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Abstract

In this paper we show that the multiplication operator used in defining the
conventional CNN synapses can be expressed as a particular case of a more
general operator, defined here as a "generalised synapse". Instead of the
conventional multiplication operation, a different particular case of this
generalized synaptic operator was found to be an excellent candidate for VLSI
implementation ofCNN synapses in digital technology since itmay be defined by
using only the addition, subtraction and absolute value operations. The
effectiveness of this new operator is demonstrated with discrete-time CNN
examples operating in all possible dynamic modes (equilibrium, periodic and
chaotic).

1. Introduction

In a fully parallel CNN [3] implementation, for both continuous-time and discrete-time
models, one goal is to reduce as much as possible the area occupied by the processing units. In
such structures the input of each processing cell is computed as a weighted summation of the
outputs ofneighbouring cells. The weight values define a "cloning template" which specifies the
behavior (overall function) of the CNN. The weighting operation is often associated with
information processing at the synaptic level in biological neural systems. Basically, only three
main processing functions associated with each VLSI cell are needed to implement a template
programmable CNN: an analog memory for storing the cloning templates, an analog circuit for
emulating the cell body and the axons, and a synaptic interconnection circuit. In terms of the
occupied area, the last function is the most important since the number ofsynapses in a CNN is
usually at least 9 times the number of neurons (cells).

Despite evidence that biological synapses do not actually perform a mathematical
multiplication of the synaptic strength (weight) with the dendritic stimulus, in most artificial
models of neural networks a linear additive model defined by x=^ is generally used

i&N

to compute the state jc (input) of a specific neuron (cell) when the outputs >',and synaptic
strengths w,. of the neurons belonging to the set Nare known. Here x can also beconsidered asa
value which indicates the correlation between the inputs and the weights. The multiplication
operator is found not only in neural networks but also in many information-processing
techniques. This situation is motivated by the existence ofpowerful mathematical and symbolic
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tools around this operator which allows a rigorous analysis and design of all functions built as
compositions of the addition and multiplication operators. For the particular case of CNN formal
models, more general synaptic models have been considered [2]. Even if such non-linear
synaptic operators may lead to complications when the symbolic design ofweights is considered,
the approach tobe presented below can lead to very efficient hardware implementations and may
be applied tomany cases where heuristics, adaptation and genetic algorithms are used toexplore
the weight space for optimal solutions. Non-linear synapses other than multiplier-based ones have
already been reported in some artificial neural network models [1]. Also, real biological systems
are able to perform many tasks using complex non-linear synapses where the weight values are
established through such mechanisms as adaptation, self-organization and evolution. What is
important in the neural processing ofinformation is the idea ofcorrelation between the inputs and
the prototype patterns stored as weights ofthe synapses to which these inputs are applied. If the
correlation with a particular pattern is strong enough, the associated neuron fires. How this
correlation iseffectively implemented (i.e. the nature ofthe synaptic operator) isnot important as
long as the main feature is preserved, i.e. the correlation function reaches its maximum value only
when both weights andinput vector arecorrelated.

From the implementation perspective, multiplication is highly area consuming,
particularly in digital implementations where such advantages as good reproducibility ^d precise
weight storage are to be exploited. For fixed point-arithmetic with aprescribed resolution resj the
area required by a combinational multiplication unit is Oij'cs ), while for many other operators
(addition, subtraction, finding the minimum value, e.t.c.) the area is only 0{res) [11].

Instead of other solutions proposed in the literature based on emulating multipliers by
shift registers, we propose, in section 2, a new synaptic model called a "comparative synapse".
We demonstrate in this section that this operator is a particular case of a more general synaptic
operator which also includes the ordinary multiplication operation as a particular case. For
information tasks that do not need symbolic computations it is thus much more convenient to
think in terms ofa generalized product and then to choose the particular case which maximizes
the efficiency in VLSI implementations. Some examples of applying this principle to the DT-
CNN synapse design are presented in section 3in order to show that independent ofthe particular
synaptic model used (ordinary multiplier or comparative synapse), the overall CNN functionality
remains unchanged. Some comments on the implications to VLSI implementations and
conclusions are given in section 4.

2. From a new synapse model to a generalised product operator

In [8] the synapse model
y=sgn(jc)sgn(iv)min(I4M)

was proposed for computing the contribution y ofa particular synapse to a specific cell input
where sgn(») denotes the signum function^ and where x and ware the output ofanother cell in
the net, and the synaptic weight value, respectively. This model has the advantage of having a
very simple VLSI implementation in either analog or digital form. It has also been successfully
tested in a feed-forward neural structure for signal classification tasks.

The signum function isdefined by sgn(x) —

1, X > 0

0, X = 0

-1, X < 0



Theorem: Vx, w e IRthe following two functions /j (x, w)and /2(x, w) are equivalent;

/(A:,M') =sgn(jr)sgn(w)min(|4M)
/j(A:,w) =i(|* +w|-|:t-H|) (3)

Proof: Forx=w=0 it isstraightforward toshow that yi(0,0) = 0 = /2(0,0)
In what follows x g IR and w is considered as a parameter and an explicit canonical

representation for both w>0 and w<0 will be derived for /^(x, w).
I. {w>0) : /(x.w) = sgn(x)min(|x|,H') where the function has the graphical

representation shown in Fig.l.a. It isclear that yj(x,w) represents a cross section with respect to
the parameter wofa piece-wise linear two-dimensional function and thus, using results in [4],
has the following canonical representation:

Mx,w) =-^(Ix +w| - |x - w|) (4)
II. (^<0): yj(x,w) =-sgn(x)min(|x|,-w) where the function has the graphical

representation shown in Fig.l.b. The corresponding canonical representation isgiven by:
y;(x,vi') =+(-|Ar-w| +|Ar +«^) =+(|jr +w|-|x-vv|) (5)

It follows from (4) and (5) that for all values of w, y;(x,>v)is equivalent to the
representation /2 (x, w):

/(x, w) =^(|x +vv| - |x - w|) =/2(x, w)

4s f,(>cw) w>0

w

-w

a)

Multiplier-based
synapse

c)

w<0

-w

-W

W

b)

Comparative
synapse

^ "1 y= X

d)
Figure 1: Different piece-wise linear function representations;

a) (x, w) representation for M»tf; b) (x, w) representation for wcO;
c) The ordinary multiplication ; d) The "comparative synapse**.



Let usnow define a generalized synaptic operator between two n-vectors x and y via
the relationship:

X®a y=(IK*+y) 12|L)" - (IK* -y) Âa)" ^
Ma

wherea is apositive real number and ||z||̂ = J defines aparticular norm "a "ofthe
w-dimensional vector z. In the general case, both x and y are vectors representing an arbitrary
input and weight, respectively, for a specific neuron cell. The operator performs a
generalised inner product (and thus the result is ascalar), corresponding to the soma activation in
biological neurons. It follows from definition (6), which is applicable for any vector dimension

n

including 1, that x y = , where x,. and3;,. are scalar components associated with
1=1

each particular synapse. Thus, the main property ofthe generalised operator is exploited at the
synaptic level, each contribution being summed independently of a to compute the soma
activation of a cell neuron. In what follows we will consider the following two particular
synaptic cases;

a) a =\ => H, =|z| (Manhattan norm) and b) a =2 => (Euclidean
norm). Then, we will find the following particular expressions for the generalised synaptic
operator:

x®, y =/2(x,y) =/,(x,y) (7)

X(8), y =(x /2+y / 2)" - (x / 2- y / 2)' =Jiy (8)

Observe that (8) corresponds to the conventional, multiplicative synapse (8) while (7) to
the "comparative synapse". Both (7) and (8) are generalised expressions ofthe logical "AND"
operator (obtained when the arguments are restricted to: x,y€{0,l}). Moreover, (7) is
equivalent to one of the most offen used "Fuzzy-AND" operator when x, y e[0,l] .Thus, we can
conclude that (6) represents a more general expression for a synaptic operation which is based
only on summations^ubtractions and on one-variable norm evaluation.

It is clear that the hardware for implementing the norm-taking operation a depends on
the choice of the technology, and thus, (6) provides a higher degree of freedom than that of
conventional multiplication. Indeed, for digital technology, it is obvious that a=l is the best
choice for norm taking, since in this case, taking the absolute value ofa number is equivalent to
finding its magnitude, which requires no hardware but simply copying the magnitude bits. For
comparison, in the same digital technology, taking the a=2 norm will require 0{res^) logic
gates where res denotes the representation resolution ofthe digital numbers (usually at least 8
bits).

Figure l.c and 1.d presents the graphical representation ofthe above two operators where
both weights and inputs are positive and less than one. For |w| <1and |x| <1one may also
consider the operator as a piece-wise linear approximation of the ordinary multiplication
operation ®2 •



Properties of the synoptic operator:

1. The synaptic outputis bounded byeitherthe inputor the weight value;
This follows from (1) and for CNNs it has the following consequence: For the feedback

template A it makes no sense to use weights greater than one if the neuron outputs are bounded
by one (this is the case in conventional CNN models). Indeed, these outputs are inputs to other
synapses and according to(1) the output ofthe synapse is always bounded by one even if the
weights are greater than one.

Even though this property seems to appear as a limitation, from the VLSI implementation
perspective it is very useful since all weights and state variables are restricted to vary within a
specified bounded domain. In order to obtain effects which are specific for weights larger than 1,
one may simply choose an output saturation level > 1. Here, is the largest absolute
value ofthe weights in the cloning template matrix A. Also, inmany cases, the cloning template
can be simply scaled down , that is, the actual size of the weights is irrelevant but only the
relative size is important.

2. The ®2 operator may be replaced by the operator in linear threshold gates to perform
the sameBoolean function without any change in weight values as longas their absolute
values are bounded by L

In a threshold gate, any input 6{-l,l}. Thus, for any synapse we can write
= w,sgn(x, ). According to (1) and taking into consideration that

|a:,| =1ifx,. we have x, 0, w,. =[sgn(w.)min(l,|w,.|)]sgn(x,). But, while |w,.|<l
and taking into account that ji: = |x|sgn(x), it follows that
X. (g), Wi =[sgn(w,.)|wj] sgn(jc,.) =w,. sgn(jc,.) =x,. (8), w,.. As long as the non-linear function

f \
used in the threshold gates is ahard limiter defined by >' = Sgn ^ W,Sgn(x,-) , the condition

V / /

|w.| <1 is not a restriction. Indeed, ifthis condition is not fulfilled, one may simply rescale the

weights as w,. =(l / |w^ax|)^r the implemented Boolean function remains unchanged

while J^ =sgn I =sgn . As a consequence of this

property, all CNN designs using hard-limiter neurons or threshold-like operators either remains
unchanged, or require only proper scalings of the cloning templates in order to ensure the
condition \wi\ <1.

3. Examples of using generalised synapses in CNNs

Consider the discrete-time CNN (DT-CNN) model with NxNcells defined by:
X(0) =X0; X(0=A*F(X(r-l)) +B*U +/ ;t = l,..T (9)

where XO is an NxN matrix associated with a planarmonochrome (black and white) image to be
processed. An image matrix Uhaving elements associated with pixel brightness and represented
as positive numbers less than 1, can be also applied as an input and filtered using the feed-



forward cloning template B. The system may evolve to an equilibrium if for
t > X(/ +1) = X(r), or to a periodic attractor if T exists for which X(r +7)=X(0, or
even toa chaotic attractor. In the simulations presented below we used N=64 and T=200. Each of
the NxN ceils is characterised by the same non-linear output function y=f(x), feedback cloning
template A, and feed-forward cloning template B. The matrix function F collects in a compact
representation all independent cells' output nonlinearities f(x). The * operator denotes a
generalised spatial convolution defined as: (A*X),.j. = where

N^{i,j) ={kj\ max(|̂ -i\,\l - yj) ^ /"} is the set of indices associated with all cells lying in a
neighborhood of radius r of the cell ij.

For the experiments presented below, we have considered different non-linear output
functions/fx; and cloning templates in order to get different dynamic behaviours in a 64x64 cell
DT-CNN. The image to be processed was considered both as an initial state X(0) or as an input
U. In all cases, r=J and thus both feed-forward and feed-back cloning templates are 3X3
matrices. For each example we have considered both iS", and (gi, operators while the design
procedure for templates was based on heuristics and on previously designed templates for such
functions as image halftoning [12] [13]. In what follows we show that there is no major influence
on the overall CNN functionality when the synaptic operator is changed from ®2 •

STANDARD ( ©2)
PRODUCT

Y(200)

PRODUCT

Y(200)

0.6 0.6 0.6

A = 0.6 0 0.6

0.6 0.6 0.6

B=0 1=0

y=fM

Too* -1
0x4

Figure 2: Hyper-chaotic discrete-time CNN simulation with different synaptic operators.

Example 1: (Chaotic behaviour):

In Fig.2 the structure and simulation results for a high-dimensional hyper-chaotic DT-
CNN are presented. Such CNNs may be used as efficient ciphering sequence generators in
communication systems since their high dimensionally makes it very difficult for such systems to
be identified. In each step, complex spatio-temporal patterns are generated. A sample obtained at
the stopping moment {T=200) is presented in Fig.2 for both synaptic operators. The temporal
evolution ofa particular cell (the middle one) is also presented. Observe that for identical CNN
structures using different particular cases of the generalised product as synaptic operators, the
same overall behaviour was obtained.

Moreover, the weight space exploring method (WSE) described in [7] was successfully
applied to CNNs using both types ofsynaptic operators. In this way, we have designed chaotic



and even synchronizable DT-CNNs with the "comparative synapse" as easily as when using the
conventional multiplier synapse.

a1 a2 a1

A= a2 aO a2
a1 a2 a1

"O 0 cT
B= 0 bO 0

0 0 0

PROCESSED
IMAGE ^

Image Is
applied
as Input

Here. Initial / \
state was

associated \
with the Image |
to be processed

02 (Standard)
SYNAPSE

4'

SYNAPSE

aO=1
a1=-0.0625

a2=-0.125

bO= 0

a2=-0.125

fei b0=1

aO= 1

a1= -0.1

a2= 0.8

bO= 0.1

S'
aO= 1

a1= -0.1

a2= 0.8

b0= 0

Figure 3: Information processing with equilibrium states In DT-CNNs with different synaptic operators:
A) Labyrinth-like pattern formation ; B) Image halftoning ;

C) Feature enhancement I: D) Feature enhancement II

Example 2: (Pattern formation, Fig.3.A ):
In this example, the input image is not accessible since b0=0 (in Fig.3.A) and thus the

CNN system is an autonomous one, evolving to an equilibrium pattern. Such patterns were first
described in [12] and have been exploited for halftoning applications. The initial state of the
system is chosen to be random and small in both cases. While there are some differences in the
roughness ofthe final pattern one may see that replacing the classic synapse with the comparative
synapse does not change the essential functionality (in this case, labyrinth-like pattern formation).
Moreover, patterns with the same degree of roughness may be obtained by re-adjusting the
cloning template values when a comparative synapse is used.
Example 3: (Image halftoning, Fig.3.B);

When a non-zero feed-forward cloning template B is considered, one may exploit the
pattem formation propoerty presented above in order to get a half^oned version of a greyscale
input image. The results for both synaptic operators, using the same template matrix which was
designed according to procedures presented in [12], show that there is a very slight difference in
the respective final patterns (halfloned images) and thus the particular synaptic operator does not
influence the overall functionality in this case. Moreover, we have tested the same cloning
templates for continuous-time CNNs with the same result.



Example 4: (Fixed-point convergence, Fig.3.C)
In this example we consider different cloning templates designed for "primary feature

extraction" of an input image when a standard synapse was used. Replacing it with a comparative
synapse does not change the basic results even if there are some slight differences between the
equilibrium patterns. However, if required, such small differences may be compensated by
slightly changing thevalues of thetemplate matrices.

In all previous examples, the neuron function was the one most often used in actual CNN
implementations, i.e. the linear "saturated" function which may be actually written asa particular
case of the 0, synaptic operator y = /(x) = x0,1, where the variable weight value was
simply replaced by the constant 1. Thus, when comparative synapses are used, the only two cells
needed to construct a CNN are the memory cells for storing the cloning template values and the
corresponding synaptic operator. It must also be noticed that based on Property 1 (bounded
synaptic output) even if linear neurons (y=f(x)=x) are used, the states of the system still remain
constrained to evolve within a bounded domain. Such systems may have some implementation
advantages while preserving the convergence to equilibrium states in order to perform different
useful processing tasks.
Example 5: (hard-limiter nonlinearity. Fig. 3. D);

Forourfinal example, we will consider a hard-limiter activation function in order to test
the effects ofProperty 2. Indeed, one may see that the final pattern is now independent of which
synapse (multiplier-based or comparative) is used. In this case, the image is applied as an initial
state of the system and each neuron along with the associated synapses may be considered as
performing a Boolean operation. It may be inferred that such systems are the most robust for
changes in either the models, or in the synaptic weight values. Based on other previous results
[6], [8] we suggest that for a neural cell there is a strong relationship between the robustness of
the synaptic weights and the number ofoutput levels allowed for that cell. The lower the number
ofoutput levels allowed (minimum is 2 in the case ofthreshold logic) the more robust the cell is
with respect to changes in both the synaptic weight value and an non-linear synaptic operator.
Here, robustness is considered with respect to the overall functionality of the CNN. This may
also explain why slight differences in the final patterns may appear for the two synaptic models
when the continuous-valued neuron function was used (examples 1-4). However, in all cases the
overall functionality was always maintained despite the choice ofa different synaptic model.

4. Conclusions

A general expression for a non-linear synaptic operator is proposed. This operator is
called a "generalised synapse" and it is proved that both the classic multiplication synapse and a
novel synaptic operator, called the "comparative" synapse, are merely special cases of this
generalized operator with respect to the choice ofa particular norm. The 0, operator has the
advantage over the 02 operator in terms of its VLSI implementation. This property is
particularly important in CNNs where most of the silicon area for hardware implementations is
allocated to the synaptic functions. Particular examples using such operators in DT-CNN were
considered inthis paper to emphasise the independence ofthe overall behaviour on the particular
choice of the generalised product. Until powerful symbolic (arithmetical) processing rules are
derived for the 0, operator, as is now the case for the 02 operator, the comparative synapse will
be restricted to such applications where heuristic rules or other design methods based on non-
symbolic searching in weight space (adaptive, evolutionary, stochastic) are used for designing the
parameters ofthe information processing system. However, this is the case in most conventional
CNN template design techniques (e.g. [5][10]). Hence, within the CNN framework, we expect
the cloning template re-design procedures to be straightforward. Moreover, as a consequence of



Property 2, for all CNN models where binary cell outputs are considered [9] there is no need to
re-design the cloning templates.

While the implementation advantages of the comparative synapse are obvious in digital
technology, it should be mentioned that in analog technology there are other advantages not
related with the occupied area but with the implementation precision required for the synaptic
operator. Compared to analog multipliers, implementing such functions as "comparison" or
"absolute-value" operations in (1) and (3) should involve less stringent component tolerances.
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