Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EXACT REQUIRED TIME ANALYSIS
VIA FALSE PATH DETECTION

by

Yuji Kukimoto and Robert K. Brayton

Memorandum No. UCB/ERL M97/44

16 June 1997

EXACT REQUIRED TIME ANALYSIS
VIA FALSE PATH DETECTION

by
Yuji Kukimoto and Robert K. Brayton

Memorandum No. UCB/ERL M97/44

16 June 1997 '

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Exact Required Time Analysis
via False Path Detection

Yuji Kukimoto* Robert K. Brayton
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720
{kukimoto,brayton}@eecs.berkeley.edu

June 16, 1997

Abstract

This paper addresses how to compute required times at intermediate nodes in
a combinational network given required times at primary outputs. The simplest
approach is to compute them based on topological delay analysis without any
consideration of false paths. In this paper, however, we take into accountfalse paths
between the intermediate nodes and the primary outputs explicitly to characterize
the timing constraints at the nodes more accurately. We show that this approach
leads to a technique for computing a more refined and relaxed timing constraint
than that obtained by topological analysis. We generalize the notion of required
times from a single constant to a relation where a signal is required at different
times depending on the values of the other signals. Experimental results show that
the technique can extract timing constraints looser than those based on topological
analysis for all but three in the ISCAS combinational circuit suite.

*The first author is supported by SRC-97-DC-324.

1 Introduction

An optimization strategy common in most logic optimization algorithms is repeated
applications of the following two steps: 1) characterize a set of permissible implemen-
tations at a subcircuit (or a node) and 2) select a behavior of better quality from the
set in consideration of area, speed, testability, power dissipation or a combination of
the four. This paper is concerned with the first step, especially how to characterize
permissible implementations which preserve temporal behaviors of the original circuit.
The temporal behaviors of interest in this paper can be captured by required times at
primary outputs and arrival times at primary inputs, Suppose a combinational network
and its arrival/required times at primary inputs/outputs are given. Assume that a sub-
network of this circuit is to be optimized. When resynthesizing this subnetwork, arrival
times at subcircuit inputs and required times at subcircuit outputs must be specified to
a logic synthesis tool along with the functional specification of the subcircuit so that
replacing the existing subcircuit with an optimized circuit automatically preserves the
original functional and temporal specifications. This scheme enables us to resynthesize
subcomponents locally without violating the functional and temporal requirements of
the whole system.

A naive solution for this problem is to compute arrival times and required times
using topological delays. This approach is commonly used in most timing optimization
algorithms in the literature. Although this conservative approach gives a fast and safe
approximation to the true timing constraint, the resulting timing requirement may be
tighter than necessary since false paths in the surrounding network are completely
ignored. Therefore, the timing constraint computed in this manner may prevent a
synthesis tool from exploring the entire temporal flexibility, thereby leading to an
unsatisfactory circuit. The goal of this work is to solve this problem more rigorously
by taking false path effects into account so that a more accurate and thus more flexible
timing constraint is computed for the subnetwork.

There have been many theoretical and practical results published in the literature
for functional flexibility. Functional flexibility of a subnetwork can be characterized
as the set of functionalities which can replace the current implementation without
changing the I/O functionality of the entire system. For the case where the subcircuit
is a combinational circuit, the full flexibility can be captured by a Boolean relation of
the inputs and the outputs of the subcircuit [4]. Exact computation of the full flexibility
is expensive for large networks, so a subset of the flexibility computable efficiently is
of great interest, for which various don’t care computation techniques [11, 10] have
been developed. Recently, Watanabe and Brayton [14] resolved the case where the
subcircuit is a sequential circuit by showing that the complete functional flexibility of
the subcircuit is expressible by a single non-deterministic FSM, called the E-machine.

Although asignificant effort has been made towards computing functional flexibility,
littlehas been done for timing flexibility. The main objective of this paper is to leverage
the theory of temporal flexibility up to the same level as functional flexibility.

One related work published recently is the notion of timing-safe replaceability
proposed by Aziz ef al. [1], which is an extension of safe replaceabiliy addressed by

Singhal er al. [13] in the context of sequential synthesis. The core idea of [1] is to
characterize the set of all temporal behaviors exhibited by a combinational circuit using
the linear logic of . If the set of all behaviors exhibited by another combinational
circuit is a subset of the original set, no surrounding environment can detect a difference
between the two circuits. Thus, the replacement of the original circuit with the new
circuit is timing-safe; it works in all environments, This notion of replaceability,
however, is often too stringent in realistic design scenarios since timing optimization
of a component is typically performed given a particular surrounding environment.

This paper is organized as follows. Section 2 summarizes false path analysis,
which forms a basis of this work. Section 3 gives the overview of the problem of
computing temporal flexibility and illustrates how this problem arises in practical
setups. Section 4 discusses a novel technique to propagate required times backwards
by taking into account false path effects. Section 5 shows how to tackle the main
problem using the technique of Section 4. Experimental results are given in Section 6.
Section 7 concludes the paper.

2 Preliminaries

In this section, we review sensitization theory for the false path problem [5, 6, 9].
Specifically, the theory developed in [9] is detailed below since the analysis following
this section is heavily based on this particular theory.

2.1 Functional Delay Analysis

Functional delay analysis, or false path analysis, seeks to determine when all the
primary output signals of a Boolean network become stable at their final values given
maximum delays of each gate and arrival times at the primary inputs. Since some paths
may never be sensitized, the stable time computed by functional delay analysis can
be earlier than the time computed by topological delay analysis, thereby capturing the
timing characteristic of the network more accurately. Those paths along which signals
never propagate are called false paths.

2.2 The Extended Bounded Delay-0 (XBD0) Delay Model

The extended bounded delay-0 model [9], XBDO model, is the delay model most
commonly used in false path analysis. It is the underlying model for the floating mode
analysis {5] and viability analysis [8]. Under the XBD0 model, each gate in a network
has a maximum positive delay and a minimum delay which is zero. Sensitization
analysis is done under the assumption that each gate can take any delay between its
maximum value and zero. Note that the monotone speedup property introduced in [8]
exactly corresponds to the condition that minimum delays of all the gates are zero.

2.3 Sensitization under the XBD0 Model

The core idea of [9] is to characterize recursively the set of all input vectors that make
the signal value of a primary output stable to a constant by a given required time. Once
these sets are identified both for constants Q and 1, one can compare these against the
on-set and the off-set of the primary output respectively to see if the output is indeed
stable for all the input vectors by the required time. The overall scenario of computing
true delay is to start by setting the required time to the longest topological delay minus
4 > 0 and gradually decrease it until some input vector cannot make the output stable
by the required time. The next to the last required time gives an approximation to the
true arrival time at the output. This process of guessing the next required time can be
sped up and refined by making use of a binary search.

Let us illustrate how we can compute these sets. Let » and d,, be a node (gate) in
a Boolean network N and the maximum delay of the node n respectively!. Let Xhv
be the characteristic function of the set of input minterms under which the output of
the node n becomes stable to a constant v € {0, 1} by the time ¢. Let £, be the local
functionality of the node n in terms of immediate fanins m,, ..., m; of n. For ease
of explanation, let f, = mym,, i.e, n is a two-input AND gate. It is clear from the
functionality of the AND gate that to set n to a constant 1 by time ¢, both of the fanins
of n, m; and m,, are required to be stable at 1 by time ¢ — d,,. This is equivalent to

X1 = Xl " X
Note that the two x functions for the fanins are AND’ed to take the intersection of the
two sets. Similarly, to set n to a constant 0 by time ¢, at least one of the fanins must be
stabilized to 0 by time ¢ — d,;.
X0 = Xome8 + Xom8

Here the two x functions are OR’ed to take the union of the two conditions. It is
easy to see that the above computations can be generalized to the case where the local
functionality of n is given as an arbitrary function in terms of its fanins as follows.

Xnw= 2 UIT xmi - TI ximis
pEPY mi€p micp
where P} and P, are the sets of all primes of f, and f, respectively. One can easily
verify that the recursive formulations for the AND gate shown above are captured in
this general formulation by noticing Py = {mymy}, P? = {7y, 3} for f, = mym;.
The terminal cases are given when the node n is a primary input .

Xz 1 z ift > arr(z)
= 0 otherwise

Xto = F ift > arr(z)
=0 otherwise

! Although it is possible to differentiate rise delays from fall delays, we do not distinguish between them
in this paper to simplify exposition.

primary output Z T req(2)

subcircult output vV
"

-subnetwork N’

subclrcuit input U

primary input X T ar{X)
Figure 1: Boolean Network

where arr(z) denotes the arrival time of z. The above formulas simply say that a
primary input is stable only after its given arrival time. The key observation of this
formulation is that characteristic functions can be computed recursively.

Once characteristic functions for constants 0 and 1 are computed at a primary output,
two comparisons are made: one for the characteristic function for 1 against the onset
of the output, and the other for the characteristic function for 0 against the offset of the
output. Each comparison is done by creating a Boolean network which computes the
difference between two functions and using a SAT solver to check whether the output
of the network is satisfiable. Experimental results in [9] showed that this approach can
analyze large networks in reasonable computation time.

3 Overview

In this paper we restrict our attention to combinational circuits. Sequential circuits
using edge-triggered latches, however, can be easily handled with the same framework
by assuming all the latch inputs and outputs as primary outputs and inputs respectively,
where the required times and arrival times of those are determined by the clock edge
minus the setup time and the clock edge itself respectively.

Given a Boolean network A and a subnetwork A" of A2, our interest is to charac-
terize the timing flexibility of A so that resynthesis of the subcircuit can be performed
locally without violating the timing constraint of the entire network A”. Note that our
assumption is that A" \ A/ remains unchanged and only A’ is to be resynthesized.
Let us introduce some notation for ease of explanation. Let X = (zy,...,z,) and
Z = (21,...,2m) be primary inputs and primary outputs of A respectively. Let
U= (u1,...,up) and V = (v, ..., vy) denote inputs and outputs of N respectively.

2To be precise, A’ must meet the condition that there is no path leading from a subcircuit output to a
subcircuit input.

— — —
-~ latch

Figure 2: Hierarchical Synthesis

(See Figure 1.) We assume that arrival times at primary inputs X and required times at
primary outputs Z are given. Our goal is to compute arrival times at subcircuit inputs
U and required times at subcircuit outputs V' by considering the effects of false paths
in '\ M explicitly. One can think of this as mapping the timing requirement of the
entire circuit onto the subcircuit.

This problem has several practical applications. The first is performance-oriented
resynthesis. Suppose a combinational circuit was synthesized from a specification.
Although one can optimize the entire circuit further to speed up late outputs, another
promising approach is to extract a subcircuit containing part of critical paths and
optimize it locally. This scheme is more likely to give a faster circuit because the circuit
fed to synthesis is smaller. A similar approach is in fact taken in timing optimization
techniques [12] published in the literature, but their delay computation is based on
topological longest paths thereby failing to capture some of existing timing flexibility.
Since our approach computes the timing flexibility of the subcircuit by considering false
path effects from the surrounding circuit, larger flexibility, i.e. less stringent timing
requirement, is obtained, which makes resynthesis easier. An interesting subproblem
of this application is to compute the true slack of a gate output, where the slack is
calculated by taking false path effects into account.

The second practical application is in hierarchical synthesis. Assume that a set of
communicating sequential circuits does not meet a timing requirement, e. g. they do
not satisfy a cycle time constraint. We now want to optimize component circuits one
by one to speed up late signals. Optimizing the entire circuit as a single chunk is not
desirable in this context because it destroys the hierarchy meaningful to designers and
more importantly the whole circuit may be too large to handle for synthesis algorithms.
Since the boundaries of components are not necessarily latch inputs or outputs, one may
have to map arrival/required times for latch inputs/outputs of the other components to
the interface nodes of the component to be optimized. Figure 2 shows such a situation,
where two sequential circuits are cascaded. Assume that a cycle time is given as a
timing specification and we want to optimize only the left component with the right
component unchanged. For simplicity, assume that there is a single latch in the right

compute._required_time(N)

1 sort all the nodes in AV in a reverse topological order
2 for each node n € A s.t. n is not a primary output{
3 reg(n) = oo

4

5 for each node n € N {

6 for each fanin m of n {

7 if (req(n) — dy < reg(m))

8 reg(m) = req(n) — dy

9

10 }

Figure 3: Algorithm to Compute Required Time based on Topological Delay

component. The input of this latch must become stable before the cycle time. This
constraint can be translated to that of the left component by propagating the required
time at the latch input backward through the combinational gates in the transitive fanin
of the latch to the boundary of the two components. Note that this problem is equivalent
to our problem where A is the combinational portion of the right component and A is
the set of all the boundary variables between the two components.

A similar scenario can arise in pure combinational synthesis. Consider a cascaded
combinational circuit, where the driven circuit contains a fair amount of false paths.
To resynthesize the driving circuit effectively for improved performance it is critical to
characterize the required times of the signals feeding the driven circuit as accurately as
possible. Required times computed by topological analysis may completely mislead
resynthesis due to the unawareness of false paths in the driven circuit. In this setup, N'
corresponds to the entire circuit and N the driving circuit.

4 Computing Required Time under the Existence of False
Paths

In this section we consider the following simpler problem:

Given a Boolean network, maximum delay of each gate, and required times
at its primary outputs, compute required times at its primary inputs.

This is a special case of the general problem where the subcircuit under analysis only
contains all the primary inputs of the network. The problem can be solved efficiently if
delays are defined as topological longest delays as shown in Figure 3. The procedure
first sorts all the nodes in a reverse topological order and initializes required times of all
the nodes, except primary outputs, to infinity. It then propagates required times of the
output of each node backward to the fanins of the node. If a signal has more than one

fanout, only the earliest required time is recorded. The procedure runs in time linear
in the size of the network. Note that required times are uniquely determined in this
algorithm, which is not necessarily true once false path effects are taken into account
as we see later in this section.

The approach taken in the following makes use of x functions introduced in Sec-
tion 2. For each primary output, x functions for constants 0 and 1 are computed for
a given required time and they are compared against the onset and the offset of the
output respectively to extract conditions on required times at primary inputs. The main
difference between this problem and the functional delay analysis problem discussed in
Section 2 is that arrival times at primary inputs are unknown variables in our problem
while they are given in the other. In spite of this difference the original recursive
formulation for computing x functions almost works. A modification is required only
in terminal cases. Since we do not know when a primary input signal arrives, leaf x
functions at primary inputs remain as unknown variables. Henceforth, we call leaf x
functions at primary inputs leaf x variables. Let z be a primary input. Assume that
after recursive construction of x functions at primary outputs, leaf x variables for z are
needed at times #; <1 < ... <1, for value 1 and at times ¢{ < ¢ < ... < t,_for
value 0. Remember that leaf x variables are characteristic functions of sets of input
vectors that are stable by required times. This implies that for any ¢, < t; the set of
stable input vectors by time £, must be contained in the set of stable input vectors by
time £,. Therefore, the following ordering conditions among leaf x variables must be
met.

b C X CxdC...cxrice
0

The formulas above indicate that leaf x variables are 1) monotone non-decreasing with
respect to time and 2) bounded above by = and for value 1 and 0 respectively. The
first constraint is imposed since, once an input vector becomes stable, it must continue
to be stable. The second constraint is required so that leaf x variables are compatible
with the onset and the offset of the primary input .

Let us go back to our problem. For simplicity, assume that a Boolean network
M has a single primary output 2, whose required time ¢ is given. Generalization to
multiple primary outputs is trivial. We are interested in computing required times at
primary inputs of the network. Suppose that xf,,l and x¢ .0 are computed in terms of
leaf x variables at primary inputs, which we call xx. The goal is to assign Boolean
functions of X to unknown x x variables so that

Xialxx) = z(X)
xolxx) = z(X)

under the ordering constraints among xx variables discussed above, where z(X)
denotes the functionality of the primary output in terms of primary inputs X3. The set

’

t! t ¢
Xz0SEX70C - CX5CF

N

31t is possible to extend the theory to the case where z(X) is an incompletely specified function.

% req(z)=2

x1 x2

Figure 4: Example

of input vectors which make the output stable at value 1 or 0 by time ¢ are constrained
to be equal to the onset or the offset of the output function respectively.
4.1 Exact Approach

One can formulate this problem as solving a Boolean equation where unknown variables
are leaf x variables x x. The Boolean constraints to be satisfied are:

Xialxx) = z(X)
Xi,o(XX) = m

foreachz € X : Cx}C...Cx5Cx
’ f]
foreachz € X : ﬂgxf__"og...gx;‘(ggf

Itis easy to transform the above set of Boolean equations to an equivalent single Boolean
equation of form F'(X, xx) = 1 [3] by AND’ing all these constraints together, In this
equation, xx are variables to be solved while X are Boolean constants. One can
think of F(X, xx) as the characteristic function of a Boolean relation where X is the
inputs and x x is the outputs. Any function in terms of X compatible with F satisfies
the timing requirement at z, One method for extracting such a function is Boolean
unification [3].

Notice that the notion of required times at primary inputs is significantly generalized
here. For each primary input, its required time is not simply a single constant, but the
input signal can arrive at different times depending on signal values of the other inputs.

Let us illustrate this in the circuit shown in Figure 4. For simplicity, assume that the
maximum delay of the AND gate is 1 and the required time at the primary output z is
2. The required time computed by topological delay analysis is time O for both inputs.

x functions for z can be computed as follows.

XZ,] = Xg.,lxoz,,lxg:,,x
2 —_ 0 0 1
xz,O - Xz,,o + st,o + Xz,,o

The procedure described above gives the following Boolean relation.

127 X301 X0 1 Xz 100X 0X a0
00_7_000100,000"‘101,00000"‘1,00001—'“_T1,000111

01 {000100,001100,011100}
10 {000001,000011,100001,100011}
1 {111000}

Let us examine the relation to see what kind of timing constraints need to be
imposed. For input 00, the first three leaf x variables must be zero in all the cases. This
is natural since these x variables are for constant 1, and neither z; nor 2, may become
stable to 1 in this case. The first two and the last patterns correspond to the case where
x,' o isone, i. e. 2, is stable to O by time 0. In this case, z is guaranteed to be stable to
0 no matter how z; behaves. The only constramt to be satisfied is x,z 0 © xn o- The
third and fourth patterns are for the case Xz, o is zero. This time, z, is not stable to zero
at time O, but as long as :n; becomes Zero by time 1, z will be stable by time 2. Again,
the ordering condition Xs, 0 € X5, 0 must be met.

As mentioned prewously, one can think of this relation as a generalization of
required time. Any signal behavior at primary inputs that is compatible with this
relation meets the required time at the primary output. For example, if we pick 000100,
000100, 000001, and 111000 for input minterms 00, 01, 10, 11 respectively, then leaf
X variables will be:

x2.,1 = 13
xg,,n = T2
X:lcz,l = N1
Xho = T
ng,o =0
Xi,,o = z173.

To focus on only the stability of signals, we define %, as follows.
X = X:.,l + X:.,o

This ¥ function of a node n at time ¢ is the characteristic function of the set of all input
vectors that make the signal n stable either to O or to 1 by time ¢. For the x functions
above,

520:, = T+

10

0
X::, = Z122
-1 _

Xz; =5

The interpretation of this is that primary input z; must be stable by time 0 just for the
case T1 + z, and if 2,77, it can delay forever without violating the given functional
and temporal requirements. Notice that in topological analysis it always has to arrive
before time 0. Let us look mto how signal 2, should behave. It must be stabilized by
time O for the case z;2;. If ¥ x,zx,,z = 273, 2 has to become stable by time 1. For all
the other cases, i.e. if z; = 0, however, the signal can be infinitely delayed. One can
easily see that the relation contains a compatible function corresponding to the required
time computed by topological analysis*, which gives the most pessimistic required time
condition.

We have seen that the relation represents all the permissible temporal behaviors,
from an aggressive behavior where a signal never arrives under a certain condition to
the most stringent condition exactly corresponding to topological analysis. The next
question is how to extract the latest required time conditions from the relation since the
later the required times are, the easier synthesis of prelogic becomes.

For each input minterm the relation gives a set of permissible vectors for leaf x
variables. Since a 1 in a vector means that the corresponding leaf x variable must be
stable, having fewer 1’s requires less stability. Therefore, the latest required time is
characterized by a subset relation of the original relation where each input minterm can
be mapped only to vectors with the least number of 1's 5. For the working example,
the subset relation is shown below on the left while its interpretation as required times
is shown on the right.

2122 | X3, 1X2;1Xz,.1Xz, 0Xz2,0Xz,,0 2122 | regq(zi1)reg(z2)
00 {000100,000001 } 00 | {(0,00), (o0, 1)}
01 {000100} 01 {(0,00)}

10 {000001} 10 {(c0,1)}
11 {111000} 11 {(0,0)}

Note that there may be more than one latest required time. In this particular example,
either z, arriving by time O or z, arriving by time 1 is required for z;z; = 00. Those
two conditions are not comparable and each gives a different limiting condition.

4.2 Approximate Approach 1

In this subsection, we will consider an approximate approach. In the exact approach,
a primary input signal can arrive at different times depending on signal values of the

4Pick the last output pattern for each minterm

5To be precise, extracting all the minterms with the least number of 1's is not enough depending on how
stability is defined. Consider a set {001,110,111}. Since 110 is strictly less stable than 111, 111 can be
safely thrown away, but 001 and 110 are incomparable even though 001 has less number of 1's. Therefore
all the minimal elements in a given set under the Boolean lattice should be extracted. In the example above
this also gives the same subset relation.

11

other inputs. Here, we simply assume that a primary input signal arrives at a certain
time no matter what signal values are present in the other inputs. Arrival times for
values 0 and 1, however, are still distinguished®,

In the exact approach, we explicitly impose the ordering constraints among leaf
X variables as Boolean constraints. Here, instead of keeping the constraints around,
we introduce additional 0-1 Boolean variables of, .. ., ap B, ﬁgg to encode the
ordering constraints in leaf x variables’.

t - z
le:f = o
tpe—1 T x
Xz1 = zajey
¢ - z
xz‘,l = zafaj.. .a;‘ 1)
¢! —
Xz5 = TPY
¢, —
Xz5 = TOA

X:.-’,o = ZFF-..0,

Notice that all the ordering constraints are automatically satisfied by the use of the
Boolean variables. The side effect of this encoding is that leaf x variables can now
either take z or 0 for value 1, and either Z or O for value 0 under a 0-1 assignment to
the o and 3 variables while they can take any function between 0 and z for value 1 and
between 0 and Z for value 0 in the exact approach. This, however, directly corresponds
to our new constraint that each primary input arrives at a fixed time no matter how the
other inputs behave. The remaining condition to be satisfied is that the two x functions
for the primary output are equal to the onset and the offset of the output respectively.

xi,l(X,a,ﬂ) = Z(X)
X:,O(X’a:ﬁ) = z(_Xj-

where a and S are the set of all « variables and the set of all # variables respectively.
In the above all the leaf x variables are substituted by the right-hand side expressions
in Equations 1. Since these equations must be true regardless of X, X should be
universally-quantified.
F(a,f) = YX[(G1(X, @, B) = 2(X))(x} 0(X, @, 8) = 2(X))]
= VX.[xt (X, 0, 8) = 2(X)VX.[x o(X, o, B) = Z(X))

Any satisfying assignment of F(a, #) meets the timing requirement.

SThis distinction can be removed to design a more aggressive approximation scheme.

7One can employ a log-based encoding to decrease the number of Boolean variables introduced although
this makes it difficult to extract the latest required times later,

12

Let us go one step further, as we did in the exact approach, to see how we can
compute the latest required time at primary inputs from F(a,). The following
lemmas and theorems are useful.

Lemma1 x; ,(xx) and x} o(xx) are monotone increasing functions in terms of x x..

Proof. By the definition of x functions, each x function can be represented by a
Boolean network where the local functionality of each node is monotone increasing in
terms of its fanins, Hence, the claim holds. O

Lemma 2 xf,,l (X,a,B)and X’ (X, a, B) are monotone increasing functionsin terms
of o and B.

Proof. Let & and J be 0-1 assignments to o and g respectively. Let xx be the
corresponding functions assigned for leaf x variables under & and 8. By changing a
zero in « and G to one, itis easy to see that one cannot decrease the functions x x . Thus
from Lemma 1 the claim is proved. O

Lemma 3

X:,l(X,a,ﬁ) la=q1,...1).8=0,...1) = 2(X)
X; 0(X, @, 8) la=(1,...1),8=(1,...1) z(X)

Proof. Let A be the Boolean network for xt 1. Let N L be the list of all the nodes
in the network topologically sorted from primary inputs of & (leaf x variables) to the
primary output xg,,. Note that each node is labeled of the form x:,,,,. The proof is by
induction on these sorted nodes.

Base case (n € X): Bysettinge = (1,...,1),8=(1,...,1), x5, =nand xj o =
7 forany 2.

Induction (n ¢ X): From the inductive hypothesis, for any fanin of X%, ,, say x’r or,

Ximd® = m(X) and x4 = m(X), where m(X) is the functionality of node
m in terms of X in the original network NV. If v = 1, then the local function at
the node x%, ; in A is the same as the local function at the node n in A since the
former function is just the sum of all the primes of the latter function. Therefore
X4,1 = n(X). Similarly the local function at the node X%, o in A is the same as
the complement of the local function at the node n in A, Thus, X}, o = n(X).

Hence, x} ; = z(X) and x} o = 2(X). O

13

Corollary 1
Va,B8: x: (X, a,B)
Va:ﬁ : X:,O(X’ a!ﬁ)
Proof. From Lemma 2 and Lemma 3. O

z(X)
2(X)

N N

Theorem 1 F(a, B) is a monotone increasing function in terms of a and B.

Proof. Consider a 0-1 assignment to « and 3, say & and respectlvely From
Lemma 2 and Corollary 1, it is clear that changing zeroes to ones in & and 3 does
not decrease the function value of F(c, 8) from one to zero. Therefore, F(a, §) is a
monotone increasing function in terms of o and 8. O

We have shown that F(«,) captures all the required times that meet a given timing
constraint. Since having less 1’s in an assignment to o and 3 requires less stability,
we are interested in a satisfying assignment where no assignment of 1 to a variable
can be changed to 0 without making the assignment non-satisfying. Since F(a, 8) is
a monotone increasing function, such an assignment has a one-to-one correspondence
witha prime of F(a, §). Notice that any prime of the function has only positive literals.
The variables with positive literals in a prime are those which must be set to 1. Thus,
computing the latest required times from F(a, f) is equivalent to computing a prime
of F(a, 8). Note that each prime gives a different limiting condition as in the exact
algorithm.

Let us go back to the previous example. By introducing o and # variables, leaf x
variables can be expressed as follows.

Xg.,l = zof
X20 = ZTBY
X::,,l = a0y
X310 = %0f%af?
Xi0 = Tafp?

X0 = TIPS

Xf.l = Xz;,lxzz,lxtz,l = 0‘1 'al*ag’z122
X0 = Xeio+ Xo0+Xho0

= ﬁf't_1+ﬂf"ﬁ+ﬁf’ﬂfzx_z

= BT+ A%

14

The F function for this example is:

F(a,f) = Vzi,z.(o]'af*e3’ 2122 = 2122)(B]'F1 + B1°F2 = T1 + 2)
= a?laflagzﬂlzlﬁfz

There are two satisfying assignments for the function:
(a'ef?a3?By' A2 A7) = (111110,111111). The second assignment corresponds to
topological analysis. The only prime of F(,) is a'aj*a3?fy" 72, which corre-
sponds to the first assignment. Let us look into the first assignment more carefully. The
leaf x variables under this assignment are:

Xg,,x =
Xoo = T
X:lp;,l =
ng,l = &2
X0 = T3
ng,o = 0.

This constraint means that z; has to arrive by time 0 and that x5 has to arrive by
time 0if z; = 1 but by time 1 if ; = 0. Notice that this required time is strictly tighter
than the following two required times based on the exact algorithm, but is looser than
the required time based on topological analysis.

Xg,,l = T2
Xgl,o = 7
Xeyi = #0122
x2,,1 = 122
Xiz,o = =72
ng,o = 0.
X1 = mE
Xgl,o = Tiz2
Xz1 = 2122
ng,l = 2132
Xeo = T2
nglo = 0

15

4.3 Approximate Approach 2

The approximation technique in Section 4.2 was a relaxation of the exact formulation.
Another approximate analysis will be discussed next, which is based on repeated
functional timing analysis.

Assume that for each primary input z; all the times for which leaf x variables are
needed are listed. Let R; be the set which contains all those times for primary input z;.
For the sake of simplicity assume that R; contains all the times needed for value 1 and
those for value 0%. Let R = Ry x ... X Rp. Letr), = (rL1y---,7L,n) € R where
r1,i = Mileg, . Similarly let rv = (r1y,..., rT.n) € R where rT,i = MaXeR; t.
Letr,r’' € R. A partial order < is defined over R as follows: for Vr,' € R, r < r' iff
Vi ={1,...,n},r; < r}. This partial order forms a lattice over R, where the top and
the bottom elements are r+ and r_ respectively. Each r € R represents a candidate for
the exact required time.

1 corresponds to the required times at primary inputs obtained by topological
analysis. Therefore, if the primary inputs arrive by r,, the stability of the primary
output by the given required time is guaranteed. Our goal is to find the largest r € R
with respect to < such that r guarantees the stability of the primary output. r may not
be unique as we saw in the first approximation technique.

One way to find such r is to climb up the lattice gradually from r; by choosing
larger r’s in a greedy fashion. To test if a certain r is a valid choice, one can simply
perform functional timing analysis of the circuit under the arrival times corresponding
to r at the primary inputs. If the delay at the primary output is less than or equal to its
required time, r is a safe condition. The largest r that meets this requirement gives a
limiting condition. The search for r can be refined by the use of backtracking so that
all the maximal r’s satisfying the condition are enumerated.

The advantages of this second approximation technique are twofold. First, one can
directly use state-of-the-art timing analysis tools as a subroutine. Secondly even if an
entire analysis takes a huge amount of time, any intermediate r looser than topological
analysis gives useful information immediately.

5 Computing Timing Flexibility of Subcircuits

Having looked into how to compute required times by taking into account false path
effects, we now consider the problem of computing timing flexibility of subcircuits. The
timing specification of a subcircuit consists of arrival times at the subcircuit inputs and
required times at the subcircuit outputs. One can then pass this information to a logic
synthesis tool along with the functional specification of the subcircuit to resynthesize
it so that the entire circuit after replacing the existing subcircuit with a new optimized
subcircuit meets the top-level functional and temporal specification.

8]t is possible to extend the idea so that required times for values 1 and 0 are handled seperately for each
primary input.

16

Figure 5: Boolean Network

In this section, we show that the problem can be solved as a combination of the
standard false path analysis, where arrival times are propagated forward to subcircuit
inputs from primary inputs, and the required time computation technique discussed
in Section 4, where required times are propagated backward from primary outputs to
subcircuit outputs.

5.1 Arrival Time Computation

The first step is to compute arrival times at the subcircuit inputs. The transitive fanin
of the subcircuit inputs is extracted from A, which we call Npr. (See Figure 5.)
This network is then analyzed with a technique similar to standard false path analysis®.
Notice that the primary outputs of Mp; are the subcircuit inputs, and the primary
inputs of Npr are a subset of primary inputs X of /. The main difference between
this problem and the false path analysis problem is that in the false path problem we
only care about the latest arrival time for each output while in our problem interactions
among arrival times of different outputs are of much interest to capture timing flexibility
accurately!®,

Consider applying x function analysis on Ary. For each subcircuit input u; € U,
we list all the topological arrival times at u;, which is easily computed by propagating
arrival time from primary inputs to the subcircuit inputs while maintaining not a single
latest arrival time but a set of arrival times at each node. Then, x5, ,,v € {0,1} is
computed at all those arrival times, Note that these functions are in terms of primary
inputs X of M. Then X, = x4, o+ X&,,1 Tepresents all the primary input vectors at X

9To be precise the delay of the fanin network is affected by changing its fanout, which is unknown in
our setup since the fanout network is to be resynthesized. In this paper we do not take this load effect into
consideration to simplify the explanation.
10(2] proposed a technique to compute input-value dependent delay using ADD's. This can be used as an
alternative to the analysis below.

17

ul u2

x1 x2x3
arr(x1) = arr(x2) = arr(x3) = 0

Figure 6: Example — Ny

that make a signal at u; stable by time ¢. Assume that the list of topological arrival times
atw; is {t1,...,4}. Now the Boolean space Bl can be partitioned into ! disjoint sets
{S1,...,S:} in terms of arrival times as follows.

S5 o= %
Sk = &exs (k=2,...,0)

Note that ¥ increases as t increases by its construction and Sy.’s are defined as differences
between time-neighboring functions. The set Sx(k = 1,...,!) contains all the input
vectors at X that make the signal u; stable by time #; but not by time ¢;.;, where
to = —o0.

Once a partition of BIX! is computed for each subcircuit input, all the partitions
are superimposed on B! X! to form a refined partition. This is equivalent to partitioning
BIX1 such that any input vector in a class has the same arrival time behavior at U.

The final step is to interpret this arrival time in terms of subcircuit inputs U so
that temporal specification of the subcircuit is given locally in terms of its inputs.
Remember that so far arrival time at U is computed in terms of X. The subcircuit,
however, cannot distinguish input vectors applied at X unless they yield different
vectors at U. Therefore, it is necessary to reinterpret this partition in terms of subcircuit
inputs U so that one can tell what arrival time behaviors could be observed for each
vector at U. This is easily computed from the partition of BX| computed above and
the functionality of the transitive fanin network Ary. The Boolean space B!X! can be
first partitioned into BIY! sets depending on what vector is driven at UU. Now for each
vector u of BIUl, we know the set of all the vectors of BIX! that yield u at U. Using
the partition of B!X! computed previously, one can list all the possible arrival times for
the vector u, from which all the latest arrival times are extracted.

Let us illustrate this analysis with an example. Assume that the network in Figure 6
is Mrs. For simplicity, we also assume that each gate has a unit delay and all the

18

primary inputs arrive at time 0. The x function analysis gives the following.

B =1

I —
Xu; = &
X = 1
ol —

Xuz = o

The first two equations implies that if ; = 0, u; arrives at time 1, but otherwise the
signal arrives at 2. The last two equations then describe signal stability of uz. If z; = 1,
then u; arrives at time 1, but otherwise the arrival time is 2. This can be summarized in
the following table.

z1Z223 | uiuy | arr(uy) arr(uy)
000 00 (1,2)
001 00 (1,2)
010 00 1,2)
011 01 (1,2)
100 01 2,1
101 01 2,1
110 01 2,10
111 11 2,1

Now, notice that the subcircuit which Ny feeds into cannot distinguish 2,23 =
011 and 100 since both yield the same vector 01 at ujuz. Thus, when the subcircuit is
resynthesized, we can only assume that the arrival time at the subcircuit input is either
(1,2) or (2,1) when uju; = 01. Although it is possible to approximate this by having a
single arrival time (2,2), it is not desirable since this is an overconstraint!!,

The following table is obtained by folding the table above in terms of the values of
Uujul.

ujuy | arr(up) arr(u;)
00 1a2)
01 {1,221}
10 | {(eo,00))
11 {@n)

{(00,00)} for 10 means no constraints since the subcircuit never observes the
vector at the input. This corresponds to a satisfiability don’t care among u; and u;. Itis
interesting to observe that functional flexibility is captured in this framework naturally.

11Jf ap arrival time tuple is strictly earlier than another tuple, the former is dropped since the subcircuit A/
must be synthesized under the worst-case scenario.

19

5.2 Required Time Computation

Computing required times at subcircuit outputs can be performed by analyzing a sub-
network of N, Nro, with the same analysis technique described in Section 4. Nro
is the same network as A except all the subcircuit outputs V are relabeled as primary
inputs. (See Figure 5.) Notice that required times at the subcircuit outputs are of inter-
est. Since we know arrival times at X, there is no need to introduce leaf x variables for
those primary inputs of Mo which are elements of X. As we have seen in Section 4,
required time is computed for each vector v € BIV! at subcircuit outputs.

5.3 Towards More Accurate Timing Flexibility

As the final remark in this section, we consider a special case of the problem where
no functional flexibility is explored in resynthesizing the subcircuit. In other words,
the functional specification given for the subcircuit is the same functionality currently
implemented. This allows us to compute timing flexibility more accurately.

For arrival time computation at subcircuit inputs, instead of interpreting arrival time
in terms of subcircuit inputs, we can simply keep arrival time in terms of primary inputs
X. Required times at subcircuit outputs are computed for each vector v € B!Y! in
the previous subsection. Since the functionality of the subcircuit is preserved after
resynthesis, the functionality of V' in terms of X is kept unchanged. Therefore, it is
possible to interpret the required times in terms of primary inputs X. Now for each
primary input vector z € B!X! we have a single arrival time at the subcircuit inputs and
possibly multiple required times at the subcircuit outputs. One can then map this timing
constraint to the subcircuit. Since arrival times and required times are coupled through
X, analysis is more accurate compared to the one described before where arrival times
and required times are computed completely independently.

6 Experimental Results

We have implemented on top of SIS the exact and the two approximate algorithms
for required time computation discussed in Section 4. The delay model we used in the
experiments is the unit delay model. In all the experiments we set the required times
of all the primary outputs to zero and computed required times at primary inputs. All
the Boolean operations in the exact and the first approximate methods are done using
BDD’s while in the second approximate method a SAT-based timing analysis tool [9]
is used.

The efficiency of the algorithms is dependent on how much reconvergence a given
circuithas. In the exact algorithm, we introduce one Boolean variable for each pair of a
primary input and a potential required time. Thus, the existence of many reconvergences
implies manipulation of x functions of many input variables'? in BDD’s. The same

2[n many ISCAS benchmark circuits the number of Boolean variables needed can easily go beyond
hundreds.

20

observation is also true for the first approximate method, where a Boolean parameter
variable is introduced for each such pair.

The second approximate algorithm is more scalable than the first one since the
computation engine is a SAT solver. As mentioned before, an advantage of this approach
is that any intermediate required time validated can be used as a safe approximation to
the exact solution.

Table 1 shows a comparison between the exact and the approximate algorithms on
MCNC benchmark circuits. CPU times are measured in seconds on DEC AlphaServer
8400 5/300. The exact algorithm was run with dynamic variable reordering being set.
* in the table denotes that the analysis gives a non-trivial required time looser than
topological analysis. The reason why the first approximate algorithm gives a looser
constraint than the second algorithm in some examples is that the required times of
values 0 and 1 for each primary input are distinguished in the first algorithm while the
current implementation of the second algorithm only searches for value-independent
required times for efficiency. Although the second approximate algorithm took 10
hours to complete the analysis of 110, the first non-trivial required time was obtained in
134.9 seconds.

Table 2 shows CPU times of the second approximate algorithm on ISCAS combi-
national benchmark circuits. CPU times are measured in seconds on the same machine.
The second column shows whether the algorithm could find non-trivial required times
or not. The third and fourth columns show CPU time spent until the first non-trivial
required time was found, and CPU time for the entire analysis respectively. Although
the algorithm could not finish on C3540 and C6288 within 12 hours of CPU time, it
found non-trivial required times within a second.

7 Conclusions

We have studied how to compute required times of combinational circuits more accu-
rately than topological delay analysis, by taking false path effects into account. The
technique proposed in this paper, which is designed on top of the theory of false path
analysis, computes a more relaxed yet correct timing constraint,

Even though this approach captures larger temporal flexibility, existing timing
optimization algorithms are not able to exploit the flexibility fully since timing spec-
ifications handled by timing optimization algorithms are of much simpler form than
value-dependent constraints computed by our technique. A more sophisticated timing
optimization algorithm compatible with the refined timing constraint proposed here is
needed to fill this gap. Another avenue for future research is to improve the computa-
tional complexity of the algorithm by further approximations. In the current algorithms
we distinguish between all potential required times at primary inputs. One possible
approximation is to group them into clusters of neighboring required times conserva-
tively. Controlling the number of clusters gives a trade-off between accuracy and CPU
time for a more realistic delay model.

We have recently shown [7] how this analysis leads to an abstract delay model for

21

circuit [#PI [#PO [CPUtime | CPU time CPU time

(exact) (approximate 1) | (approximate 2)

il 25] 16 93.0« 0.1+ 05
i2 201 1 | memory out 8.3» 153
i3 132 6 3277.9x 0.1 0.0
i4 192 6 - 02 0.0
i5 133 | 66 - 19 10.7
i6 138 | 67 - 0.7 16.0
i7 199 | 67 - 09 31.7
i8 133 | 81 - 26.8+ 238.7+
i9 88| 63 - 3.0x 4.6
i10 || 257 | 224 - memory out 36335.6x

Table 1: Required Time Computation — Exact vs. Approximate

circuit Non-trivial CPU time CPU time
required time? | firstr # »,. Tmaz

(in seconds) | (in seconds)
Yes 79 332
No - 40.1
No - 26.7
No - 26.0
Yes 1.0 13564
Yes 28 2298.1
Yes 0.5 | > 12 hours
Yes 717 359.6
Yes 10 | > 12 hours
Yes 25 992.5

Table 2: Required Time Computation — ISCAS Example

22

black boxes. The delay model can be accurate taking into account false paths, without
giving the internal details of the box.

Acknowledgments

The authors wish to thank Alexander Saldanha for kindly allowing us to use his timing
analysis tool as part of our implementation.

References

(1] A. Aziz, R. K. Brayton, F, Balarin, and V. Singhal. Timing-safe replaceability for
combinational designs. In Proceedings of TAU 95: ACM/SIGDA International
Workshop on Timing Issues in the Specification and Synthesis of Digital Systems,
pages 121-128, November 1995.

[2] R. 1. Bahar, H. Cho, G. D. Hachtel, E. Macii, and F. Somenzi. Timing analysis of
combinational circuits using ADD’s. In Proceedings of the European Design and
Test Conference, pages 625-629, March 1994,

(3] F. M. Brown. Boolean Reasoning. Kluwer Academic Pubilshers, 1990.

{4] E. Cerny and M. A, Marin. An approach to unified methodology of combinational
switching circuits. IEEE Transactions on Computers, C-26(8):745-756, August
1977.

[5] H.-C. Chen and D. H.-C. Du. Path sensitization in critical path problem. IEEE
Transactions on Computer-Aided Design, 12(2):196-207, February 1993.

[6] S. Devadas, K. Keutzer, and S. Malik. Computation of floating mode delay in
combinational circuits: Theory and algorithms. JEEE Transactions on Computer-
Aided Design, 12(12):1913-1923, December 1993.

[7] Y. Kukimoto and R. K. Brayton. Hierarchical timing analysis under the XBDO
model. In International Workshop on Logic Synthesis, May 1997.

[8] P. C. McGeer and R. K. Brayton. Integrating Functional and Temporal Domains
in Logic Design. Kluwer Academic Publishers, 1991,

[9] P. C. McGeer, A. Saldanha, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Delay models and exact timing analysis. In T. Sasao, editor, Logic Synthesis and
Optimization, pages 167-189. Kluwer Academic Publishers, 1993.

[10] S.Muroga, Y.Kambayashi, H.C.Lai, andJ.N. Culliney. The Transduction method
— design of logic network based on permissible functions. IEEE Transactions on
Computers, 38(10):1404—-1424, October 1989.

23

[11] H. Savoj, R. K. Brayton, and H. J. Touati. Extracting local don’t cares for network
optimization. In Proceedings of IEEE International Conference on Computer-
Aided Design, pages 514-517, November 1991.

[12] K. J. Singh, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Timing optimization of combinational logic. In Proceedings of IEEE International
Conference on Computer-Aided Design, pages 282-285, November 1988.

[13] V. Singhal and C. Pixley. The verification problem for safe replaceability. In
Proceedings of 6th International Conference on Computer-Aided Verification,
CAV’94, pages 311-323, June 1994,

(14] Y. Watanabe and R. K. Brayton. The maximum set of permissible behaviors
for FSM networks. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, pages 316-320, November 1993.

	Copyright notice 1997
	ERL-97-44

