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Abstract

A significant increase in the information processing abilities of CNNs demands
powerfril information processing at the cell level. In this paper, the defining formula
and the main properties of such a cell are presented. Since it is able to implement any
Boolean function, its functionality expands on those of digital RAMs by adding new
capabilities such as learning and interpolation. While it is able to embed all previously
accumulated knowledge regarding useful binaiy infoimation processing tasks
performed by standard CNNs, the pyramidal universal cell provides a broader context
for defining other useful processing tasks, including extended grey scale or colour
image processing as well. Examplesofapplications in image processing are provided in
this paper. Implementation issues are also considered. Assuming some compromise
between area and speed, a VLSI implementation of CNNs based on pyrami^l cells
offers a speed-up of a million times when compared with corresponding software
implementations.

1. Introduction.

The CNN paradigmand its implementation via the CNN universalmachine [2] has already proved very
useful for a wide range of information processing tasks. The main element which influences these
processing capabilities is the basic cell, which collects information from its neighbours and provides a
synthesis of this information in the form ofa single output. Such cells may operate in feed-forward or feed
back layers. Various cell models have been described in the literature [2], each having advantages and
drawbacks. In our search for a universal cell, this paper proposes a new approach, inspired by both the
theoiy ofradial basis functions [11] and of piece-wise linear approximates [1][10]. It is defined as a static
cell, i.e. its time evolution is memoiyless. We will also consider a bounded imiverse of signals (i.e. the
domain over which each input and the output may vary) on [-1,1]. The boundaries of this domain
correspond to the ''false*'and "true" Boolean logic truth values. We will also find it convenient to consider
a more relaxed logic, somewhat related to the fuzzy logic concepts [13]. We will call it Boolean Interval
Logic. Accordingto this logic, "falsity" and "truth" are assigned degreescorresponding to points in the [-
1,0) and (0,+l] domainsrespectively. A third, "don't know" state is introducedto define perfect ambiguity.
It will obviously correspond to the value 0. A general formula for the output y of the cell is:
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radu_d@atm.neiu'0.pub.ro and http;//atm.nemo.pub.ro/-radu_d).
The work was also partiallysuported by the Officeof NavalResearch undergrantN00014-96-1-0753.



y =/(wp"2»-"n»^i»^2»"^in) ^here are the inputs and W={wj,W2,..w„} is aset
ofparameters.

What would be the desired features for such a universal cell ?
1^2"

(1) It must be able to implement any of the 2 possible Boolean functions in Boolean Interval
logic.

This means that for each Boolean function, a particular set of parameters can be foimd such that the
input-output relationship will correspond to the truth table of the defined function. For crisp Boolean
logic, digital RAMs fulfil this proper^. However, they are not able to operate with a Boolean Interval
logic.

(2) Assuming that feature (1) is fulfilled, the algorithm which generates the parameters starting
from a given truth table should he precisely defined, computationally tractable and have guaranteed
convergence.

Although various theorems in the neural network literature [8][9] claimed that polynomial or feed
forward layered structures are universal approximators and thus they should be able to **leam** parameters
corresponding to the implementation of any Boolean Interval logic function, in some cases the
specification of the neiiral net structure (e.g. the number of units in the hidden layer) is not exact and in
other cases the convergence of the learning algorithm is not guaranteed. We will prove in this paper that a
particular class of radial basis fimction networks is able to fulfil this property with a zero-complexity
algorithm for determining its parameters.

(3) The ability to store knowledge by learning from examples even when a complete truth table is not
available. The convergence ofthe learning process should also be guaranteed.
This situation may occur in numerous practical situations. For example, in biological experiments one may
use multiple spatially placed stimuli but will be not able to provide die whole range of Boolean Interval
combinations. However the output information implied by these measurements is more than nothing and it
is ofpractical interest to store it in the form ofa partial or incompletemodel by such a universal cell. Since
most of the practical cases deal with non-linear separable patterns, in order to guarantee the convergence of
the learning algorithm, non-linear pre-processing with dimensionality expansion should be performed on
the input data [3].

(4) It should he informationally optimal, i.e. the average information required for specifying the

parameters should be equal to the information needed to specify any particular Boolean function.

namely /^y(/z) = 2". Here, averaging was considered over the whole set ofparameters corresponding to
the implementation ofall Boolean functions.

(5) It should have low computational complexity. This means that any functionf may be expressed as a
composition of a small number of "computational atoms" which are themselves easy to implement in a
given technology. An interesting and veiy efficient solution in this sense was proposed in [4]. However, it
has no learning abilities and it was designed to cover Boolean logic only.

As it is shown in section3, these propertiesare fulfilledby a particularcase ofradial basis function
network which may be also considered as a PWL (piece-wise linear) nonlinear cell. We called this cell a
Pyramidal Universal Cell. In section 2, the defining equation and the proofofits universality with respect
to the Boolean logic are presented.

When used within the CNN paradigm [2], the Pyramidal Universal Cell, or simply P-cell has its inputs
associated with all neighbours within the prescribed sphere of influence in the CNN grid. In this paper we
will discuss 3x3 neighbourhoods i.e. 9 inputs per cell. Due to its universality, interpolation and learning
abilities, it is expected that such cells will offer a significant increase in the number of useful processing
tasks in CNN systems. For many linear or non-linear cloning templates used in binary image processing
tasks [4], one may simplyextractthe definingtruth table ("gene"), allowingthe P-cell to store in a unified
way ^1 previous knowledge about such useful information processing tasks. Moreover, by exploiting its



interpolation abilities it is expected to expand in a natural way some tasks (e.g. edge detection) from
binaiy to grey-scale processing. But the most important feature is that we can exploit its learning capability
to find new applications. One such example in a^ptive image restoration isgiven in Section 4.

As long as the cell model is specified by a composition of only three simple operators
(summation/subtraction, absolute value, and scaling by O.S) it should have a simple VLSI implementation,
a very important feature from the perspective of using it in massively parallel information processing
systems such as the CNN. In Section 5 several suggestions for implementation are presented and it is
shown that such a cell may be implemented with a complexity comparable to that of linear templates if
one accepts a speed reduction of two orders of magnitude. However, the overall CNN processing speed is
still high enough to ensure real-time image processing (about 6 million times faster dian if implemented on
a standard microprocessor).

2. The pyramidal basis cell

Consider the following table form (truth table) for specifying any Boolean function with n inputs;

«1 -1 +1 +1

-1 -1

: : +1

-1 -1 °j.' +1

1 : 1 +1

-1 -1 «y.. +1

"gene" w^m

There are 2" columns in this table. Each column represents a fixed n-bit binary number. Only
the bottom row (shaded) contains information which specifies a particular function. In a Boolean truA

table gj e{~l,l} •However, we will extend this table for using it with any Boolean Interval logic value;
namely gj . Since the bottom row contains the complete information which defines the behaviour

ofthe cell, we will call the vector g= ,^2»•• •̂ 2" ]®

Theorem 1: For any binaiy combination of inputs (m, ,Wj,..., i/„ ) , M, €{-1,1}. the class of flmctions
defined by:

y=i

(1.1)

^The "gene" isa short name proposed in[15] and itdesignates the minimal truth table associated with a
specific Boolean function. A minimal truthtable is a ordered 2" binary vectorwhich defines the variable
part of the truth table.For P-cells,the components of this vectormay varywithinthe [-1,1]domain. A
convenient graphical representation for a binaiy"gene"wasproposed in [4] for /i=Pas an "image"having
16x32pixels,whereeach pixel is associated with one particularcomponent of the vector,and is assigneda
brightness equal to itsvalue. Theupperleft-most pixel corresponds to thefirstentry(all "n" inputs are -1)
in the truth table and all other pixels follow in the normalwritingorder.



where:
Pj{Ut,..,U„..U,) = X

yff > 0; > 0 are real numbers

and^: x® y =
x + y

a

x-y

2 2

(1.2)'

,a 6{U} (1.3)'

is equivalent to the corresponding Boolean Interval logic function specified in Table 1. Moreover, for

/2 > 2^ if all inputs areambiguous (0)theouq)ut is ambiguous (0)too.

In what follows we will call the cell defined by (1.1)-(1.3) a pyramidal cell. It is a particular case
ofa radial basis network [11] when the basis function is pyramidal, first introduced and investigated in [7].
When ^ = 1 the equation (1.2) defines a hyper-pyramid in an (n+/)-dimensional space. Forn=2 its
geometrical representation is a square-base pyramid with its base lying in the input space, and having
diagonals of length 4 (See Fig.l for a contour plot projection,y=l). Much more complex geometrical

figures may beobtained bychoosing different values forthe real-valued p, y parameters.

+1

/ -1 +1

y
-1 (®3.1 '®3.2)

\ VT\/

"1
->

Fig.l. The contour plot representation for a pyramidal basis function corresponding to/=!. The number within

asquare denotes the value of Pjcorresponding to the contour (level curve) nearby; tZy denotes the fixed
binary entries in the corresponding truth table of a Boolean Interval logic function to be

implemented with pyramidal basis functions.

be + X
' r(jc) = ' is the "standard half-wave rectification" function which has asimple analog

2
implementation:it is just a "concave resistor" [14, p.78] with {G,Ey=^l,0).

For a = 1 this operatoris calleda "comparative synapse"and its properties are described in [6]. For
a = 2 it reduces toanordinary multiplication x^j y ~ ^'



Example(/i=2, a = p=Y — Implementing theXORfunction.

The complete expanded fonn ofeq (1.1) in this case is:

={ -12 - |w, +1| - |w2 +1|| "• (2 - |mi +1| -1«2 +1|) +
+12 - |mj -1| - \u2 +1|| +(2 - |«i "• l| ~1^2 +^1) +
+|2-|«,+l|-|aj-l||+(2-|u,+l|-|i/j-l|)-

It may be further be reduced to the following canonical representation ofa piece-wise linear function:

+l|+|2-^ +lj+|2-|̂ +I|-^ -l|-|2-|̂ -1|-^ -l|)/4 (1.6)

Fig 2. represents the output of a pyramidal cell implementing the Boolean XOR function for
binaiy inputs. From the contour plot representation in Fig.2.(a) it follows that this logic function is also
implemented in the context of Boolean Interval logic where not the value but rather the sign define the
membershipto one of the "false", "true" or "ambiguous"categories for both inputs and output. The spatial
representation in Fig.2.(b) shows how this fimction was obtained as a combination ofpyramids.

Proof(Theorem H: The proofconsists in proving the following sequence ofpropositions:

. r 1 k fl = 7P.I. For any particular input vector u = a. ,,..aL .-j.-flt _ PAu ) = -<
^ * ' ' J ^ [0 if A: y

P.II. For « >2''ifall inputs are ambiguous (0) /y(0) = 0 V/.

P.m. y(u'') = gf^ and X®) = ®(The Binaiy Interval logic truth table definition)

(1.5)

Proof(P.I.): Ifk = j\ all absolute value terms in (1.2) become 0, and thus Pj{u^) —1. The geometrical
interpretation is that the inputvectorslies exactlyon the projection ofthe pyramid's apex.

If follows froma property of the matrix table) that when

k ^ j y at least one of the absolute value terms in (1.2) is positive. Moreover, since both

j and ttj i 6{—1,1} this positive value is 2.

Hence: 1^ follows immediately that i^.(M*) =0. The geometrical
^2 i-i J

interpretation is that the input vector now lies on the basal edges ofthe pyramid, or outside of it.
For binaiy inputs, each pyramidal basis function performs the same logic function as a *'minterm" in the
digital implementation of Booleanfunctions. The gene of a minterm Boolean logic function has only one
element+1 and all the others -1. However, in contrastto logicgates, the pyramidal basis functions can also
interpolate between the crisp, binary input values.



iiU

"2"l| yXOR
-1 -1 -1

-1 +1 +1

+1 -1 +1

+1+1 -1

Fig.2: Pj ramidal cell implementlDg the Boolean Interval logic XOR function (black = -1, white = +1):
(a) The truth logic which defines the Boolean XOR function is preserved with respect to the sign of both inputs

and output; (b) The spatial representation shows the output as a combination of pyramids.

Proof (P.IIt: Since w/ =0VA:, i and .| =1it follows that ~ ^ ~

n>2^ this term is always >1 and thus /^(O) = 0 Vy .

Proof (P.IID: This follows immediately from (1.1) as a consequence of P.l. and P.II and based on the

following property: If a G{1,2} and |x| <1 then x®^\ =x and x0^, 0= 0, which was proved in
[6], This complete our proofofTheorem 1.

3. Properties of the pyramidal cell

In what follows we will briefly show that all properties mentioned in the introduction are fulfilled by the
pyramidal cell described by (1.1)-(1.3).

PI. Is a direct consequence of the Theorem 1. For y = \ any cell having at least two inputs will be also
able to process Binary Interval logic and provide uncertain output when inputs are uncertain. A detailed
study on the relationship between parameters and the degree of truth at the output will be presented in a
future work. However, for n=2 one can easily see from Fig.2(a) that the XOR function considered in
Example 1 is implemented not only with respect to the Boolean logicbut to the Binary Interval logic too.
Fig.3. presents the case of an ambiguously defined function. Its corresponding gene (having 0 elements)
may be the result of a learningprocesswith a limited set of stimuli.However, by using further thresholding
wiA a variable parameter this ambiguity can be removed. The equationwhich describes the new output is
O= Sgn(>' —©) •With the same implementation ofy, two Boolean logic functions may be implemented
by simply changing the value of the threshold © . In our example, by chosing © = 0.5, the output o
corresponds to the Boolean XOR function. Compared with the implementation given by (1.5), instead of
four, only two pyramidal basis are now required. Using this technique makes possible efficient
implementation for all Boolean logic functions with a low number of -1 or +1 bits in their corresponding



genes. The procedure consists in rewriting the original gene (which is defined only by -1 and 1 bits) in
Boolean Interval logicwithambiguous values. Thisconsists in replacing with0 the bits in the original gene
having the biggest count and then selecting a threshold with the absolute value 0.5 andthe same signas of
the remaining non-zero bits. Such a typical example is the minterm Boolean function whichhas only one
bit +1 and all the rest -1. In this case, all -1 bits in the original gene will be replaced by 0 and a threshold
having the value 0.5 will be considered. In this case, only one pyramidal basis function is needed to
implement the Boolean minterms.
P2. The only parametersof the formula (1.1)-(1.3)which determine the implemented Boolean function are
gj, and they can be copied directly from the "gene" without any additional computation. This is not a
trivial property since even for linear threshold gates there is no direct, analytical solution and learning
algorithms must be employed to find the set of parameters which allow one to implement a restricted set of
Boolean functions. The choice of thethree real parameters a, >0, y has no influence as long as the inputs
are restricted to a binary state. However, they will become important when Boolean Interval logic is
considered for the inputs.

P3. It is a consequence of Proposition P.I. in the above theorem. Indeed, the set of 2" pyramidal basis
functions may be viewed as a non-linear pre-processor which expands a particular n-dimensional binary

input vector into a 2" -dimensional one. As a consequence of P.I. for any binary input vector, the binary
vector in this expanded space has only a "1" and the rest of components "0". In a geometrical

interpretation, this corresponds to one of the 2" vertices of an n-dimensional hypercube. There is always
an infinite set of hyperplanes which can separate one vertex from the rest. Moreover, the hypercube has a
huge set of points (e.g. each edge) which can be separated by hyperplanes and these points corresponds to
different Boolean Interval values at the inputs. Equation (1.1) may be thus viewed as an Adaline [12] and
trained (parameters g'yare updated according with an error signal) with the LMS algorithm. The
convergence is guaranteed not only for all cases corresponding to binary inputs but also for many others
which correspond to different combinations of Boolean Interval inputs. For non-binary inputs, the linear
separability in the expanded space is influenced andcanbecontrolled bytuning the a^p^y parameters.

"AMBIGUOUS'

XOR

"2"1) y
-1 -1 0

-1 +1 +1

+1 -1 +1

+1+1 0

Fig.3: Ad ambiguously defined function and its
implementation with the pyramidal cell (black=0, white^l):

(a) Contour plot image; (b) Spatial image



P4. Since the same values which define the truth table are also the parameters of the cell function,

Ij/ff = Igf and thus (l.lHi'2) is informationally optimal. This is not atrivial properly since for any other
known functional which implements Boolean logic functions there are no analytical methods to determine
the exact values of both parameters and their representation resolution. However, most of the experimental
results cited in the literature as well as our experimental results suggest a ratio Ij^ / /^y ^ 9for
fimctionals which partially fulfil P.l. (i.e. only for binary inputs and outputs). The ratio may be lower for
fimctionals, like the Linear Threshold Gates, which however dramatically restrict the number of Boolean
functions.

P.5. For the particular case a —p=y —\ (1.1),(1.2) and (1.3) can be decomposed into only three
species of computational atoms: a) addition/subtraction b) absolute value and c) scaling by a constant 1/2.
Observe that there is no ordinary multiplication between coefficients and parameters, as is the case even for
the computationally simplest known fimctionals given by canonical piece-wise linear representations [1].
All of these three atoms can be easily implemented using current technologies. We must however notice
that the price paid for all these convenient properties is that the number of basic computational atoms
grows exponentially with the number of inputs. However, convenient implementation solutions may be
found, as it is shown in Section 5.

4. Exploiting learning In pyramidal universal cells for Image restoration

The CNN considered in this section for image restoration tasks, performs the information processing
taskin the feed-forward layer "B" andis composed of pyramidal universal cells having a = /? = y = 1,
which was presented in detail in Section 2. For the experiments described below, the images to be
processed are binaiy, with 32x32 pixels.

The perturbation imageshave black pixelsdistributed according to someregularmorphology. The goal
is to design a CNN cell which allows the corresponding CNN system to be used for removing
morphologically known perturbations from any possible input images. For example, we may define the
morphology ofa particular perturbation as "diagonal lines" and thus the goal will be to design such a CNN
cell which allows for removing "diagonal lines" from any possible input image.

In what follows we have considered two such different image perturbations: a) horizontal lines and b)
randomly distributed rectangular boxes. For each experiment, the following strategy was considered:

First, a binary random image was artificially generated. This image was dien corrupted with the
perturbation image. The resulting image was considered as the input while the non-corrupted binaiy one
was considered as "desired response" in a learning process. Our learning scheme consists of applying the
Widrow-Hoff (LMS) algorithm at the output layer of the P-cell and thus convergence towards a global
optimum is guaranteed (see section 2, P3). In each step ofthe learning process, one of the CNN's P-cells is
excited with a 3x3 pixels window from the input image while an error is computed between its actual
output and the desired one associated with the middle pixel of the respective window. Based on this error,
the "gene" parameters (which are initially set to 0) are updated. A training epoch consists in sequentially
activating ^1 P-cells in the CNN. More epochs may be used until the average training error stabilises. In
our experiments, the training lasted four epochs corresponding to 3 minutes of computation on a Pentium
133 processor. The motivation for using a binary noise image as the desired one is that we want the P-cell
to learn how to react to as many input combinations as possible. Since regular images provide significantly
fewer possible pixel combinations relative to a 3x3 window, the system would not be able to react correctly
when a new image is presented (i.e. it will have a low generalizationcapability).

The results ofthe learning process may be visualized as "genes" in Fig.4.
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Fig. 4a: Image restoration by learning in CNNs based on pyramidal universal cells:
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Fig 4.b: Image restoration by learning in CNNs based on pyramidal universal cells:
Rectangular-box perturbation.

Observe that some pixels in these non-Boolean genes are "grey" which corresponds to 0 value or "don't
know" in the Boolean Interval logic. Such "genes" cannot be defined using other solutions proposed in the
literature. In fact, the "grey" pixels in the genes play a significant role in the above image restoration task
as it can be inferred from Fig.4. Here, different test images were applied to the CNN with trained P-cells.



Instead of havingonlytwo brightness levels (black and white), the processed image also has "grey" pixels
(i.e. having 0 values) which may correspond to all input combinations learned as "ambiguous". It also
follows that most of these pixels lie in the area corrupted by the perturbation. In other words, the cell
learned the perturbation essentially by reacting with the answer "don't know" when some 3x3 window
input belonged to a corrupted area. Furthermore, since we are dealing with binary image processing, all
ambiguous pixels may be removed, thereby restoring an image which is significantly closer to the original
by simply toesholding with a fixed value. In the physical implementation (see Fig.5.) this thresholding
operation requires a very simple circuitry corresponding to a simple CNN template. Observe that this
strategy can be applied to a large variety of possible regular perturbations, and, as opposed to other
methods (e.g. the scratch removal presented in [17]) which need a sequence of operations on the CNN
universal machine, the same result is obtained after only one CNN time-step. A detailed analysis of this
class ofapplications will be presented in a future paper.

5. Implementation aspects

The model proposed in Section 2 is well suited for digital hardware or software implementations.
Instead of most Radial Basis Functions models, it has the advantage that no multiplication operator is
required (when Ct = \) and it is basically a PWL representation, thus only simple operators such as
summation/subtraction and absolute value extraction are required for / = 1 (which covers binary image
processing). However, the computation time is still large, particularly for large images. For example, to
implement a 32x32 CNN using a C-h- compiler for the P-cell with a —p - y —\^ the average
processing time on a Pentium 133Mh2 machine for a CNN time-step is 30 seconds and a reasonable
decrease in error during the learning process is achieved after 3 minutes. It follows that a 512x512 image
will take 2 hours to be processed and about 12 hours will be necessary for learning. To speed-up the
computation, a parallel hardware implementation of more than 1 cell is the best solution. In Fig.5. the
schematic of the P-cell from the perspective of a fully parallel implementation is presented. Analog VLSI
technology was considered since it offers the most convenient (in terms of occupied area) implementation
of such operators as summation (by using the current Kirckhofs law), absolute value (using rectifying
properties in PN junctions) and synaptic operators 0^ (e.g. by using CMOS switches). However, when
accuracy is needed, the same schematic can be implemented via parallel digital hardware. Fig.6. presents a
description of each building block (here also called "atoms").

other cells

output I . _ ^ I

Inputs
Fig.5: The implementBtion schematic of the P-cell.

The gene shown in this figure corresponds to the implementation of Conway's ''Life" game.

512 wires

storage +
learning



The following features should be emphasised:
• Only one learning and parameter storage circuitiy (the "gene" atom) is needed, regardless of the

size of the image^. This offers important advantages for parallel implementation ofmultiple cells. Indeed,
the more cells we have on the chip the less the percentage of area occupied by the learning and storage
circuitiy.

• In a fully parallel implementation, the fixed part of the truth table (the Oj i coefficients) are
implemented as hard-wires and thus the occupied area is the smallestpossible.

• Both rectifierand synaptic operatorsassociated with each pyramidal atom can be implemented in a
single VLSI cell with a small number of transistors. If the information processing at the cell output is
restricted to the set {-1,0,1}, this atom may be a simple analog switch controlled by the resulting current
contribution ofthe 9inputs selected according to the defining coefficients flyof the pyramidal atom.

• Since the output of the cell is computed as a summation, it is convenient to consider the outputs of
the "gene" atom (which represents the parameters gj in the mathematical model) as currents, so that the
summation can be realised in a single metal node, via KCL.

• In a real implementation, it is not necessary to implement nine grid-distributors for each cell.
Instead, grid-distributors will be associated with the CNN inputs and, thus, each cell will need onlyone
grid-distributor with 9 pairsof outputs. Thus, thenumber of transistors may be considerably reduced.
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Fig.6: The buDding blocks (atoms) of the analog P-cell implementation

Although this implementation solution is fast (there are only three layers of physical devices between
input and output) and needs a small number ofbasic building blocks, it has two disadvantages:

Assuming a homogenous CNN.

11



1) Abig current fan-out {2561^^) for each output ofthe current distributors, as a result ofthe fixed
part section of the truth table. As long as small referencecurrents are associatedwith low speed, it follows
that a compromise between computation speed and current consumption should be considered. For a

reasonable consumption of 1mA/ cell it follows that 512x9
the worst case

consumption inall
V pynunidal atoms J

2) A huge number of transistors, most ofthem needed as a result of 1). A rough estimate of this number
is: 256 X18 + 512 x 4 + 18 + 8. = 6682 transistors / active cell.

(Ustribuiton reetifier+synaptic gru/
Jan-out operators distribuitors

It is interesting to observe however, that these disadvantages (which are in fact, the price paid for both
universality and high speed) may be overcome using a sequential implementation, for example within the
finmework of a CNN Universal machine [16]. In this case, only one pyramidal atom per cell will be
required. The hard-wired coefficients flywill be now replaced with analog (CMOS) switches digitally
controlled by an external (the same for all cells) 9 bit coimter. The output summation will be now made
over time using an integrator of the output atom and assuming that both the counter and the integrator will
be reset at the beginning ofeach 512-step computationcycle. The "gene*' atom will now be a shift register
controlled synchronously by the same clock as for the counter. Instead of 512 wires as in a fiilly parallel
implementation it will have only one output connected to the synaptic operator of each cell. Thus, by
sacrificing the computation time (512 times slower), it is possible to get a higher density. A rough estimate
forthenumber of transistors gives in thiscase: 18x4 + 18 + 8 + 4 = 102 transistors/cell.

counter controlled grid rectifier
switches distribuitors syn^tic

operators

This means an area reduction of about 65-times; and the current consumption per cell is also reduced 512
times. Since a 10 ns internal clock time is typical with actual technologies, it follows diat such a cell will be
able to process information at a speed of about Spts. Assuming that32x32 cells will be implemented on

the same chip, it follows that there is still a considerably speed-up of 30^ / 5'10"^5= 6,000,000
Pentium VLSI

sequential

times compared to a standard micro-processor implementation.

Conclusions

From the CNN perspective, using this Pyramidal Universal cell allows one to implement in a unified
way all previously discovered linear and nonlinear templates which deal with binary imagery. Moreover, it
offers a tremendous potential for investigating new processing functions and/or for learning new ones
based on examples. A natural extension to grey level or colom* image processing while preserving the
logical meaning ofthe binary image processing is also possible.
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