the programmer visible state and instructions. Programmer visible states
includes logical registers, the program counter and memory. In general this model describes how the
programmer should expect the machine to behave for each instruction. Thus, intuitively, what one would
like to verify is that for any sequence of instructions given to both machines, when the pipeline completes,
its programmer visible state will equal the programmer visible state given in the architectural model.

Traditionally, one of the difficulties with performing pipeline verification is mapping pipeline states to
architectural states. The problem here is one of pipeline latency. Although an instruction given to the
architectural model takes only one cycle to complete, it may take several cycles for the pipeline to execute
that same instruction. Thus, unless all instructions take exactly the same number of cycles to complete,
coming up with a state mapping function may be a very difficult problem. Note that in complex
superscalar machines, this mapping task is further complicated by execution of instructions in parallel or
out of order. Burch and Dill [BD94] came up with a novel approach to this problem. Here, the pipeline
itself is used as a temporal abstraction function between it and the architectural model. Intuitively, this is
done by flushing the pipeline after an instruction has been executed. Once the pipeline has been flushed,
then all the instructions in the pipeline have been executed. The technique in [BD94] can be described as
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follows. For each arbitrary pipeline state (denoted old implementation state), the pipeline is flushed. The
flushed pipeline state is then projected onto an equivalent state of the architectural model (denoted old spec
state). It is necessary to flush the pipeline because there may be partially executed instructions still sitting
there. It is very difficult to find out what the equivalent state in the architectural model is while these
instruction are still in the pipeline. Next, an instruction is given to both the pipeline and the architectural
model, starting at the old implementation state and the old specification state, respectively. The pipeline is
then flushed and the resulting state is then projected onto the state space of the architectural model. If the
final two states are the same, then the pipeline is considered correct. ‘This correctness criteria reduces to a
combinational check along two paths i.e. checking the transitions along the two paths are equal given a
subset of states. A diagram of this technique is shown in figure 4.4.1.

Fy(stall)

Fl(stall) hed proj
| Gwe? W w4
Fx(l)* Fy(stall) Fy(stall) — pp— s* Fs(I)
New I > ... iusied new ew Spec
?,::p’ I | impl state — > state

The corvections criteria of [BD94] checks whether the transitions functions along both paths in
the above diagram are equivalent. Along one path, starting for the that state labeled Ol Impl
state, the pipelined is flushed, projected on the spec state space, and an instruction is run. Along
the second path, an instruction is run and then flushed and projected.

Figure 4.4.1 The Burch and Dill Approach.

We have approximated [BD94] by checking whether the sets of states reachable along both paths in figure
4.3.3.1 are equivalent. Note that this is a necessary but not sufficient condition, since although the sets of
reachable states along both paths may be equal, they may be reachable under different instructions. The
arbitrary pipeline state was generated by giving all latches and memory fresh constants, and allows the
control state variables to non-deterministically be given arbitrary values. In practice, for many
microprocessors, the initial set of states has to be restricted. Otherwise, the two functions would not be
equal. An instruction was then given to both the architectural model and pipeline.

Experiments were run on two microprocessors: CMU, as described in Section 4.3.1 and DLX. DLX has a
five stage pipeline. These stages are fetch, decode, execute, memory access and write 5ack. Unlike CMU,
DLX has both a register file and a main memory. In table 4.3.3.1, the results are given for CMU. The table
includes columns for the number of reachable states in the pipeline, the maximum number of memory
operations, the number of present state BDD variables, the number of ICS terms stored and the total CPU
time. The experiment was run on a DECStation Alpha 21064, 182 MHz, with 1 gigabyte of main memory.
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The algorithm was unable to complete for DLX, due to the memory bottleneck described in Section 4.3.1.
Table 4.4.1 ICS Approximation of [BD94] on CMU

reachable states

4.4.1 Comparison to other approaches

Much of the previous work in pipeline verification can be classified as either theorem proving or automatic
methods. Since the technique described in this chapter is automatic, the comparison here will be restricted
to other techniques which are similar to ours.

Multi-Way Decision Graphs (MDGs, [Cor93]). An MDG is a data structure that extends BDDs by
allowing uninterpreted functions to be represented in the graph, This technique, however, does not seem to
have the same capabilities of ICS, since MDGs cannot represent memories or predicates. Note that the
current bottleneck is not the size of the reachable state set, but rather the case explosion that occurs when
executing memory gates.

Comparison with [BD94]. The advantage of [BD94] is that it is more efficient than the algorithm for ICS
reachability presented in this chapter. In addition to verifying DLX, they have successfully applied their
tool for verifying other architectures, including portions of Stanford’s Flash multiprocessor [JDB9S5].
Intuitively, their paradigm is faster and more efficient because it only requires reasoning over two
transition functions. Generating and representing the set of reachable states does not have to be performed.
Our technique is more general in the sense that we compute the set of reachable states and can check more
general properties. But we suffer in efficiency.

The primary drawback with [BD94] is the state invariant problem. Here, the user has to give the set of
reachable pipeline states (denoted old implementation state in figure 4.3.3.1) as an input to the algorithm.
In theory, finding state invariants is as hard as the reachability problem. An example of a need for a state
invariant in pipeline microprocessors occurs because of the load interlock problem [HP90]. In DLX, for
example, ALU instructions are executed in stage 3 and memory operations are executed in stage 4 of the

pipeline. Suppose there is a sequence of two instructions J jand I 5+ where [  Performs a load from
memory to a register R, and / o takes the value in R and uses it to perform an ALU operation. Here, there

is a data dependency between J 1 and 2 and thus executing both instructions at the same time will cause

an incorrect result. DLX does not permit this situation from occurring, and hence, such a state is
unreachable. In a complex microprocessor, there maybe many such constraints.
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Chapter §

Conclusions and Future Work

This thesis has made several new contributions to performing verification in the ICS paradigm. Some of these
contributions are outlined below.

1. A new definition of symbolic languages and automata of ICS Models was proposed. This defini-
tion was given because it was discovered that there was an inherent problem in the criginal definition pre-
sented in [HB95]. This problem centered around the fact that the operational semantics of ICS models allows
behavior to occur in the datapath that may not have a concrete interpretation. In /HB95], operations on the
languages of symbolic automata, such as intersection and containment, was based on the ability to determine
existence of such interpretations. Since we currently do not have a technique for determining which runs in
amodel have concrete interpretations, we felt that a re-definition was necessary. The new definition of sym-
bolic ICS automata and languages was given chapter 2. It was then proved that the language of the compo-
sition of two ICS models is equal to the intersection of the languages of the two individual machines. This
theorem is crucial for verifying ICS models in practice. In addition, Boolean operations on languages, such
as union and intersection, were also redefined.

2. Three new results were presented which give bounds on the minimum number of finite values
needed in the datapath to accurately verify certain types of ICS Models. We showed that for Data Semi-Sen-
sitive Controllers, where only predicates of the form x = y are used, the number of values needed in the in-
teger datapath for verification can be reduced to the number of integer latches and constant creators in the
system. Note that in [HB95] it was shown that the number of values needed was equal to the number of inte-
ger variables in the system. In practice, this new bound can reduce computational time for verification signif-
icantly. Next, a new abstraction technique, called data shifting derivations, was proposed that allows the
number of bits needed in the datapath to be reduced even further, when compared to finite instantiations, Data
shifting derivations is different than finite instantiations because it modifies the functionality of the transition
relations in addition to reducing the range of the integer variables. For DSSCs with predicates of the form
x = y,it was shown that with data shifting derivations, the range of the integer state variables can be reduced
to the number of integer latches in the circuit. Finally, a previously open problem in the verification of ICS
Models is solved by showing that verification of DSSC’s with predicates x<y and x = y is decidable and
an exact data shifting derivation exists. Previously, it was proved that no finite instantiations exist for this
type of controller.

3. Finally, we presented experimental results, produced by the first generation ICS reachability tool.
In particular, results were given for computing the set of reachable states on the three stage pipelired micro-
processor called CMU. Our reachability tool was able to perform symbolic simulation for three cycles before
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our tool ran out of memory. While performing experimental results, however, a major bottleneck associated
with our algorithm was found. This bottleneck was due to an explosion in the number of memory locations
and was the primary cause of our tool running out of memory. Finally, we demonstrated that ICS reachability
can be employed in solving the specific problem of pipelined processor verification. Here, one would like
to verify that a pipelined microprocessor implements its instruction set architecture. In /BD94], Burch and
Dill presented a unique approach for solving this problem. We showed that ICS reachability can be used to
approximate this approach. Experimental results were given for two simple pipelined microprocessors:
CMU and DLX. For the CMU microprocessor, we were able to use our technique to verify its correctness.
For DLX, however, our tool did not complete, due also to an explosion in the number of memory locations
during its symbolic execution.

There are many possible directions that can be taken with this research. Below we outline a few research di-
rections that may show promise.

1. One of the most important directions this research should take is in improving the efficiency of
symbolic simulation and dealing with the memory explosion problem outlined in Chapter 4. Recently, in
[HIBY97], we have developed new techniques for collapsing together ICS states that are equivalent with re-
spect to certain properties being verified. We feel that these new techniques may be very helpful in dealing
with the memory explosion problem and useful in improving the overall speed of our tool.

2. Extend the class of ICS circuits for which automatic abstraction techniques can be performed,
such as finite instantiations and data-shifting derivations. In particular, the problem of proving the property
“when b becomes true, x = y “is still open for circuits where the datapath contains data movement gates

. and uninterpreted functions, but no predicates.
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