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Abstract

Control and Simulation of Multibody Systems

by

Jeflfrey Michael Wendlandt

Doctor of Philosophy in Mechanical Engineering

University of California at Berkeley

Professor S. Shankar Sastry, Cochair
Professor Kameshwar Poolla, Cochair

Algorithms for the control 8md simulation of multibody systems are created in this dis

sertation to aid in the design of controlled mechanical systems. A multibody system is

a collection of rigid bodies connected by joints and serves as a basis for many models of

mechanical systems. A procedure is created to construct mechanical integrators for La-

grangian systems with holonomic constraints. Mechanical integrators are numerical inte

grators that respect the structure of mechanical systems and conserve energy, momentum,

and / or are symplectic. The construction procedure creates symplectic-momentum inte

grators based on a discrete variational principle and discretizes the principles of mechanics

rather than the equations of motion. The method is applied to the double spherical pen

dulum and the free rigid body, and numerical results are given. A 3D balancing controller

is designed for a multibody model of a human biped. The controller utilizes recursive

multibody dynamics algorithms, forms a workspace model, eflSciently calculates kinematics



and joint torques, and coordinates the degrees of freedom of the two legs. The controller

is designed to serve as a basis for more complicated motions: walking, running, jump

ing, chsmging direction, and adapting to loads. Simulation results are presented of the

controlled model reacting to disturbances. Recursive multibody algorithms for forward

kinematics, inverse dynamics, and forward dynamics of tree-structured mtiltibody systems

are derived using Lie group notation. Components of a multibody simulator specifically

designed for real-time simiilation of human biped models interacting with the ground are

designed. A simple contact model is developed, and the mechzinical integrators with exter

nal forces are used. Simulation results ofa rigid body colliding with the ground are given.

Discrete-time equations of motion for tree-structured multibody systems are derived, and

a method is developed to solve the equations with a computational cost that grows linearly

with the number of joints. The dissertation concludes with a discussion of future work.
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Dissertation Committee Cochadr

Ltib-
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Dissertation Committee Cochair



Ill

For Dalila



IV

Contents

List of Figures vii

List of Tables ix

List of Algorithms x

1 Introduction 1
1.1 Contributions 3
1.2 Outline 4
1.3 Mathematical Tools Required 6

2 Mechanical Integrators 8
2.1 Discrete Variational Principle 13
2.2 Invariance Properties 14

2.2.1 Symplectic Structure 15
2.2.2 Preservation of the Symplectic Form 16
2.2.3 Discrete Noether's Theorem 16

2.3 Construction of Mechanical Integrators 17
2.3.1 Constrained Coordinate Formulation 18
2.3.2 Generalized Coordinate Formulation 22
2.3.3 Equivalence of the Formulations 23
2.3.4 Jacobian Structure 26
2.3.5 Local Truncation Error and Solvability 27
2.3.6 Symplectic Form and Discrete Momentum Map 28

2.4 Numerical Examples 30
2.4.1 Rigid Body 31
2.4.2 Double Spherical Pendulum 38

2.5 Chapter Summary 45

3 Recursive Multibody Kinematics and Dynamics 48
3.1 IVee-Structured Systems 50
3.2 Multibody Kinematics 51



3.2.1 Forward Kinematics 52
3.2.2 Joint Kinematics 54
3.2.3 Forward Kinematics Algorithm 56

3.3 Inverse Multibody Dynamics 56
3.3.1 Rigid Body Dynsimics 57
3.3.2 Joint Torque 58
3.3.3 Inverse Dynsunics Algorithm 59
3.3.4 Factorization of the £)quations of Motion 60

3.4 Forward Multibody Dynamics 63
3.4.1 Articulated Body Inertias and Bias Forces 64
3.4.2 Derivation of the Recursive Forward Dynamics Algorithm 64
3.4.3 Recursive Dynamics Algorithm 69

3.5 Chapter Sununary 70

4 Recursive Workspace Control 71
4.1 Description of Biped Model 76
4.2 Recursive Workspace Controller 79

4.2.1 Initialization 81
4.2.2 Forward Kinematics 82
4.2.3 Workspace Dynamics Calculation 83
4.2.4 Desired Wrench Cedculation 84
4.2.5 Desired Wrench Distribution 90
4.2.6 Torque Calculation 92

4.3 Simulation Results 93
4.4 Chapter Summary 107

5 Components of a Multibody Simulator 110
5.1 External Forces II4
5.2 Simple Contact Model 116
5.3 Rigid Body Motion with Contact 119
5.4 Multibody Integrator 124

5.4.1 Notation 126
5.4.2 Discrete-Time Equations 128
5.4.3 Jacobian Structure 130
5.4.4 Sparse Solving Algorithm 131

5.5 Chapter Summary I34

6 Conclusion I37
6.1 Future Work I39

A Robotics Background 142
A.l Rotation Matrices 142
A.2 Angular Velocities I43
A.3 Quaternions I43
A.4 Rigid Body IVansformations I47



VI

A.5 Twists 148
A.6 Adjoints I49
A.7 Wrenches and Wrench Transformations 149
A.8 Robot Equations of Motion 150
A.9 Computed Torque Control 150

Bibliography 151



Vll

List of Figures

2.1 Comparison of Continuous and Discrete Formulations of Mechanics 25
2.2 CPU Time Versus Time Step for the Rigid Body Simulation 35
2.3 Quaternion Error Versus Time Step 36
2.4 Quaternion Coordinate Versus Time 36
2.5 Energy Error Versus Time Step for the Rigid Body Simulation 37
2.6 Momentum Error Versus Time Step for the Rigid Body Simulation 38
2.7 CPU Time Versus Time Step for the DSP Simulation 41
2.8 Position Error Versus Time Step for the DSP Simulation 42
2.9 Position Coordinate Versus Time for the DSP Simulation 44
2.10 Energy Error Versus Time Step for the DSP Simulation 44
2.11 Momentum Error Versus Time Step for the DSP Simulation 45
2.12 Energy and Multipliers Versus Time for the DSP Simulation 46

3.1 Tree-Structured Multibody Example 51

4.1 Biped Model 76
4.2 Controller Block Diagram 73
4.3 Joint Angles for Experiment 1 96
4.4 Joint Torques for Experiment 1 97
4.5 Body Position for Experiment 1 97
4.6 Body Orientation for Experiment 1 93
4.7 Body Position Error for Experiment 1 99
4.8 Body Orientation Error for Experiment 1 . . . 99
4.9 Desired Body Force for Experiment 1 100
4.10 Desired Body Torque for Experiment 1 100
4.11 Screen Captmre of Experiment 2 lOi
4.12 Joint Angles for Experiment 2 IO2
4.13 Joint Torques for Experiment 2 103
4.14 Body Position for Experiment 2 103
4.15 Body Orientation for Experiment 2 IO4
4.16 Body Position Error for Experiment 2 IO5
4.17 Body Orientation Error for Experiment 2 105



Vlll

4.18 Desired Body Force for Experiment 2 106
4.19 Desired Body Torque for Experiment 2 107

5.1 Point Contact Model 117
5.2 Rigid Body in Contact with the Ground 119
5.3 Center of Mass for the Contact Simulation 123
5.4 Quaternion Orientation for the Contact Simulation 124
5.5 Friction States for the Contact Simulation 125
5.6 Number of Newton-Raphson Iterations for the Contact Simulation 125



IX

List of Tables

2.1 Simulation Results for the Rigid Body Simulation 34
2.2 Simulation Results for the DSP Simulation 43



List of Algorithms

3.1 Forward Kinematics for Tree-Structured Multibody Systems 57

3.2 Inverse Dynamics for IVee-Structured Multibody Systems 59

3.3 Forward Dynamics for Tree-Structured Multibody Systems 69

4.1 Controller Initialization 81

4.2 Forward Kinematics 82

4.3 Workspace Dynamics Calculation 83

4.4 Desired Wrench Calculation 91

4.5 Desired Wrench Distribution 93

4.6 Torque Calculation 94

5.1 Sparse Solving Algorithm for IVee-Structured MultibodySystems 135



XI

Acknowledgements

I first would like to thank Shankax Sastry for aU of his advice, support, encourage

ment, and enthusiasm over the years. I am grateful to be a part of the Intelligent Machines

and Robotics Laboratory and have benefited greatly from the unique environment.

I would like to thank Jerry Marsden for his support and advice over the past

several years. It was a pleasure working with him, and I have learned a great deal from the

experience.

I would like to thank Kameshwar Poolla and Andy Packard for being on my

committee and for giving me advice throughout graduate school.

I have enjoyed the company of many interesting graduate students and researchers.

Thanks to Matt Berkemeier, Steve Burgett, Linda Bushnell, Michael Cohn, Charles Cole-

man, Lara Crawford, Richard Edell, Neil Getz, Datta Godbole, Raja Kadiyalla, John

Lygeros, Brian Mirtich, Ed Nicolson, George Pappas, Eric Paulos, Karl Petty, Shahram

Shahruz, Dawn Tilbury, Claire Tomlin, Greg Walsh, Joe Weber, and many others for all of

their help, interesting discussions, and encouragement.

I would like to thank Richard Murray for his advice, encouragement, and enthusi

asm over the years. I would like to thank him and Abhi Jain for their help with an initial

investigation of simulation techniques.

I would like to thank Ping Hsu for his advice, friendship, and encouragement to

piursue the Ph.D. degree. Thanks also to George Mulholland for introducing me to design

and control as a co-op student at Fermilab.

I thankNSF (graduate student fellowship), ARO (DAAH-O4-96-1-0119 (AASERT),



Xll

DAAH-04-95-1-0588), and DOE (DEi-FG03095ER-25251) for financial support.

I would like to thank my family and parents for much love and support. I would

like to thank my parents for encouraging me to do well in school. Little did they know that

their 5 year old son would be in school for 24 years.

A big thanks to my wife, Dalila, for her love, support, and encouragement to

graduate.



Chapter 1

Introduction

This dissertation is concerned with creating better algorithms for the control and

simulation of multibody systems - collections of rigid bodies interconnected with joints. New

algorithms are created in this dissertation to aid in designing, prototyping, and developing

controlled mechanical systems by exploiting the structme of multibody systems. Specifi

cally, a balancing controller for a 3D multibody model of a human biped is created, and

mechanical integrators (preserve energy, momentum, smd/or are symplectic- see (Meirsden,

1992)) are created for Lagrangian systems with holonomic constraints.

Multibody systems serve as a basis for many models of mechanical systems and

have uses in many areas of science and engineering. Multibody models are used to ana

lyze biological systems and human locomotion. Controlled mechanical systems are often

prototyped through computer simulation of multibody models. There are uses in medical

robotics, space robotics, and space structures. There are also applications in animation

systems. The specific application examined in this dissertation is the creation of predictive



models of human motion. The intent of these models is to be able to predict the motion of

human models in various situations and aid in training and equipment design.

For certain applications, it is important to preserve the underlying mechanical

structure of the system. For example, in space applications, momentum conservation is

critical, especially for long-time simulations. Energy conservation and invariance of the

symplectic form (an abstract property ofHamiltonian systems to be described in Chapter2)

seems important for long-term simulation and for obtaining qualitative information from

simulations. For instemce, symplectic integrators have found uses in predicting the long-

term motion of planets and comets in the solar system. One can imagine that symplectic-

momentum or energy-momentum integration methods are useful for long-term simulation

of spacecraft and space robots.

Many researchers have attacked the problem of multibody simulation and many

books have been written on the subject (for a sampling, see (Schiehlen, 1993), (de Jalon and

Bayo, 1994), (Shabana, 1989), and (Amirouche, 1992)). Multibody systems require special

techniques to deal with the complex equations of motion and require computer algorithms

for efficient simulation. However, there is a lack of mechanical integrators for multibody

systems and certain applications suffer from a lack of good simulation tools. The work in

this dissertation sets out to create mechanical integrators for these systems.

While there has been a significant amount of research in multibody simulation,

there has been much less progress in the development of good tools for the design of multi-

body control systems, especially for systems with contact. The current control methods

available for these systems are difficult to apply and to customize for specific properties.



Designers of controlled multibody systems should have good tools to aid in the creation of

controlled mechaniced systems, especially multibody systems with many degrees of freedom.

The control methods should be able to handle model changes, contact with the environ

ment, and coordination of the degrees of freedom. The control algorithms must be able to

create the desired behavior in the face of very complex, nonlinear equations of motion with

discrete model changes.

1.1 Contributions

The main contributions of this dissertation are:

• A general methodology to create symplectic-momentum mechanical integrators for La-

grangian systems with holonomic constraints. The methodology has an elegant the

oretical basis and geometric construction that is simple to apply. The construction

procedure is applied to the double spherical pendulum, a rigid body, and multibody

systems. The methodology providestheoretical insights into existingintegration meth

ods while also creating new integration methods.

• The creation of a 3D balancing controller for a multibody model of a human biped. The

legged model has 18degrees of freedom, and the controller commands 12joint torques

to respond to desired trajectories and disturbances. The controller gains are easy to

tune, and the controller has a large operating region. The controller is designed to

serve as a basis for more complicated motion: walking, runnings jumping, changing

direction, and adapting to loads.



• The design of a multibody simulator well-suited for the development of control algo

rithms for human motion. The control development platform is designedfor real-time

simulationof human motion and specifically designed for prototyping and testing con

trol systems. External forces are added to the mechanical integration method, and a

simple contact model is designed. The mechanical integration method is applied to

tree-structured multibody systems. Sparsity can be exploited to produce a simulation

method where the computational cost grows linearly with the number of degrees of

fireedom.

• The derivation of existing recursive multibody kinematics and dynamics algorithms

for tree-structured systems in terms of Lie group notation. The recursive algorithms

extend the formalism presented in (Murray et al., 1994) and can be used on robotic

systems more complicated than serial chains.

1.2 Outline

The body of the dissertation consists of four chapters each dealing with aspects of

the control and simulation of multibody systems.

• Chapter 2 - Mechanical Integrators. This chapter develops a method to construct

symplectic-momentum integrators for Lagrangian systems with holonomic constraints.

Simulations of mechanical systems are often performed by deriving the continuous-

time differential equations of motion using principles of mechanics and then by ap

plying a standard integration method to the differential equations. In this chapter,

the principles of mechanics are discretized instead of the equations of motion. A ver-



sion of discrete mechanics is introduced, and it is then shown how to use the theory

to construct numerical integrators. The construction procedure produces symplectic-

momentum integrators for Lagrangian systems with holonomic constraints. The the

ory is applied to the double spherical pendulum (DSP) and the rigid body (RB).

Numerical results are then presented.

• Chapter 3 - Recursive Multibody Kinematics and Dynamics. This chapter

develops recursive, linear-time algorithms to compute the forward kinematics, inverse

dynamics, and forward dynamics of tree-structured multibody systems. The algo

rithmsare derived based on the Lie group notation used in (Murray et al., 1994). The

chapter primarily serves as a reference and derives existingresults. Chapters 4 and 5

use the results in this chapter.

• Chapter 4 - Recursive Workspace Control. A model-based balancing controller

for a 3D model of a human biped is designed and presented. Recursive multibody

algorithms are developed to efficiently create a workspace model and to compute the

joint torques and kinematics. The controller is designed to have a small number of

parameters, a large operating region, to be easy to tune, and to serve as a basis

for more complicated motion: walking, rimning, jumping, changing direction, and

adapting to loads. Thesystem issimulated in Impulse (Mirtich, 1996) and simulation

results are presented.

• Chapter 5 - Components of a Multibody Simulator. This chapter presents

components for a multibody simulator specifically designed for the simulation of con

trolled multibody models ofhuman bipeds in contact withthe ground. The methods in



Chapter 2 are first extendedto include general external forces. A simplecontact model

is then designed to model the interaction of the feet with the ground. The contact

model and a discrete-time rigid body model are combined, and simulation results of a

rigid body colliding with the ground are presented. The techniques are then applied

to tree-structured multibody systems to produce a symplectic-momentum mechanical

integrator that can be combined with controller torques and the contact model. The

discrete-time equations of motion are given and an algorithm to solve the equations

in linear computational time is derived.

1.3 Mathematical Tools Required

This dissertation assumes the reader has a background in robotics, difierential

geometry, and geometric mechanics. The primary references used in this dissertation are

(Murray et al., 1994), (Marsden and Ratiu, 1994), and (Munkres, 1991).

• Chapter 2. This chapter assumes a background in difierential geometry (manifolds,

difierential forms, tangent spaces, cotangent spaces, exterior derivative, pull-backs,

mappings) and geometric mechanics (Lagrangian mechanics, Hamiltonian mechan

ics, Noether's theorem, S3rmplectic forms). Consult (Munkres, 1991) for an excellent

background on manifolds in K", difierential forms, the exterior derivative, and several

other useful topics. Chapter 4 in (Marsden and Ratiu, 1994) gives a more abstract

backgroimd in the necessary topics in difierential geometry. See also (Abraham et al.,

1988) for a background in difierential geometry. This dissertation uses (Maxsden and

Ratiu, 1994) as a primary reference for geometric mechanics. See this work for a



background in Lagrangian mechanics, Hamiltonian mechanics, momentum maps. Lie

group theory, and Noether's theorem. See also (Scheck, 1990) for a straightforward

proof of Noether's theorem and a background in Lagrangian and Hamiltonian me

chanics. The results on rigid body motion and quaternions given in Appendix A are

also needed in this chapter.

• Chapter 3. This chapter assumes a familiarity with robotics and rigid body motion

and uses (Murray et al., 1994) as a primary reference. The notation used is assembled

in Appendix A for convenience.

• Chapter 4. Thischapter builds on the work in Chapter 3 and requires a knowledge

of the mathematical tools for rigid body motion and quaternions. Again, these tools

are contained in Appendix A.

• Chapter 5. This chapter builds on the work in Chapter 2 and 3. Familiarity with

rigid body motion is assumed. Quaternions are used to represent the orientation of

frames, and results on quaternions are given in Appendix A.



Chapter 2

Mechanical Integrators

Goals. The goal of the research in this chapter is to create a systematic procedure to

construct mechanical integrators for simulating finite dimensional mechanical systems with

symmetry. The method presented in this chapter is based on a discretization of Hamil

ton's principle. It is desirable that the method be theoretically attractive and numerically

competitive.

Mechanical Integrators. These are numericeil integration methods that preserve some

of the invariants of the mechamical system, such as, energy, momentum, or the symplectic

form. It is known that if the energy and momentum map include all the integrals from a

certain class (depending on the smoothness available), then one. cannot create integrators

that aresymplectic, energy preserving, and momentum preserving unless theycoincidentally

integrate the equations exactly up to a timeparameterization (see (Ge and Marsden, 1988)

for the exact statement). Thus, mechanical integrators divide into two overall classes,

symplectic-momentum and energy-momentum integrators. It is the hope that by exploiting



the structure of mechanical systems, one can create mechanical integrators that are not

only theoretically attractive, but are more computationally efficient and have better long

term simulation properties thsm conventional integration schemes. The overall situation for

mechanical integrators is complex, and it is still evolving. Refer to (Marsden et al., 1996)

for a recent collection of papers in the area and for additionsd references and to (Marsden,

1992) for some additional background.

The Main Technique. The research in this chapter creates a method to construct

symplectic-momentum integrators for Lagrangian systems defined on a linear space with

holonomic constraints. The constraint manifold, Q, is regarded as embedded in the linear

space, y. A discrete version of the Lagrangian is then formed and a discrete variational

principle is applied to the discrete Lagrangian system. The resulting discrete equations

define an implicit (explicit in some caises) numerical integration algorithm on Q x Q that

approximates the flow of the continuous Euler-Lagrange equations on TQ. The algorithm

equations are called the discrete Euler-Lagrange (DEL) equations. Holonomic constraints

are treated through constraint functions on the linear space. The constraints are satisfied

at each time step through the use of Lagrange multipliers.

The DEL equations sharesimilarities to the continuous Euler-Lagrange equations.

The DEL equations preserve a symplectic form defined in this chapter and preserve a

discrete momentum derived through a discrete Noether's theorem. The discrete momentum

corresponding to invariance of the continuous Lagrangian system to a lineargroup action is

conserved, and the value of the discrete momentum approaches the value of the continuous

momentum as the step size decreases. In general, the method does not preserve energy for
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conservative Lagrangian systems, but the numerical examples suggest that the energy varies

about a constant value. The energy variations decrease and the constant value approaches

the continuous energy as the step size decreases.

Accuracy. The construction method produces 2>step methods that have a second order

local truncation error. The position error in the numerical examples show second order

convergence. One may be able to use the ideas in (Yoshida, 1990) to increase the order of

accuracy. One may also add additional points to the variational principle to create more

steps or more stages.

Some of the Literature. This chapter uses the discrete variational principle presented

in (Veselov, 1988) and again in (Veselov, 1991) and (Moser and Veselov, 1991). It is shown

in (Veselov, 1988) that the DEL equations preserve a symplectic form. The same discrete

mechanics procedure is derived in (Baez and Gilliam, 1995) using an algebraic approach,

and they also show that there is a discrete Noether's theorem for infinitesimal symmetry.

Various authors have proposed versions of discrete mechanics. Some study dis

crete mechanics without the motivation of constructing integration schemes while this is

a definite motivation for other authors. In (Maeda, 1981), the author presents a version

of discrete mechanics based on the concept of a difiference space. The author later shows

how to derive the discrete equations from a discrete version of Hamilton's variational prin

ciple, the same discretization later used in (Veselov, 1988). The author in (Maeda, 1981)

also presents a version of Noether's theorem. A different approach to discrete mechanics

for point mass systems not derived from a variational principle is shown in (Labudde and
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Greenspan, 1974), (Labudde and Greenspan, 1976a), and (Labudde and Greenspan, 1976b).

These algorithms preserve energy and momentum. The author in (MacKay, 1992) discusses

methods to approximate the action integral and to use Hamilton's principle to create nu

merical integrators. The authors in (Lewis and Kostelec, 1996) use Hamilton's principle

and restricted function spaces to create integration algorithms. The discrete mechanics

approach in (Veselov, 1988) is adopted in this dissertation.

Some authors discretize the principleof least action instead of Hamilton's princi

ple. Algorithms that conserve the Hamiltonian are derived in (Itoh and Abe, 1988) based

on difference quotients. Differentiation is not used and the action is extremized usingvari-

ational difference quotients. This development presents multistep methods with variable

time steps. The least action principle is discretized in a different way in (Shibberu, 1994).

The resultingequations explicitly enforce energy, and it is stated that the equationspreserve

quadratic invariants.

Various energy-momentum integrators have been developed by Simo and his co-

workers. See, for example, (Simo and Tarnow, 1992). Recently, energy-momentum inte

grators have been derived based on discrete directional derivatives and discrete versions of

Hamiltonian mechanics in (Gonzalez, 1996a). More references on energy-momentum meth

ods are in the reference section of (Gonzalez, 1996a) and in (Gonzalez, 1996b). Symplectic,

momentum and energy conserving schemes for the rigid body are presented in (Lewis and

Simo, 1995).

There is a vast amount of literature on symplectic schemes for Hamiltonian sys

tems. The overview of symplectic integrators in (Sanz-Serna, 1991) provides background
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and references. See also (Channell and Scovel, 1990) for a survey of the early work and

(McLachlan and Scovel, 1996) for a presentation ofopen problems in symplectic integra

tion. References related to the work shown in thischapter are (Reich, 1993), (Reich, 1994),

(McLachlan and Scovel, 1995), and (Jay, 1996). In (Reich, 1993), an integration method is

presented for Hamiltonian systems that enforces position and velocity constraints in such a

way to make the overall methodsymplectic. It is shown in (Reich, 1994) and in (McLachlzm

and Scovel, 1995) that the algorithm also conserves momentum corresponding to a linear

symmetry group when the constraint manifold is embedded in a linear space. For another

treatment of algorithms formed by embedding the constraint manifold in a linear space,

see (Bairth and Leimkuhler, 1996b). See (Leimkuhler and Patrick, 1996) for a treatment of

symplectic integration on Riemannian manifolds. The algorithm presented in this chapter

also embeds the constraint manifold in a linear space but only enforces position constraints.

Contributions. The dissertation work in this chapter formulates and develops a general

approach to discrete mechanics by buildingon the work in (Maeda, 1981) and in (Veselov,

1988). These results are used to create a general method for constructing symplectic-

momentum integrators for Lagrangian systems with holonomic constraints. An equivalent

algorithm is presented in terms of generalized coordinates where the constraint equations

are eliminated.

Outline of the Chapter. The theory for discrete mechanics is first developed and pre

sented in a consistent notation by presentingthe discretevariationalprinciple(DVP) and by

deriving the properties of the discrete Euler-Lagrange (DEL) equations. The discrete me-
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chanics theory is then used to develop a construction procedure for mechanical integrators.

A construction procedure is presented for constrained and generalized coordinates followed

by a discussion of the structure of the Jacobian relevant to solving the DEL equations. It

is then shown that the DEL equations have a second order local trimcation error, and that

the DEL equations have a solution for a small enough time step as long as the continuous

Euler-Lagrange equations are solvable. The definition for the discrete momentum is then

presented. The method is applied to the rigid body (RB) to produce evolution equations

in terms of unit quaternions and is applied to the double spherical pendulum (DSP). For

both examples, the momentum, energy, accuracy, and eflBciency is examined. The DSP

integrator is then compared to an energy-momentum integrator.

2.1 Discrete Variational Principle

A discrete variational principle (DVP) is presented in this section that leads to

evolution equations that are analogous to the Euler-Lagrange equations. The evolution

equations are called the discrete Euler-Lagrange (DEL) equations. The results in this and

the next section have appeared in (Veselov, 1988), (Veselov, 1991), (Moser and Veselov,

1991) and in (Baez and Gilliam, 1995) but are rederived here in a consistent notation for

completeness and clarity.

Given a configuration space, Q, a discrete Lagrangian is a map L : Q x Q R. It

is later shown in Equation (2.23) how to define a discrete Lagrangian given a continuous-

time Lagrangian. A procedure that defines the evolution map for the system is now given.
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For a fixed, positive integer N, the action sum is the map S : -y R defined by

N-l

S= 5^L(gA+i,g/t), (2.1)
fc=0

where Qk ^ Q aJid A; G Z is the discrete time. The action sum is a discrete analog of

the action integral. The discrete variational principle states that the evolution equations

extremize theaction sum given fixed endpoints, go and g^y. Extremizing § over gi, •♦ • ,g^r-i

leads to the DEL equations:

•C^2L(g)t+i,g*)+ I>iL(gfc,g;t-i) = 0 for all A; € {1, ••• ,iV - 1} (2.2)

or

D2Lo ^ + Dila = 0, (2.3)

where ^ : Q x Q Q x Q is defined implicitly by $(gjt,gjt-i) = (g/fc+i,gib). If D2L

is invertible, then Equation (2.3) defines the discrete map, $, which evolves the system

forward in discrete time.

2.2 Invariance Properties

The symplectic structureofQ x Q is defined in this section and an equation for the

symplectic form on Q x Q is given. It is then shown that $ preserves the symplectic form.

A discrete Noether's theorem is then derived by showing that invariance of the discrete

Lagrangian leads to a conserved quantity, a momentum map, for the iterations of
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2.2.1 Symplectic Structure

First define a fiber derivative by

IFLrQxQ T*Q (2.4)

(quqo) ^ (go,i52L(9i,9o))

and define the 2-form a; on Q x Q by pulling back the canonical 2-form on T*Q:

(jj = IFL* (flcAN)

= EL* (—d©cAN) (2.5)

= -d(EL* (©can)).

Thefiber derivative is analogous to the Legendre transform in continuous-time Lagrangian

mechanics. Choose coordinates, g*, on Q and choose the canonical coordinates, (9*,p,), on

T*Q. In these coordinates, flcAN = dg* Adpi and ©can = Pidq*. The DEL equations are

^ o${qk+1, qk) + 9*) =0 (2.6)

or

wfc+2> 9a:+i) + — {qk+i,qk) = 0. (2.7)
H+i H+i

Continuing the calculations in Equation (2.5) gives

(2.8)

- ~a„. a i {9k+\,qk)dgi+i - aiaJ (9M,gk)dg},Adgl (2.9)
%^9)fc+i

(9t+l,9*) dg'i, A (2.10)
HH+i

since the second term in Equation (2.9) vanishes.
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2.2.2 Preservation of the Symplectic Form

It is now shown that ^ preserves the symplectic form, i.e. = u where is

the pullback of

' (5^ (9*+2.9*+i)d9*+ij j (2.11)
*(g^(9*+2,9n-i)<i9i+i)) (2.12)

•(<i9i+,)j
( dh , \= "''I ~§^(9*+l'9*)<'9*+l 1 (2-14)

d^L

= (2.15)

= u; (2.16)

Equation (2.7), and the fact that {dqk+i) = dqk+i is used in deriving Equation (2.14)

from Equation (2.13).

2.2.3 Discrete Noether's Theorem

A discrete version of Noether's theorem is now derived. For continuous-time sys

tems, Noether's theorem states that a sjrmmetry of the Lagrangian leads to a conserved

quantity. Let the discrete Lagrangian be invariant under the diagonal action of a Lie group

G on Q, and let ^ € fl where g is the Lie algebra of G. Invariance of L implies that

Hexp(sOqk+uexp(sOqk) = Uqk+ugk)- (2.17)

Differentiating Equation (2.17) and setting 5 = 0 implies that

AL(9*:+l>9Jb) •Co(9*+l) + •D2L(gik+l>9Jk) •Cq(9A:) = 0, (2.18)

= $

= -d| $

-d (5^ °̂ (9ifc+i.9fc) (<i9t+i) I (2-13)
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where is the infinitesimal generator. Consider the action sum, Equation (2.1), where

0 < t < iV and vary over s € R by gjt+i (s) = exp (s^ qk+i- Since qk+i (0) extremizes

§, it is true that

ds
= 0. (2.19)

5=0

Equation (2.19) implies that

i?iL(g/.+i,g;.) •CQ(qk+i) + D2U,qk+2igk+i)' ^qi^k+i) = 0. (2.20)

Subtracting Equation (2.18) fi-om Equation (2.20) reveals that

D2Hqk+2^gk+i)' (qigk+i) - D2L{qk+\,qk) •(Q(gk) = 0. (2.21)

If the momentum map, Jf: Q x Q —f g*, is defined by

(<J(9Ar+ii9A)5C) = (^2L(9ib+i,9fc),CQ(9ik)), (2.22)

then Equation (2.21) shows that the momentiun map is preserved by ^ : Q x Q Q x Q.

2.3 Construction of Mechanical Integrators

In this section, the discrete mechanics theory is applied to create symplectic-

momentum mechanical integrators for Lagrangian systems with holonomic constraints. The

first method uses Lagrange multipliers to enforce the constraints and is derived firom a con

strained variational problem. This formulation is called the constrained coordinate formu

lation. We then present a second construction procedure by choosing a set of generalized

coordinates. The next section proves that the two methods are equivalent. Results are then

presented on local truncation error and solvability. The discrete-time momentum map and

symplectic form are then related to the continuous-time counterpsirts.
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2.3.1 Constrained Coordinate Formulation

The construction assumes that there is a mechanical system with a constraint

memifold, Q C V, where V is a real, finite dimensional vector space, and that there is

an unconstrained Lagrangian, L : TV R which, by restriction of L to TQ, defines a

constrained Lagrangian^ : TQ R. The construction also assumes that there is a vector

valued constraint function, 5 : V R*^, such that p~^(0) = Q CV with 0 a regular value

of g. The dimension of K is denoted n, and therefore, the dimension of Q is m = n —A;.

Also, let A be a real, finite dimensional vector space of Lagrange multipliers of dimension

k. First define the discrete, unconstrained Lagrangian, L: V x V" —> R, to be

,,,3,Uy

where h GR-t- is the time step. The unconstrained action sum is defined by

(2.24)
k=o

Then extremize S : f R subject to the constraint that Ufc € Q C V for A: G

mm
i;ik€V,Afc6A

(2.25)

subject to g{vk) =0 for all A; G{1,••• , TV - 1},

to derive that

D2L{vk+i,Vk) + Vifc-i) + A^Dp (ujt) = 0 (no sum over A:) (2.26)

g{vk) = 0 for all A: G{I,---,TV - 1}.
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Given Vk and Vk-i in Q C V, i.e., g(vk) =0 and g (v/t-i) = 0, solve the following equations

D2L(t;ifc+i, Vik) + Dih{vk,Vk-i) + )^Dg (vjk) = 0

P(vifc+i) = 0 (2.27)

for Vk+i and Ajfc.

In terms of the original, unconstrained Lagrangian, the symplectic-momentum

integration method for Lagrangian systems with holonomic constraints given in Equa

tion (2.27) reads as follows:

1^ /Vk+i + Vk Vk+i - v/fc A dL /vk-^ Vk-i Vk - vjt-i M
2 ' h ) dv\ 2 ' h j\

lldL/vk+i+Vk Vk+i-Vk\ dLfvk-hVk-i vjt - vjb-i ^"|
2[dv\ 2 ' h J^dv\ 2 ' h )}

-D^g (vifc)Afc = 0

P(vjt+i) = 0.

(2.28)

The sign ofthetopequation inEquation (2.27) ischanged to bring Equation (2.28) ina form

analogous to the continuous-time Euler-Lagrange equations with holonomic constraints.

If the continuous Lagrangian system is of the form

g) = - V{q) (2.29)

9{g) = 0,

where Af isa constant mass matrix, and V is the potential energy, then theDEL equations
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axe

fVk-i-i-'2vk-\-Vk-i\ , I fdV fvk^i-^Vk\ , dV fVk-hVk-i\\
J + 2 ))

-Z?^(w*)At = 0 (2.30)

9 («*+i) = 0.

The constraint algorithm in Equation (2.30) is now compared to popular algo

rithms used in molecular dynamics simulation, and a briefbackground of these algorithms

is given. The Verlet (Verlet, 1967), SHAKE (Ryckaert et al., 1977), and RATTLE (Ander

son, 1983) algorithms are important for molecular dynamic simulations (Leimkuhler and

Skeel, 1994). Verlet is the simplest of the algorithms and applies to Lagramgians in the

form of Equation (2.29) with no constraints. The algorithm is a 2-step method based on a

central difference of the position coordinates:

v„+i = 2vn - Vn-i - h^M~'̂ D^V{vn). (2.31)

Equation (2.31) is solved for the position coordinate Vn+i to advance the system forward

in time. SHAKE extends the Verlet algorithm to simulate Lagramgian systems of the form

shown in Equation (2.29) with holonomic constraints. SHAKE is a 2-step method and

solves for the new position coordinate v„+i and Lagrauige multiplier A„ to advance the

system forward in time:

t)„+i = 2t;„ - «„-! - h'̂ M-^D'̂ V(vn) +

9(fn+i) = 0. (2.32)

There are velocity formulations of Verlet and SHAKE wherean equation involving

the momentum and position is solved. The velocity formulation of the SHAKE algorithm is
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known as the leap-frog method. The velocity formulations have better numerical roundoff

properties than the position formulations presented here (see (Leimkuhler and Skeel, 1994)).

The continuous-time equations of motion also satisfy the hidden velocity con

straints created by differentiating the holonomic constrsdnts with respect to time. SHAKE

does not satisfy the hidden velocity constraint. RATTLE is an extension of SHAKE and

satisfies the holonomic and hidden velocity constraints. RATTLE solves for the new posi

tion Un+i and momentum Pn+i and also applies to Lagrangian systems in the form shown

in Equation (2.29). For the RATTLE algorithm, first solve

Vn-i-l =Vn+ hM (2.33)

1=Pn - ^D'̂ V(Un) -f ^D'̂ g{Vnhn, (2.34)

for Un+i5 Pn+I' ^uch that

p(v„+i) = 0. (2.35)

Then solve

Pn+I = P„+i - (2.36)

for pn+i and A„+i such that

^P(vn+i)Af-Vn-i-i = 0. (2.37)

Theconstruction method developed in this chapter when applied to a Lagrangian

of the form in Equation (2.29) produces an integration method similar to the SHAKE

algorithm written in terms ofposition coordinates. However, the potential force terms differ

as can beseen by comparing Equation (2.30) andEquation (2.32). Thegeneral construction
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procedurewith the discrete Lagrangiandefinitionin Equation (2.45) reproducesthe SHAKE

algorithm and gives conditions under which the SHAKE algorithm conserves momentum.

The Verlet algorithm is recovered ifthe Lagrangian system hasnoconstraints. Deriving the

Verlet algorithm from a variational principle also appears in (Gillilan and Wilson, 1992),

and the discrete variational principle theyapplyis similar to the principle in (Veselov, 1988).

However, they do not extend the result to constraints or more general Lagrangians and do

not use the discrete Lagrangian definition used here. The emphasis in (Gillilanand Wilson,

1992) is also on calculating a path given end point conditions. The procedure outlined in

this chapter can handle more general Lagrangians, such as the Lagrangian for the rigid

body in terms of quaternions.

2.3.2 Generalized Coordinate Formulation

For the generalized coordinate formulation, the discrete Lagrangianand the action

sum is formed restricted to Q C F, and then the extremization is performed directly on Q

by using a coordinate chart. The constrained, discrete Lagrangian is given by

L' : Q XQ R, (2.38)

where = LJqxQ- Given a local coordinate chart, :U C R"* -> Q C V, where U is an

open set in R"^, the constrained, discrete Lagrangian is

L'' (9Jk+i»9/fc) = h{ip{qk+i),rl;{qk))

_ r ^ {gk) ^ (g/fc+i) - ^ iqk) ^
2 ' h )'

where each qk is in U. Notation is abused in a standard way by representing the restricted

function and its representation in a coordinate chart by the same symbol. The constrained



23

action sum is

iV-l

S'= (2.39)
*:=0

Extremizing -» R gives the discrete Eiiler-Lagrange (DEL) equations in terms of

generalized coordinates,

D2L^ (gk+iigk) + (9*59*-i) = 0- (2.40)

In terms of the original, unconstrained Lagrangian, Equation (2.40) equals

'*'1 ^ (a*+i,<i*+i)] 1=0,
where

(2.41)

and 4 = (2.42)
« it

Equations (2.41) are then solved for qk+i given Qk and qk-i to advance the flow one time

step.

2.3.3 Equivalence of the Formulations

This section proves the equivalence between the constrained and generalized coor

dinate formulations.

Theorem 2.1 Letg be the constraint function and rj) be the coordinate chart defined above.

Let qk and qk-i be the two initial points in the coordinate chart and let Vk = ^(qk) ond

Vk-i = ^{qk-i)' Lei L)g{vk) and Dip{qk) be full rank. Then the generalized formulation.

Equation (2.41), has a solution for qk+i if and only if the constrained formulation, Equa

tion (2.28), has a solution for Vk+\ and A^. Furthermore, Vk+i = V'(9*+i)«
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Proof.

(•^) Assume that there is a solution for Uit+i for the constrained formulation. Let qk+i =

V'~^(va:+i) and it will beshown that qk+i solves Equation (2.41). Multiply the top equation

inEiquation (2.28) on theleft by D^{qk+i)- Also, substitute Vk = ^(qk) and = V'(9ifc-i)

into Equation (2.28). Notice that g{r/^{qk)) = 0 which implies that Dg(xf}{qk))Dt/;{qk) = 0.

Using the substitutions and the fact that D'̂ l){qk)D'̂ g(fJ){qk)) = 0 proves that qk+i is a

solution for Equation (2.41).

(^) To complete theproof, it isassumed that isa solution for Equation (2.41),

and it is then shown that there exists a Lagrange multiplier, Ajb, so that ujt+i = ^(^/t+i)

is a solution for Equation (2.28). Substitute the expressions for Vk+i^Vk, and vjt-i into

Equation (2.28). The lower equation in Equation (2.28) is solved automatically since

Vib+i ^ Q' Note thatTy^V = 'R'{D'i}){qk))®M{D'̂ l>{qk)) and that Tl{D'̂ g{vk)) CM(D'̂ l){qk)).

Since D'̂ g{vk) is full rank and dim{1l{D'̂ g{vk))) = dim(A/'(I>^(g)b))), ll{D'̂ g{vk)) equals

M(D'̂ l){qk)). Then split the left-hand side in Equation (2.28) into acomponent in 7l(DV(9Jt))

and an orthogonal component in M{D'̂ {qk)). The component in Tl{Dtl;{qk)) is zero

by Equation (2.41) and the fact that 1l{D'̂ g{vk)) = J^{D'̂ l>{qk)). A Lagrange multi

plier, Xk, can then be found to make the component in M(D'̂ l){qk)) equal to zero since

1l{D'̂ g{vk)) = /sf{D'̂ {qk)). Therefore, there exists a Xk so that-u/k+i = ^(g/t+i) solves

Equation (2.28). •

The relationship between constrained and generalized coordinate formulations

for discrete-time mechemics as well as continuous-time mechanics is shown in Figure 2.1.

The figure also points out where the discrete-time equations approximate the fiow of the
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Figure 2.1: Comparison of Continuous £ind Discrete Formulations of Mechanics

continuous-time equations. The results for continuous-time mechanics are summarized on

the left side of the figure. It is assumed that there is an unconstrained Lagrangiam with

constraint functions as shown in the upper left corner. One can use generalized coordinates

and applyHamilton's principle to produce the Euler-Lagrcmge equations or onecanuse con

strained coordinates and enforce the constraints through Lagrange multipliers. The right

side of the figure summarizes the results for discrete-time mechanics. Given the continu-
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ous, unconstrained Lagrangian, one can form the discrete, unconstrained Lagrangian. One

can proceed analogously to continuous-time mechanics by usinggeneralized or constrained

coordinates. In Section 2.3.5, it is discussed how the discrete equations approximate the

continuous-time equations.

2.3.4 Jacobian Structure

The DEL equations. Equation (2.27), are solved using Newton-Raphson equation

solvers. These solvers require the construction of a Jacobiem formed by differentiating

Equation (2.27) with respect to and Xk to get

J{vk+i,vk,h) =

where

DnHvk+i.Vk) D'̂ givk)

Dgivk+i) 0

(2.43)

d^h
Pl2L(«t+i,«*:)]( •= ,— {«*+],Ujk) .

For many applications, the nearly symmetric Jacobian, Equation (2.43), is a sparse matrix

and speirse matrix techniques can be used in the Newton-Raphson steps to increase the

simulation efficiency. For tree-structured multibody systems, it is shown in Section 5.4

that the linear equations involving the Jacobian can be solved in linear time. The authors

in (Barth and Leimkuhler, 1996b) particulate the rigid bodies in a multibodysystem with

point masses. They then usesymplectic-momentum integrators with constraints and general

sparse matrix techniques to simulate multibodysystems. The author in (Reich, 1996b) uses

the methods in (Reich, 1996a) to create symplectic-momentum integrators for multibody

systems.
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2.3.5 Local Truncation Error and Solvability

Results on truncation error and solvability are presented in this section. The

definition of local truncation error in (Lambert, 1991)(page 56) is followed. To calculate

the truncation error, first insert an exact solution of the differential equations into the

algorithm equations in Equation (2.41), and then expand the resulting equation in terms

of the step size h. To calculate the expansion, it is easier to first expand Equation (2.41)

about

Vk = tl>\qk) and 4 = (2.44)
^Tk

and then expand the result into powers of h. This lengthy calculation which is not repro

duced here reveals that the local truncation error of the method is second order. The first

term, h®, is zero since q^q satisfy the continuous Euler-Lagrange equations. The second

term, is zero through a cancellation of terms. The /i^ term is non-zero, and the co

efficient is a lengthy expression involving second, third, and fourth partial derivatives of

L : TV E.

If one uses the following definition for the discrete Lagrangian:

Hy,x) =L(y, ^-^)» (2.45)

then the resulting DEL equationswill only be first order accurate for a general Lagrangian.

There is no cancellation of terms in the h} term as there is with the definition in Equa

tion (2.23). However, in some cases, the resulting DEL equations may be explicit while

the DEL equations from the definition in Equation (2.23) are implicit. An example of this

occurring is if the continuous Lagrangian is in the form in Equation (2.29), and there are



28

no constraints.

The existence of a solution for the continuous-time equations is related to the

solvability of the generalized coordinate discrete equations. One can show that if D22l^ is

non-singular and if the Jacobian of the constraints is full rank, then for a sufficiently small

time step, the generalized coordinate DEL equations are solvablefor qk+i- This is proved by

showing that the DEL equations have a solution for h = 0 by taking the limit and then by

using the implicit function theorem to conclude that there is a solution in a neighborhood

of h = 0. Theorem 2.1 then implies that there is also a solution for the DEL equations with

Lagrange multipliers.

2.3.6 Symplectic Form and Discrete Momentum Map

The numerical integration methods created through the construction procedure

are symplectic-momentum integrators; however, this statement requires clarification which

is presented in this section. The integrators are symplectic in that the map produced on

T*V or T*Q is a symplectic map. Also, if the Lie group acts linearly on K, then the

continuous flow of the Euler-Lagrange equations and the discrete map produced from the

DEL equations preserve the same momentum map on T*Q.

However, if one integrates the continuous equationsexactly or accurately and uses

the result to initialize the discrete equations, one will notice that the value of the momentum

map will differ from the value of the momentum map for the continuous system. The

difference arises from the difference in the assignment of the momentum coordinate in T*V

through the fiber derivative. In the continuous case, the momentum is D2L while in the

discrete case, —hD2h is used. A —h is used from the definitions given in Equation (2.4)
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because —hD2^ converges to D2L as /i 0.

If the Lagrangian ofa continuous system is invariant to the action ofa group, and

if the constraints are also invariant under the group action, i.e.

L: TV

L(G 'V,G' v) = L(v, v)

g(G'v) =:g(v),

where the action of C on t; 6 V is represented as G-v, then the flow of the Euler-Lagrange

equations preserve the momentum map,

J :TV-^ 5*,

where

(J (v,v),C) =

If the group G also acts linearly on V, then the discrete Lagrangian is also invariant to the

group action through the following calculation:

L(G• V,) =L ""*^1 +G" Gvm-Gv,J

= L(vk+i,vjc).

PVom a similar derivation tothederivation inSection (2.2.3), one can show that thefollowing

momentum map
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defined by the relation

{^{Vk+UVk)^0 = {^2HVk+l,Vk),^v{Vk))

is conserved by the flow of the DEL equations.

Calculate —/1D2L and notice that

_dL (v/fc+i + Vk Uifc+i - v;fc\ hdL f Vk+i + Vk Vk+i -Vk\
dv\ 2 ' h J 2dv\ 2 ' h )'

As h —^ 0, the discrete momentum value, —hD2lL, converges to the continuous momentum

value, D2L. Therefore, the quantities that depend on the discrete momentum value, such as

the discrete momentum map defined to be —hj, converge to their continuous counterparts

as h —> 0.

2.4 Numerical Examples

The construction procedure is now applied to produce mechanical integrators for

the rigid body (RB) and the doublesphericalpendulum (DSP). The constrainedcoordinate

formulation is used instead of generalized coordinates to avoid coordinate singularities and

coordinate patching. Unit quaternions are used to create the rigid body algorithm, and the

position ofthe two masses are used for the double spherical pendulum. Thedouble spherical

pendulum algorithm is then compared to an energy-momentum algorithm presented in

(Wendlandt, 1995) based on the work in (Gonzalez, 1996a).

In the simulations, energy is used as a monitor to catch any obvious problems,

as in (Channell and Scovel, 1990) and (Simo and Gonzalez, 1993). For a discussion of
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circumstances under which this can be justified, see (Sanz-Serna, 1991)(page 277-278),

(Sanz-Serna and Calvo, 1994)(page 139-140), and (Benettinand Giorgilli, 1994). In general,

energy conservation alone does not imply good performance as is shown in (Ortiz, 1986).

In the DSP example, energy is observed to oscillate around a constant value, which is taken

as a good indication.

When energy-momentum and symplectic-momentum integration methods are com

pared, it should be kept in mind that energy-momentum methods should be monitored on

how well they conserve the symplectic form. This is of course not so straightforward as

monitoring using the energy, since the symplectic condition involves computing the deriva

tive of the flow map (e.p., using a cloud of initial conditions). This point is not directly

addressed in this dissertation, but it is important to keep them in mind.

2.4.1 Rigid Body

The algorithm presented here updates quaternion variables based on the previous

two quaternion variables. The configurationmanifold is taken to be Q = 5^ C V where V =

. Quaternions were used insteadof using V = K® with the six orthogonal constraints of

50(3) primarily to avoida large number of Lagrangemultipliers. The constraint function is

p(u) = v-u-l and isenforced witha Lagrange multiplier. The use ofgeneralized coordinates

to eliminate the use ofLagrange multipliers introduces the problem ofcoordinate switching.

Rigid body integrators that preserve certain mechanical properties have been cre

ated by several researchers. A symplectic integrator which preserves the momentum and

energy is presented in (Lewis and Simo, 1995). Anenergy-momentum integrator is presented

in (Simo and Wong, 1991). A symplectic-momentum integrator is presented in (McLachlan
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and Scovel, 1995). A rigid body integrator based on a discrete variational principle and in

terms of 3 x 3 matrices with constraints is presented in (Moser and Veselov, 1991). It would

be interesting to compare in more detail the integrator in (Moser and Veselov, 1991) to the

quaternion-based integrator in this chapter.

First attach a body frame to the rigid body and represent the frame as a matrix,

R € 50(3), which maps vectors in the body frame, 5, to vectors in the spatial (inertial)

frame, 5. The rotation matrix is then thought of as a mapping, R:B -¥ S.

The continuous-time Lagrangian, L : TV —^ K, is constructed using the quaternion

relationships shown in Appendix A for the body angular velocity:

^(9,9) =^(29*9)^ 0 0

0 I

(29*9), (2.46)

where His the inertia matrix. The constraint is the unit norm constraint for quaternions,

9? + 9t; •9t; - 1 = 0.

The Lagrangian in Equation (2.46) is invariant under left quaternionic multiplica

tion, i.e.

X(r*g,r*g) = L(g,g),

where r is a unit quaternion. The invariance leads to conservation of angular momentum.

The discrete Lagrangian, L : TV —> K, is chosen to be

-T fy + '^ y-x\
Mi/ (2.47)



The body angular velocity term is first simplified to get

= •j^(y*y-y*x-\-X'ky-'X*x).

Restricted to Q, y * y = a: ★ ar = (1,0,0,0). Simplifying restricted to Q gives

2q*q*^ ^(x*y-y*x).
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(2.48)

(2.49)

(2.50)

Equation (2.50) is an approximation to the body angular velocity, (0,a;fr). The simplified

discrete Lagrangian restricted to Q is then

Hy^x) =•^{x-ky-y-kx)'̂
0 0

0 I

{x*y-ykx), (2.51)

and the discrete Lagrangian on all of V x K is then taken to be equal to Equation (2.51).

Since S restricted to Q is extremized, the extension of L to V \ Q is arbitrary.

The discrete Lagrangian in Equation (2.51) is also invariant under left quaternionic

multiplication, i.e.

L(r*y,r*a:) = L(y,x),

where r is a unit quaternion, and the invariance leads to conservation of discrete momentum

which converges to the continuous momentum as the step size decreases.

The DEL equations for the RB and relevant Jacobian are created in Mathematica

(Wolfram, 1991) and exported to C-code for simulation. The initial conditions and RB



Table 2.1: Simulation Results for the Rigid Body Simulation

h(s) CPU time (s) Quat. Error Energy Error Mom. Error

0.0001 97.620 0.0 6.256e-7 1.671e-7

0.001 9.905 3.960e-6 6.274e-5 1.687e-5

0.01 1.397 3.997e-4 6.274e-3 1.687e-3

0.1 0.301 3.648e-2 6.217e-l 1.665e-l

parameters are

90 = Wfr =

o
' •

100

CO II

020
•

003
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(2.52)

The rigid body integrator is first initialized by choosing two initial quaternion

values. An Euler step with q = q*(0,u)b/2) with h = 10~®s initializes the system. The

DVP integrator with h = 10~®s is then used to set the second initial point for h = 10~^s,

10~^s, 10"^s, and 10"^s. The system is simulated for 30 seconds. To calculate errors in

energy, momentum, and position, a standard value is chosen. The energy and momentum

given initially after the first Euler step at h = 10"®s is used for the standard energy and

momentum values. The results of the 30s simulation with h = 10~^s is used for the standard

position variables. The following formula is used to calculate errors for each simulation:

1 ^
(2.53)

i=l

where m is the length of the vector Vj, vf is the standard value at the tth sample, and N

is the number of samples. The results of the simulations are tabulated in Table 2.4.1. The

tablelistsCPU timeona SGI Indy (1 100 MHZ IP22 Processor, FPU: MIPS R4610 Floating
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time step (s)

Figure 2.2: CPU Time Versus Time Step for the Rigid Body Simulation

Point, CPUrMIPS R4600 Processor), quaternion error, energy error, and momentum error.

Figure 2.2 is a log-log plot of CPU time in seconds versus time step in seconds. The

CPU time drops off nearly linearly as the time step increases. The CPU time is corrected

for the time it takes to initialize each simulation with the h = 10"®s simulation.

The quaternion error versus time step is shown in Figure 2.3. The plot shows a

second order relationship between error and time step.

Figmre2.4 compares the plot of the quaternion, versus time for the simulations

at /i = 10~^s and h = 10"^s. The trajectory for the large time step exhibits the same

qualitative behavior as the small timestep, but the deviations increase for longer simulation

times.

The energy error versus time step is shown in Figure 2.5. The figure reveals a
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second order relationship between energy error and time step. The energy for the h =

10"'̂ s simulation deviates between 32.9999993^J and 32.9999993^J. The energy for the

simulation at h = 10~^s deviates between 32.999937236J and 32.999937235J. There is no

deviation in energy for the h = 10~^s and h = 10~^s simulations.

For each time step, the constant value of the discrete momentum map is conserved;

however, as explained in Section 2.3.6, the value converges to the continuous momentum

value as the step size decreases. The convergence of the discrete momentum is shown in

Figure 2.6. The figure reveals a second order relationship between momentum error and

time step. The angular momentum for each simulation should remain constant, but there

are small deviations (±10~®) in the data for the h = 10"^s simulation. There axe no

deviations in the momentum value for the other simulations.
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Figure 2.6: Momentum Error Versus Time Step for the Rigid Body Simulation

2.4.2 Double Spherical Pendulum

The double spherical pendulum consists of two constrained point masses. The

configuration space is Q = x and the linear space is V = x The position of

the first mass is qi = (xi,2/i,zi), and the position of the second mass is q2 = (x2»!/2,^2)-

The constraint equation, given by the pendulum length constraints, is

gi'Qi- li

(92 - 9i) • (92 - 9i) - '2

The DSP Lagrangian system is of the form in Equation (2.29), and the DEL

equations for this system are of the form in Equation (2.30). The DVP algorithm for the

9(v) = (2.54)



DSP is the SHAKE algorithm:

where

M =

0

0

^ig

0

0

m2g

9 {g"*') = 0,

mil 0 91

, 9 =

0 7712/ 92
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-fci)^(9")A = 0

(2.55)

and mi and m2 are the masses.

The simulation from the discrete variational principle (DVP) construction is now

compared to an energy-momentum (EM) formulation based on the construction procedure

in (Gonzalez, 1996a), and applied to the DSP in (Wendlandt, 1995). The EM algorithm for

the DSP is

mi

1^+5=0
m2

1 n+;



jH+i-p' + ft
mig

+ -^1
g^' + g"

+ A2

0 0

0

mjg

9r'+9r-9r'-92

+ g? - g"'*'' - g?
= 0
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(gr')-(gr')-'? = o

(gj+> - gr') •(gj^' - g? '̂) - II = 0,

where pi is the momentum for the ith mass, p is the six vector of momentum formed by

stacking pi and p2, and

The following parameters are used for the DSP: mi = 2.0Kg, mQ = 3.5Kg, =

4.0m, I2 = 3.0m, and g = 9.81m/s^. The initial conditions are ii = 2.820m, yi = 0.025m,

X2 = 5.085m, y2 = 0.105m, xi = 3.381m/s, yi = 2.506m/s, X2 = 2.497m/s, and y2 =

10.495m/s. Theposition andvelocity ofthe z-coordinate isdetermined from the constraints,

and the 2-coordinate for both masses is taken to be negative.

To calculate errors in energy, momentum, and position, a standard value is chosen.

The following formula is then used to calculate errors for each simulation:

1 ^
®"°'' = v:;: IT II (2-56)

t=l
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ome step (s) DVP

Figure 2.7: CPU Time Versus Time Step for the DSP Simulation

where m is the length of the vector Uj, vf is the standard value at the tth sample, and N is

the number of samples.

The output of the EM simulation at a time step of 0.0001s is used as the standard

and initializes the second step in the DVP simulations. The results of the EM simulations

and the DVP simulations aresummarized in Table 2.4.2. The table contains the CPU time,

position error, energy error and momentum error for the EM and the DVP simulations.

The energy and momentum error for the EM simulations are zero. Equation (2.56) is used

to calculate the errors for the DSP simulations.

Figure 2.7 is a plot of CPU time versus time step for the EM and DVP simulations.

The DVP simulations are slightly faster for each time step and both CPU times drop off

nearly linearly with increasing time step.
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Figure 2.8: Position Error Versus Time Step for the DSP Simulation

The position error for the EM and DVP simulations is shown in Figure 2.8. Both

simulations show a second order relationship between position error and time step. The

error for the EM simulation is slightly greater than the error for the DVP simulation for

h > lO-^s.

The y position of the second mass is shown in Figure 2.9 for the EM and DVP

simulations for h = 0.0001s and h = 0.1s. Both the EM and DVP simulations at h =

0.0001s overlap and cannot be distinguished when plotted on the same graph. For both

the EM and DVP simulations, reasonably accurate and fast trajectories are produced at

large time steps, h = 0.1s. Both simulation methods may have uses in interactive simulation

applications, such as design and animation, where real-time, reasonably accurate simulations

are important.



Table 2.2: Simulation Results for the DSP Simulation

h(s) Method CPU time (s) Pos. Error Energy Error Mom. Error

0.0001
DVP

EM

73.648

103.871

2.329e-7

0.0

6.475e-6

0.0

2.547e-6

0.0

0.001
DVP

EM

9.065

13.250

1.146e-5

1.214e-5

3.269e-4

0.0

1.707e-4

0.0

0.01
DVP

EM

1.152

1.549

1.135e-3

1.225e-3

3.224e-2

0.0

1.696e-2

0.0

0.1
DVP

EM

0.211

0.263

9.576e-2

1.184e-l

2.665

0.0

1.560

0.0
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The error in energy versus time step is shown in Figure 2.10. The DVP energy

error appears to drop off as the square of the time step, at least for the large time steps.

The energy error is zero for all time steps for the EM simulation. The energy for the DVP

simulation at h = 0.0001s deviates between 24.944495109J and 24.944499828J and deviates

between 20.910805793J and 25.583335766J for h = 0.1s.

The error in the momentum about the z-axis is shown in Figure 2.11. The mo

mentum error for the EM simulation is zero for all time steps. The DVP algorithm should

preserve momentum but for the smallest time step, h = 0.0001s, the momentum varies

between 199.825467170m^/s to 199.8254671M®^/s. The variation may be due to numer

ical errors. The momentum is constant for the other time steps. Again, the constant

discrete momentum value approaches the value of the continuous momentum as the step

size decreases.

Figure 2.12 shows the energy for the DVP simulations versus time for h = 0.1s

and 0.01s in the lower graph. The upper graph shows energyversus time for h = 0.001s and

0.0001s. The energy oscillates about a constant value, and the constant value approaches

the true energy. The amplitude of the oscillations decrease as the step size decreases. The
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Figure 2.11: Momentum Error Versus Time Step for the DSP Simulation

fluctuations in energy appear to be related to the constraint forces. The middle graph is a

plot of the multipliers versus time, and the fluctuations in the multipliers are correlated to

the fluctuations in energy. This relationship has alsobeennoticed in (Earth and Leimkuhler,

1996a), and they use variable step size to decrease the energy oscillation.

2.5 Chapter Summary

In this chapter, a general approach to discrete mechanics was formulated and

developed. A general method to construct symplectic-momentum mechanical integratorsfor

Lagrangian systems with holonomic constraints was then presented. The method was then

applied to the rigid body and the double spherical pendulum. The discrete Euler-Lagrange

(DEL) equations share many similarities to the continuous-time equations of motion and
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Figure 2.12: Energy and Multipliers Versus Time for the DSP Simulation

preserve a symplecticform and invariants resulting from group invarianceof the Lagrangian.

There are many areas of future work and development. A few of these are listed

here.

Energy-Momentum Integrators. One may proceed analogously to the derivation in

this paper to create energy-momentum integrators possibly based on discretizing the prin

ciple of least action.

Nonholonomic Systems. The method presented in this paper treats holonomic con

straints and one would like to generalize the method to treat nonholonomic constraints, as

in (Bloch et al., 1996). For nonholonomic systems, the standard symplectic form is not

preserved, and there are momentum equations and not conservation laws. Also, energy can
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be conserved in these systems. One has to develop algorithms taking into account these

effects.

Multistep Methods, Stages, and Time Step Control. It seems possible to modify

the method to construct multistep mechanical integrators or mechanical integrators with

multiple stages to increase the accuracy of the method. One would also like to modify the

method to allow variable time steps to improve eflBciency.

External Forces. It would also be desirable to generalize the method to include external

forces. This should be straightforward since they can be included in Hamilton's principle

in standard fashion. One would also like to add control forces and dissipative forces to

simulate controlled mechanical systems. The first author is currently using the techniques

presented in this paper to develop a multibody simulator to simulate control systems for

human models (see (Wendlandt and Sastry, 1996)).

Spacetime Integrators. Since the method here is variational by nature and focuses on

the temporal behavior, it should be helpful in the development of spacetime integrators by

synthesis with existing finite element methods.



Chapter 3

Recursive Multibody Kinematics

and Dynamics
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The kinematics and dynamics for tree-structured multibody systems with general

joints are developed in this chapter as well as efficient, linear-time, recursive algorithms to

compute both the dynamics and the kinematics. The primary purpose of this chapter is to

serve as a general reference (especially for robotics researchers familiar with (Murray et al.,

1994) ) and to provide the necessary background for Chapters 4 and 5.

The development in this chapter is influenced by several sources. The Lie group

kinematic formulation in (Murray et al., 1994) serves as a basis for the derivations in this

chapter. The notation succinctly represents configurations of frames, mappings between

frames, body velocities, and relative velocities. The emphasis in (Murray et al., 1994) is

on the spatial representation of twists, while the scalable recursive methods favor the use

of relative mappings between body frames. The emphasis in this dissertation is to develop
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computational methods for multibody systems; therefore, the Lie group formalism is used

with an emphasis on relative transformations. The methodology in (Murray et al., 1994) is

also extended from serial chains to the larger class of tree-structured multibody systems.

In the forward kinematics problem, the pose, velocity, and acceleration of each

rigid body in the multibody system is calculated. In this chapter, recursive algorithms

for calculating the forward kinematics are derived in a straightforward manner based on

relative mappings between body frames.

The forward kinematics algorithms are then extended to calculate the inverse

dynamics. In the inverse dynamics problem, the joint torques are calculated given the

positions, velocities, accelerations and external forces. The recursive algorithms for the

inverse dynamics problem are derived in this chapter followed by a factorization of the

equations of motion.

In the forward dynamics problem, the joint accelerations are determined given

the positions, velocities, torques, and external forces. Recursive algorithms are derived

in this dissertation using Lie group notation and the crucial concepts of articulated body

(AB) inertias and bias forces introduced in (Featherstone, 1983). The AB inertia and bias

force concepts are introduced followed by a derivation of the recursive algorithms. The

development in this chapter is influenced by the work in .(Featherstone, 1983), (Jain, 1991),

(Lilly, 1993), and (Mirtich, 1996). Efiectively, the recursive forward dynamics algorithms

solve the linearsystem involving the massmatrix in linear-timeas opposedto the cubic-time

required for solving linear systems with LU decomposition.

The chapter first presents the notation used for tree-structured systems and then
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discusses kinematics for multibody systems. The inverse dynamics problem for multibody

systems is derived followed by a derivation of the forward dynamics.

3.1 Tree-Structured Systems

This chapter is concerned with tree-structured multibody systems. These multi-

body systems have a single rigid body called the root. The root is attached to the in-

ertial frame through a joint. Each rigid body in the multibody structure has a unique,

non-overlapping path from itself to the root rigid body. A graph can be created for a tree-

structured multibodysystem by assigning nodes to each rigid body in the structure and by

assigning edges to the joints connecting the rigidbodies. The inertial frame is assigned link

number 0. The root node is labeled with the number 1, and the remaining rigid bodies are

labeled in a depth-first manner. The joints are labeled so that the joint index is the same

as the unique rigid body outboard to the joint. An example of a tree-structured multibody

system and the corresponding graph is shown Figure 3.1. The rigid bodies are labeled in

bold and the joints are labeled in italics.

The recursive algorithms in this chapter use a joint-centric approach as is done in

(Mirtich, 1996) instead ofa link-centric approach. Thealgorithms areiterated over thejoint

index, and the joint-centric approach provides an elegant method to bookkeep the link to

link calculations. Outboard reciursion or iteration proceeds from the root to the leaves and

the joint index increases. Inboard recursion or iteration proceedsfrom the leaves to the root

and the joint index decreases. The recursive algorithms shown below use the expression,

k.o, to refer to the link index for the rigid body outboard to joint fc, and the expression, k.i.
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///////

inertial frame - link 0

Figure 3.1: TVee-Structured Multibody Example

to refer to the link index of the rigid body inboard to joint k. The maximum joint index is

denoted n.

3.2 Multibody Kinematics

The forward kinematic algorithms are developed in this section for tree-structured

multibody systems with general joints {e.g., spherical, revolute, prismatic, floating, etc.).

The section first presents the derivation of the forward kinematics. The forward kinematic

calculations provide the pose of each link in the multibody structure with respect to an

inertial frame, and the calculations are performed recursively. Recursive calculations for

velocities aind accelerations are then presented followed by a presentation of joint kinemat

ics for general, revolute, prismatic, and floating joints. The complete forward kinematics
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algorithm is then summarized.

3.2.1 Forward Kinematics

The recursive relationship for calculating the pose of each rigid body in the multi-

body system with respect to an inertial frame is presented followed by a derivation of the

body velocity and the acceleration.

Each rigid body has a frame attached to the center of mass and aligned with the

principal axes of inertia. The pose of a rigid body, Z, with respect to the inertial frame is

denoted, po,/ € SE{3)^ and maps points and vectors in the body frame to points and vectors

in the inertial frame. For a joint k, the pose of the inboard body is po,/k.»- The outboard

pose, go^k.oi is calculated by knowing the pose of the inboard body and the pose between

the outboard and the inbosird link. The outboard pose based on the pose of the inboard

link is given by

90,k.o — 90,k.i 9k.i,k.O'

(3.1)

Equation (3.1) is then iterated in an outboard recursion to calculate the pose of each rigid

body. The algorithm is initialized with 50,0 = •^4x4) where74x4 is the 4x4 identity matrix.

The body velocity of the outboard link with respect to the inertial frame is a 4 x 4



twist matrix given by

^ h ~ 1 •
^0,k.o ~ 9o^k.o90^k.o
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d
= {90,k.i9k.i,k.o) '̂ {90,k.i9k.i,k.o)

^ 9k.i,k.<^o]cA90,k.i9k.i,k.o +90,k.i9k.i,k.o)

~ 9k},k.o^9o,k.i90,k.i)9k.ije.o +9k},k,o9k.i,k.o

= 9k.o,k.iyo,k.i9kl,k.i + ^k.i,k.o' (3-2)

Writing Equation (3.2) in the form of a 6 x 1 twist gives

Vo'j:.o = Adj,...,, Vo\u + (3.3)

Let A'l^ = Adj, j and = Vq't to simplify notation. Equation (3.3) is then rewritten to

give that

transformed inboard velocity

VL = {3-4)
relative velocity

Equation (3.4) gives a simple expression to recmsively compute the body velocity of the

outboard link based on the body velocity of the inboard link and the relative velocity of the

two bodies. The notation correctly takes care of coordinate changes and succinctly presents

the velocity relationships.

The accelerations used in the dynamics calculations are formed by taking the time

derivative of Equation (3.4) to get

VL = (3.5)
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3.2.2 Joint Kinematics

The kinematic properties for joints are derived in this section. The notation used

for general joints is presented followed by specific relationships for revolute, prismatic, and

floating joints.

General Joints

For a general joint k, there are configuration variables, and velocity variables,

/3jt- The time derivative of the configuration variables are related to the velocity variables

by the following equation:

ek = Bk{ek)&k. (3.6)

where is a configuration dependent matrix. The number of degrees of freedom of joint

k is denoted djt, and 0 < dk < The dimension of ^k is then dk- The dimension of 9k is

Cit, and dk < Ck < 6. For example, if joint A: is a sphericsd joint and unit quaternions are

used to represent the configuration of the joint, then dk = 3, = 4, and is a 4 x 3

matrix.

The relative pose between the inboard link, k.i, and the outboard link, k.o, is a

function of the joint configuration variables and is given by

9kA,k.o ~ 9k.i,k.o{^k)' (3.7)

The relative body velocity between the inboard link, k.i, and the outboard link,

k.o, is related through the joint map, , through the following equation:

= (3.8)
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where Hk is a. full rank matrix.

The body velocities, with respect to the inertial frame, link 0, are then

and the accelerations are

K'o = Ai'Vl, + hA + at,

where

Revolute and Prismatic Joints

For revolute and prismatic joints, 9k = ^ki and

9k.i,k.o = ' *°^*Pfc.i,Jk.o(0),

where ik.i,k.o is the twist for joint k written with respect to frame k.i.

The relative velocity for a revolute or prismatic joint is

^k.i,k.o 9k.i,k.o9fi-iyk.o

= As*.j,t,<,(0)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Therefore,

~ ^^9k.o,k.i(fl)^k.i,k.0^k

= Hkfik. (3.14)

For revolute and prismatic joints, Hic is a constant column vector and is the twist for joint

k written with respect to frame k.o.

Floating Joints

For floating joints, also known as free joints, dk = 6, and Ok can be formed from a

unit quaternion and a position vector. Also, fik = ^k.i,k.o ^k = hxG-

3.2.3 Forward Kinematics Algorithm

The previous results on forward kinematics are now summarized, and the complete

forward kinematics algorithm is presented in Algorithm 3.1. The algorithm is given the

positions, velocities, and accelerations of each joint and then calculates the pose, body

velocity, and acceleration of each link in the tree-structured multibody system.

3.3 Inverse Multibody Dynamics

The inverse dynamics problem is developed in this section. The inverse dynam

ics problem calculates the joint torques given the positions, velocities, accelerations, and

external forces acting on a tree-structured multibody system. The dynamic equations for

rigid body motion are first given followed by a description of how to calculate the joint
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Algorithm 3.1 Forward Kinematics for TVee-Structured Multibody Systems
given: Ok, and /?jfc for all A: € {1,9o,o = -^4x4; = ^6xi

for /: = 1 to n do

90,k.o ~ 90,k.i 9k.i,k.o{^k)]

^k'.i ~ ^^9k.o,k.i'̂

^k = Ai:9Vi,-\-Hkl3k',

Vk'o = 4iyk'i^Hk^ + ak',

end for

torques. The complete inverse dynamics algorithm for tree-structured multibody systems

is then presented followed by a description of the factorization of the equations of motion.

3.3.1 Rigid Body Dynamics

Consider a rigid body with index I. Attach a body frame to the center of mass

and align the axes with the principal axes of inertia. The equations of motion are

where

= M^Vi' + v;°,bwb I nbn/rbi/b

II

m
il

1

o

,n
f=

.
O

1
o

1

o

1

O

(3.15)

(3.16)

V/* is the body velocity with respect to the inertial frame, F/*' is the total body wrench

acting on the rigid body, m/ is the total mass of the rigid body, I is the 3x3 identity

matrix, ujf is the body angular velocity, and 11/ is the diagonal inertia matrix. See page 167
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in (Murray et al., 1994) for a derivation of the rigid body equations.

The equations of motion for a single rigid body in the multibody system are now

derived. Let Fjf ^ denote the body wrench acting on link k.o from link k.i through joint

k. The wrench is represented in frame k.o. The total external body wrench (e.^^. gravity)

acting at the center of mass of link k.o is denoted The dynanuc equations for a rigid

body in the multibody system are then

H.o= E
jeOfc.o

where Ok.o is the set of joints connecting the outboard rigid bodies to link k.o, and

(3.18)

The first summation term on the right in Equation (3.17) is the reaction forces of outboard

links acting on link k.o.

3.3.2 Joint Torque

The joint torque, r*, for joint k is now calculated given the wrench, acting

across the joint. The joint torque is calculated by knowing that the work of the joint torque

equals the work of the body wrench acting across the joint:

Phk = {vLjc.ofFi.o

= (319)



Algorithm 3.2 Inverse Dynamics for IVee-Structured Multibody Systems
given: and for all A; € {l,...,n}

for A: = 1 to n do

frL = --F&+n*.X.on'o;

end for

for A: = n to 1 do

pii=-pj-i+(Ai-^vn.o^

rk = HlFt„;

end for

Equation (3.19) is true for all /3k which implies that

= HiFt,,.
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(3.20)

3.3.3 Inverse Dynzimics Algorithm

The recursive algorithm for cadculating the inverse dynamics is given in Algo

rithm 3.2. The forward kinematics algorithm provides the necessary data for the inverse

dyn£unics algorithm. The body forces are first initialized for each rigid body in the first

for loop. The next for loop calculates the body forces due to the outboard links and also

calculates the joint torques through the projection with the joint map.
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3.3.4 Factorization of the Equations of Motion

This section provides a factorization of the equations of motion for tree-structured

multibody systems in terms of the Lie group notation used in this dissertation. The fac

torization is based on the factorization for serial chains in (Jain, 1991) and differs from the

factorization of tree-structured systems in (Hodriguez et al., 1992).

The block adjoint matrix, A, is composed of block matrices Aki G where

Af if k.i = l.o

06x6 otherwise.

Recall that Af = Ad^^^,. Column I has a non-zero element in row k if body k is connected

to body I and body k is outboard to body I. By the number scheme introduced in the

beginning of this chapter, the joint index I equals the body index for body l.o. For the

example in Figure (3.1), the block adjoint matrix is

00000000

Al 0 0 00000

0 Al 0 00000

0 OA^ 00000

0 0 0 At 0 0 0 0

0 0 0 At 0000

OA^O 00000

0 0 0 000 AfO

The block adjoint matrix is lower triangular and has zeros along the diagonal.

Let y'* be formed by stacking VJ? in numerical order. Similarly, form H, /?, b,a, r.

Aib/ = <

A =
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and F' by stsicking Ht, /?*, ijti and F^, respectively. Let M' and B beblock diagonal

matrices with and along the diagonal, respectively. The dynamic equations in matrix

form are then

V' = AV' + H^

V' = AV' + H/j + a

F'' = A^F' + M'v' + b

T = H^F'

(3.21)

(3.22)

(3.23)

(3.24)

Notice that / —A is invertible since it has identity matrices along the diagonal

and the upper triangle has all zero entries. Define </> to be (/ —A)~^ The inverse is then

<^= (/-A)-' =/ +A + A' + --- +A"-'

since A" = 0. For the example in Figure (3.1),

since Aj[A[fi = A^.

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0

A? Al 1 0 0 0 0 0

A2 A3 1 0 0 0 0

Al 4 1 0 0 0

At Ai At At 0 1 0 0

Al Al 0 0 0 0 1 0

Ai 0 0 0 0 1
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The dynamic equations can then be rewritten in the following form:

V' = (3.25)

V' = ^H;8+ ^ (3.26)

F' = (3.27)

T = H^F' (3.28)

which implies that

where

and

T = v' + (3.29)

= H^^^MVH/3 + H^^^M'.#a + H^^^b (3.30)

= 1M19 + C, (3.31)

M = (3.32)

C = H^^^(MV + b). (3.33)

The Coriolis, centrifugal, and external forces are contained in C. The mass matrix is M.

The matrix H is formed from the joint maps for each joint. The term H/3 gives the relative

body velocities from the inboard joint to the outboard joint. The matrix 4> maps relative

body velocities to the body velocities ofeach link. Thematrix maps body wrenches into

the wrenches across each joint. The matrix maps body wrenches across the joints to

joint torques.
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Again, the factorization presented here is based on the derivations for serial chains

in (Jain, 1991). The factorization presented in this dissertation is for tree-structured multi-

body systems and is derived using the Lie group notation used in this dissertation. A similar

factorization to the one presented here is given in (Park et al., 1995). The authors use Lie

group notation to compute the inverse dynamics and factor the equations of motion. They

do not derive the forwsurd dynamics algorithm which is derived here in the next section.

The first order differential equations of motion are

e = B(6>)/? (3.34)

/? = M-i(0)(r-C(0,^)). (3.35)

In a typical multibody simulator, the accelerations are calculated through a recursive for

ward dynamics algorithm. The joint velocities and accelerations are then passed to a stan

dard integrator to fiow the system forward in time.

3.4 Forward Multibody Dynamics

Recursive and linear-time algorithms are derived in this section to compute the

forward dynamics for tree-structured multibody systems. The forward dynamics algorithm

calculates the joint accelerations given the joint torques, external forces, positions, and

velocities. The algorithm is based on the concept of articulated body (AB) inertias and

bias forces presented in (Featherstone, 1983). The derivation is primarily based on the

work in (Featherstone, 1983), (Jain, 1991), (Lilly, 1993), and (Mirtich, 1996). This section

presents the recursive algorithms in a consistent and concise manner with the notation used

in this dissertation.
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3.4.1 Articulated Body Inertias and Bias Forces

The important concept in the recursive forward dynamics algorithms is the concept

ofarticulated body (AB) inertias and bias forces. The AB inertias and bias forces providean

affine relationship betweenthe body wrench, acting on the rigid body in the multibody

system, the AB inertia denoted the accelerationof the body denoted

forces denoted Zk.o' A recursive relationship is derived which calculates the bias forces and

AB inertias of the inboard link based on the AB inertias and bias forces of the outboard

links. The crucial relationship is

^k.o ~ ^k.o^k.o ^* 0)

(3.36)

where P^o —^lo > o ^ function of positions, and Zk.o is only a function of

positions, velocities, and external forces. It is shown in this section that if the relation in

Equation (3.36) holds for the outboard links, then the relation holds for the inboard link

and there exists a recursive method to calculate the AB inertias and bias forces.

3.4.2 Derivation of the Recursive Forward Dynamics Algorithm

First note that the relation is true for each lesd in the tree-structure where Pjt.o ~

pj^ = ^and Zk.o = 6^ o* ^ arbitrary body in the tree-structured multibody system,

^•o= T, {Aj°fl1.o +MioVL +bL, (3-37)
jeOk.c
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where Ok.o is the set of joints connecting the outboard rigid bodies to link k.o. Apply the

induction hypothesis to get that

i€C?*.o

j^Ok.o

Notice that j.i = k.o for j € Ok.o- Therefore,

^k.o — E (4yPi.o4::,+k vfk.o

jGOk,e

+ E i4°ofP}.ofJA+ E (4yiPj.c<^}+Ho)+f>L-
j^Ok.o j€C?*.o

(3.38)

(3.39)

(3.40)

The variable needs to be eliminated to get Equation (3.40) in the form in Equation (3.36).

Equation (3.20) implies that

T, = HjFj;„ = Hj + Zj.o)

= Hj + Oj) + 2j.o)

= Hj +HfPj,„Af^Vl, +Hj{Pj,^aj +

(3.41)

(3.42)

(3.43)

isDefine ^ to be HJP^ qH^ and note again that j.i = k.o for j e 0/fe.o- Also, ^ i

invertible since ^ is assumed to be positive definite and has full rank. Therefore,

ft =Djl [t, - HjPi.AyL - Hj{Pj.oaj +zj.o)] . (3.44)
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First examine the term ^j^Ok substitute the results back into

Equation (3.40).

E =
j€0*.o

E [Ti - HjP^XyL - Hf(Pj-oOj +^i.o)]

- E (^tfpj^Ki.oPj.oAi:

where

and

ieOik

jeOk.

vt^k.o

- E (4°ofPj.oKiAPi-o''i+Ho)+Yi (4°ofGj.,Tj,
j^Ok.o j^Ok.o

Substitute Equation (3.45) into Equation (3.40) to get that

Let

^k.o - E (^k°ypjM - j^j.pj.o)At+Mi vtk.o

JeOk.c

+ E (4"of(J-Pi.oKi.o)(Pj.o<^i+Zj.o)+ E +
jeOk.o j^Ok.o

Lt=iI-^J.oPi.o)4:

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)



Equation (3.48) then simplifies to

Therefore,

and

fL =
3€Ok.o

Vtk.o

+ E iLtfiPi.o<'i +^io)+ E (4yGi.ori +bl
j^Oie.o j€C?fc.o

Pk.=ML+ E (^i°ofPi.'4
jGOk.o

o

k.o

= E (^of(Pj.o^ +^io) + E +bL-

(i^ofP}.c4^o=i^ypj-oi^:

First expand the left-hand side of Equation (3.53) to get that

nyPi^^z=i^y u - Pi.oKi.o] Pj.oAr.

=(4y ip^.o - Pj.Kj.oPj.o] At

Expand the right-hand side of Equation (3.53) to get that

(LiyPi.oLt={4y - Pi.oKi.o] Pi.o [I- Kj.j'j.,] At

= (Aty [Pj.<. - 2Pj.oPi.oPi.o +Pj.oKi.oPjJ<j.oPj.c] At-
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(3.50)

(3.51)

(3.52)

The bias forces in Equation (3.52) are only a function of positions, velocities, and

external forces. It must now be shown that is positive definite and symmetric. This is

shown by first deriving that

(3.53)

(3.54)

(3.55)



Note that

Kj.oPj.oKj.o = H^D-lHjPj.,H^Dj}Hr

= Kj,,.

SimplifyingEquation (3.55) with Equation (3.56) reveals that

(LtfPj.oLi°o=(4:)'" - Pi.oKj.oPi.o] Ai

= (Liyp,.^4:.

Equation (3.57) implies that

Pk.o = Ml, + iLO'̂ Pj.oLl

Pk = dzUti, - Hlzt.o) - GL(4:°Vi''.i + o*)

and

VL = Aly^,i + H^k + ak.
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(3.56)

(3.57)

(3.58)

Equation (3.58) shows that Pj^, is a. sum of a positive definite symmetric matrix and semi-

definite symmetric matrices, and this implies that = {Pk ,)^ > 0.

The AB inertias and bias forces are calculated in an inboard recursion. The accel

erations are then calculated in an outboard recursion by using Equation (3.44) rewritten in

Equation (3.59) followed by Equation (3.10) rewritten in Equation (3.60) where

(3.59)

(3.60)
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Algorithm 3.3 Forward D)mamics for IVee-Structured Multibody Systems
given: for all k e n}

for A; = 1 to n do

Zk.o = ^k.o'̂ Pk.o ~ ^k.&>

end for

for A: = n to 1 do

Dk.o = G,,, =

i'ii=ii-fik.oPk.o]4T^

Pk.i = Pu + (LiSfPk.oI^lf^

zu = 2t.i + (Li-^f(Pk.o<^k + Zk.o) +

end for

for A: = 1 to n do

A = - Pl^ic.o) - GlJAilvti + «*);

VL = Ai^Vt, + H,h + a,-,

end for

3.4.3 Recursive Dynamics Algorithm

The full forward dynamics algorithm is now given in Algorithm 3.3. The bias

forces and AB inertias are first initialized to the body forces and the body mass matrix.

The recursive operators are then formed and the AB inertias and bias forces are updated in

an inboard recursion. The joint accelerations are then calculated in an outboard recursion.
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3.5 Chapter Summary

Recursive techniques for the forward kinematics, inverse dynamics, and forward

dynamics of tree-structured multibody systems with general joints were derived in this

chapter. Lie group matrix notation presented in (Murray et al., 1994) was used and this

simplified the derivation and correctly provided the coordinate changes necessary to imple

ment the algorithms. A factorization of the equations of motion was provided based on

the work in (Jain, 1991). Consult (Jain, 1991) for additional factorizations, operators, and

interpretations of the recursive algorithms. The development in this chapter is influenced

by the work in (Featherstone, 1983), (Jain, 1991), (Lilly, 1993), and (Mirtich, 1996) and

consult these references for different derivations of recursive multibody techniques. Consult

(Baeand Haug, 1988) and (Rodriguezet al., 1992) for ideason extending the tree-structured

results to systems with closed loops.
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Chapter 4

Recursive Workspace Control

The first stages ofa researcheffort to create generalcontrol methods for multibody

systems is presented in this chapter. A specific multibody system, a 3D model of human

biped, is examined in this effort, and the goal is to create predictive, dynamic models for

human locomotion. The goal of the predictive models is to create models of human bipeds

that appropriately respond to outside disturbances and that also allow one to perform

computer experiments that normally need to be performed with human subjects. Towards

this end, a balancing controller for a 3D model of a human biped is created and described in

this chapter. The balancing controller is designed to serve as a basis for more sophisticated

controllers for walking, running, jumping, changing direction, and adapting to loads.

General control techniques for multibody systems have many applications. Gen

eral control techniques will allow engineers to easily create behaviors in complicated robotic

systems for space, underwater, and haizardous environment applications. Predictive mod

els of human locomotion have uses in human equipment design, sports equipment design.
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human tradning, human injury reduction, and animation. A predictive model is useful for

researchers and designers to allow them to easily perform "what-iP experiments through

computer simulation.

Creating predictive controllers for human motion is difficult to achieve. The differ

ential equations of motion are complicated, lengthy, coupled, and nonlinear. The multibody

models of humans possess a large number of degrees of freedom for a robotic system, and

the controller needs to coordinate these degrees of freedom. The dynamiics of the system

significaintly change as the system intermittently contacts the environment. To be truly

predictive, the controller must not rely on specificexperimental data such as joint trajecto

ries. A major difficulty is that the underlining control system for hiunan locomotion is not

known or well understood.

There are mstny references on human balancing, biped locomotion, and human

modeling in the areas of robotics, biology, and animation. A small sampling of the research

performed in this area is given here. Several robotics researchers have created locomoting

robots with one to many legs. The researchers in (Furusho and Sano, 1990) have created

a nine-link biped robot that walks by using linear control techniques, dividing the walk

into phases, and developing controllers for each phase. The volume 9, Number 2, April

1990 edition of the International Journal of Robotics Research is a~ special issue on legged

robots and contains several useful references. In the book of (Vukobratovic et al., 1990),

the authors present a study of biped locomotion, analyze biped locomotion, and list some

of the existing hardware implementations. In (Goddard et al., 1992), the authors analyze

the heel-off to toe-off motion in locomotion and also provide a good literature review of



73

biped locomotion research. The authors in (Stewart and Cremer, 1989) develop control

algorithms for a walking robot and simulate the system in Newton (Cremer and Stewart,

1989), a general-purpose multibody simulator. Hopping robots were created in (Raibert,

1986) by first creating a hopping robot with one leg and then extending the ideas to robots

with two and then four legs. State machines are used to coordinate low-level PD controllers

to make the system locomote without falling over. Algorithms for foot placement, balamcing,

and speed control are also provided in (Raibert, 1986). Gynmastics were also performed

with the hopping robot, and this work is documented in (Hodgins and Raibert, 1990).

The author in (Arg^z, 1993) designed and created an experimental climbing robot and

introduced the notion of control points to simultaneously control force aind position.

There are also numerous studies by researchers in biology on human locomotion

and only a few of the many references are presented here. The book of (McMahon, 1984)

has numerous experimental results, force data, and joint trajectory data of human subjects.

Descriptionsof muscles are also provided. In (Winter, 1989), the author studies human gait

and provides numerous experimental results on joint trajectories, forceplate data, and joint

torques. In (Brooks, 1986), the author discusses motor control, posture, and locomotion.

Also, consult (Winters and Savio, 1990) for useful information on muscle systems.

There has been recent interest in using dynamic simulators and control algorithms

to produce realistic animations for computer graphics applications. The authors in (Raibert

and Hodgins, 1991) produce animations of legged systems, including models of kangaroos,

by simulating controlled multibody models in a dynamic simulator. The technique uses

low-level PD controllers coordinated by state machines. The authors in (Hodgins et al..
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1995) produce animations of human athletics including bicycling, running, and vaulting.

The technique uses joint trajectory data, PD controllers, and state machines to producethe

behaviors. Three-dimensional running is documented in (Hodgins, 1996), and the motion

is produced using PD controllers, specifying joint trajectories, and coordinating the PD

controllers with state machines. Recently, the authors in (Kokkevis et al., 1996) have used

model reference adaptive controllers (MRAC) to produce animations of human models in a

dynamic multibody simulator.

The fundamental limitation of the current control techniques for biped locomotion

is that there are no general, predictive models of human motion. The current techniques

require a knowledge of existing joint trajectories and set points. The controller parameters

are difficult to tune and require a lot of time consuming trial and error to produce a

particular motion. Even after the motion is created, the system may only work in a small

region around the created motion. The current techniques are difficult to apply to complex

systems, such as the human body, and it is difficult to prove that the controller produces

the desired system behavior. The major limitation is that current control techniques are

difficult to apply to the nonlinear, complex systems whose dynamics change as the system

intermittenly contacts the environment. Controlling systems with discrete model changes

and complex, nonlinear dynamics needs to addressed by new control methods.

Since existing techniques are difficult to apply to create predictive models of human

motion, new control designs are necessary. A new balancing controller is designed and

presented in this chapter and is designed to serve as a basis for more complicated controllers

for walking, running, jumping, changing direction, and adapting to loads. The controller is
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designed to overcome the limitations in current control techniques. It is designed to have a

minimiim number of parameters that are easy to tune, to have a large operating region, to

coordinate the degrees of freedom, to be able to handle the complex equations of motion,

and to provide a "good" interface to higher-level controllers. To meet these goals, the

controller is designed to first create errors in the central body and not in the joint space. It

is felt that the central body is more important than joint angles, and the desired motion is

easier to specify in the central body coordinates. A model is created in the workspace, the

space of the central body, to provide a decoupled response between the error coordinates

and to provide simpler error dynamics. It is difficult, time-consuming, and prone to error

to symbolically create the workspace dynamic equations by hand. Recursive multibody

techniques are then used to efficiently create the workspace dynaunics model. The recursive

techniques can be used for more complicated structures, and the computational cost grows

linearly with the number of degrees of freedom for tree-structured multibody systems. The

joint torques are also calculated in a recursive manner, and this alleviates the designerfrom

symbolically creating the necessary Jacobian. The controller presented in this paper is a

3D extension of the planar balancing controller presented in (Wendlandt and Sastry, 1996).

The chapter first describes the biped model and then provides an overview of the

recursive workspace controller. The workspace controller is then described in more detail

followed by simulation results performed in a 3D multibody simulator designed to handle

contact with the environment called Impulse (Mirtich, 1996). The derivations in this chapter

assume a familiairity with the results in Appendix A and Chapter 3.
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The 3D multibody model of the biped consists of a central body and two legs and

is shown in Figure 4.1. The dimensions of the rigid bodies and the placement of the joints

are based on measurements of a human subject. Each leg consists of an upper leg, a lower

leg, and a foot. The leg is attached to the central body through a 3 degree of freedom

(DOF) spherical joint consisting of two intermediate rigid bodies connected with revolute

joints. The knee joint has one degree of freedom and connects the upper leg to the lower leg.

The foot is attached to the lower leg through a 2 DOF joint consisting of one intermediate
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body coimected with a revolute joint. The total number of rigid bodies in the system is 13,

and the total number of DOF is 18. When both feet are in contact with the ground, the

contact effectively decreases the total number of DOF to 6. The rigid bodies in the system

are labeled in bold text. The revolute joints are shown with arrows pointing in the positive

direction and are labeled with plain text. The left leg components are labeled starting at

number 2 while the right leg components start at number 8.

Consider an inertial frame placed at the floor having the same orientation as the

frame shown in Figure 4.1. The body frames aligned with the principal axes of inertia for

each rigid body, except the two feet, have the same orientation in the home configuration as

the inertial frame. The orientation of the principal axis frame for the feet is formed from the

inertial frame by rotating about the —Y axis by 8.547 degrees. In the home configuration

and relative to the inertial frame, the center of mass of link 1 is located at (0,0,123) cm.

The axes of inertiafor link 1 are (1.67,1.58,0.581) Kg-m^, and the mass is 45Kg. The mass

of each rigid body is calculated based on the volume aind the density of water. The center

of mass of link 2 and 3 is at (0, —15,96) cm, and the center of mass of link 8 and 9 is at

(0,15,96) cm. The center of mass of link 6 is at (0, —15,6) cm, and the center of mass of link

12 is at (0,15,6) cm. The inertias about each axis for link 2, 3, 6, 8, 9, and 12 are equal and

are 0.00028 Kg-m^, and the mass for each of these bodies is 0.343 Kg. The center of mass

of link 4 is at (0, —15,73) cm, and the center of mass of link 10 is at (0,15,73) cm. Link 4

and 10 have a mass of 7.5 Kg, and the inertias are (0.163,0.171,0.0198) Kg-m^. The center

of mass of link 5 is at (0,-15,28) cm, and the center of mass of link 11 is at (0,15,28)

cm. The mass of link 5 and 11 is 4.79 Kg, and the inertias are (0.0961,0.0959,0.00784)
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Kg-m^. The center of mass of link 7 is at (—5.325, —15,3.473) cm, and the center of mass

of link 13 is at (—5.325,15,3.473) cm. The mass of link 7 and 13 is 1.455 Kg, and the

inertias are (0.00189,0.00608,0.00662) Kg-m^. Joints 2, 3 and 4 are located at (0,-15,96)

cm, and joints 8, 9, and 10 are located at (0,15,96) cm. Joint 5 is located at (0,-15,50)

cm, and joint 11 is located at (0,15,50) cm. Joints 6 and 7 are located at (0,-15,6) cm,

and joint 12 and 13 are located at (0,15,6) cm. The total mass of the system is 74.558 Kg

(approximately 164.4 lbs.).
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4.2 Recursive Workspace Controller

The block diagram for the recursive workspace controller is shown in Figure 4.2.

The terms recursive and iterative refer to successive link to link calculations. The calcu

lations performed for the recursive workspace controller are contained in the outer shaded

box. The inboard and outboard recursive steps are indicated in the interior, darker box.

The inputs to the controller are the multibody (MB) states (central body position and

orientation, center of mass velocity, central body angular velocity, joint angles, and joint

velocities); desired central body acceleration, velocity, and position; and position and ve

locity gains. The desired values and gains are provided by a higher level controller. The

controller outputs joint torques.

The basic idea of the control design is to form a model of the dynamics in terms

of the workspace, the coordinates of the central body. The workspace dynamics model is

created efficientlyand easily through multibody recursive techniques. A desired force acting

at the central body is then created based on the workspace model, the desired trajectory,

and the controller gains. The desired force is then realized through the joint torques in the

two legs.

The MB states are first used to initialize controller variables and then used in the

forward kinematics stage. In an outboard recursion, the body velocities and pose of each

rigid body in the multibody system are calculated. Forces and torques due to Coriolis and

gravitational forces are also calculated.

The information calculated in the forward kinematics block is used to calculate the

workspace dynamics that consist of the workspace inertia, gravitational forces, and Coriolis
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forces. The workspace dynamics calculation consists of an inboard recursion from the feet

to the central body and produces the approximate workspace dynamics for the central body.

This stage calculates the articulated body(AB) inertia (Featherstone, 1983) and bias forces

of the inboard link based on the AB inertia and bias forces of the outboard link. The AB

inertia and bias forces relate an external force applied to a link to the acceleration of that

link and take into accoimt the links outboard to the link. The AB inertia and bias force

for the central body provide the approximate workspace dynamics. AB inertias and bias

forces are discussed in many references including (Featherstone, 1983), (Lilly, 1993), (Jain,

1991), (Mirtich, 1996), and in Chapter 3 of this dissertation. The recursive workspace

controller assumes that the feet are fixed to the fioor. We approximate this condition from

a big base assumption presented in (Lilly, 1993). The approximation assigns the feet a large

mass and inertia (approximating the Earth) and sets the feet bias forces to zero. Exact

algorithms for calculating the workspace dynamics recursively for serial chains is provided

in (Kreutz-Delgado et al., 1992).

The desired wrench acting at the center of mass of the central body is calculated

based on the approximate workspace dynamics. The desired trajectory of the central body,

the workspace dynamics, the current MB states, trajectory errors, and control gains are

combined in this stage to create a desired wrench acting at the center of mass of the central

body. The wrench is written with respect to the frame of link 1. The desired wrench cannot

be realized directly but is realized through the actuator torques.

The desired wrench is provided through the joint torques of the left and right legs.

The desired contribution from each leg is calculated based on the current pose of each foot.



Algorithm 4.1 Controller Initialization

given: V,', so.i;

o} = [000000f;

= +
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The desired wrench distribution is calculated to minimize the reaction wrenches of the feet

with the floor and is calculated with a pseudo-inverse to be described below.

Finally, the joint torques are calculated in an outboard recursion along each leg

based on the desired wrench contribution from the left and right legs. The joint torques are

created from a Jacobiam transpose calculation which is realized in a reciursive manner.

4.2.1 Initialization

Dinring the initialization stage, the body velocity and pose of the central body are

used to initialize variables for the central body. The calculations during the initiaJization

stage are given in Algorithm 4.1. a\ is a kinematic acceleration term and is zero for the free

joint between link 1 and the inertial frame. bi consists of gravitationail amd Coriolis terms

for link 1. The term, is a 6-vector of externail forces aw:ting at the origin of the body

frame of link i; is the 6-vector body velocity of link i with respect to link 0, the inertial

fraime;

1

I o
•

;f

"11

o

0H
i

>••

1

o

_

(4.1)

rrii is the mass of link t; I is the 3x3 identity matrix; and It is the diagonal inertia matrix

of link i. The external forces, in this system are the gravitational forces transformed

to the body frame of link i.
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Algorithm 4.2 Forward Kinematics
for A; = 2 to 13 do

9k.o,0 ~ 9k.o,k.i{^k)9k.ifi

"^k.i ~ ^^9k.o,k.iih)

vL = 4:tvL+H,e,

< = AtvL + hA

^k. = -Pto+4.oMLvL

end for

4.2.2 Forward Kinematics

During the forward kinematics stage, the body velocities, gravitational forces,

rigid body poses, and Coriolis forces are calculated in an outboard recursion as shown in

Algorithm 4.2. The map € SE{Z) tadces coordinates of a point or vector in link k and

gives the corresponding coordinates in link j. The symbol, fc.o, gives the link index of the

link outboard to joint k. The symbol, k.i^ gives the link index of the link inboard to joint

k. The adjoint appropriately transforms velocities and forces in different frames. The joint

map is given by Hk and is a vector that represents the twist of joint k written in the link

frame outboard to joint A:, the frame of link k.o. The term HkOk is the relative body velocity

between link k.i and link k.o. The term A*transforms the body velocity of link k.i

to link k.o coordinates. The Coriolis terms are contained in of and in the last term of6^^.

The first term in ^ is the gravitational force written in the coordinates of link k.o.



Algorithm 4.3 Workspace Dynamics Calculation
for A; = 1 to 13 do

Pk =

end for

Apply fixed base approximation

Pi = Pl3 =

27 = 213 = [0 0 0 0 0 0]^;

for A: = 13 to 2 do

D„ = HlPk.oHk\

Lk = [I-KtPkMkf^

Pk.i = Pk.i + L'{Pk.oi'k',

^k.i ~ ^k.i {Pk.o^^

end for
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4.2.3 Workspace Dynamics Calculation

The opproartmofe workspace dynamics axe calculated through a recursion from the

feet to the body. The algorithm calculates the articulated body (AB) inertia (Featherstone,

1983) and bias forces of the inboard link based on the AB inertia and bias force of the

outboard link. The AB inertia and bias forces for the central body are calculated in the

last step in the iteration. The calculations are given in Algorithm 4.3.

The bias forces, Zk-> and AB inertias, P/t? are first initialized as shown in Algo-
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rithm 4.3. The fixed base approximation is then applied to the two feet. The inboard

recursion calculates the AB inertia for each link based on the AB inertia of the outboard

link. The approximate workspace inertia is Pi, and the approximate Coriolis and gravita

tional forces are given in zi. Given an external wrench, Pi, acting at the center of mass of

the central body, the approximate workspace dynamics are Pi = PiVf -h zi.

The approximate calculation of the workspace inertia is given in (Lilly, 1993) based

on the big base assumption. An exact calculation of the workspace dynamics for serial chains

is given in (Kreutz-Delgado et al., 1992) in terms of the spatial operator algebra.

4.2.4 Desired Wrench Calculation

In this section, the algorithm to calculate the desired wrench acting at the center

of mass and written with respect to the body frame is given. The desired wrench is denoted

by Pj"' and is realized through the joint torques that are calculated in Section 4.2.6.

If the feet are fixed to the floor and the legs are non-singular, then the equation

relating the external body wrench, Ff, acting at the center of mass of link 1; the exact

workspace inertia. Pi; and the exact workspace Coriolis and gravitational forces, ii, is

Fi = PiV{ + zu (4.2)

where Vf is the time derivative of the body velocity (the body acceleration) of link 1.

Algorithm 4.3 produces Pi and zi which approximates Pi and zi, respectively. The desired

force is designed to be in the form

Ff = PiX'' + zu (4.3)
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where is a term that is designed below. If is exactly realized through the joint

torques (Ff = Ff^), Pi = Pu and zi = zi, then

PiVf + zi=PiX''-^zu (4.4)

implying that

Fi(V^-X^) = 0. (4.5)

Since Pi is positive definite, then

Vi^ = XK (4.6)

The term X^ is now designed with the assumption that the body acceleration

is directly controlled through X^. This is not realized in a real system due to actuator

limits, unmodeled dynamics, sliding feet, and the small difierence between the exact and

approximate workspace dynamics. The term X^ is designed to drive the position of the

center of mass of link 1 with respect to the inertial firame to track a desired trajectory

and to drive the body orientation to track a desired orientation with respect to the inertial

fi:ame. X^ is also designed to decouple the error dynamics of the center of mass fi*om the

orientation error dynamics. X'' is also designed to produce error dynamics relative to the

spatial frame and to provide an intuitive relationship between gains, set points, trajectories,

and the resulting motion.

The body acceleration is composed of two parts, and X^ is divided into two cor

responding parts:

Vl" = (4.7)
/ j''LJ,0,1



and

The kinematic equations are then

and

A'^ =
xi

X'r

PO.l ~

'.b _ yb
'^0,1 —^R'
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(4.8)

(4.9)

(4.10)

The controller for the center of mass is first designed by designing X^. First note

thatPo.i = -RoiiPo,! where po.i is the velocity ofthe center ofmass oflink 1with respect to

the inertial firame, and i2o,i is a rotation matrix which maps body coordinates to inertial

coordinates . It follows that

~ ""'^0,1 ^ Po.i Po.i (4.11)

from a straightforward calculation. Let

~ '*^0,1 ^ Po,i)- (4.12)

Equations (4.9), (4.11), and (4.12) then imply that

(4.13)

Let Cc = Po,i ~ Pofi where pffji is the desired position of the center ofmass with respect

to the inertial frame. Also, let X^ = Pofi — —Kc^ where and K? are positive

definite, symmetric, 3x3 gain matrices. Equation (4.13) then implies that

(4.14)
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If Equation (4.14) holds, then e? 0exponentially in time. See (Murray et al., 1994) (page

192) for a proof. The position error will only converge to zero if E)quation (4.6) holds, and

this relies on the assumptions that the feet are fixed to the ground and that the dynamic

terms of the model and the controller model are equal.

Creating a tracking controller for the orientation is more difficult than creating

a controller for the position terms. A traicking orientation controller is now created by

designing X^. Define the term to be Rq^iX^. Since iZo,1^*^0,1 = ^0,1'

(4-15)

XJ is then designed to produce error dynamics with terms expressed relative to the spatial

frame.

A difficulty in designing a tracking controller for controlling orientation is de

termining how to create the proportional action term. In other words, determining the

difference between two rotation matrices. Consult (Bullo and Murray, 1997) for a recent

reference on orientation error and more general measurements of errors on manifolds.

The error chosen for the orientation controller is based on the matrix Jig given by

fle = (416)

where /2o,(f is the desired orientation of the body. Equation (4.16) implies that ReRo,d =

iZo.i- This relation provides an interpretation of the meaning of J?e- Since successive

spatial rotations multiply on the left. Re is interpreted as the matrix represented relative

to the spatial frame which rotates the desired frame into the body frame, i2o,i. Also, since

Rq^ = rJRq i^ R'[ rotates the body frame into the desired frame. Again, RJ is represented

relative to the spatial frame.
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A proportional action termiscreated from the matrix Re- Let90,1 be a quaternion

representing iZo.i let go,<i represent Ro,d' A quaternion representing Re is

9et = 90,1 * 90,d = (Qlt19ct)• (4.17)

The quaternion —get also represents Re- The quaternion chosen torepresent theerror matrix

is the one having the axis-angle interpretation with the angle in [0, tt] radians. This error

quaternion, ge = (9|»9?)i is the one with a non-negative scalar component (see Appendix

A for more details). The vector component of the error quaternion is used to generate the

proportional action. Theorientation error term, e^, is then given by

=sin(y)uJe =g^ (4.18)

where 9e € [0,7r], || Wg ||= 1, and Wg is a vector represented in the spatial frame. Rotating

the desired frame about the spatial axis Wg by an angle 6e brings the desired frame to the

body frame. Rotating the body frame about axis Wg by -de radians brings the body frame

to the desired frame.

The velocity error term is chosen to be the spatial angular velocity of matrix Rg

given by

= R^R^. (4.19)

One can show by expanding Equation (4.19) that

~ ^0,1 " (4.20)

and

~ *^0,1 ~ ~ ^0,1 ^ (• '̂*'o,d)- (4-21)
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Also,

4€ ={0,-f)*ge

(4.22)

Since is a unit quaternion, = ivl—represent the orientation error, the

quaternion with the positive scalar component is used, and therefore, gj = +\/l —(9e)^9e-

Using Equation (4.22), one derives that

•^\/l-(9eF9e -9e

Given gain matrices and is designed to be

Xp = Re^d ^ ~ ~ ^rQc-

wl = Q(9?)^

Equation (4.24) and (4.15) imply that

-Xk = + ifM + K%q', = 0.

The orientation error dynamics are then

9e" Q(9?)a'|

1

1

1

?0«
tn

1

(4.23)

(4.24)

(4.25)

(4.26)

and the Jacobian for the hnearization evaluated at the equilibrium, (ge,C4;|) = (0,0), is

0 -/2^

-K'n -Kl

(4.27)

If the gain matricesare positive definite and symmetric, then as is proved in (Murray et al.,

1994) (page 192), the eigenvalues of the Jacobian matrix lie in the left hand plane. This
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proves locally that the orientation error, gj, converges to zero exponentially. Various ori

entation trajectories and many initial conditions have been simulated with this orientation

controller, and the error has always converged to zero. This suggests that there may exist

a stronger theorem for this controller with global convergence properties.

The orientation controller developed here is very similar to the left error orientation

controller presented in (Bullo and Murray, 1997). The saune error matrix is used, but the

proportional action term differs. The velocity action is also different. The development of

equation (4.23) is also influenced by the compatibility error condition presented in (Bullo

and Murray, 1997). Consult (Bullo and Murray, 1997) for more information on tracking

controllers for mechanical systems on manifolds.

The algorithm to calculate the desired wrench is shown in Algorithm 4.4. The

components of are calculated and then used to calculate the desired body wrench.

4.2.5 Desired Wrench Distribution

In this section, the desired body wrench, is divided into two contributions:

one from the left leg and one from the right leg. Distributing the wrench needs to be done

carefully to avoid creating unnecessary and detrimental internal forces and torques.

Let Fr be the wrench acting on the right foot frt>m the ground and represented in

the body frame of the right foot (link 13). Let F/ denote the corresponding wrench for the

left foot (link 7). The desired body wrench is given by

F?^ = Ad[.,/i +Ad^-. Fr= Ad^, Ad^., =G (4.28)
5i.7 ^1,13 g^}

and is a result of transforming Ft and Fr to the frame of link 1 and adding. First note that

Fz A ^ Fi
= G

Fr Fr



Algorithm 4.4 Desired Wrench Calculation
given: trajectory data, MB states, workspace dynamics, and gains.

= Po,l •" Pofl ?^ == Po,l ~ Pofl 5

^c' = -R2;iW-'^g..xpS,i);

9«( = 9o,l*9o,<i= l9ii<9et)<

if q^t > 0 then

9e = (91,9e) = {<3lt^Qeth

else

9e = (9ei9e) = {^e « represented by ±qet}

end if

X% = iJeUj,,, + a>S,j X(R^col^) - K^u^l -

vb dT vs.
-^R ~

x' =
xi

X'r

F}* = PiX''+ Z1-,

91
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the matrix G has full row rank and then solve Equation (4.28) for Fi and Ft by computing

a minimum norm solution in the following way:

Fi

Ft

Let F^ be the desired wrench acting on body k.i from body k.o and written with respect

to frame k.i. Let F^ be the desired wrench acting on link k.o from link k.i and written

with respect to frame k.o. The wrenches acting on the central body, link 1, from the left

and right legs are then

F^ =Ad^-, F/ (4.30)

and

In this way,

= G'^(GG'^)-^Ff. (4.29)

Ff = Ad[., Fr. (4.31)
5i.13

FjW = ffi + (4.32)

and the desired wrench is divided into a contribution from the left and right legs. The

calculation is given and summarized in Algorithm 4.5.

4.2.6 Torque Calculation

The joint torques are now calculated in an outboard recursion given the wrench

contributions from the left and right legs.

Let T/ be the joint torques for the left leg 8md be the joint torques for the right

leg. Let Ji be the body Jacobian for the left legand Jr be the body Jacobian for the right leg.



93

Algorithm 4.5 Desired Wrench Distribution
given: 7,51,13

G = [Ad^_i Ad^_i]; {G has full row rank}
9i,7 Si,7

F,

Fr

Ff = Adf..F,;
9i.r

Ft' = Adl. Fr-, {Ft' = #2" +
Si,13

If the feet axefixed, Ji maps joint velocities for the left leg to the body velocity of link 1, and

Jr maps right legjoint velocities to the body velocity of link 1. The joint torques are then

T/ = JfF2^ and The Jacobian transpose relationship is a static equilibrium

calculation and can be calculated by finding the equilibrium forces on each link as though

each link were at rest. The recursive algorithm to calculate the joint torques is given in

Algorithm 4.6. The joint torques are calculated in an outboard iteration over the joints.

First create F^ by using equal and opposite forces across joint k: F^^ = —Ad^_i F '̂̂ .
9k.o,k.i

Then project F '̂̂ across the joint axis to get the joint torque: Tk = H][F^. Then update

FJJi by noting that link k.o is in equilibrium for the Jacobian calculation: Fjjj = —F^.

4.3 Simulation Results

The controlled multibody system is created and simulated in Impulse (Mirtich,

1996) and simulation results are presented in this section. Impulse is a multibody simulator

that handles contact through impulses. The controller is written in C and interfaced to
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Algorithm 4.6 Torque Calculation

given: and 9k.o,k.i and fffc for all /: G{2, ••• , 13};

for A; = 2 to 13 do

F^*^ = —Ad^.j F^; {equal and opposite forces across joint fc}

r» = fff/f;

if link k.o is not a leaf then

= —F^; {body k.o is in equilibrium}

end if

end for

the simulator. Two experiments are presented, and animations of the experiments can be

found at http://robotics.eecs.berkeley.edu/-wents. For the two experiments, the coefficient

of friction is 0.3, the coefficient of restitution is 0.2, and the gravitational acceleration

is 9.81^. The multibody system initially has zero velocity. The center of mass of the

central body is initiEilly placed at (0,0,103.5) cm, and the central body is initially rotated

about the —y axis by 5 degrees. The system is initially slightly above the ground and

collides with the ground right after the start of the simulation. The initial joint angles are

{^2, ••,^13} = {0,40,0,-77.4595,0,42.4595,0,40,0,-77.4595,0,42.4595} degrees. The

controller gains are

7.07 0 0

0 7.07 0

0 0 14.142

50 0 0

KP = 0 50 0

II

H

0 0 200



50 0 0 7.07 0 0

II

0 50 0 , and FTJ = 0 7.07 0

0 0 50 0 0 7.07
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The vertical gain in the Z position is chosen based on the experiments on astronauts in

(Newman et al., 1996). The remaining gains are chosen arbitrarily with a damping ratio

of 0.5. The controller is called at 500 Hz. On an SGI Indigo (R4000, 100 MHz) worksta

tion, each control loop takes 7 milliseconds to compute. For experiment 2, a three second

simulation takes 2066 seconds (34 minutes 26 seconds) to compute.

Hand tweaking of the controller gains and set points were not required to produce

the simulations presented in this section. The fact that the controller is model-based and

that the errors aixe formed in the central body provides an intuitive relationship between the

error dynamics, set points, aind gains. The 12 joint torques are coordinated by the design

of the control system.

For Experiment 1, the set point for the center of mass is (—1,0,110) cm, and the

desired orientation is go,d = (0.99144486, -0.13052619,0.0,0.0) corresponding to a 15 degree

rotation about the —X axis. The system moves to the desired pose. At approximately 0.18

seconds, the front part of the left foot raises offof the floor. This disturbance is felt in the

system, but the controller recovers and drives the errors to zero.

The joint angles over time are shown in Figure 4.3. The evidence of the left foot

raising is shown in the trajectory of joint 7. There is a slight drifting in the joint angles

as time progresses. This is believed to be caused by the feet sliding relative to the ground

as can been seen in the 3D graphical display of the multibody system. The sliding feet is
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Figure 4.3: Joint Angles for Experiment 1
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believed to be an artifact of the impulsive contact model. The controller corrects for the

errors caused by the feet sliding.

The joint torques versus time are shown in Figure 4.4. The maximum joint torque

occurs in the right knee at 0 seconds and is 192 N-m. The joint torques for joints 2, 3, 4, 6,

8, 9, 10, and 12 are substantially smaller. Evidence of the feet sliding are seen in the joint

torques for joints 6 and 12.

The position of the center of mass of link 1 is shown in Figure 4.5. The position of

the center of mass converges to a neighborhood of the desired value. The convergence in the

Z coordinate is faster than in the other two coordinates by the choice of the position gains.

The desired position in the Y coordinate deviates from zero initially and then recovers.

The orientation over time is shown in Figure 4.6 and is given by go,i • The orienta-
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tion converges to a neighborhood of the desired orientation. There are disturbances caused

by the collisions in impulse as well as the fact that the feet slide over time.

The errors in position and orientation are shown in Figure 4.7 and in Figure 4.8.

The position error converges to a neighborhood of zero and the quaternion error, qet^ con

verges to the identity quaternion. The controlled system experiences the disturbances

caused by the collisions as well as the feet sliding.

The desired body forces over time are shown in Figure 4.9. The desired force in

the Z direction is a maximum of 1687 N at 0 seconds and converges to approximately 594

N at 3 seconds.

The desired body torque is shown in Figure 4.10. The largest torque is in the body

y axis and is -49 N-m. The desired torque about the Z axis is between -2 and 2 N-m. The
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Figure 4.11: Screen Capture of Experiment 2

desired torque about the X axis is between -20 and 0 N-m.

For Experiment 2, the set point for the center of mass of link 1 is (-1,0,114) cm,

and the desired orientation is go.d = (0.99144486,-0.13052619,0,0) corresponding to a 15

degree rotation about the -Y axis. The system begins rising to the desired pose while a

1.8 Kg block is thrown at the body from the position of (50,10,120) cm with a velocity

of (—450,0,20) cm/s (approximately 4 lbs. thrown at 10 mph). The block collides with

the body at approximately 0.08 seconds. The two feet begin to rise at approximately 0.13

seconds, and the system rests on the front of the two feet as the heels rise. The right

foot makes contact with the ground at approximately 0.36 seconds, and the left foot makes

contact at approximately 0.38 seconds. A snapshot of the simulation in Impulse at 0.32

seconds is shown in Figure 4.11. During this simulation as well, the feet drift relative to the
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ground as the simulation proceeds. The controller compensates for the collisions, the feet

leaving contact with the ground, the impulsive contact forces, and the sliding feet to drive

the error to a neighborhood of zero.

The joint angles over time for Experiment 2 are shown in Figure 4.12. The sharp

change in joint angles due to the collision can be seen at 0.08 seconds. The feet malcing

contact with the ground at 0.36 and 0.38 seconds is also seen in the data. After these

disturbances, the joint angles settle with a small drifting due to the sliding feet.

The joint torques over time are shown in Figure 4.13. The torques fluctuate after

the collision and have sharp changes after the changes in the contact of the feet with the

ground.

The position of the center of mass relative to the inertial frame is shown in Fig-
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ure 4.14. The errors converge to a neighborhood of zero. The convergence is faster in the

Z coordinate. The Y position is seen to drift about zero, and this is believed to be due to

the sliding feet. The collision disturbance is seen to push the body in the —X direction and

then the controller compensates for the disturbance.

The orientation of the central body is shown in Figure 4.15. The collision causes

the body to rotate about the —Y axis and to rotate about the Z axis as can be seen in the

plot of Qy and The controller compensates for the disturbances and drives the error to

a neighborhood of zero.

The position errors are shown in Figure 4.16. The position errors converge to a

neighborhood of zero. The controller compensates for the disturbances to the system.

The orientation error is shown in Figure 4.17. The orientation error converges to
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a neighborhood of the identity quaternion. The disturbances caused by the collision and

the contact changes of the feet with the floor can be seen in this flgure.

The desired body force is shown in Figure 4.18. The sharp changes in the desired

force caused by the disturbances are seen in the data. The small peaks shown in the Y

force data may be caused by the impulsive contact model as well as the sliding feet.

The desired body torque is shown in Figure 4.19. The desired torque compensates

for the disturbances and contact changes in the feet with the ground. The small peaks in

the desired torques may be caused by the impulsive contact model and the sliding feet.
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Figure 4.19: Desired Body Torque for Experiment 2

4.4 Chapter Summary

The balancing controller presented in this chapter extends the planar results in

(Wendlandt and Sastry, 1996) and applies the control method to produce a workspace

balancing controller for a 3D multibody model of a biped. A model-based controller is

formed in the workspace of the 3D biped, and the model is efficiently calculated through

link to link iterations in the multibody structure. The recursive calculations free the control

designer from having to symbolically create the complicated, nonlinear model.

The balancing controller has desirable properties observed through the simulation

results. It is easy to choose gains and set points. The simpler error dynamics are easier to

tune for a desired response. A sensitivity of the dynamic response to small changes in the



108

parameters was not observed. The system also has a large operating region for the gains

simulated. The joint torques are automaticallycoordinatedby design and one doesnot tune

individualjoint gains. The controlled system is also seen to react to disturbances as is seen

in the simulation of the collision with a projectile. Hand tweaking of various parameters in

the controller was not necessary. However, the controUed system can not recover from the

projectiledisturbance if the velocity of the projectile is too large. The balancing controller

may serve well as a basis for more complicated controllers for walking, running, jumping,

changing direction, and adapting to loads.

Improvements can be made to the balancing controller. The current controller is

model-based and does not adapt to changes in the model parameters. Adaptation may be

used to react to loads as well as correct for modeling errors. See (Berghuis, 1993) for a

study of model-based robot controllers with and without adaptation. This controller is not

designed to operate near singularities. For example, the leg is at a singularity when the

knee joint angle is at zero degrees. A modification to the existing controller or the design

of a new controller is necessary to handle singularities. The controller is not designed to

handle redundancy in the legs. If one toe joint is added, then each leg will have 7 degrees

of freedom. The controller needs to be modified or re-designed to handle redundancy. New

controllers need to be designed to produce walking, running, jumping, and adapting to

loads. The controller has been designed to not rely on specific joint trajectories, but it has

not been shown to be predictive. One needs to perform more detailed comparisons with

experiments on human subjects. The hope then is to modify the controller to better predict

human motion. The controller must extract principles from the experiments and must not
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rely on very specific data firom individual experiments. The ciurent balancing controller

relies on the tree-structure of the multibody system. Many engineering applications of

multibody systems have closed-loops, and creating multibody controllers for these systems

is an area of future work. Also, the workspace dynamics are calculated approximately and

rely on the big base assumption. One may use algorithms to calculate the exact workspace

dynamics although it is not clear that much is to be gained by this improvement.

The simulation method can also be improved. Impulse handles contact through

many impulses, and this method of modeling contact does not handle continuous planar

contact very efficiently. The problem experienced with the feet drifting slowly on the fioor

is an artifact of the impulsive contact model. The creators of Impulse are currently creating

the ability to switch between an impulsive contact model and a constraint-based contact

model, and this should eliminate the problem of the sliding feet. One may also choose to

use a different contact model, and this is the motivation for the contact modeling work in

Chapter 5. Impulse provides a nice interface to simulate the controlled multibody system

and to simulate the system in many different situations. Utilizing a general multibody

simulator designed to handle contact has been found to be a useful tool for developing

control systems for these multibody models.
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Chapter 5

Components of a Multibody

Simulator

This chapter presents components of a multibody simulator specifically designed

for modeling biped models in contact with the ground in real-time. The emphasis is on

creating a control development platform for designing discrete-time control algorithms for

human motion. In this effort, external forces are added to the methodology developed in

Chapter 2. A simple model of contact is designed, and simulation results of a rigid body

colliding with the ground are presented. Symplectic-momentum multibody integrators are

then created whose computational cost grows linearly with the number of joints for tree-

structured systems. It is shown how to combine the multibody integrator with the contact

model and controller actuator torques to create a control development platform.

Researchers have been studying multibody simulation techniques for msiny years

and have created several techniques for computer simulation. Recursive algorithms are
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one class of techniques that calculate the joint accelerations of tree-structured systems

with a computational cost that grows linearly with the number of joints (see Chapter 3,

(Featherstone, 1983), (Jain, 1991), and (Bae and Haug, 1987)). These algorithms are well-

suited for tree-structured systems, and the techniques have been extended to systems with

closed loops (see (Bae and Haug, 1988) and (Rodriguez et al., 1992)). Recursive techniques

with closed-loops often use Baumgarte's stabilization technique (PD controllers enforcing

the constraints) (Baumgarte, 1972) to counteract drifting in the loop closure constraints.

Differential-aJgebraic-equation (DAE) techniques treat multibody systems as a col

lection of differential equations and algebraic constraints. Several DAE integrators have

been created (for example, MEXX (Lubich et al., 1993), DASSL (Petzold, 1982), (Bre-

nan et al., 1989), and MBSSIM (Andrzejewski et al, 1993). Also see (Schiehlen, 1993)

for additional references). These methods seem natural for systems with closed-loops and

by exploiting sparsity in matrices can also achieve linear-time computational cost for tree-

structured multibody systems.

Researchers have also developed contact models and have combined them with

multibody simulation techniques to create general purpose simulators. The authors in

(Cremer and Stewart, 1989) created Newton as a general purpose multibody simulator

with contact. Impulse (Mirtich, 1996) is a recent multibody simulator that uses recursive

algorithms and models contauit with impulses. The author in (Baraff, 1996) created a

multibody simulator with contact by utilizing DAE algorithms and by exploiting sparsity

to obtain linear-time complexity for tree-structured multibody systems. These simulators

have applications in animation, computer graphics, and engineering design.
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Modeling contact eflficiently and robustly is difficult to achieve for general purpose

multibody simulators. Part of the difficulty is the fact that the physical processes involved

in two materials contacting is extremely complicated and many simplifying assumptions

need to be made, including the coulomb friction model. One must also detect contact with

collision detection algorithms, and evolve the system while in contact. The main approaches

to date are impulsive contact models (Mirtich, 1996), solving a linear complementarity prob

lem (LCP) (IVinkle et al., 1997), (Baraff, 1996), (Pfeiffer and Glocker, 1996), and using a

spring-based method (Goyal et al., 1994a), (Goyal et al., 1994b). See (Mirtich, 1996) and

(Brogliato, 1996) for a more in depth discussion of contact modeling. In some applications,

curvature of the contact interaction may be important as is discussed in (Rimon and Bur-

dick, 1994). Contact simulation is important in some finite element applications, e.p., car

crash simulations. Contact simulation with finite element analysis is presented in (Simo and

Laursen, 1992), (Peric and Owen, 1992), (Laursen and Simo, 1993), (Kulak and Schwer,

1991), and (Zhong, 1993).

Recently, a few researchers have created mechanical integrators for multibody sys

tems. Mechanical integrators respect the structure of mechanical systems and preserve

energy, momentum, and/or are symplectic. It is important in some applications that these

properties are obeyed by the numerical integration scheme. For example, in space ap

plications, momentum conservation is critical. For long-term simulations of Hamiltonian

systems, symplectic integration seems important. The authors in (Barth and Leimkuhler,

1996b) particulate the rigid bodies in a multibody system with point masses. They then use

symplectic-momentum integrators with constraints and general sparse matrix techniques to
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simulate multibody systems. The author in (Reich, 1996b) uses the methods in (Reich,

1996a) to create symplectic-momentum integrators for multibody systems. The integrator

in (Reich, 1996b) is an explicit integrator which satisfies the position and velocity con

straints.

For real-time simulation, one is less concerned with numerical accuracy and more

concerned with getting fairly accurate results with a predictable computational cost. More

accurate simulations can be performed when computational times are not critical. Implicit

integrators with a fixed number of iterations have been recommended for real-time appli

cations (de Jalon and Bayo, 1994) (pages 266-267) since implicit integrators can retain

reasonable accuracies with relatively large time-steps, can remain stable for stifi" systems,

and can have a fixed computational cost. However, with implicit integrators, a set of non-

Unear equations are solved at each time-step, and it is difiicult to guarantee that a solution

will be found. Whether to use an implicit or explicit method resilly depends on the partic

ular application. The ability to use large time steps has also been a stated advantage of

mechanical integrators, but more experimentation needs to be done to provide evidence for

this claim.

The chapter first presents a method to add external forces to the mechanical

integratorsdeveloped in Chapter 2. A simplecontact model is then designed, and simulation

results of a rigid body colliding with the ground are presented. A symplectic-momentum

integrator for multibodysystems is developed, and it is shown how to add actuator torques

and contact forces to the discrete-time equations of motion. The multibody simulation

algorithms produced in this dissertation; 1) integrate DAE systems 2) handle closed-loops
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3) achieve linear-time computational cost for tree-structures 4) are symplectic-momentum

mechanical integrators 5) have a simple contact model and 6) are implicit, second-order

accurate, and 2-step methods.

5.1 External Forces

This section provides a method to include general external forces into the inte

gration methods described in Chapter 2. Including general external forces is necessary

to simulate systems with actuator torques and contact forces. External forces that are a

function of positions and velocities in the linear space V are considered.

Let F(v,v) be the continuous-time representation of the external force. The ex

ternal force needs to be included in the discrete-time approximation of the system. This is

accomplished by including the external forces in the same manner that the potential forces

are included. In the integration equations given in Equation (2.28), the potential forces are

given by

1 [dL/"Vk+} + Vk Vk+i-Vk\ , dlVk-h Vk-i Vit-v/t-iM

The discrete-time approximation of the general, external force, is then chosen to

be
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and the integration equations with external forces are then

2 ' h ) di) \ 2 ' h )\
1 /Vk+l + Vk -Vk\ ,^(+Vk-l I^A:
2 Ydv \2' h ) dv \ 2 ^ ^ )\

-D^g (u/b) \k = (5-3)

l\^fVk+l-¥Vk Vk+l'-Vk\ , j:,fVk-hVk-l Vk-Vk-l\]
2rl 2 '~~h 2 ' fc ;j

p(vifc+i) = 0.

By including theexternal forces in thisway, a potential force will berecovered iftheexternal

force is really a potential force. Also, the overall discrete equations have second order local

truncation error.

Inapplications, it ismore convenient tomultiply thetopequation inEquation (5.3)

by h and redefine Xk to hXk. With this modification, the discrete equations with external

forces become

dL (Vk+i + Vk Vk+i - Vk\ dL /vfc + Vk-i Vk - Vk-i _
diy 2 ' h ) dv\ 2 ' h J\

h\dL (Vk^\ + Vk v;t+i —Vk\ dL fvk + vjb-i Vk — \1
2[^V 2 ' h ) dv\ 2 ' h Jl

-D^g(vk)Xk =

h\„fvk+\+Vk Vk+i-Vk\ , j^fvk + Vk-i Ufe - Vfc-iM
2r 2 ' h )\

ff{®Jt+i) = 0.

(5.4)
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Equation (5.4) is an important equation in this chapter and is used throughout.

5.2 Simple Contact Model

In this section, a model of a point contacting, sliding, and sticking on a horizontal

floor is presented. The point contact model is then used to model rigid bodies in contact

with a horizontal floor. The motivation for this work is to provide a simple contact model

for a shoe colliding, resting, and interacting with a horizontal floor.

The model is designed to be simple to allow for real-time simulation of multibody

systems interacting with the environment. The contact model should model no contact,

sliding friction, sticking, and switching between the modes. A complicated finite element

model of a shoe interacting with a stiff floor is one option, but this requires too much

computation.

The contact model is a state machine consisting of three steady states and three

transition states. The state machine contact model is shown in Figure 5.1. The steady

states (1, 2, and 4) can persist over integration steps while the transition states (3, 5, and

6) are only entered at the end of an integration step. The system then begins in state 1, 2,

or 4 at the beginning of the next integration step. When there is more than one transition

out of a state, the priority of the trsmsitions are labeled a, 6, and c with a having the highest

priority.

Consider a frame attached to the top of the floor with the Z axis in a direction

normal to the floor and pointing outward from the floor. Let p„ be the distance of the contact

point to the horizontal floor in the direction of the z axis. Ifp„ > 0, then the point is not in
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contact with the floor. Let pt € be the tangential coordinates of the contact point. The

force on the contact point in the positive Z direction is Fn, and the force in the tangential

direction is Ft. Let kn be a normal spring constant, bn be a normal damping constant,

kt a tangential spring constant, and bt a tangential damping constant. The static friction

coefficient is ps-> and pd is the dynamic friction coeflBcient. The zero velocity threshold is

zvt and is a tangential velocity which indicates that the system is moving from sliding to

sticking. An anchor point is at 6 and is specified in the tangential coordinates.

State 1 is the simplest state and is the no contact state. The contact point is in

state 1 if p„ > 0. In this state, F„ and Ft are zero.

If the vertical distance drops below zero, then the friction state of the contact

point transitions from state 1 to state 2, the sliding state. In this mode, the vertical force
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is Fji = —(knPn + bnM' then the state is sent to transition state 6, the negative

normal force state. If > 0 and pt < zvU then the tangential force is Ft = -fid^nPtlzvi,

and the friction state moves to state 3, the sliding to sticking state. If Fn > 0 and pt > zvt,

then Ft = ^Pd^nPt/ II Pt IN system remains in the sliding state.

In the negative normal force state, state 6, Fn and Ft are set to zero. The system

transitions to state 2, the sliding state, before the start of the next integration step.

In the sliding to sticking state, state 3, an anchor point, at, is set at the current

configiuration of the contact point. The system moves into the sticking state for the next

integration step. In state 3, Ft = —pd^nPtlzvi.

In state 4, the sticking state, Fn is calculated as in state 2. If Fn < 0, then

the system moves to state 6, the negative normal force state. If Fn >0, then Ft =

—— ot) + htpt). This equation models the material of the floor sticking to the contact

point. If Ft > /isF„, then the system moves to transition state 5, the sticking to sliding

state.

In the sticking to sliding state, the tangential force is clipped so that Ft =

Ps^nFtl II Ft II. The anchor point is also released, and the system transitions to the

sliding state before the beginning of the next integration step.

The parameters in the contact model are the normal spring constant k„, the normal

damping constant 6n, the tangential spring constant kt^ the tangential damping constant

6(, the dynamic friction coefficient pd^ the static friction coefficient psy the zero ve

locity threshold zvt. The constants should be chosen based on material properties of the

interacting bodies.
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Figure 5.2: Rigid Body in Contact with the Ground

5.3 Rigid Body Motion with Contact

In this section, the contact modelis combined with a rigid body integration method

derived from Equation (5.4) to create a model of a rigid body colliding with the floor.

Three sets of frames shown in Figure 5.2 are important in the derivation of the

discrete-time equations ofmotion: the bodyframe B, the spatial frame S fixed to the floor,

and the vertex frames Vi attached to each contact point. The sm-face of the rigid body

is divided into n < oo contact points. Each vertex frame has the same orientation as the

spatial frame, but the origin of the frame is the contact point. The body frame is attached

to the center of mass of the rigid body and aligned with the principal axes of inertia.

Discrete-time approximations to the continuous-time equations of motion for a

rigid body in contact with the ground are created using Equation (5.4). The configuration

of the rigid body is the positionof the center of mass, rcc € , with respect to the spatial

frame, and the orientation of the body frame, Rsfi € 50(3), with respect to the spatial

frame. The orientation is represented by a unit quaternion, Xg. The linear space (V given
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in Chapter 2) is x X = [xjx"^]^ is used to represent a point in the linear

space. The only constraint is 9{X) = x'̂ Xg —I and specifies that is a unit quaternion.

The Lagrangian is

0 0

0 n

where m is the mass of the rigid body, n is the diagonal inertia matrix, Xg denotes the

conjugate of Xg^ g is the gravitational acceleration (9.81 p), and is the Z coordinate of

the center of mass.

The external forces, F(JV,JV), are the accumulated contact forces. Each contact

point has its own separate state machine for the contact model. The contact force at the

contact point is a function of the position and velocity of the contact point, and the current

state in the friction state machine. Let Ps,vi{X) be the position of the contact point with

respect to the spatial frame . Let ps^v^{X^X) be the velocity of the contact point with

respect to the spatial frame. The position of the contact point is only a function of the

rigid body configuration, while the velocity of the contact point is a function of the rigid

body configuration and the derivative of the configuration. The wrench written in frame

Vi and due to the contact forces is denoted F®.(ps,t,.(A'),p5,„.(A',.Y)) and is a function of

the rigid body configuration, X, and velocity, X. The wrenches represented at the con

tact points then need to be transformed to the body frame. The body wrench due to the

contact at vertex i is denoted F^^.iX^X) = Ad^_i .„.F;.(ps,v.(X),p5,„.(A',X)). The to-

tal wrench acting at the body due to the contact at each contact point is Fl^{X,X) =

Ad^.i ,y.F^i{ps,Vi(X),Ps,Vi{X,X)). The body torque needs to be converted to a
Sb,v^ * f

"force" in the space of unit quaternions. The body torque is converted to a quaternion

L{X,X) =\(2x,ox,f (23cg oXg) + II Xc f -mgXc,, (5.5)
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force, Fg, by using Equation (A.l) and a conservation of work argument. Let g be a unit

quaternion representing the orientation ofa rigid body. Let lJ* be the body angular velocity,

and let be the body torque. First note that

(5.6)

By conservation of work.

9^/", = (J'fr''

(5.7)

implying that

F, = (5.8)

Let

K(X) =

0 W'(i,)^
(5.9)

The total external force, F{X, X), due to the contact of the n contact points with the ground

and written in terms of the position of the center of mass and the quaternion coordinate is

then

F(X,X) =ir(A-) ^ Adj., ,^,F;>,,„.(J>f),p,,„,(A',X)).
»=1 ' '

(5.10)

The discrete equations in Equation (5.4) are applied to the Lagrangian system

with holonomic constraints and external forces to produce the discrete-time equations of

motion. The nonlinear equations in Equation (5.4) are solved to advance the system each
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time step. A Newton-Raphson step is used and a Jacobian is formed. The contribution of
/

the Jacobian from the contact points are calculated based on the current iteration state in

the contact model.

A box with 8 contact points at the vertices is simulated with this contact model.

The parameters ofthesystem arem = 70 Xg, g = 9.81 Jj, = 75000 N/m, 6„ = &£ =

2000 N-s/m, and zvt = 1 mm/s. The parameters are chosen to loc^ly model a rubber floor.

The time step is fixed and is 0.001s. The size of the box is 30 x 40 x 20 cm in the X, y, and Z

directions. The contact points are labeled 1 through 8, and the coordinates of these vertices

relative to the body frame are (0.15,-0.2,-0.1) m, (0.15,0.2,-0.1) m, (-0.15,0.2,-0.1)

m, (-0.15,-0.2,-0.1) m, (0.15,-0.2,0.1) m, (0.15,0.2,0.1) m, (-0.15,0.2,0.1) m, and

(-0.15,-0.2,0.1) m.

The initial position of the center of mass is (0.0,0.0,0.3) m, and the initial velocity

of the center of mass is (5.0,0.0,-0.04) m/s. The initial orientation in quaternions is

(0.9239,0.2706,0.2706,0.0), and the initial angulair velocity is zero. The simulation method

was prototyped in Matlab and simulated on a Sun Ultra 2 • 200 MHz. The total simulation

time for a 1.5 second simulation was 411 seconds (6 minutes 51 seconds).

The position of the center of mass over time is shown in Figure 5.3. The velocity

in the X direction is constant until the first vertex strikes the ground at 0.102 seconds.

The system settles to rest at approximately 1.3 seconds. The position in the Y axis stays

constant until the collision and increases until settling at approximately 1.3 seconds. The

position in the Z axis rises and falls until settling. There is a penetration of the box into

the floor as the equilibrium is reached.
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Figure 5.3: Center of Mass for the Contact Simulation

The orientation represented by the unit quaternion is shown in Figure 5.4. The

orientation changes as the box interacts with the ground. After the motion reaches an

equilibrium, the top of the box flips to the bottom through an approximate rotation about

the Y axis. There is also a slight rotation about the X axis.

The friction states in the contact model for the 8 contact points are shown in

Figure 5.5. Thefirst vertex contacts the ground at 0.102 seconds and moves into the sliding

state (state 2). Vertex 1 then moves between the negative normal force state (state 6)

before the vertex leaves the surface. Vertex 1 finally moves into the no contact state (state

1). Vertex 2 contacts the floor and slides, but then finally moves into the no contact state.

Vertices 3 and 4 never contSLCt the floor. Vertices 5 through 8 move between the sliding

state, the negative normal force state, the sliding to sticking transition state (state 3), and
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Figure 5.4: Quaternion Orientation for the Contact Simulation

the sticking state (state 4). These vertices finally settle into the sticking state.

The implicit discrete equations are solved at each time step by using Newton-

Raphson steps. The number of iterations to reach a solution (determined by a tolerance)

for each time step is shown in Figure 5.6. The maximum number of iterations is 5, and

this occurs during the initial sliding of vertex 1. The number of iterations after the system

settles to steady state is 1.

5.4 Multibody Integrator

A method of integrating multibody systems is created in this section based on the

work in Chapter 2 and Equation (5.4). The multibody system is composed of many rigid

bodies linked together with joints, and the joints are realized through joint constraints.
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The mechanical integration method presented in Chapter 2 is applied to the rigid body

Lagrangians, unit quaternion constraints, and joint constraints to produce a mechanical

integrator for multibody systems.

Multibody systems that aretree-structured (see Section 3.1) areconsidered in this

chapter, although the mechanical integration method can be applied to multibody systems

with closed-loops. Also, the discrete-time representation ofthe external forces areassumed

to belong to the special class ofexternal forces, extj^^. These external forces are only a

function of the states of body k.o and do not depend on the states of the surrounding

bodies in the multibody system. Contact forces with the ground as well as rotary joint

actuator torques from discrete-time controllers belong to this class. The tree-structure and

external force assumptions are used in the sparse solving algorithm presented below.

5.4.1 Notation

The notation used in this section is given here. The notation is complicated and

one needs to keep track of joint indices, rigid body indices, multibody connectivity, and

discrete-time steps.

• typical labels for joint indices

• n: total number of joints in the system

• m: typical index for the discrete-time step

• k.o: link or body index for the body outboard to joint k

• k.i: link or body index for the body inboard to joint k
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• Ok.o' S6t of joints outboard to link k.o

• Xk.o ^ rigid body state for body k.o consisting of the center of mass position and

a unit quaternion

• X: state of the multibody system consisting of the states of every rigid body in the

system

• rigid body state of link k.o at discrete-time step m

• X"^: multibody state at discrete-time step m

• Lagrsmge multiplier to enforce the unit quaternion constraint for link k.o at

discrete-time m

• : Lagrange multipliers to enforce the constraint for joint k at discrete-time m

• bk.o{Xk.o)'- unit quaternion constraint function for body k.o

• equals bk.o{X]^,Q)

• 9k{Xk.o->Xk.i\'- joint constraint function for joint k

. gf -. equals

• equals Dx^^JbkiX]^^)., the derivative of the unit quaternion constradnt with re

spect to X^'m
.0*

• equals

• equals
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• Lk.o(^k.o^^k.o)' continuous-time rigid body Lagrangian for body k.o given in Equa

tion (5.5)

• freejl^^: equals

dLt.o XT*' - dLk.c (xT„+.yrr'
dXk.o V 2 ' A y dXk.o V 2 ' A yj

aL*.„ X]^*' - XlA dL,.o (XT,„ +Xf-' xi,-x^-'\
dXk.o \ 2 ' A dXt.o \ 2 ' h )

• J]b.o(-X',X): the continuous-time external wrenches acting on link k.o and appropri

ately transformed for the position-quaternion state variables of link k.o

• extj'̂ ^: discrete-time external forces equaling

2r- i 2 ' A y+ "i 2 • A—yJ

• ext]^o ^ special class of discrete-time external forces where Fk.o is only a function

of Xk.o and Xk.o and not a fimction of the other rigid body states in the multibody

system, ext^^^ equals

V'Ti+l I vm v">+l \ / V»7» _i_ 1 V*n ym—1
k.o ' k.o k.o A.o I _i_ c I k.o k.o k.o "^k.o

2 ' h
17 I k.o k.o k.o k.o I I 17F,.o ^ 2 • A y+

• equals m+l free^^^ —D^m+iextk

5.4.2 Discrete-Time Equations

The discrete-time equations for tree-structured multibody are given in this section.

The discrete-time equations are solved to advsmce the system forward in time. The rigid

body Lagrangians, external forces, unit quaternion constraints, and joint constraints are



129

combined as given in E^quation (5.4) to create the discrete-time equations of motion. The

external forces acting on body k.o are assumed to only be a function of the states of body

k.o. More complicated external forces destroy the sparsity in the Jacobian matrix used in

solving the discrete-time equations of motion.

The individualequations are organized with the joint indices as is done in Chap

ter 3. The multibody equations for joint k are given below in Equation (5.11).

fjn:' = - E =0
j^Ok.o

K*' = 0 (5.11)

= 0.

The free]^^^ term includes the contribution from the free rigid body Lagrangian. The

unit quaternion constraint for body k.o is = hk.o{^^,o^)y and the unit quaternion

constraint force is The constraint for joint k is = 9k

and the corresponding constraint force is The constraint forces from the joints

outboEurd to body k.o are given in ^ . Remember that thejoints outboard

to body k.o are given in Ok.o' The discrete-time representation of the external forces acting

on body k.o that are only a function of the states for body k.o are given in ext^^^. There is

one set of equations for each joint in the multibody system, and the entire system needs to

be solved together to advance the system forward in time. The solution is found by using

Newton-Raphson steps and by exploiting sparsity in the Jacobian matrix.
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5.4.3 Jacobian Structure

Newton-Raphson steps are used to solve the full set of nonlinear equations given

in Equation (5.11). To solve a nonlinear function, f{x) = 0, a: € R", / : R" R", using

Newton-Raphson steps, the system

Df(x*)Ax' = -f(x*) (5.12)

is solved for Ax*. The Jacobian of f{x) is Df{x). The Ax' term is then used to update

+ Ax'. The Newton-Raphson step is calculated again until the steps converge to

the zero of /.

The Jacobian equations for the Newton-Raphson steps for the multibody system

equations given in Equation (5.11) are presented in this section. The equations need to

be solved for and for all A: € {I,- - ,n}. The Jacobian system in

Equation (5.12) is then formed and solved for AATJ'̂ ^ A7j^^\ and AAJ|̂ ^ for all /: G

{I,-- - ,n}. The Jacobian system is created by taking the derivative of Equation (5.11)

with respect to ^ all A: € {1, ••• ,n}. TheJacobian system is then

(5.13)

for all 1: 6 {I,-" )"}•
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5.4.4 Sparse Solving Algorithm

An algorithm to calculate and for all A: G {1,• ♦ • ,n}

in computational time that grows hnearly with the number of joints is presented in this

section. The algorithm relies on the tree-structure of the multibody system as well as the

restriction that the external forces acting on body k.o only depend on the state variables

for body k.o. The algorithm shares similarities to the AB inertia and bias force algorithm

presented in Chapter 3. The algorithm first builds terms resembling the AB inertias and

bias forces in an inboard recursion. The results of the inboard feciursion are then used to

calculate the desired values in an outboard recursion.

The sparse algorithm shares similarities to the sparse algorithms presented in (Lu-

bich et al., 1992) for differential algebraic equations of multibody systems. The derivations

in this section are complicated by the unit quaternion constraint.

It will be shown that the equations in Equation (5.13) can be manipulated into

the following form:

ACo"'-Gf/AXf*' =

' (5-14)

if the equations for the outboard joints, j € Ok.oi can also be put in the form of this

equation. Formulas for and will be developed. Note that the equations for

a leaf in the multibody system, where there are no outbo8u*d joints, is in this form with

A?".""=Ko' /ro""'=/ro"-

First write Equation (5.14) in block matrix form emd use j to index the outboard
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joints to get

Let

^+1
Jj.o

^^m+l
IJ.O

=

JO
•

AAj»+i -gf*^-GXpAX^^\ (5.15)

Dm T
^j'O

CD
1

bt:' 0 0

0 0

qn+l

^m+l pm-\-\

-BTo" -GmT

= 0 0

0 0

-1

(5.16)

where and are square matrices, and the dimension of is the same as the

dimension of the 0 block in the lower right comer. This implies that

!ind that

m+1
o

AyJ
^m+1 Cm+l

poi+l jpm+1

Vn+l
ojj.

JO

-gf*' -

(5.17)

m+1
0/;

JO

^m+l^m+1 _ (5.18)

Substitute Equation (5.18) into - J^jeOk o combine the result

into Equation (5.13):

E
ieOfc.o

- E =
jeOk.o

^+1
^m+1 Jj.o +FV'+^gf+^ +Fp*^G^pAX^^^ (5.19)

67"+'
. J.O



Note that for j € Ok.o-, j'i = Therefore,

- E = E
j€Oie.o j€Ok.o

Tm+1
Jj.o

"£ Gmr^+lGm+>
j^Ok.o
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(5.20)

Substitute the result back into the first equation in Equation (5.13) and rearrange to get

j€Ok.o /

-Gf/Axr'=-f^:' - E
jeOk.o

Trn+l
J j.o^771+1 ^pm+l^m+1

.JO

Choose to be

and to be

= MJHo' + E
j^Ok.o

/m+1 _ rm+1 , \ ^ /^m1
h.o -fk.o + 2^

j^Ofe.o

Tm+l
Jj.o^rm+1 ^pm+lgm+l

6'"+!.JO

(5.21)

(5.22)

(5.23)

In this way, Equation (5.13) is transformed into the form of Equation (5.14).

For the root joint, joint 1, in the tree-structured multibody system, the joint

constraint is only a function of the state of link l.o. Therefore, the equations for the root

rigid body are

AA-|"+' - Bl"/A7r+' - GT/AX'p-'' =

= -sr'-

m+1
o-n

(5.24)
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These equations are then solved for the desired variables as is done in Equation (5.15) and

by knowing that the joint constraint is only a function of the state variables for link l.o.

The desired values and for all k € {2, •• ♦ are then calculated

in an outboard recursion. The complete algorithm is sununarized in Algorithm 5.1.

5.5 Chapter Summary

Components of a multibody simulator were developed in this chapter to create a

control development platform for human models in contact with the ground. The emphasis

was placed on developing a real-time simulation environment for multibody systems with

contact and discrete-time controllers. First, external forces were added to the methodology

presented in Chapter 2. A simple contact model was then developed and demonstrated in

a simulation of a rigid body in contact with the environment. The discrete-time equations

of motion for tree-structured multibody systems were developed, and it was shown how to

solve the equations in linear-time. For tree-structured multibody systems with no external

forces, the mechanical integrator is a 2-step, implicit, linear-time, symplectic-momentum

method.

This chapter presented a method to include external forces into the mechanical

integrators ofChapter 2. The externalforces are added in the samemanneras the potential

forces. By adding forces in this way, potential forces can be recovered, and the method still

has 2nd order local truncation error. More research can be performed to either justify

incorporating external forces in this way or by designing a new method of incorporating

external forces. Also, methods can be designed to include special external forces, such as
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Algorithm 5.1 Sparse Solving Algorithm for IVee-Structiired Multibody Systems
given: G^^, 9^' for aU fc 6{l,...,n};

for /: = 1 to n do

end for

for A: = n to 1 do

/m+l _ fm+l.
Jk.o — Jk.o '

-1 -1

CJ.+1

bt:' 0

1
°

1

^m+l jpm+1
/nrm+l
^k,0 0 0

/"^m+l /m+l 1/^m '
k.i - Jk.i + ^k,i

^m+1
Tm+1
Jk.o m+l -m+l

+ PT^'fk

end for

AXi-^+i

A7rm+l
o

for A; = 2 to n do

AAJ'+'

end for

k.o

q»+i

^m+1 pm+1

^tm+l ^m+1

m+l
o•Si.

•Kt'

•sr'

Tm+1
~Jk.o

^k.o

-9r' - k,i
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dissipation.

A simple contact model was also presented based on spring damper models with

a coordinating state machine. The contact model captures sliding, stiction, no contact,

and the transitions between states. There are areas where improvements can be made to

the contact simulation. First, the exact times of contact state changes are not found in

the current implementation. The focus was on real-time simulation and fixed time steps

were used. More accurate solutions may be able to be obtained by finding the switching

times and restarting the integration. Second, a simple Newton-Raphson iteration was used.

For some simulations, the iteration can oscillate about a solution and not converge. These

situations may be corrected by using Newton-Raphson iterations with a line search.

The integration method is a 2-step, implicit method. The implicit equations allow

the use of larger time steps than an explicit integrator, but nonlinear equations need to

be solved at each time step. Also, it is not known the number of iterations required for

convergence. In some applications, it may be desirable to use a single-step, explicit, me

chanical integration method. The symplectic-momentum multibody integrator in (Reich,

1996b) may be useful for these applications.

For tree-structured multibody systems, a symplectic-momentum integrator was

created. For a special class of external forces, the nonlinear equations of motion can be

solved in linear-time by exploiting sparsity in a Jacobian matrix. The special class of

external forces includes actuator torques firom rotary joints and contact of a rigid body with

the environment. By including the contact model into the external forces of the multibody

simulator, a control development platform can be created to model human motion.
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Chapter 6

Conclusion

This dissertation created new algorithms for controlling and simulating multibody

systems. These algorithms were designed to aid in the creation and design of complex,

controlled mechanical systems. The focus was on exploiting the structure of multibody

systems to produce useful algorithms.

A method to construct mechanical integrators was presented based on a dis

crete variational principle. The method produces symplectic-momentum integrators for

Lagrangian systems with holonomic constraints by discretizing the principles of mechan

ics rather than the equations of motion. The method is easy to apply, and the resulting

discrete equations of motion share many similarities to the continuous-time equations of

motion. The symplectic form is invariant, momentum is conserved, and energy is seen to

oscillate about a constant value in the numerical experiments. The method csm be applied in

a differential-algebraic-equation (DAE) form or an equivalent generalized coordinate form.

The method was applied to the double spherical pendulum and the free rigid body.
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A 3D balancing controller was created for a multibody model of a hmnan biped.

The system has eighteen degrees of freedom, a central body, and two legs. A model-based

workspace controller was designed. The model was created by using efficient recursive

multibodyalgorithms. The controller design coordinatedthe degrees of freedom of the two

legs and responds to disturbances. The gainsare easy to tune, and the desired trajectories

are easy to choose for a desired motion. The controller was designed to serve as a basis

for more complicated controllers for walking, running, jumping, changing direction, and

adapting to loads.

Recursive algorithms are important in the study of multibody systems. Recursive

forward kinematics, inverse dynamics, and forward dynamics algorithms for tree-structured

multibody systems were derived in terms of the Lie group notation used in (Murray et al.,

1994). These algorithms and the ideas in the algorithms were used in the development of

the 3D balancing controller.

This dissertation presented components of a multibody simulator specifically de

signed for developing control algorithms for human motion sind for simulating human biped

models in contact with the ground. External forces were added to the mechanical integra

tion work presented earlier in the dissertation. A simple contact model was developed and

simulation results of a rigid body colliding with the ground were presented. The discrete-

time equations of motion for tree-structured multibody systems were developed, and it was

shown how to solve the equations in linear-time. For tree-structure multibody systems with

no external forces, the integration technique is a 2-step, implicit, linear-time, symplectic-

momentum method.
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6.1 Future Work

There are many areas for future research and development in the areas of multi-

body control, mechanical integration, and multibody simulation. More research is especially

needed in creating control algorithms for complicated multibody systems interacting with

the environment.

Multibody Control. The 3D balancing controller presentedin Chapter 4 addresses some

of the issues in the control of multibody systems, but there are more areas for further study.

New algorithms need to be designed to handle redundancy and singularities in the legs.

Controllers for walking, running, jumping, changing direction, and adapting to loads need

to be created and designed. These algorithms must be able to handle the discrete-time

model changes and the complicated continuous-time dynamics. The controller presented

in Chapter 4 was designed for tree-structured multibody models. Algorithms need to be

created for systems with closed-loops.

Mechanical Integration. The method presented in Chapter 2 produces symplectic-

momentum integrators for Lagrangian systems with holonomic constraints. These methods

and other mechanical integration methods can be improved, especially for engineering ap)-

plications. A method was provided in Chapter 5 to add external forces to the methodology

presented in Chapter 2, but more study needs to be done in developing mechanical inte

grators with external forces. Discrete models for special classes of external forces, such

as dissipative forces, can be created. The order of accuracy of the mechanical integrators

presented in this dissertation can be improved. The methods have second order accuracy,
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and the accuracy may be increased by perhaps adding additional points to the discrete

variational principle to create multi-step methods or more integration stages. Adaptive and

variable step size are useful features of numerical integrators, and it would be beneficial

to have mechanical integrators with these properties. The method produced in Chapter 2

is a 2-step, implicit integration method. Single-step methods are easier to implement and

explicit methods are better suited for some applications. Creating integration methods with

these properties would be beneficial. The methods introduced in this dissertation produce

symplectic-momentum integrators, and it would be interesting to find a discrete mechanics

principle to create energy-momentum integrators.

Multibody Simulation. Many methods have been created to simulate multibody sys

tems, but there aire still areas for future work. One area is in creating mechanical integrators

for these systems as discussed above. These algorithms may turn out to be more efficient

than current techniques and can be used in applications where the underlying structure is

important. Efficiently modeling contact still needs improvement. The LCP and impulse

approaches available for hard contact problems are complementary (see (Mirtich, 1996))

and combining these approaches seems to be a promising area for future research. The

creators of Impulse are currently exploring this area of work. The contact model presented

in this dissertation was developed as a soft contact model of the feet interacting with the

ground. Future work can be performed in better integrating the contact model with the

discrete-time equations of motion. Also, using Newton-Paphson iteration with line search

ing should improve the solution of the nonlinear equations and may reduce the number of

iterations required. An interesting area for futiu-e study is in combining DAE integration
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methods with impulses and contact models. DAE methods seem more natural for modeling

systems with closed-loops.
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Appendix A

Robotics Background

A brief background in rigid body motion, quaternions, and robotics is given in this

appendix. The notation used in this dissertation for rigid body motion is also presented.

Consult (Murray et al., 1994) for a more detailed treatment of many of the topics.

A.l Rotation Matrices

Rotation matrices represent the orientation of one frame with respect to another.

A rotation matrix, R, is an element of the Lie group 50(3), where

50(3) = {Re : RR^ = I,delR = +l}.

Consider a frame K and a frame L. The rotation matrix, maps vectors

represented in frame K to the corresponding vectors represented in frame L. The columns

of R/,jt are the representation of the coordinate axes of frame K with respect to frame

L. Another interpretation of R/,* is that it rotates vectors in L to new vectors in L by
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considering K and L to be initially coincident and by considering Ri^k to move K to the

final configuration. The inverse of Ri^k equals Rj^ = Rk,i-

A.2 Angular Velocities

Let frame K move over time with respect to frame L so that R^^k is a function of

time. Let

S'jt = and Ofj. = R,,kRli,.

The body angular velocity matrix is and the spatial angular velocity matrix is Ofk-

Both are elementsof so(3), the 3-dimensional vector space of3x3 skew-symmetric matrices.

Given a vector u = i ^ converts the vector to an element of so(3) such that

a; X 6 = wft =

0 -U)z Uy

UJZ 0 -U)x

-Uy Wx 0

6,

where b is an arbitrary vector in The V operator extracts the 3-vector from an element

of so(3) so that u = (u5)^.

A.3 Quaternions

Unit quaternions are a 4 parameter, singularity free, double covering of SO(3) and

are useful in computations with rotation matrices. The quaternion consists of a scalar value,

^5, and a vector with three components which is denoted qv = The following
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formula constructs a 50(3) matrix, i2, from its unit quaternion representation, q:

R = (2g? - 1)/ + 2gs?u + 2qvql.

A useful property of the unit quaternion representation is that if A, B, and C €

50(3) are represented by unit quaternions, a, 6,and c, respectively, then C = AB if and only

if c = ±a*6 where ★ represents quaternion multiplication. If c = o*fe, then = ashs—a^'by

and Cv = o-sbv + bsav+ Ow x Also, the conjugate of a denoted a is given by 5 = (oa, —a^).

For unit quaternions, d is the inverse of a, in that a*a = (1,0,0,0). If ly, u € , A € 50(3),

w = Au, and a is a unit quaternion that represents A, then (0, w) = o ★ (0, v) ★ d where

(0, w) is a quaternion formed from the vector w.

Quaternionic multiplication has a matrix representation. Let w = g ★ r, where

ly, g, and r are quaternions. In vector notation,

w = WL{q)r = WR{T)q,

where

and

WUg) =

WR[g) =

Qs Qx -Qy -Qz

Qs
T

-Qv Qx Qs -Qz Qy

Qv Qsl + Qv Qy Qz Qs —Qx

Qz -Qy Qx Qs _

Qs -Qx -Qy -Qz

Qs
T

-Qv Qx Qs Qz -Qy

Qv Qs^ ~~ Qv Qy -Qz Qs Qx

Qz Qy —Qx Qs
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Let R be the rotation matrix representing the orientation of a frame. If g is the

unitquaternion representing R, then g*q = (0, a;''/2), where a;' is the body angular velocity.

Also, q*q= (0,a;^/2), where is the spatial angular velocity. In matrix notation,

and

Therefore,

w' = 2

and

u' = 2

The fact that q = q* (0,(J'/2) = (0,a)'/2) * q implies that

q = Wtiq)

= WL{g)g

= WR{q)q.

9x Qs Qz -Qy

-Qy -Qz Qs Qx

-Qz Qy -Qx Qs

q^ IV»(9)9 (A.l)

—Qx Qs -Qz Qy

-Qy Qz Qs —Qx
qt W'(q)q. (A.2)

-Qz -Qy Qx Qs

0 0

= WR{q)
a;'' u'

^ 2 _ _ 2 _

{A.3)



Therefore,

«=2

and

^ 2
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-Qx -9y -Qz

Qs -Qz Qy = B\q)J (A.4)

Qz Qs —Qx

-Qy Qx Qs _

'~Qx -Qy -Qz

9s Qz -Qy
uj' = B\q)u}'. (A.5)

-9z Qs Qx

9y -Qx Qs

Given a rotation matrix, i2, one cam find a unit lengthaxis, u; GQ^, and an angle,

6 G [0,27r] radians, such that R = Also, using axis -w and angle 27r —6 produces the

same rotation matrix, i.e., R = The identity matrix is represented by an

arbitrary axis, and the angle 0 or 27r.

The unit quaternion representing a rotation matrix can be created from its axis

and angle representation in the following way:

6 6
Q= (9s.Qv) = (cos(-),sin(-)u;)

Unit quaternions are a double covering of 50(3) and q and —q represent the same rotation

matrix. If q is created from axis w and angle d, then —q is created from axis —w and

angle 27r —6 radians. If the scalar component of a unit quaternion is non-negative, then the

quaternion can be created from an axis-angle pair where the angle is in [0, tt] radians. Given

a unit quaternion, q = {qs-,qv)i an axis angle representation can be recovered. If gs = 1,
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then 0 = 0 radians and w is an arbitrary unit vector; else if qs = —1, then 0 = 27r and again

ly is an arbitrary unit vector; else 0 = 2arccos(95) € (0,27r) radians and w = qv/sin(0/2).

A.4 Rigid Body Transformations

Rigid body transformations describe the pose (position and orientation) of one

frame with respect to another. Consider a frame K and a frame L. The pose of frame K

with respect to frame L is given by the position of the origin of frame K with respect to

frame L denoted and the orientation of frame K with respect to frame L denoted Ri^k-

The pose is given by an element in the Lie group 5^(3), where

SE{Z) = {(p,R) :pel^,R€S0{3)} .

The homogeneous representation is used to represent the pose of one frame with

respect to another frame. A point is represented by a 4 vector with the location of the

point given by the first three coordinates and a 1 placed in the 4th position. A vector is

represented by a 4 vector with the vector coordinates in the first 3 positions and a 0 placed

in the 4th position. An element, gi^k ^ SE(Z), is represented by a 4 x 4 matrix in the

following form:

Rl,k Pl,k

0 1

The 5j&(3) element, gi^k', transforms the coordinates of vectors and points represented in

frame K to the corresponding coordinates in frame L. The inverse of an SE{3) element is

^T,k ~^T,kPlyk

0 1

91,k =

=
= 9k,l-
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A.5 Twists

Let frame K move over time with respect to framie L so that gi^k is a function of

time. Let

c =
U) V

0 0

= Su'si.* and Vl% = kh9r,K-

The 4x4 body twist matrix is and the spatial twist matrix is The form of a twist

matrix, is

where Q € so(3). The twist matrix is 6 dimensional and one can extract a 6 dimensional

twist from the twist matrix. The twist, is given by

C= (0^ =
OJ

Consider a simple robot consisting of a two links connected by a revolute or a pris

matic joint. Attach frame L to one of the links and frame K to the other link. Parameterize

the joint angle by the variable 9. Then,

9i,kW =

where is a constant spatial twist. Consult (Murray et al., 1994) for a more detailed

description of revolute and prismatic joints.
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A.6 Adjoints

Adjoints are 6x6 matrices which transform velocities represented in one frame

to velocities represented in another frame. Let y = (p,/?) € 5^(3), then the adjoint for p,

Adp, is

R pR

and

Adg =

(Ad,)-^ =

0 R

0 ^

Also, if4 is a twist matrix with the corresponding twist 4? then p4P~^ ^ twist matrix with

corresponding twist Adp4' Consider frame B and frame C to be two frames fixed relative

to each other but moving with respect to a spatial frame L. The body velocity of frame C

and frame K are related through the following equation:

= Ad,-,.

A.7 Wrenches and Wrench Transformations

A wrench, F, is a vector in K® and is formed by stackingthe force, /, acting at a

point above the torque, r, acting at the same point:

/
F =

Consider frame B and frame C to be fixed relative to each other and fixed to a

single rigid body moving in space. Let frame 5 be a fixed inertia! frame. Let Fi, denote
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the wrench applied to the origin of frame B and written with respect to frame B. Let Fc

denote the wrench applied to the origin of frame C and written with respect to frame C.

An equivalent wrench is a wrench which does the same amount of work on a rigid body for

all rigid body motions. Wrench Fc and wrench Fi, are equivalent if

Fc = Ad^-.n.

Note that

Rc,b 0
Ad[-, =

^c,b ^
Pc,bRc,b Rc,b

A.8 Robot Equations of Motion

The differential equations of motion for a serial chain robot aure

M{e)e + c{e, d)e + N{e, e) = r,

where the joint angles are given in the vector and the joint torques are given in the vector

T. The mass matrix is denoted M{d) and is symmetric and positive definite. The Coriolis

matrix is C{9,0) and is chosen such that M —2C is skew-symmetric.

A.9 Computed Torque Control

The computed torque controller in joint space determines the torques by the fol

lowing equation: r=M{6) —KyC —KpC^ +0(0,0)0+iV(0,0), where 6d{t) is the desired
joint trajectory and e = 0 —0rf. The gain matrices, and Kp^ are symmetric, positive

definite matrices.
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