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Abstract

Ihe Integer Combinational/Sequential Concurrency (IGS)Model [HB95] uses integer variables, in-
teipreted and uninterpreted integer functions and infinite memory to represoit HatapAthc gymnAtUiig
daupaths ofhardware systems such as microprocessors in this way, verifying the control logic ofsuch sys
tems becomes asimpler computational task. In this thesis, four new contributions are outlined below,
for verifying ICS Models.

First, an overview ofICS Models are given. Inits original definition, the operational semantics of
ICS Models allowed invalid briiavior to occur for which we were un^le toremove in its symbolic language.
Anew definition ofICS sjunbolic languages isgiven such that this inconsistency isremoved.

For acertain class of ICS models, the symbolic representation ofthe be r^laced with
adatapath whose width isas small as one orafew bits. /A8P57 presented an abstraction called

finite instantiations, for po'forming this reduction, and gave a lowerbound on the number ofbits needed. A

new abstraction technique, called data shiftingderivations, isproposed, which has astate spacesmaller than
what can be achieved using fmite instantiations. In addition, an open problemissolved by showing that ver

ification ofacertain class ofICS Models, with predicate *<y. isdecidaWe. In [HB95], itwas shown that no

finite instantiation exists for this class. Finally, for cases wh&e automatic abstraction caimot be p^onned,
ICS reachability analysis can be used to poform verification. In this report, the ofour first
generation ICS reachability tool is presented. Eiq>erimental results are given for verifying two simple micro
processors.
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Chapter 1

Introduction

As the engmeer*s quest to build a fasto-computercontinues, she is forced to employ increasinglymore ad

vanced computer architectural techniques and algorithms in her design. Hiese techniques, some ofwhich

were previously only implemented in expensive siq)ercomputers, can now be found in most desktop micro

processors[HP90]. One of the mostpopulararchitectural approaches used to minimizethe time it takes a

computer to execute a sequential program, is to design computers that can take advantageof instruction level

parallelism. Here, the intuitionis that for somesequencesof instructions, the order in whichthey are exe

cuted by the computer may not change the final result of the program.This addeddegree of flexibilitycan be

exploitedto optimizeprogramexecution time,sinceeach instruction mayrequirea different conq)utational

resource or may take a varying number of clock cycles to complete. Some common techniques that take ad

vantageof this "fine grainparallelism" includeexecuting multipleinstructions simultaneously (superscalar

microprocessors), executing instructions out of orda, completing instructions out of ordo*, andperfonning

branch predication. Designs can be further complicatedby the addition of oth^ architecturalfeatures, such

as preciseinterrupthandling. As a resultof thesecomplexities, the engineertypically has a verydifficult

timeinsuring thatherdesign executes instructions in sucha waythat thecorrect resultis always produced.

In fact, insuring that a computer always sequences instructions correctly candominate itsdesign cycle,and

usuallyresultsin a validation problem that is significantly moredifficult (inpractice) thansimply checking

thecorrecmess of a particular computational element (i.e.checking if thearithmetic logicunit (ALU) in the

datapath addstwonumbers correctly). Thus, most bugsthatoccur during thedesign of a modem micropro

cessor arebecause oferrors in control logicwhere these advanced architectural features aretypically imple

mented [Rho95].

Thevalidation of modemmicroprocessors is currently po'formedvia simulation. Here,the architectural mod

elandtheinq)lementation aresimulated inparallel using acommon setofinstmctions. If,after executing the

sameprogram, the outputof the architectural model diffm firom theouq)ut of theimplementation, thenabug

in the microprocessor exists^ Itis, howev^, mathematically intractable to simulate all possible input se
quences a design maybe subject to in a reasonable amount of time. Thus, in reality, simulation cannot guar

antee the absence of bugs even for small designs.

Formal verification isa body oftechniques and algorithms that allows theengineer tomathematically prove

whether certain properties hold for a design. Verification is complete since it hastheability to show thatno

bugs (with respect tothe property being verified) exists inadesign for all inputs and allsequences ofinputs.

'This may notbe thecaseiftheinstruction setarchitecture allowsfor more thanoneacceptable behavior.



In addition, using BinaryDecision Diagrams (BDDs) [Bry86] technology, designs that have very large state

20spaces(/0 statesormore) canbeverified inonly a few CPUhours/BCMDPft Cou89, rouPOy. These tech

niques arelimited, however, in that they can only handle relatively small designs. Ihis isbecause most au

tomatic verification algorithms work byvisiting, either explicitly ori]iq)licitly, every state of thedesign.

Howevo*, it can beshown that the size ofthereachable state space ofadesign is,inthe worst case, exponen

tial inthesize ofitsdescription. This lilowup"inthe number ofstates iscalled ihtstateexplt^ionproblem.

Inmicroprocessors, this problem isparticularly aggravated bythe existence ofwide dfltflpath elements and

memories. However, sincemostmicroprocessor bugs occur inthecontrol partofthecircuit, feecomputation

alcomplexity oftheverification task canbesignificantly reduced byabstracting away feeleast-error i^one

portion of the design: the datapath. TheIntega Combination/Sequential concurrency (ICS) Model, firstin

troduced in[HB95J, isaparadigm forperforming verification using anabstract representation offeedatapath.

ICS Models useinteger variables, interpreted and uninterp'eted integer functions, integer predicates, and in

finitememory to abstract awayfunctional units, regist^ files, andmemory, thereby substantially reducing

feecomplexity ofthedat^afe. Because abstract datatypes andoperators areused, feestatespace ofsystems

modeled using ICS is, in general, infinite.Despite this, two approachescan still be used for verification.In

certaincases,depending of the type of designandprop^y beingverified, a systemmodeled usingICScan

be automatically abstracted intoaequivalent systemwherefeewidthof feedatapath hasbeenreducedtoonly

oneor a fewbits.Traditional stateexploration techniques can thenbe usedtocheckpropertiesonfeedesign.

For caseswherethis is not possible, ICSreachability analysis canbe usedforverification. Thisalgorithm

uses anovelhybridapproach forgenerating the setof reachable states.Here, BDDsareusedtorepresenttran

sitionsin fee control portion of a design, anda special form ofsymbolic simulation is usedto represent tran

sitions in fee integerdatapath. Sincefee state spacemaybe infinite, reachability analysis maynot always

terminate. However, fee reachablestate set, or an approximation of it, canbe used forcomplete or partial

verification usingmodelcheckingor languagecontainment. This thesismakesnewcontributions to both ap

proaches for verifying ICS models.

1.1 An Outline of this Work

In Chapter 2, ICSModels areformally defined. Theoriginal definition appeared in [HB95]. Subsequently,

it was discoveredthat there is an inherentproblemin fee model.This problemoccursbecausethe symbolic

representation of fee datapath used in ICS Models, allows behavior feat may not have a concrete rq)resenta-

tion[HIB97], A redefinition of symbolic ICSautomata andlanguages is given in thischapter andit is

proved that the languageof the composition of twomachinesis equal to fee intersection of fee languagesof

fee two machines.In addition.Booleanoperationson languages,sudi as unionand intersection,have alsobe



redefined.

In Chapter3, threenewresultsare presented whichgiveboundson the minimum numberof valuesneeded

in the datapath to accuratelyverifycertaintypes of ICS Models. [HB95] introducedan automatic^straction

technique, called/miteinstantiations, where theinteger domains areautomatically replaced withfinite val

ues consisting of onlyoneor a fewbits,withoutany loss of accuracy in vmfication. Hrst, we showthat for

aclass ofICS Models calledDataSemi'Sensitive ControUers (DSSC*s), where only integerpredicates ofthe

form x s y areused, the number ofbits needed in the integer dat^ath for verification can bereduced sig

nificantly from what was earlier r^orted [HB95J. Next, anew abstraction technique, calleddatash^gder-

ivations, is proposed thatallows thenumber ofbitsneeded in thedatapath to be reduced even further, when

compared to finiteinstantiations. Finally,a previously openproblemin the verification of ICSModelsis

solved byshowing thatverification ofDSSC'swith predicates x<y and x = y is decidable, andanexact

data shifting derivation exists. Previously, itwas proved that nofinite instantiations exist for this type ofcon

troller [HB95J. Proofs and bounds are given for allthe approaches described in this chapter.

Finally, inchapter 4, thereachability algorithm, as first described in [HB95], is explained with minor

modifications to theoriginal definition. Experimental results, produced bythefirst geno'ation ICS

reachability tool, is then presented. Inparticular, results aregiven forcomputing thesetofreachable states

onasimple design. Amajor bottleneck, associated with this algorithm, is also discussed. Finally, it is

demonstrated how ICS reachability can beemployed insolving thespecific problem ofpipelined processor

verification. Here, onewould like toverify that a pipelined microprocessor implements itsinstruction set

architecture. In[BD94], Burch and Dill presented aunique approach for solving this problem. ICS

reachability can beused toapproximate this approach. Experimental results are given for two simple

pipelined microprocessors. Comparisons toother approaches aregiven.



Chapter 2

An Introduction to ICS Models

2.1 Introduction

In this ch^ter,an introduction isgiven tothe mathematical framework upon which the key results in this

thesis are based: ICS Models. ICS Models extend traditional OS Models [Hoj96] bymodeling hardware at

ahigher level ofabstraction using integer variables, integer functions and infinite memory. Modeling hard

wareat thishigher level simplifies theverification process byremoving some of thelower level details of a

design that may notbeneeded tovoifycertain properties. ICS Models represent hardware bydividing it into

three separate components: control, datapath and memory. Control consists offinite gates and latches, and

itssemantics isvery similar toC/S models. Hiedatapath consists ofgates and latches whose functionality is

defined overinteger variables with infinite domains. Finally, memory represents aninfinite table ofaddress/

data pairs. Aswith datapath, addresses and dataarerepresented using integer values. Adiagram ofthese three

components and their into'actions is shown in figure 2.1.

Control

Control

DataData

Values

Datapath Memory

Figure 2.1: ICS Models

ICS Modelsconsist ofAree
separate components: Con-
trolfDatc^athand Memory.
TMsehsety resemblesAe
structure ofmodem hard
ware systems.

The verification ofICS Models can proceed along two paths. Depending on thefunctionality ofthesystem

and theproperty tobeverified, automatic absfraction techniques have been developed that reduce a system

modeled using ICS toanequivalent system modeled using OS semantics. Atraditional state exploration

based verification tool canthen beused toverify thesimplified design. This type ofautomatic abstraction,

called finite instantiations, cannot work for all types of systemsmodeledwithICS. In thesecases, an ICS

reachability algorithm canbeused tosymbolically generate thestate ^ace. Ingeneral, sincesystemsmodeled

usingICShaveinfinite statespaces, reachability will notalways terminate. Incases, howevo*, where reach

ability does terminate, a model checking or language containment algorithm can beused toprove properties

onthestatespace. Otherwise, thereachability tool canbeused topartially generate thestate space fora finite

number ofcycles. Here again, model checking or language containment canbeusedtoperform verification

on the portion of thestate spacethathasbeene}q}lored. Hence, onecanonly guarantee thaterrortraces of a

certain length donotexist. Since, inpractice, mosterrortraces areshort, thistypeofpartial verification may



still prove useful for catching bugs.

The outline of the rest of this chapter is as follows. In Section 2.2, ICS terms, which are a symbolic rqtre-

sentation used to describe the behavior of the datj^ath and memory is defined. Section 2.3 discusses the

syntax of ICS models and the types of operations and gates that are allowed in each of the three ICS compo

nents. Section2.3definesstate space of ICS models,andSection2.4 describesthe ICSsemantics. Finally,

Section2.SdiscusseshowICSModelsare verified. Note that thedefinition of ICSModelsandhow to verify

them is slightlydifferent than what was first given in [HB95]. Tlie motivationfor this re-definition is given

and comparisons to the old definitions are made.

2.2 ICS Terms: A Symbolic Representation of the Datapatfi Behavior.

ICS Modelsconsist of variables that are either integer orfinUe. If a variable v is finite andhas an n valued

domain, then it can be assignedvalues {0, i, ...,/i-7}.Ifvisan integervariable, thenit can take on an

infinitenumberof values. Here, in order to efficiently represent b^avior in thedatapath, symbolic e:q)res-

sions called ICS terms are assigned to integer variables instead of concrete values. ICS terms are defined re

cursively andconsistofsymbolic constants, interpreted integer functions anduninterpreted intego' functions

iq)plied to ICS terms. Each of these mathematicalobjects is described below:

SymbolicConstants. A symbolic constant is a symbol which rqpresents anyintego'value. Intuitively, one

can thinkof symbolic constantsas symbolsthat can be assigned an integervalueonly once.Thus, the rela

tionship between multiple symbolic constants can neverchange oncea particular relation^p has been as

sumed. Pot example, if and C2 are symbolic constants, and in state s. itis assumed that Cj = C2, then

in all successor states of s-^ Cj = C2 must be tme (this would also be the case ifCj<C2f Cj>C2 or any

other relationship between Cj and C2 assumed in s-).

Interpreted functions. Interpreted functions are integerfunctions thatonlyhavea singleinterpretation. ICS

Models onlypermit a small subset ofallsuchfunctions tobeused. Ihese functions arez:=x + y, z:=x + c,

x;=y, z;=mttx(b,x, y), andz:-ij(b,x), where x, y aresymbolic integer variables, c isaninteger and b is

abinary variable. Examples of ICS terms that contain interpreted functions include Cq h- Cj and

muxiO, Cq,Cj), assuming that Cj are also ICS terms.

Uninterpreted functions. An n-ary uninterpreted fimction, /{Xq, •••,*„_ j ), takes n integer variables as

input and returns asymbolic integer value. Thus, if 1is anICS term that is theinput ofanunary unint^preted

function symbol /, then theoutput would be theICSterm/(i). Sincenointopretation of/ is given, it can

beused torepresent all possible interpreted functions. Uninterpreted fimctions arevery useful forabstracting



away details ofadesign that are not needed for verification. This isparticularly important when verifying, for

example, the control logic ofasuperscaler miaoprocessors. Here, verification isindependent ofthe func

tional units inthe datapath, since one only needs tocheck whether the processor executes each instruction in

the proper sequence and writes back the result to the correct location. Therefore, the detailed functionality

ofthe datapath isnot relevant and can bereplaced with uninteipreted functions.

An example ofaproperty ofamicroprocessor that one may want to vaify isthat the control logic fetches,

decodes and write backs the instruction 1:R^ <- sub R2 correctly. Hae, I subtracts the values in the

registers Rj and /?2 and places the result in the register R^. The control logic can be vaified by replacing

the subtraction hardware with an uninteipraed function /. Assuming that Cq and Cj are the correct values

assigned to registas and /?2 when I is issued, then one onlyhas to check that when I retries,/?j contains

the ICS tam/(c^ Cj). Note that replacing aconaete function with an uninteipreted function isconserva

tive,i.e. morebehavior is modeled using uninteipreted functions.

Inorda to describe the relationship between ICS tams,predicates are used. Predicates are special functions

that, when given ICS terms asarguments, return a binary value. Two examples ofthese fimctions are

Cq - fiCj) and/(Cj)<g(c2). Predicates can eitherbe interpreted otuninteipreted. The only interpreted

predicates allowed are X = y,x<y,x = c.ixmody) = r and {xmody)<r ,whaex and y are sym

bolic integer variables and r and c are integers. An n-ary uninteipreted predicate, p(x^ •••» j), takes

n integer variables asinputs and returns abinary value. Note that since no inteipretation ofp isgiven, itcan

be used to representall possibleinterpreted predicates.

Aconcrete interpretation ofanICS tfflm t, isperformed byr^lacing allsymbolic constants in t with inte

ger values, replacing all uninteipreted integer fimctions in t with inteipreted integer functions and r^lacing

all uninteipreted integer predicates with interpreted integer predicates. Here, any inteipreted function orpred

icate can be used, not just those describedabove.

Given asetofICS terms {tp..,and assuming that Rp is an inteipreted or uninteipreted predicate, one

can determine if Rp{tp..., is true with respect to another predicate p(denoted Rpitp •• | or

(r^ /?p ^2) I .if /?/> is abinary predicate) if the formula p Rp(tj t^) is valid. Such aformula is



valid, ifitistrue for all concrete interpretations. For exanople, if = fic^)»'2 ~

ps (c^ = , then = t2\ is valid since (cj = —> (/(c= /(C2)) is always true no matter

what interpretations are given to /, and C2. Aferula p —> Rpitpr^) issaid to be satisfiable if

there exist an interpretation for which p -¥ Rp{tp..is true. Determining iftwo ICS terms are equal,

subject a predicate (or set of predicates), is decidable and can be determined using the algorithms given by

[Sho79] and [Sho82]. Note that checking ifthe binary predicate (tj Rp istrue, with respect to two

in^edicates p and 9, denoted ^21 ^ checking the validity ofthe formula
P k

(pAq)->itjRpt2).

2.3 The ICS Model Syntax

SystemsmodeledusingICS modelsaredescribed by a network ofcircuitprimitives. Usingtheseprimitives,

a wide variety of hardware systems that operate on integer data can be modeledwithout having to specify the

number of bits in the dat^ath of the actualhardwareimplementation. A circuitprimitivecan either be ^gen-

eraUzedgate or a latch, (jeneralizedgatescanbe classifiedinto thosethatcontroldata,gates that allowinte

ger data to be moved around in the datapath, gates that perform computationon data, data constant creator

gates that simulate integer inputs, and memorygates that allow for the storageof data. Generalizedgates can

have multipleinputvariablesbutonlya singleoutputvariable.ICSModelsareclosedX^.theyhaveno inputs.

In the following,each of these types of gates is described in detail.

Omtrol gates. A controlgatedefinesa relation overa set of finitevariables.These gatescan be placedonly

in the controlportionof the model. A gate is consid^ed deterministicif th^e is onlyone outputfor any set

of input variableassignments. For simplicity, it is assumedthateachrelationis overmultipleinputvariables

anda singleouqjutvariable. Primary control inputs arerq)resentedusingnon-deterministic gatesthathave

no inputs and a single ouq)ut, and can produce any value in the domain of the input variable.

Data coiiq>arisongates.Adatacomparison gatecanbeeitheraninteipreted oruninterpreted predicate. Since

predicatestake a set of symbolicintego's andreturna finitebinaryvalue,theyprovidethe only mechanism

by which the datapath can communicate with the control.

Data movementgates. A data movement gatecanbe usedtomoveintego'valuesaround in thedatapath.

Therearethreedatamovement operations allowed in thedatapath: x;=y, z:=mux(bt x,y), and z:-if(b^).

Here is a binaryvariable and x,y and z aresymbolic integer variables. Thecontrol can manipulate the

flow of integer databy changing thevalue of b. Thecontrol inputs of thedatamovement gatesprovide the

only meansof communication firom the controlto the dat^ath.



Data computationgates. Adata computation gate isused to representafunction that, given aset ofsymbolic

integer variables as inputs, returns an integervalue. Such agate can consist oftheinterpreted integer functions

Z'—x + y, z.*=JC + c oran uninterpreted function. These gates provide the only means bywhichcoiiq)utation

canbe performed on integerdatain thedatapath.

Data constant creator gates. Adata constant aeator gate has no input variables and asingle symbolic inte

ger outputvariable. This gatecreatesa newsymbolic constanteach timeit is called.Ihis constantis called

afresh constant, and denotes anew symbolic constant that has never been previously assigned and does not

currently occur asa formula orsub-formula in anyof theinteger variables in themodel. Dataconstant creator

gates are used to modelunconstrained integerinputs.

Memory Amemory gate can eitherbeoftype reoif orwrite. Asdiscussed inSection 2.1, in ICS mod

els, memory represents an infinite set ofaddress/data pairs'. Aread takes amemory (ICS allows for circuits
withmultiple memories) andanICS termrepresenting anaddress andreturns a ICStermthatwaslastwritten

to that location. If the location beingaccessed has neverbeen writtento before,a freshconstantis returned.

Write takes a memory, an address, and adata value and sets the address in memory tohold that particular

value.

Latchesare definedusingtwo variables called thepresent state variable andthe next state variable.The

present and next state variables oflatches must be over thesame domain and canbeeither finite or integer.

Theinitial state ofalatch isa value orsubset ofvalues ofthestate variables domain. Ifalatch hasan integer

domain, then a constant and predicates can beused todescribe a subset oftheinteger domain thatare valid

initial states.

2.4 The ICS State Space

Astate s = {latches, memories, predicates) isa triple ofassignments tolatches, memories and predi

cates. Since thesetofallICS terms that can be assigned to latches, memories orpredicates in infinite, the

state space may also be infinite. Two states Sq = |m^, •••» w" ~̂J» and
f, f 0 n-l] ]Sj = \l2,<m^,...,m ^ KPy are equal magiven model M, denoted Sq ^ Sj, if the following three

conditions hold.

1. For the i-th latch in A#, assume Sq assigns itthe value and Sj assigns itthe value .If is finite

'̂Although ICS memory represents an if0nite set ofaddress values pairs, the ICS operational semantics re
quires theexplicit representation ofonly those memory locations thathave been written toona previous cycle.
Thus, for afinite number ofcycles, thenumber ofmemory locations thathave to bestoredisalwaysfinite.



then a = a , otho^se a = a
0 1 0 i

% ^Pl

2. Assume is given in Sq,where ^^^['1. 'l) ^ address/

k f k k \ kvalue pair in .For each such pair, there exists \a^ [y], [y]J in of Sj such that

ajm jjj I Jk I ife I ^ k k \=fl^[y] andv^[»] =v^[y] .Thereverse should alsohold. For each fa [j],v [y]J
Po 'p/ n 'Pi ' '

k ^ k k \ k k
in , there exists a =a*Ul

H

and v*[i]| =y*y]| .
Pi 'Po 'Pi

3. p2-^P2 and P2 Pj a*"® *50*^ valid.

The initial state ofAf is astate s.^.^ = ^hniv ' where aset of initial assignments given to all

latches in M,

2.5 The Operational Semantics of ICS Models

The operational semantics of ICS Models defines how transitions are made between states. The semantics

is verysimilar to thatofC/Smodels. Here, a topological sortof thegates in themodel is firstchosen. Then,

starting from theprimary inputs and present state latch variables, values are propagated through thenetwork.

The key difference between C/S and ICS occurs when simulating thedatapath. Here, ICS tmns areassigned

to symbolic integer variables instead ofconcrete finite values. When aninteger predicate is evaluated, if the

setofpredicates defined at thecunent state inq)lies thegate output value, then it is assigned that value. 0th-

owise, two paths ofpropagation are created. Onepathassumes thatthevalue of thepredicate tobe0, the

other assumes it to be 1.

2.5.1 Defiiiitioiiof ICS OperaticMial Semantics

Agateffoph G, ofa ICS Model Af, is a graph where each voiex v rq)resents a gate in Af and each edge

(u, v) represents avariable that is theoutput ofgate u and the input ofa gate v. Atopological sortis then

created bystarting from latches and gates thathave noinputs (control primary inputs and constant creators)

and visiting each vertex in breath first order. Since their canbenocombinational cycles in Af, G also con

tains nocycles. Given a topological sort0 of G, anda state s = (/, m, p), theoperational semantics ofICS

Models is given below, and defines aset S*, where each (f^, m'j, p'j) e S* is anext state of 5. In the follow-



ing,let V be thesetwhere each € V is a setof assignments to a subset of stateandnon-state variables of

Mmade during the symbolic execution of its gate graph. Intuitively, one can think ofeach Vj as an alterna

tive "path" of executionstarting from s,

1. Initially, letz = 1 andnote that in thefollowing that z = \V\. Create VjeV andassign to thepresent

state variables in vj values assigned to the corresponding variables in s.

2 Propagate values through M, byassigning values to theousput ofeachgeneralizedgate, g, intheorder

given byO.Inparticular, for each VjeV, andfor each generalizedgate o = g(0, where i is the set of

input variables and ois the output variable ofg, and a. is the set ofassignments to i by Vj (

(/ =a-) e Vj), thefollowing cases may occur.

2a.Ifg is a table that represents the relation /?(i, o), then assign o afinite value suchthat

{a., a^)E RandletVj = v^- u {o =a^}. Ifthere are multiple values, a'̂ . such that (a^., a'̂ ) e R, then

for each such value where a'^^a^,let z = z+1,and create anew set ofassignments v^ such that

V= ^ ^z ~ ~ ore no values such that {a., a^) e R, let

Vj ~ Vy u {o =0}. This corresponds to stopping value propagations along thispath.

2b. ifg is an interpretedoruninterpretedJunction, then let = g(ap, where both a. and

are ICS terms. Let Vj = Vj u {o =a^}.

2c. Ifg is an interpretedor uninterpretedpredicate Rp, let pj be the predicates associated with

Vj'IfPj -»(Rp(a-) =b) is valid, then assign = bandlet Vj = Vj u {o =a^} (where is aset

ofICS terms and b is abinary value). Otherwise, letz = z+1,and create anew set ofassignments v^

such thatV = Vuv^, u {o =a^}, p^ = Pja (Rpia.) =a^). In addition, let

=VyU jo =a^l ami pj =pja(Rp(.a.) =a^).
2d. Ifg isaconstantcreator, then let = c^ and Vj = v^. u {o =a^}. Here c- isafresh con

stant: asymbolic constant that has never been assigned to an integer variable in Vj or any state reachable

from s. A sufficient, but not necessarycondition to guarantee this is to return a uniquefresh constanteach

10



time the gate is called.

2e. Ifg is a read memory gate, let m- be the memory associatedwith g and assignedby vand

a e theaddressbeingread.Ifthereis a location a' inmemory, suchthat a = is valid, thenassign

= m.[d] and v. = Vy u {o =a^}. Otherwise,foreachhcation d in memory where a isnot

valid, let z = z+1,and create anew set ofassignments v^ where v^ = (note that this inches that

m^ = m-andp^ = pj), = d), = mjid] andv^ =

y = Vvj . The casewhere (a = a') isnotvalidfor anyd alsohastobeconsidered. Foreachlocation

d in memory where a^a'|̂ is not valid, let pj =Pj A(a^d), create anewfresh constant d, set

ffijia] = rf, =dandvj = v^.u{o =a^}. This corresponds to reading alocation that has never

been writtento before.

^flfg isawrite memorygate, let m. be the memory associatedwith gandassigned by Vj. Also,

assume that a is the address and dis the data. Ifthere isalocation d in memory, such that a =d^^ is

valid, then assign m.[a'] = d. Otherwise,for eachlocation d inmemory where a ^ d\ isnotvalid, letJ \pj

z = z +1 andcreatea newsetofassignments v where v = vp = p A (a = d) andm [a'] = d.
Z Z J z z z

Let V = ^ • Fhe casewhere (a = a') isnot validfor anyd alsohasto beconsidered. For eachlo

cation d in memory where a^d\ is not vaUd, let p, = pa (a d) and let mAa] = d.ipj *^1 ^ r ^

3. Foreach VjE V, assign to sj = (Ij, mj, pj) the corresponding valuesgiven to the nextstate latch val

ues, memory andpredicate variables in Vj.

Note thatat the end of2, z is finite, i.e. s always has a finite number of nextstates.

2.5JS Comparison to ICS Operational Semantics Defined in [HB9S]

The operational senoantics ofICS Models given in[HB95] isdefined interms ofconfiguration graphs. Acon

figuration gr^h, , for a model Af, is an acyclic graph where each node (or state) isapair u = (5, n).

Here, s wasequivalent to thedefinition ofastateof M, given inSection 2.3,andn isadefined as thenumber

offresh constants created inall states proceeding u. The initial state ofM isrepresented bya vertex

11



iSQt fiQ) *where Sq is also defined as in Section 2.3 and Hq is the number ofconstants in Sq .Given, atopo-

logical sort O ofA/, and astate with u = ((L, Af, P),n), atransition to astate v = ((L*, Af, P'), n) isde

fined in asimilar fashion to that in Section 2.5.1. The difference isthat each state isdefined as apair (j, n)

instead ofjusts asgiven inSection 2.3. Inaddition, every time aconstant creator iscalled, a new fresh con

stant named c^, isreturned and n' = n' +7 (initially, n' = n). This definition insures that along any path

ofthe configuration graph, no two fresh constants were ever given the same name. The operational semantics

in Section 2.5.1 also guarantees that no two fresh constants are given the same name along the Mmft path.

However, itdoes not require acounto' tobeused nor does itspecify aparticular namft

2.6 The Verification of ICS Models.

Thevaification ofICS Models isperformed using the language containment paradigm ([VW86J,[Kur87J).

Language Containment allows aproperty tobedescribed using an automaton called apropaty automaton.

Vaifying that an ICS Model Af satisfies aproperty P can bepaformed by showing that the language ofAf

iscontained inthe language ofP, denoted L(Af) g L(P) . Inthis section, the definition ofICS languages

presented is diffaent thatwas firstgivenin [HB95]. It is thenprovedthat for thisnewdefinition, thatcom

position of twomodels hasa language thatis equal to thelanguage intersection of bothmodels

2.6.1 ICS Automata and Languages

ThQ^mboUcautomaton ofanICS Model Af, isa graph ofstatesandtransitions baweenstatesdefined

by the opaational semantics described inSection 2.4. The alphabet of , isthe Cartesian product

ofthealphabets ofnon-state variables and thepredicate statevariable. Following [Kur87], werefer tothese

variables asselection variables. For finite variables, the assignments come from their finite ranges. For inte

gervariables and predicates, this is infinite (but counta)le) set. An(o-string is aninfinite sequence ofas

signments to the selection variables of Af. Let the oystring x = Gq, Gp G2,... be given. An orun

« = ^2' ••• of is an infinite sequence ofstates in A^, where s^ isan initialstate of , and for

every i>0 there isatransition _p g^ _p s^) Edge-Street/PSBPf7fairness constraints areused

to define the set ofacceptable runs ofAj^, by placing restrictions on the values offinite latches. Arun e of

A^ isconsidered fair ifall fairness consfraints are satisfied. Hiis implies that the set ofassignments that

occur infinitely often tothelatch control variables in e satisfies allfairness constraints. The symbolic lan

guage ofA^, L(Af), isthe set ofall (D-stings that have fair runs.
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In order to define boolean operations on symbolic languages of automata* it is necessary to first define a no

tion of equivalencebetween two ICS (D-strings.

Definition 2.6.L1 Two fi>-strings x = Oq, Cj, G2,... and i = Gy* G2*... are equivalent* denoted

x »jc *if the following two conditions hold for all i:

1. For each finite selection variable Vj*<?,•[v^] = and

2. The formula JJ (p. ap. a(G^.[Vyl =a.[vj])) must be satisfiable. Here* Vy is an integer se-
Vi.;

lection variable and (g^.Ev^.] and Oj[Vj] are ICS terms). Also, p. (p.) rq)resents assignments to the pred

icate selection variable by a. (a^).

The definition ofcontainment for two languages follows naturally from the above definition. Let *L2 *

andLj be three symbolic languages. is contained in L2* denoted £L2* iffor eva7a>-strmg;cG Lj,

thCTe exist an oo-string ye 1^2 jc « y . is the intersection of Lj and L2 *denoted

Lj = LjnL2, ca-string xe Lj, there exists two ©-strings ye Lj andze L2 such that

X« y and x^^z.L^ is the union of Lj and L2, denoted - LjKJ L2^ iffor every ©-string jc e *

there exists an ©-string y such that yeL^ and Jc«y*or there exist an ©-string ze ^2 such that x«z.

IfL2 is the complement of *denoted L2 = , then L2 contains the set of all ©-strings x such that

there does not exist ay e Lj where x « y .

Given two ICS models M and A^* theircomposition^ denoted Af • iV *canbe constructed as follows. If M

and N have noselection variables incommon* then their conq)osition is simply their syntactic conq)Osition.

If* however* A/ and AT dohaveselection variables in common* then foreach such pairof variables both

named x-*rename one ofthem y- and add a new gate g and a new variable z.*which impl©nents thefunc

tion z- .*= i/(x^. = y^., xp. The initial states ofAf • A^ are composed in asimilar fashion. Observe that except

for g*the new variable z^ isnot connected to any other gates. Also note that the behavior ofthe function

z:=if(bt x) is empty if b = 0. Thelanguage of Af • A^ is defined overthe selection variables thatwere
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notrenamed. An example is given in Figure2.6.1.1.

In order for language containment to be useful in practice, itisimportant that the language ofthe machine

created bythe composition oftwo models beequal tothe intersection ofthe languages ofboth models. Lem

ma 2.6.1.1 proves this.

N

r —

I M

I

Co

1
Co I

/.(Af) ={((c^0),(c^0).{c^0),...)} J

M*N

UM*N) o {((/(c^).c^-/(c^)).(/(c^.Co»/(Co))....)}

Mand Nare both one $kUe automata. The ieteedon variable xofM itedwu^tatiigned CQ,butAe tame variable
Xo/N iealwayiassigned fifig). InOte composition M• N, the variable corresponding toMisrenamed y and
Xisalweys assigned ficg). Note, however, thatOtepredicate Cg » f(cg) isassignedin Ote only stringin L{M*N)

Figure 2.6.1.1: An Example ofICS Composition

Lemma2.6.1.1 Given twoICS Models M and A^and their composite machine C = M •N,

L{C) = L{M)nL{N).

Q
Proof L{C) = L{M) n L{N) implies that for every string x € L(C), there exist two strings

X eL(Af), X 6L{N) such that and jP«jP.Thereversehas to hold, butwill notbeproved
here, since its proof is similar.

c c c c c cLet G = u Gj^ vj G^q where Gj^ are the gates in Cthat came from M, are the gates in C

Cthat came from N, and G^q are the gates in Cof the form z- .*= ifix^ =y^, x-) introduced by the compo-

14



c c c c c
sition. Define the set of variables in C, V , where similarfadiion.

c c c c cTo prove the above result, itwill be shown that for every accq;)ting run e « 5^, f^, ^2 >- • ^ ^ ^ >

.. ., ^ M C M ^ ^ M M M M . ^there exist astrmg X »x such that x hasanaccq)tmgrun e = 5^ ,^2 mAf. Note that

the same argument below can be used for the existence of x^. Each state 5^ e has the following two
properties.

(l)Ifv^e thenv^ =v^, where vj' e is the variable corresponding to v^.More q)e-

cifically, if is an integer variable, it willbe assigned an ICS termthatis syntactically equivalent to the

Cone given to Vy . If the variables are finite, then they will be given the same value. Observe that if there is

C M
a syntactic equivalence, then v. = v. is valid under all predicates p.

P

M C(2) p. ->(P =b) implies that p^ ->{P =b) where P is any predicate, d = 0 or b = i, and

p^ (pf) are the state predicates assigned in (s^). Note that if this is true, then p^ap^ is always
satisfiable.

MTheexistence of e canbe ^own by induction onits length.

c c cFor the initial state ,ifapresent state latch variable Vj e is afinite variable, then by definition, there

M C M C Cexist an Sq such that Vy = .In addition, ifalatch variable v^- € is an integer, then clearly

C M .Vj - Vj is also trivially valid, since when Cwas constructed, it was given initial constants with the exact

C Msame names as in Af. Note that by the definition ofinitial states in ICS Models, Pq - Pq = 0.

C AfNow assume that atagiven state s- , there exists acorresponding state 5. , who'e the above two properties

holds. We will show that theseproperties will also hold for all assignments going fi'om ^ to state j.

Choose atopological sort of Af that is consistent with the ordering given to the gates Gj^ in the topological
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C rsort of C. In the following, g denotes the last gate that was symbolically executed in Cbefore gj,and

-C Cp the predicate given after g was executed. This distinction isnecessary because itmay betrue that

C C C Mg e u and thus g has no corresponding gate in M. Also, let gj_j denote the last gate in M

that was symbolicaUy executed before g^. Let's assume that for all gates g^ (Jt <;) the aboveprop

erties hold. Then, the properties must also hold after processing g^, because of the following cases:

(1) g^ isaconstant creator. Assign the same fredi constant that was given to vj. Also, let
At Af C CPj = Note that Csets py =p .Clearly,propertyl holds. Property2also holds. To show this.

iia Olet's assume the reverse: pj ->(P ss b) validand Pj —> (P =5) is valid for somepredicate P.Thiscase

Mcannot occur and can be argued as follows. If Pj_j->(P =b) is valid, then at the corresponding gate in

C C^fgj^j*Pj_j-^(P-b) is, by inductive assumption, also valid. This means that there was some gate

C C C C Cg €G^ uGj^q was symbolically executed aftw gj_jf but before gj ,that eventually forced

Pj -» (P =5).This, however, is not allowed by the operational semantics of ICS Models, since it earlier

C C Mwas assumed at g._j that Pj -> (P =b) was valid. The case where p. -^(P - b) valid but neither

C - CPj —>{P=^b) nor Pj —» (P =b) is valid can also not occur and can be argued in asimilar fashion.

M(2) gj represents an interpreted or iminterpreted ftmction. Just apply the function to the inputs and let

pj^ =P^_ j. By inductive assumption, since the ICS terms assigned at the inputs of g^ are syntactically
C Cequivalent tothose given atthe inputs ofg. , property 1will bevalid for v. . Property 2also holds byusing
» J

the same argument given in (1).

(3) g^ isatable. Just apply the relation to the inputs and let P^ =P^_ j. Once again, by inductive as-
M Csumption, since the finite values given at the inputs of gj and gj are the same, then so are the outputs.

Property 2 alsoholdsby usingthesameargument given in (1).
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(4) represents an interpreted oruninterpreted integerpredicate, P(i). When is executed, several
^ J

cases may occur. In the following, assume that b ^ 0 otb - 1

(4a) (P(i) =b) and j -> (P(i) =b) are valid. Simply assign the value b.

C M(4b)Neitherp =b) or pj_j(P(i) =b) are valid, butboth are satisfiable.lhen as

sign 0= and p^ =p^_ ja(P(i) =v^). Note that the operational semantics gave

(4c) p^ (P(i) =b) is valid, but neither p^_ j-> (P(i) =b) or p^_ j-♦ (P(i) =b) are

valid. Assign p^ =p^_ ja(P(i) =b) and the value b.
-C M(4d) p -> (P(i) =b) valid and Pj_j-> (P(i) =b) is valid. This case cannot occur by using

the same argument in (1).

(4c) Neith^ p^ -> (P(i) =b) or p^ (P(i) =5) is valid, but p^_ j (P(i) =b) is valid.
Thiscasecannotoccurby usingthesameargument in (1).

(5) g^ is awrite ofavalue dand location ato amemory R^_ j. First, set p^ =p^_ j. By inductive
C Cassumption g. also wrote the value dto alocation a toacorresponding memory Pj_y Also, by induction

Massumption, the ICS terms (both address and values) in Rj_j are syntactically equivalent to those in

C C C MMPj_j' For each address a' in Rj for which pj is valid, set p^ =pj a (c ^a') if

MPj -»(a a') is not valid (as with case (4), no other possibilities are allowed). There is one address a' in

C C M M MRj for which p. —> (a =a'). Let Rj =Rj_j .If a' does not exist in Rj then create itWrite d to

location a'. Clearly both properties hold.

(6) g^ is aread. This case is similar to (5).

Ifboth properties hold for the state , then they must also hold for j. This is because the values as-
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M Csigned to the present state variables at j^ ^ art the same as the values assigned to the next state

functions at (s^).

C MHnally, it needs to beshown that x .By property 1,theassignment ofall finite selection variables

is the same, thuspart(1) of definition 2.6.1.1 is satisfied. If is an intego* selection variable in M and

C C CMis the corresponding selection variable in C, then Vj - Vj is valid by propoty (2). Otherwise,

C Ctheselection variable in C is some variable v , andthere is a gatein C of theform

( C C C\ c c cZj := if\v =VjfV J.Thus, if Cassigns v =a and =a at state s. ,then a =a

id. As a result of this and property (2), part (2) of definition 2.6.1.1 also satisfied.

(QED)

^ isval-
Pi* I

2.6.2 Comparison to Language Definition Given in [HB9S]

In[HB95h languages, and operations onlanguages, aredefined in terms ofconcrete intopretations. Acon

crete language ofasymbolic language L, for agiven interpretation /, is denoted by I^(L, I) and is ob

tained by giving a concrete interpretation to all constants, uninterpreted functions andpredicates foreach

string xe L. Given twolanguages L andL\L^L is only trueif forallpossible interpretations, /,

Lq{L, I) £L^(L', /). This definition isproblematic because the semantics ofICS Models allows for fair

runstohavenoconcrete interpretations. Determining if a fairrunhasa concrete interpretation is stillanopen

problem. Thus, thelanguage andautomata definitions given in 2.S.1 were redefined such thattheywould

not be based on the existenceof such interpretations. It is conjectured, however, that for modelswhereall

fairrunshaveconcrete interpretations, thedefinition given in[HB95J isequivalent tothedefinition insection

2.5.1.

2.63 Property Automata and Language Containment

A/ canbe verified using thelanguage containment paradigm. Here, a property P is represented using an

automaton, Ap. Checking L{M) £ L(Ap) for amodel Mcan be poformed by first conqilementing Ap

and then checking for language emptiness, L{M) n L{Ap) = 0. Unfortunately, there are no known tech

niquethatcan always find thecomplement of anylanguage in theclass ofall symbolic ICS Languages. In-
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deed, there is no result that shows that this problem is even decidable. [HB95], however, defined a class of

automatacalledproperty automata, whosesymboliclangaugecan be complemented andcan be used to de

scribe useful properties ofICS systems. Here, aproperty P is represented using aproperty automaton, Ap,

which isacomplete edge-Rabin automaton. Ap can have integer constant creators but all state variables ate

finite. Theonlyoperations allowed oninteger variables areinterpreted predicates. [HB95J showed thatprop

ertyautomatacanbecomplemented byfirstrq)lacingtheintegerpredicates withbinaryvariables, performing

standard edge-Rabin automata con^lmentation, and finally replacing thebinaryvariables thatwereintro

ducedwiththecorresponding integerpredicates thatwerein the original automaton.

2»6A Automatic Abstracti<Hi of ICS Models

Depending onthetypes ofgates andpredicates inanICSModel M andthetypeofproperty P specified, the

integ^ dat^ath canbe automatically rq)laced witha datapath circuitthatonlyhas finitevariables. This tech

nique is a type ofautomatic abstmction. Once M has been abstracted, traditional automatic verification tech

niques canbeusedtoverify thatP holds. Abstractions canbeclassified intothere different categories. Exact

abstractions arethose in which if theprop^ty holds ontheabstracted model, if andonly if it alsoholds in

M. Clearly, thisis thebesttypeofabstraction tohave, sincenoaccuracy in verification issacrificed. Acon-

servative abstraction isonein which if thepropotypasses when verification is po'fonned ontheabstracted

system, then theproperty holds forM. However, if theprop^y doesnotholdin theabstracted system, then

noclaims canbe made about thecorrectness of M. Thus, it ispossible forverification ontheabstracted sys

temtoT&mnfaise negadves. Falsenegatives arebugsr^orted by theverification toolthatarenotrealbugs

in M. An aggressive abstraction is onein which if theproperty fails when verification is performed in the

abstracted system, then theproperty alsodoesnotholdforM (butnotvise-versa). In thiscase, it is possible

toproducGfalsepositives. Here, verification incorrectly reports that thedesign haspassed aproperty. Ifexact

abstractions ofM cannot be found, conservative abshactions may bedesirable. Thisisparticularly true for

safety critical situations where it is important to insure thatM hasnobugs with tespcct to P. Aggressive

abstractions areuseful if onesimply wants to find real bugs ina design, and thus iswilling totrade coverage

forgreater efficiency inverification. They may benecessary because formal verification may blow up,in

whichcase an aggressive abstraction may givebettercovo'agethansimulation.

Aparticular type ofautomatic abstraction technique, calledfiniteinstantiations, hasbeen used successfully

for abstracting coiain classes of ICS Model.

Definitioii 2.6A.1 Letamodel M nothave any uninterpreted functions oruninterpreted predicates. Thek-

19



aryfinite instantiations ofM, denoted is formed byreplacing allinteger variables with variables thatcan

take a range of values from

Chapter 3will discuss finite Instantiations ofICS Models inmore detail. Table 1,however, listsdifferent au

tomatic abstraction techniques for classes ofICS Models that have been published in theliterature [HB95,

HIKB96, HDB97J. The table columns include the name ofthe class, the datapath functions allowed inthe

class, the types ofpredicates allowed on data, the types ofproperties that can beverified and the type of

straction technique that can be used.

20



Table 1: Abstraction Techniques for ICS Models

Name

Datapath
Integer
Functions

Datapath
Predicates

Property to be
verified

Abstraction

Technique

Die DM,ee none General LTL

properties
built from

X = y

[HDB97]

FI(EA)

Dsse DM,ee = y.

X= Ci^XKdj,
ixmodmf^^)<rj^
(jc mod

PA FI(EA)

Dsse ee X - y.x<y

X= c^,x<dj,
(jc modmj^^)<rj^
(x mod mj^^) =

PA n(EA)

Dee DM,ee,UF none X = term Sub-formula

deconq)osi-
tion/exact

abstraction

Dee DM,ee,
UF

none if b = 1 then

JC = y

Linear

Expansion/
aggressive
abstraction

The following terms are used in the table above:

DM - data movement gates
CC ' constant creators
FI - finite instantiations

UF - uninterpreted functions
EA - exact abstraction

PA - property automata
Die - data insensitive controller

DSSC - data semi-sensitive controller
DCC - data computationcontroller
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Chapter 3

Finite Instantiations: Improving the Bounds.

3.1 Introductfon

I>q)en(ling on the type ofthe system to be verified, verification can be performed by first t^lacing integer

variables inthe datapath with finite variables with ranges assmall asonly afew values. This type ofautomatic

abstraction technique for ICS models iscalled/lifAsa instantiations. Once asystem isfinitely instantiated, tra

ditional state exploration algorithms can beemployed toperform reachability analysis. Aproperty ofthe

system can be verified byeither language containment [HSIS94] ormodel checking [BCMD90, VIS96].

There are three primary advantages ofusing finite instantiations. First, the infinite state space ofthe system

can beabstracted (with respect totheproperty to beverified) to an equivalent finite state q)ace. Second, since

many finite instantiationsproduceexact abstractions, noaccuracy issacrificed when verification isperformed

on the instantiated model.Hnally, unlikeICSsymbolic simulation, finiteinstantiations allowtraditional ver-

ification engines tobe used toperform reachability analysis and language emptiness checking. Thus, previ

ously well studied techniques and software, developed for verification ofC/S models, can beleveraged when

performing the verification of systems modeled withICS using finite instantiations.

Inthischapter, threenewresults arepresented which give bounds ontheminimiim number ofvalues needed

in thedatapath toaccurately verify certain types ofICS Models. InSection 3.2,it is shown thatforDataSemi-

Sensitive Controllers (DSSC's), where only predicates ofthe form x = y are used, the number ofvalues

needed intheinteger datapath canbereduced significantly from what was earlier reported [HB95]. Section

3.3 introduces anew abstraction technique, calleddata shiftingderivations, that allows the bounds given in

Section 3.2 tobereduced even further. Finally, inSection 3.4, apreviously open problemissolved by show

ing that verification ofDSSC's with predicate x<y isdecidable, and anexact data shifting derivation exists.

This result isimportant because in[HB95]itwas proved thatnofinite instantiations exist for this type ofcon

troller. Proofs and lowerbounds aregivenfor theapproaches in eachsection.

3.2Bound Reductions for DSSC's with x = y Using FiniteInstantiations

AData Comparison Controller, asshown inRgute 3.2.1, is aDSSC that can move integer data around in

thedatapath and perform equality comparisons onsuch data. The datapath can contain integ^ variables, in

teger latches, data movement gates and equalitypredicates. Communication from thedatapath tothecontrol

isperformed via integer equality predicates. Communication from the control tothe datapath isperformed

via finite control signals fed tointeger data movement gates. Previously, itwas shown that for these types

ofcontrollers, n intego' values were needed tovoifylanguage emptiness, where n is the number ofinteger
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variables in the dat^ath. In this section,we prove that this boundcan be reduced furtho' to k values, where

k is the numberofconstantcreatorsand integerlatchesin the datapath. The intuition for this reductioncan

be seen by making the following observations.Rrst, the control is only sensitive to the relationriiip between

integer variables in the dat^ath and not to the exact values these integer variables may take. For a given set

of assignments to integer variables, the control can only distinguish between assignments whoe all integer

values are distinct, assignmentswhereall integer values are the same, or any other coinbinationofequal/non

equal predicatevalues applied to integervariables. Second,at any given state, there can be only a finitenum

ber of integer values in the datapath, since there are only a finite number of integer variables in the model.

Hnally, for data conq)arison controll^ the datapathcan movedata aroundbut it cannot transformit (there

are no interpreted or uninterpreted integer functionsin the datapath), so the number of latches and constant

creators dictate how may integer values can exist in the dat^ath.

I Control"" AData Comparuon Controller ual^SC
EZZx

wiA predicate x m y. The datapaA
eontaiHS only data movement gates.

IDatapath equalitypredicates and integer latehes.
Figure 3,2.1: A Data Comparison Omfrollers.

A boundcan be obtained by notingthat controlbehavioris preserved as long as the numba of valuesin the

instantiatedsystemis equal to, or greaterthan,the maximum numba* of distinct integervalues that canbe in

the datapathat any given time. By provingthat this numbo' is at most k, the correcmessof performingver

ification using k -ary finite instantiations follows.

Lemma 3^,1 Let M be a data comparisoncontrollo*, with k integer latches and constant creators. No more

than k distinct values can exist in the datapath at any given time.

Proof Theonlygatesin thedat^ath, otho' thanlatches orconstant aeators, aredatamovement gates.If an

integervariable, x, is the ouq)utof a datamovement gate,it must,by definition, be equalto one of its integer

inputs. By using the operational semantics ofICS models, the value of x can be traced back to its source:

eithera constantcreatoror an integerlatchin its transitive fanin. Thus, thevalueof all integervariablesmust

be equal to a constant aeator or an integer latch (QED).

Theorem 3.2.1 Let Af be a datacomparison controller withk integer latches andconstant creators, and

Mf^itsk -ary instantiation. Then L(M) = 0 ifand only if = 0.
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ProofThe prooffollows directly from lemma 4.1m [HB95]. The bound in the proof for lemma4.1 isequal

tothe number ofdistinct values inthe datapath atany given time. By Imnma 3.1, diis values isequal to k

(QED).

Similar bound reductions canbemade for lemmas 4.4,4.5,4.6 and 4.7in[HB95].

3«3 Boundsfor DSSC's with jc » y usingdata sdbifting derivations

Thefinite instantiation techniques usedinSection 32 andrq)ortedin[HB95j2stbasedonthefactthatthere

canonlybe a distinct number of integer values in thedatapath at anygiven time. In thissection, a newau

tomatic abstraction technique is introduced, called data shifting derivations, that still requires k values for

non-state integer variables as inSection 3.2,butonlyr ofthese values forinteger latchvariables, where r is

thenumber oflatches in thedatapath. This optimization canbepo'formed bynoting thatateachstate, c new

values can beintroduced into thesystem (where c isthenumber ofconstant creators). Since it ispossible that

all of these new values are distinct from what is stared in the latches, k ^ r + c values are needed in the

datapath as discussed in 3.2. However, when the system paforms atransition from astate to astate jt

only r values will beassigned tothe next state variables instate The range oftheinteger latches can there

fore bereduced totake values between 0 and r - i by"packing" the data given attheoutput ofthe next state

functions. Inorder tofacilitate this data shifting, thetransition relation ofthedat^ath hastobemodified.

Theadvantage of thisapproach is thatit canreduce thenumber ofreachable statesin theabstracted model,

since each datapath state variableshas a range of r instead of k.

Data th^fting derivaUons are performed by iruerU
ingadata thiflingfimetion ^ betweert the next
etate functions in the datapaA and dieir cone-
sponding datapaA latches. The integer latches
variablescan thenbegivat a rangeofr.AUodter
datapsdh variables are pfven a rangeofk.

movement control

predicates

p^paih

data

movement &
equality
predicates

F^iire 33*1: Data shiftily derivations

Thereductions that data shifting derivations provide can behelpful when performing e]q)licit state explora

tion. Thisis because thecomplexity of thismethod is a function of thenumber of states in thesystem. How-
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ever,the advantage of thisapproach forBDD-basedreachability techniques is lessclear. Sincethetransition

relationof thedatapathhas to be modifiedin the derivedmodel,the size andcomplexityof the BDDsneeded

to representthis relationmay grow. On the otherhand, the reduction in rangeof the datapathstate variables

mayreduce the size andcomplexity of the BDDsfor the reachablesets. Experiments need to be performed

to determine if and when these abstractions are useful.

Thedata shiftingderivation technique is firstcreatedby constructing a k -aiy finiteinstantiation of

as described in theSection 3.2.Next, as ^own inFigure 33.1, a datashifting function, p , is inserted be-
cq

tween the datapathnmitstate functions in Af and theircorresponding latches. Hnally, the domains of the

datapathlatchesare reducedto r. The formal definition of thisprocedureis givenbelow.

Definition 3.3.1 is any multi-variable outputfunction -> that is definedsuch that the fol

lowingtwoconditions hold.First, thevalues that p assigns to the integer latchvariables,
eq

Y }, must always be less than r. Thus,given a set of inputvariables

X- where ft, and Y= p^^(X) then V{,y^.<r. Second, equality must be pre

served between all input variables and output variables: Vf, j, y. = yj ifand only ifx•= Xj. Hgure 3.3.2

presentsa graphicalrepresentation of a p shiftingdata.
eq

Figure 3.3.2: a p^^ function.

yj values vabus Msigjned to the rori-tiUdei x-t i<r (where the x. variables have
been assigned at nduet betweenOand k )and

o places the results in die y. wriaUe's (where
each variable is ass^ned values between 0

and r). preserves equaUtybetween the
X*v&lucs ?' setofX. vanohlesandcorresponding y. vari

ables.Notethat orderbetween valuesd^s not
have to bepreserved, Le. x.<Xj does not im
ply that 3'j<yy.

Formally, a data ^fting derivation is defined as follows:

Definition 3.3.2 Adata shifting derivation, Afo , can beconstructed from M, aDSSC with predicate only

of the form x = y, as follows:

(1) Create Af^^.
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(2) Insert adata shifting function, , between the next state functions in the datapath

and their corresponding latches.

(3)Settherange of thedatapath latch variables to onany value fronoi 0 to r —1,

(4) Use the exact same fairness constraints asgiven inM, since they are placed only on the

control variables.

(5)Theinitial states of arecomputed bytaking each initial state in and

t^plying B tothedatapath variables assignments such that
eq

eachhas a valuelessthan r. Thecontrol component of theinitialstatesremain the

Theorem 3.3.1 proves that this data shifting derivation provides an exact abstraction when checking for lan

guage emptiness.

Theorem 3,3.1 LetM beadatacomparison controller withr intego'latches, c constantcreators andMq
^eq

its data shifting derivation. Then, j =0ifand only if L(Af) =0.

IVoo/Let's assumethat L(Af)?t0 , such that there exists a fair run « =

where each p., triple isan assignment tothe latch variables, integer predicate variables and integer non-

state variables, respectively. It will be proved that there exists afair run e = Sp Op S2f 02' •••

Mg where the following two conditions hold for all i.
^eq

(1) The assignment ofvalues tothe control (finite) variables are the same for both s-,p., a. and a.. Note
til It

that thereisno p- in Mo , sinceit hasnoexplicit integerpredicate variables. Sincethefairness constraints
^eq

of M and Mg are the same, by showing that the assignments tothe control variables are the same for both
^eq

e and e ,then e will be proven fair.

(2) Theassignment ofthe datapath variables in e ismade such that equality between assignments ismain

tained. Letn be the number ofdatapath variables and ^.,..., p j-,...»d^_^ . beassignments

to datapath variables in s^., a. and s., a., respectively. In addition, let d^ j-,..., d^^ ^ •be the assignment

to thenew variables introduced by p . Then for all k,y< «, if • = d, . then . = a • -I
* jti Kyi y, I

'Pi
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Hie existence of e can be proved as follows:

Fori = f^wehaveSy = which by the definition of implies the above two conditions hold

for Sj^ and .

Forany i, given a state thatsatisfies theabove twoproperties, thereexistan suchthatallvariables (let*s

exclude, fornow, those created bytheintroduction of ^ ) alsosatisfy fiie above twoproperties. Thiscanbe
eq

shown by induction on the gate graph associatedwith Mn .
^eq

Assume thatthereare m gatesandthatthehypothesis holdsforvariables ofgates for k<l. Notethat

gates associated with p will come lastinany topological sort ofthegate graph of Mo . Thus, assume
^ ^eq

also, that is not one of thosegates.Wehave the following cases.

(1) gj isafinite table in the control. Using the induction hypothesis and prop^y1,itsouQiut isthe same

value that was given to it in .

(2) isanequality predicate. Bypropoty2andtheinduction hypothesis, itsoutput will have thesame value

as in a..

(3) g^ isadatapath input. First, let's define apredicate, , associated with the run e, that gives the inter

section ofall the predicates in e, i.e. Pi^ By the induction hypothesis and property 1, ifa.
V/ *

assigns g^ the value . and there is adatapath latch value or some otherpreviously processed gate gj^, that

was given the value ^, where ^ A , then give to g^ the value ..Note that only k such

values are needed.

(4) g^ isadatapath data movement gate. Assign itavalue equivalent toone ofits datapath inputs. By the

induction hypothesis and property 1, this value corresponds to the one given to g^ in .

If the twoproperties holdforstate , thentheymust alsoholdfor thestate Hiis is because:

(1) the values assigned tothe control next state functions at are the same asthe values assigned tothe con-
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trol present state values ats.^ j. Thus, property 1will be preserved.

(2) The values assigned to the datapath next state functions in Mn (the output ofp )are assigned such

that property 2is presCTved. This implies that if ^ ^are assignments to the next state functions in M,

and 0^^ j, ^are assignments to the corresponding next state functions in Mo , then a . = a .1 if
^eq

and only if . = a^.. Note that only r values are needed, since there are only r state variables.

The reversedirection of the proof is similarand not shownhere.

(QED)

3.4Boundsfor DSSC's widi jc <y usingdata shiftingderivations.

In this section, it isproven that checking for language emptiness ofDSSC's that use predicates ofthe form

X = y and X<y is decidable andthat anexact data shifting derivations exist. In[HB95J, it was shown

that thse exists such a DSSC controller, M, with a non-en^ty language, who'e allitsfinite instantiations

had an empty language. M only accepts nms that consist ofinfinite sequences ofincreasing integers.

Since the finite instantiation associated with this machine can only accept runs consisting ofa finite

sequence ofincreasing values, Af^ cannot preserve all control behavior ofM and hence no exact finite

instantiations exists. When dealing with DSSC's with x = y and x<y predicates, note that ateach state,

c new values canbe introduced into thesystem (where c is thenumber ofconstant creators). Each new

value, can be1)equal toone ofthe values stored inthe latches, 2)between two values stored inthe latches,

3) less than allvalues stored in thelatches, or4) greater than allvalues stored in thelatches.

Intuitively, our approach issimilar to that presented inSection 3.3. Enough values are allowed in the datap
ath such that each of the abovecasescan occur. Data is thenshiftedat the next state functions so that these

cases can occur again in the next state. Since we are using the predicate x<y,anew function, p^^, is intro
duced that guarantees that there are (1) always at least c values in between any two distinct assignments to

latch variables, (2)there areat least c values greater than any assignment and (3)there areat least c less

than any assignment. Thus, the total number ofvalues needed in the dat^athare r = c(r + 7) + r (where

r is thenumber ofdat^ath latches). Unlike the Section 3.3, alldatapath variables areinstantiated with the

same numberof values (/). The advantage of this approachis, of course,that it allowsan exact abstraction

to be performed onDSSC'swithpredicates of theform x < y where finite instantiations cannot beused.

Definition 33J p^^ is any multi-variable output function i that is defined such that the fol-
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lowing four conditions hold.

(1) The values that assigns to the integer latch variables, T = y}, must always be greatCT

than c-l and less than t-c. Thus, given aset ofinput variables X = {Xq, ...,x^_ j},wh^e Vi, x^. </,

and T = P^^(X) then ^Uc-1 <y-<t-c.

(2) Equality must be preserved between all input and ou^ut variables: Vi,^, y. =yj if and only if

Xf = Xj.

(3) Order must be pressed between all input and output variables: Vi, j , yi<y i ifand only if

x.<x. .
I '

(4)Ihere should always beatleast c values between any two distinct assignments tooutput variables: Vi, j ,

yi<yj ifand only ify^-y^>c. Figure 3.4.1 contains an eiample of P^^ shifting values.

yj values miuet m^gned to Ae van-
ablet X., i<r (where the x. rariMet hare

been attuned rabtes between Oand t-l)

and fiaeet Ae reitdtt A Ae y. rariablet

(where Aere is a dittanee ofat least C be-

-fcx values

ables and eorrespondmg y. variables

Figure 3.4.1: the Pj, functioii.

Formally, datashifting derivations forDSSC'swith predicates x < y and x = y aredefined as follows;

D^nWon 3.4.2A data shifting derivation, , canbeconstructed from M, a DSSC with predicates of

the type x<y andx = y, as follows:

(1) Create

(2) Insert adata shifting function p^^ between the next state functions in the datapath

and their corresponding latches.

(3)Usethesame fairness constraints asin M, since they areplaced only onthecontrol

variables.

(4)Theinitial states ofMare computed bytaking each initial state in M and applying
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P/, to it

(4)Hie initial states of arecomputed bytaking eadi initial state in and

applying to thedat^ath variables. Thecontrol component oftheinitial states

remains the same.

Theorem 3.4.1 proves that language emptiness checking on DSSC with predicates jc<yandx = yis decid-

able and that data shifting derivations will always provide an ocact abstraction when performing this check.

Theorem3.4.1 Let Af beadatacomparisoncontrollerwithpredicates x<y,x - y, r integer latches and

cconstant creators. Let r=c(r +i) +rand its data shifting derivation. Then, j =0 if
and only if L(M) = 0.

Proof Let*s assume that L{M) 0 and there exists asymbolic fair run e = Sp Pp S2, P2> <^2*

M where each Pp a• triple isan assignment to the latch variables, predicate variables and non-state vari

ables, respectively. It will be provedthat there existsa fair run e = in Mn wherethe
i 1 z z

following two conditions hold for all i.

(1) The assignment of values to the control variables are the same for both p-, a. and 5^., Note that

there isno p^ in Af , since ithas no explicit predicate variables. Since the fairness constraints ofAf and

Af are the same by showing that the control variables in e and e are the same, the run e will beproven

fair.

(2) The assignment ofthe datapath variables in e ismade insuch a way that equality and order between as

signmentsis maintained. Let n be the numberof datwath variablesand a . ..
o, I ' n - 7,1'

d , -be datapath assignments to Sj, a-and j.,a., respectively. Let a„ a_ be the
' ^ ' 'fx ' f'

assignment tothe new variables introduced by Pi, .Then for all k, 7<n, if • = a, .1 isvalid then
*•'

^ir i - f.Alsoifa. ;<a, .1 isvalidthen ;<a, .yi*| ^9^ Jf*

To prove the existence ofe, observe that the predicates in e may only imply apartial order onthe symbolic

values assigned todatapath variables. The run e, however, can only produce a total order onnRsignmpnts to
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the datapathvariables, sinceonly concrete valuesin Mo areused to representdatapathbdiavior. Thus,
nt

it must beshown thatassuming a total order onsymbolic values in thedatapath will notchange theassign

mentof anyvalues tovariables in therun e. To show this,define a predicate, 17., thatgives theintosection
CT

of all thepredicates in e, i.e. ^ e. Next,defineanother predicate, , that is constructed as
Vi

follows:

(DLetf/g = U^.

(2)Foreach CL2 that has been assiped tointeger variables in e, if

tJg -»((a^ < V(ay =0.^ V(tty >a^) is not valid, then arbitrarily choose one of these, say

tty = a2,andletf7g = £^gA(ay =a2).

Notethat representsa totalorderon all the ICStermsassignedto variablesin therun ^. Let's nowassume

that for some state p- in e that p. = tig. Also, let 3^, be the assignment of state and non state vari

ables for all successorstates; (j^y). For all assipments$.,fi. it mustbe true that = 5. andd. = a..
J J J J J J

Thiscanbearped as follows. Assume thatthisisnottrue. Thisimplies thatatsomestate , apredicate gate

0 = g(0 is executedsuchthat = b but = b {b = 0 or b - i). Without loss of gener

ality, assume that this gate executes the predicate ay <a2. Therefore, pj-> ay <a2 is valid. However, if

this were true, it would imply that ay <a2 is valid. Since 1/^ -» p is valid implies that tJg-^p

is valid for all predicates p, we have a contradiction.

Let's now define the run e = a^p2,^2* ^2*^2* ^ ~ ~

P- = Og. Observe that g preserves both properties 1and 2with respect to e.

Theexistence of e cannowbe shown by performing induction on thelength of therun ^ andlowing that

e preserves both properties 1 and 2.

For i = 1 ,wehave5y = py^(Sy), which by the definition of implies the above two conditions hold

ofSj and Sy.

For any i, givena state s- thatsatisfies theabovetwoproperties, thereexistan suchthatall variables (let's

exclude, for now, those created by the introduction of p^^) also satisfy the above two properties. This can be
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shown by induction on the gate graphassociated with ,

Assume that they are m gates and that the hypothesis holds for variables ofgates for k<l, Note that

gates associated with will come lastinany topological sortofthegate graph. Thus, assume also, that

is notoneof thosegates. Wehavethe following cases.

(1)g^ isafinite table in the control. Using the induction hypothesis and property 1, itisassigned the gamp.

value that was given to itin tl^.

(2)g^ isan equality predicate. By the induction hypothesis and property 2, its output will have the same value

as in .

(3)g^ isaless than predicate. Bythe induction hypothesis and property 2, its output will have the same value

as in .

(4)g^ isadatapath constant creator. Assume that Zi isthe number ofdatapath constant creator assignments

i i i the numba* ofdatapath constant creator assignments

Four cases for may occur.

"e

(4a) If assigns gj the value -,and there isadatapath latch value or some other previously processed

gate , that was given the value •, whae ^ ,then give to gj the value ^.

(4b) There are two datapath latch values, a. . and ., assigned inS. such that a. . isthe greatest value
y»' *» * I jft

wherea, .<a; is validand • is the leastvaluewhere at :<at, I isvalid. Assign di - any
fj h* *» '

value where +̂z^< d^ i'̂ ^k i~^u Notethatonly csuch values are needed between 6lj •and

(4c) There isnodatapath latch value, a • .,where a,- < a; .
J** J** hi

, but thereexistat leastonedat^ath latch

value . assigned in such that •<ct^ . is valid. Let be the smallest such value where this

is true. Assign d^ •avalue such that z^—l<bL^ ^<c —z^. Note that only c such cases may occur.
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(4d) Thwe isnodatapath latch value a. . where a, .<a. . isvalid, butthere exist a datapath latch
y» * *» • fr

value . assigned in such that ^ J is valid. Let be the laigest such value where this

is true. Give avalue such that r-c +z^-/<a^ Again note that only c such cases may oc

cur.

It is thus evident, that only t = c(r +1) + r valuesare needed.

(5) isadatapath data movement gate. Assign thevalue equivalent tooneofitsdatapath inputs. Bythe

induction hypothesis and propoty 1, this value corresponds to the one given to g^ in .

If the twoproperties hold for the state s-, thentheymustalsoholdfor the state This is because:

(1)thevalues assigned tothecontrol next state functions at arethesame as thevalues assigned tothecon

trol present state values at j. Thus, property 1will be presaged.

(2) The values assigned to the datapath next state functions in ilf^ (the output of )are assigned such

thatproperty 2ispreserved. This implies thatif a pa . areassignments tothenext state functions in Af,
iif I yp •

and . are assignments to the corresponding next state functions in Afp , then if

% i ~ % i\ "w i ~ "jt,/ i| Note that only r values are• \p. • • • tPi ' '

needed.

For completeness, thereverse willalsobeproved. Assiune , suchthatthereexistsa fairrun

e = 5^, fly, ^2,52,... in Af where each 5^., is an assignment to the latch variables and non-state vari

ables, respectively. It will be proved that there exists afair run e =Sp Pp fl^, Sp P2* ^2*'" ^ ^ where

the following two conditions hold for all i.

(1) The assignment ofvalues to the control variables are the same for both p-, a. and 5^., Op

(2) The assignment ofthe datapath variables in ;p.y a. ismade insuch a way that equality and (nder be

tween assignments is maintained. Let ^and ^0 V i ^ datapath assignments to

and , respectively. Let ^ assignment tothe new variables introduced by
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p., .ThenforalU,;<n,if .. = d.- ; then a,, . = a. .1 .Alsoif d^ ;<df ; then
» K,l •'» * n *»»/»•

(Xi. .<a> *1
K,i j,iIp.

The existenceof the run e can be provedas follows.

For i =1.for all A:, ^<n, if dj^ ^ i Pj - Pj^ j-olj j) (J^y definition of

DSSCs, all assignments to latches are fresh constants). Also, if ^j^i< dy y. then let

The resulting pair, s-, p •, is a valid initial state of M, since each initial state in ilfo was constructed such
' ' Pit

that the above two constraints w^e valid.

For any i, given astate s^, satisfying the above two prop^es, there exist an a- such that all variables

alsosatisfy the above two properties. Thiscanbe shown byinduction onthegategrsqjh associated with M.

Assume thatthere are m gates and thatthehypothesis holds for variables ofgates fot k< I. Also, let

PI bethe insertion ofp- and all the predicates created thus far during the symbolic execution ofthis gate

graph. If is

(1)a finite table inthecontrol, then it isassigned thesamevalue thatwas given toit in , using theinduction

hypothesis and property 1.

(2) anequality predicate, then itsoutput will have thesame value asin a., bythe induction hypothesis and

property 2.

(3)a lessthan predicate, then itsouq)ut will have thesame value asin a. bytheinduction hypothesis and

property.

(4)a dat2q)ath constant creator, then assign it anew fresh constant, Cj. If a. assigned it to avalue equal to one

of the variables processed so far (let's say a ICS tom p. corresponds to that value), then let

p- = pI a {cj =p) .If the value is distinct firom all other terms processed thus far, then for each such term

p,let pI =p/A(cj p). If the value is less than all terms processed so far, then for all such terms, p,

assign p '̂ = p^ A(cy <p). Similarly, if the value is greater than all tmn processed thus far, assign

pI = pI a (cj >p) .If the value is distinct, but between two terms, Py and P2, then assign
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Pi = P/A(|l;<C^)A(Cy<H2).
(5) adatapath data movement gate, then assign ita value equivalent toone ofitsdatapath inputs. This value

will beequivalent tothe one corresponding assigned i bydie induction hypothesis and property 1.

If the two properties hold for the state s.,p., then they must also hold for the state s-. i,p• . t (where

Pi^ I = Pi At And ofthe symbolic execution ofthe gate graph). This isbecause the values assigned to the

control and datapath next state functions at r., p. arethesame asthevalues assigned tothecontrol and data

path present state values at r. + /»P,- +/. (QED)

Thisdreuit takesafresh eomUmtgifenbyii^at
I tatdfusignsUtoiateh Lj ^Us value isbetween
die terms stored in Lj and L2- Odierwise, die
current value ofLj wdlnot change. Thisprocess
is treatedat every state. A run consistingofan
infinite sentence of increasing values diat are
greater than c^ and less than C2 itaccepted by
dttsdrauL Thunutp however,has no concrete in
terpretation, since betweenany twointegers there
can only be a finite number of values. Aldtougfi
diisrun willnot beacc^tedbyanyfinite instanti-
adon ofthis circuit, it winbe acceptedbyits data
shiftingderhadon.

Figure 3AJ2i An ICS Circuit accepting runs with
no concrete interpretation.

It is important to note that some ICS models accqitnmsthat donothave concrete interpretations

[HIKB96]. Aconcrete interpretation ofthe behavior ofanICS Model can beperformed byfirst r^lacing all

uninterpreted functions (ifany) byinterpreted functions, and then taking each fair run accepted bythe sys

temandreplacing all ICS terms with their appropriate integer values. Forexample, consider thecircuit in

Figure 3.4.2. This ICS circuit takes two symbolic integers Cj and C2 and can acc^t an infinitely increasing
sequence ofsymbolic integers thatarebetween these two values. Suchrunsof thissystem donothave a con

creteinteipretations, sincebetween anytwoconcrete integers, therecanonlybe a finite numb^ of values in

between. Its data shiftingderivationpreservesthis behavior.
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Chapter 4

Reachability Analysis of ICS Models

4.1 Introduction

Forthose cases where equivalent finite instantiations cannot befound, ICS reachability analysis can be

usedto generate the ICSstatespace. A traditional stateexploration based verification toolcanthra beused

toverify prop^es onthesetofreachable states generated. Since some ICS models may have aninfinite

number of reachable states, ICS reachability analysis maynotalways terminate. In suchcases, however,

reachability canbe performed fora finite numbs ofsteps (let's say n). Partial verification canthen be

used to show thatnoerrortraceup to length n exists. Since, inpractice, mosterrortraces areshort, this

may beuseful for finding bugs. Inaddition, partial verification canprovide a level ofconfidence ina

design (highs covsage) that may not be available by regularsimulation.

ICS reachability can also be used for performing processor verification. Hse, one would like to verify that

apipelined misoprocessor implements itsinstruction ss architecture. Burch and Dill [BD94J presented a

unique approach for solving this problem, and ICS reachability can beused toapproximate their ^proach.

An overview of the ICSreachability algorithm can be described as follows. The ss of all reachable states

gensated byICS symbolic simulation can berepresented using Multi-valued Decision Diagrams (MDDs)

[Kam90]. To represent values (ICS terms) assigned to integer latch variables, they are encoded using a
finite domain, i.e.a setofbits. This is possible, because, although thesetofall ICS tams is infinite, theset

ofallICS terms that have been assigned tolatches after n steps ofreachability isalways finite. Transitions

between ICS states are computed using acombination ofinq)licit techniques for the control, and explicit

techniques for the integer datapath and memory. Assume that b isthe set ofpredicates going firom the

datapath tothe control, and w is the setofcontrol signals going tothe datapath (both b and w are bit

vectors). Forthecontrol portion ofthedesign, anMDD isused torepresent itstransition relation, and the

standard MDD image computation isused toget an approximation ofthe possible next control states. It is

an over ^proximation since it isassumed that b and w are free inputs and ouq)uts, respectively, ofthe

control part. Foreach next state confuted using the image computation, the corresponding (b,w) pair

that made the transition possible isrecorded. For the integer datapath, the next state iscomputed through

a special form ofsymbolic simulation. Here, the integer datapath is simulated using each (b, w) pair and

current stateassignments (ICS terms) to integer latches, predicates, andmemory. If thevalues for b and

w arenotconsistent with thedatapath, then thepairis invalid and thrown out Finally, thenext states in
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the datapathare combined with the appropriate nextstates in the control to fonn a compositeset of next

states of the machine.Note that by throwing out invalid (b, w) pairs, we have reduced the over

approximation to an exactcon:q)utation. Thiscomposite set of next states is again rqvesrated using an

MDD. Rgure 4.1.1 providesa graphical description of this process.

Ihis chapter focuseson an analysis of the ICSreachability algorithm, the implementation of our first

generation ICSreachability tool,andexperimental results generated by the tool.The outline for therest of

this chapter is as follows. A detailedexplanation of the ICS reachabilityalgorithmis first given in Section

4.2. In Section 4.3, experimental results, produced by thetool, arepresented. In particular, resultsaregiven

for computing the set of reachable states on a simple design. A major bottleneck associated with this

algorithmis also discussed. Finally, in Section4.4, it is demonstrated how ICS reachabilitycan be used for

solving the problem of pipelined processor v^fication, by approximatingthe approach described in

[BD94]. Experimental results aregiven for twosimplepipeline microprocessors, and comparisons to

other approaches are made.

Fmite

PS
(MDDs)

o

W

Ignore
RiCxirJCf) oatapath

state

Hmte

Ignore
control
state

Simulate
Integer

Finite'

(MDDs)

Ri+i(JCF.^/)

ICS ReaehabUity it deteribed as fottowt: (I) d$e reachable ttates at step i are repretented using an MDD. Assume Aat Ae

rariables Xp, y^, Xj, and yj areAe present andnext state variables ofAe finite control andinteger datepaA, respecthefy.

Here, ICS terms assigned to integer latches, memories,and predicates are encoded into MDD variables. (2) The communication
variables, (b, v/),are assumedfree and Ae transiAm reladon, Tp' ofthe control (also r^resentedasanMDD) isused toget Ae

nextcontrolstates, as well as Aeir corresponding (b,w) pairs. (3) While ^noring Ae control, each integerstateand (b,w) pair
is simulatedthrough Ae dati^ath. Invalid (b, w) pairs detected during naudation are Arown awt^. (4) NewICS termscreated
Airing simubtion are re-encoded, and an MDDrepresendngAe composite control and datcfoA next states is created. (5) The

nextstateMDDvariables are r^lacedwiApresentstateMDDvarieAles toget Ae reachablestatesat step i + 2.

Figure 4.1.1: ICS Reachability, Step by Step.

37



4.2 Reachability AnalysisAlgorithm

The algorithm presented in this section is based on the algorithm of [HB95J. Recall that an ICS state

contains three components: assignments to latches, predicates andmemories. In order to represent the set

of reachable states as an MDD, three tables are used to racode ICS terms assigned to the datapath state

variables. Hj is a. table ofall ICS terms which have been assigned to latches, and their corresponding

MDDencoded values. Anexample is given in figure 4.2.2.

I

ICS term | mDD Encoding
Ka) 0

a + b
1

f<f(b)) 2

a 3

The term table, Hj, ttores eaeh

ICS termthat has beenprenotufy
auigned to an iiUegerlatehdaring

simulation.In genera^ the
number ofaUpossibleICS terms is
tafuute. However, smce Ae
symboUe simulation a^orithm can
onfycan executeajuute numberof
steps, Ais table is^wt^finite.
Thesk/eofAe tableis expandedas
more terms are ass^ned to latches.

Figure 4Jl.lThe Term Table Hj

Hp isa table ofpredicates that have been enumerated thus far and their MDD encoding. Finally, isa

table ofmemories encountered inthe states enumerated sofar. Here, each memory isatable ofpairs of

ICS terms. Memories and predicates are encoded in asimilar fashion to intega latch assignments in Hj,

where eachimique memory or predicate is given a unique finite value. Note thatsince these threetables

arecontinually expanding, the range ofthe MDD variables representing these encodings also hasto

expand. The MDD representing the reachable state setconsists ofone MDD variable for each finite latch,

one MDD variable for each integer latch that ranges over all encodings in , one MDD variable p

representing the state predicates, ranging over the encodings in Hp,and one variable mrqjresenting the

state memory and ranging over all encodings in Hj^.

In the following, assume that the variables Xp,yp,Xj, and yj are the present and next state variables of

the conu-ol and datapath, respectively. The transition relation of the finite part, denoted Tp{xp ypb, w),

is computedin a fashion similarto C/S models: take the intersection of all finitetablesin the control. The

transition relation ofthe integer datapath, denoted Tj{Xj, ypb, w), must be computed incrementally by
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the algorithm since itmay consist ofan infinite number of transitions. IfRj{Xp Xj) is the set of states

reached after i steps, then

^i +l(ypyi) = ^b3w^j3xpiTp{Xpypb,w)AR.iXpXj)ATj(Xpypb,w))

By rearranging the tmns it can equivalently be expressedas

^i +l^ypyj) = ^^w^i&p(TpiXpypb,w)AR.iXpXj))ATj{Xj,ypb,w))

Thesymbolic simulation algorithm proceeds in a fashion similar to theoperational semantics described in

Chapter 2. First, the function U^iypXph^w) = 3xp{Tp{XpypbtW)ARi{XpXj)) is computed.

Thisgives allpossible nextcontrol states, assuming thatcommunication with theinteger datapath is free.

Each minterm (Xj, b, w) e SypU.(yp Xp b, w) isthen simulated through the integer datapath.

Inconsistent (Xp b, w) *s are ignored, and the remaining minterms are used to compute the integer portion

of the transition relation rj^ w*)»where rq)resents the set of transitions of the
datapath reachable in i +7 steps. /?• ^ jiyp y/) isthen computed using the equation above. The

algorithm is given below.

1.LetU.{ypXpb,w) = 3xp{Tp(Xpypb,w) AR.(XpXj)).

2. For each (Xp b, w) e SypU.iyp Xp b, w),

2a. Propagate values through theintegerdatapath Ifan integerpredicate gateisencountered, then assign it
the value given to it by b, ^possible. Ifnot, the tuple [xp b, w) is invalid. Stop valuepropagation.

2b, Ifanew ICS term has been assigned to anext state integer variable, add it to Hj along with aunique encoding.
Extend the range ofall integer latch MDD variables.

2c. Add the new integerpredicates to thepredicate table. Ifthe new predicate table is not in Hp then add it to

Hp along with a unique encoding. Extend the range ofp.

2d. Ifthe new memory has not been encountered before, add itto Hj^ along with a unique eitcoding. Extend the

range ofm.

3. Let j{Xp ypby w) = a wa (Xp yj)}. Here, y^ represents the encoded next state assignments

to latch, predate andmemory assignments generatedfifom step 2(due to propagation of(Xp b, w) ).

4.UtR.^l(yp,yi) =Sb3w3xjfu.{ypXpb,w) at'. ĵiXpypbyW)^

The details of step 2 above are as follows.

1. In 2a. if the gate executed represents apredicate Q, then, if Qj a ... AQf^-^{Q ^b^ is valid.
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allow propagation to continue. If, however, C; a ... a (g = isvalid, then stop propagation. If

neitho* are valid, then let Q= bQ, and add it to the predicate table. Note that when propagation is started,

the predicate table is taken from .

2.If thegate executed corresponds toa read{x), find anaddress > inti» memory table such that

j2y A... A -»(x=y) isvalid. Ifsuch acase exists, return the data value corresponding to y. Othmvise,

for each address y, where Qja ... a isnot valid, add anew predicate x = y to the predicate

table and return thedata value cmresponding tox. Thecasewhere allsuch predicates arefiilse must also

be considsed. In thiscase,add y to thememory table, along witha newfresh constant as thedatavalue.

Return this freshconstant Hiis casecorresponds to reading a location thathas neverbeenwritten too.

Note that when propagation is started, the memory table is taken from Xj.

3. If thegate executed corresponds toa write(x, d), find an address y inthememory table such that

Qj A... A -♦ (X =y) isvalid. Ifsuch acase exists, write d to the memory location associated with y.

Othowise, for each address y, where a ... a (x^y) isnot valid, add anew predicate x = y to

the predicate table and write to the memorylocationassociated with x. For the case whereall such

predicates arefalse, add location y to thememory table, with datad. An example is given inFigure 4.2.2.

4.Ourimplementation disallows arithmetic functions and predicates. Thus, congruence closure ([N080})

is sufficient for validity checking of ICS tains.

writeifiSf k)
Ml

Address Data

Ci K(a)

Co ^(b)
Py = {Cj^C2}

A
T
M2

W;T:?:f7TT1 Data

Ci k

Co f(b)

M4
Address Data

Ci S(a)

Co «b)

ca— k

Mq

Address Data

Ci R(a)

C? k

In Ae diagram to the left, a

write(c^k) it performed to memory

Mj, Since it not equal to the

^4 —{.{^i ^ ^ ^ addrettet Cj and C2 aarrendy stored in
Mj, aO eases have to be explored:

''S • '7' c^'C2 and Cj^C2*Cy
Ttus creates Aree new paths of
propagation, along wiA the associated

memory tables M^,and M^.

2 = {(C; *C2), (Cj =c^)} = {(Cj (C2 =cp}

Figure 4,2^: Performing a write during symbolicsimulation
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4.3Experimental Reachability Analysis Results

Thealgorithm presented in Section 4.2 has beenimplemented in theVISenvironment {[VIS95]), UC

Berkeley's and the University ofColorado's second generation. BDD-based verification system. InSection

4.3.1, a bottleneck associated with this algorithm ispresented. Next, inSection 4.3.2, reachability results

aregiven for a simple three stage microprocessor, referred to asCMU thatwas first published in

[BCMD901

43.1 A Major Bottkneck In ComputingReachableStates ofMicroprocessors

There is a significant bottleneck that occurs when symbolically executing memory gates during ICS

reachability analysis. Inparticular, when writing to or reading from a particular memory location thatis

notequalto anyoth^ location in memory, allpossible locations haveto be explored. Thiscanleadto a

caseexplosion. Thisis particularly thecasein miCToprocessors, who'eeachinstruction generates tworeads

and one write. For example, suppose there are two locations Oj and a2 to be read, and there is one

location to be written. Assume 02,02* and are all different constants. The ICS reachability

algorithm must consider five possible cases: = O2, Oj - o^, O2 - a^.and

- O2 = Oj, Let's now consider the situation wha% there are n addresses. Hae, the number of

cases thathaveto beconsidered is equal to thenumb^ of setsof subsets ofelements of n (denoted p(n)).

In table 4.3.1.1, p(n) is calculated fOT small values of n. Note that this is a lower bound on the number of

cases, sincethae maybe morememory configurations foreachtrace. Thiscasee^losion is theprimary

bottleneck in the algorithm.

Table 4.3.1.1 Memory Coiifiguration Explosion

It 1 2 3 4 5 6 7 8 9

P(n) 1 2 5 15 52 213 877 4175 21707

433 Readability Analysis Results

In performing reachd^ility analysis, experiments wereperformed on theCMUpipeline. CMUis a three

stage pipeline. In the first stage, instructionsare fetched from memory and then decoded. In the second

stage, instructions areexecuted andin thethird stageinstructions arewritten backto memory. TheALU is

abstracted away andreplaced witha single uninterpreted function. NotethatCMUhas onlymemory and

no register file. Although simple, most instructions in CMU can cause a read of two locations and a write
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to a third location.Therefore,after n st^s of reachability, at most 3n memory locations are stmed

(remembor a read can cause thecreation ofa memory location, if thatlocation hasnotpreviously been

written). The results of the experiment are shown in table 4.3.2.1. The columns include the number of

teachable states, themaximum number of memoiy locations created, thenumber of present stateBDD

variables, thenumber of ICS terms, andthesimulation time(inCPUseconds). TheMDD package usedin

the ICS reachabilitytool, encodesMDD variablesinto a set of BDDvariables. Thus, the increasein

present state BDD variables reflects theincrease inMDD variable ranges. Note that only 3cycles were

executed. Theexperiment wasperformed onaDECStation Alpha 21064,182MHz, with 1gigabyte of

main memory.

Ikble 43.2.1: Reachability Analysis Results on CMU

steps reachable states Max Mem Ops PSVars ICS Terms Time

1 12 3 32 16 0.1

2 sn 6 45 32 1.6

3 33525 9 73 148 170.8

4.4 Pipelined Microprocessor Verification

Thegoal here is toverify if a pipelined implementation ofamicroprocessor implements itsunpipelined

specification. Theunpipelined version, called thearchitecturalmodel, rqtresents theinstruction set

architecture, which consists oftheprogrammer visible stateand instructions. Programme' visible states

includes logical registers, theprogram counter and memory. Ingeneral this model describes how the

programmer should expect themachine tobehave for each instruction. Thus, intuitively, what onewould

like toverify isthat for any sequence ofinstructions given to both machines, when the pipeline completes,

itsprogrammer visible statewill equal theprogrammer visible state given in thearchitectural model.

Traditionally, one ofthe difficulties with performing pipeline voification ismoping pipeline states to

architectural states. The problem here isone ofpipeline latency. Although an instruction given tothe

architectural model takes only one cycle tocomplete, it may take several cycles for the pipeline toexecute

that same instruction. Thus, unless all instructions take exactly the same number ofcycles tocomplete,

coming upwith a state mapping function may bea very difficult inoblem. Note that incon[q)lex

superscalar machines, this mapping task is further conq)licated byexecution ofinstructions inparallel or

out oforder. Burch and Dill [BD94] came up with a novel approach tothis problem. Here, the pipeline

itself isused asa temporal abstraction function between it and the architectural model. Intuitively, this is

done byflushing the pipeline after aninstruction hasbeen executed. Once the pipeline has been flushed,

then all the instructions inthepipeline have been executed. The technique in[BD94] can bedescribed as
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follows. Foreacharbitrary pipeline state(denoted old implementation state),thepipeline is flushed. The

flushed pipeline state is then projected onto anequivalent state ofthe architectural model (denoted oldspec

state). It isnecessary to flush thepipeline because there may bepartially executed instructions still sitting

thoe. It is verydifficultto find out what the equivalent state in the architectural modelis while these

instruction arestill in thepipeline. Next, an instruction is given toboththepipdineandthearchitectural

model, starting at theoldimplementation state and theoldspecification state, respectively. Thepipeline is

then flushed andtheresulting stateis then projected ontothestatespace of thearchitectural model. If the

final two states are the same, then the pipeline is consideredcorrect. Ihis correcmesscriteriareduces to a

combinational check along twopaths i.e.checking thetransitions along thetwo paths areequal given a

subsetof states.A diagramof this technique is shown in figure 4.4.1.

OUImpl
state

Newlmpl
State

Fl(8tall)

Fl(stall)

Fi(stall)

F|(stall)

fUuhedtST
implstate

Flushed new

impl state

proj.

Proj.

Old spec
state

J^i)
New Spec

state

The correcdons criteriaof [BD94J cheeks whether dte trtmsidons fiuteUont alongbothpaths in
the above dioffam are equivatenL Along one paOt, starting fordu that state levied Old Impl
state,dtepipeUned isflushed,projected on the spec statespace, and an instnudon is rttn. Aloi^
die secondpadi, an instructionis run and thenflushedand projected.

Figure 4A1 The Burch and Dill Approach.

Wehaveapproximated [BD94]by checking whether thesetsof states reachable along bothpathsin figure

4.3.3.1 areequivalentNotethatthisis a necessary but notsufficient condition, sincealthough thesetsof

reachablestates along both paths may be equal, they may be reachable underdifferentinstructions. The

arbitrary pipeline statewasgenerated by givingall latches andmemory fresh constants, andallowsthe

controlstate variablesto non-deterministically be givenarbitrary values. In practice,for many

microprocessors, the initial set of states has to be restricted. Othovrise, the two functions would not be

equal.An instruction was thengivento both the architectural model andpipeline.

Exp^ments wetQrun on two microprocessors: CMU, as described in Section 4.3.1 and DLX. DLX has a

five stagepipdine. These stages are fetch, decode,execute,memoryaccessand writeback.Unlike CMU,

DLXhasbotha registerfile and a main memory. In table4.3.3.1, theresultsare given forCMU.The table

includes columns for thenumbo* of reachable statesin thepipeline, themaTimum number of memory

operations, the number of present state HDD variables, the number of ICS terms stored and the total CPU

time.The expoiment wasrun on a DECStation Alpha21064,182MHz,with1 gigabyte of main memory.
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Thealgorithm wasunable to coiiq)lete forDLX, dueto thememory bottleneck described in Section 4.3.1.

Tible 4.4.1 ICS Approximatioii of[BD94] on CMU

steps reachable states Max Mem Ops PSVais ICSTenns Time

CMU 78 5 48 53 0.8

4.4.1 Comparison (o other approaches

Much oftheprevious work inpipeline verification can beclassified aseither theorem proving or

methods. Since thetechnique described inthischapto* is automatic, thecoiiq)arison herewill berestricted

to other techniques which are similar to ours.

Multi-Way Decision Graphs (MDGs, [Cor93]). An MDG isadata structure that extends BDDs by

allowing uninterpreted functions toberepresented inthegr^h. This technique, however, does notseem to

have thesame capabilities ofICS, since MDGs cannot represent memories orpredicates. Note thatthe

current bottleneck isnotthesizeofthereachable state set, butrather thecase explosion that occurs when

executing memory gates.

Comparison with [BD94]. The advantage of[BD94] isthat it ismore efficient than the algorithm for ICS

reachability presented inthis chapter. Inaddition toverifying DLX, they have successfully applied their

tool for verifying other architectures, including portions ofStanford*s Flash multiprocessor [JDB95].

Intuitively, their paradigm is faster and more efficient because itonly requires reasoning over two

transition fimctions. Generating and representing the setofreachable states does not have tobeperformed.

Ourtechnique is more general in thesense that wecompute thesetofreachable states and cancheck more

generalprop^es. But we sufferin efficiency.

The primary drawback with [BD94] isthe state invariant problem. Here, the user has togive the set of

reachable pipeline states (denoted oldimplementation state in figure 4.3.3.1) asan input tothe algorithm.

In theory, finding state invariants isashard asthe reachability problem. An example ofaneed for a state

invariant inpipeline microprocessors occurs because ofthe load interiock problem [HP90]. InDLX, for

example, ALU instructions are executed instage 3and memory op^ations are executed instage 4 ofthe

pipeline. Suppose there is asequence of two instructions Ij and I2,where Ij performs aload firom

memory to aregister J?, and /2 takes the value in R and uses itto perform an ALU (q)eration. Here, tha-e

is adata dependency between Ij md I2 and thus executing both instractions at the same time will cause

anincorrect result DLX does notpermit this situation firom occurring, and hence, such a state is

unreachable. In a complex microprocessor, thae maybe many suchconstraints.
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Chapter 5

Conclusions and Future Work

This thesishasmade several new contributions toperforming verification intheICS paradigm. Some ofthese
contributions are outlined below.

1.Anew definition ofsymbolic languages and automata ofICS Models was proposed. This defini

tion was given because it was discovered that diere was an inhoent problem intheaiginaldefinition pre

sented in[HB95]. Thisproblem centered around thefactthattheoperational smantics ofICS models allows

behavior tooccur in the datapath that may not have aconcrete interpretation. In[HB95J^ operations onthe

languages ofsymbolic automata, such asintersection and containment, was based on tte ability todetermine

existence ofsuch interpretations. Since wecurrently donothave a technique for detomining which runs in

amodel have concrete interpretations, we felt that are-definition was necessary. The new definition ofsym

bolic ICS automata and languages was given chapter 2. Itwas then proved that the language ofthe compo

sition of twoICS models is equal to theintersection of thelanguages of thetwoindividual machines. This

theorem iscrucial for verifying ICS models inpractice. In addition. Boolean operations on languages, such

as union and intersection, were also redefined.

2. Three newresults werepresented whichgiveboundson the minimiinn number of finitevalues

neededin the datapathto accurately verifycertain typesof ICSModels. We showedthat forDataSemi-Sen

sitive Controllers, where only predicates of theform jc = y areused, thenumbo- ofvalues needed in thein

teger datapath forverification canbereduced tothenumber of integer latches and constant creators in the

system. Note that in[HB95J it was shown that the number ofvalues needed was equal tothe number ofinte

ger variables inthe system. Inpractice, this new bound can reduce computational time for verification signif

icantly. Next, a new abstraction technique, called data shifting d^vations^ was proposed that allows the

number ofbits needed inthe datapath tobereduced even further, when compared tofinite instantiations. Data

shifting derivations isdifferent than finite instantiations because itmodifies the functionality ofthe transition

relations inaddition toreducing the range ofthe integer variables. For DSSCs with predicates ofthe form

X= y, itwas shown that with data shifting derivations, the range ofthe intega-state variables can bereduced

tothenumber ofinteger latches inthecircuit. Rnally, a previously open problem inthe verification ofICS

Models issolved byshowing that verification ofDSSCs with predicates x<y and jc = y isdecidable and

an exactdatashifting derivation exists. Previously, it wasprovedthatno finite instantiations existfor this

type of controller.

3. Finally, we presented experimental results, produced by the first generation ICS reachability tool.

In particular, results were given for computing the set ofreachable states on the three stage pipelined micro

processor caUed CMU. Ourreachability tool was able toperform symbolic simulation for threecycles before
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ourtoolranout of memory. While performing experimental results, however, a majorbottleneck associated

with ouralgorithm wasfound. Hiisbottleneck was duetoanexplosion in thenumbo' ofmemory locations

and was theprimary cause ofourtool running outofmemory. Hnally, wedemonstrated that ICS reachability

canbe employed in solving the specific problem ofpipelined processor verification. Here, onewould like

to verifythat a pipelined microprocessor implements its instmction set architecture. In [BD941 Burchand

Dillpresented a unique approach for solving this problem. Weshowed thatICS reachability canbeused to

^proximate this{q>proach. Experimental results weregivenfor twosimplepipelined microprocessors:

CMUandDLX.For theCMUmiaoprocessor, wewereableto use ourtechnique to verify its correctness.

ForDLX, however, ourtooldid notcomplete, duealsoto an e}q)losion in thenumber of memory locations

during its symbolic execution.

There are many possible directions that can be taken with this research. Below we outline a few research di

rections that may ^ow promise.

1.One of the most impcntant directions this researchshouldtake is in improving the efficiencyof

symbolicsimulationand dealing with the memoryexplosionproblemoutlinedin Chapter4. Recently,in

[HIB97]^ we have developed new techniques forcollapsing togetherICS statesthat are equivalentwithre

spect to certain propertiesbeing verified.We feel that these new techniquesmaybe veryhelpful in dealing

with the memory explosion problem and useful in improving the overall ^peed of our tool.

2. Extend the class of ICS circuitsfor whichautomatic abstraction techniques can be performed,

such as finite instantiations and data-shiftingderivations.In particular, the problem ofproving the property

'*when b becomes true, x = y "is still open for circuitswhere the dats^ath containsdata movementgates

and uninterpreted functions, but no predicates.
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