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Abstract

In this paper, we study the strange nonchaotic attractor of a second-order quasi-periodically
forced electroniccircuit. This circuit, which is driven by twosinusoidalvoltagesources, consists of
a linear inductor, a linear capacitor, a linear resistor and a specifically designed piecewise-linear
negative resistor. Both the experimental and the simulation results are provided to show the
bifurcation process from two-frequency qujisi-periodic attractors to strange nonchciotic attraotors,
and from strange nonchaotic attractors to strange chaotic attractors.

1 Introduction

The pioneering work in strange nonchaotic attractors was presented in [16]. Since then strange
nonchaotic attractors have been found in forced pendulum[4, 36], quasi-periodically forced circle
map[8], quasi-periodically von der Pol oscillator[22], quasi-periodically forced Ueda's circuit[26],
quasi-periodically forced Chua's circuit[42], etc. A strange nonchaotic attractor has a fractal struc
ture and contains an uncountable number of points and it is not piecewise differentiable. Since the
typical trajectories on a strange nonchaotic attractor are not sensitive to the initial conditions, we
call this kind of strange attrzictor "nonchaotic" ( the word chaotic itself implies sensitivity to ini
tial conditions). One significant characteristic of a strange nonchaotic attractor is that there exists
no positive Lyapunov exponents. To summarize, a strange nonchaotic attractor is geometrically
complicated but is not sensitive to initial conditions.

In most dynamical systems with period-doubling bifurcation to chaos, the strange nonchaotic
attractors occur in a parameter set of measure zero. This means that we can not experimentally
observe any strange nonchaotic attractors in this kind of systems. Fortunately, in dissipative dy
namical systems which are driven by several incommensurate frequencies, i.e., quasi-periodic driven
systems, there exist parameter regions with finite area in the parameter space for which there are



strange nonchaotic attractors[5, 4]. This is a very important property which enables us to observe
and study the strange nonchciotic attractor in experiments.

An intuitive understanding of the existence of strange nonchaotic attractorscan be achieved by
thinking of the phase space as being divided into two subspaces where the trajectories are either
purely expanded or purely contracted. Since the Lyapunov exponent is defined as the average ex
panding and contracting rate decided by the visiting frequency ofthe trajectories to both subspaces,
a negative Lyapunov exponent means that the trajectories mostly visit the contracting subspace
where a strange "nonchaotic" attractor happens. On the other hand, a positive Lyapunov expo
nent indicates that the trajectories mostly visit the expanding subspace where a strange "chaotic"
attractor occurs.

Recently, lots of results of the strange nonchaotic phenomena were reported in many papers[10,
40, 28, 13, 1, 26, 15, 37, 2, 25, 14, 32, 24, 33, 31, 17, 39, 20, 19, 29, 41, 12, 7, 5, 18, 6, 3, 11, 22,

35, 9, 8, 36, 34, 21, 16, 4, 38, 42]. Although, there are lots ofcomputer simulation results of strange
nonchaotic attractors[4, 36, 8, 22, 26, 42], so far only one experimental observation was reported
in a two-frequency quasi-periodically driven, buckled, magneto-elastic ribbon experiment[ll]. The
experimental configuration in [11] is of course complicated and expensive. In this paper, we present
a poor man's generator of strange nonchaotic attractor — a second-order electronic circuit, which

consists of a linear inductor, a linear capacitor, a linear resistor and a specifically designed piecewise-

linear negative resistor ^. When thiselectronic circuit was driven by a single sinusoidal voltage source,
the strange chaotic attractor wasobserved by Nurall et al.[27]. When this electroniccircuit wasdriven
by two sinusoidal voltage sources, in addition to the existence of the strange chaotic attractor, also
the existence of the strange nonchaotic attractor was verified by Kapitaniak and Chua[21] using
simulation results. In [21], this circuit was driven by a single two-frequency signal. In this paper, we
modified that configuration into a configuration that is driven by two independent periodic signals
because the practical implementation of this experiment requires two independent signal generators
to generate the drivingsignals. Since in our configuration, there are two independent voltagesources,
we have one more parameter in our configuration than that presented in [21].

In a two-frequency quasi-periodical system, we can use the following characteristics to distinguish
strange nonchaotic attractors from two-frequency quasi-periodical attractors and strange chaotic
attractors.

Fourier amplitude spectra

In a Fourier amplitude spectrum |5(/)| we define a peak as a local maximum, and N((t) as the
spectral distribution function, which is the number of peaks of |5(/)| with amplitude greater
than (T. It has been found that for a two-frequency quasi-periodical attractor and a strange
nonchaotic attractor the relations between N{a) and a are respectively N{a) ln(a) and
N{(t) - <T-", 1< a < 2[36, 8, 11].

^By using the off-shelf components, one can build one copy of this circuit with a cost less than 10 US dollars in
USA and less than 1 US dollar in China.



• Lyapunov exponents

In the case of a two-frequency quasi-periodic system there are two Lyapunov exponents that

are trivial in the sense that they are identically zero by virtue of the forcing frequencies. If we

sort the Lyapunov exponents in a nondecreasing order as Ai < A2 < A3 < then for a two

two-frequency quasi-periodical attractor, a strange nonchaotic attractor, and a strange chaotic

attractor, we respectively have: Ai = A2 = 0 > A2, Ai = A2 = 0 > A2, and Ai > 0. However, by

using the standard method (as that provided in the standard software for nonlinear dynamical

systems, e.g., INSITE[30]), we can not obtain reliable results for the nontrivial Lyapunov
exponents(except for Aj in the chaotic cases), because all the calculated Lyapunov exponents
would be negative. Thus, by using the Lyapunov exponents we can only conclude whether the

system is chaotic or not.

• Winding number[22, 26, 36]

The winding number, W, for a second-order system is defined as the following limit

W= ,1™ {(«(«) - a(«o))A} (1)

where {xi,X2) = (r cosa, r sin or). For the two-frequency quasi-periodic attractor, W satisfies

W = {m/n)u)2 (2)

where /, m and n are integers. We can use the winding numbers to distinguish the two-frequency

quasi-periodic attractor from the strange nonchaotic attractor[26].

2 Simulation Results of the Second-order Electronic Circuit Used

in this Experiment

In this paper, we study the circuit in Fig.l. It is a modified version of the circuit presented in

[27]. We let Si(t) = Aisin(2nfit -I- ^1) and S2{t) = Ai$in(27rfit ^2)1 where Ai and A2 are the
amplitudes, /i and /2 are the frequencies, and <f>i and 4>2 are the phases, then the state equations of
this circuit are given by

{^ = ifo - /(^c)]
(31

^ -VC + Aisin{27rfit + <^2) + A2sin{27rf2t -1- <f>i)]

where /(•) is the nonlinear characteristics of the piecewise linear negative resistor given by

f(vi) = GfcUi -f2+£*1 - \vi —E|) (4)

and E is the breakpoint voltage. This characteristic is depicted in Fig.l(b).
Before we build this circuit, simulations are used to determine the correct parameter values in
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Figure 1: (a) The electronic circuit studied in this paper, (b) The characteristics of the piecewise
linear negative resistor.

order to observe the strange nonchaotic attractor. In fact, our simulations are also based on the real

circuit configurations. After some trial and error, wechoose the fixed parameters as: C = lOnF, L =
18m//, R = 1290fi, Ga = -0.76m5, Gb = -0.409m5, E = IV, fi = 10204//^, and /a = 2943//z.
For simplicity, we also fixed = ^2 = 0* ^2 = O.IV is fixed and Ai is the bifurcation parameter.

The evolution of the maximum Lyapunov exponent is shown in Fig.2. In Fig.2 we choose Ai in
the interval [0,1] to show the largest Lyapunov exponent with respect to A2 = 0.
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Figure 2: Evolving process of the largest Lyapunov exponent when Ai as the bifurcation parameter.

We show the different attractors in simulations with different Ai parameters in Fig.3. Figure
3(a) shows the attractor ofAi = O.lV which is a quasi-periodic torus in surface of Figure 3(b)
shows the attractor of Ai = 0.35V which is a strange nonchaotic attractor. Figure 3(c) shows the
attractor of Ai = 0.5V which is a chaotic attractor. Figure 3(d) shows the attractor of Ai = 0.75V
which is a strange nonchaotic attractor. Figure 3(e) shows the attractor of Ai = IV which is a
quasi-periodic torus in the surface of T^. The classification of these simulation results are based on

the largest Lyapunov exponent and the winding number.
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Figure 3: Different attractors for different i4i's. A2 = O.IV is fixed, (a) Ai = O.lV. (b) Ai = 0.35V.
(c) Aj = 0.5V. (d) Ai = 0.75V. (e) Aj = IV.

3 Experimental Results

The details of building the piecewise linear resistor /(•) can be found in [23]. The circuit configuration

is shown in Fig.4. In this experiment, we show the bifurcation process when A2 is fixed and Ai is

chosen as the bifurcation parameter. The parameters for this experiment are given in Table 1.
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Figure 4: The configuration of the experimental circuit.

Table 1: Components used in the circuit.

Device value

Ai Op amp \ AD712
Ri \W resistor 220Q

R2 \W resistor 220Q

Rz \W resistor 2.2kQ

A2 Op amp 1 AD712
R4 \W resistor 22kQ.

Rs \W resistor 22kQ.

Re \W resistor d.SkQ

a capacitor lOnF

L inductor 18mH

R potentiometer(2kn) 1290Q(tuned)

With the above component values, the parameter of the circuit is given by: Ga = —0.76m5,
Gb = —0.409m5' and E a lV(with V+ = H-9V and VL = --9V as the power supplies to the two
Op amps). The frequencies of 5i(0 and 52(0 are fixed at fi = 10204Hz and /2 = 2943ifz. The
experimental results areshown in Fig.5. In all the pictures in Fig. 5, the horizontal axis is the voltage
across the capacitor (Vc?) and is scaled to 0.5V/div. Since we can not show the current through the
inductor(iL) directly in an oscilloscope, we use the vertical axis to represent the voltage across the
resistor R{Vr) which has the relationship with ii defined by Vr = Rxii. The vertical axis is scaled
to IVfdiv.



Figure 5: The experimental results with A2 = O.lV fixed, (a) The two-frequency quasi-periodic
attractor with Ai = IV". (b) The strange nonchaotic attractor with Ai = 0.35V. (c) The strange
chaotic attractor with Ai = 0.5V.



We then verify the simulation results from the observed data. The spectral distributions for 3
diiferent types of attractors are shown in Fig.6 with a fixed ^2 = 0.1. In Fig.6 the dashed curve, the
dotted curve and the solid curve show respectively the spectral distributions of the cases of i4i = 1,
Ai = 0.5 and Aj = 0.35. We found that the results presented here are similar to those found in

Ueda's circuit[26]. We canfind that therearesignificant differences between the spectral distributions
for two-frequency quasi-periodic attractor(Ai = 1), strange chaotic attractor(i4i = 0.5) and strange
nonchaotic attractor(i4i = 0.35). The data we used is the voltage across the capacitor, vc{t). The
sampling rate is lOQKHz with 12-bit accurate. 2^^ sampling points are used. The approximately
straight solid line in Fig. 6 indicates the power-law relationship N(a) a"® with the best fit giving
2 > a = 3.5/3 > 1, which affords an important signature of the strange nonchaotic attractor.

4 4.5 5
log(slsma)

Figure 6: The spectrum distribution function of different types of attractors. A2 = 0.1 is fixed. The
results for Ai = 1(dashed curve), Ai = 0.5(dotted curve) and Ai = 0.35(solid curve) are shown.

4 Conclusions

In this paper, we studied the strange nonchaotic phenomenon in a second-order quasi-periodically
forced electronic circuit. First, we used simulation results to show the bifurcation process of this
circuit from two-frequency quasi-periodic attractors to strange nonchaotic attractors, and to strange
chaotic attractors. Then, experimentally weobserved the existence of the strange nonchaotic attrac
tors as a part of the whole bifurcation process as predicted by the simulations. Furthermore, our
experiments also verified that the strange nonchaotic attractors exist in sets of positive measure in
the parameter space.
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