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Abstract

A new model for both synapse and its associated learning rule is proposed.
Simulation results obtained by replacing the multiplier-based synapse with the
novel one in an easy to train ncuro-fuzzy network proved that for signal
classification problems there are nc major differences in the overall system
performances, while the new, comparative synapse, is much attractive in terms
of VLSI or software implementation and it also offers the advantage of a simple
implementation for on-chip learning.

1. Introduction

Artificial neural networks may be efficiently used in signal classification tasks when there
is very little or no knowledge about the signal source model. Such problems arise often in speech
recognition, bio-medical data classification, telecommunications and many other fields. In image
processing, there is by now a well established theory and design techniques for Cellular Neural
Networks [Chua93] which allow very fast image processing at convenient costs when such
systems are implemented in VLSI technology. In many cases, processing speed and
implementation costs are important issues and thus, one may select from the numerous artificial
neural or neuro-fuzzy systems proposed in literature ([Hasn95),[Hayk94],[Lin96]) only those
which may be easily “on-line” trained (i.e. without local minima on the error surface which
implies restarting the learning process) in a reasonable small number of epochs (number of
pattern presentations) and having a low cost implementation.

When dealing with digital hardware, cost is related with area occupied on silicon die or
with the number of basic logical gates while when dealing with software implementation one may
think about minimising the computation time and developing such models that may not require
additional math-processors for low cost designs. On the other hand, it is well known that synapses
are the most important parts of neural systems, minimising the area or computation time
associated with them being the main goal of the neural network engineers [Sheu95]. With only
few exceptions (e.g. [Clou94],[Lont92] or [Whit92]), the multiplier-based synapse model is
mostly used. For this synaptic model, the state v, of the “target” neuron ‘5" is computed as:

v, =) W, -y, where y, denotes the output of a “source” neuron “i” in the network, and
i

w,, denotes a numerical value associated with the synapse “4-/” often called weight and which
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is the basis for distributed learning and information  processing in neural systems. A
very common mathematical operator, multiplication is however expensive to implement,
particularly in digital systems. Different solutions to this problem were proposed in both signal
processing [Jiang89] and neural networks literature [White92] which are mainly exploiting the
idea of approximating multiplication with simple operators based on shift registers. Despite their
computational efficiency, these methods have the disadvantage that they are not universal and for
each particular signal processing system a nmew design procedure must be developed and
sometimes there may be a loss in the quality performances of the overall system.

Neural or neuro-fuzzy systems are adaptive systems, and it is sure that biological synapses
are not implementing a specific mathematical operator as the multiplier one, but such subsystems
as a whole are perfectly functional for different tasks. Thus, we consider that for this class of
systems, adaptation is an important feature that may be exploited not only for leaming but also for
giving us more freedom to chose such models for parts (neurons, synapses) that are most
convenient to implement in our given technologies. Some particular results of this way of thinking
were described in [Dgr96a] and [Dgr96b], the main feature of the systems designed according with
this principle being a more efficient implementation without loosing the basic functionality which is
measured as performance indicators related to the specific problem. In this paper, we extended this
principle to the problem of signal classification with feed-forward networks by proposing a new
synapse model which we called “comparative” synapse. Here, we considered supervised
classification problems [Dud73] where the input patterns are analog feature vectors (which may be
signal samples or outputs from adequate pre-processing systems) and the desired outputs are
binary values representing bits in label words associated with classes to be recognised. The system
to be trained was considered a neuro-fuzzy architecture proposed in [Yama92] which is very
convenient in terms of training speed and convergence since the adaptation take places in a simple
linear perceptron layer. Adaptation of this architecture for classification task is presented in section
2. The novel synapse model and a simple learning rule will be introduced in section 3, while in
section 4 simulation results are presented for a set of 6 benchmark classification problems when
the standard multiplier-based synapse (linear perceptron) was replaced by the comparative one in
the output perceptron layer of the feed-forward neuro-fuzzy network. Conclusions and further
research perspectives are presented in section 5.

2. A neuro-fuzzy architecture for classification tasks

Different peural or neuro-fuzzy systems for classification purposes were proposed in
literature in the last decade. Among these, the Multi-layer Perceptron (MLP) trained with
backpropagation gained a high popularity. However, it has a series of drawbacks which makes it
non-attractive for fast and easy to implement signal processing tasks. These drawbacks are mainly
related with the need to propagate errors trough the network, with very complex error surfaces
which often implies convergence problems and with difficulties in selecting an optimal architecture
(i.e. number of layers, neurons in layers) for a specific problem. While our purpose was mainly to
test the performances of a new synapse against the classical multiplier-based one, we selected for
this study a much convenient and easy to train neuro-fuzzy structure which was proposed in
[Yama92] for signal prediction and system identification tasks. This network (see Fig. 1), for
which fast leaming capabilities and good performances were reported for chaotic signal prediction,
may be considered as a particular case of the more general ANFIS [Jang95] model which also
includes radial basis function (RBF) networks as a particular case.



Figure 1: The fast learning neuro-fuzzy strucmre,multnpher-based gi'ﬁapses in the output layer may
be replaced with the novel comparative synaptic model.

The main and most attractive feature comparing with other adaptive non-linear systems is
that it has only one adaptive layer (the output one) which collects outputs 0, from a non-trainable
“hidden” layer. This is composed by non-monotone non-linear units which are related with
overlapping fuzzy-membership functions f; (I s) used to quantify in a soft way with ng
subdomains any particular input /; which may vary within [-1,1] domain. Instead of RBF
networks, there is no need to train the input layer while the shapes and the centres of each fuzzy-
membership function are previously defined and are only dependent on the specific number ng.
Thus, the only one parameter that may be varied in order to find an optimal performance is nq.

While in the original paper [Yama92] this architecture and its learning algorithm were
derived using fuzzy-logic theory and it is used only for signal prediction task, we can also consider
it as a hybrid system based on a non-linear and non-trainable pre-processor corresponding with the
fuzzy-membership functions which is followed by a simple adaptive system. When standard
synapses are used, the output layer may be considered as a simple linear perceptron [Widr60]
which is easy to train with guaranteed convergence to the optimal solution. When the input vectors
are samples belonging to different non-linear separable classes (a classification problem), Cover’s
theorem [Cov65] states that a non-linear preprocessing system may be found which extends the
dimensionally of the input vector but makes the output image linear-separable. The theorem is not
constructive i.e. does not give a method to build this non-linear preprocessing system. Thus, we
may consider the fuzzy-preprocessing proposed in [Yama92] as a particular solution where for an



optimal ng value, the output vectors of the “hidden” layer become linear separable and thus the
following linear perceptron is able to find an optimal solution for the classification problem. Of
course, the value of ng will depend on the particular problem being thus related with the shape of
the non-linear border between classes.

We may go further and extend the linear perceptron to a more general (non-linear) one
where the multiplier-based synapses will be replaced by a more general two-variable function and

thus, the perceptron output will be described by: ¥ = D synapse(o,,w, ) . In what follows, we
¥

will introduce a particular model for this synapse and a learning (update) rule showing by
computer simulations that overall system performances are not strongly dependent on the particular
synapse model and thus we have freedom to choose the most convenient to implement one.

3. Comparative synapse model and the associated learning rule
3.1. The comparative synapse model

A general synapse model may be written as Y, = synapse(o,,w,) where o,denotes a
synaptic input coming from another neuron output in the network, w, is the weight value
associated with the distributed memory and y, denote the synaptic output. The multiplier-based
synapse used in linear perceptrors is described by:

Ve =0 W, 1)

while the novel model that we propose (comparative synapse) is described by:
¥, =sign(o, )-sign(w, ) min(lok |, |wk |) (V3]

This model is related with fuzzy-AND operators [Lin96] or T-norms and a slightly
different version is used in Fuzzy-ART [Carp91] neural networks for computing the activation of
the output layer neurons. While the main operation is a comparison between input and weight
values we will call it a comparative synapse. Such synapse is used to replace the multiplier-based
one used by the output linear perceptron of the neuro-fuzzy network (Fig. 1). In order to train the
network, we have to know the output error e =d - y for each pattern presentation, where d

denotes the desired output. For classification problems it is convenient to consider each desired
output as having only the values +1 or -1. During the retrieval phase, the linear output neuron is

replaced with a hard-limiter one (y = sign(z synapse(o,,w, )) ) preserving the weight values
k

obtained during learning [Widr60].

3.2. Implementation issues

In what follows we consider that a multiplication device is needed to find the product
p=2Xx-yonly if both x and y magnitudes are expected to vary during a learning or retrieval
process within a specified domain 2 = [a,l] where £=1/2"™, this domain corresponding with a
fixed point arithmetic using res bits. For a fast speed combinational implementation such a digital
multiplier requires O(res®) logical gates. However, when at least one of x ory is a power of 2,



the multiplier device can be replaced with a shift register having only O(res) complexity. When
one of the two operands is 1 or -1, the multiplier device becomes a simple gate for changing the
sign and thus having the lowest O(1) complexity. Other functions used in connection with the novel
synapse model are the “sign”, “step”, “min” and absolute value. Here,
sign(x) =-1lifx<0and +1ifx>0 and step(x)=(1+sign(x))/2. Both these functions
and the absolute value function may be implemented in digital technology with O(1) complexity
while the “min” function require O(res) complexity.

For the comparative synapse implementation we will also assume that both weight and
synapse input magnitudes are restricted to vary within £ in order to ensure a simple VLSI
implementation. A graphical comparison of the two synaptic functions (multiplier-based and
comparative) is shown in Fig. 2. for this restricted case.

Muitiplier-based Comparative

synapse synapse

Figure 2: A graphical comparison between the two synaptic models ; synapse output is represented
on the vertical axis.

One may also consider the comparative synapse as a two variable piece-wise linear
approximation of the multiplier-based synapse. Some useful properties of such approximations
were derived in [Chua77].

3.3. A learning rule proposal for the comparative synapse

In order to get fast leaming in non-linear adaptive systems incremental learning is
considered [Hayk94]. In this type of learning, for each moment ¢ when a new pattern is applied at
the input, a weight update Aw, () = w, (f +1)—w,(t) is computed based on the actual error e(?)
obtained in respect with the desired output d(#). In what follows we will consider only the
moment ¢ and for sake of simplicity we will not explicitly write the discrete-time variable. The
goal is to minimise a pre-defined goal function which is often an error average over all possible
patterns. While is impractical to use such a goal function, in incremental learning one seeks to
minimise only an instantaneous goal function E. Very often, this function is selected as being the
SE (squared error) function E = 0.5¢”. Different methods may be chosen, such as random update,
reinforcement learning or gradient learning [Hasn95]. The first two, have the advantage that they
are totally independent on the non-linear system model and thus may be applied for any synaptic or
neuron models. However, they are much slower than methods based on gradient learning. In an
incremental gradient learning one use the steepest descent to find a minimum of the goal function



Eandthus: Aw, = -9 -o_,—a‘-vE— . As drawbacks, this method cannot guarantee convergence
k

towards a global minimum while the gradient may also become zero in local minima of the goal

function. It guarantees also minimising the error function only when the adaptive system can be

described as a composition of differentiable functions. Using this method for the general

perceptron model, the update rule may be written as:

Awk=_”%=”.e.§%vkl (3)
For the linear perceptron (multiplier-based) synapse this rule becomes:
Aw, =-n&E =1-e-0, @

and was first derived in [Widr60] being cited in literature as the g — LMS leamning rule [Hasn95].
For this particular case, convergence to a global minimum is mathematically provable.

The comparative synapse model (2) is non-differentiable in origin in respect with weights.
However, we may restrict weights for implementation reasons to |w,,| € and thus they will
never reach the 0 value. Thus, we have to derive a learning rule which is theoretically valid except
adomain I' = (— oo,—l) v (— g, 8) v (l,oo) where we actually do not accept weights to vary. So,
in addition to the learning rule we have to specify a weight restriction rule. Using fixed point
implementation with saturation in both negative and positive values this restriction rule is
straightforward implemented. In this circumstances, we can derive the following approximate

update rule:
Aw, = -e-sign(o,)-step(lo,| — w, ) )

While the surface error is now complex we cannot extend here the principle which
guarantees global minimum convergence of the gradient leaming for linear perceptrons. However,
like in the case of back-propagation networks, numerical simulations indicate convergent behaviour
when enough small adaptation rate 7 was used.

The main advantage of both comparative synapse model (2) and its associated leamning
rule (5) is that only O(res)complexity is needed for implementation instead of O(res’)
complexity required when multipliers have to be implemented. For the learning rule (5) we
assumed the product 7- e being computed with a shift register having O(res) complexity. This is
easy to do while accepting a power of 2 for the learning rate which is not a critical parameter. For
comparison, using a typical resolution res=16 bits, this imply at least 16 times area reduction for
the comparative synapse in respect with the multiplier based one. However, we expect this
reduction to be greater, while the number of gates per bit in a multiplier unit is clearly larger than
the number of gates per bit in a comparison unit.

In the next section we will investigate how this new model affects the overall performances
and we will see that there is no major influence on both optimal structure and classification
performance of the overall system, this property being problem independent.

4. Simulation results for classification problems
In order to test the influence of the novel synapse on the overall network performance we

have selected an Internet available database which is extensively described in [Ele95]. The
problems included in this database are classification problems where input patterns are analog as is



the case in most of the signal processing tasks. It includes both artificial (synthetic) and real-world
patterns which were used to test and compare the performances of many different neural
architectures, extensive results of this research being also published in [Ele95]. For each problem
we used separate and non-overlapping training and test sets of patterns. The qualitative
performance of the network which was considered was the generalisation misclassification error
Err_gen defined as the percent of incorrectly classified patterns in the test set. For all problems,
the neuro-fuzzy network was trained according with the cross-validation principle, i.c. after each
training epoch the test set was presented to the network and the leaming was stopped when a
minimum in Err_gen occurred. For each problem experiments were carried out using both
multiplier-based and comparative synapse and for different ng values in order to find the optimal
neuro-fuzzy network (i.e. which minimise Err_gen in respect with ng). The same learning rate
7= 0.01was used for all experiments. Results are presented in Fig. 3. for 3 synthetic (a. b. and
c.) and 3 real-world (d. e. and f.) of the problems in the above mentioned data-base.

The “GAUSS” problem is the most difficult and it consists in 2 dimensional patterns
belonging to 2 classes (100 in the train set and 1000 in the test one) with heavy overlapped
distribution and non-linear separability. The best theoretical error was computed as 26.37% for
this data-set. Our results, presented in Fig. 3.a. show that best performance is the same (30%) with
a slight difference in the optimal structure (ng=2 for multiplier-based and ng=3 for comparative).
The training speed was identical (80 epochs) for both synaptic models.

The “CLOUDS” problem is also an artificial one, with 2 dimensional patterns having high
overlapping distributions and belonging to 2 non-linear separable classes. The best theoretical error
obtained when using a Bayesian classifier was computed as 9.66%. The results presented in Fig.
3.b. indicate a slight difference (-0.6% in favour of multiplier-based) in both system performance
and optimal structure while the number epochs needed to reach optimal performance was almost
the same, i.e. 160 for comparative and 140 for multiplier-based.

For the “CONCENTRIC” problem, synthetic patterns belonging to 2 classes are
distributed inside and outside of a well defined circular (non-linear) border. The same optimal
performance (2%) was obtained (Fig. 3.c.) using both synaptic models and for slightly different
optimal structures (comparative is now favoured with ng=2 instead ng=3 for the other model).

The “PHONEME” problem is a real world one, where each pattern is a 5 dimensional
feature vector obtained from voice signals after pre-processing (see [Ele95] for details) and it may
belong to one of the classes “nasal” or “oral”. This is considered as a difficult problem, the best
error (14.5% ) reported in [Ele95] was obtained by employing a k_NN classifier. As it may be
seen from Fig. 3.d. the neuro-fuzzy system performs better for the comparative synapse (Err
gen=18%) than for the multiplier-based one but with the same optimal structure (ng=3) .

In the “IRIS” problem, each pattern is a four dimensional feature vector which is a
numerical description of an iris flower which may belong to one of three possible classes (species).
This is a common benchmark problem in pattern recognition while it has both class overlapping
and non-linear border between classes. Results presented in Fig. 3.e. show better performance for
comparative synapse (2% error comparing with 4% for multiplier-based) while the optimal
structure is only slightly different (ng=/ in favour of multiplier-based). For this problem, 4.5%
error was reported in [Ele95] as the best result when back-propagation network was employed.

Finally, the “WINE” problem consists of 13 dimensional patterns where each pattern is a
feature vector obtained from some measurable qualities of a specific wine sort which may belong
to one of three classes. This problem is a nearly separable one and thus, a simple linear perceptron
(using multiplier-based synapse) is able according with linear separability theory to discriminate
between classes after adequate training.
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Figure 3: Simulation results for different classification problems; a) GAUSS; b) CLOUDS c¢)
CONCENTRIC; d) PHONEME; e) IRIS; f) WINE. The misclassification error Err_gen is

represented versus the structure parameter ng for both multiplier-based (‘0’) and comparative (‘x’)

synapse models for each problem.



This may explain why the best performance was obtained as 2% with ng=7 for multiplier-based
synapse while the optimal structure was ng=3 for the comparative one (with 3% error
performance). In the last case, the linear separability theory is not applicable and thus the hidden
layer formed by fuzzy membership functions is needed to compensate the non-linear separation
performed by the comparative-based synapses perceptron in the output layer.

When patterns from other problems were used, the same features were observed, i.e. that
there is a very slight dependence of both optimal structure and error performance on the synaptic
model we have chosen. This observation confirm our hypothesis that adaptation is able to
compensate effects of choosing different synaptic models and thus one may efficiently exploit the
advantages of the comparative synapse for signal classification problems.

5. Conclusions

A new model for synaptic processing of information in neural networks was proposed
based on the observation that adaptation may be used not only for leaming but also to
accommodate different synaptic models. From the point of view of fast and cheap VLSI or/and
software implementation the “comparative” model was selected as being the most convenient. This
model has also the advantage of a very simple to implement learning rule derived as an
approximation of incremental gradient learning for the proposed model.

When this model was used to replace multiplier-based synapses in a fast-learning and
simple to learn neuro-fuzzy system, both overall quality performance and optimal structure were
maintained almost similar for a wide range of classification problems. The difference between
optimal performance obtained with the neuro-fuzzy network for both synaptic models and the one
reported in the extensive study [Ele95] for the same classification problem is not a consequence of
the synaptic model changing but one of the particular neuro-fuzzy structure used. Thus, we may
conclude that the novel model is well suited to replace the classical multiplier-based synapse in
order to build fast and easy to implement neuro-fuzzy classifiers for signal processing purposes.

Numerical simulations show good convergence and no major changes in the overall system
performance for classification problems. However, when tested it for signal processing tasks,
where the output is not constrained to have only two values, the performances obtained with the
proposed leamning rule applied to the novel synapse are worst than those obtained using the
standard linear perceptron. Thus, deriving a good and simple to implement leamning algorithm for
such kind of problems remains still an open problem.

Other applications of the comparative synapse, in adaptive neural systems where outputs
are constrained to take only binary values, or in systems where other procedures than gradient
learning are employed to find the synaptic values (e.g. the CNN template design or the weight
space exploration [Dgr96¢]) should be also considered in order to take advantage of the efficient
implementation of the proposed model. For example, in order to obtain a more compact device,
such synapse may replace the multiplier-based one in a CNN designed for image halftoning
[Crou93] or in RBF networks used for classification.

6. Acknowledgements

This work was carried out at the University of California at Berkeley in the framework of
a Fulbright research grant awarded to the first author. It was also partially supported by the Office
of Naval Research under grant N00014-96-1-0753. We wish also to thank to Dr. Johan Suykens
and Dr. Tao Yang for many stimulating discussions and valuable suggestions.



References

[Carp91]

[Chua77]
[Chua93)

[Clou94]

[Crou93]

[Cov65]

(Dgrd6a]

[Dgro6b)

[Dgr96c]

[Dud73]
[Ele95]

[Hasn95)
[Hayk94]
[Jang95]
[Jian89)
[Lin96]

[Lont92]

[Sheu95]

Carpenter, G.A, Grossberg, S. and Rosen, D.B., “Fuzzy ART: fast stable learning and
categorization of analog patterns by an adaptive resonance system”, in Neural Networks, Vol.
4, pp. 759-771, 1991

L. O. Chua, S. M. Kang, “Section-wise piecewise-linear functions: canonical representation,
properties, and applications”, in Proceedings of the IEEE, Vol. 65, No. 6, June 1977.

L. O. Chua, T. Roska, "The CNN Paradigm", in JEEE Tr. on Circuits and Systems I, Vol. 40,
No. 3, March 1993, pp. 147- 156.

J. Cloutier, P. Simard, “Hardware implementation of the backpropagation without
multiplication™, in Proceedings of the Fourth International Conference on Microelectronics
for Neural Networks and Fuzzy Systems (MicroNeuro'94), pp. 46-55, 1994.

KR. Crounse, T. Roska, L.O. Chua, “Image halftoning with cellular neural networks”, in
IEEE Trans. on Circuits and Systems - II, Vol. 40, No. 4, April 1993.

Cover, TM., “Geometrical and statistical properties of systems of linear inequalities with
applications in pattern recognition”, in JEEE Trans. on Electronic Computers, EC-14, pp. 326-
334, 1965.

R. Dogaru, A.T. Murgan, S. Ortmann, M. Glesner, “A modified RBF neural network for
efficient current-mode VLSI implementation”, in Proceedings of the Fifth International
Conference on Microelectronics for Neural Networks and Fuzzy Systems (Micro-Neuro '96),
IEEE Computer-Press, Laussane 12-14 Febr. 1996, pp. 265-270, 1996.

Dogaru, R., Murgan, A.T, Glesner, M., Ortmann, S., “A VLSI friendly image compression
algorithm based on Fuzzy-ART neural network” in Proceedings WCNN'96 (World Congress
on Neural Networks), San Diego, September 1996, pp. 1327-1330.

Dogaru, R, Murgan, AT, Glesner, M., Ortmann, S., “Searching for robust chaos in discrete
time neural networks using weight space exploration”, in Proceedings ICNN'96 (International
Conference on Neural Networks, Washington, 1996), pp. 688-693.

Duda, R. O., and P.E. Hart, “Pattern classification and scene analysis”, N.Y. John Wiley, 1973
**+ EILENA-95 “Enhanced Learning for Evolutive Neural Architecture”, technical report
ESPRIT-6891, (Benchmarks and Databases), available from Internet at
http:/fwww.dice.ucl.ac.be/neural-nets/ELENA/ELENA. html.

M_H. Hassoun, “Fundarnentals of Artificial Neural Networks”, 1995, MIT Press

Haykin, S. , “Neural networks: A Comprehensive Foundation”, 1994, New York, Macmillan.
Jang, J-S. R., Sun, C-T., “Neuro-fuzzy modelling and control”, in Proceedings of IEEE, Vol.
83, No. 3, 1995, pp. 378-406.

Z. Jiang, “FIR filter design and implementation with powers-of-two coefficients”, in Proc.
IEEE ICASSP 89, Glasgow, UK., May 1989, pp. 1239-1242.

Lin, C-T., George Lee, C.S. , “Neural fuzzy systems - a neuro-fuzzy synergism to intelligent
systems”, Prentice Hall, 1996.

J. B. Lont, W. Guggenbiihl, “Analog CMOS implementation of a multilayer perceptron with
nonlinear synapses”, in JEEE Trans. on Neural Networks, Vol. 3, No. 3, May 1992, pp. 457-
465.

Sheu, B. J., Choi, J., “Neural information processing and VLSI”, Kluwer Academic Publishers,
1995.

[Yama92] T. Yamakawa, E. Uchino, T. Miki, H. Kusangi, "A Neo Fuzzy Neuron and its Applications to

[Whit92)
[Widr60]

System Identification and Prediction of the System Behavior”, in Proceedings of the 2'nd
International Conference on Fuzzy Logic & Neural Networks ( lizuka, Japan, July 17-22,
1992), pp. 477-483

B.A. White, M. 1. Elmasry, “The Digi-Neocognitron: a digital reocognitron neural network
model for VLSI”, in JEEE Tr. on Neural Networks, Vol. 3, No. 1, January 1992, pp. 73-85.
Widrow, B., and Hoff, M. E., Jr., “Adaptive switching circuits”, in IRE Western Electric Show
and Convention Record, part 4, pp. 96-104, 1960.

10



	Copyright notice 1997
	ERL-97-5
	Copyright notice 1996
	ERL-97-5




