

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EXACT REQUIRED TIME ANALYSIS

VIA FALSE PATH DETECTION

by

Yuji Kukimoto and Robert K. Brayton

Memorandum No. UCB/ERL M97/44

16 June 1997

EXACT REQUIRED TIME ANALYSIS

VIA FALSE PATH DETECTION

by

Yuji Kukimoto and Robert K. Brayton

Memorandum No. UCB/ERL M97/44

16 June 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Exact Required Time Analysis
via False Path Detection

Yuji Kukimoto* Robert K. Brayton
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720
{kukimoto, brayton}@eecs. berkeley. edu

June 16,1997

Abstract

This paper addresses how to compute required times at intermediate nodes in
a combinational network given required times at primary outputs. The simplest
approach is to compute them based on topological delay analysis without any
consideration of false paths. In this paper, however,we take into account false paths
between the intermediate nodes and the primary ouq>uts explicitly to characterize
the timing constraints at the nodes more accurately. We show that this approach
leads to a technique for computing a more refined and relaxed timing constraint
than that obtained by topological analysis. We generalize the notion of required
times firom a single constant to a relation where a signal is required at different
times depending on the values of the other signals. Experimental results show that
the technique can extract timing constraints looser than those based on topological
analysis for all but three in the ISCAS combinational circuit suite.

*The firstauthor is supportedby SRC-97-DC-324.

1 Introduction

An optimization strategy common in most logic optimization algorithms is treated
^plications ofthefollowing two steps: 1)characterize asetofpermissible implemen
tations at a subcircuit (or a node) and 2) select a bdiavior ofbetter quality from the
set in consideration of area, speed, testability, power dissipation or a combination of
the four. Thisp^er is concerned with the first step, especially how to characterize
permissible implementations which preserve temporal bdiaviors oftheoriginal circuit.
Thetemporal behaviors of interest in thispaper can be captured by required times at
primary outputs andarrival times atprimary inputs. Suppose acombinational network
and its arrival/required times at primary input^outputs are given. Assume that asub
network ofthis circuit is to be optimized.)^enresynthesizing this subnetwork, arrival
times at subcircuit inputs andrequired times at subcircuit outputs mustbe specified to
a logic synthesis tool along with the functional specification of the subcircuit so that
replacing theexisting subcircuit with an optimized circuit automatically preserves the
original functional andtenqjoral specifications. Thisscheme enables us toresynthesize
subcomponents locally witiiout violating the functional andtemporal requirements of
the whole system.

A naive solution for this problem is to coiiq}ute arrival times andrequired times
using topological delays. Thisapproach is commonly used inmost timing optimization
algorithms in the lit^ature. Although thisconservative approach gives a fast andsafe
approximation to the truetiming constraint, theresulting timing requirement may be
tighter than necessary since false paths in the surrounding network are completely
ignored. Th^efore, the timing constraint computed in this manner may prevent a
synthesis tool from nploring the entire temporal flexibility, th^eby le^ng to an
unsatisfactory circuit. Thegoalof thiswork is to solvethisproblem more rigorously
by taking false path effects into account so that a more accurate and thus more flexible
timing constraint is computed for the subnetwork.

Hiere have been many theoretical and practical results published in the litmture
fOT fitnctional flexibility. Functional fl&cibility of a subnetwork can be characterized
as the set of functionalities which can replace the current implementation without
changing the I/O functionality of the entire system. For the case where the subcircuit
is a combinational circuit, the full flexibility canbe c^tured by a Boolean relation of
theinputs and theoutputs ofthesubcircuit [4]. Exact computation ofthefull flexibility
is expensive forlarge networks, so a subset of theflexibility computable efficiently is
of great interest, for which various don't care computation techniques [11,10] have
been developed. Recently, Watanabe and Brayton [14] resolved the case where the
subcircuit is a sequential circuit byshowing that thecomplete functional flexibility of
the subcircuit is expressible by a single non-deterministicFSM, called the E-machine.

Although asignificantefforthasbeen made towardscomputing functional flexibility,
littlehas been done fortiming flexibility. Themain objective ofthispaper istoleverage
thetheory of temporal flexibility up to thesame level as functional flexibility.

One related work published recently is the notion of timing-safe replaceability
proposed by Aziz et al. [1], which is an extension of safereplaceabiliy addressed by

Singhal et al [13] in the context of sequential synthesis. The core idea of [1] is to
characterize the set of all temporalbehaviorsexhibitedby a combinationalcircuitusing
the linear logic of 9?. If the set of all behaviors exhibited by another combinational
circuit is a subset of the original set* no surrounding environment can detect a difference
between the two circuits. Thus, the replacement of the original circuit with the new
circuit is timing-safe; it works in all environments. Hiis notion of replaceability,
however, is often too stringent in realistic design scenarios since timing optimization
of a component is typically performed given a particular surrounding environment.

This paper is organiz^ as follows. Section 2 summarizes false path analysis,
which forms a basis of this work. Section 3 gives the overview of the problem of
computing temporal flexibility and illustrates how this problem arises in practical
setups. Section 4 discusses a novel technique to propagate required times backwards
by taking into account false path effects. Section 5 shows how to tackle the main
problem using the technique of Section 4. Experimental results are given in Section 6.
Section 7 concludes the paper.

2 Preliminaries

In this section, we review sensitization theory for the false path problem [5, 6, 9].
Specifically, the theory developed in [9] is detailed below since the analysis following
this section is heavily based on this particular theory.

2.1 Functional Delay Analysis

Functional delay analysis, or false path analysis, seeks to determine when all the
primary output signals of a Boolean network become stable at their final values given
maximum delays of each gate and arrival times at the primary inputs. Since some paths
may never be sensitized, the stable time computed by functional delay analysis can
be earlier than the time computed by topological delay analysis, thereby capturing the
timing characteristic of the network more accurately. Those paths along which signals
never propagate are calledfalse paths.

2.2 The Extended Bounded Delay-0 (XBDO) Delay Model

The extended bounded delay-0 model [9], XBDO model, is the delay model most
commonly used in false path analysis. It is the underlying model for the floatingmode
analysis [5] and viability analysis [8]. Under the XBDOmodel, each gate in a network
has a maximum positive delay and a minimum delay which is zero. Sensitization
analysis is done under the assumption that each gate can take any delay between its
maximum value and zero. Note that the monotone speedup property introduced in [8]
exactly corresponds to the condition that minimumdelays of all the gates are zero.

2.3 Sensitization under the XBDO Model

The core idea of [9] is tocharacterize recursively thesetofallinput vectors that matcft
thesignal value ofa primary output stable toa constant bya given required time. Once
these setsareidentified bothforconstants 0 and1, onecancompare these against the
on-set and theoff-set of theprimary output respectively to see if the output is indeed
stable foralltheinput vectors bytherequired time. Hie overall scenario ofcomputing
truedelay is tostartbysetting therequired timetothelongest topological delay minus
<^ > 0 and gradually decrease ituntil some input vector cannot make the ouqiut stable
by therequired time. Thenext to thelastrequired timegives an ^proximationto the
truearrival timeat theouqiut. Thisprocess of guessing thenext required time canbe
sped up and refinedby making use of a binary search.

Letus illustrate how wecan compute these sets. Letn and bea node (gate) in
aBoolean network Wand the maximum delay ofthe node n respectively'. Let Xh.V
be the characteristic function of the set of inputmintoms under which &e output of
the noden becomes stable to a constant v G {0,1} by the timet. Let /„ be the local
functionality of the node n in terms of immediate fanins mi,..., of n. For ease
of fflcplanation, let /„ = mim2, i.e., n is a two-input AND gate. It is clear from the
functionality of theAND gatethatto set n to a constant 1 by timef, bothof the fanins
of n, mi andm2,arerequired to be stableat 1by time<- rf„. Thisis equivalent to

n,l Ami.l A.m2,l

Note that the two x functions for the fanins are AND'ed to take the intersection of the
two sets. Similarly, to set n to a constant 0 by time f, at least one of the fanins must be
stabilized to 0 by time i-dn.

n,0 Ami,0 ~ Am2,0

Here the two x functions are OR'ed to take the union of the two conditions. It is
easy to see that the above computationscan be generalized to the case where the local
functionality of n is givenas an arbitraryfunction in terms of its faninsas follows.

*».» = s tn Xmh" • n *mifo 1
miCp rriiSp

where Pi and P® are the sets ofall primes of/„ and JTrespectively. One can easily
verify that the recursive formulations for the AND gateshown above arecaptured in
this general formulation by noticing Pi = {mim2}, P° = {mT, mj) for /„ = mim2.
Thetominal cases aregiven when thenoden is a primary inputx.

xi,i = « iff > arr(a:)
= 0 otherwise

xi.o = « iff >arr(x)
= 0 otherwise

'Although it ispossible todi£ferentiate rise delays from fall delays, we do not rfirtingnicti between them
in this paper to simplifyexposition.

primary output Z req(Z)

aubelreult output V

jbnetwork N'

subcireuit Input U

primary Input X arr(X)

Rgure 1: Boolean Network

where arr{x) denotes the arrival time of x. The above formulas simply say that a
primary input is stable only after its given arrival time. The observation of this
formulationis that characteristic functionscan be computed recursively.

Oncecharacteristic functions forconstants0 and1arecomputed ataprimaryou^ut,
two comparisons are made: one for the characteristic function for 1 against the onset
of the output, and the other for the characteristic function for 0 against the offset of the
output. Each comparison is done by creating a Boolean network whichcomputes the
difference between two functions and using a SATsolver to checkwhether the output
of the networkis satisfiable. Experimental resultsin [9]showedthat this approach can
analyze large networks in reasonable computation time.

3 Overview

In this paper we restrict our attention to combinational circuits. Sequential circuits
using edge-triggered latches, however, can be easily handled with the same framework
byassuming all the latchinputsandoutputs asprimary outputs andinputsrespectively,
where the required times and arrival times of those are determined by the clock edge
minus the setup time and the clock edge itself respectively.

Given a Boolean network jV and a subnetwork AT' of our interest is to charac
terizethetiming fl^ibility ofAf' so thatresynthesis of thesubcireuit canbeperformed
locally without violating the timing constraint of the entire network A/. Note that our
assumption is that Af\Af' remains unchanged and onlyAf' is to be resynthesized.
Let us introduce some notation for ease of explanation. Lei X = {xi,...,Xn) and
Z = (zi,...,be primary inputs and primary outputs of Af respectively. Let
U= (ui,..., Up) and \^ = (vi,..., V,) denote inputs and outputs of respectively.

^To beprecise, must meet the condition that there isno path leading from asubdrcnit ou^ut toa
subdrcuit input

latch

Figure 2: Hio'archicalSynthesis

(SeeFigure1.) Weassume that arrival timesatprimary inputsX andrequired timesat
primaryoutputsZ are given. Our goal is to computearrival timesat subcircuit inputs
U andrequired timesat subcircuit outputs V by considering theeffects of false paths
mM\M' explicitly. Onecan think of thisas mapping thetiming requirement of the
entire circuit onto the subcircuit.

This problemhas several practical applications. Ihe first is performance-oriented
resynthesis. Suppose a combinational circuit was synthesized from a specification.
Although onecan optimize the entirecircuitfurther to speed up late outputs, another
promising approach is to extract a subcircuit containing part of critical paths and
optimizeit locally. This schemeis morelikely to givea fastercircuit becausethe circuit
fed to synthesis is smaller. A similar^proach is in fact taken in timingoptimization
techniques [12] published in the literature, but their delay computation is based on
topological longest paths thereby failing to capture someof existing timing flexibility.
Sinceourapproach computes thetiming flexibility ofthesubcircuitbyconsid^ng false
path effects from the surrounding circuit, larger flmbility, i.e. less stringent timing
requirement, is obtained, which makesresynthesis easier. An interesting subproblem
of this application is to compute the true slack of a gate output, where the slack is
calculated by taking false path effects into account.

The secondpractical application is in hierarchical synthesis. Assume that a set of
communicating sequential circuits doesnot meet a timing requirement, e. g. theydo
not satisfy a cycle timeconstraint. Wenow want to optimize component circuits one
by one to speed up late signals. Optimizing the entirecircuitas a singlechunkis not
desirable in thiscontext because it destroys thehierarchy meaningful to designers and
moreimportantly thewholecircuitmaybe toolaigetohandleforsynthesis algorithms.
Since theboundaries ofcomponents arenotnecessarily latchinputs oroutputs, onemay
haveto maparrival/required times forlatchinputs/outputs of the othercomponents to
the interfacenodesof the componentto be optimized. Figure 2 showssuch a situation,
where two sequential circuits are cascaded. Assume that a cycle time is given as a
timing specification and we want to optimize only the left component with the right
component unchanged. For simplicity, assume that there is a single latch in the right

compute-require(Ltime(j>/')
1 sort all the nodesin jV in a reverse topological order
2 for eachnodene.M s.t. n is not a primary output{
3 req{n) = oo
4)
5 foreachnoden e ^ {
6 foreach fanin m of n {
7 if (reg(n) —dn < req{m))
8 req{m) = req{n) —dn
9 }
10 }

Figure 3: Algorithm to Compute Required Time based on Topological Delay

component. The input of this latch must become stable before the cycle time. This
constraint can be translated to that of the left component by propagating the required
time at the latch input backward through the combinational gates in the transitive fanin
ofthe latch to the boundary of the two components. Note that this problem is equivalent
to our problem where is the combinational portion of the right component and is
the set of all the boundary variables between the two components.

A similar scenario can arise in pure combinational synthesis. Consider a cascaded
combinational circuit, where the driven circuit contains a fair amount of false paths.
To resynthesize the driving circuit effectively for improved performance it is critical to
characterize the required times of the signals feeding the driven circuit as accurately as
possible. Required times computed by topological analysis may completely mislead
resynthesisdue to the unawareness of f^alse paths in the drivencircuit. In this setup,M
corresponds to the entirecircuitandM' thedriving circuit.

4 Computing Required Time under the Existence ofFalse
Paths

In this section we consider the following simpler problem:

Given a Booleannetwork,maximumdelay ofeach gate, andrequired times
at its primary outputs, compute required times at its primary inputs.

This is a special case of the general problem where the subcircuit under analysis only
contains all the primary inputs of the network. The problem can be solved efficientlyif
delays are defined as topological longest delays as shown in Figure 3. The procedure
first sorts all the nodes in a reverse topological orderand initializesrequired times of all
the nodes, except primary outputs, to infinity. It then propagates required times of the
output of each node backward to the fanins of the node. If a signal has more than one

fanout, only theearliest required time is recorded. The procedure runsin time linear
in thesize of thenetwork. Note that required times are uniquely determined in this
algorithm, which is notnecessarily trueoncefalse patheffects are taken intoaccount
as we see later in this section.

Theapproach taken in the following makes useof x functions introduced in Sec
tion 2. For each primary output, x functions for constants 0 and 1 are computed for
a given required timeand they are compared against the onset and the offset of the
output respectively toexhact conditions onrequired times atprimary inputs. Themain
difference between this problem and thefunctional delay analysis problem discussed in
Section 2 is that arrival times atprimary inputs are unknown variables inour problem
while they are given in the other. In spite of this difference the original recursive
formulation for computing x functions almost works. Amodification isrequired only
in terminal cases. Since we donot know when a primary input signal arrives, leafx
functions atprimary inputs remain asunknown variables. Henceforth, we call leafx
functions at primary inputs leafx variables. Let a? be a primary input. Assume that
after recursive consmiction ofx functions atprimary outputs, leafx variables forx are
needed at times <i < <2 < ••. < for value 1and at times fj < fj < •••< fj, for
value 0. Remember that leaf x variables are characteristic functions of sets of input
vectors that arestable by required times. Thisimplies that for any ta < h theset of
stable input vectors bytime ta must becontained in the set ofstable input vectors by
time tb. Therefore, the following ordering conditions among leafx variables must be
met.

0 £ xi",i£xL',i£ -Cxi^f c«
0 £ x;),o£x^,o£- -£xli5£s

The formulas above indicate that leaf x variables are 1)monotone non-decreasing with
respect to time and 2)bounded above byx and « forvalue 1 and 0 respectively. The
first constraint is imposed since, oncean inputvector becomes stable, it mustcontinue
tobestable. The second constraint is required sothat leafx variables are compatible
with the onsetand the offsetof theprimaryinputx.

Let us go back to our problem. For simplicity, assume that a Boolean network
A/" has a single primary output z, whose required time t is given. Generalization to
multiple primary outputs is trivial. We are interested incomputing required times at
primary inputs ofthe network. Suppose that x*z,i and x5,o are computed in terms of
leaf Xvariables atprimary inputs, which we call xx- The goal is toassign Boolean
functionsof X to unknown xx variablesso that

xi,i{xx) = z{X)
xifiixx) = z{X)

under the ordering constraints among xx variables discussed above, where z(X)
denotes the functionality of the primary ouq)ut in terms ofprimary inputs X^. The set

^It is possible to extend the theory to the case where z{X) isan inconq>letely specified function.

req(z)s2

Figure 4: Example

of input vectors which make the output stable at value 1 or 0 by time t are constrained
to be equal to the onset or the offset of the output function respectively.

4.1 Exact Approach

Onecan formulatethisproblemas solving aBooleanequationwhereunknownvariables
are leaf x variables xx. Boolean constraints to be satisfied are:

x',i(xx)
Xz.o(xx)

for each x G JX :

for each x eX :

=

z{X)

9Qx'j,,c £ x;:; £

e£x:;,o£--£x!?o£^
It is easy to transform the aboveset of Boolean equations to an equivalentsingle Boolean
equation of form xx) = 1 [3]by AND'ingall theseconstraints together. In this
equation, xx are variables to be solved while X are Boolean constants. One can
think of F{X, xx) as the characteristic function of a BooleanrelationwhereX is the
inputs and xx is the outputs. Any function in terms of X compatible with F satisfies
the timing requirement at z. One method for extracting such a function is Boolean
unification [3].

Notice that the notionof requiredtimes at primaryinputs is significantlygeneralized
here. For each primary input, its required time is not simply a single constant, but the
input signalcan arriveat differenttimesdependingon signalvaluesof the otherinputs.

Let us illustrate this in the circuit shown in Figure 4. For simplicity,assume that the
maximum delay of the AND gate is 1 and the required time at the primary output z is
2. The required timecomputed by topological delayanalysis is time0 forbothinputs.

X functions for z can be computed as follows.

xl,\ = 1x1^,1
Xz,0 •" Xaji.O Xx2,0 "1" Xxifl

Theprocedure described above gives the following Boolean relation.

XlX2

00

01

10

11

.iXgj.lXjt.lXri .oXgT.o^,.o
{000100,000101.000001,000011,000111}

{000100,001100,011100}
{000001,000011,100001,100011}

{111000}

Let us &camine the relation to see what kind of timing constraints need to be
imposed. For input 00, the first three leafx variables must be zero in all the cases. This
is natural sincethese x variables areforconstant 1, andneither xi nor X2 maybecome
stable to 1 in thiscase. The first twoand the last patternscorrespond to the casewhere
Xsi.o is one, i. e. xi is stable to0 bytime 0. In thiscase, z isguaranteed tobestable to
0 no matter how X2 behaves. The only constraint to be satisfied isxjj oQxij o- Th®
third and fourth patterns are for the case xS,,o iszero. This time, xi isnot stable to zero
at time0, butas long as X2 becomes zero by time1, z willbe stable by time2. Again,
the ordering condition xl^fi Cxij.o °iust be met.

As mentioned previously, one can think of this relation as a generalization of
required time. Any signal behavior at primary inputs that is compatible with this
relation meets therequired timeat theprimary output. Forexample, if wepick000100,
000100,000001, and 111000 for input minterms 00,01,10,11 respectively, then leaf
X variables will be:

XS,,1 = XiX2
Xjj.l = XiX2
xij.i =
xS„o = ^
xSa.O = 0
Xi,,0 = «1®2.

To focus ononly thestability ofsignals, wedefine xh ss follows.

Xn Xn,l "1* Xn,0

ThisXfunction ofa node n at timet is thecharactoistic function of thesetofallinput
vectorsthat make the signal n stableeither to 0 or to 1 by time t. For the x functions
above,

Xj, = ^ + X2

10

xlt = «1«2
xij = ari

TTie interpretation of thisis thatprimary inputxi mustbe stableby time0 just for the
case xT+ xjt and if xi®2, it can delay forever withoutviolatingthe givenfimctional
and temporal requirements. Notice that in topological analysis it always has to arrive
beforetime0. Let us lookinto howsignal X2 shouldbehave. It mustbe stabilized by
time 0 for the case xixz. IfxijXSj = ®2 has to become stable by time 1. For all
the othercases, i.e. if xi = 0, however, the signal canbe infinitely delayed. Onecan
easily seethattherelation contains a compatible function corresponding totherequired
time computed bytopological analysis'̂ , which gives the most pessimistic required time
condition.

Wehave seen that the relation represents all the permissible temporal behaviors,
from an aggressive behavior where a signal never arrives under a cotain condition to
the most stringentconditionexactlycorre^onding to topological analysis. The next
questionis how to exuact the latest requiredtime conditionsfromthe relationsince the
later the requiredtimes are, the easio* synthesisof prelogicbecomes.

For each input minterm the relation gives a set of permissible vectors for leaf x
variables. Since a 1 in a vectormeans that the corresponding leaf x variable mustbe
stable, having fewer I's requires less stability. Therefore, the latest required time is
characterized by a subsetrelationof theoriginal relation whereeachinputmintom can
be mapped only to vectors with the least number of Ts For the working example,
thesubset relation is shown below on the leftwhileits interpretation as required times
is shown on the right.

X1X2 Xii.lXxi,lXa?,,lXa?, ,oX®j,oX®j,0 X1X2 req{xi)req{x2)
00 {000100,000001} 00 {(0,oo),(oo,i)}
01 {000100} 01 {(0,oo)}
10 {000001} 10 {(00,1)}
11 {111000} 11 {(0,0)}

Notethattheremay bemore thanonelatestrequired time. Inthisparticular©cample,
eitherxi arriving by time0 or X2 arriving by time1 is required for xiX2 = 00. Those
twoconditionsare not comparable andeach givesa differentlimitingcondition.

4.2 Approximate Approach 1

In thissubsection, wewillconsider an approximate approach. In theexact approach,
a primary input signalcan arrive at different timesd^nding on signal values of the

^Pick thelastoutput pattern each minterm
^To be precise, extracting all the mintenns with the least numberof1'sisnot enough depending on how

stability is defined. Consider a set {001,110,111}. Since110is strictly lessstablethan 111, 111 canbe
safely thrown away, but001 and 110areincomparable eventhough 001haslessnumber of I's. Therefore
alltheminimal elements ina given setunder theBoolean lattice should beextracted. IntheATrnnpif. above
this also gives the same subset relation.

11

otherinputs. Here, we simply assume that a primary input signal arrives at a certain
time no matter what signal values are present in the other inputs. Arrival times for
values 0 andl, however, arestilldistingui^ed^.

In the exact approach, we explicitly impose the ordering constraints among leaf
X variables as Boolean constraints. Here, instead of keeping the constraints around,
weintroduce additional 0-1 Boolean variables af,..., ,/?f. •••, toencode the
ordering constraints in leafx variables^.

—1

xl\i = xafaf (1)

Xr'fi =

x%-' =

xlo =
Noticethat all the ordering constraints are automatically satisfied by theuse of the

Boolean variables. The side effect of this encoding is that leaf x variables can now
eithertakex or 0 for value 1, andeither x or 0 forvalue 0 under a 0-1 assignment to
the a and P variables while they can take any function between 0 and x for value 1 and
between 0 and x for value 0 intheexact approach. This, however, directly corresponds
to our new constraint that each primary input arrives at a fixed time no matter how the
otherinputsbehave. Ihe remaining conditionto be satisfied is that the twox functions
fortheprimary output areequal to theonset andtheoffset of theoutput respectively.

x'.,x(X,a,0) = z(X)

where a and P aretheset of all a variables and theset of allP variables respectively.
In the above all the leafx variables are substituted by theright-hand sideexpressions
in Equations 1. Since these equations must be true regardless of X, X should be
universally-quantified.

F{a,P) = VX.[(xi,,(X,a,^) = z{X)){x\fi{X,cc,p) = 1^)]
= VX.[x*.i(X,a,/?) = z(X)]VX.[x^,o(X,a,/3) =

Anysatisfying assignment of F(q, P) meetsthe timingrequirement.

^This distinctioD can beremoved todesign a more aggressive approximation scheme.
^One can employ alog-based encoding to decrease the numberofBoolean variables introducedalthough

this nuUces it difficult to extractthe latest requiredtimes later.

12

Let us go one step further, as we did in the exact approach, to see how we can
compute the latest required time at primary inputs from The following
lemmas and theorems are useful.

Lemma 1 xl,i{xx) andxiflixx) are monotone increasingJunctions in terms ofxx-

Proof. By the definition of x functions, each x function can be represented by a
Booleannetworkwhere the local functionality of each node is monotoneincreasing in
tmns of its fanins. Hence, the claim holds. •

Lemma 2 Xz.iC-X", a, 0)andxifl{X, a, /?) are monotone increasingfunctions interms
ofa and p.

Proof. Let d and be 0-1 assignments to a and /? respectively. Let xx be the
correspondingfunctionsassigned for leaf x variablesunder a and p. By changing a
zero in a and /?to one, it is easy to see that one cannotdecrease the functionsxx • Thus
from Lenuna 1 the claim is proved. •

Lemma 3

|a=(l,....l),)9=(l 1) = Z{X)

Ia=(l,....l),)9=(l,.,l) = AX)

Proof. Let ff be the Boolean network for Let NL be the list of all the nodes
in thenetwork topologically sorted from primary inputs offf (leafx variables) to the
primary output x\,\- Note that each node islabeled ofthe form x!,,v The proof isby
induction on these sorted nodes.

Base 4^e (n € X)i By setting a = (1,..., 1), = (1,..., 1), Xn,i = n and Xy.o =
n for any f.

Induction (n ^ X): From the inductivehypothesis, for any fanin ofxj,,«. say Xm

Xm.f" = m{X) and Xm,o" = '"(-X"), where m(X) is the functionality of node
m in terms of X in the originalnetworkjV. If v = 1, then the local function at
the node Xn,\ in isthe same asthe local function atthe node nin/J since the
former function is just the sum of all the primes of the latter function. Therefore

Xn,i = Similarly the local function at the node x^,o in A?" isthe same as
the complement ofthe local function atthe node n in N. Thus, Xn.o = •

Hence, x\,\ = AX) and Xz.o = AX)- d

13

Corollary 1

Va,^:x5,i(A-,o,^) C z{X)
VaJ:x'.,o(X.a.0) C

Proof. From Lemma 2 and Lemma 3. •

Theorem 1 F{a, isa monotone increasingfunction interms ofa and/?.

Proof. Consider a 0-1 assignment to a and say a and ^ respectively. From
Lemma 2 and Corollary 1, it isclear that changing zeroes to ones in d an^ does
not decrease thefunction value ofF{a, 0) from one tozero. Therefore, F(a, 0) is a
monotone increasing function in terms of a and •

We have shown that F{a,P) captures alltherequired times that meet agiven timing
constraint. Since having less I's in an assignment to a and /? requires less stability,
we are into'ested in a satisfying assignment where no assignment of 1 to a variable
can bechanged to0 without making theassignment non-satisfying. Since F{a, 0) is
a monotone increasing function, such anassignment hasa one-to-one correspondence
with aprime ofF(a, 0). Notice that any prime ofthe fimctionhas onlypositiveliterals.
Thevariables withpositive literals in a primeare thosewhich mustbe set to 1. Thus,
computing thelatest required times from F(a, 0) is equivalent to computing a prime
of F(Qf, 0). Note that each prime gives a different limiting condition as in theexact
algorithm.

Letusgo back to theprevious example. Byintroducing o and /? variables, leafx
variables can be expressed as follows.

v®Aar,,l =

0
Xxi.O = xi0^'

xU.l = X2a'^

xl^A = X2Q1^012'

Xx2,0 = ^01^

Xx2,0 = '^0'l'02'

14

Hie F function for this example is:

P{oc,^) = Va:i,®2.(arQrra?«iX2 = a;iX2)(/?f'«r + /?f®^= ^+«2)
=

Hiere are two satisfying assignments for the hmction:
= (111110,111111). The second assignment corresponds to

topological analysis. The only prime of F(a,/3) is whichcorre
sponds to the first assignment. Let us look into the first assignmentmore carefully. The
leaf X variables under this assignment are:

xl„i =
xl.fi = ^
xU,\ =
xSj.i = «2
xij.o = ^
xli,o = 0-

This constraint means that xi has to arrive by time 0 and that X2 has to arrive by
time0 if a;2 = 1 butby time 1if2:2 = 0. Noticethat thisrequiredtimeis strictlytighter
than the following two required times based on the exact algorithm, but is looser than
the required time based on topological analysis.

Xlul =
Xari.O ~

Xiz.l = «1®2
xSj.i = a;iX2
Xij.o =

0
Xx2,0 = 0.

xS,.l = ®1X2
xSj.O = ^®2
xii.l = ®1«2
xSj.l =
xij.o = ^
xSj.o = 0.

15

43 Approximate Approach 2

The approximation technique in Section 4.2 wasa relaxation of the exact formulation.
Another approximate analysis will be discussed next, which is based on repeated
functional timing analysis.

Assume that for each primary input z,- all the times for which leafx variables are
needed are listed. Let Ri bethe set which contains all those times for primary input z,-.
For the sakeof simplicityassumethat Ri containsall the timesneededfor value 1 and
those for value 0®. Let i2 = i2i x ... x /l„. Let ri = ..., € R where
**1,1 = niintgijj i. Similarly letrr = (rj,!) •••,rr.n) GR where ry.f = maxtgij. t.
Let r, r' eR. Apartial order -< isdefined over R asfollows; for Vr, r' 6 r -< r' iff
Vi = {1,..., n}, r,- < rj. This partial order forms a lattice over R, where the top and
thebottomelements are rj and respectively. Each r s R represents acandidate for
the »act required time.

r± corresponds to the required times at primary inputs obtained by topological
analysis. Therefore, if the primary inputs arrive by r±, the stability of the primary
output by thegiven required time isguaranteed. Our goal is to find thelargest r € R
with respect to -< such that r guarantees the stability ofthe primary output, r may not
beunique aswesaw inthefirst approximation technique.

One way tofind such r is to climb up the lattice gradually fi-om r± by choosing
larger r*s ina greedy fashion. To test if a certain r is a valid choice, one can simply
perform functional timing analysis ofthe circuit under the arrival times corresponding
tor at the primary inputs. If the delay at the primary output isless than orequal toits
required time, r is a safe condition. The largest r that meets thisrequirement gives a
limiting condition. The search for r can berefined bythe use ofbacktracking sothat
all the maximal r*ssatisfyingthe conditionare enumerated.

Hie advantages of thissecond approximation technique aretwofold. First, onecan
directly use state-of-the-art timing analysis tools asa subroutine. Secondly even if an
entire analysis takes ahuge amount oftime, any intermediate r looser than topological
analysisgivesuseful informationimmediately.

5 Computing Timing Flexibility of Subdrcuits

Having looked into how to compute required times bytaking into account false path
effects, wenowconsider theproblemofcomputingtimingfiexibilityofsubcircuits. The
timing specification ofa subcircuit consists ofarrival times atthe subcircuit inputs and
required times at the subcircuit outputs. One can then pass this information toa logic
synthesis tool along with the functional specification of the subcircuit toresynthesize
it sothat the entire circuit after replacing the existing subcircuit with a new optimized
subcircuit meets the top-level functional andtemporal specification.

ispossible toextend the idea sothat required times for values 1and 0are handled separately enrh
primary input

16

NFO

bnetworfcN'

Figure 5: Boolean Network

In this section, we show that the problem can be solved as a combination of the
standard false path analysis, where arrival times are propagated forward to subcircuit
inputs from primary inputs, and the required time computation technique discussed
in Section 4, where required times are propagated backward from primary outputs to
subcircuit outputs.

5.1 Arrival Time Computation

The first step is to compute arrival times at the subcircuit inputs. The transitive fanin
of the subcircuit inputs is extracted from which we call Mfi- (See Figure 5.)
This network is then analyzed with a technique similar tostandard false path analysis^.
Notice that the primary outputs of //fi are the subcircuit inputs, and the primary
inputs of Mfi are a subsetof primary inputs X of J\f. The main difference between
this problem and the false path analysis problem is that in the false path problem we
only care about the latest arrival time for each output while in our problem interactions
among arrival times ofdifferent outputs are ofmuch interest to capture timing flexibility
accurately'®.

Consider applying x function analysis on J^fi- For eachsubcircuit input «,• € U,
we list all the topological arrival times at Ui,which is easily computed by propagating
arrival time from primary inputs to the subcircuit inputs while maintaining not a single
latest arrival time but a set of arrival times at each node. Then, ^ € {0,1) is
computed at all those arrival times. Note that these functions are in terms of primary
inputsX ofW. Then xj,. = xL^.o+xLi,! represents all the primary input vectors atX

^To be precise thedelay of thefanin network is affected bychanging itsfanout, which is unknown in
our setup since the fanout network is to be resynthesized. In this paper we do not take this load effect into
consideration to simplify the explanation.

'^[2]proposed a technique tocompute input-value dependent delay using ADD's. This canbeused asan
alternative to the analysis below.

17

x1 x2 x3

arr(x1) s aiT(x2) b arr(3d) s o

Figure 6: Example

thatmake a signal atUi stablebytimet. Assume thatthelistoftopological arrival times
at«i is Now theBoolean space canbepartitioned into/disjoint sets
{5i,..., 5/} in termsof arrival timesas follows.

= Xui

Sk = Xu\ •Xui-tfc-i (^ = 2,...,/)

Note thatXincreasesast increasesby its constructionandSkS aredefinedasdifferences
between time-neighboring functions. Theset 5fc(/: = 1,..., /) contains all the input
vectors at X that make the signal u,- stable by time tk but not by time tk^i, where
to = —oo.

Once a partition of is computed for each subcircuit input, all thepartitions
aresuperimposed on to form arefined partition. Thisis equivalent topartitioning
B'^I such that any input vector inaclass has the same arrival time behavior atU.

The final step is to interpret this arrival time in terms of subcircuit inputs U so
that temporal specification of the subcircuit is given locally in terms of its inputs.
Remember that so far arrival time at U is computed in terms of X. The subcircuit,
however, cannot distinguish input vectors applied at X unless they yield different
vectorsat U. Therefore, it is necessary toreinterpret thispartitionin termsofsubcircuit
inputs U so that one can tell what arrival time b^aviors could be observed for each
vector at U. This iseasily computed fi:om the partition of B'^' computed above and
thefunctionality of the transitive fanin network A//?/. The Boolean space Bl*' can be
first partitioned into B'^' sets depending onwhat vector is driven at U. Now for each
vector uofB'^',we know the set ofall the vectors ofB'-^l that yield u at U. Using
the partition ofB'*' computed previously, one can list all the possible arrival times for
the vector u, from which all the latest arrival times are extracted.

Letusillustrate thisanalysis withanexample. Assume thatthenetwork inFigure 6
is Mfi- For simplicity, we also assume that each gate has a unit delay and all the

18

primary inputs arrive at time 0. The x function analysis gives the following.

1
=

xlt =
^2 =
xij =

XI

1

The first two equations implies that if xi = 0, ui arrives at time 1, but otherwise the
signal arrives at 2. The last two equations then describe signal stability of U2. If = 1,
then U2 arrives at time 1, but otherwise the arrival time is 2. This can be summarized in
the following table.

X1X2X3 «1«2 arr(ui) orr(«2)
000 00 (1,2)
001 00 (1,2)
010 00 (1,2)
oil 01 (1,2)
100 01 (2,1)
101 01 (2.1)
110 01 (2,1)
111 11 (2,1)

Now, noticethat the subcircuitwhichMr/ feedsinto cannotdistinguish£1x2x3 =
011 and 100 since both yield the same vector 01 at uiU2. Thus, when the subcircuit is
resynthesized, we can only assume that the arrival time at the subcircuit input is either
(1,2) or (2,1) when tiiU2 = 01. Although it is possible to approximate this by having a
single arrival time(2,2), it is notdesirable since thisis an overconstraint^^

The following table is obtained by folding the table above in terms of the values of
U1U2.

arr(wi) arr(ti2)
00 {(1.2)}
01 {(1,2),(2,1)}
10 {(00,00)}
11 {(2.1)}

{(00,00)} for 10 means no constraints since the subcircuit never observes the
vector at the input. This corresponds to a satisfiabilitydon*tcare among ui and U2. It is
interesting to observe that functional flexibility is captured in this framework naturally.

" Ifanairival time tuple isstrictly earlier than another tuple, theformer isdroppedsince thesubcircuit
must be synthesized under the woist-case scenario.

19

5.2 Required Time Computation

Computing required times at subcircuit outputs can beperformed byanalyzing a sub
network ofU, Mpoy with thesame analysis technique described in Section 4. Mfo
is the same network as M ^cept all the subcircuit outputs Vare relabeled asprimary
inputs. (See Figure S.) Notice thatrequired times at thesubcircuit outputs areof inter
est. Since weknow arrival times atX, there isnoneed tointroduce leafx variables for
thoseprimary inputsofNfo which areelements of X, As wehaveseenin Section 4,
required time iscomputed for each vector v e 5'^' atsubcircuit outputs.

53 Towards More Accurate Uming Flexibility

As the final remark in this section, we consider a special case of theproblem where
no functional flexibility is explored in resynthesizing the subcircuit. In otherwords,
thefunctional specification given for thesubcircuit is thesame functionality currently
implemented. Thisallows us tocompute timing flexibility more accurately.

Forarrival timecomputation at subcircuit inputs, instead ofinterpreting arrival time
intarns ofsubcircuit inputs, wecan simply ke^ arrival time interms ofprimary inputs
X. Required times at subcircuit outputs are computed for each vector v € in
the previous subsection. Since the functionality of the subcircuit is preserved after
resynthesis, the functionality of V in terms of X is kept unchanged. Therefore, it is
possible to interpret the required times in terms of primary inputs X. Nowfor each
primary input vector x G wehave a single arrival time atthesubcircuit inputs and
possiblymultiple required times atthesubcircuit outputs. Onecan then map thistiming
constraint to thesubcircuit. Since arrival times and required times arecoupled through
X, analysisis more accuratecomparedto the one describedbeforewherearrival times
andrequired times arecomputed completely independently.

6 Experimental Results

We have implemented ontop ofSIS the exact and thetwo approximate algorithms
forrequired timecomputation discussed in Section 4. Thedelay model weusedin the
ocperiments is theunitdelay model. In all theexperiments weset therequired times
ofall theprimary outputs tozero and computed required times at primary inputs. All
theBoolean operations in theexact and thefirst approximate methods are done using
HDD's while in thesecond approximate method a SAT-based timing analysis tool [9]
is used.

The efficiency ofthealgorithms isdq)endent onhow much reconvagence a given
circuithas. Intheexact algorithm, weintroduceoneBoolean variable foreach pairofa
primary input and apotential required time. Thus, theexistenceofmany reconvagences
impliesmanipulation of x functions of many input variables^^ in HDD's. The same

many ISCAS bendunark circuits the number of Boolean variables needed can easily gobeyond
htmdreds.

20

observation is alsotrue for the firstapproximate method, where a Boolean parameter
variable is introduced for each such pair.

The second ^proximate algorithm is more scalable than the first one since the
computation engineisaSATsolver. Asmentioned before, anadvantage ofthisapproach
is thatanyintermediate required timevalidated canbe usedasa safeapproximation to
the exact solution.

Table1 showsa comparison between theexactand the approximate algorithms on
MCNC benchmark circuits. CPUtimesaremeasured in seconds onDECAlphaServer
84005/300. Theexactalgorithm wasrun withdynamic variable reordering beingset.
* in the table denotes that the analysis gives a non-trivial required time looser than
topological analysis. The reason why the first approximate algorithmgives a looser
constraint than the second algorithm in some ocamples is that the required times of
values0 and 1 foreach primaryinput are distinguished in the firstalgorithm while the
current io^lementation of the second algorithmonly searches for value-indq}endent
required times for efficiency. Although the second approximate algorithm took 10
hours to complete the analysis of ilO, the first non-trivialrequiredtime was obtainedin
134.9 seconds.

Table 2 shows CPU times of the second approximate algorithm on ISCAS combi
national benchmark circuits. CPU times are measured in seconds on the same machine.

The secondcolunmshowswhether the algorithmcould findnon-trivial requiredtimes
or not. The third and fourth columns show CPU time spent until the first non-trivial
required time was found, and CPU time for the entire analysis respectively. Although
the algorithm could not finish on C3540 and C6288 within 12 hours of CPU time, it
found non-trivial required times within a second.

7 Conclusions

We have smdied how to compute required times of combinationalcircuits more accu
rately than topological delay analysis, by taking false path effects into account. The
technique proposed in this paper, which is designed on top of the theory of false path
analysis, computes a more relaxed yet correct timing constraint.

Even though this approach captures larger temporal flexibility, existing timing
optimization algorithms are not able to exploit the fl&dbility fully since timing spec
ifications handled by timing optimization algorithms are of much simpler form than
value-dependent constraintscomputedby our technique. A moresophisticated timing
optimization algorithmcompatiblewith the refined timingconstraint proposed here is
needed to fill this gap. Another avenue for future research is to improve the computa
tionalcomplexityof the algorithmby furtherapproximations. In the currentalgorithms
we distinguishbetween all potential required times at primary inputs. One possible
approximation is to group them into clusters of neighboringrequired times conserva
tively. Controllingthe numberof clustersgivesa trade-offbetween accuracy and CPU
time for a more realistic delay model.

Wehaverecentlyshown [7] how this analysisleads to an abstract delay model for

21

circuit #PI #P0 CPU time CPU time CPU time
(exact) (^proximate 1) (^proximate 2)

il 25 16 93.0* 0.1* 0.5
i2 201 1 memory out 8.3* 15.3
i3 132 6 3277.9* 0.1 0.0
i4 192 6 0.2 0.0
i5 133 66 1.9 10.7
i6 138 67 0.7 16.0
i7 199 67 0.9 31.7
i8 133 81 26.8* 238.7*
i9 88 63 3.0* 4.6

ilO 257 224 memory out 36335.6*

Table 1: Required HmeComputation - Exactvs. Approximate

circuit Non-trivial CPU time CPU time
required time? first r ^ rjL

(in seconds)
^max

(in seconds)

C432 Yes 7.9 33.2
C499 No - 40.1
C880 No . 26.7

C1355 No - 26.0
C1908 Yes 1.0 1356.4
C2670 Yes 2.8 2298.1
C3540 Yes 0.5 > 12 hours
C5315 Yes 77.7 359.6
C6288 Yes 1.0 > 12 hours
C7552 Yes 2.5 992.5

Table 2: Required Time Computation - ISCAS Example

22

blackboxes. Hie delay modelcan be accurate takinginto account falsepaths, without
giving the internal details of the box.

Acknowledgments

The authors wish to thank Al^ander Saldanha for kindly allowing us to use his timing
analysis tool as part of our implementation.

References

[1] A. Aziz, R. K. Brayton, F. Balarin, and V.Singhal. Hming-safe replaceability for
combinational designs. In Proceedings of TAU 95: ACM/SIGDA International
Workshop on Timing Issues in the Specification andSynthesisofDigitalSystems,
pages 121-128, November 1995.

[2] R. I. Bahar, H. Cho, G. D. Hachtel, E. Macii, and P. Somenzi. Timing analysis of
combinational circuitsusing ADD's. In ProceedingsoftheEuropeanDesign and
TestConference, pages 625-629, March 1994.

[3] F. M. Brown. Boolean Reasoning. Kluwer AcademicPubilshers, 1990.

[4] E. Cemy andM. A. Marin. An approachto unifiedmethodologyof combinational
switching circuits. IEEE Transactions on Computers,C-26(8):745-756, August
1977.

[5] H.-C. Chen and D. H.-C. Du. Path sensitization in critical path problem. IEEE
Transactionson Computer-AidedDesign, 12(2):196-207,February 1993.

[6] S. Devadas, K. Keutzer, and S. Malik. Computation of floating mode delay in
combinational circuits: Theoryandalgorithms. IEEE Transactionson Computer-
Aided Design, 12(12):1913-1923,December 1993.

[7] Y. Kukimoto and R. K. Brayton. Hierarchical timing analysis under the XBDO
model. In International Workshop on Logic Synthesis, May 1997.

[8] P. C. McGeer and R. K. Brayton. Integrating Functional and Temporal Domains
in Logic Design. Kluwer Academic Publishers, 1991.

[9] P. C. McGeer, A. Saldanha, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Delay models and exact timing analysis. In T. Sasao, editor.Logic Synthesisand
Optimization,p&ges 167-189. Kluwer Academic Publishers, 1993.

[10] S.Muroga, Y.Kambayashi,H. C.Lai, andJ.N. Culliney.TheTransduction method
- design of logic network based on permissible functions. IEEE Transactions on
Computers, 38(10):1404-1424, October 1989.

23

[11] H. Savoj, R. K. Brayton, and H. J. Touati. Extracting local don't cares for network
optimization. In ProceedingsofIEEE International Conference on Computer-
AidedDesign, pages 514-517, November 1991.

[12] K. J. Singh, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Timingoptimizationofcombinationallogic. In ProceedingsofIEEEInternational
Conference on Computer-AidedDesign, pages 282-285, Novembe-1988.

[13] V. Singhal and C. Pixley. The verification problem for safe r^laceability. In
Proceedings of 6th International Conference on Computer-Aided Verification,
CAr94, pages 311-323, June 1994.

[14] Y. Watanabe and R. K. Brayton. The maximum set of pmnissible behaviors
for FSM networks. In Proceedings of lEEE/ACM International Conference on
Computer-AidedDesign, pages 316-320, November 1993.

24

	Copyright notice 1997
	ERL-97-44

