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Abstract

An Information-centric Design Exploration and Implementation Server

by

Ole Bentz

Doctor ofPhilosophy in Engineering
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Professor Jan M. Rabaey, Chair

Advances in fabrication technologies will soon enable the integration of billions of
transistors on a single chip. This high level of integration allows designers to create
extremely powerful and complex systems on a single die. Systems consist of complex het
erogeneous components, each of which may require significant expertise to design and
optimize. Heterogeneity is found everywhere: the tools used to design each component
may differ, the design methodologies vary, the optimization techniques are different, etc.
In orderto sustain increasing levels ofproductivity and lower design times, it is clearthat
a system design framework has to manage the heterogeneity.

This dissertation presents a new paradigm called "Information-centric Design." This
paradigm offers a novel model for designer-CAD environment interactions and facilitates
design exploration throughout the system design specification and implementation pro
cess. The information-centric paradigm requires encapsulation of design expertise and is
capable of providing design aid to the level of the encapsulated design knowledge. A pro
totype of an information-centric CAD environment called the "Design Server" is also pre
sented, and design examples illustrate the benefits of the information-centric paradigm.
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CHAPTER 1

Introduction

The rapid increase in the complexityofelectronic systemsdemands new approachesto

the design process. Since the 1960's there has been constant research activity in the area of

utilizing computers to aid with the task ofelectronic systems design, and myriads ofhigh

quality, sophisticated computer-aided design (CAD) tools have been developed. At the

same time, advances in semiconductor manufacturing technologies have enabled a dou

bling every two years of the number of transistors (the basic components of a chip) that

can be integrated on a single chip. Today, the state of the art allows tens of millions of

transistors to be included on one chip.

The rapid growth in chip complexities is outpacing the available CAD technologies.

There is a large gap developing between what can be manufactured and what can be

designed with current design tools in a reasonable amount oftime (see Figure 1-1). Bridg

ing the gap will require the emergence of a design infrastructure that can aid the design of

complex systems.
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Figure 1-1. Complexityofdesigns vs. productivity supportedby CAD tools [SIA96].

Oneof the mainobstacles for the system design process is that systems bringtogether

a broad range ofdesign entities, each ofwhich requires specializedexpertise both to

design and to integrate with otherentities. It is impossible for designers to have both the

breadth andthedepth of knowledge required, soa design infrastructure must provide ways

to capture design expertise andhelp designers exploit it during the designprocess.

This dissertation presents a newdesign environment for theexploration and imple

mentation of electronic systems. Themain novel feature of this environment is the way it

encapsulates anduses design expertise to aid designers. Theenvironment aidsdesigners

from the earliest pre-specification design stages, when exploration and information gather

ing is paramount, andit facilitates the implementation process as design specifications

evolve.

Thischapter first elaborates on the emerging gapbetween design technologies and

chip complexities, then theaim andthecontributions of this work aredescribed. Finally an

overview of the rest of the dissertation is given.



1.1. Problem Definition

In addition to the increasing complexity of the systems that canbe built, there are tre

mendous pressures on the designprocess to meet shorter time-to-market constraints, as

well as the economic pressures of a highly competitive global marketplace. Currently,

design team sizes aregrowing to handle the increasing complexities, butthatbrings withit

highpersonnel costs and the complexity of managing people.

Toreducedevelopment time and product life cycle cost, and to increase overall prod

uct performance, CAD toolsmust improve in two key areas,exploration and implementa

tion. Design exploration is the process of evaluating the relative merits of alternate

solutions to a problem. The goalof exploration is to provide information that can guidea

designer in decision making. Variations of exploration include finding the bestof a range

of possible solutions, or finding one solution that adequately meets designrequirements.

Exploration is needed to guide decisions at many stages of the design process. How

ever, it is at the earlieststagesof design (alsoknown as the "conceptual"or "pre-specifica-

tion" stages) that exploration has the greatest potential impact on the final design.

Unfortunately, there is not a lot of factual dataavailable during theearlystages of design,

so designers must rely on estimations or predictions. There are countless ways to obtain

estimates, and finding the right technique to use in a givensituation can be as difficult as

using the technique. It is clearthataids mustbe provided to facilitate design estimation

and exploration.



The current approaches to design exploration encompass a wide varietyofmethods

that can best be characterized as "ad-hoc." From simple "back of the envelope" calcula

tions, to elaborate spreadsheet computations, to consultation ofdata books, there is no

generalized methodology for how to get quantitative information on which to basedesign

exploration. In addition, the sources of information have varying degrees ofreliability,

ranging from the suspect "guess-timates" (a.k.a., "by the seatof thepants," "gut feeling,"

etc.), to the potentially competent "expert opinion," to factual data books. Other variations

include the use ofempiricalmodels and estimator tools (i.e., CADtools that have the abil

ity to estimate). There are no generalized estimation techniques thatapply to all areas of

expertise, andeven within a given area there are often several techniques thatcanbe used

under different circumstances. The heterogeneous nature of estimation methods, and the

time-consuming task of finding and applying estimation techniques, prohibits extensive

exploration. There is an obvious need fora more generalized and reliable approach.

The need for a more generalized approach also exists in the area ofdesign implemen

tation. Great progress has been made towards easing the design process byintegrating

large tool sets into CAD frameworks (CAD frameworks will be discussed more inchapter

2). Yet, there is still a myriad oftools and tool suites, and probably asmany different spec

ification languages. There are also many different implementation styles and target plat

forms that offer a spectrum ofperformance and cost trade-offs. A system design

infrastructure must remove most of the burden ofmanipulating tools and design files, and

of exploring alternative implementations, from the designers, so that they canbe free to

concentrate on the creative aspects of design. An infrastructure must alsoforge a connec-



tionbetweendesignexploration anddesignimplementation suchthat the two tasksare not

separate activities, but integral parts ofa design process.

This dissertation presents an information-centric design environment that hides the

heterogeneity of tools, files, and methodologies fromthe viewofdesigners. The design

environment is centered around information in the following ways:

A. It contains information: it encapsulates knowledge regarding specific design-related

areas of expertise. This expertise is captured in such a way that computers can manip

ulate it and make it useful for designers who don't have the expertise. The design

related knowledge includes the parameters and constraints that are relevant to a given

field, definitions of the specification languages that are used, as well as models, esti

mation and implementation techniques, etc. The encapsulated knowledge can be dis

tributed in nature, recognizing the need to draw on the expertise ofdifferent designers

or organizations.

B. Its behavior depends on information: based on properties given by the designer (such

as parameters, constraints, specifications, etc.) the design environment adapts itself to

provide the best possible support. This is important, because design specifications

evolve over time. A design infrastructure has to be tolerant to incompletely or gradu

ally specified problems, and adapt its functionality to provide as accurate or detailed

feedback to the designer as possible, considering the level ofdetail of the given design

specifications. For example, there are many techniques that can be used to obtain esti

mates ofpower, so the design environment has to dynamically resolve which tech-



nique to use, based on all given design information.

C. It provides information: designers interact with the environment through intuitive

"informationrequest" commands. Someexamplesoftypicalcommands a designercan

use are "what is the chip area?" or "how fast is the chip?" In addition, the environment

automates repetitiveand tedious tasks to save time, thus facilitatingthe design process.

The information-centric design environment provides the necessary features to enable

design exploration and implementation in a consistent fashion. The environment fills the

gap between a designerand a heterogeneous set ofdesigntoolsand methodologies, esti

mation techniques, databases, etc.(Figure 1-2). Theaimof thedesign environment is to let

a designer choose the specifications for a design, andaid withtherest, i.e., with the sup

port of the entire design flow, including explorationand implementation.

DESIGNER

Request | | Feedback

Design Environment

TOOLS METHODOLOGIES TECHNIQUES DATABASES

Figure 1-2. Information-centric Design Environment.



1.2. Contributions

The two main contributionsof this work are an object-oriented knowledgeencapsula

tion model and a design environmentbased on this model. The model specifiesthe con

tents of the knowledge objects and their interfaces, as well as the organizationofobjects

into hierarchies. The design enviroiunent implements the necessary infrastructure and the

capabilities that are required to exploit the encapsulated knowledge.

1.3. Dissertation Overview

This dissertation is organized as follows: Chapter 2 describes previous work in the

CAD field, and outlines the many research results that formed the basis for this work.

Chapter 3 studies the nature of the system design problem and outlines the many chal

lenges that face system design environments. Chapter 4 describes the architecture ofan

information-centric environment, and chapter 5 discusses in detail each ofthe components

ofsuch an environment. Chapter 6 presents a prototype implementation ofthe design envi

ronment, and chapter 7 shows the use of the system through several design examples.

Chapter 8 outlines directions for future work in this area, and conclusions are presented in

chapter 9.





CHAPTER 2

BACKGROUND

The information-centric design environment has benefited greatly fi*om the large body

of research literature in the area ofcomputer-aided design. This chapter gives a brief over

view of this field, including some historical perspectives, and outlines the main results that

have formed a foundation for this dissertation.

2.1. Foundational Work in CAD Frameworks

As the earliest solid state computers were being built in the late 1950's, and as they

rapidly became bigger, faster and more complex, the idea of using existing computers to

help design new computers became feasible. In 1968 IBM reported a computer-aided

design system called GLEAM running on an IBM 1130 [Sass68][Sass7I]. It aided with

"design, simulation analysis and artwork generation for the fabrication ofdevelop

ment-level Solid Logic Technology (SLT) circuit cards, boards, special circuits and other

computer components" [Sass68]. Why is GLEAM not adequate for today's system
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design? The state of the art of semiconductor manufacturing was capable ofproducing

about 500-1000 transistors on a chip in 1970. Designing for today's capabilities ofgreater

than 10 millions transistors requires a much more powerful design approach.

During the 1970's and early 1980's, computers were being introduced into countless

fields for design, optimization, verification, etc. Myriads of CAD programs and design

description formats were developed to solve specific problems, but it wasn't until the late

1980's that work began on more unified approaches to managing CAD tools, data, and the

design process. The following three sections discuss importantprevious work on the man

agement ofdata, tools and design flows (or methodologies).

2.1.1. Data Management

The proliferation ofdesign description formats created a new problem ofhow to

enable various tools to share design data. In some cases, translation from one format to

another would be adequate, but that solution is far from ideal in the general case. The com

munication between tools wasgreatlysimplified by the introduction of designdatabases.

In the OCT system [OCT89], a databasewas used to store all design data, and CAD tools

had to be able to read from and write to that database. This virtually eliminated the need

for translation of design data, at leastfor tools thatwere capable of accessing the database.

A need also arose for dealing with the evolving nature ofdesign data. As designs

evolved through refinements and improvements overtime, it became important to manage

several versionsofa design. An exampleof a systemthat supports versionsand configura-
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tions is the Version Server [Katz87].

I

The idea of representing data byreusable, extendable objects, aspopularized by

object-oriented (00) programming languages such as Smalltalk [Goldberg83] andC++

[Stroustrup86], has become almost universally accepted. In mostCAD systems it is com

monpracticeto represent designentities by designobjects.

2.1.2. Tool Management

The primaryaim of tool management is to make it easierfor designers to use CAD

tools. Thereare three main levels of management, with increasing degrees of easeofuse.

In the first level, ease ofuse comes from making all tools in a tool-suite access a common

database format, e.g., the OCT database mentioned above. This eliminates the need for

translation between various inputand outputfile formats thatotherwise wouldbe required.

The second level is to make all tools in a tool-suite adhere to a consistent invocation pol

icy, such that command line flags are the same in the various tools. This eliminates the

need to remember countless invocation options.

Thefirsttwo levels require access to the sourcecode for the design tools. In most cases

that is notpractical. The third level allows bringing a variety of tools together by using

tool encapsulations. Tool encapsulationsdescribe how to properly invoke a tool in a lan

guagethat can be understood by computer programs, enable the use ofgenericgraphical

user interfaces, and are easily extensible whenadding new tools. A prominent example is

the Tool Encapsulation Specification which is a part of the CAD FrameworkInitiative's
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(CFI) standard [CADF91]. This standard has been embraced by all commercial frame

work vendors.

As is the case with data management,object-orientedtechniques are also commonly

used to represent tools. The first use of00 tool representations was in Cadweld from Car

negie Mellon University [Bushnell89].

2.1.3. Design Flow Management

A significant number of CADtools are required to perform electronic systemdesign.

Depending on the type of system, several hundreds of tools may need to be invoked. The

order in which tools are sequenced is very important, and it is also paramount to run the

proper tools on the right sub-problems, since tools tend to be highlyspecialized for a par

ticular task.

A variety of strategies have been implemented to help manage design flows (also

known as design methodologies). The strategies vary in scope and effectiveness, butthey

all offer some interesting or desirable qualities.

LAGER (University of California, Berkeley) [Shung88][Brodersen92]

LAGER is a silicon compilation system which provides design automation from

high-level languages (C, Silage) or structural netlists, to layout and verification. Themost

common use of LAGER is to provide a netlist in the Structural Description Language

(SDL), and let DMoct, LAGER's design manager, invoke all the necessary design tools.
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The design manager executes a setofwell established flows ordesign methodologies, and

ensures that design tools are used at the right time, and with the right data in the design

process. The design tools in LAGER include layout generators (for datapath and array

structure tiling), a floorplanner, and placement and routing tools. All tools operate onan

object oriented database, OCT [Harrison86]. The system uses the concept of libraries of

hand-designed cells that can be reused, and includes parameterized cells that can be cus

tomized at compile time. Simulators are also available for verification at the netlist level

(VHDL) or at the extracted layout level (switch level or Spice simulation). Some early

work on Lager can be found in [Rabaey85][Ruetz86].

Ulysses (Carnegie Mellon University) [Daniell88]

Ulysses is one of the earliestVLSI CAD frameworks to offer supportfor designflow

management. It uses a tool execution mechanism that is based on a blackboard model of

rule-based systems. Predefined scripts specify high-level goals, and when scripts are

invoked, a goal from a script is posted to the blackboard. Tools that can achieve the goal

volunteer themselves, and the system lets designers choose which tool to use to accom

plishthegoal,according to certainperformance criteria. Ulysses introduced the concept of

automaticconsistencymaintenancebetween data, by keepingrecords offile dependencies,

and being able to automatically update files when necessaiy.

VOV (University of California, Berkeley) [Casotto90]

VOV is unique in that it does not use predefined scripts ofdesign flows. Instead, it

observes a designer's activities and record them in a "trace". CAD tools are considered to
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be "black box" objects, and they have to report their activities to the trace facility. Traces

are used both as documentation of the history ofa design, as well as templates for future

activity. VOV does not support hierarchical traces, so for even medium sized designs the

flat traces can become unmanageable. The fact that no scripts need to be predefined makes

VOV attractive.

The History Model (University of California, Berkeley) [Chiueh90]

The History Model combines the strengths ofUlysses and VOV. Design history is

organized hierarchically, and a graphical interface is used to allow users to browse the his

tory. It allows alternate design versions to coexist, and it can "restore" previous states ofa

design by a simple point-and-click operation.

Cadweld (Carnegie Mellon University) [Bushnell89]

The successor to Ulysses moved away from having specific tools hard-coded into the

taskdescriptions. Cadweld madeit easierto add newtoolsby usingan object-oriented tool

classhierarchy. However, it didnTcapturedata in a similarclasshierarchy, so problems

still existed when existing tools changed.

Texas Instruments Flagship Design System '̂̂ (Texas Instruments) [Rumsey92]

The Flagship system is noteworthy for its use ofhierarchical designflows, and for

allowingalternativebranches through a flow. Flagship is also capable ofreducing the flow

execution time by exploiting parallelism in the flow descriptions. Flagship supports vari

ous "desktop models", which enables designers to choose which way the system should

present their data, tools, and design flowsdepending on what is most relevant for their spe-
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cific design scenario.

Odyssey (Carnegie Mellon University) [Brockman92]

The third generation CAD framework from CMU extended Ae object-oriented type

hierarchies to include design data. This allowed dynamically binding a specific tool to a

given task at run-time, based on the data type information. In the Hercules Task Manager

[Sutton93], design flows are described in a schema oftypes and relationships between data

and tasks. This, in effect, defines all the possible flows, without requiring a designer to fol

low a particular sequence. The specific sequences a designer performs are recorded as a

history, and can be replayed at a later time. At run-time, Hercules can dynamically put

together flows consisting ofprimitive tasks.

The Minerva Process Manager [Jacome92] provides a link between predefined Hows

and design objectives. It helps select and order design flows to achieve given objectives.

Minerva introduced the notion of"domains", which this dissertation expands upon in

Chapter 4.

2.2. Different CAD Paradigms

There are many different ways to approach the issue of how to present and manage

data, tools and design flows in a CAD framework. Rumsey and Farquhar [Rumsey92] gave

an excellent overview of three common approaches, and the next three sections are based

on their descriptions. The fourth section describes the information-centric approach that is

used in our design environment. The four approaches are essentially four different ways to
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look at the same problem.

2.2.1. The Data-centric Approach

The data-centric approach focuses on design data, typically stored in files or databases.

Tools are either chosen based on the type of a data object, or are selected from a list of

available tools. This approachis useful in design scenarioswhere a largenumber ofdata

files are used to represent the design, such as in VLSI design, and where it is common for

tools (e.g., a layout editor) to repeatedly operate on each of those files. In such cases, a

data navigator can be adequate, such as the file managershown in Figure 2-1. This inter

face is similar to what is used in the Apple/Macintosh user interfaces. The interface can

display hierarchical relationships between data (in thiscase directory trees and contents),

and allows usersto navigate through the dataandto pointand clickon the objecton which

to operate.

everglades.EECS.Berkeley.EDU:/users/bentz/e)(amples/data_centrlc

CFile ( View p) ( Edit ?) (CoTo: ?)

/ users bentz examples data_centrlc

Contains 11 Items 924 Mbytes (G9%)available

backup headers.h makefile symlink web.html

circultsplce Image.glf paper.fm prog.c voicemall.au

Opening data_centric

Figure 2-1. The Data-centric Approach.
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2.2.2. The Tool-centric Approach

The tool-centric approach focuses on a set ofavailable tools and makes it convenient

to invoke any of them. Users identify their design of interest, and subsequent tool invoca

tions automatically operate on the given design. This approach is useful when many differ

ent design and analysis tools repeatedly need to operate on a single design file. One

example is analog circuit design where a circuit is being designed, and simulation tools are

repeatedly used to evaluate circuit performance. Figure 2-2 shows a tool-centric interface

where the design is identified in terms of a project name and a "view" (the currently

selected aspect ofa design, such as schematic, behavior, layout, etc.). The right halfofthe

interface is devoted to tool icons that provides convenient point and click access to a suite

(also called a toolbox) of design tools.

^0
(B Project v)( Library ?)( Process ?)( Config y)

Tool Status

Selected Tool:

Tool State:

Tool Messages:

Tool Exit Status:

Selected Host:

current ToolBox:

current Drawer

current View:

Current IVc^t:

current Library:

iCockpll

[None

[None

(None

IStandaid

lAnSo^^^^ign^Desi^
IViewdraw
|7users/bentz/example$/tool_centrtc

<v> |/users/ben1z/examples/tooLcentric

Powerview Cockpit

VIEWA>^k>

VtewDraw

yiEWlogio
6

hspice

I

ViewNav

VlEWU^td

'm

pspice

VIEtWcgle

A D net

VIEWioglo

ViewSweap

VIEWA^Io
.1

Tool Log: Cockpit

Reading INI file: /tools/vlogic/standard/viewfran.ini...
Reading TOOLBOX file: /tools/vlogic/standard/standard.tbx...
Project /users/bentz/exa&tples/tool_centric created successfully

vtEmgio

splcelink

VlEWtog&f

VIEWIoglo

»11010 VVlf

A D Sim

VJEWiogio'

-ta4R£
'

SStream ViewTrace

VIEWAtflo

Figure 2-2. The Tool-centric Approach.
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2.2.3. The Design-Flow-centric Approach

The Design-Flow-centric approach focuses on tasks in design process. A design

project is identified in a manner similar to the tool-centric approach, but users issue com

mands that correspond to specific tasks instead ofdealing directly with tools and data.

This approach is useful in many areas ofASIC design, where significant portions of the

design flow follows predefined patterns. Figure 2-3 shows a design flow interface which

portrays the steps in a library-cell characterizationprocess. After identifyinga design,

users can point and click on the box that represents the task they want to be done, and the

designenvironment ensures that all the preceding tasksare also executed, if necessary.

B Design Flow Monitor

Flow Design Options

Design Object: Inannoi .mag

Extract Stimuli
IRSIM-CAP

Circuit Gen.

r Extract Cap n

Extract Delay

Extract Func

Help

Create dB

Figure 2-3. The Design-Flow-centric Approach.

2.2.4. The Information-centric Approach

The Information-centric approach focuses on the gathering and management of

design-related information. Thisapproach is useful in the design of complex electronic

systems where relevant information is the key to making well-founded decisions about a
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design. The typical interactions between a designer and an information-centric design

environment consist of specification, request, andfeedback. Thedesigner provides specifi

cations for a design, either partially or completely, and requests information about some

aspect of the design. The design environment responds by providingthe best possible

feedback based on the given specifications.

2.3. Other Related Work

There are other efforts in the field of CAD that are not readily categorized in the data,

tool, or design flow areas. Yet, some inspiring ideas have emerged, and they will be dis

cussed below.

2.3.1. Active Documentation.

Research in the area of electronic documents has given definition to the terms com

pound documents [Mennella90][Birks90][Crossman92][Fanderl92] and active documents

[Beach88][English90]. Compound documents, which have long been one of thefortes of

Microsoft, consist ofdifferent parts such as text, spreadsheets, image, and multimedia

content. Active documents additionally contain hypertext annotations or embedded

scripts. Mario Silva introduced these concepts into the world ofcomputer-aided design

[Silva93,95]. In his work on the Henry system, he used active compound documents to

facilitate the exchange ofdesign data and documentation. Hypertext links could be

included to provide links between related, distributed data, and scripts could be embedded

to handle such tasks as installation ofdesign files in a remote designer's file system. Each
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part ofan active document was encapsulated in the standard MIME format

[MIME92][Song95], so compound documentscould easily be passed between designers

by regular e-mail protocols, or by the Hyper Text Transfer Protocol (HTTP) used in the

World Wide Web. Designs couldalso be submitted to tool serversacross the Web for spe

cialized services. Silva'sworkis representative of thenewand growing field of Web-based

design elforts.

2.3.2. Distributed Objects

Distributed objects hasreceived a lotofattention in thepastfew years. Open standards

have emerged to enable seamless access to heterogeneous,distributed data. The two main

standards are the Object Management Group'sCommon ObjectRequest Broker Architec

ture(CORBA) [Ben-Natan95] andMicrosoft's ActiveX [Kaufiman96]. In either case,

objects can bephysically stored onany networked computer and accessed through an

interface that adheres to either standard'spolicies.

Also noteworthy isthe Java language, which itselfoffers access todistributed, portable

objects through the World Wide Web. Extensions toJava are also enabling Java programs

to access objects through CORBA or ActiveX.

2.3.3. Utilization of Distributed Computational Resources

Theuseof remote resources fordistributing thecomputational load of thedesign pro

cess has been considered to various degrees in CAD frameworks. One particularly nice

example is theMMS CAD framework from MCC [Allen90,91]. It provides data manage-
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ment and encapsulations for tools and tasks, but the interestingfeature is the utilizationof

heterogeneous networked resources. It uses a Process Control System (PCS) which moni

tors the loadon a set of hostcomputers. When tools canbe executed in parallel, the PCS

dynamically chooses lightly loaded remote hosts and dispatches thejobs.When each job

completes, the PCS gathers the results and continues executing other tools in sequence.

The dynamic selection of hostsmakes it tolerant of host failures, and it significantly

speeds up tasks that can be run in parallel.

2.4. Current CAD Support for Design Exploration

Designexploration is an important aspect of the designprocess. Duringexploration,

data is gathered which enables choosing between alternative solutions. Exploration relies

on the ability to predict the consequences ofdesigndecisions,because it is too costly to

fully pursue all design alternatives to completion. There are a growingnumberof tools

available that can help predict the outcome of certain decisions. Theyare typically very

narrow in scope, and can only be applied to a limited set of applications. The next section

describes a few examplesofsuch "narrow" estimation tools, and the following section dis

cusses two efforts that aim for more generalized exploration support.

2.4.1. Domain Specific Estimation Support

HYPER High Level Synthesis System [Rabaey91]

The Hyper suite of toolsperformhigh level synthesis for DSP applications. The sys

tem takesas its inputeitherSilage files or control/data flowgraphs (CDFG) describing an
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algorithm to implement. The synthesis tasks can be very time consuming, yet the time

consumed is not always correlated to the quality of the result, so tools are provided to esti

mate various implementation costs in advance. All estimations rely on a set ofpre-charac-

terized hardware library cells and empirical models of interconnect and control. The

estimator tools provide estimates of the following quantities:

• Area - quickly estimated by turning the complex synthesis problem into a "relaxed"

problem. Minimum and maximum bounds of the implementation area can be estimated.

• Minimum SamplePeriod - Determinesthe minimumachievable sampleperiod, mea

sured in termsofclockcycles. This canbe obtained from analyzing dependencies in the

algorithm and determining the critical (longest) path.

• Minimum ClockPeriod- Determines the minimum clockperiod that can be used if all

operations are to execute in one clock cycle. This can be determined fromthe delays

specified for each hardware cell in the library.

• Power Consumption - estimated by assuming signals with white noise characteristics,

combined withbasic switching capacitances for each hardware cell in the library.

SPA (University of California, Berkeley) [Landman93,94,95,96]

SPA is a Stochastic PowerAnalysis tool that can estimatethepowerconsumption of

an architecturedefined at the block diagramlevel. It requires a description of the architec

ture in termsof components and their connections, plus a symbolic description of the pro

gram executedby the architecture (if it is programmable). Actual input samplescan be
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provided, or white noise inputs can be assumed. SPAuses a library ofpre-characterized

cells, estimates bus area and capacitance, and provides power estimates claimed to be

within 20% of the results obtained with the orders ofmagnitude slower switch-level simu

lation using IRSIM-CAP.

Yoda (Carnegie Mellon University) [Dewey89]

Yoda focuses on the conceptual design ofDSP filters. It allows designers to conduct

initial feasibility studies, and it has an assistance subsystem that provides advice and per

formance predictions to aid the designer with decision making.

Pixie (Stanford University) [Smith91]

Spix (Sun Microsystems) [Cmel93]

Pixie and Spix both fall into the category ofprofilers. Pixie operates on programs for

MIPS microprocessors, while Spix is for SPARC microprocessors. These tools allow

existing programs to be monitored to collect dynamic instruction characteristics. They can

be used to collect standard instruction-level profile information (such as op-code distribu

tions, branch statistics, function usage, static and dynamic instruction counts), and in the

case of Spix, users are permitted to develop custom instruction-level performance analysis

tools (such as cache or pipeline simulators). These tools provide significant speedups over

trace and simulation-based approaches. Profilers are useful to perform comparisons

between different implementations ofa program, and in locating pieces of a program that

require optimizations.
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Chip Area Estimators

Several efforts have been directed towards estimating the area ofchips either during

high-level synthesis (HLS) or logic synthesis. Estimates are calculated prior to performing

time-consuming tasks such as scheduling (in HLS) or placement and routing in logic syn

thesis. Estimates are used both to inform designers about the likely outcome of time con

suming tasks, and to guide synthesis tools (behavioral or logic) towards minimal area

implementations.

For standard cell designs, the area of the cells is relatively easy to compute, but the

area overhead introduced by the interconnect is more difficult. Some estimation

approaches have been shown to yield results that are within 10%of the actual layout

[Kurdahi86,89][Pedram89,91 ].

Area estimates have also been used in conjunction with delay estimates to help per

form area-delay trade-offs. Some applications of this are to:

• minimize the total standard cell area subject to constraints on signal arrival timesat the

outputs [Ogawa90][Chaudhary95].

• synthesize a standard cell designand provide a 'companion' placement solution to

guidea placement tool toward minimal wiringarea and delaysolution [Pedram91].

• use a cost function for routing contribution to chip area during logic synthesis to mini

mize routing area [Vaishnav95].

• RTL synthesis [Granacki83].

• perform high level synthesis and trade area for delay given desired performance or area
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synthesis ofpipelined datapaths [Jain92][Park89].
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2.4.2. General Estimation Support

Whilenumerous application specific estimators exist,more genericestimation and

exploration support is not as plentiful. This section describes three known efforts in this

area.

Clio Prediction/Advice Environment (Carnegie Mellon University) [Lopez92]

Clio is integrated into the Odyssey framework, and workscloselywith the DesignPro

cess Manager,Minerva. Clio consists of two parts, a prediction subsystem that provides

quantitativeestimates, and an advice subsystem that provides qualitative information to

help discriminate between available design options.

The quantitativeprediction system is heavily linked to the Minerva process manager,

and is tied into Minerva's transformational approach to the synthesis process. Thus, the

prediction models aim at simulating the behavior ofeach synthesis step. The transforma

tional approach is valid in many cases, but not all design scenarios can be modeled with

this approach.

The qualitative design advice consists of static pieces of information collected from

the entiredesign community, and each advice is tagged with a date, author, and keywords

to help identifyor show the validity ofan advice. Designers can request advice related to a
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"design issue" (e.g., which layout style to choose: gate array, standard cell, or custom).

For the chosen issue, a "discriminating factor" has to be identified (e.g., design area), as

well as a subject (e.g., comparison). Clio will then search for relevant advice and present a

list to the designer.

Unfortunately, a link between the two subsystems is not provided. It would be very

useful if Clio would automatically search for relevant advice when a prediction indicates

that a cost function has exceeded its acceptable bounds.

System Level Design Guidance (University of California, Berkeley) [Guerra94]

This work takesan algorithmic description ofa system,extractsa set ofpropertiesthat

characterize the algorithm, predicts how fast it will execute on a certain processor, and

guides a designer towards possible algorithmic optimizations. Althoughthe underlying

ideas are applicable in a broader sense, the implementation focused specifically on DSP

algorithms.

PowerPlay (University of California, Berkeley) [Lidsky96]

PowerPlay takesan entirely different approach to providing designexploration sup

port. It is not integrated into a CAD framework, but is freely available through the World

Wide Web. Any modemwebbrowser can act as a graphical user interface for PowerPlay.

PowerPlay uses a spreadsheet style approach to adding up implementation costs, in

particulardesignpower. Parameterized models can be entered, stored,and accessed by all

users. The simplest models represent just a number (e.g., the power consumed by an LCD
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display is 3 Watts). More complex models require parameters (e.g., the area model ofan

adder requires the bit width of the two numbers to add). Global and local variables can be

usedto scale the results of individual models (e.g., supply voltage and clockfrequency).

Spreadsheets can be hierarchical (andparameterized), and are linked by "hyperlinks", i.e.,

a simple point and clickoperation brings to the foreground the desired spreadsheet.

The first version of PowerPlay relied entirely on models to obtain estimates. Later ver

sions have added capabilities forexecuting analysis tools. Its mainstrength liesin thearea

ofearly conceptual level design space exploration.

2.5. Summary

CAD tools andframeworks have come a long way in thepast 15-20 years. Going from

no or limited use of computers in design to the use offull-blown frameworks has taken a

lot of time. However, today's frameworks offersignificant levels of data, tool, and task

management and automation andenable designers to accomplish more andcreate designs

with better quality than ever before. However, the levels ofThe normal case is to leave it

running.complexity of designs that areonthehorizon are sooverwhelming that it is

imperative that even greater levels ofabstraction, encapsulation, and automation are pro

vided. The next chapter discusses thechallenges facing CAD environments in thisarea,

and specifically the challenges for an information-centric environment.
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CHAPTER 3

Challenges for Information-centric
Design Environments

The external forces that drive the development of newapproaches for designenviron

mentswere discussed in chapter 1.Theyinclude demands for better management of the

enormous complexity of designs, and a reduction ofdesigncycleswhile yielding products

with high performance to cost ratios. In this chapterwe turn our attention to the internal

restraining forces, the challenges that have to be overcome to meet the demands for better

design aids. Thenextnine sections discuss themainchallenges, andpropose ways to over

come them.

3.1. Incomplete Specifications

In virtually all CAD tools it is assumed thata complete designdescription is available.

If a description is slightly flawed, e.g., a semi-colon (;) is missing, tools generally will

reject the description, perhaps after printing an error message. Significant effort goes into

producing flawless design descriptions, and bythetime anacceptable description hasbeen

29
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crafted, the responsible designer has invested too deeply in the description to afford

exploring alternativedescription approaches.

There is a clear need for CAD tool support for scenarios where completedescriptions

are not available. This typically is the case at the earliest stages ofdesign, where a lot of

ambiguity and unresolved design issues exist. The design environment must be able to tol

erate ambiguity and be able to provide assistance in spite of incomplete specifications.

This will enable designers to explore a great variety ofalternatives quickly and efficiently,

before committing to the time consuming work ofwriting detailed design descriptions.

Another important observation is that design specifications change over time as more

and more constraints are placed on a design. Design environments must allow gradual

specification, and give the best aid possible at any time. This requires that environments

are able to change their underlying behavior, while keeping a consistent interface, based

on the designer's chosen specifications.

3.2. Heterogeneity

In the design ofcomplex systems heterogeneity is found everywhere. To highlight a

few examples, consider this list.

• Design Methodologies and Design Targets - various implementation strategies require

different sequences ofactions. Implementations can be targeted at a wide range of

styles, for example standard cell, datapath, pla, FPGA, core processors, software, etc.

• CAD tools - require different input formats and invocation strings
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• Design data - different access approaches are necessary depending on whether the data

is in files, databases, or on Web servers.

• Estimation techniques - use countless different approaches, but are typically only valid

in a narrow scope.

• Remote Servers - operating systems have different features

Heterogeneity obstructs the creative design process, because it is cumbersome for

designers to deal with, and it gives designers frequent opportunities to make errors and

mistakes. Therefore, it is imperative that design environments handle all heterogeneities in

ways that are transparent to designers. The single key to this is encapsulation. By encap

sulating entities, i.e., providing a computer-readable wrapper around them, a design envi

ronment can deal with these entities at a higher level of abstraction, where unified

approaches are possible. Methodologies, tools, data, and estimation techniques can be

encapsulated, as can the use of remote services.

3.3. Exploration and Trade-off Analysis

A large part of the early design exploration process deals with "what if?" questions.

For example, "what if the chip is implemented in 0.25 pm technology?,""what if loop

unrolling is applied to an algorithm?," "what if a color LCD display is used instead of a

gray scale LCD?," etc. The design environment should make it convenient to ask such

questions and get relevant feedback. In some cases it is also useful to makeparameteriz-

able automatic trial runs, or runs that are specified by a list ofvariations to try. The

designerwouldspecifythe parameterbounds(e.g., let the clockperiod vary from 5 ns to
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20nsin 3 ns increments) or give a list of"issues" tochange (e.g., structure ofan algo

rithm, such as direct, transposed, or loop implementation), and chooseone or more met

rics to evaluate. In response, theenvironment would iterate through each of thegiven

parameters or issues, and obtain the desired estimates.

Another variety of exploration is trade-offanalysis. Trade-offanalysis is concerned

withhow improving some costmetrics canbe traded fora worsening of othercostmetrics.

In manycasesthis canbe doneby the typeof parameterized explorations described above,

where multipleparameterscan be changed, and/or where multiple estimates can be

obtained for each iteration.

In eithercase, a design environment should help manage the data obtained during

design exploration. Resultsshouldbe saved for later perusing, and be presented in an

appropriateformat, which includes tables and a variety ofgraph styles.

3.4. Estimation Accuracy And Traceability

Estimations, or predictions, form the foundation for the abilityto perform designspace

exploration in an efficient manner. Without estimations, exploration wouldamount to pur

suing design alternatives to completion,which is too time consuming.However, there is a

major issuewhichhas received very littleattention in estimation tools and techniques,

namely how reliable an estimate is. The guiding rule for when an estimate is reliable is

that the design decisions that are being estimated should have a significantly greater

impact on the metric under consideration than the estimation error.
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To illustrate the importance ofknowing how reliable an estimate is, consider this sim

ple example. Suppose I ask "estimate the area ofthis chip" and the answer comes back: "2

mm Before I can rely on this estimate I need to know the answer to some or all ofthese

questions:

• What are the assumptions behind this estimate?

• How is it calculated?

• What is the margin oferror, e.g., +/- 2% or +/- 100%?

• Is this accurate as an absolute number, or is it accurate relative to other similar estimates

of other chips?

Overtime a designer can buildup confidence in the estimates made by a certaintech

nique or tool. However, in the information-centric environment many different estimator

techniques are employed at different times. The designer must be given theoption to eas

ily find out (trace back) how an estimate was obtained, and estimation tools should con

tinue to evolve towards providing error margins or exposing assumptions.

3.4.1. Scaling, Interpolation, and Extrapolation

Estimation models and tools are typically designed fora narrow range of applications.

As long as designs are within the covered region, estimates canreadily be obtained. What

happens if designers want to explore new territory? Usually, design environments provide

little or no aid for such scenarios.

Apowerful approach to extend existing estimations is tocombine several estimates by
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using known scaling relationships or by interpolating betweendata points. Extrapolation

based on estimatescan also be used, but the resultsneed to be treatedwith greatercaution,

since meaningless results can easily be generated in this way.

As an example of the use of scaling, consider VLSI circuits where there are well

known scaling relationshipswhen minimum feature sizes and supply voltages are scaled

[Hodges88][Rabaey96]. Thus, if data is availablefor metrics such as area or delay in one

fabrication technology, then scaling relationships can automatically be applied to find the

expected values of the same metrics in another technology.

Ifscaling relationships are not known, but severalestimates are available, interpolation

can be used to obtain estimates between points. Some caution should be used, especially

since the design space often is not a continuum, but rather a set ofdiscrete points.

These methods can be used to leverage data from previous design experiences, i.e.,

previous designs or versions ofa product. Being able to reuse previous experience in a

way that is meaningful in the context ofa current project is extremely valuable.

3.5. Command Overloading

Command overloading means that one command can have many different meanings.

For example, consider the conunand "estimate power." There are many different ways to

estimate power consumption, so this command has many possible inteipretations. The

design environment must be able to dynamically determine which technique to use, based

on the all the specifications given by the designer.



35

Another aspect of command overloading is that the environment should be tolerant in

inteipreting commands. For example, if a command "powerconsumption" is available,

and a designer asks for the "power" ofa chip, the environment should either interpret the

request to mean "power consumption,"or at least ask the designer if that is an acceptable

interpretation. Thus, the command "consumption" couldalso be interpreted to have the

same meaning. This in effect makes it easierfor the designer to interact with the design

environment.

If a command is interpreted to have one specific meaning, i.e., that one technique is

identified that can satisfy the command, but the technique doesn't succeed, the design

environmentneeds to be able to detect this, and provide "fall back" schemes, such as look

ing for "second best" techniques, andeitherautomatically executing them, or asking the

designer to choose.

3.6. Reuse and Sharing

As systems become more and more complex, it becomes increasingly important to

leverage previous design experiences. Thiscan involve reusing complete designs or parts

thereof, such as is commonly done with ASIC cell libraries, but it should alsoencompass

reuse and sharing ofdesign methodologies, previous results, etc. As mentioned in section

3.4.1. above, previous designs canbe usedin powerful ways in the exploration ofnew

designs by using scaling and interpolation.

Another issue, namely the use of intellectual property (IP), is becoming increasingly
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important and is an area that needs significant efforts inthe near future. As the concept of

virtual corporations isbecoming a realistic business model, the methods ofselling and

buying IP, and all the associated issues ofprotection of rights, and how to facilitate suc

cessful transfer of IPfrom one company toanother, are becoming more and more perti

nent issues. It is outside the scope of this dissertation to deal with most of these issues.

However, it is clearthatdesign environments needtoplaya significant role in the success

ful use of IP. The knowledge encapsulation model which is presented in this dissertation

provides someanswers to howdesign environments can play a big role in this area.A

major recent effort in thisarea is the Virtual Socket Interface (VSI) [VSI96] standardiza

tioneffort backed by dozens of companies. The maingoalof thiseffort is to standardize

interfaces of chipdesigns at different levels of abstraction, from register transfer level

(RTL) to layout level.

3.7. Documentation

Documentation is necessary to describe features of designs, explain reasons fordesign

decisions, and clearlydefine interfaces for a design. In manyCAD frameworks documen

tation of designs amounts to tracking file dependencies and the history of actions. While

this typeof documentation is valuable, it is far from adequate, so designers are forced to

handlethe documentation process separately from the designprocess. In addition, when

knowledge is encapsulated in the way that this dissertation proposes, it is evenmore

important thatdocumentation accompanies encapsulations to explain capabilities, limita

tions, identify the authors, etc.
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Documentation needs to be an integral part of the designprocess. The environment

must facilitate writing documentation, and retrieving documents that may be of relevance

in a given circumstance. An integrated documentation strategy is also required to be able

to deal withdistributed documents, andto allow various users to add useful hints or expe

riences to existing documents. This raises manyissues suchas howdocumentation can be

linked to designs or encapsulated knowledge, how to facilitate thedocumentation effort,

where to store the evolving documentation if varioususers contribute, etc.

3.8. Distributed Resources

The traditional model for CAD tools and frameworks assumes that tools run on a local

computer or compute server, and datais stored on a local file server. Thismodel is being

challenged by a distributed model, where data can reside anywhere in thenetworked

world, and computation can be done remotely. Design environments must anticipate the

challenges that arise ina highly distributed design world. The main goal isfor design envi

ronments to exploit local andremote resources in a way thatis transparent fordesigners.

Since this area is related to this dissertation, but falls outside its scope, it will bediscussed

briefly below.

Distributed Storage - To provide seamless access to local andremote data, there are a

number of issues that need to be resolved.

• data history - at least time stamps forlast change of design data is required, to

enable a design environment to determine when design data needs tobeupdated to
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be consistent with all other data in a design.

• consistency - there has to be redundancy built in to a distributed data model, to deal

with network outagesand remotehost crashes. Also, it is desirable (for speedrea

sons) to have a caching schemeofremote files. Therefore, it is necessary to havea

model that ensures consistency.

• security and integrity - since design data routinely is transferred across a network, it

is necessary to provide a level of security appropriate to how sensitive the data is,

and there has to be ways to ensure the integrity of the data transmission.

Distributed Services - In the distributed model,designtools can be executedeither locally

or remotely. One example of a remote design service is the IMADE lab in the mechan

ical engineering department of U.C. Berkeley [Sarma96]. Three-dimensional models

ofa casing or enclosure can be submitted to the IMADE lab electronically. In

response, the lab's computer-controlled milling machine will fabricate a prototype of

the case. Another service was described in [Silva93] which accepts a circuit design

electronicallyand simulates it. Advances in electroniccommerce are likely to bring

similar remote commercial services into existence. At this time, it is not clear how

remote services will communicate with customers, so we can only expect that each

service will be different. To handle this heterogeneity, encapsulations are needed to be

able to operate at a more uniform, abstracted level. Design environments must provide

easy ways to write service encapsulations, by supporting most of the popular commu

nication protocols, such as HTTP (hyper text transfer protocol), FTP (file transfer pro

tocol), MIME (multipurpose internet mail extension), SMTP (standard mail transfer
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protocol), etc.

Locating Distributed Resources - When resources are scattered across a global network,

the question arises how to find data and services. This is a large area of research that

has received a great deal of attention in the recent years, especially in relation to the

World Wide Web. The main approaches include

• Name Servers - up-to-date information about available services.

• Static Registries - centralized advertising locations (e.g., yellow pages). Not easily

used by a design environment, unless they are structured in such a way as to enable

easy parsing of contents.

• Local Database - a designer's or a company's preferred services.

• Search - an active scanning of remote locations to locate recently added services,

e.g., new databases, data books, etc.

• Agents and Facilitators - special software agents that help facilitate a designer's

requirements with the capabilities ofa service.

WELD, a recent effort at U.C. Berkeley, is exploring the potential of the Web as a col

laborative design medium. The goals of the WELD project is to provide a model and a

standardized infrastructurefor distributed design. The near-term goals are to create a dis

tributed database to solve the problems surrounding distributed data storage,and a com

municationplatformthat facilitates designer-designer and designer-remote service

interactions. Presumably, a future versionof an information-centric design environment
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can be built on top of the WELD platform.

It should be noted that many of the challenges that arise in distributed design systems

will be addressed by the emergingstandards for distributedobjects, CORBAand ActiveX.

Thus, distributed design environments ofthe future are likely to be based on one of these

standards.

3.9. Ubiquitous Access

The previous section outlined the requirements for a design environment to transpar

ently manage the use of remote resources. It is also desirable to allow designers to access

the design environment from remote locations. The traditional model ofa team ofdesign

ers sitting by their workstations in an officeis gradually being augmented by other models.

For example, designers may not be geographically close to each other, or designers can

tele-commute (i.e., work from home or at generic offices not owned or run by the

employer). These scenarios demand software to support collaborative work, which is out

side the scope of this work. Another model is suggested by the InfoPadproject

[Barringer94], which uses a wireless multimedia terminal with pen and voice input. A

design environment should be able to provide design support independent ofwhere the

designers are. Support should also be independent ofthe preferred type of interface, i.e., it

should be possible to encapsulate the entire design environment into the designer's pre

ferred tool or graphical user interface.
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3.10. Summary

The challengesthat an information-centric design environment have to overcome pose

some serious demands,but also give opportunityand purpose for seekingout solutions

that can effectively solvereal-world problems. Thus, the demands for supporting incom

plete specifications, encapsulating heterogeneity, and providing a framework for explora

tion and trade-offanalysis that incorporates measures for estimation accuracy and

traceability have helped bring focus to this dissertation and researchproject. Likewise,

although not to as great an extent, the demands for reuse and sharing of designs and docu

mentationin a highly distributed environment, as well as for ubiquitous access to the

design environment, have shaped the goals of this work.

In the following chapter, the information-centric design model is described. This

model was developed in response to the challenges outlined in this chapter, andprovides a

paradigm for the interactions between designers and CAD environments, as well as a

model for organizing the intemal components of CAD environments.
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CHAPTER 4

SYSTEM ARCHITECTURE

The challenges discussed in chapter 3 are difficultor impossible to overcomeusing

traditional CAD models.This chapter develops a new design environment model that

addresses the challenges and defines the concept of information-centricdesign. The sec

ond half of the chapter (Section 4.2.) proposes a system architecture for an informa

tion-centric design environment.

4.1. Information-centric Design Model

There are many different ways to view a design environment. The three commonpara

digms are centered around data, tools or design flows, as discussed in Section 2.2. Each

paradigm has its strengths and weaknesses, and each may be considered more useful at

certainstagesof design, or for certaindesigners. However, none of thoseparadigms are

useful at the earliest stagesofdesign, namelythe conceptual or pre-specification phases.

A different model is needed which is capable of supporting conceptual design. The

43
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essence of conceptual design is to choose the specifications ofa design, including specifi

cation of not only what to design but also guidelines for how to implementit. It is para

mount that designers can gather the information they need to make well founded

decisions. Thus, duringconceptual design, designers want to interact with their design

environment in terms of information.

The model proposed below is called the information-centric design model. It is cen

tered around information in the sense that its behavior is based on given information

(specifications. Section 4.1.1.), it encapsulates information (design expertise. Section

4.1.2. to 4.1.4.), and it is oriented towards giving information (feedback. Section 4.1.5.).

4.1.1. Specification Driven Model

The first property of the information-centric model is that the behavior of the design

environmentdepends on the specificationsgiven by a designer. If the design specifications

are incomplete or loosely defined, the design environment provides aid and feedback that

is appropriate to the level ofdetail of the specification. As the specifications gradually

evolve towards being completely specified,the environmentprovides increasingly detailed

and accurate aid or feedback. It is clear that a design environment cannot provide more

specific help than what the given design specifications warrant. The notion that the envi

ronment adapts its behavior to provide the best possible aid at any given time is radically

different from the traditional approach that requires exact descriptions before tools can

provide any aid.
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Example Toillustrate the specification driven model, consider the following example. A

designer has to determine the size of a multiplier for use in a VLSI design. The table

below shows thedesign specifications that thedesigner gives, and thecorresponding aid

that can be provided for each case.

Specifications Estimations Other Aid

multiplier area in units relative to other

arithmetic cells.

Assume (defaults):
• simplest multiplier model
(array)
• 16 bits by 16 bits inputs
• generic technology (A, unde
fined)
• generic cell library

show available multiplier
models, cell libraries,
technologies

32 bits by 32 bits inputs area in units relative to other

arithmetic cells.

Assume:

• array multiplier model
• generic technology
• generic cell library

show available multiplier
models, cell libraries,
technologies

Choose specific cell
library

area in units of X show available multiplier
models, technologies

0.5 )Lim technology

choose different multi

plier models (booth,...)

area in units ofmm^ show available multiplier
models

Notice thatassumptions aremade for loosely defined specifications. These assump

tions use default models (e.g., array multiplier), default values (e.g., 16 bitwide inputs), or

generic information such asthe target fabrication technology or the choice ofcell library.

Therefore, in this scenario the specifications following "multiplier" can begiven inany
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order, replacing the default or generic assumptions withthe given specifications. This

allows designers the freedom to choose design specifications in the order that seems most

natural. Notice also that the specification driven model allows gradual refinement of the

specifications, and provides area estimates in increasingly accurate and concrete terms. In

addition to thespecific estimates, the information-centric environment canalsoprovide

information to help the specificationprocess.

Toenablea designenvironment to adapt its behaviorto given specifications requires

that there is a way to capture what kind of aid or feedback can be providedin certain situ

ations. This will be addressed in the next section.

4.1.2. Knowledge Encapsulation

Tosupport the specification driven model it is clear that an information-centric design

environment must have an underlying set of information resources that define which

behaviorthe environment should take on, based on given specifications. In addition, the

information resources must exist in various forms of refinement to correspond with the

level of refinement of the given specifications. Figure4-1 (a) showsa simplistic black-box

model of the information resources. The information-centric environment uses the design

specifications to identify relevant resources whichin turn define the aid thatcan be pro

videdby (i.e., the behavior of) the environment. Figure 4-1 (b) shows a more detailed pic

ture of the information resources, where the resourcesare definedin templates, and the

templatesexist in various levelsofrefinement. Individual information templates are cho

sen, based on the given specifications, and together these templates define the aid that can
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specs behavior
\ definitions specs behavior

definitions

Information Resources
*o

o
c

(C

2
2
o

Information Resources (Templates)

(a)

be provided.

Figure 4-1. The Specification Driven Model
Requires a Set ofInformation Resources.

(b)

In this dissertation, each information template is referred to as a "domain"

Definition:

A ^'domain" is an encapsulation of knowledge regarding a specific

design-related area of expertise.

A domain is intended to capturetheessence of an areaofexpertise, including common

parameters and constraints, reusable design flows and tools encapsulations, and so on. A

complete definition ofthe contentsand interfaces of domains is given in Section 5.1.

Thedomain concept can nowbe described more formally usingobject-oriented (00)

terminology. A domain is an object class, and it has data structure (attributes), behavior

(operations), andassociations (seeFigure 4-2). Domains have the following properties:
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DOMAIN NAME

attribute-name-1 = default-value

attribute-name-2 = default-value

operation-name-1 (argument-list)
operation-name-2 (argument-list)

association-1 : domain-identifier

association-2: domain-identifier

Figure 4-2. The Domain Class.

1. Inheritance Domains share attributes and operations withotherdomains through

inheritance, based on hierarchical relationships. A domain inherits all the attributes

operations, and associationsfrom it's "super-class" domain (also called an ancestor),

and adds its own unique properties, thus creating a more refined class that the

super-class. Domains are onlyallowed single inheritance, i.e., it can only inheritone

other domain. All domains that share a common ancestor are considered to be in the

same "domain family."

Example: Figure 4-3 shows an exampleof a domain class hierarchy. Notice that

the domains lower in the hierarchy are the most refined.

Cell Library

Multiplier Adder

Booth Array Ripple Look Ahead Carry Select

Figure 4-3. Example ofa Domain Class Hierarchy.
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2. Polymorphism The operations in domain classes are polymorphic, which means the

same operation may behave differently in different domains. In addition, the same

operation may have several different behaviors within one domain, based on the type

ofdata on which it operates. Each behavior is implemented by a "method."

Example: The operation (i.e., request for information) "critical path" behaves dif

ferently in a standard cell design domain and in a data flowgraph domain. In the

standard cell case, the critical path is the maximum delay through a network of

logic gates. In a data flowgraph, the critical path is the longest path (counted as the

number of operations) in a flowgraph.

3. Associations Associations are used to establish relationships between domain classes.

An association defines a unidirectional dependence of one domain upon another, i.e.,

upon the attributes and operations of the other. However, since all the domains that

descend from an ancestor-domain share its attributes and operations, any domain that

inherits from a givenancestor can be used to satisfy the dependence. This is somewhat

similar to multiple inheritance, except that it is determined dynamically at run-time

whether the domain identifiedby the association or any one of its descendants will be

inherited.

Example: Given the domains shown in Figure 4-4 below, the Adder domain can at

run-time be associated witheither the generic technology domain or any of its

descendants. The choicewill by default be the generic technology domain, unless

the specifications point to one of the more specific technology domains.
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Domain Cell Library

Association:
Domain Generic Technology

Domain Adder

Domain Generic Technology

Domain 0.6um Technology Domain 1.2um Technology

Figure 4-4. Example ofAssociations.

4. Orthogonality Domains (actually, entire domain families) that don't share a common

ancestordomainare considered to be orthogonal. The conceptoforthogonality is used

to model the fact that designshave many facets or dimensions that are independent or

only weakly dependent (cf. Gajski's behavior/structure/implementation Y-chart

[Gajski88]). As an example, consider the facets "shape" and "material."The shape of

an object is independent (with some exceptions) on the material it is made from. Thus,

a hammer shapecan be madefrom materials such as steel or plastic, resulting in very

different objects. By keeping the "shape" and "material" characteristics in two differ

ent domain families (i.e., we consider them to be orthogonal)we are able to exploit the

information in these domains independently ofeach other. Thus, we can later use a dif

ferent shapedomain (e.g., a wheel)with the samematerial domain (e.g., steel).

Theconcept of orthogonality as it is usedheremaycauseoccasional ambiguities about

which domain family should contain a piece of information.This is natural, since any

abstraction is only a rough cut at reality; something will inevitablystraddle the bound

aries [Rumbaugh91]. In practice, however, a little trial-and-errorusually clarifies the

best place to include the information in question.
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There are several reasons why encapsulation ofdesign expertiseis necessary. The four

main reasons are given below.

• Enable greater reuse and sharing - not only designs can be reused but encapsulated

design methodologies, techniques, and tools, can readilybe reused. Encapsulations can

alsofacilitate the documentation process by describing howto transparently accesslocal

and remotedocuments. In addition, scalingand interpolation relationships can be

encapsulated to exploitdata fromprevious designs in exploration of newdesigns.

• Enable the specification driven model - Toenable a designenvironment to adapt its

behavior to given specifications requires that the environment has knowledge about

whatkindsof aid or feedback canbe provided at different stages of design and in differ

ent areas ofdesign.

• Expand the scope of design - Designers are human and often have limitations in the

breadthor depth of their knowledge. Encapsulated expertise can be used to extend the

designers' abilities, byproviding reasonable default values for design parameters and

explanations for decisions that have to be made, etc.

• Hide heterogeneity - encapsulations enable a design environment to deal with a small

set of uniform entities, instead of a largeset of heterogeneous entities.

Thekeyideathat sets thisdefinition of domains apartfrom the approach usedin the

Odyssey framework [Jacome92], is that each domain captures a different "dimension" of

thedesign space, such as fabrication technology, cell library, architecture, algorithm, etc.

Since designs areconstrained in many dimensions, we need to bring together several
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domains. Thenextsection describes howdomains canbe combined in powerful ways to

create a context for providing design-specific aid.

Summary This subsectiondescribed the underlying set of information resources in an

information-centric environment. Each family of domains captures an areaof design

expertise, and each domain in a family represents a certain level of refinement. Domain

families thatdon't share a common ancestor domain are considered orthogonal, i.e., rela

tivelyindependent. By allowing associations, we can explicitly define whendomains have

dependencies on others.

4.1.3. Design Context

The information resources underlying the information-centric model were described

above as orthogonal families of domains that represent various levels of refinement. An

alternateapproachwouldbe to makevery complexdomains that wouldcovera very broad

range ofdesignexpertise, insteadofmakingthe domains as simpleand narrowin scopeas

possible. However, the orthogonal approachhas the advantage of providingreusable

building blocks thatcanbe used to create theequivalent of complex domains on thefly by

dynamically combiningelementsofexpertise that are relevantto a givendesign. This sec

tion describes how domains are broughttogetherto formthe equivalent of a complex

domain, called a "context," for designs.
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A context can be defined as follows:

Definition:

A ^context" is a union of orthogonal domains.

To continue the object-orientedterminology from the previous section, a context is a

class thatcanhave multiple inheritance of orthogonal domains andcan dynamically

change which domains it inherits at run-time.

Example Figure 4-5 (a) shows a context inheriting a single domain. Figure4-5 (b) shows

the samecontext at a latertime in a designprocess, inheriting two domains. Notice that

when multiple domains are inherited they mustbe orthogonal.

A context combines the attributes and operations ofeach ofthe domains it inherits. If

thereare attribute names that are defined several timesacross the set of inherited domains,

only thefirst such attribute iskept (according totheorder in which domains areinherited).

Due to the orthogonality of domains thisonlyoccurs infrequently. Likewise, if thereare

DOMAINS

mhent

Context 1

(a)

DOMAINS

•

inherit\ 'inherit

Context1

(b)

Figure 4-5.A Context Class canchange its inheritance dynamically.
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several implementations for the same operation with identical method name and argument

list, then only the first method is kept. However, if two method names are the same, but

their argument lists differ (i.e., they operate on data ofdifferent types), both are kept.

Example Figure 4-6 shows two domain families representing chip composition (i.e.,

information about how to combine components to create a chip) and cell libraries. The

standard cell composition domain captures effects ofcombining standard cell compo

nents, and has one operation with two different implementations (methods) each operating

on different types ofdata (netlists versus layouts). In the cell library domains, the standard

cell library domain captures averages over the available cells (e.g., the average width of

cells), as well as an operation that takes no arguments (i.e., it requires no data other than

what is captured in the domain). The specific cells (nand gate, nor gate, etc.) contain the

actual widths of these cells, and inherits the height attribute and the area operation. When

a context is defined which inherits the standard cell composition domain and the standard

cell library domain the context shown in Figure 4-6 (b) results.

When the inheritance relationships of a context change, the context has to ensure that

the dependencies declared in domain associations are handled properly. Domains, by

declaring associations, explicitly define their dependencies upon the attributes, operations,

and associations ofother domains. A context is therefore only meaningful when it inherits

a given set ofdomains, plus all the associated domains. Section 5.2.1. discusses this in

more detail and provides a set of rules for creating contexts.

Each design, or component ofa hierarchical design, has an associated context. The
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DOMAIN CHIP

COMPOSITION

DOMAIN CELL

LIBRARY

DOMAIN STDCELL

COMPOSITION

no attributes

operation: area (layout)

DOMAIN STDCELL

LIBRARY

attribute: height = 50
attribute: width = 60

operation: area Q

DOMAIN NAND

GATE

• ••

DOMAIN NOR

GATE

attribute: width = 65

(a)

CONTEXT NAME

Inheritance:

DOMAIN STDCELL COMPOSITION

DOMAIN STDCELL LIBRARY

attribute: height = 50

attribute: width = 60

operation: area (netlist)

operation: area (layout)
operation: area ()
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(b)

Figure 4-6. Context Example.

context caneither be chosen by thedesigner, or it canbe automatically chosen by the

design environment, based on the given specifications (including parameters, constraints,

and properties).
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It is important to note that the contextcontains all of the knowledge that will be used

to assist the designer. All of the tools that willbe executed, all of the parameters thatare

relevant, all of the techniques and methodologies that willbe used,haveto be defined by

the domains in the context. (In scenarios where this is too restrictive, new domains can

easilybe created by exploiting the object-oriented inheritance scheme andsimply adding

or alteringsomepart of the domain knowledge). Therefore, the importance ofchoosing

the context cannotbe overstated. Witha largecollection of domains it is clearlynot prac

tical for a designer to manually find and select the right domains. On the other hand, while

the environment can offer the help of a searchfacility that matches designspecifications

with the contents ofdomains,a task as importantas selectingdomains for a context should

not be blindly left up to the design environment. The best approach is to allow for a bal

ance of the two approaches, allowing the user to interact with search results whenever

desired.

4.1.4. Design Objects

So far we have only discussed the object classes that are used to capture reusable

design information. This sectiondescribes the objects that are used to capture actual

designs. Before defining these objects, a briefreview ofdomains and contexts will be use

ful. The domain class is used to encapsulate attributesand operations that are relevant in a

specific area ofexpertise. The context class dynamically combines domain classes to form

a complex set of information resources; it brings together the definitions ofthe aid that can

be provided for a specific design scenario. The objects that are used to represent actual
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designs can now be defined as follows:

Definition:

A ^design object" is an instance of a context.

A design object instantiates the context class. The instantiation does not cause a con

text to becomeunchangeable. The instantiatedcontext is allowed to continue changingits

inheritance, and any suchchanges are reflected immediately in the designobject.

4.1.5. Information Gathering

An information-centric designenvironment exploits the designexpertise that is cap

tured in domains to help designers gather design-relatedinformation.The choice ofwhich

domains to include in a context (i.e., to inherit) determines the behavior of the environ

ment, sincecommands are interpreted on the basis of a context. This sectionexplains how

the environment facilitates the context selection based on given design specifications, and

how requests for information are handled.

The processof information gathering proceedsas follows (pleasesee Figure4-7).

• A designerprovides the specifications for a design. The designenvironment searches

for domains that are relevant to the given specifications andproposes one or more con

texts. The designer chooses one of the contexts. Alternately, the designer can directly

select a context by manually identifying the domains to be included.

• The designerdirectlyrequests the desired information, as opposed to the traditional

approachof invoking a sequenceof tools and extracting the desired data.
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• The designenvironment interpretsthe request,based on the knowledge contained in the

chosencontext.As a resultofthe interpretation process,a specific script is chosenand is

subsequently executed. (If thereare twoor morescripts thatappearto satisfy a request

equally well, the designeris asked to choosebetweenthe available altemative interpre

tations)

The behaviorof the designenvironment changes whenthe specifications change. The

changeoccurs in two places, namelythe searchand commandinterpretation stages. In the

search stage, given different specifications, different contexts will be proposed. For gen

eral specifications, general domains will be found. More precise specifications will help

locate more specific domains. In the interpretation stage, a command will take on a differ

ent meaning in a different context.

DESIGNER

C Choose Specs :
Alternate

Path ^^{,3

Choose ContexT^^"

Request Info

DESIGN ENVIRONMENT

Search for Domains

(^l^terpret Request]^

scriptChoose Alternative

•
1

Execute

Refine Specs

Figure 4-7. Information Gathering Process.
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Example. Consider the design ofa Fast Fourier Transform (FFT)filter for a real-time

application. TheFFThas to transform a 2048 pointsample every 5 ms. Figure 4-8 below

illustrates how a designer interacts with an information-centric design environment to

determine if the FFT canbe implemented on a Motorola DSP56K processor under the

given constraints.

The example assumes that the design environmenthas a set ofdomains available that

includes the domains shown at the topof the figure. The left column of the figure shows

the state of the design as the designer takes the actions outlined in the middle colunrm. The

actions of the design environment are shown in the rightcolumn. Thesalientpointsof this

example are:

• the designer's main task is to provide designspecifications. The specifications chosen

are eitherin the form of text ("FFT"and "DSP56K") or in the form of parameter values

(points=2048).

• when a domain is added to the context, all its attributes become visible and its opera

tions becomes available to the designer (provided thereareno duplicate attribute and

method names).

• thedesigner requests estimates forquantities of interest. Thedesign environment per

forms all thenecessary actions andcomputations, andprovides feedback to thedesigner

in terms of a result andpossibly some details about theresult (e.g., how it wascalcu

lated).
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FFT domain

Parameters:
points=1024

Commands:
Complexity
Critical Path

DESIGN

Specifications:
FFT

Specifications:
FFT

Parameters:
points=1024 (default)

Available Commands:
Complexity
Critical Path

Specifications:
FFT

Parameters:
points=2048

Available Commands:
Complexity
Critical Path

Specifications:
FFT, DSP56K

Parameters:
points=2048

Available Commands:

Complexity
Critical Path

Specifications:
FFT, DSP56K

Parameters:
points=2048

Available Commands:
Complexity
Critical Path
Dynamic Inst Count
Static Inst Count
Execution Time

DESIGNER

DSP56K domain

Parameters:
none

Commands:
Dynamic Inst Count
Static Inst Count
Execution Time

DESIGN ENV.

Choose Specs]^ p̂ "FFT'

Search for Domains

<^^]^^Choose ContexT^ f'ft domain

<^]^^^Set parameter^^^^^

T ^
Request Info Cpmplexity

(^^Hmerpret Request^

I —
ii2^640ojs, Execute

Specs"^^^
DSP56K

Search for Domains

<^^][^^se ContexT^, PSP56K domain and FFT domain
L ,• • •

i I
CT Request Infojl^ Execution Time

Interpret Request

7.1 ms Execute

Refine Specs

Figure 4-8. Information Gathering Example.
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Tools

Data

J L

Resources

Figure 4-9. System Architecture.

4.2. System Architecture

The information-centric paradigm was discussed in Section2.2 as being an alternative

way oforganizing CAD environments. However, an information-centric environment

requires information resources, and their associated management, that are not needed in

the traditional paradigms. Thus, to createan information-centric systemwe need to forma

layeron top of the traditional CADservices (such as data, tool, and flow management),

using the object-orientedmethodology presented in Section4.1. This section defines an

information-centric system architecture and describes each of the subsystems in thearchi

tecture from the perspective of the services they offer.

Figure4-9 showsa blockdiagram of an architecture that supports the information-cen-
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trie paradigm. A designer provides design specifications inasmuch detail aspossible. The

environment in turn searches forappropriate domains, proposes one or more contexts and

interacts with the designer tochoose the context. The designer requests information or

asks foran action to beperformed. Thegiven request is interpreted within the chosen con

text, and the environment resolves which technique to use to satisfy the request. Thecho

sen technique is embodied in a script which is executed,and the result is retumed to the

designer.

As an altemative to the above interactions, the environment also allows a designer to

directly choosea context without firstgiving specifications. Aftera context is chosen, the

environment canalso present thedesigner witha listof therequests thatcanbe satisfied in

the context.

To enable designers to access thedesign environment from anywhere in the networked

world, an information-centric design environmenthas to adhere to a client-servermodel.

The design environment acts as a server anddesigners access the environment remotely

through external client interfaces. There can be several different interfaces to suitthepar

ticular needs of specific designers. User interfaceissues will be discusses in detail in Sec

tion 5.6.

The system architecture consists ofsix main subsystems (as shown in Figure4-9): a

search facility for locating relevant domains, a context definition/manipulation facility, a

command resolution system, an execution environment, a domain management system,

and a resource management that embodies the traditional CAD data, tool, and flow man-
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agement. Each of these subsystems are described in detail below.

Search Engine The goalof the searchengine is to proposeone or morecontexts that are

as relevant as possibleto a givendesignproblem. The enginetakes designspecifications

from theuserand tries to locate relevant domains bymatching the specifications with

domain contents. It then composes one or more contexts from the domains that best

matched the specifications, and assigns a figure of merit for each context. The figure of

merit is computed from thenumber of exact andpartial matches between specifications

andinformation found in eachcontext's inherited domains. Thecontext(s) arefinally pro

posed to the designer, whocan choose any of the proposed contexts, or createan entirely

different one using the context manipulation subsystem described below. The search

engine is described in more detail in Section 5.4.

ContextManipulation The context subsystem facilitates context creation andmanipula

tion. It allows a designer to choose between alternative contexts proposed by thesearch

engine as described above, or it lets a designer add to or delete from a context's inherit

ance list.

Command Resolution Thegoalof the command resolution subsystem is to determine

howto satisfya givencommand or request. Command resolution gives one ofthree

results:

1. A (method, arguments) pair. Thisoccurs when a request onlycanbe interpreted in one

way in the given context. In this case the request needs no further refinementand can
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be executed right away.

2. A setof (method, arguments) pairs. This occurs when a reguest canbe interpreted in

severaldifferentways in the given context. In this case the request needs to be further

refined by the designer.

3. No implementation for the given request. This occurs when a context has no method

available to perform the requested function.

Resolution is based solely on the information contained in a given context, i.e., a

request can only be resolved if an operation corresponding to the request is defined in the

context. Operations can have several different implementations (methods), so the resolu

tion process determines if there is one and only one interpretation available.

Command Execution The command resolution subsystem provides the executionenvi

ronment for methods. Methods can invoke other methods, or can initiate a tool execution.

The execution environment is described in detail in Section 5.3.2.

Domain Management The goal of the domain management subsystem is to providecon

venient access to domain information to designers, the search engine, context resolution,

and command resolution subsystems. This is primarilyaccomplished throughappropriate

interfaces to the domains. Designers mayalso view domain information, suchas perusing

method definitions or tool encapsulations.

Resource Management The goal of the resource management subsystem is to handle

two ofthe traditional CAD services, namely data and tool management. This can either be

handled internally in a relatively simple subsystem, or externally in established CAD
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frameworks. In the currentimplementation it is done internally and comprises file type

identification and tool invocation.

4.3. Summary

This chapter has presented the conceptual model for information-centric design envi

ronments. This model places the focus on information; specifications, encapsulation of

design expertise, and feedback. An object-oriented methodology is used to define the main

concepts, domains and contexts. A system architecturewas also presented, outlining the

subsystems and the services they provide. The next chapter gives further definition to the

basic components described in this chapter, namely domains, contexts, and the search

engine, and also describes in detail the resource management system and the user inter

face.
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CHAPTER 5

SYSTEM COMPONENTS

In this chapter the main components ofthe design environment are described in detail.

Thefirst section specifies the categories of design expertise thatare captured in domains.

The following section discusses contexts, and a setof rules aredeveloped forcreating and

modifying contexts. In thesubsequent section, an entity called a "design object" is

defined, which is a representation of a design ora component of a hierarchical design.

Design objects are instantiations of the context class, and they keep track of design files,

handle command interpretation andexecution, maintain a history, etc. Thefourth section

explains thesearch engine's mandate and functionality. The rest of the chapter isdedicated

to describing theunderlying resource management system and issues related to user inter

faces.

5.1. Domains

In chapter 4 a domain was defined as an object class that encapsulates design-related

67
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knowledge from a specific area ofexpertise. This section gives a complete specification of

the inheritance, associations, attributes, and operations of a domain. However, before get

ting into the details, it will be useful to review the overall organization ofdomains.

Domains are arranged in object-oriented hierarchies of classes, called families. Each

domain is derived from one other domain, called an ancestor, and inherits all the knowl

edge contained in the ancestor. Thus, each derived domain adds a level of refinement, and

only needs to define the knowledge that is not shared with the ancestor. Domains that

don't share a common ancestor are considered to be orthogonal, which means they model

different areas ofdesign expertise. Therefore, several domain families are required, since

each family is only intended to capture one area ofexpertise (one dimension in the design

space).

Domains can be created by end users but are typically created by expert designers.

Domains can be shared between designers, so the novice designer can gain access to the

knowledge captured by experts by simply importing their domains. Domains can also be

provided by design tool companies along with their regular software distributions, or by

cell library companies along with their set of library cells.

The contents of a domain is defined in a text file. For the convenience ofdomain devel

opers, a domain template, such as the one shown in Appendix C, can be used to outline the

syntax for describing domain knowledge. The following discussion ofdomains is divided

into four sections describing the inheritance, associations, attributes, and operations of

domains.
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5.1.1. Domain Inheritance

A domain is a partof a family that captures a specific design-related aspect. Thefam

ily relationships are established by classinheritance: one domain inherits another domain

byexplicitly declaring theother domain as itsancestor. Inheritance implies that a descen

dant domain hasexactly the same knowledge (attributes, operations, etc.) as theancestor

domain. However, thedescendant domain canaddto thisknowledge, or override it, to cre

ate a more refined domain.

Syntax: Domain name-inherit other_domain {

associations

attributes

operations

}

Example: Domain Adder -inheritCellib {

5.1.2. Domain Associations

Domain associations are similar to inheritance in the sense that the knowledge cap

tured inanother domain ineffect gets merged into thecurrent domain. However, there are

two key differences. The first difference isthat inheritance establishes static relationships,

while associations are used toestablish dynamic relationships (atrun-time). The second



70

difference is thata domain association doesn'tensure thata specific domain is inherited; at

run-time it will be determined whether the inheritance will be from the associated domain

or from any one of its descendants. Recall, that all the domains that descend from an

ancestor-domain share its attributes and operations; attributes andoperations can be over

written or added to, butnot subtracted from. Therefore, anydomain that inherits from a

givenancestor can be used in its place.

Domain associations enable a domain to identify dependencies on the information

captured in otherdomains. Usually domain associations pointto generic domains, or

domains that provide default values.A special case is when a domain contains information

that is only valid in thecontext of a certain other domain. Anexample of this is when a

cell library domain contains delay measurements that arevalid only for a certain fabrica

tiontechnology. Bylisting theappropriate technology domain in the"associated domains"

list, andbymarking it with the "required" flag (-req), thedesign environment knows the

conditions under which the measurements are valid. If the required technology domain is

replaced by another, and if scaling relationships are also specified (e.g., how delays scale

with minimum feature sizes) then the environment can automatically project the results to

conform withtheassumptions of theother technology.

Syntax: domains [-req] domain! [domain2]...

Example: domains -req Technology:Mosis:1.2um

S.O. Domain Attributes
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Attributes and operations carry the information content ofa domain. The operations

contain the dynamic information,namely the methods that define run-time behavior. In

contrast, attributes contain the static elements of the information, such as parameters, con

straints, etc. For the purposes ofcapturing design-related information, simple (attribute

name,default value)pairs are too limited.Toprovidea richer, moreconvenient description

environment, nine categories ofdomain attributes are used, as described below.

Identifiers - a list ofdescriptive words that characterize the contents ofa domain.

These words are used by the search engine to find domains that are relevant to given

design specifications.

Syntax: keyname [value1] [value2]...

Example: key celltype shifter shift "right shift" "right shifter"

Paths - a list ofpaths along which to search for data that is relevant for this domain.

Paths are primarily used to locate default resources, such as file templates or design

examples. For example, a technology domain can specify a path where SPICE simula

tion models are kept. A path can be specified as a uniform resource locator (URL), or

as a path in a local file system.

Syntax: path path1 [path2]...

Example: path /tools/cadence/share/library/low__power

Parameters - a list of common parameters and their default values.

Parametersare used to capture typical design parameters or variables.For example, an

FIR filter domain has a parameter "NrOfTaps," and a technology domain has a param-
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eter "lambda" (minimum feature size). A parameter's default value is used for initial

ization purposes, but a designer is free to choose a different value at run-time.

Parametershave an option called "keep" which designates whether a parameter value

shouldbe allowed to changeifa domain that has the sameparameter is addedto a con

text. If the keep option is set, the value ofa parameter will not be overwrittenby the

additionofother domains.As a generalguideline, parametersthat are typically chosen

by designers should have the keep option set (e.g., the NrOfTaps parameterabove),

and other parameters (such as the parameterlambda above) should not have the keep

optionset, to enable swappinga varietyrelateddomains in and out duringexploration.

Parametershave three additional options: The "group" option allows parameters to be

grouped together; the "type" option allows explicit declarationof the data type ofa

parameter (e.g., float, integer,or string) used for type checking;the "propagate" option

specifies that a parameter's value shouldbe propagatedto all subcomponents ofa hier

archical design.

Syntax: parametername -vamame vamame -valuevalue [-keep] [-groupmenuGroup]

[-type type] [-propagate]

Example: parameter"Numberof FilterTaps"-vamame NrOfTaps -value 1024-keep

-group "Filter Parameters"-type integer

Constraints - a list of typical constraints within a domain.

Constraints define when a design-related property is outside its limits. Constraints are

used to notify designers when a property is determined to exceed its allowed values,

such that the designer can take appropriate action. Constraint attributes can specify
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bounds on parameters or on generic design properties. A parameter constraint limits

the values that can be assigned to a parameter; the constraint is checked every time a

parameter is assigned a new value. A property constraint is used to check if the result

ofa method is within given bounds. The rationale is that a design environmentonly

knows about design properties when they are extracted by a method. Thus, after a

method is executed it is verified that the constraint is met (if there is a constraint

declared for the result of that method). The "group" and "keep" options are the same

as for parameters, and the "ignore" option lets a designer turn off checking of this con

straint.

Syntax: constraint name [-group menuGroup] [-keep] [-ignore]

plus one of the following:

-parameter name -min value|-max value|-min value -max valuej-values list_of_values

-method name [-units units] -min value|-max value|-min value -max value|-values

list_of_values

Examples: constraint "Size" -parameter size -values {small medium large}

constraint "Voltage Range" -parameter voltage -min 1.0 -max 3.3

constraint "Maximum Area" -method area -type "mm'^2" -max 2.0

Tool Encapsulations - encapsulations of design tools.

A tool encapsulation is a definition ofhow to properly invoke a tool. It is used by a

design environment to automatically run a tool, typically as part ofa design flow. The

tool encapsulation format used is similar to the TEF (Tool Encapsulation Format) from

CFI [CADF91], but it adds two features: a list ofcomputational resources where a tool
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can be executed (host names or names ofa cluster ofhosts), and an optional script for

creating supportingfiles at run-time, such as simulationscripts or commandfiles.Tool

encapsulations have the following fields of information:

input arguments - a list of the arguments required by the tool. This includes files of

certain types (e.g., a C file) and optional flags (e.g., "-a").

outputs - a list of the files that are produced by the tool. This usually relates the name

of the inputs (files or flags) to the names ofoutput files,

environment - the path and environmentvariables that have to be set up prior to

invoking the tool.

invocation string - a string that describes a proper invocation, such as "toolname

inputjarguments input_files".

status information - definition ofhow to interpret a tool's status codes. For UNIX

systems, and exit status of 0 (zero) means the tool ran successfully, and a non-zero

value indicates a failure. Some toolsuse otherexitcodes to convey othermessages,

host list - a list ofhost computers that can execute this tool,

preparation script - a script that at run-time creates supportingfiles before a tool is

actually invoked.

Data Resource Types - a list of the types ofdata (usuallyfiles) of interest in this domain.

Resourcetypes are used by the design environment to distinguish between design rep

resentations. For example, a design can be simultaneously be represented by VHDL

code, a schematic, and a layout. However, each of these resource types require differ

ent processing, so by specifying how to recognize the different types, the environment
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can automatically match methods that operate ona certain type with a design represen

tation ofthat type. Each resource type is given a name (e.g., "c-file"), and a way to

identify resources ofthat type isgiven, which can either be a name-based rule (e.g., ♦.c

forCfiles) ora content-based rule (e.g., "look forthestring *#!/bin/csh' at offset 0" for

C-shell scripts). The content-based rule is similar to the UNIX *iile" command which

uses definitions in the "/etc/magic" file.

Unit Conversions - a list of conversion scriptsfor converting betweencommon units.

Conversionsare needed when values with different units are compared or combined.

The need arises when methods provide their results in different units. For example,

one area estimation method may return its result in units of square millimeters, and

another in square microns. In many cases the conversion scripts simply convert com

mon units (e.g., millimeters to meters, or square inches to square centimeters). How

ever, more complex scripts can also be defined, such as converting from power

dissipation to heat. The standard prefixes (e.g., for kilo, milli, etc.) are built in. Conver

sions automatically occur when a method calls another and the result is returned in dif

ferent units than what was expected.

Syntax: unit_conversion typel type2 script_from_l_to_2 script_from_2_to_l

Example: unit_conversion Fahrenheit Celcius {[expr ($value-32)*5.0/9]} {[expr

($value*9.0/5)+32]}

Scaling, Interpolation, and Extrapolation - a list ofscripts that define scaling relation

ships or interpolation/extrapolation data and/or techniques.
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Scaling, interpolation, or extrapolation is needed to make reasonable predictions of

data points that fall outside a known set of results. For scaling, one data point and an

analytical scaling relationship need to be known to predict other data points (see Fig

ure 5-1 (a)). For example, the results obtained from Hyper's database of low power

librarycells are validfor a 1.2 pm fabrication technology. When these results are used

in a context where a different technology is used(e.g., a 0.6 pm technology), the

results have to be scaled to make sense in the given context. Scaling relationships can

be multidimensional, i.e., the effect of several different variables can be accounted for

ina scaling relationship (e.g., the effects of both the minimum feature size ofa chip

and the supply voltage canbecombined in a scaling relationship). Forinterpolation

and extrapolation, a setofdata points (typically empirical) are needed (see Figure 5-1

(b)). Inter/extrapolation also allow prediction of many variables, but this requires a

multidimensional data set. Extrapolation canyield highly suspect results, so caution

should beused, and designers should be notified when results have high error margins.

Currently, only linear interpolation issupported (i.e., between two points), and extrap-

0.6 1.2

scaling
relationship

known
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predicted
data point

lambda (X)

Delay (ns)

interpolation
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Figure 5-1.Scaling andInterpolation/Extrapolation.
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olation isdone by extending a line through the two closest points inthe data set to

obtain the desired data point. Future improvements may revise this toallow a wider

range of interpolation/extrapolation schemes.

Syntax: translation -scale|-polate label script

Examples: In the following examples, please note the comments (on lines that begin

with a *#' character). In thefirst example, thevariable value is automatically set to the

areavalue that needs to be scaled. The scriptdefines an analytical scaling relationship

that uses two lambda values (lambda - half the minimum feature sizeon a chip), the

lambda which was assumed when the area was originally computed,and the lambda of

interest. Since lambda is a parameter in the domain in which this translation relation

ship is defined, two versions of lambda are automatically initialized: old_lambda and

new_lambda. The last line in the script gives the scaled area.

translation -scale area {

#

# $value is the known data point.

#

# $lainbda is a parameter in this domain, so
# $old_lambda and $new_lambda automatically get set up.

#

# area scales with the ratio of the lambda's

# s = old_lambda/new_lambda

# new_area = old_area / saa2

#

set one_over_s [expr $new_lambda/$olcl_lambda]
expr $value*$one_over_s*$one_over_s

}

In the second example, the variable value is also set up automatically, this time the

delay value that needs to be scaled. The script defines an empirical scaling relationship

that uses a data set consisting of (voltage,scaling factor) tuples. In this case, the script
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assumes that the delay to be scaled has been estimated given a 5.0 V supply voltage

(note the last tuple (5.0,1.0) indicates a scaling factor of 1 at 5 Volts). Thus, a scaling

factor can be found from the data set using the utility routine "polate," and the new

delay value is found by simply multiplying the original delay by the scaling factor.

Again, the last line in the script gives the scaled delay.

translation -polate delay {

#

# "voltage" is a parameter in this domain, so
# $new_voltage automatically get set up.
#

# xl yl x2 y2 ...
set dataset {{1.5 6.9} {2.0 3.5} {3.0 1.8} {4.0 1.2} {5.0 1.0}}
set sealing_factor [polate $new_voltage $dataset]
expr $value*$scaling_factor

}

StimulusTemplates - a listof reusable templates forrapid test bench generation.

A stimulus template isa procedure that generates a generic list of tokens (typically

{time,value} pairs) which can beused to (semi-)automatically create test benches.

Some design and analysis tools (especially simulators) require not justdesign files but

also a test bench ortest suite. The problem is that each tool has its own unique format

for describing test benches, which slows theverification process. A test bench defines

values for each inputin a design, usually withsomenotionof time. It is oftendesirable

tobeable touse the same test bench atvarious levels ofabstractions throughout the

design process. Therefore, ageneric format that can capture the values to apply toeach

input is required. Prior to invoking a simulation tool,a test benchcan be createdon the

fly in the required format, based on the generic format. This isa two step approach:

first a generic list is created based on the stimulus templates, then it is translated to the
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Specific format required. The translation process isdefined on a"per tool" basis as part

ofa tool's encapsulation (as a "preparation script"). Stimulus templates, inaddition to

the script that creates the generic list, have two options: a "match" option that specifies

a regular expression, i.e., a pattern forhow to guess if an input name is likely to use

thistemplate (see examples below), andzero or more "parameter" options giving a

parameter name and a default value. Ifa parameter name is the same as one of the

domain parameters, then the domain parameter's value will be used.

Syntax: numgen name [-match regexp] [-parameter_name default_value]... script

Example: numgen ground -match {^gnd.*$} {

lappend timevaluepairs [list 0 0]

}

This example defines a very simple template for a ground (0 Volts) signal. It has a

"match" option which specifies that a signal name that begins with the letters *gnd'

and has any number of characters (zero or more) after that are likely to use this tem

plate. A designer will always have a chance to override this guess, but it provides a

good starting point. The script creates a list {0 0} ({time value}) which means this sig

nal should have the value 0 at time 0. Any other interpretation of these values is done

in the translation scripts defined in a tool encapsulations.

Example:

niamgen reset -match {Ar [e] ?s [e] ?t.*} -delay 0 -activevalue 1 -duration 1 {

set initialvalue [expr {$activevalue ? "0" ; *1" }]
set time [expr 0*$timescale]
lappend timevaluepairs [list $time $initialvalue]
set time [expr $delay*$timescale]
# Make first transition

lappend timevaluepairs [list $time $activevalue]
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# stay active for the duration.
set time [expr $time+$duration*$timescale]
# lappend timevaluepairs [list $time $activevaluel
# Make second transition

lappend timevaluepairs [list $time $initialvalue]
}

This example defines a template for a reset signal. Reset signals can often be recog

nized by their names, beginning with "reset" or "rst." This template has three parame

ters: delay, activevalue, and duration. The delay indicates how long to wait before

asserting the signal. The activevalue indicates whether this signal should be asserted

high or low. The duration indicates how long the signal shouldbe asserted. See Figure

5-2 below.

Amplitude

activevalue

activevalue

duration

delay Time

Figure 5-2. Reset Signal.

Example: The most generic template uses values from a file and turns them into a list.

The following example reads one real value (floating point) from each line ofa given

file (see Figure 5-3).

ntamgen filereals -match -file data -sampledelay 0 -sampleperiod 1 {
# Wait for sampledelay, then read the samples
# at sampleperiod intervals,
set fp [open $file r]
set time [expr $sampledelay*$timescale]
set max_time [expr $simtime*$timescale]
while {($time < $ma:^time) && {[gets $fp line] != -1)} {

lappend timevaluepairs [list $time $line]
set time [expr $time+$sampleperiod*$timescale]

}

close $fp

}
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Figure 5-3. File-of-reals Signal.
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5.1.4. Domain Operations

As mentioned in the previous section, attributes and operations carry the information

contentof a domain. Attributes contain the static elementsof the information, and opera

tions contain the dynamic information, namely the methods that define run-time behavior.

There are two aspects ofoperations: their implementation,and their presentation to the

designer. These two aspects are explained below.

Methods - one or more implementation(s) of an operation.

An operation can have several different implementations, each operating on different

data. For example, an "area" operation for estimating the area of a chip design can

have one implementation for extracting the area ofa layout, and another for estimating

the area ofa structural netlist. A method is defined in a script written in the extended

TCL language (Tool Command Language) described in Appendix A and B. Scripts

consist ofa descriptive name, the name of the data resource type on which the script

can operate (if any), and an executable body. Scripts can call tools (using the tool

encapsulations described above), or other scripts. There can be several scripts with the
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same name, in cases when different techniques can be used to perform a given task.

Syntax: meth name filetype script

Example: meth area netlist-file {

# Tel script that defines how to estimate the area of a netlist.

}

Requests - a list ofoperations and how they should be presented to a designer.

The request list defineswhich operationsare suitable for use directly by designers,and

provides a descriptive label for each operation. The label is presentedto a user

(through a user interface, see Section5.6.) and should be as descriptive or intuitive as

possible. Theoperations thatdon't appear in the request list are typically onlycalled

from other operations.

Syntax: request_type label [-group name] [-method method -filetypes list_of_types]

where request_type can be either view, analysis, optimization, or action.

Example: view "Chip Area" -group "Cost" -method area -filetypes {netlist-file lay

out-file}

For some examples of domains, the reader is referred to Appendix D.

5.2. Contexts

Thepurpose of a context is to bring together all of the knowledge that is relevant to a

given design. Thus, a context canbeempty if norelevant knowledge has been identified or
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is available, oritcan contain one ormore domains. Itis necessary to establish aset ofrules

for howa context canbe composed, to avoid contexts thathave internal conflicts. As an

example ofa context with aninternal conflict, consider a context consisting of two

domains, one which says "fabricate the design inplastic," the other which says "fabricate

the design inaluminum." These two domains constrain the same area ofexpertise, but

their constraints conflict. Asetofflve rules for creating and modifying contexts are pre

sented below.

5.2.1. Rules for Context Creation

A set of rules is needed to avoidjoining incompatibledomains to a context. The rules

presented below determine ifa given domain can be added to a context, based on the

domains that are already members of the context.

Rule 1. If the contextalreadycontains the domain to be added, it is not added again.

Rule 2. If the context contains a domain that is derived from the domain to be added, the

new domain will not be added. This is done to preserve the more speciflc domains in a

context. Ifa designer wishes to defeat this rule, i.e., to add a less speciflc domain than

what is already contained in the context, then the more specific domain has to be

removed before the less specific domain can be added.

Rule 3. If the context contains a domain that belongs to the same family ofdomains (i.e.,

they are derived from the sameroot domain) then the new domain replaces its family

member. This is done to avoid having conflicting domains in the same context, such as
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a 1.2 )im technology domain and a 0.6 jam technology domain.

Rule 4. When a domain is added to a context, all the associated domains that are listed in

the domain's specification are also added, subject to rules 1 and 2.

Rule 5. A designer is always allowed to remove a domain from the context, since this

action can not create a conflict. However, if the removal causes information which is

used in other domains to be missing from the context, an error would occur. Therefore,

after domains havebeen removed from a context,but before new requestsare handled,

the environment has to ensure that the context complies with rule 4 above.

In designs consisting of a hierarchy of components, each design component is allowed

to have its own unique context.

5.2.2. Rules for Merging Domain Contents

A setof rules is needed to govern theprocess of merging domain contents. The pro

cess is very simple when there are no conflicts between attribute or operation names. In

those cases all attributes and operations are visible in the context. However, if there are

conflicts therehas to be a set of rules to help resolve them. The rules below assume that a

contextinitially is empty; each inherited domain is visited in turn, and eachattribute and

operationfrom that domain is considered one by one. These rules then determinewhether

or not an attribute or a methodwill be visible in (i.e.,will be addedto) the context.

Rule1. If the context already has anattribute with the same name as the one currently
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considered, the current attribute is not added again. Due to the concept oforthogonal

ity, thisoccurs infrequently.

Rule 2. Ifthe context already has amethod with the same name and with the same argu

ments as the one currently considered, the cuirent method isnotadded again. How

ever, ifmethod names are the same, but argument lists differ (i.e., they operate ondata

ofdifferent types), the current method is added.

5.3. Design Objects

A design object isan internal representation ofa specific design. In object-oriented

terminology, a design objectis an instantiation of the context class. However, the instanti

ated context is allowed to change its inheritance dynamically, which meansthe informa

tion resources (domains) thatareavailable to a design object canchange throughout a

design process.

The main purpose of a design object is to keep track of all given design specifications,

aswell as a listof design files and thecurrent values ofparameters andconstraints. Design

objects also generate and maintain history records fora design, including tool invocations

andfile derivation relationships. In addition, a design object provides the environment for

command interpretation and execution.

The next three subsections describe how commands are inteipreted and executed bya

design object, andhow a design history is automatically generated. Thelastsubsection

explains how design objects areused to represent hierarchical designs.
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5.3.1. Command interpretation

A design object onlyhas access to theknowledge contained in its context, so onlythe

methods thatare defined in the inherited domains are visible to the object. Therefore,

when a designer gives a command, thedesign object mustdetermine the meaning of the

command,based on the availableknowledge.Commandscan be overloaded,which means

that within onecontext there maybe several different inteipretations of thesame com

mand, and asa context evolves, themeaning ofa command can change.

The command interpretationprocess works as follows.

1. Adesigner issues a request for information, typically in the form ofa word, e.g.,

"power".

2. Thecontext tries tomatch therequest with thenames of theavailable methods. If there

are no methods that match the request, the designer isnotified that this request cannot

be handled.

3. All the methods that match the request are inspected. Ifamethod requires as its input a

file ofa certain type, it is determined if such a file isavailable. If there arenofiles of

theright type, thegiven method is rejected.

4. For the remaining methods, the lists offiles ofthe proper types are inspected. In each

list, all files that are derived fi-om other files are removed. (A file isderived if it has

been created as the result ofrunning a tool with another file as input. This information
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is maintained in a history record). See example below.

5. If thereis onlyonemethod left,andthemethod hasonlyonefile in its listof files, or it

doesn't requirea file, it is automatically executed. If there is more than one, the

designer is asked to decide which one to use, and the chosen method is executed.

Example This example illustrates steps 3-5 above. All the methods in the table below are

assumed to match the given request (step 2). Step 3 corresponds to column 3, step 4 corre

sponds to column 4 and step 5 is explained below.

All methods matching the request:

Name Filetype Available Files Non-derived Files

methl typel none

meth2 type2 filel, file2 filel, file2

meth3 type3 file3, file4 file3

The file derivation relationships assumed in this example are shown below. An arrow

indicates that the file to the left of the arrow was the product of a tool execution that used

the file to the right of the arrow as one of its inputs.<filel —• file3
file2

file4

In step five, it is determined that there are three possible interpretations of the request.

Therefore, the designer is asked to choose between the three alternatives: (meth2,filel),

(meth2,file2), or (meth3,file3).
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5.3.2. Execution Environment

The process of interpreting a request determines which method to use, and which file,

ifone is required, to use as the input to the method. The method is defined in an executable

script. Before the script is executed, the design object ensures that all parameters defined

in the context, with their current values, are visible to the script. In addition, a number of

variables are initialized, which can be used by scripts to facilitate theproper handling of

results, units, and details.

RESULT- this variable can be set by the script to any stringthat will be returned to the

caller. The caller can be the designer or another script.

UNITS - this variable can beset to indicate the units ofa result, e.g., "mm'̂ '̂ 2" (mm^).

The variable, if set, isused to facilitate theautomatic conversion of units, if necessary.

Forexample, if one script returns a result in units of "mm'̂ '̂ 2" butthe calling script is

dealing with *'um'̂ '̂ 2" (pm^), then the environment can automatically perform the con

version (provided a conversion can be identified, either using standard prefix analysis,

or usingtranslation scripts defined in a member domain).

DETAILS - this variable can be set to contain a list ofdetails about the result. This can

include measures of certainty of a result (e.g., +-10%), or howthe result was calcu

lated, etc. Since this is a list, any number ofdetails can be added.

Thedesign object automatically records a trace of themethodologies andtools thatare

calledduring the execution of a script, and the tracecan be inspected after-the-fact to
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determine how a result was obtained. This can be very useful, especially when several

methods are called from the initial script or when deep nesting occurs.

If a script (a method) calls other methods, it cando so in two different ways. It can

either specify a (method,lile) pair, inwhich case resolution isnotnecessary. Alternately, it

canspecify just the method, in which case it will be interpreted in the same wayas a com

mand given by a designer.

Example These examples show how methods can use the three special variables.

meth area layout-file {

# Declare the preferred units (sizeUnits is a domain parameter)
set UNITS "${sizeUnits}AA2''

# Extract area from layout file.

set layout_area ...

# If possible, extract area of various components
# (e.g., active area, routing area, I/O pad area, etc.)

lappend DETAIL [text "Area Brealcdovm" Active: $active. Routing: $routing]

}

# Set the RESULT variable:

set RESULT [data area $layout_area $UNITS float]

meth area hierarchy {

# Declare the preferred units (sizeUnits is a domain parameter)
set UNITS "$[sizeUnits]

# Calculate total area by summing up the area of each subcomponent.
# Use the built-in "sum" function which passes the "area" request
# to each subcomponent of this design object, and also creates a DETAIL
# that explains each component of the sum.
set RESULT [sum area $UNITS [subcells] DETAIL]

}

5.3.3. History

A design object automatically generates two kinds ofhistory records. The first is an

execution trace which records sequences of which scripts have been called and which
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tools have been executed. As mentioned above, traces are generated for the benefit of

designers, to determine how results were generated. The second type ofhistory record

maintains a detailed list of tool invocations, including the exact tool arguments and invo

cation string used. This history is generated for use by the design environment to avoid

re-executing tools that have already been executed.

Example This example shows the structure of the history records. For each tool that has

been invoked there is a list of unique identifiers for each invocation:

HISTORY(toolname,indices) {indexl index2 ...}

For each identifier there are six entries that capture the specifics ofa tool invocation:

the input arguments, the outputs produced, the environment that was established before

the tool executed, the actual invocationstring used, the script used to determine success or

failure, and finally the result (which can either be "SUCCESS," "FAILURE," or "PEND

ING" for a backgroundjob in progress). [Note: the two lines that begin with a *#* are com

ments for the benefit of the reader]

HISTORY(toolname,indexl,inputs) {
#variable filename filetype fileobject required/optional?
{silFile ncd.sil silage-file FILEO REQ}
#variable value type n/a required/optional?
{asciiFlag -a string {} OPT}

{hyperFlag -H string {} OPT}

{delayLineSample 16 string {} OPT}

{delayLineLoop 1 string {} OPT}
}

HISTORY(toolname,indexl,outputs) {
{aflFile ncd.afl hyper-flowgraph-file FILE12}

}

HISTORY(toolname,indexl,environment) {

setenv hyper ~hyper/hyper-new ; source $hyper/hyperscript
}

HISTORY(toolname,indexl,execution) {

mm -a -c -H -D 16 -E 1 ncd



}

HISTORY(toolname,indexl,status) {
if {$status == 0} {

return "SUCCESS"

} else {

return "FAILURE;\nErrors occurred while running $naine: \n$result'
}

}

HISTORY(toolname,indexl,result) {
SUCCESS

}
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5.3.4. Hierarchy

Design objects represent designs, or components of a hierarchical design. Therefore,

objects canoptionally contain a component list, which identifies other design objects that

are instances in the current object. This representation isnotintended to replace design

specifications given in design files or databases. It onlyprovides a minimal representation

which thedesign environment canmanipulate. Whenever a methodology script is intended

towork onthe design object hierarchy, as opposed toa design file, theword "hierarchy" is

used instead of thename of a file type in thedomain specification. Such a script is consid

ered enabled (i.e., its preconditions are met) whenan objecthas one or more elements

listed in its component list.

5.3.5. File Type Recognition

Thepurpose of file type recognition is to be able to determine the type of a file, such

that a design object candetermine how thefile canbeused. File type recognition is in

principlea genericutility, but is importantin the information-centric environment because

it enables the environment to automatically match a tool ora method with a given design
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file. The type recognizeruses the file type definitions, specified in domains, to recognize

the type of a file. Two approaches are used,namelynamepatternmatching and content

matching. In namepatternmatching the nameofa filehas to matcha pattern. For exam

ple, thepattern for C files is *.c, anda file by thename file.c will match thispattern. A "***

matches any sequence of characters in a string, and a "?" matches any singlecharacterin a

string. Forcontent matching, an offset (integer) anda string (character string) mustbe

given. The recognizer will read the first offset+length_of(string) bytes from a file, throw

awaythe first offsetbytes, and compare the result with the given string. Sincethe content

matching is considerably slower, the name matching is always performed first.

The file type recognizer hasa feature notnormally found inrecognizers: it canpropose

a name when a designer wishes to create a newfile. Thisis done by replacing thefirst

by thename of the design object, andallby an arbitrary character (the character "0"

was chosen). The resulting name can be used as is, or thedesigner canpropose another

name.

5.4. Search Engine

Thecontext is very important inan information-centric design environment, because it

forms the basis for the aid that can be given to a designer. It isclear that adesigner must be

given full control over which domains are members ofa context. However, inthe presence

ofa large number ofdomains, it isnot always clear which domains are appropriate toa

given design, or to the givenstagethat a designis in.
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Therefore, it is necessary to providea search mechanism that can operate within the

specification driven model of an information-centric environment. Thegoalof the search

mechanism is to locate relevant domains, and proposea context that best matches given

design specifications.

The following four sections define the problem which the search mechanism is

intendedto solve, outline the supported syntax, describe the search strategy, and explain

how the designer can interact with the search results. Finally, a special case is considered,

namely when a design specification is accompanied by a command.

5.4.1. The Search Problem

The search problem can be defined as follows:

Given a list ofwords representing the design specifications, find all domains that con

tain relevant knowledge. Order these domains in terms oftheir relevancy,and create one or

more contexts. Order the contexts and propose one or more to the designer.

5.4.2. Syntax for Specification Driven Search

The search strategy must be able to exploit the specifications that a designer gives in

the specification driven design model. A specification consists ofone or more keywords.

Each keyword is can have the following syntax:

keyword:
word

word=value
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word:=value

Each of these cases trigger a diflFerent search approach and is described below:

word

When a word (a character string) is specified without an accompanying value the

search strategy will look for exact and partial matches in all categories ofdomain knowl

edge (e.g., identifiers, parameters, constraints, method names, etc.).

word=value

When a word and a value are specifiedtogether with an equal sign, the search strategy

will only search domain identifiers and parameters. If an identifier or parametername

matches the given word, the given value is matched with the list of identifiers or the value

of the parameter.

word:=value

Whena wordand a valueare specified togetherwith a colon-equal sign combination,

the seamhstrategy will only searchdomain parameters. If a parameter namematches the

given word, it is counted as if a regular word was found. The value is saved so that if the

domain containing the parameter is used in a context, the parameter's value will be set to

the given value in that context.

5.43. Search Strategy
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The search strategy outlined in this section has been implemented ina search engine

which isanintegral part ofthe design environment. Before describing the search strategy

and the approach to ordering the results, a number of assumptions willbe delineated.

Assumptions - the search engine makes three assumptions:

1. A list of one or more specifications are givenin the syntax described above.

2. An ordered list of all available domains can be obtained from the designenvironment.

For domains that share a common ancestor, more general domains are listed before

more specific domains.

3. The relevance of a domainto the designspecifications can be estimated by the number

ofexact and partial matches found in the domain.

Domain Search - during the search process the engine traverses all domains lookingfor

exact and partial matches for each of the given search words. When all domains have

been searched, four scores are assigned to each domain. The first two are the number

of exactand partial matches found in the domain. The last two also represents exact

and partial matches, but they are summations ofmatches over all the domain's associ

ated domains (for an example, see the end of this section).

Domain Ordering - all domains are ranked according to the4 scores of exactandpartial

matches. The total number of exact matches in a domain and its associated domains is

used to create an initial ranking. If domainsare tied, the total numberof partial



96

matches in a domain and its associated domains is used to resolve the tie. To resolve

further ties the exact and partial matches in a given domain are considered.

Context Composition - a new context is gradually assembled starting from a clean slate.

The highest ranking domain is chosen as the first to be added. If that domain and its

associated domains contain matches for all the search words, the context is considered

complete. Otherwise, the ranked list of domains is consulted to find a domain which

matches search words not yet matched by the context, and which is not in conflict with

the domains in the context. If found, this domain is added along with all of its associ

ated domains, subject to the context creation rules, and it is verified whether the result

ing context contains matches for all search words. This process is continued until all

search words that can be matched are covered by the context. If there are search words

for whichno matches are found in any domains, the designer is notified.

Alternate contexts can be composed in a similar fashion, under these considerations:

• Every time a domain is chosen from the ranking list, check if there are other

domains in the list that have the same qualifications (rank) as the chosen domain. If

so, continue developing the context with the chosen domain, but also create a new

context that replicates the first, except for the chosen domain.

• When the context(s) have beenassembled thatusedthe highest ranking domain as

thefirst to add, create new context(s) starting withthe second highest ranking

domain.

The first context that is created is the search engine's "best bet," and all others are
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the runners up. Designers are free to choose any of the proposed contexts, and to mod

ify the chosen one.

User Interaction - there are three diiferent scenarios ofhow the search engine presents

its results. The scenario chosen depends on the number of contexts that were devel

oped.

• No contexts: this implies that the given specifications did not help identify any rele

vant domains. In this case the designer is notified and asked ifanother search is

desired.

• One context: this implies that only one context appears to make sense based on the

search specifications. In this case, the context is proposed as a "take it or leave it"

solution.

• Many contexts: this implies that several contexts are feasible, and some contexts

may be equally relevant to a design. In this case, the ordered list ofcontexts are pre

sented, and it is left up to the designer to choose which context appears to better

refiect the intentions of the specifications.

Extensions - the search strategy does not address the issue offinding domains that are not

already known. Two possible extensions to the strategy involve searching local file

systems for domains created by other designers, and using established Web search

approaches to locate domains available on the World Wide Web. A third extension is to

contact other design environments and automatically exchange domains. These exten

sions are beyond the scope of this work, but will be addressed in chapter 8 "Future
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Work."

Example This example shows how scores are assigned to domains during the search pro

cess. Also, the context that will be proposed is described. As mentioned above, four scores

are assigned to each domain. They are:

1. the number of exact matches found in the domain

2. the number ofpartial matches found in the domain

3. the number of exact matches found in the domain AND in all associated domains

4. the number ofpartial matches found in the domain AND in all associated domains

Figure 5-4 shows four domains. The generic cell library domain declares an associa

tionwiththegeneric technology domain. Thefourscores thatareassigned to eachdomain

are shown. Based on the scores for all exact matches, the domains are ranked as follows

(two ties):

Rank 1 - Domain Adder, Domain 0.6 um

Rank 2 - Domain Cellib, Domain Technology

The scores for all partial matches are used to resolve the ties between the adder and the

0.6 um domains. The following ranking results:

Rank 1 - Domain Adder

Rank 2 - Domain 0.6 \jm

Rank 3 - Domain Cellib, Domain Technology

Further resolution of ties is attempted using the exact and partial match scores, but in

this case, no further resolution canbe made. Thecontext creation begins by creating a

context that inherits the adder domain. The adderdomain alonehas matches (exactor par-
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Specifications: look ahead adder bits:=32 lambda=0.3

Domain Cellib

key domaintype \

cellib "cell library'
exact = 0

partial = 0

all exact = 0

all partial = 0

association

Domain Adder

key names \
{adder cla "carry look ahead"}

parameter "Number ofBits" \
bitwidth=16

exact = 1 (adder)
partial = 3 (look, ahead, bits)
all exact = 1

all partial = 3

Domain Technology

key domaintype technology

parameter "Minimum Feature Size" \

lambda = lambda

exact = 0

partial = 0

all exact = 0

all partial = 0

Domain 0.6 um

parameter "Minimum Feature Size" \

lambda = 0.3

exact = 1 (lambda=0.3)

partial = 0

all exact = 1

all partial = 0

Figure 5-4. Scores assigned to domains during the search process.

tial) for (adder, look, ahead, bits), but not for lambda=0.3. Therefore, the next domain in

the ranked list which has a match for lambda=0.3 is added to the context inheritance,

resulting in a context thathasmatches for all thesearch terms. Thiscontext is proposed to

the designer.

Other Comments - As the above example hintsat, it is quitepossible for specifications

to be meaningful for a designer but fail to select the desired domains. The specification

"bits" is meaningful for most designers, but it failed to match the"bitwidth" parameter

variable name. Due to goodluck theparameter label "Number of Bits"produced a partial
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match, which was sufficient to ensure that the right domain was selected in this case. It is

therefore very important that domain developers choose the most intuitive, common

words, and provide plentyof alternatives, as illustrated by the values givenfor the key

"names": {adder cla "carry look ahead"}.

5.4.4. Single Request Strategy

To facilitate quick feedback, the search engine canbe used in a slightly different way.

The designer can include a command in the specifications, with the intent that the search

engine should find what it believes to be the best context, and then execute thegiven com

mand within thatcontext. This feature enables designers to make single requests forinfor

mation such as:

• what is the delay ofa multiplier cell?

Specifications: delay multiplier (or: delay *)

• whatis the delay of a multiplier cell in a 0.6 pm technology?

Specifications: delay multiplier lambda=0.6

• what is the computational complexity of a 1024 point FFT?

Specifications: complexityFFT points:=1024

• what is the power consumption of an LCD display?

Specifications: power LCD

The strategy used to respond to these requests is simple: The search engine proposes a

listof contexts, thehighest ranking is chosen, and thecommand is interpreted and exe-
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cuted in thatcontext. If there aremany ways to interpret thegiven command, thedesigner

is consulted.

Another variation ofthis feature is illustrated with the following request:

• what is the area of all adder cells?

Specifications: area -all adder (or: area -all +)

In this case, one context is chosen to represent each domain which matched the search

word adder (or +). For each of the representative contexts, the command is evaluated, and

the results are presented to the designer. This feature has not been implemented in the cur

rent prototype, but may be considered for inclusion in future versions. The syntax of the

specification language would have to be expanded to declare "-all" a reserved keyword,

and the search engine would have to recognize this word and provide the desired function

ality.

5.5. Resource Management

This work is not trying to replicate the resource management from traditional CAD

frameworks. It would be beyond the scope ofthis work to do so, and previous work in this

area has yielded good strategies and implementations for managing the resources available

to a CAD framework. However, an information-centric design environment has to handle

some of the management tasks that are related to data, tools, and design flows. This sec

tion describes the necessary capabilities.

The resource managers that are needed fall into three categories ofdata, tool, or design
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flow managers. Their purpose is to exploit the information captured in domains to provide

seamless integration. For the data manager, it amounts to distinguishing between design

data ofdifferent types. For the tool manager, it amounts to automating tool invocations by

correctly composing invocationstrings. For the design flow manager, it amounts to provid

ing an environment in which design flows can be executed and where results and errors

can be properly handled. The next three subsections explaineach ofthe threemanagers in

more detail.

5.5.1. Data Management

Themain function of datamanagement is to manipulate design files. Anobject ori

ented internal representation, calleda file object, is used. A fileobjectcontains informa

tion such as thename of a file, thedirectory inwhich it resides, the type of the file, and

which tool, if any, produced the file.

When a tool is about to beexecuted, it is determined if any files are going to bepro

duced. This canbe determined from the tool encapsulations specified in domains. If an

existing file will be overwritten bythe tool, the data management will move the existing

file out of the way by renaming it.A table that maps actual file names tofile objects is

maintained, and files that have previously been renamed will automatically berestored

next time they are used.

5.5.2. Tool Management

The main goal of tool management is to properly execute design tools, and to report
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whether they failed or succeeded. The step bystep tasks of the tool management are

shown below.

Gather Inputs - the inputs to a tool include input files andtheparameters thatareusedto

specify different tool options. When a tool is called, theinputs aregathered from one

of three sources. If a value is given in the tool invocation, thatvalue isused. Otherwise,

if an inputparameter has the samenameas one of theparameters in a domain, the cur

rent value of the parameter is used. Otherwise, the default value specified in a tool

encapsulations is used.

PredictOutputs - based on the inputs, use the knowledge in the tool encapsulation to pre

dict the names of the files that are expected to be produced by the tool.

CreateRun TimeFiles - for tools that require files in addition to designfiles, e.g., simula

tors need command files. This may require interaction with the designer.

Create the proper execution environment - tool encapsulation specifies the necessaryenvi

ronment variables, paths, etc. Toolmanagement takes care of creating the proper envi

ronment.

Execute tool - start the executionofthe tool, either as a foregroundor backgroundprocess,

keeptrack of processID numbers (to enablecleaningup longjobs if the designenvi

ronment is killed).

Determine status - determine whether the tool's execution was a success or a failure. Most
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tools exit with a status code, and the encapsulationspecifieshow to interpret the code

for the given tool.

In addition to the above steps, the tool management informs the data management

about which files will be created by a tool, in orderto enable the datamanagement to cre

ate backups ifnecessary. Also, a history is keptwithall the inputs, outputs, etc.,which

helps determinewhethera tool has already been invoked and does not need to be invoked

again.

5.5.3. Design Flow Management

The design flow management is the same as the command execution environment dis

cussed in Section 5.3.3.

5.6. User Interface Issues

As with all interactive computer software, there has tobea way for the user to interact

with the design environment. The interface has to allow designers to conveniently access

the available functionality, and to gather all of the information that the environment can

provide. The following sections describe the model chosen for the environment, and dis

cussesthe pros and consof this approach.

5.6.1. Client-Server Model

Our designenvironment uses a client-server model, in that it acts as a serverthat

responds to requests made bya designer through a graphical userinterface (GUI) client.
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Figure 5-5. Client-Server Model Uses External User Interfaces.

which can be a dedicated GUI or a design tool. In this model, the user interface is a sepa

rate, or disconnected, entity that is not integrated into the environment. Since the user

interfaces are not built-in, we developed a generic text-based interface language for the

environment (called "TILT", see Section 5.6.3. below) which can easily be translated to

the requirements ofspecific interfaces. Currently we have an HTML translator as shown in

Figure 5-5.

5.6.2. Benefits of the Client-Server Model

The benefit of the client-server model is that the user interface can be customized for

many different applications to suit the specificneeds ofa group ofdesigners. The model

also readily allows the environment to be encapsulated by another design tool, provided

that the tool is capable of dynamically changing its command menus.

An even bigger benefitofthe client-servermodel is that a designer can access the envi-
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ronment from anywhere in the networked world. The communication channel between the

client and the server uses TCP/IP, the same technology as is used in the World Wide Web.

Thus, designers can access the environment from any terminal ranging from a portable,

wireless terminal such as the InfoPad, to a stationary desktop workstation.

5.6.3. A Request and Feedback Language

The interactions between a designer and an information-centric design server are

depicted in Figure 5-6. A designer makes a request, and the server responds by giving

feedback.

Designer

request

• Design

Server

feedback

Figure 5-6. A Designer Makes Requests, the Server Provides Feedback.

Since designers canuse clients thatrequire different formats, thedesign server pro

vides a generic request and feedback language thatcaneasilybe translated to different for

mats. A generic text-based interface language, called "TILT," was developed for the

design server. This languagewill be described in the "Requests" and "Feedback" sections

below, and in greater detail in Appendix G.

REQUESTS Requests can eitherbe directed at a specific design objector at the design

server to control resources that are global to the server.
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1. Requests to a design object.

Requests to a design object take the form

designObject request [argl] [arg2]...

Theword "designObject" should bereplaced withthename ofa specific design object,

and it ensures that the following request is directed to the right design object. The request

can be one ofseveral different keywords (e.g., menu, context, specifications, subcells, del

(for delete), save, trace, files, run, set/getParameter, etc.) but the most useful is the "menu"

request. The menu request prompts a design object for all currently available requests,

which includes the "permanent" requests that are always available (e.g., context, save, del

(for delete), etc.) and the dynamically enabled commands that are defined in domains and

are only available when they are able to execute. A designer normally gives the "menu"

request to a design object first, then selects one of the available commands through the

interface client. Thus, the designer doesn't need to worry about the proper request key

word to use, or the right arguments to pass along, it is all contained in the feedback to the

"menu" request.

2. Requests to the design server.

Requests to the design server are used to access global resources. There are six

requests available (the arguments shown in brackets are optional):

openDesign [design] - Access another existing design object.

newDesign [design] - Create a new design object.
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globalOptions - Access the server's global options.

The global options include defaults for search paths, whether or not to dispatch jobs to

remote hosts, whether constraints should be checked or not, etc.

menuDomains - Show the available domains.

computerMenu - Computer management.

Show the available remote hosts and their work load. The workload ofremote hosts is

automatically monitored when the global option to dispatchjobs to remote hosts is set.

shutdown - Shut the design server down.

This request causes the design server to exit after killing all tools thatmay still be running.

FEEDBACK Thefeedback language needs to be sufficiently rich that it enables a GUI to

display complex messages properly, yet itneeds tobesufficiently simple toallow for easy

translation to specific interface formats. Design server feedback contains"elements" of

different types. Each ofthese types have to be distinguishable in the feedback language.

The feedback types are either for conveying information to the designer, orfor allowing

the designer to enter information tobe returned to the server (e.g., choosing between sev

eral options). The types are text, data, command, menu, options, table, andtext-entry.

Appendix G specifies the exact format of eachof these types, butsome of them deserve a

little more explanation at this point. The menu type isnot strictly necessary, but it offers a

convenient andfamiliar wayto present a listof commands. Theoptions type is usedto
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convey available options, and lets the designer choose between them. There are two

sub-types including select-one-of-many and select-zero-or-more options. The tabletypeis

used to structure feedback in a two dimensional rowand columnlayout. The text-entry

type enables a designer to enter one or more lines of text (e.g., when giving the name ofa

design object to create).

The feedback is structured as a set of nested lists. Lists are textually represented by

{ elementl element!...}, and nested lists form one or more elements in other lists, such

as {elementl {element2_l element2_2...} elements}. Feedback is always returned to a

client with the first element of the top-level list set to the keyword "document." The docu

ment list can have any of the other types nested in it.

Example The following example is self-explanatory:

{document {text "Hello World"} {text "How are you?"}}

The next example shows how commands can be nested in text, which in turn can be

nested in a document:

{document {text "Command Selection" {command designObject request1 argl}

{command designObject request! arg2 arg3}}

5.6.4. Challenges for the Client-Server Model

Supporting a disconnected user interface poses a number ofchallenges. First of all,

there is the issue ofsecurity, since the design environment can be accessed from anywhere
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in the World Wide Web, user identification is an important issue. Since the environment

has full access to a user's file system (i.e., can read and write files), much damage can

result if an intruder obtains access. We have implemented an identification strategy that

requires a user to give a name and a password. However, when web browsers are used to

access the environment, it would be tedious to have to give a name and password for each

interaction. Wehave augmented the HTML translator to support the "cookies" that are

used by popular web browsers, such as Netscape Navigator or MicrosoftExplorer. In web

terminology, a cookie is a token which the server (in this case the design environment)

passes to the web browser when the user has been properly identified, and which the web

browser uses as a special password for successive accesses.

Another important challenge arises from the disconnected UI model, since both the

user interface and the design environment carry information related to a certain state ofa

design. Since theenvironment has nocontrol over thedisconnected UI, it is possible that

theUIbecomes outdated with respect to the environment. The state of a design is con

tained in a design object. The state information in the UI is contained in a list of the avail

ablecommands for the given object. Therefore, the design environment must be able to

determine ifa command originated from anoutdated list, and notify the designer toupdate

theuser interface when necessary. This is accomplished by giving each context an identi

fying number which is annotated oneach listof available conunands. If a request is

received with a different identifying numberthan the current context, the UI needs to be

updated.
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The interface also has to provide useful information about what the design environ

ment is doing at run-time. The environmentoffers two different means for that: execution

traces and run-time information. Execution traces are automatically generated whenever

the environment executes scripts ortools. These traces can be used as an after-the-fact way

ofexamining what theenvironment did. Run-time information (e.g., decisions that are

made, tools that are invoked, etc.) is a more immediate indicator ofwhat the design envi

ronment is doing. In the disconnected UI model, it is necessary to be able to redirect

run-time information if requested by the UI. Normally, run-time info is directed to the ter

minal where the design environment is started, butuponrequest it canbe sentsomewhere

else, for example, to a Web browser. Ifthe browserterminatesthe connection, the run-time

info is directedback to the original terminal.

5.7. Summary

Domains are objectclassesthat encapsulate designexpertise, andtheyare organized in

families of object-oriented classes. A more refined (morespecific) domain is derived from

a less specificparent domain and it inherits the expertise in the parent domain, but can

override anyof the expertise oradd to it as necessary. Contexts areobject classes thathave

multiple domain inheritance, and the inheritance can changedynamically under user con

trol. Design objects are instantiations ofcontexts, and provide a number ofutilities to con

trol the dynamic inheritance, keep trackof designfiles and history, etc.Designobjectsare

thefocal pointfordesigners, since most requests or commands areposed to a design

object. The next chapter describes a prototype information-centric environment.
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CHAPTER 6

THE DESIGN SERVER

A prototype design environment, called the Design Server, has been developed as a

part of this project, and it embodies the information-centric design model. I implemented

the prototype of the system in a version of the Tool Command Language (TCL)

[Ousterhout94] that supports object oriented programming (incr-Tcl) [McLennan93],

TCP/IP communications (Tcl-DP), and interactive program control (Expect) [Libes95].

This version ofTCL is presented in detail in Appendix A.

This chapter presents a flow description oftypical design sessions using the Design

Server. Chapter 7 presents some specific design examples using the Server. For additional

information. Appendix H discusses some practical considerations about how to start the

Server and interact with it through external interfaces.

6.1. Design Flow Description

A typical design process using the Design Server is illustrated in Figure 6-1. The ini-

113
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Initialization Phase

i 1
Specification Phase

Request Phase

Final Phase

Figure 6-1. Design Flow Diagram,

tialization phase is described in Section 6.1.1. The specification phase is described in Sec

tion 6.1.2. and the requestphase in 6.1.3. The final phase is described in 6.1.4.

6.1.1. Initialization Phase

The initialization phase involves starting the Design Server (as described inAppendix

H),logging in to the Server viaan appropriate Web browser or design tool interface, and

selecting anexisting design object or naming a new object to work on. Please see Figure

6-2.

6.1.2. Specification Phase

The specification phase deals with the definition and modification of design specifica

tions in the following forms:
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Start

Yes

No

Start Design Server

Log In

Select/name des.

Figure 6-2. Initialization Phase Flow Diagram.

Keywords for Search-based Context Selection - In traditional CAD environments there

is no mechanism for exploiting descriptivekeywords in the design process. In the

information-centric environment, these keywords can be used effectively to locate rel

evant domains, and subsequently to propose one or more contexts. Descriptive key

words are used primarily in the early design phases where specifications are

incomplete or gradually evolving.

Parameters and constraints - Parameters constrain design variables to a single value,

while constraints provide bounds for parameters or for acceptable design costs.

Manual Context Manipulation - Due to the importance of selecting a context that accu

rately represents the dimensions that are relevant to a design, contexts can be con-
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trolled directly by designers. Manual control implies that a designer can control the

contents of a context on a domain-by-domain basis. The basic mechanism for control

ling which domains are in a context requires a designer to manually identify each

domain which is to be added to or deleted from a context. A design object can provide

a list showing the current domains in its context, plus a list of available domains that

can be added. The designer can then add new domains to the context, or delete individ

ual domains from the context. Whenusingthe Web browser user interface, adding or

deleting domains is as simpleas clicking on the appropriate domain in the interface.

As described in Section 5.2.1., when a domain is added to a context, all of its asso

ciated domains are added aswell. If a designer chooses to delete a domain, it is possi

bleto end upwith a non-functional context (e.g., where a domain, containing

information used byother domains, ismissing). It is left up to the designer toonly

delete domains for one of the two following purposes. (Note: A design object can

avoid ending upwith non-functional context byperforming a check after context

changes butbefore anyotherrequests are handled. During such a check it canbe

ensured thatall required associated domains arepresent in a context).

1. To remove a specific domain for the purpose ofreplacing it with a more generic

domain from the samefamily. This is the wayto defeatcontext creation rule 2

(Section 5.2.1.).

2. To remove all of the domains which use information from the domain to be

removed.
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Themanual context manipulation is useful if a designer hasspecific domains in

mind for a project, or if a context already exists and only needs small adjustments.

Design Files - The first three categories ofspecifications are either features or side effects

of the information-centric design paradigm. Thefourth category, design files, is the

traditional way toprovide detailed design descriptions. Creating andmodifying design

filesproceedsas in the traditional CAD environments, except for cases wheredomains

capture a way to automatically generate design templates based on the givenparame

ters etc. This can ease the burden ofcreating detailed design descriptions,but will not

eliminate it entirely.

6.1.3. Request Phase

Context selection is only a means to an end, and an artifact of the information-centric

design model. The goal is to enable designers to interact with the design environmentin

terms of informationexchange, where designers provide specifications and give requests,

and where the environment provides feedback in return. The specification and request

phases are therefore closely intertwined and designers typically iterate through several

specification-request cycles during normal design flows.

6.1.4. Final Phase

The final phase simply involvesdeciding whether or not to shut down the Design

Server, or leave it running until next design session (Figure 6-3). The normal case is to

leave it running.
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6.2. Summary

Shut
Design Server

Down?

Shut Server Down

Figure 6-3. Final Phase Flow Diagram.

This chapter provided a description ofa typical design flow, including thenormal iter

ations that areexpected. The following chapter presents four design examples thatuse the

Design Server, to illustrate the benefits of the information-centric design model.



CHAPTER 7

DESIGN EXAMPLES

This chapter presents four design examples to illustrate how an information-centric

design environment works. Each of the following sections gives a briefoverview ofa

design scenario, and describes the underlying domains and the design expertise they

encapsulate. The domains described in each example have been implemented in the

framework of the Design Server.

7.1. CMOS Circuit Design

Design Scenario - Design the transistor schematic for a CMOS NAND gate and find its

fall and rise times.

Salient Points - This exampleshowshow the information-centric paradigm simplifiesthe

design and analysisprocess by reusingencapsulated expertiseabout how to analyze a dig

ital circuit. It also shows how a designer interacts with the Design Server using simple

intuitive commands, and yet benefits from complex analysis tasks.

119
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Circuit Design

Commands:
Rise/Fall Time

Simulation

Digital Hardware

Stimuli:
clock, reset, vdd

Ffletypes: ♦.tr?, *.mt?
Commands: Simulation

Representations

0.6um

lambda=0.3

spice models

Filetype: ♦.sch

Commands: View, Create
Tools: Pen-based Sche

matics Editor

Mosis

1.2um

lambda=0.6

spice models

Figure 7-1. Domainsfor CMOSCircuit Design.

Domains - The domain hierarchies that are used inthis example are presented inFigure

7-1. The essential features from each domain are shown, and the domains that are initially

selected by the search-based approach are marked by a thick outline.

Design Flow - This scenario follows the steps shown below {italics indicate Design

Server's actions). Note: This example uses a schematic editor that accepts mouse, pen, and

voice input [Narayanaswamy96]. This type ofeditor isusefiil inpen-based environments

likethe InfoPad while othereditors maybe more convenient in a workstation environ

ment.

1. Log in to the Design Servervia a Netscape Web Browser.

2. Give specifications: schematic digital circuitdesign

Searchandpropose context "CircuitDesign.Digital'
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3. Request "Create Schematic," and view the Editor help message that isautomatically

generated for the benefit ofnovice users, (see Figures7-2 and 7-3).

Open mouse/pen/voice-inputschematics editor

4. Create schematic for nand-gate and save it.

5. Choose the 0.6 pm technology domain (bydefault the Generic technology domain is

selected).

6. Request "Rise Time." A simulation menupresents which technology is in effect,

which Spice model is used, and the values of the parameters "simtime" and

"timescale" (these parameters will be explained below). The menu also identifies the

default fall and rise times of input signals.

Extract the circuit

Prepare a SPICE deckfor simulation

Invoke HSPICE

Extract the requested infofrom the HSPICE outputfile (10-90%points)

Present it to the user.

RESULT: 0.87 ns

ra"
HeI tat I
Moment Tlmtatd

10

0 10 20

Une Length ThrextnU
S

RKognttton llRisout (ens)
1900

0 1000 2000 9000

Ht^

SUtue: Reedy

Item; none

Figure 7-2. Schematic Editor used
in example 7.1.

s Nctsotpe: Editor Help

Pit Ul Mm Qe

fli ft SS 6 ft

Editor Hdp

To tdd dmit eleniQitt:
Uie Edlt->Add New EIemest->Add... to «dd new eletnenti.

Youhave to edit the panaiettn (or each dtacne <Ed!l->EdllPmnxttn)
For MOSelemestt: Set w to c.t. 4u cdItoe.^ 2u.
For Vdd elemeatt: Set veltete to e.g. SV
ForSotmce elemeDti; Sa labeltothenameo(the h^iit Itrtpreaents.

REMEMBERto save (Re-PSave)!

Uyouwant to ttasdate the dmdl. be imto lesQite the &iee deck
(SPICE->Oeoente SPICE Dcdt). Thennot^theDeiitn Semr aiouttfae Spice
ISeuitni the Hle-> Add net eemmaod.

ml

Figure 7-3. Editor Help Message.
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7. Request "Fall Time." Again, a simulation menuis presented, this timeshowing the val

ues that were entered before. Note: the extraction is not performed againsince the cir

cuit has not been modified.

Prepare a SPICE deckfor simulation

Invoke HSPICE

Extractthe requested infofrom theHSPICE outputfile (10-90%points)

Present it to the user.

RESULT: 0.92 ns

Comments The process ofanalyzing a circuit netlist is tedious and repetitive. It isa nec

essary step to obtain the desired quantities, but it is not a partof the creative design pro

cess. Therefore, it isanimmense benefit for a designer tobeable to draw upon the

encapsulated expertise shown in this example. Thepoints below describe the tasksthatare

performed automatically, and help illustrate how much effort adesigner saves by using the

information-centric designenvironment.

• Find the input signals and the supply voltage. Assumptions: The input signal names can

be derived from the names ofthe voltage sources. For example, if the inputs to the

NAND circuit are"A"and "B," there will be voltage sources called VA andVB in the

netlist. Likewise, the supplyvoltage will be namedVdd.

• Let the designer choose appropriate simulation stimuli for each input. Present a list of

predefined stimuli, such as"clock," "reset," andthe most generic "filereals" which reads

values from a given file. Thepredefined stimuli areencapsulated in thesimulation
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domains as stimulus templates (see Section 5.1.3.)- TheHSpice tool encapsulation con

tains the mappings from the generic stimulus templates to HSpice-specific signals

(piecewise linear signals - PWL).

Generate theproperstatements to represent the inputs. Thevalue of the supply voltage

(Vdd) is takenfrom the parameter "voltage" from the technology domain. The

piece-wise linear (PWL) specifications are generated from the chosen stimuli for each

input. Each transition takes a certain amount of time, given by the parameters

"rise_time" and "fall_time" in the HSPICE simulation domain.

vdd vdd 0 5.0

vA A 0 PWL 0 0 le-8 0 l.le-8 5 2e-8 5 2.1e-8 0 3e-8 0 3.1e-8 5 4e-8 5 4.1e-8 0

vB B 0 PWL 0 0 le-8 0 2e-8 0 2.le-8 5 3e-8 5 3.le-8 5 4e-8 5 4.le-8 0

Let the designer identify the names of the output nets, since they cannot be reliably

determined from the SPICE netlist. Also, as an option, let the designer specify a loading

capacitance to be used to load each output. If the designer specifies a capacitor value,

add one capacitor for each output node. For the NAND circuit, there is one output called

"S."

CS S 0 20f

For each MOS device in the SPICE netlist, specify an appropriate transistor model in

accordance with the models that are available in the SPICE model library associated

with the chosen technology domain (in this case CMOSN and CMOSP).

ml wires BOO CMOSN 1=0.6u w=0.6u

m3 S A vdd vdd CMOSP 1=0.6u w=1.2u

m2 S A wires 0 CMOSN 1=0.6u w=0.6u

m4 S B vdd vdd CMOSP 1=0.6u w=1.2u

Find the SPICE model library file, and refer to it using a ".include" statement:

.include */users/bentz/.designAgent/spice_jnodels/generic/nominal.spm'
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• Add a statement to measure the rise time:

.meas risetime trig par('v(S)-0.1*v(vdd)') val=0 rise=l
+ targ par('v(S)-0.9*v(vdd)') val=0 rise=l

• Add the necessary HSPICE statements to the SPICE file. The two values for the ".tran"

statement are calculated based on the parameters "simtime" and "timescale" (from the

simulationdomain hierarchy),"simtime" species the length of the simulation,measured

in simulated time,and it is scaledby the valueof "timescale." For example, to simulate

the first 50 ns of the circuit's transient behavior, set simtime=50 and timescale=le-9.

The secondargumentfor the ".tran" statementis computedby "simtime*timescale" and

the first value is computed by "simtime*timescale/100."

.options nomod post

.tran 5e-10 5e-08

.end

Extensions - Thisexample canbe extended to perform otheruseful analysis tasks suchas

finding the energyconsumption of a digital circuitor performcircuitcharacterizations for

use in cell libraries, etc. In each case, one or more methods have to be created to describe

thedesign flow required, and if additional tools areneeded, they have tobe encapsulated.

To create a method to capture energy consumption analysis, theeffort would be relatively

small, since the rise and fall time simulationsare quite similar to what would be needed.

For othercases that may be quite different, the development effortcan be moderate to

large.
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7.2. Finite State Machine Design

Design Scenario - Design a finite state machine (FSM) to control a trafficlight. Estimate

the area of two different implementations, one based ona programmable logic array

(PLA), the other based on standard cells.

SalientPoints - This example shows how theinformation-centric paradigm facilitates

access to remote tools (the FSM editor) and remote files (the FSM design files). It also

shows howthe command "area" is interpreted differently depending on which domains

are in the context.

Domains- Thedomain hierarchies that are usedin this example arepresented in Figure

7-4. Theessential features from eachdomain are shown, and the domains thatare initially

selected by the search-based approach are marked by a thick outline.

Design Flow - This scenario follows the steps shownbelow {italics indicateDesign

Server'sactions). Note: This example uses an FSM editoravailable on the Web (at http://

yoyodyne.EECS.Berkeley.EDU/fsm/fsm.html). It was developed by WingYee(Serena)

Leung in U.C. Berkeley's WELD group.

1. Log in to the Design Server via a Netscape Web Browser.

2. Give specifications: FSM

Search andpropose context "FSM"

3. Request "Create State Diagram."

Open Web browser, link to FSM Editor
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FSM

Filetype: remote-kiss-file
Commands:

View, Create
State Assignment

Tools: FSM Editor, nova

^Technologies^
I

Mosis

0.6um 1.2um

lambda=0.3

spice models

lambda=0.6

spice models

Old

Z
Macro Cell

7
PLA

ILager CompositioiH
Commands:

View/Create Netlist
Area, Generate Layout

Tools: DMoct, Flint

Standard Cell Macro Cell

Commands:

Area, Area w/routing

Tools: bdsyn

Commands: Area

Representations

z
sdl-file

Filetypes:
♦.sdl, SMY, SIV

L^nagic-file^J
Filetype: ♦jnag
Commands:

\^ew. Create, Area
Tools: Magic

Cell Library

Generic models for

area/delay/power

1

Lager

Low Power

Standard Cell

Parameters: Height
Default Width

/ I W
Area model Cells with Height, Width, Area, andDelay Models

Figure 7-4. Domainsfor FSM Design.
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Figure 7-5. FSM Editor.

4. Draw state diagram and save it as trafficlight.kiss (see Figure 7-5).

5. Request "Area."

Estimate Area based on models in the Macro cell and PLA domains.

RESULT: 88,917 lambda^

6. Choose the StandardCell domain from the Lager Low Power Cell library.

7. Request "Area."

Estimate Area based on models in the Standard Cell domains.

RESULT: 142,800 lambda^

8. Optionally, generate the layout for the two approaches. With the appropriate domains

selected, request "Generate Layout." After the layouts have been generated, more

accurate area estimates can be obtained: for the PLA style: 91,356 lambda^, for stan

dard cell style: 115,104 lambda^. The PLA style area is quite predictable, while the

routingoverhead of the standardcell implementation is harder to predict.
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Comments The information-centric design environment transparently manages local and

remote resources. In this example, remote and local tools and files are accessed without

any effort on the designer's part. Due to the simple implementation ofthe remote database

(part of the U.C. Berkeley WELD project), there is no way to check file time stamps.

Therefore, the Design Server cannot determine when the remote FSM design file has

changed. To get around this problem, the following solution was devised. Whenever the

remotefile is needed as the input to a tool, it is downloaded to the local file system, and

compared to the previousversionofthe file. Ifno changeshaveoccurred, we keep the pre

vious version, otherwise the new file is used. This solution adds approximately 1.5-2 sec

onds to the execution time ofdesigntools, but it ensures that any changes to the FSM

design can be properly detected.
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7.3. Small Processor Example (LagerlV)

DesignScenario - Design the smallprocessorshownin Figure 7-6.Estimate the area

aftercrafting the netlist, andverify the areaaftergenerating the layout.

Salient Points - This example showshow the Design Serverprovidessignificant aid

throughout the design process. It also shows that commands (e.g., "area") remain the same

throughout the process, but the interpretationofthe commands changes.

Domains - The domain hierarchies that are used in this example are presented in Figure

7-7. The essential features from each domain are shown, and the domains that are initially

selected by the search-based approach are marked by a thick outline.

Design Flow - This scenario follows these steps: {italics indicate Design Server's actions)

1. Log in to the Design Server via a Netscape Web Browser.

REGFILE

16x16

CHIP OUT

REG TRIBUF

\ ADD/SUB /X—^
TRIBUF I

GIL

DEC

TRIBUF CLK INST RESET

CHIPJN

Figure 7-6. Processor Diagram.
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Datapath

ILager Compositi^
Commands:

\^ew/Create Netlist
Area, Generate Layout

Tools: DMoct, Flint

Standard Cell Macro Cell

Simulation

Parameters:
simtime, timescale

Digital Hardware

Stimuli:
clock, reset, vdd

Commands:
Area, Area w/routing

Commands:
Area, Area w/routing

Tools: bdsyn

Commands: Area
I IRSIM i

Filetype: ♦.irsim

Commands: Simulation

Tools: DMpost, IRSIM
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0.6um
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spice models

1.2um
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spice models

Old

Z
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7
FLA
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z
sdl-file

Filetypes:
♦.sdl, SMV, SIV

L^^Cell^L^ra^^
Generic models for

area/delay/power
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X
I magic-file T

Filetype: *.mag
Commands:

View, Create, Area
Tools: Magic

Low Power

zr~x
Datapath Standard Cell

Parameters: N,
Default Height/\^dth

Z/ \V\

Parameters: Height
Default Width

/ I W
CellswithHeight, Width, Area, andDelayModels

Figure 7-7. Domainsfor SmallProcessorDesign.
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2. Give specifications: ASIC chip design

Search, and Propose the Lager CompositionalDomain

3. Optional step: Createblock diagram using the HLBE high-level block editor

[01ateju96]. Connect to the Design Serverand send the design. The use of HLBE

enables a designer to get quick estimates ofchip area before a detailed netlist is

crafted.

4. Request "Area."

Compute Area using modelsfrom datapath,

standard cell, and macro cell domains

RESULT: 1,539,859 lambda^ (no routing orcontrol)

5. Write netlist, save in file "chip.sdl."

6. Add the file "chip.sdl" to the design object.

7. Request "Area."

Parse SDL, create Lager SMVfiles

Extract essentialfeaturesfrom SMVfiles and build hierarchy ofcomponents

Estimate area ofeach component. Add routing overhead to each block.

RESULT: 2,291,000 lambda^ (no global routing overhead)

8. Request "Generate VHDL."

Create Lager SIVfiles, create VHDL representation.

9. Request "View Simulation."

Prepare a commandfilefor simulation

Invoke Synopsys' "vhdlan " VHDL analyzer, then "vhdlsim" simulator.



Show waveforms.

10. Request "Generate Layout.'

Create layout usingLager (floorplanning, placement, routing).

11. Request "View Layout."

Show layoutfile in layout editor (see Figure 7-8).

12. Request "Area.'

Extract areafrom layout

RESULT: 4,377,695 lambda^

(after manual floorplanning this number drops to3,599,379 lambda^).

: ?r ; t h 'U'-I !> nrWH .ir1 J^

if^

5r|i;;rtr.W-i':

JiS5E^rr"?S7-^-SS^~?Si

Figure 7-8. Processor Layout.



Comments The use of the HLBE high-level block editor for initial entry of the processor

architecture is a quick way to obtain area estimates. The HLBE editor (see Figure 7-9)

uses blocks and interconnections to represent an architecture. Each block can be annotated

with properties. The propertiesare used by the Design Serveras specifications for each

block, and drive the search-based context selection. An HLBE design is not nearly as

detailed as a netlist, but it contains enough information to drive the area estimators.

The area estimators in this example span a wide range of estimation techniques. First

of all, the techniques canbe categorized as eitherdatapath, standard cell,or macro cell (or

array cell). Within each of these categories, techniques can modelactive area or routing,

and can be basedon default values (e.g., averages for a library), characterizations for spe-
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Figure 7-9. HLBE Block Editor.
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cific cells, values extracted from layouts, or empirical results. Figure 7-10 presents the

active area models and shows the underlying structure ofeach category. Figure 7-11 shows

Category: Datapath

Parameters;

N (numberof bits):given in specifications

H (height ofbitslice): see below

W (width ofbitslice): see below

Model: Active Area = H * W ♦ N

Defaults-based:

H and W:averagevalues for library,given in cell librarydomain

Characterization-based:

H and W:specificvalues for a cell, given in the domain for each cell

Layout-based Model:
H: extracted from layout, if available

N'W: extracted from layout, if available

-• w

H

bitN-1 bitO

Category: Standard Cell

Parameters:

H (height of cell): fixed for a library

W (width of cell): see below

Model: Active Area = H * W

Defaults-based:

W:average valuesfor library,given in cell librarydomain

Characterization-based:

W: specific values for a cell, given in the domain for each cell

Layout-based Model:
W: extracted from layout, ifavailable

Category: Macro Cell

Parameters:

N (number of bits): given in specifications

R (number of words): given in specifications
H (height ofbitslice): see below

W (width ofbitslice): see below

Model: Active Area = H*W*N*R

Defaults-based:

H and W:average values for library,given in cell library domain

Characterization-based:

H and W: specific values for a cell, given in the domain for each cell

Layout-based Model:
H^R: extracted from layout, if available

N*W: extracted from layout, if available

Figure 7-10. Active Area Estimation Models
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H
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H Af1
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the overall area models, including routing, used ineach category. (NOTE: the models pre

sented here areused in this example. Other models have been presented by other research

ers,as outlined in Section 2.4.1.). Currently, there is no routing model for the global level

routing.

The activearea models are organized such that the characterization-basedmodels are

used ifavailable for the cells underconsideration, otherwise the layout-based model is

used if a layout isavailable, and finally the defaults-based models are used. This isencap

sulated by a method which checks for availability of characterizations and layouts before

falling backon defaults. For the areamodels that include routing, areais extracted from a

layout if available, otherwise the models shown in Figure 7-11 are used, after finding the

Category: Datapath

Model: Area = H * W

W (totalwidth) = Max_width_of_subceIls + 2 • supply_routing_width

(supply_jouting_width = 24 X)

H(total height) =routing^factor *' (Z height_of_each_subcell)

(routing_factor= 1.2 (empirical))

Category: Standard Cell

Model: Area = routing_factor ♦ (S Active_area_oC.each_celI)
(routing_factor = 2.0 (empirical))

Category: Macro Cell

Model: Area = Active area

f
supply/ground'

11111II11 i
II iliiliil

T

II 11111 H

lllllllllllllll 1

III 1111
w •

cell

UJ

Figure 7-11. Area Estimation Models with Routing.
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active area for each of the subcells.

When the request "View Simulation" is given, the Design Server returns a menu in

which the user has to specify the following values:

Time Scaling Factor: timescale = le-9

Simulation Time: simtime = 300

For Vdd: set monitor = NO

For elk: set delay = 2 and period = 40

For reset: delay=l duration=40

For GND: set monitor = NO

For chip_in: set file = chip_in, sample_delay = 44, and sampleperiod = 40

For inst: set file = inst, sample_delay = 40, and sampleperiod = 40

The data for the input "chip_in" has to be contained by the givenfile (chip_in). The

data for the input "inst" (i.e., the instructions/program) has to be in the file "inst." The sim

ulation results from the VHDL simulation are shown in Figure 7-12. The simulation exe

cutes the program:

LOAD rf<0>

LOAD rf<l>

XFER rf<0>

ADD rf<l>,rf<3>

STORE rf<3>

Load the input (1) into rf<0>

Load the input (2) into rf<l>
Transfer rf<0> to alu's reg
Add alu's reg to rf<l>, and store in rf<3>

Put rf<3> on the chip's output
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7.4. Conceptual Level DSP Design

Design Scenario - Design a 1024-point complex Fast Fourier Transform (FFT) algo

rithm. Compare various alternative FFT forms. Estimate the effect of running the FFT

algorithm on different processor architectures.

Salient Points - This example shows how the Design Server facilitates design space

exploration at the algorithmic level and at the architectural level.

Domains - The domain hierarchies that are used in this example are presented inFigure

7-13. The essential features from each domain are shown (see also Appendix D).

Design Flow - This scenario follows these steps: {italics indicate Design Server's actions)

1. Log in to the Design Server via a Netscape WebBrowser.

2. Give specifications: FFT points:=1024

Search, and Propose the "DSP:DFT:Radix2FFT" Domain

Set theparameter NrOJPoints to 1024(basedonspecification)

3. Request "Complexity."

Compute complexity usingformulae (fornumber ofadditions and multiplications)

RESULT: 51,200 operations

4. Explore two other FFTforms encapsulated by thedomains "Radix 4FFT," and "Split

Radix." Compare their complexities.

RESULT: 43,520 operations for Radix4FFT

RESULT: 34,824 operations for SplitRadix
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Figure 7-13. Domains for Conceptual DSP Design.

5. Decide to usethe SplitRadix FFTalgorithm. Choose animplementation platform from

the set of available processor domains. The available domains model a digital signal

processor (MotorolaDSP56K), and a generalpurpose microprocessor (UltraSparc).

Compare their performance.

Compute execution times usingformulae that model execution

time as afunction ofalgorithmic complexity.

RESULT: 2.28 ms for DSP56K

RESULT: 11.9 ms for UltraSparc

6. To broaden the scopeof the exploration, select a completely different implementation
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platform, namely a custom ASIC implementation. Again, request the execution time.

(Note thatin this case execution time is interpreted as the minimum execution time,

i.e., the execution time estimate isbased onthe limitation posed bythe algorithmic

critical path. This assumes that a large number ofparallel computational and storage

units are available anddoes not take into account anyareaconstraints. However, this

result shows the minimum possible bound onthe execution time, under the assump

tions of unlimited available parallel hardware anda 100 ns clock cycle)

RESULT: 8 ps

Comments - It is important tonotice the very low level ofeffort required bythe designer

toperform this sequence ofexplorations. The highly heterogeneous setofmodels for algo

rithmic complexity and critical path are completely encapsulated and the designer only

has to identify which algorithms areof interest. Likewise, theexploration of implementa

tionplatform artifacts is equally automated. Thecomplexity of the formulae thatcorrelate

the algorithmic complexity orcritical path with execution times iscompletely hidden from

thedesigner, unless heor sheis interested andrequests to seethe assumptions or the

details of the models.

The domain definitions for the following domains aregiven in Appendix D.Foralgo

rithmic domains: DSP, DFT, Radix2FFT, Radix4FFT, andSplitRadixFFT. For architec

tural (processor) domains: GenericArchitecture, DSP56K, and UltraSPARC.
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7.5. Summary

The four design examples in this chapter illustrate various of the benefits of the infor

mation-centric designmodel, but it also indirectly illustrates somelimitations. TheNAND

gateexample shows the convenience and simplicity of interacting in terms ofinformation.

Tedious and repetitive tasks are removed from the designer, suchthathe/she canfocus on

the creative work. The finite statemachine (FSM) example illustrates the convenience of

anenvironment thatcanmanage local andremote design files andprovide seamless access

to distributed files anddesign tools. It alsoshows how easy it is to perform exploration

between alternate design solutions. Initially, quick feedback is provided based onestima

tion models, but if a designer iswilling to spend more time (while the layouts are automat

ically being generated) accurate feedback can beobtained. The simple processor example

shows thattheDesign Server can provide design aid throughout thedesign process,

including area estimators atvarious levels ofabstraction and automated layout generation.

This example also shows the support for integrated simulations, using reusable stimulus

generators to generate common signals like clocks,resets,power, and ground. Andfinally,

the FFT example shows how the Design Server supports design exploration ofalgorithmic

alternatives, as well as exploration of how algorithmic properties correlate witharchitec

tural properties.

The limitation that is indirectly seen in these examples is that the aidprovided bythe

Design Server is limited bythe available domains. Fortunately, designers cancreate their

own domains as necessary, butsometimes thismay require significant effort.
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CHAPTER 8

FUTURE WORK

The DesignServerhas been implemented to the leveloffunctionality described in this

dissertation, butthere arestillareas in which it could be extended in interesting ways. Any

future extensions has to followthe overallconceptofencapsulation, that is, extensions

should primarily beencapsulations of design expertise for thepurpose of aiding designers.

Oneof the mostobvious extensions is to deploy several DesignServers, distributed across

a network, andaddcapabilities to exploit theircollective design expertise. Another impor

tantareais design guidance, providing qualitative adviceuponrequest or when constraints

areviolated. These extensions arediscussed below, after a retrospective project evaluation

that includes other recommendations for future work.

8.1. Project Evaluation

This section highlights both themain strengths of this project as well as itskey weak

nesses.
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8.1.1. Information-centric Paradigm

The information-centric paradigm has proved tobevery successful. This paradigm

seemed very promising from the beginning ofproject, andas the project progressed, the

information-centric model turned out tobevery powerful. From the perspective of design

ers, the information-centric way of interacting with a CAD environmentaccelerates

numerous tedious tasks,and provides readyaccess to important design-related informa

tion. All these benefits, however, come at the expense of a rich set of domains. The devel

opment effort to create good domains requires significant investment in capturing

assumptions, creating various levels ofestimation models, andproviding encapsulations

for the tools andmethodologies that are typical in an areaof expertise. Therefore, it is

clear that the usefulness of the information-centric paradigm is in areas wherethere is a

great deal of repetition, i.e., where the investment in domain development yields high

returns in terms of time saved andaccuracy of results generated as timegoes by.

8.1.2. Domain to Domain Interfaces

The adoption of orthogonal domains is anotherstrength of this project. It enables the

combination ofdomains into very diverse contexts with various levels ofconstraints. It

allows designers to provide design specifications ranging from incomplete to highly spe

cific.The downside of dynamically combiningdomains is that all available domainshave

to be specifically codedto identify compatibilities and incompatibilities withotherdomain

families. This is not an problem in a local setofdomains, but on a granderscale,where

domains are created by independent developers and made available through a network, it
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becomes very difficult to identify all (in)compatibilities. Therefore, I predict that theinter

face between domains, i.e., the way one domain accesses the information captured in

another domain at run-time, willneedto be enhanced. Currently, within a context,

domains can freely access parameters as longas the exact parameter nameis known. This

is overly restrictive, since different developers are likely tousedifferent names for similar

parameters. Likewise, a method in one domain can freely invoke a method in another

domain (that coexists in a context), as long as the method's exactnameis known. A better

interface between domains would include a query mechanism toallow domains to dynam

ically determine parameter and method names through a level of indirection. (Example:

instead of a method in one domain invoking a method "area" from anotherdomain, it

would be better to first be able to query "is there a method in the other domain that can

estimate chip area including both active area and routing?" If sucha method is not avail

able, a second query could be issued "is there a method in the other domain that can esti

mate just active area?")

8.1.3. Domain Development Environment

Asmentioned above, theeffort required to develop good domains is not insignificant.

In theDesign Server, domains are captured in text files (as shown in Appendix C andD).

Itwould bevery useful, and would shorten domain development time significantly, to have

a development environment with integral debugging facilities. This wouldallowincre

mental development, and could provide support for helping developers capture and codify

assumptions. The latter point has proven to be important, especially when different devel-
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opers create domains that rely on informationin other domains. If the assumptionsare not

clearly identified (and easily accessible) it is veryeasyto end up withdomains thatpro

vide invalid design aid or estimation results.

8.1.4. Simulation Support

Theautomatic simulation capabilities of theDesign Server are extremely useful for

designers, sinceit automates thehighly tedious andrepetitive process ofcreating a simula

tionenvironment fora design, including theproper compilations, stimulus generation, etc.

The conceptofutilizinggenericreusable stimuli is very versatile and allows smoothtran

sitions between simulations at different level ofabstraction. However, from a developer's

stand point, capturing a simulation methodology hasproven to beoneof themost complex

aspects of domain development. Thisis one areathatwould benefit enormously from a

good development and debugging environment.

8.1.5. Search-based Context Selection

Thesearch-based context selection mechanism implemented in this project hasbeen

quite adequate given the setof currently available domains. One improvement to thecur

rentscheme is to allow users to interactively place importance on different types of

matches. Currently all matches areconsidered ofequal importance, but at times it may be

desirable to onlyconsider parameter matches, or to place a higher importance on matches

with domain identifiers.
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8.1.6. Domain Versioning

In the current implementation there is no way to specify a version number for a

domain. In the distributed Design Server model, it becomes very important that versions

ofdomains can be distinguished, and that old versions ofdomains are maintained for a

certainperiod of time. By using a versioningscheme, it is possible to identifywhich gen

eration of a domain to use, and domains on one site can be updated independent of

domains on another site. At a later date, the domains on other sites which use the outdated

version ofa domain can be upgraded to work with the newer version. This is similar to the

approach used in Microsoft's Active-X.

8.1.7. Industry Standard Domain Implementation

The current version of the Design Server is implemented in an object oriented version

ofTel. However, to make it easier to proliferate domains, and to solve the domain version

ing problem at the same time, it is recommended that domainsbe implemented in either

Corba or Microsoft's Active-X.

8.1.8. Error Calculus

Section 3.4. explained the necessity ofproviding with an estimate its source (how the

estimate was derived) and a measure of its accuracy. In future versions of the Design

Server, support for errorcalculus should be builtin, suchthatwhen estimates of varying

levelsofaccuracy are combined, a measure ofaccuracy can be annotated to the final esti

mate. This requires that results can easilybe annotated with accuracy measures. It would
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makemost sense to extend the"sum" (sumoverall subcomponents) command to automat

ically perform the accuracy calculations.

8.2. Distributed Design Servers

System designrequires sucha broadrange of expertise that a designer's lack of

breadth or depth critically affects design time and quality. The information-centric design

paradigm addresses this byenabling designers to draw upon design expertise in an encap

sulated form. It is clear that expertise cannotalways be found locally, butin many cases

has to be retrieved from remote sites. Future Design Servers need to address thisbypro

viding the capabilities to enable transparent exploitation of distributed expertise.

Thevision is to deploy several Design Servers thatarecontinuously running andserve

different categories of clients. Thecategories that canbe foreseen are outlined below (see

Figure 8-1).

Tool Vendors

designer

Internet/
Intranet

designer

Semiconductor Fobs

Figure 8-1. Distributed Design Servers.

iP Vendors

Celi Libraries
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Designers - will interact with theirown Design Server in thesame way as with thecurrent

Server.

Fabrication Technologies - semiconductor foundries provide characterizations of their

technologies, including simulation models (Spice/Hspice), characteristics suchas min

imum feature size, ringoscillator frequency, design rules, etc.

Cell Libraries - cell library vendors provide anencapsulation of their cells, including char

acterizations of area, power consumption, delay, etc.They canalsoprovide access to

simulation models, schematic diagrams, layouts, etc. Someof the information can be

made available for free, while otherinformation mayrequire a contractual agreement

with the users.

Intellectual Property Vendors -companies selling IP provide domains that encapsulate

information about their products. Intellectual property come in various forms, ranging

from algorithms andprotocols, to chipcores and ASIC components. In the caseof

ASIC IP, designs can bemade available in various forms, from synthesizable descrip

tions to final layouts. Independent of where a design lies in this range, thevendor has

to providespecifications, characterizations (if applicable), simulation models, docu

mentation, guidance for important designdecisions, etc. The Design Serverfacilitates

the transfer of IP byproviding an infrastructure forencapsulating a design plusall the

additional expertise that must accompany it.Acritical issue surrounding IPisproperty

protection. Depending on the nature of the IP, it maybe necessary to not disclose cer

tain information. One altemative is to keep sensitive informationon the vendor's site
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where it can be protected, and create interfaces that only give out certain pieces of the

information. The vendor can freely giveout domains that specifyhow to access the

interfaces to obtain the information a designerneeds (see Figure 8-2).

DESIGNER IP VENDOR DESIGN SERVER

C^[_^hoose Specs^]]]^.
specs

ContexT^, domains

~~rZ request related toRequest Infosensitive information

Search for Domains

execute locally ^
feedback

feedback

Refine Specs"^^^

Figure 8-2. Interactions with IP Vendor Servers.

Tool Suites - tool vendors provide encapsulations of their tools, as well as methodologies

for usingthe tools,guidance for manipulating tools,etc. Also,payment modelscan be

provided, eitherfor the service of executing a tool on behalfof a designer, or for

licensing the tool to a designer. Models canalso be provided, to predict howlong it

will take to execute a synthesis tool, or to predict the areaoverhead introduced by a

routing tool, etc.

There are some significant challenges that have to be overcome to enable the model of

distributed Design Servers. Many of these issues were outlined in Section 3.8. and will be
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discussed briefly here in relation to this issue.

Finding Design Servers - It is impossible to derive an optimal scheme for howto find

Design Servers that havedomains of relevance to a givendesign. However, several

pragmatic approaches can easily be devised. To mention a few, a "rolodex" can be

maintained, either by each designer, or for a department or company. The rolodex

wouldcontain addressesofall knownor preferred Servers. Agentsor facilitators can

also be employed to mediate between design servers and availabledomains. Also,

static nameservers (e.g., Yellowpages) and dynamic name servers (e.g.,dynamic tool

registries) can be employed. It is also useful to maintain a list of Servers that should

never be consulted.

Finding Relevant Domains - Once a setof Servers have been located, thenext challenge is

to determine which Servers haverelevant domains for a givendesign. Design Servers

must be able to initiate a search in remote Servers, using the specification driven

search mechanism. Once domains have been identified, there has to be a transfer

mechanism for bringing a given domain, or a family of domains, to the local Design

Server.

Security - In the current version of the Design Server,only users who enter the correct

password are allowed access, and whenusershaveaccessto a Server, theyhaveaccess

to all the domains available to the Server. When servers are allowed to interact with

eachother, it is necessary to havea richercommunication model. DesignServers need

to have either an "unprivileged" port through which to talk to other Servers, or an
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unprivileged mode ofaccess. Furthermore, domains have to be annotated with permis

sions for reading, to give control overwhich domainsare given out, and which are not.

Also, Servers must have a "safe" mode ofoperation, such that when methodologies

from remote domains are executed, they are given only limited privileges,unless the

designer designates them as being "trusted."

8.3. Design Guidance

Design guidance is an important aspect ofdesign expertise.Design guidance is quali

tativeadvice abouthowto manipulate a designfor a specific purpose. For example, if a

signal processing algorithm does not meet its real-time constraint, design guidance would

suggest ways to change the algorithm to make it faster, by retiming, pipelining, etc. As

such, guidance is a form ofdesign expertise, and fits nicely in the scope ofa domain.

Thereare a fewfeatures that the design servermusthaveto enablethe encapsulation

ofdesignguidance. First ofall, it shouldbe optional whetherthe DesignServergives

guidance when advice on a certain topic is requested, or whenever a constraint has been

violated. Secondly, there has to be a mapping between topics and advice, and between

constraints andadvice. The former is easy, sinceeachpieceof advice canbe tagged witha

listof topics. The latter is slightly more difficult, butthesystem canbe organized suchthat

each constraint can be tagged either with a topic or a guidancescript.Whena constraintis

violated, advice on the given topic canbe returned to the designer, or the scriptcanbe

evaluated and its result returned.
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There is not an abundance of specific guidance tools in existence, but when available,

such tools can be encapsulated like other designtools. Methodology scripts can also be

used in this realm, returning textual advice,or a listofavailable adviceon a given topic. If

a specificmethodology is known to yield the desired improvements, it can be made avail

able as a part ofthe advice, such that the designer can invoke it at the "click" ofa button.
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CHAPTER 9

CONCLUSIONS

This dissertation haspresented a new design environment that attempts to bridge the

emerginggap betweenCAD technologies and chip complexities. One of the main contri

butions of this work is the object-oriented design expertise encapsulation model. This

model defines the different typesof expertise that need to be captured to aid system

designers. Themodel alsoprovides guidelines for the organization of expertise intorela

tively independent families.

A secondequally important contribution is the model for combining and exploiting

domain expertise by creating contexts. Contexts provide a dynamic means for interpreting

specific designs, and form thebasis fortheaidthatcanbe given to designers. Bycontrol

ling whichdomains are included in a context, designers can obtainestimates or other

design aid underthe circumstances andassumptions that are captured in the domains.

Contexts also enable an environment to provide aideven at theearliest stages of design,

whentraditional CAD tools are unable to help. The aid that is provided comes from
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domains that are selectedbecause they match a set ofgivendesign specifications. Thus,

when incomplete specifications are given, a context will be assembled from generic

domains, and as design specifications are refined, more specific domains will be chosen

and used to provide increasingly specific and accurate aid.

The third contribution is the outline of the infrastructure that is needed to implement

the information-centric paradigm. Several of the required features are similar to what is

found in traditional CADenvironments. However, additional capabilities are required to

exploit the encapsulated design expertise. The most salient of these is the search engine

which locates relevant domains for a particulardesign. The enginealso proposes contexts

that provide the best possible match for give specifications. Thus, while the informa

tion-centric concept introduces the task of selecting contexts, the searchengineminimizes

the effort required to do so.

These three elements, the domains, contexts, and the underlying infrastructure,are the

coreof the solution which we propose to bridge theaforementioned gap. Theenormous

capacities of chips enable entire systems to be integrated together, spanning a vastrange of

technologies and specializations. As systems growlargerand more complex, it becomes

increasingly important to manage the inherent heterogeneity inmethodologies, implemen

tation styles, tools, etc.Thecompelling need to reduce development timeand to increase

productperformance whilebuilding increasingly complex systems calls for a significant

increase in the level of abstraction at which designs areconceived and specified. In addi

tion, system level CAD tools mustforge strong links between design exploration and
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implementation paths, to expedite theevaluation of alternative solutions at various stages

of the design process.

Previously, there hasbeen very little or no help to be found for meeting these chal

lenges. Therefore, this work is a significant contribution because it presents a solution to

theseimportant issues. Firstof all, it enables designers to dealwitha design environment

at a higher level of abstraction, namely at the level where information is exchanged (spec

ifications are given, feedback is received). In addition, it canprovide aid from theearliest

pre-specification design stages, evenwhenspecifications are vague and incomplete. Sec

ondly, byusing an encapsulation strategy, it integrates theexploration and implementation

of designs, while transparently managing theunderlying heterogeneity. Theencapsulation

approach provides a means for exchanging design expertise, resulting in a moreefficient

design process. For example, design exploration is facilitated by estimation models and

techniques that can be executed with minimal input fi*om a designer. Optimization tech

niques canalso be encapsulated to putadvanced approaches at thefinger tips of system

designers. The encapsulation strategyalso facilitates the successful transferof intellectual

property, by providing the necessary information aboutdesign entities, including docu

mentation, characterizations, howto remotely access the design etc.

Theconcepts and solutions discussed in this dissertation will onlyreach theirfull

potential ifdeployed by a broad spectrum ofdesigners. This is only likely to happen if

standards, either defacto or official, can be developed fora distributed design infrastruc

ture upon which a future version of the Design Server can be built. Since work is being
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undertaken in this area (e.g., by the WELD group at Berkeley), advances are likely to be

made in the near future. For the more distant future, the information-centric paradigm

offers a solutionfor the compellingneeds of systemsdesigners, and as such helps move

CAD technology toward closing the gap.
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APPENDIX A

Extensions to the Tool Command

Language (TCL).

The Design Server is implemented in a version of the Tool Command Language

(TCL), created by J.K. Ousterhotit. This appendix describes the three major packages that

I used to extend the capabilities of TCL, in addition to a few commands that I added.

A.l. incr-Tcl

incr-Tcl (pronounced "increment TCL") is created by M.J. McLennan (AT&T) and

provides object-oriented extensions to Tel, much as C++ provides object-oriented exten

sions to C. The emphasis of incr-Tcl is to support structured programming practices in Tel

without changing the flavor of the language. More than anything else, incr-Tcl provides a

means ofencapsulating related procedures together with their shared data in a local

namespace that is hidden from the outside world. It encourages better programming by

promoting the object-oriented"library" mind-set. It also allows for code re-use through

inheritance.
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In the Design Server, the object-oriented capabilities of incr-Tcl are used to structure

and orgianize significantportions of the system, e.g., the variousportions ofa domain are

implementedas separate classes that are all inherited by the "DOMAIN" class.

A.2. Tcl-DP

Tcl-DPis created by B.C. Smith(Cornell) and L.A. Rowe(U.C. Berkeley). Tcl-DP

stands for Tel Distributed Programming. Tcl-DP adds TCP, UDP, and IP connection man

agement, remote procedure call (RPC), and distributed object support to TCL.

In the Design Server, Tcl-DP is used to implement the network communications chan

nels. Commands from Tcl-DPenable setting up listeningsocketsthat wait for external

user interfaces to connect, and facilitates the connection management.

A.3. Expect

Expect is created by D. Libes (NIST). It is a program that "talks" to other interactive

programs according to a script. Following thescript. Expect knows what canbe expected

from a program and what the correct response should be. An interpreted language pro

vides branching andhigh-level control structures to direct the dialogue. In addition, the

usercan take control and interact directly whendesired, afterward returning controlto the

script.

Thename "Expect" comes from the idea of send/expect sequences popularized by

uucp, kermit and othermodem control programs. However, unlike uucp. Expect is gener-
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alized so that it canbe runas a user-level command with anyprogram and task in mind.

Expect can actually talk to severalprograms at the same time.

In the Design Server, Expect is used to automatically log in to remote computers,

mainlyfor purposes of monitoring the load levels of a remote computational resource, but

can eventually also be used for distributing jobs.

A.4. Other Extensions

I added a few extra commands to TCL to provide some necessary capabilities that

either were impossible or difficult to provide as TCL scripts.

fiillhostname hostname|IP_addr

fullhostname takes a hostname or an IP (internet protocol) address (in the standard

dot-notation form X.X.X.X) and returns the full, official hostname. This routine is

used for the host monitor and for the network access routines.

checkPasswd usename password

checkPasswd takes a user name and a proposed password, encrypts the password,

compares it with the user's entry in the /etc/passwd file, and returns 1 if the pass

word is correct, 0 otherwise. This routine is used to verify a user's identity.

putf [dest_fileid] src_fileid

putfwrites the contents ofone file (referred to by a Tel file identifier, src_fileid)
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into another file (referred to by anotherTcl file identifier, dest_fileid). Ifdest_fileid

is missing, stdoutis used.Thisroutine is typically used forfile transfers, especially

when files are requested from an external user interface.

posix2date

posix2date converts a POSIXtimenumber(i.e., an integernumberofseconds

since the "beginning oftime") to a standard MIME datestring in theformat of e.g.

Friday, Ol-Mar-96 19:18:04 GMT

This routine is used in the HTML translator.



APPENDIX B

Variables and Commands Available In

User-Defined Scripts.

This appendix gives a brief description of the variables and commands that are avail

able for use in the user-defined method scripts.

B.l. VARIABLES

this

The name of the design context in which a method executes.

file

The file object which a method was invoked with.

Historylndex

The history index ofa tool invocation. This is a number which is chosen by the

Design Server. After a tool invocation, the variableHistorylndex will be set. It gets
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set even if a tool didn't need to run. The most common use of this variable is to

access the stdout (and stderr) of a tool run in the files .stdoutSHistorylndex and

.stderrSHistorylndex.

OUTPUT FILES

A list ofoutput files that automatically gets set when tools or methods are exe

cuted. Users don't usually need access to this variable, except for the types of

accesses that can be accomplished with the routine "checkToolOutFile."

RESULT

Users shouldset this variable to contain a result, ifa method is to pass a result to its

callers. Often this will be in the form ofa Tilt "data" construct(e.g., set RESULT

[data area Svalue $units float]).

DETAIL

This is a list which may be set to allow later retrieval ofdetailed information about

the execution ofone or more methods. It is a cumulative list which each successive

method can add to, so it is important to use the Tel command "lappend" when

assigning to the DETAIL list. The list can contain Tilt text lists, or Tilt command

lists, e.g., { {text"" textto be shown} {command cmd_name cmdargs...}...} The

DETAIL variable is initialized when the user issues a command and it can be

added to in each subsequent method that gets called.
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UNITS

This is a stringwhich the usercan optionally set. If it is set, then whenothermeth

ods are called, theywill attempt to return datawith values in the given UNITS.

This makes it easierto successively call methods without having to worry about

doing the unit conversions.

B.2. ROUTINES

Pretty much all the normal Tel commands are available for use in methods. Two

exceptions: Never use the "return" or "exit" commands. If you want to exit the Design

Server, use the command "shutdown" which ensures a clean exit.

tool [-force|-probe] TOOL [argl] [arg2]... [&]

Invoke a tool called TOOL with the given arguments. The order of the arguments

is significant; it must follow the order in which arguments are declared in the tool

definition. Normally, the "tool" command will only result in an actual tool execu

tion ifnecessary, i.e., if it hasn't been executed since the last change in the status of

the tool's inputs and outputs. However, the flag "-force" can be used to force a tool

to rerun. This is often needed to make sure certain tools execute every time they

are called upon (e.g., xgraph). tool retums the string "SUCCESS," or an error mes

sage that begins with "FAILURE:". If the "-probe" flag is used, tool never exe

cutes, but retums "NO NEED" or "NEED" depending on whether the tool "needs"

to be run. NOTE: The return value from tool mns may be revised soon. If the last
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argument is the the tool will be executed as a background process,

check string

This routine checks a string whichnormallycomes from a tool run (e.g., check

[toolTOOLl]). If the string reads "SUCCESS," everything moveson normally. If

the string does not read "SUCCESS," an error message is displayed. NOTE: This

routine may become obsolete.

checkToolOutFile index errorMsg

This routine verifies that the variable OUTPUTJFILES exists, and that it has at

least $index+l elements in it. It then returns thename of theindex'th file object in

theOUTPUT_FILES list. If an error occurs, then theerrorMsg is used to identify

which tool has caused the problem.

run method [FILEOBJ]

Run a method. Ifa file object is given, it will be pass to the method in the variable

^file." If a file object is not given, the"run" routine attempts to determine whatto

do: If a method if defined forthe"hierarchy" type, AND if thedesign object is

hierarchical, that method will be used. Otherwise, ifa method is defined for the

"nil" type, it will be used. Otherwise, the Design Server will look for files of the

types for which methods have been defined, and let theuser resolve anyambigu

ities.
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baseName FILEOBJ|filename

Return the base of the current name of a file object, or ofa filename. The base it

what remainswhen the leadingpath componentAND the trailing .extensionare

removed. For example, "baseName /tmp/hi.txt" returns "hi".

subcells [add designObjl ....]

Returns a list of the subcells that belongs to the currentdesigncontext, or add

design objects to the subcell list.

getParameter

Returns a list ofall "name and value" parameter pairs.

getParameter parameter_name

Returns the current value of the given parameter.

setParameter name value

Sets the parameter 'name* to the value 'value',

files fileobjl [fileobj2]...

Add the given file objects to the current context,

files [-type filetype]
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Returna list of all the files that belongto the context. If the -type flag is used,

return only files that are of the given file type.

context

context add [-after domainN] [-before domainN] domain1 [domain2]...

context delete domain1 [domain2]...

Show, add, or delete domains from the context.

DesignObject name

Create a design object by the given name. The name cannot be the same as any

existing command.

File name

Create a file object, and give it the name. Return the nameof the file object, which

will be FILE%d (where %d is an integer).

sum command units list_of_subcells

Return a Tilt data containing the sum ofeach of the values returned from a "run

Scommand" call to each of the listed subcells. The values are converted to *^mits*'

before being added. Sum automatically creates a DETAIL entry that lists each of

the values that were added.
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max command units list_of_subcells

Return a Tilt data containing the maximum ofeach of the values returned from a

"run Scommand" call to each of the listed subcells. The values are converted to

"units" before being compared.

min command units list_of_subcells

Return a Tilt data containing the minimum ofeach of the values returned from a

"run Scommand" call to each of the listed subcells. The values are converted to

"units" before being compared.

convertUnits value units new_units

Retums the value converted from units to new_units. For example, convertUnits

11 mW W would return "0.011". If a conversion cannot be done, i.e., a specifica

tion for the requested conversion cannot be found, an empty string is returned.

getPath filename

Retums the directory path to the given filename, or an empty string if the filename

could not be found along the search path. To get the full path name you can do:

set fullpath "[getPath $filename]/$filename"

This command is useful for locating helper scripts or application specific files.
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APPENDIX C

Domain Template

Thisappendix contains a template for creating domains. The syntax of eachcategory

of declarations is shown in comment lines (beginning with a # character). This template

helps users to develop syntactically correct domain definitions.

#

# Template - -

#

#

# Author: Die Bentz, 1996

#

Domain Template -inherit DOMAIN {

#

# Keywords for Searching
#

# key name [valuel] [value2] ...
#

###########################################################################

###########################################################################
#

# Default Domains

#

# domains domainl [domain2] ...
# domains -req domainl [domain2] ...
#
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#

# Search Path

#

# path pathl Ipath2] ...
#

###########################################################################

###########################################################################
#

# Parameters

#

# parameter name [-group menuGroup] -varname vamame -value value \
# [-type type] [-keep] [-propagate]
#

###########################################################################

#

# Constraints

#

# constraint name [-group menuGroup] [-keep] [-ignore]
# and either of these:

# -parameter name -min value
# -parameter name -max value
# -parameter name -min value -max value
# -parameter name -values list_of_values
# -method name [-units units] -min value
# -method name [-units units] -max value

# -method name [-units units] -min value -max value
# -method ncune [-units units] -values list_of_values
# -include_domains list_of_domains
#

###########################################################################

#

# Abstract Commands

#

# command name [-group name] [-method method -filetypes list_of_filetypes]
# where command is one of

# view

# analysis
# optimization
# action

#

###########################################################################

###########################################################################
#

# Filetypes
#

# filetype name -icon path -name_patterns list_of_patterns \
# -contents [offset string] -attributes list_of_attributes
#

###########################################################################



###########################################################################

#
^dTjosisqexuot^pxsuej^^

#
•o:ts'uoT^BXOdiatjUT'uoT:jBXOdBa:»x9'Buxx^os#

#
SUOX^BXSUPJi#

#
########################################################^#############^^###

___#
X2"Tuojj:idTJOszotix~^ojj:idTJOszadAtjX9<i^^uoTsaeAUO0~:jTun#

#
suoTsaaAUOo:iTun#

#
###########################################################################

#
:idTJDS•••[anxBA:tx'^®39Paureu~ia:jaureaBd-]#

\(anxHA""^xi^BJ9Paureu~i9:i9urejtBd-]aureuuaBumu#

#
SNOii.iNi.aaaHOiVHaNaoaaawoNsnmwiis#

#

###########################################################################

#
tldxaosadAqaxTJ©ureuq^aui#

#

suoT^TUTjaapon:i9w#

«

###########################################################################

#
^idxaossn:}9:)ssn^^etjs-:idTaos39X99:)n39X9-

\so9ds~AU9:)U9unxojxAU9-sa9:isnxo~jo~":jsxxsj9:)snxo-#
\{:idxj:3s•••[xbajba-]x«ajba-}:iao(r"snxnuix:is-#

\*•*[:isxx~oads~:jnd:ino:ind:ino-]^sxx~09ds~::indqno^nd:)no-#
\•••[:isxx~09ds~5ndux^ndux-]:isxx~osds~:jndux:indux-aureuxoo:)#

#

suoxtjxuxjaaxooj,#

#
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APPENDIX D

Domain Examples

This appendix contains the definitions for the domains used in Section 7.4. The

domains, in the order they are listed below, are: DSP, DFT, Radix2FFT, Radix4FFT,

SplitRadixFFT, GenericArchitecture, DSP56K, and UltraSPARC.

#

# DSP - -

#

Domain DSP {
###########################################################################

#

# Keywords for Searching
#

# key name [valuel] [value2] ...

#

##########################################################################«

key domaintype dsp "digital signal processing" "signal processing"

####################################^#################################11####

#

# Default Domains

#

# domains domainl [domain2] ...

#

###########################################################################
domains {Representations:C}

domains {Representations;Silage}
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#

# Parameters

#

# parameter name [-group menuGroup] -varname varname -value value \
# [-type type] [-keep]
#

###########################################################################
parameter "Sample Frequency (Hertz)" -varname sampleRate -value l.OeS \

-type float -keep



}ITU/ljouisuiq^aui

#
•saATtjeAxaapaii:jutpasnaaaqo:jsauT:tno:toxaauaBaaaqj,#

#

#
:idTaosa(iA:jaiT5aureuq^aui#

#

suoT^jTuxjaapoq^aw#

#
###########################################################################

{ITU}sacW^aixj-Aaouiauipoq:jaui-sax:iaa<3ojtdcJnoaB-„^uauiaaxnbaHAaouiaw««axA
{ITU}sadW^aiTj.A:jTxaiclmoopoqt^aui-saT:jaadoaddnoafi-„A:nxaiduioD„waxA

{ITU}sadA:iaiTj.q:jBd-iBOT:jTJOpoq^jaui-saxtiaadojddnoafi-«q:jadibot^tjo,waxA

sax^aadojdwaxA

###########################################################################

#
UOT^OB#

uoT:iBZTuiT:}do#
stsAibub#

waxA#

JOauGSTpuBunuooaaaq«#

{sadAjaiTj~50~jSTisadAjaixj-poqjauipoqjam-][aureudnoafi-]aureupuaumioo#

SPUBUIUIOQJOBJtJSqV#

#

###########################################################################

daaq-jaBajuxadAj-

\fZOIsniBA-sjUTOdJOJNaureujBA-„sjUTod50jaqumN„jtajaureacd
###########################################################################

#
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\aniBAaniBA-aureujBAaureujBA-[dnojonuauidnoaS-]aureuJcajaureaBd#

#

saajauiBJBd#

#
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#
•••[^aniBA][laniBA]aureuAaq#

#

BuTqoaeasJOjspjOMAax#

#
[^##################}^##########################################}}#^##{^##}}^#^#
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#
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#
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set N [run meinory_jnodel nil]
set RESULT "Approximate memory storage requirements: $N wordsXn*
append RESULT "Memory order of growth: 0(N)"

}

meth critical_path nil {

set operationList [run critical_path_jnodel nil]
set path 0

foreach operation $operationList {
incr path [lindex $operation 1]
lappend breakdown \
"Number of [lindex $operation 0] : [lindex $operation 1] ; '

}

set RESULT [data "Critical Path" $path Operations integer]
lappend DETAIL [text "BREAKDOWN" [join $breakdown "\n"]]

}
meth complexity nil {

set operationList [run operation^count_model nil]
set count 0

foreach operation $operationList {
incr count [lindex $operation 1]
lappend breakdown \

"Number of [lindex $operation 0] : [lindex $operation 1]
}

set RESULT [data Complexity $count Operations integer]
lappend DETAIL [text "BREAKDOWN" [join $breakdown "\n"]]

}

#

# Three specific routines for this DPT.
#

meth memory_jnodel nil {

set RESULT [expr 2*$NrOfPoints]

}

meth critical_path_model nil {
set N $NrOfPoints

lappend RESULT [list "real +" [expr 4*$N - 2]]
lappend RESULT [list "real *" [expr 4*$N]]

}
meth operatiorL_count_model nil [

set N $NrOfPoints
set 4_N_square [expr int(4*$N*$N)]

lappend RESULT [list "real +" [expr int($4_N_square-2*$N)]]
lappend RESULT [list "real *" $4_Jl_square]

}
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#

# Radix2FPT --

»

# Model for Radix 2 FFT Algorithm
#

# Author: Steven Chan, November 1996
# Updated by: Ole Bentz, December 1996

#

Domain Radix2FFT -inherit DFT {

###########################################################################
#

# Keywords for Searching
#

# key name [valuel] [value2] ...

#

###########################################################################
key domaintype fft "fast fourier transform" radix2fft radix "radix 2"

###########################################################################

#

# Constraints

#

# constraint name [-group menuGroup] [-keep] [-ignore]
# and either of these;

# -parameter name -min value

# -parameter name -max value

# -parameter ncune -min value -max value
# -parameter name -values list_of_values
# -method name [-units units] -min value
# -method name [-units units] -max value
# -method name [-units units] -min value -max value

# -method name [-units units] -values list_of_values
# -include_domains list_of_domains
#

###########################################################################
constraint "Number of points" -parameter NrOfPoints -values \

(2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 \
32768 65536 131072 262144 5242880 1048576 2097152 4194304}

###########################################################################
#

# Abstract Commands

#

# command name [-group name] [-method method -filetypes list_of_filetypes]
# where command is one of

# view

# analysis
# optimization
# action

#

###########################################################################
view "Visualize Algorithm" -group Documentation -method visualize -filetypes
{nil}

#
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# Method Definitions

#

# meth name filetype script
#

###########################################################################
meth visualize nil {

set script_name *(getPath fft_visuali2ation]/fft_visualization"
set N [getParameter NrOfPoints]
set algo_name ''Radix_2''

if {$N > 128} {

set RESULT "FAILURE:\nCannot display more than 128 point FFT"
} else {

set status [exec $script_name $algo_name $N &]
if {$status != 0} {

set RESULT "SUCCESS"

} else {

set RESULT "FAILURE;\nErrors occurred"

}

}

}

meth critical_path_model nil {
set N $NrOfPoints

set log2N [expr log($N)/log(2)]
set Mc [expr int($log2N)]
set Ac [expr int($log2N)]

lappend RESULT [list "real +" [expr 2*$Ac + 2*$Mc]]
lappend RESULT [list "real *" [expr 4*$Mc]]

}

meth operation_count_jnodel nil [

set N $NrOfPoints
set log2N [expr ceil(log($N)/log(2))]
#

# Calculate the number of complex multiplications and additions
#

set Mc [expr ceil($N/2.0) * $log2N]
set Ac [expr $N * $log2N]
#

# Calculate the number of real multiplications and additions
#

set Mr [expr int(4*$Mc)]
set Ar [expr int(2*$Ac + 2*$Mc)]

lappend RESULT [list "real +" $Ar]
lappend RESULT [list "real *" $Mr]
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#

# Calculate the number of complex multiplications and additions
#

set Mc [expr ceil(3*$N/8.0) * $log2N]
set Ac texpr $N * $log2N]
#

# Calculate the number of real multiplications amd additions
#

set Mr [expr int(4*$Mc)]
set Ar [expr int(2*$Ac + 2*$Mc)]

lappend RESULT [list "real +" $Ar]

lappend RESULT [list "real *" $Mr]



189

#

# SplitRadix --

#

# Model for a Split-Radix FFT Algorithm
#

# Author: Steven Chan, November 1996

# Updated by: Ole Bentz, December 1996

#

Domain SplitRadix -inherit DFT {
###########################################################################
#

# Keywords for Searching
#

# key name [valuel] [value2] ...

#

###########################################################################
key domaintype fft "fast fourier transform" "Split Radix"

###########################################################################
#

# Constraints

#

# constraint name [-group menuGroup] [-keep] [-ignore]
# and either of these:

# -parameter name -min value
# -parcuneter name -max value
# -parameter name -min value -max value
# -parameter name -values list_of_values
# -method name [-units units] -min value
# -method name [-units units] -max value
# -method name [-units units] -min value -max value
# -method name [-units units] -values list_of_values
# -include_domains list_of_domains
#

###########################################################################
constraint "Number of points" -parameter NrOfPoints -values \

{2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 \
32768 65536 131072 262144 5242880 1048576 2097152 4194304}

###########################################################################
#

# Method Definitions

#

# meth name filetype script
#

###########################################################################
meth critical_path_model nil {

set N $NrOfPoints

set log2N [expr log($N)/log(2)]
set Mc [expr int($log2N)]
set Ac [expr int($log2N)]

lappend RESULT [list "real +" [expr 2*$Ac + 2*$Mc]]
lappend RESULT [list "real *" [expr 4*$Mc]]

}

meth operation_count_fnodel nil {
set N $NrOfPoints
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set log2N texpr ceil(log{$N)/log(2))]
#

# Don't bother with the n\iinber of complex mults and adds.
# Calculate the number of real multiplications and additions

#

set Mr [expr int($N*{$log2N-3) +4)]
set Ar [expr int(3*$N*($log2N-1) + 4)]

lappend RESULT [list "real +" $Ar]
lappend RESULT [list "real *" $Mr]
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# GenericArchitecture Processor Model

#

# Author: Steven Chan, Nov 1996

#

Domain GenericArchitecture -inherit Generic {
###########################################################################
#

# Keywords for Searching
#

# key name [valuel] [value2] ...
#

###########################################################################
key domaintype architecture processor cpu

###########################################################################
#

# Parameters

#

# parameter name (-group menuGroup] -varname varname -value value \
# [-type type] [-keep] [-propagate]

###########################################################################
parameter "Has Floating Point Unit?" -varname hasFlPtUnit -value 1 -type int
parameter "Clock Rate (Hertz)" -varname cycle_rate -value 100E6 -type float
#

# Parameters describing the dynamic nature of programs to be executed
# on this processor:

#

parameter "Dynamic Instruction Count" -group "Inst Dyn" \
-varname dyn_inst_cnt -value 0 -type int

parameter "Branch Frequency" -group "Inst Dyn" \
-varname freq_j3ranch -value 0.0 -type float

parameter "FP Add Frequency" -group "Inst Dyn" \
-varname freq_fp_add -value 0.0 -type float

parameter "FP Mul Frequency" -group "Inst Dyn" \
-varnsime freq_fp_jnul -value 0.0 -type float

parcuneter "FP Div Frequency" -group "Inst Dyn" \
-varname freq_fp_div -value 0.0 -type float

parameter "Int ALU, Logic, Shift Frequency" -group "Inst Dyn" \
-varname freq_int -value 0.0 -type float

parameter "Int Mul Freq" -group "Inst Dyn" \
-varname freq_int_mul -value 0.0 -type float

parameter "Int Div Frequency" -group "Inst Dyn" \
-varname freq_int_div -value 0.0 -type float

parameter "Load/Store Frequency" -group "Inst Dyn" \
-varname freq_;nem -value 0.0 -type float

#

# Characteristics of the processor:
#

parameter "Cycles Per Branch" -group "Cycle Times" -varname cycles_branch \
-value 2.0 -type float

parameter "Cycles Per FP Add" -group "Cycle Times" -varname cycles_fp_add \
-value 2.0 -type float

parameter "Cycles Per FP Mul" -group "Cycle Times" -varname cycles_fp_jnul \
-value 3.0 -type float
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parameter "Cycles Per FP Div" -group "Cycle Times" -varname cycles_fp_div \
-value 5.0 -type float

parameter "Cycles Per Int ALU, Logic, Shift" -group "Cycle Times" \
-varname cycles_int -value 1.0 -type float

parameter "Cycles Per Int Mul" -group "Cycle Times" \
-varname cycles_int_n»ul -value 3.0 -type float

parameter "Cycles Per Int Div" -group "Cycle Times" \
-varname cycles_int_div -value 5.0 -type float

parameter "Cycles Per Load/Store" -group "Cycle Times" -varname cycles_mem \
-value 2.0 -type float

parameter "Instructions Issued Per Cycle" -varname inst per cvcle \

-value 1.0 -type float

###########################################################################

#

# Abstract Commands

#

# command name [-group name] [-method method -filetypes list_of_filetypes]
# where command is one of

# view

# analysis
# optimization

# action

#
#########################################################################^#

view "Execution Time" -group Cost -method execTime -filetypes {nil}
view "Dynamic Instruction Count" -group Cost -method instCount \

-filetypes {nil}

###########################################################################

#

# Method Definitions

#

# meth name filetype script
#
###########################################################################

#

# execTime - -

#

# Determines execution time based on profile from an Application Domain,
# or you can use a default profile (set by the parameters), but that's not
# as interesting.
#

meth execTime nil {

if {[Isearch -regexp [context} "Application Areas"} != -1} {
run set_freq_fron\_jnodel nil

}

lappend fre(i_time [list "branch" [getParameter freqjaranch] \
[getPareimeter cycles_branch] ]

lappend freg_time [list "fp_add" [getParsuneter freq_fp_add] \
[getParameter cycles_fp_add]]

lappend freq_time [list "fp_mul" [getParameter freq_fp_mul} \
[getParameter cycles_fp_mul]]

lappend freq_time [list "fp_div" [getParameter freq_fp_div] \
[getParameter cycles_fp_div]]

lappend fre(i_time [list "int" [getParameter freq_int] \



[getParameter cycles_int]]
lappend frec[_time [list "int.jnul" [getParameter freq_int_jnul] \

[getParameter cycles_int_mul]]
lappend freq_time [list *'int_div'' [getParameter freq_int_div] \

[getParameter cycles_int_div] ]
lappend freq_time [list "mem" [getParameter freq_mem] \

[getParameter cycles_jnem] ]

set count [getParameter dyn_inst_cnt]
set clock [getParameter cycle_rate]
set issues_cycle [getParameter inst_per_cyclel
set sum 0

set inst_tot 0

foreach instruction $freq_time {
set profile [lindex $instruction 1]
set inst_tot [expr $inst_tot + $profile]
set cycles_each [lindex $instruction 2]
set total_cycles [expr $profile * $cycles_each * $count]
set cur [expr ($total_cycles/$clock)/$issues_cycle]
set sum [expr $sum + $cur]

lappend breakdown "Execution time for [lindex $instruction 0] \
$cur seconds (profile; $profile, \
cycles each: $cycles_each, \
total cycles: $total_cycles)"

}

if {($inst_tot <= 0.99) || ($inst_tot >= 1.01)} {
set RESULT "FAILURE:\nInstruction freq totals not equal to 1.0'

} else {

set RESULT [data "Estimated Execution Time" $sum seconds]
lappend DETAIL [text "BREAKDOWN" [join $breakdown "\n"]]

}

}

#

# set_f req_froitLjnodel --
#

# Gets operation counts from an Application domain and builds a
# profile by adding some estimates for things like branch frequency.
#

meth set_freq_from_model nil {

#

# Get the operation counts from the application domain.
# Assume that the Floating Point Unit will be used if it exists.
#

set'add 0

set mul 0

set div 0

set fp_add 0

set fp_mul 0
set fp_div 0

if {$hasFlPtUnit} {

foreach item [run operation_count_model nil] {
switch -- [lindex $item 0] {

"real +" { set fp_add [lindex $item 1) }
"real *" { set fp_ji»ul [lindex $item 1] }
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"real /" { set fp_div [lindex $item 1] }
}

}
} else {

foreach item [run operatioi;_count_jnodel nil] {
switch -- [lindex $item 0] {

"real +" { set add [lindex $item 1] )
"real *" { set mul [lindex $item 1] }
"real /" { set div [lindex $item 1] }

}

)

}

# estimate we load and store a value 40 times

set mem [expr 40*[run memory_model nil]]

# this is core algorithm total operations
set total [expr $add+$mul+$div+$fp_add+$fp_mul+$fp_div+$mem]

# floating point intensive and integer intensive programs
# typically have significantly different profiles
# (FP: 5% branch, 20% other overhead INT; 18% brcinch, 20% other over

head)

if [ ($fp_add+$fp_jnul+$fp_div) >= ($total/100)} {
set total [expr $total + (0.25/0.75)*$total]
setParameter freqjbranch 0.05
setPararaeter freq_int [expr ($add / $total) + 0.2]

} else [

set total [expr $total + (0.38/0.62)*$total]
setParameter freq_branch 0.18
setParameter freq_int [expr ($add / $total) + 0.2]

}

setParameter fre<i_fp_add [expr $fp_add / $total]
setParameter freq_fp_jnul [expr $fp_mul / $total]
setParameter freq_fp_div [expr $fp_div / $total]
setParameter freq_int_jnul [expr $mul / $totall
setParameter freq_int_div [expr $div / $total]
setParameter freq_jnem [expr $mem / $total]

# total count is 5X the calculated count - this is an empirical fudge fac
tor

setParameter dyn_inst_cnt [expr int(5*$total)]

set RESULT "SUCCESS:\n set frequency from algorithm parameters"
}

#

# instCount - -

#

# Returns an estimate of the dynamic instruction count.
#

meth instCount nil {

run execTime nil

set RESULT \

[data "Dynamic instruction count: " [getParameter dyn_inst_cnt]]
}
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#

# DSP56K Architectural Model

#

# Author: Ole Bentz, 1996

#

Domain DSP56K -inherit GenericArchitecture {
###########################################################################
#

# Keywords for Searching
#

# key name [valuel] tvalue2]
#

key processor dsp56k motorola dsp 56k

###########################################################################
#

# Parameters

#

# parameter name [-group menuGroup] -varname varneune -value value \
# [-type type] [-keep] [-propagate]
#

###########################################################################
parameter "Has Floating Point Unit?" -varname hasFlPtUnit -value 0 -type int

• parameter "Clock Rate (Hertz)" -varname cycle_rate -value 27E6 -type float
parameter "Cycles Per Branch" -group "Cycle Times" -varname cycles_branch \

-value 2.0 -type float
parameter "Cycles Per Int ALU, Logic, Shift" -group "Cycle Times" \

-varname cycles_int -value 2.0 -type float
parameter "Cycles Per Int Mul" -group "Cycle Times" \

-varname cycles int_mul -value 2.0 -type float
parameter "Cycles Per Int Div" -group "Cycle Times" \

-varname cycles_int_div -value 8.0 -type float
parameter "Cycles Per Load/Store" -group "Cycle Times" -varname cycles_mem \

-value 8.0 -type float

parameter "Instructions Issued Per Cycle" -varname inst per cvcle \
-value 1.0 -type float

#

# Don't have a floating point unit, so set 'em to zero.
#

parameter "Cycles Per FP Add" -group "Cycle Times" -varname cycles_fp_add \
-value 0.0 -type float

parameter "Cycles Per FP Mul" -group "Cycle Times" -varname cycles_fp_jnul \
-value 0.0 -type float

parameter "Cycles Per FP Div" -group "Cycle Times" -varncune cycles_fp_div \
-value 0.0 -type float

###########################################################################
#

# Method Definitions

#

# meth nsime filetype script
#

###########################################################################
#
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# set_f req_fronLjnodel - -
#

# Gets operation counts from an Application domain and builds a
# profile by adding some estimates for things like branch frequency.
#

meth set_freq_fronLjnodel nil {
#

# Get the operation counts from the application domain.
# Assume that the Floating Point Unit will be used if it exists.
#

set add 0

set mul 0

set div 0

set fp_add 0
set fp_jnul 0

set fp_div 0

if {$hasFlPtUnit} {

foreach item [run operation_count_jnodel nil] {
switch -- [lindex $item 0] {

"real +" { set fp_add [lindex $item 1] }
"real *" { set fp_jnul [lindex $item 1] }
"real /" { set fp_div [lindex $item 1] }

}

}

} else {

foreach item [run operatioa_count_jnodel nil] {
switch -- [lindex $item 0] [

"real +" { set add [lindex $item 1] }
"real *" { set mul [lindex $item 1] }
"real /" { set div [lindex $item 1] }

}

}

1

# estimate that load/store of values can be masked by pipelining
set mem 0

# Assume that all mults can be done in conjunction with adds,
# therefore, we just need to find the max of (add,mul).
# This is often true when processors have a MAC xinit.
set add [expr $add > $mul ? $add ; $mul ]
set mul 0

# Assume that we always need to load at least one input and store
# one output. This is true for FIRs and IIRs.
# Each move costs 3 instructions (the movep is pretty slow)
# Count it in with the integer (add) operations,
set add [expr $add + 6]
set total (expr $add+$mul+$div+$fp_add+$fp_jnul+$fp_div+$mem]

# floating point intensive and integer intensive programs
# typically have significantly different profiles
# (FP: 5% branch 20% other overhead INT: 18% branch 20% other overhead)

# However, a DSP processor has some special tricks to handle loops
# etc., so the same profiles don't hold.
# Instead asstime a total overhead of 10%: 5% for branch, 5% for misc.
# This can cover some branch overhead, some memory overhead, etc.
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set total [expr $total + (0.1/0.9)*$total]
setParameter freq_branch 0.05
setParameter freq_int [expr ($add / $total) + 0.05]

setParameter freq_fp_add [expr $fp_add / $total]
setParameter freq_fp_jnul [expr $fp_j[iul / $total]
setParameter freq_fp_div [expr $fp_div / $total]
setParameter fre(i_int_jnul [expr $mul / $total]
setParameter freq_int_div [expr $div / $total]
setParcimeter freq_jnem [expr $mem / $total]

setParameter dyn_inst_cnt [expr int(ceil($total))]

set RESULT "SUCCESS:\n set frequency from algorithm parameters"
lappend DETAIL [text "ASSUMPTIONS" \

Assuming that one add/sub and one mult can be performed at the Scime time on \
the MAC unit, thus instead of using number_of_add+number_of_mults we use \
max(number_of_adds,number_of_mults). "\n" \
Assiaming that memory access times can be masked by other operations. "\n" \
Assuming that at least one input has to be loaded, and one output \
has to be stored, at a cost of 2 slow instructions (each is 3 times \
slower than an add). "\n" \
Assuming that there is a 10% overhead (e.g., 5% for branches, \
5% miscellaneous) "\n" \

]

}

}
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#

# UltraSPARC Architectural Model

# Author: Steven Chan, Nov 1996

#

Domain UltraSparc -inherit GenericArchitecture {

###########################################################################
#

# Keywords for Searching
#

# key name [valuel] [value2] ...

#

###########################################################################
key processor ultra ultrasparc sun

###########################################################################
#

# Parameters

#

# parameter name [-group menuGroup] -varname varnsune -value value \
# [-type type] [-keep] [-propagate]
#

###########################################################################
parameter "Clock Rate (Hertz)" -varname cycle_rate -value 168E6 \

-type float

parameter "Cycles Per Branch" -group "Cycle Times" -varname cycles_hranch \
-value 1.0 -type float

parameter "Cycles Per FP Add" -group "Cycle Times" -varneune cycles_fp_add \
-value 3.0 -type float

pareimeter "Cycles Per FP Mul" -group "Cycle Times" -varname cycles_fp_jnul \
-value 3.0 -type float

parameter "Cycles Per FP Div" -group "Cycle Times" -varname cycles_fp_div \
-value 12.0 -type float

parameter "Cycles Per Int ALU, Logic, Shift" -group "Cycle Times" \
-varname cycles_int -value 1.0 -type float

parauneter "Cycles Per Int Mul" -group "Cycle Times" -varname cycles_int_mul \
-value 2.0 -type float

parameter "Cycles Per Int Div" -group "Cycle Times" -varname cycles_int_div \
-value 4.0 -type float

parameter "Cycles Per Load/Store" -group "Cycle Times" -varneime cycles_mem \
-value 8.0 -type float

parameter "Instructions Issued Per Cycle" -varname inst_per_cycle \
-value 2.0 -type float

###########################################################################
#

# Method Definitions

#

# meth name filetype script
#

#

# set_freq_from_model - -
#
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# The UltraSparc uses the Scune model as in the GenericArchitecture domain.
# It just adds its own parameters as shown above. Therefore, the method is
# not defined here, since it is inherited from the GenericArchitecture
# domain.

#
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APPENDIX E

Database Access Program: Hyperlib

Hyperlib is a program which wasdeveloped as an example of an interface that can be

used by the Design Serverto accessa database. Hyperlib givesaccess to the characteriza

tions of library cells thatareavailable in the Hyper hardware library. Hyperlib hasseveral

command lineoptions that specifies whichdata to pull out of the library. The options are

Show the supply voltage used in the characterizations.

-Llib

Specifywhich Hyper library to use (default: low_power).

-1 inq

Specify what quantity to look for (area,height,width,delay).
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-c cell

Specify the cell name to look for (e.g., cla).

-f func

Specify which function to look under (e.g., +).

-p "par value"

Specify a parameter-value pair (e.g., "N 16").



APPENDIX F

Database Access Program: smy2da

Smv2da is a database access program that provides access to the OCX database used to

store the Structure Master \^ews (SMVs) in the Lager Silicon Compilation System.

Smv2da takes as its input an SMV and produces a file with the simple syntax shown

below. This file can easily be parsed by a script written in TCL. The information in the file

replicates only some of the essential features of the design. The features that are extracted

are all the instance names in a hierarchy and all parameters.

The syntax used in the output file consists ofa keyword and one or more arguments

per line:

keyword argl [arg2]...

The supported keywords are: designobject,parameter, subcell, and file. The syntax

and meaning ofeach are:
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designobject name

Specifies an instance by the name *name\

parameter name value

Specifies a parameter *name' with the given value.

subcell parent_name child_name

Specifies that design object *child_name' is a subcell ofdesign object

*parent_name\

file designobject_name filename

Specifies that the database for designobject_name can be found in 'filename*.

A sample output file generated by smv2da is shownbelow.The design is called "chip,"

and it has an instance"alu** which in turn instantiatesa register (reg), an adder (adder), and

two buffers (buf_l and buf_2).

designobject chip
parameter chip LAYOUT_GENERATOR {Flint -bm}

designobject chip_alu
subcell chip chip_alu
file chip_alu {alu/structure_master/contents;}
parameter chip_alu LAYOUT_GENERATOR {Flint -am}

parameter chip_alu STRUCTURE_PROCESSOR {dpp}
parameter chip_alu N {16}
designobject chip_alu_adder
subcell chip_alu chip_alu_adder

parameter chip_al\:L_adder STRUCTURE_INSTANCE {adder}
parameter chip_alu_adder N {N}
parameter chip_alu_adder CS_TYPE {s}
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file chip_alu_adder {~lager/coinmon/LagerIV/cellib/low_power/dpp/blocks/add/
structure_master/contents;}

designobject chip_alu_reg
subcell chip_alu chip_alu_reg
parameter chip_alu_reg N {N}
parameter chip_alu_reg CLKINV {0}
parameter chip_al\:L_reg FB {0}
file chip_alu_reg {~lager/common/LagerIV/cellib/low_power/dpp/blocks/tspcr/

structure_jnaster/contents;}
designobject chip_alu_buf_l
stibcell chip_alu chip_alu_buf_l
parameter chip_alu_buf_l N {N}

parameter chip_alu_buf_l SIZE {s}
file chip_alu_j3uf_l {~lager/common/LagerIV/cellib/low_power/dpp/blocks/tribuf/

structure_jnaster/contents;}
designobject chip_aluj3uf_2
subcell chip_alu chip_alu_buf_2
parameter chip_alu_buf_2 N {N}
parameter chip_alu_buf_2 SIZE {1}

file chip_alu_j3uf_2 {~lager/common/LagerIV/cellib/low_power/dpp/blocks/tribuf/
stnicture_master/contents;}
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APPENDIX G

The TILT Language

TILT is the Text-based Interface Language that wasdeveloped for the DesignServer. It

is a textual description ofuserinterface features thatcaneasily be translated toa variety of

graphical user interfaces, or to other languages such as HTML. TILTconsists ofnested

lists in the styleof TCL, and each TILT component is a TCL list (e.g., {document name

body}). TILT lists can be created usingstandard TCL commands, but it is highlyrecom

mended that developers use a set of commands that are provided to buildproperTILT

lists. The full syntaxof each of thesecommands is given below.

document name iteml [item2]...

Documents are generic compound entities that can contain any number of items of

different types. Items can be ofany TILT type except those that must be in a cer

tain context (i.e., "row" and "col").

text name iteml [item2]...
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Define a block of text with the heading "name", and with the elements iteml,

item2, etc. The items can be words, commands, other text blocks, etc.

data name value [units] [type]

Definea piece ofdata with the name "name", and with the given value. Optionally,

units can be given (e.g., mm'̂ '̂ 2), and a type can be specified (e.g., "integer,"

"float," "string") If a type is not given, it will be inferred.

command name ds_command [argl]...

Define a command "name" which invokes the Design Server command

"ds_command". When ds_command is invoked, the arguments (if given)are

passed to it.

menu name menu_args

Define a command menuby the given name. The way the name is used is depen

dent upon translators (e.g., a TILT-HTML translator), but it is typically usedas the

textdisplayed on a menu button. The menu_args can be any numberof TILT

"command" or "menu" items, or an empty list {}. Ifmenu items are used, it will

cause hierarchical menus to be created. If an empty list is used, it will create a

menu separator, if available in the translator.

selectOne name args
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Define a listof options. Only one of theoptions canbe declared "on" at anygiven

time. Thiscanbe interpreted as a "radio-button" type interface. Eachargument

must be a list of {option value [on]} where "option" is the text to display, "value"

is the value usedif this item is selected, and the optional "on" can be used to spec

ify that an item should be selected.

selectOneMenu name iteml [item2]...

Definea list ofoptions to be displayed in a menu. One of the options can be

selected at a time, and the label of the menu (button) takes on the value of the

selected item. If a user interface is not capable of this type ofmenu button, this

keyword should function like selectOne. Each item must be of the form {option

[on]}, where option is a string and "on" indicates which of the items is on initially.

selectMultiple name args

Define a list of options, any ofwhich can be selected at a given time. This can be

interpreted as a "check-button" type interface. Each argument must be of the form

{optionvalue [on]}, and any number of the options can be declared "on."

listSelectOne name size args

Define a (scrollable) list ofoptions of which one can be selected at a time. The

"size" argument indicates the visible length of the list. Eachargument mustbe of

the form {option value [on]}.
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listSelectMultiplename args

Define a (scrollable) list of options ofwhichanynumbercan be selectedat a time.

Eachargument mustbe of the form {option value [on]}.

table name row! [row2]...

Declare a table consisting ofTILT rows.

row name coll [col2]...

Declare a row (in a table). A row consists ofTILT columns.

col name item

Declarea column item(in a row, whichis in a table). The itemcan be: one or more

words, a command, selectOne, selectMultiple, entrybox, textbox.

entiybox name [string] [width] [silent]

Define an entry box where the user can enter/edit one line of text. Initialize it with

the optional string. Optionally, define the width of the box in characters. The

"silent" option can be used to enter passwords or other sensitive information.

textbox name [text] [width] [height]

Define a text box where the user can enter/edit several lines of text. Initialize it

with theoptional text. Give it theoptional width and height if the interface sup-
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ports it.

submit name ds^command args

Define a "submit" command, i.e.,a command which specifies whatto dowithdata

which is entered bya user through entiyboxes/textboxes/selectOne/etc. The argu

mentsshouldbe anycombination ofwords and names of the entry itemsthat

appear in a document. The submit commandMUSTappear at least one "level"

higher than ANY entrybox/textbox/etc. in a TILT document. Here isanexample in

TCL syntax:

set tilt_doc [document "Login" \
[text "" Please enter your name: [entrybox user "" 20]] \
[submit OK ds_login -user user]]

This example creates a TILT document called"Login",which contains a "text"

item and a "submit" item. The "text" item has no heading (""), and contains four

words and a TILT entrybox. The"entrybox" has the name"user" (which will reap

pear in the "submit" item), no initial text (""), and will be 20 characters wide. The

"submit" command will appear as "OK" (e.g., on a button), and when invoked the

command "ds_login"will be sent to the DesignServerwith the arguments "-user

joe", ifthe user typedthe string"joe" in the entrybox. Noticethat the word"-user"

passes through untouched, but the word '*user", which matches the name of the

entrybox, is replaced by the contents of the entrybox.Notice also that the "submit"

item is not inside the "text" item (whichwouldput it at the same"level" as the

entiybox), but is (at least) one level higher.
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tiltError error_message

This routine returns a TILT document, as if this command had been executed:

document "DesignServer Error" [text "ErrorMessage" Smessage]]

image name type file

Define an image of the given type(e.g., GIF, JPEG) found in the given file. If an

image type is notsupported by a user interface, thebehavior is dependent on the

translator.



APPENDIX H

Practical Considerations Regarding the
Design Server

Since the Design Server runs as a background process and has no user interface

built-in, it is necessary to explain how designers can use external interfaces to interact with

the Server. The following sections describe some practicalconsiderations on howto start

the Server and interact with it.

H.l. Starting the Design Server

TheDesign Server requires a certain operating environment which includes pathsand

environment variables. This environment is defined in a "setup" file which thedesigner

needs to source prior to starting the Design Server.

One of the environment variables that are defined in the setup file is called

"DA_PORT". This variable isused todetermine theportnumber which the Design Server

will use when setting upits communications port. The value of"DA_PORT' is important

because it is a part of the address which external interfaces need to connect to the Server.
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The full address, following the conventions used in the World Wide Web, is

http://hostname:port/designAgent

where hostname is the name of the computerwhere the Serveris running,and where

port is the value of the DA_PORT environment variable.

Aftersourcing the setupfile, the Design Servercan be started from a UNIX prompt

with this command:

% da &

This conunand starts the Design Server as a background process. The Server loads all

known domains, and opens the communication port described above. It then waits for a

designer to initiateaccess throughan externaluser interfaceor a design interface tool.

The Design Server occasionally needs to print run-time information on the terminal

fi'om which it wasstarted. However, this information canbe redirected to a designer's user

interface, to enable the designer to view it from any location.

The Design Server can alternately be started from a Web browser. In this case most of

the issuesdiscussed above canbe hiddenor automated, but the Serverwill run as a generic

user without the privileges the designer may otherwise have. There has to be a set of

underlying scripts or programs to automate the process ofsetting up the proper environ

ment and invoking the Design Server. One implementation has been developed, which dis

patches the Server to a remote host, automatically determines an available port number.
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sources the setup script, and provides convenient links that allow the user to

point-and-click to access the Server.

H.2. Modes of Interactions

Interactionstake place throughuser interfacesthat are built on top of the text-based

language "TILT* (see Appendix G), whichwas developed specifically for the Design

Server. User interfaces are external clients that access the Design Server through the net

work. There are two useful forms of interfaces; graphical user interfaces and text-based

interfaces. In most casesa graphical user interface can betterconvey information to the

user, and at the same time can facilitate text-based input. The only user interface that has

been fiilly developed translates the Server's TILToutput to HTML, which can be viewed

in a Web browsersuch as Netscape Navigatorand Microsoft Explorer. In these cases the

Web browsersare essentially used as graphicaluser interfaces. The main requirements for

graphical user interfaces are that all TILT elements can be represented graphically, and

that the interface is capable ofaccessing the Design Server via the Web.

Interfaces can also be purely textual, which is convenient for certain interactions, such

as a "single request" interaction. Singlerequest interaction is when designspecifications

and a request are given together, and the search engine is used to propose appropriate con

texts before the request is interpreted and evaluated. Such interface should be available as

a regular conunand (e.g., from a UNIX conunand line), and can be relativelysimple,pro

viding just the following functionality:



216

1. Facilitate User Identilicatioh - promptthe designerfor user name (or find it automati

cally, ifpossible) and password.

2. Accept Specifications - prompt the designer for a list ofdesign specifications for use

by the search engine. One of the specificationwords should be a request for informa

tion.

3. List Proposed Contexts - showthe list of contexts proposed by the searchengine, and

let the designer choose. Alternately, if desired, automatically choose the first context.

4. Facilitate Command Resolution - after the context is chosen, the environment can

interpret the request. If there are several possible interpretations, the designermust be

prompted for a decision. Alternately, ifdesired, the first command can be chosen.

5. Show Results - display the results that are returned from the environment.

As a third alternative, the Design Servercan be encapsulated by other tools. One

example of sucha tool is the HighLevel BlockEditor(HLBE) developed by SholaOlateju

[01ateju96]. TheHLBE lets a designer construct a high-level blockdiagram of a design,

and each blockcan be annotated with properties. The HLBEconnects to the Design

Server, sends theblockdiagram, andconveniently opens a Web browser to let thedesigner

interact with the Server. The Server tries to establish a context for each block (object) by

using the given properties to find relevant domains.
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H.3. The Design Object Interface

TheDesign Server is an object-oriented environment, so it is important to describe the

designer's view of the main object, the design object. Almost all commands have to be

directed to a design object. The exceptions to this are the "globalcommands" which

allows designers to choosebetweenexisting designobjects, and to shut the Serverdown.

A design object is capable of listing the requests that can be handled in the current

context. This is an important capability since theset of possible requests changes over

timeas the object's context or design specifications change. FigureH-1 shows the list of

available requests, ingroups or lists called "menus," and it also shows theresult ofmaking

a request,whetherthe request is going to returnanother list ofcommands (e.g., the admin

istrative request), a listof names andvalues (e.g., the parameters request), or perhaps a

prompt for more information (e.g., the specification request).

The design object is always able to handle a set of"static" commands to view or mod

ify the context, theparameters, etc. It alsohas four dynamically changing categories.

View, Guidance, Optimization, and Action. Each ofthese categories will show onlythe

commands that are available and "enabled" in the given context. A command is enabled

when the context containsat least one scriptwhichcan performthe command, and the

design object hasat leastonefile of the types required (if any) by theavailable scripts.

A few items deserve explanation:

Details Menu - lists the available detailsassociated withprevious results.
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Design Object Menu
Administrative

Specifications
Context

Exploration
Parameters
Constraints

Files

Subcells

Details

VIEW

GUIDANCE

OPTIMIZATION

ACTION

Admin. Menu
Local

Save
Delete

Global

New
Kill Server Spec. Menu

Current Specs
Add Specs

Context Menu
Domains in context
Add/Delete domains

Exploration Menu
Request:
Bounds (parameters,
domains, files)

Param. Menu
name default value

Constraint Menu
parameter constraints
metric constraints

File Menu
filename - filetype

execute
commands Subcell Menu

list of subcells

Result Menu
Result
Details
Execution Trace

Details Menu
list of details

Figure H-1. Menu Organization.

Exploration Menu- facilitates automated exploration, where thedesigner has to give a

request and the bounds of what to explore. Exploration can be based on parameters, a

list of domains, or a list of files. For parameters, the starting value, increment and end

ing value have to be given.For domains, a list has to be given,and each domain will in

turn be substituted into the context, before the request is evaluated. For a list of files.
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the request will be evaluated for eachof the given files.

Files - shows the files that are associated with the design object. It also provides a way to

add orremove files from the object. Usually file management ishandled transparently,

but in some cases it is necessary to notify a design object thata certain file should be

considereda part of the design.

Result Menu - shows the result obtained byevaluating a script. It can also list any number

of "Details." Detailsare createdby a script to communicate information in addition to

the result. A typical example of a detail is to show thebreakdown of a summation,

such as how the components ofa chip contribute to the overall area. The result menu

also has an"Execution Trace" command, which isgenerated automatically as a script

is evaluated. This is useful after-the-fact todetermine how a result was produced.

Since scripts often call other scripts, and since it is sometimes determinedat run-time

which script will be called, the execution trace can be very informative.

H.4. Summary

This appendix gave anoverview of some practical considerations regarding theuseof

theDesign Server. This information should beadequate tohelp a new usergetstarted. For

an overview of typical design flows, please read Chapter6.


	Copyright notice 1997
	ERL-97-47

