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Abstract

A new model for both synapse and its associated learning rule is proposed.
Simulation results obtained by replacing the multiplier-based synapse with the
novel one in an easy to train ncuro-fuzzy network proved that for signal
classificaticm problems there are no major differ^ces in the overall system
performances, whiledie new, comparative synapse, is much attractive in terms
ofVLSI or software implementation and it also offers the advantage of a simple
implementatimi for on-chip learning.

1. Introduction

Artificial neural networks maybe efficiently usedin signal classification tasks when there
is verylittle or no knowledge about die signal source model. Such problems ariseoften in speech
recognition, bio-medical data classification, telecommunications andmany otherfields. In image
processing, there is by now a well established theory and design techniques for Cellular Neural
Networks [Chua93] which allow very fast image processing at convenient costs when such
systems are implemented in VLSI technology. In many cases, processing speed and
implementation costs are important issues andthus, one may select from the numerous artificial
neural or neuro-fuzzy systems proposed in literature (IHasn95],(Hayk94],|Lin96]) only those
which may be easily "on-line** trained (i.e. without local minima on the error sur&ce which
implies restarting the learning proems) in a reasonable small number of epochs (number of
pattern presentations)and havinga low cost implementation.

When dealing with digital hardware, cost is related with area occupied on silicon die or
with the number ofbasic logicalgates whilewhendealing with software implementation one may
think about minimising the computation time and developing such models that may not require
additional math-processors for lowcostdesigns. Onthe otherhand, it is well known that synapses
are the most important parts of neural systems, minimising the area or computation time
associated with them being the main goal of the neural network engineers [Sheu95]. With only
few exceptions (e.g. [Clou94],[Lont92] or (Whit92]), the multiplier-based synapse model is
mostly used. For this synaptic model, the state Vj of the ^Wget*' neuron *'f^ is computed as:

*yi where y^ denotes the output of a "source" neuron in the network, and
i

Wjj denotes a numerical value associated with the synapse ^%J" often called weight and which

^Onleave fix)m University **Politehnica** ofBucharest with a Fulbright grant (permanent e-mail address:
radu_d@atm.neuro.pub.ro and http://atm.neuro.pub.ro/~radu_d)



is the basis for distributed leamiug and information processing in neural systems. A
very ccunmoQ mathematical operator, multiplication is however expensive to implement,
particularly in digital systems. Differ^t solutions to this problem were proposed in both signal
processing [Jiang89] and neural networks literature [White92] vhich are mainly exploiting the
idea ofapproximating multiplication withsimple operators basedon shiit registers. Despite their
computational efficiency, tb^emethods have die disadvantage that they are not universal and for
each particular signal processing system a new design procedure must be developed and
sometimes diere may be a loss in the qualityperformances ofthe overallsystem.

Neural orneuro-fiizzy systems are a^ptive systems, and it issure that biological synapses
are not inqilementing a specific mathematical operator as the multiplier one,but such subsystems
as a vdiole are perfectly fimctional for different tasks. Thus, we consider that for this class of
systems, adaptati<Mi is an important feature thatmay bee^qploited not only forlearning butalso for
giving us more fieedom to chose such models for parts (neurons, synapses) that are most
convenient to implement in our given technologies. Some particular results of this way of thinking
weredescribed in [Dgr96a] and [Dgr96b], the main feature of the systems designed according with
thisprinciple being a more efficient implementation without loosing thebasic functionality which is
measured as performance indicators rela^ to the specific problem. In this paper, we extended this
principle to ^ problem ofsignal classification with feed-forward networks by proposing a new
synapse model vdiich we called '̂ comparative** synapse. Here, we considered supervised
classification problems [Dud73] where theinput patterns areanalog feature vectors (which may be
signal samples or outputs firom adequate pre-processing systems) and the desired outputs are
binary values representing bits in label words associated with classes to be recognised. The system
to be trained was considered a neuro-fuzzy architecture proposed in [Yama92] which is very
convenient in terms of training speed and convergence since the adaptation take places in a simple
linear perceptron layer. Adaptation ofthisarchitecture forclassification task is presented in section
2. The novel synapse model and a simple learning rule will be introduced in section 3, while in
section 4 simulation results are present^ for a set of6 benchmark classification problems when
the standard multiplier-based synapse (linear perceptron) was replaced by the comparative one in
the output percq)tron layer of the feed-forward neuro-fuz2y network. Conclusions and further
research perspectives are presented in section 5.

2. A neuro-fuzzy architecture for classification tasks

Different neural or neuro-fuzzy systems for classification purposes were proposed in
literature in the last decade. Among these, the Multi-layer Perceptron (ML?) trained with
backpropagation gained a high popularity. However, it has a series of drawbacks which makes it
non-attractive for fost andeasy to implement signal processing tasks. These drawbacks are mainly
related with the need to propagate errors trough the network, with very complex error surfaces
v^ch often inq)lies convergence problems andwith difficulties in selecting an optimal architecture
(i.e. number of layers, neurons in layers) for a specific problem. While ourpurpose was mainly to
test theperformances of a new synapse against the classical multiplier-based one, we selected for
this study a much convenient and easy to train neuro-fiizzy structure which was proposed in
(Yama92] for signal prediction and system identification tasks. This network (see Fig. 1), for
which fost learning capabilities and go^ performances were reported for chaotic signal prediction,
may be considered as a particular case of the more general ANFIS [Jang95] model which also
includes radial basis function (RBF) networksas a particular case.
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Figure 1: The fast learning neuro-fuzzy structure; multiplier-basedsynapsesin the output layer may
be replaced with the novelcomparative synaptic modeL

The main and most attractive feature comparing with other adaptive non-linear systems is
that it has (mly oneadaptive layer (the output one) which collects outputs Oj^from a non-trainable
"hidden" layer. This is composed by non-monotone non-linear units which are related with
overlapping fiizzy-membership functions fj(js) "sed to quantify in a soft way with nq
subdomains any particular input Ig which may vary within [-1,1] domain. Instead of RBF
networks, diere is no need to train die input layer while die shapes and the centres of each fiizzy-
m^bership function are previously de&ed and are only dependent on the specific number nq.
Thus, the c^y one parameter that may be varied in order to find an optimal performance is nq.

While in the original paper [Yama92] this architecture and its learning algorithm were
derived using fiizi^-logic theory andit is used only for signal prediction task,wecanalsoconsider
it as a hybrid system based ona non-linear and non-trainable pre-processor corresponding with the
fuzzy-member^p functions which is followed by a simple adaptive system. When standard
syn^ses are used, the ouqiut layer may be considered as a simple linear perceptron [Widr60]
which is easyto trainwithguaranteed convergence to theoptimal solution. When the inputvectors
are samples belonging to different non-linear separable classes (a classification problem), Cover*s
theorem [Cov65] states that a non-linear preprocessing system may be found which extends the
dimensionally of the iiq)ut vector but makes theouq}ut image linear-separable. Thetheorem is not
constructive i.e. does not give a method to build tMs non-linear preprocessing system. Thus, we
may consider the fiizzy-preprocessing proposed in [Yama92] as a particular solution where for an



optimal nq value, the outi>ut vectors of the ^dden** layer become linear separable and thus the
following linear perceptron is able to find an optimal solution for the classification problem. Of
course, the value oinq will dq)end on the particular problem being thus related with the shape of
the non-linear border between classes.

We may go fiirther and extend the linear perceptron to a more general (non-linear) one
where the multiplier-based synapses will be replaced by a more general two-variable fimction and
thus, the perceptrcHi output will be described by:^' = synapse(Q^, ) . In what follows, we

k

will introduce a particular model for this synapse and a learning (update) rule showing by
conq)uter simulations that overall system performances arenot strongly dep^dent on the particular
synapse model andthus wehavefireedom to dioosethemostconvenient to implement one.

3. Comparative synapse mode! and the associated learning rule

3.1. The comparative synapse model

A general syn^se model may be written as = sympse(pi^,w^) where denotes a
synaptic input coming fi-om another neuron output in the network, is the weight value
associated with the distributed memory and yi^ denote the synaptic output. The multiplier-based
synapseused in linear perceptronsis described by:

y,=o,-w^ (1)

whilethe novelmodelthat we propose(comparative synapse) is described by:

=sign(Ot)-sign(Wt)-min(|ot|,|wt|) (2)

This model is related with fiizzy-AND operators [Lin96] or T-norms and a slightly
different version is used in Fuzzy-ART [Carp91] neural networks for computing the activation of
the output layer neurons. While the main operation is a comparison between input and weight
values we will call it a comparative synapse. Such synapse is used to replace the multiplier-based
one used by the output linearperceptron of the neuro-fiizzy network (Fig. 1). In order to train the
network, we have to know the output error e-d-yiox each pattern presentation, where d
denotes the desired output. For classification problems it is convenient to consider each desired
output as havingonlyfoe values +1 or -1. During foe retrieval phase, foe linear output neuron is

replaced with ahard-limiter one (>^ =sign^2^synapse(<\,) )preserving foe weight values
obtained during learning [WidrtiO].

3.2. Implementation issues

In what follows we consider that a multiplication device is needed to find foe product
p = X'y only if both x and y magnitudes are expected to vary during a learning or retrieval

process within a specified domain Cl =[f,l] where f =1/ 2'*', this domain corresponding with a
fixed pointarithmetic using res bits. For a fost speed combinational implementation such a digital
multiplier requires 0(res^) logical gates. However, when at least one of x cry is a power of2,



the multiplier device can be replaced with a shift register having only Oires) complexity. When
one of the two operands is 1 or -1, the multiplier device becomes a simple gate for changing the
signand thus having the lowest0(1)complexity. Other functions used in connection withthe novel
syn^se model are the "sign", "step", "min" and absolute value. Here,
sign(x) = -lifX<0and +1 ifx>0 and step(x) = (1+ sign(x))/2. Both these functions
and the absolute value fimction may be implemented in digital technology with 0(1) complexity
wiiile the ''min'' function require 0(res) complexity.

For the C(Htq)aiative synapse implementation we will also assume that both weight and
syn^se input magnitudes are restricted to vary within in order to ensure a simple VLSI
implementation. A graphical comparison of the two synaptic functions (multiplier-based and
comparative) is shown in Fig. 2. for this restricted case.

Multiplier-based
synapse

0.5 1

Comparative
synapse

Wi
0 0 0.5 1

Figure 2: A graphical comparison between the two synaptic models; synapse output is represented
on the vertical axis.

One may also consider the comparative synapse as a two variable piece-wise linear
approximation of the multiplier-based synapse. Some useful properties of such approximations
were derived in [Chua77].

3.3. A learning rule proposal for the comparative synapse

In order to get fast learning in non-linear adaptive systems incremental learning is
considered [Hayk94]. In this type of learning, for eachmoment t when a new pattern is applied at
the input, a weight update Ah'̂ (^) = ^^^(f +1) —W;t(0 is computed based ontheactual errore(t)
obtained in respect with the desired output d{t). In what follows we will consider only the
moment t and for sake of simplicity we will not e7q}licitly write the discrete-time variable. The
goal is to minimise a pre-defined goal fimction which is often an error average over all possible
patterns. While is impractical to use such a goal fimction, in incremental learning one seeks to
minimise onlyan instantaneous goal function E. Veryoften, ftiis fimction is selected as being the
S£ (squared error) function E = 0.5e^. Different methods may be chosen, such as random update,
reinforcement learning or gradient learning [Hasn95]. The first two, have the advantage that they
are totallyindependent on the non-linear system model andthus maybe applied for any synaptic or
neuron models. However, they are much slower than methods based on gradient learning. In an
incremental gradient learning oneuse the steepest descent to find a minimum of the goal fimction



E and thus: A w j, = - n -r . As drawbacks, this method cannot guarantee convergence

*
towards a global minimum while the gradient may also become zero in local minima of the goal
function. It guarantees also minimising the error function only when the adaptive system can be
described as a conqsosition of differentiable functions. Using this method for the general
perceptrcm HKxlel, the update rule may be writtenas:

= = (3)

For the linearperception(multiplier-based) synapsethis rulebecomes:
Aw*=-»7i^ = '7e-o» (4)

andwasfirstderived in [Widr60] being cited in literature as the // - LMS learning rule [Hasn95].
For this particularcase, convergence to a global minimum is mathematically provable.

The comparative synapse model (2)is non-di£ferentiable in origin in respect withweights.
However, we may restrict weights for implementation reasons to and thus they will
never reach the 0 value. Thus, we have to derivea learning rule which is theoretically valid except

adomain F =(- oo,-l) u (- f)u (l, oo) where we actually do not accept weights to vary. So,
in addition to the learning rule we have to specify a weight restriction rule. Using fixed point
implementation with saturation in both negative and positive values this restriction rule is
straightforward implemented. In this circumstances, we can derive the following approximate
updalerule:

Aw^ = 77 •e•sign(Ojt) •step(|ojfc |- \w,^ |) (5)

While the sur&ce error is now complex we cannot extend here the principle which
guarantees global minimum convergence of the gradient learning for linear perceptrons. However,
like in the case ofback-propagation networks, numerical simulations indicate convergent behaviour
when enoughsmall a(hq)tation rate 77 was used.

The main advantage of both comparative synapse model (2) and its associated learning
rule (5) is that only 0(re5)complexity is needed for implementation instead of 0(res^)
complexity required when multipliers have to be implemented. For the learning rule (5) we
assumed theproduct 77 •e being computed with a shift register having 0(res) complexity. This is
easyto do ^hile accepting a power of 2 for the learning rate which is not a critical parameter. For
comparison, using a typical resolution res=l6 bits, this imply at least 16times area reduction for
the comparative syn^se in respect with the multiplier based one. However, we expect this
reduction to be greater, while the number of gatesper bit in a multiplier unit is clearly largerthan
the numberofgatesper bit in a comparison unit.

In the next section we will investigatehow this new model afiects the overall performances
and we will see that there is no major influence on both optimal structure and classification
performanceofthe overall system, this propertybeingproblemindependent.

4. Simulation results for classification problems

In order to test the influence of the novel synapse on the overall network performance we
have selected an Internet available database which is extensively described in [Ele95]. The
problems included in this database are classification problems where input patterns are analog as is



the case in most ofthe signal processingtasks. It includesboth artificial (synthetic) and real-world
patterns i;^ch were used to test and compare the performances of many different neural
architectures, extensive results of this research being also published in [Ele95]. For each problem
we used separate and non-overlapping training and test sets of patterns. The qualitative
performance of the network which was considered was the generalisation misclassification error
Err_gen defined as the percent of incorrectly classified patterns in the test set. For all problems,
the neuro-fiiz^ network was trained according with the cross-validation principle, i.e. after each
training epoch the test set was presented to the network and the learning was stopped when a
minimum in Err_gen occurred. For each problem experiments were carried out using both
multiplier-based and ccxnparative synapse and for different nq values in orderto find the optimal
neuro-fiizzy network (i.e. which minimise Err_gen in respect with nq). The same learning rate
7] = 0.01was used for all experiments. Results are presented in Fig. 3. for 3 synthetic (a. b. and
c.) and 3 real-world (d. e. and f.) of the problems in the abovementioned data-base.

The **GAUSS** problem is the most difScult and it consists in 2 dimensional patterns
belonging to 2 classes (100 in the train set and 1000 in the test one) with heavy overlapped
distribution and non-linear separability. The best theoretical error was computed as 26.37% for
this data-set. Our results, presented in Fig.3.a. show that best performance is the same(30%) with
a slightdifference in the optimal structure ijiq-2 for multiplier-based and nq=^S for comparative).
The training speedwas identical (80 epochs) for both synaptic models.

The **CLOUDS** problem is ^so an artificial one, with 2dimensional patterns having high
overlapping distributions andbelonging to 2 non-linear separable classes. Thebesttheoretical error
obtained when using a Bayesian classifier was computed as 9.66%. The results presented in Fig.
3.b. indicate a slight difference (-0.6% in fovour of multiplier-based) in both system performance
and optimal structure while the number epochs needed to reach optimal performance was almost
the same, i.e. 160 for comparativeand 140 for multiplier-based.

For the "CONCENTRIC" problem, synthetic patterns belonging to 2 classes are
distributed inside and outside of a well defined circular (non-linear) border. The same optunal
performance (2%) was obtained (Fig. 3.c.) using both synaptic models and for slightly different
optimal structures (comparative is now fovoured with nq-2 instead nq^S fortheother model).

The "PHONEME" problem is a real world one, where each pattern is a 5 dimensional
feature vector obtained fi^om voice signals afterpre-processing (see [Ele95] for details) and it may
belong to oneof the classes "nasal" or "oral". This is considered as a difficult problem, the best
error (14.5% ) reported in [Ele95] was obtained by employing a k_NN classifier. As it may be
seen fi'om Fig. 3.d. the neuro-fiizzy system performs better for the comparative synapse {Err
gen=18%) thw for themultiplier-based one butwith thesame optimal structure {nq=3).

hi the *TRIS" problem, each pattern is a four dimensional feature vector which is a
numerical description of an iris flower which may belong to oneof three possible classes (species).
This is a common benchmark problem in pattem recognition while it has both class overlapping
and non-linear border between classes. Results presented in Fig. 3.e. show better performance for
comparative synapse (2% error comparing with 4% for multiplier-based) wWle the optimal
structure is cmly slightly different {nq=l in favour of multiplier-based). For this problem, 4.5%
error was report in [Ele95] as the best result when back-propagation network was employed.

Finally, die **WINE" problem consists of 13 dimensional patterns where eachpattem is a
feature vector obtained fi'om somemeasurable qualities of a specific wine sort which may belong
to one ofthree classes. This probl^ is a nearlyseparable one and thus, a simple linear perceptron
(using multiplier-based synapse) is able according with linear separability theory to discriminate
between classes after adequate training.
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This may ejq)lain why the best performance was obtained as 2% with nq=l for multiplier-based
symqise i^e the optimal structure was nq=3 for the comparative one (with 3% error
performance). Inthe 1^ case, the linear separability theory isnot applicable and thus the hidden
layer formed by fuzzy membership functions is needed to compensate the non-linear separation
performed by foe comparative-bas»i symqpses percq)tron in foe output layer.

Whm patterns from otherproblems wereused, foe same features were observed, i.e. that
there is a very slight dependence of bothoptimal structure and error performance on foe synaptic
model we have diosen. This observation confirm our hypothesis that adaptation is able to
compensate effects of choosing differait synaptic models and thus one may efficiently exploit foe
advantagesofthe comparativesynapsefor signalclassification problems.

S. Conclusions

A new model for synaptic processing of information in neural networks was proposed
based cm foe observation fiiat adaptation may be used not only for learning but also to
accommodate different synaptic models.. From the point of view of frist and cheap VLSI or/and
software implementation foe '̂comparative*' model wasselected as being foe most convenient. This
model has also foe advantage of a very simple to implement learning rule derived as an
approximation ofincremental gradient learning forfoe proposed model.

When this model was used to replace multiplier-based synapses in a fost-leaming and
simple to learnneuro-fuzzy system, both overall quality performance and optimal structure were
maintained almost similar for a wide range of classification problems. The difference between
optimal performance obtained with foe neuro-fuzzy network for both synaptic models and foe one
reported infoe extensive study [Ele95] for foe same classification problem is not a consequence of
the syn2q)tic model changing but one of foe particular neuro-fuzzy structure used. Thus, we may
ccmclude foat foe novel model is well suited to replace foe classical multiplier-based synapse in
orderto buildfostandeasyto implement neuro-fuzzy classifiers for signal processing purposes.

Numerical simulations show good convergence andnomajor changes infoe overall system
performance for classification problems. However, when tested it for signal processing tasks,
where foe oufout is not constrained to have only two values, foe performances obtained with foe
proposed rule ^plied to foe novel synapse are worst foan those obtained using foe
standard linear perc^tron. Thus, deriving a good and simple to implement learning algorithm for
such kind ofproblems remainsstill an openproblem.

Ofoer applications of foe comparative synapse, in adaptive neural systems where outputs
are constrained to take only binary values, or in systems where ofoer procedures than gradient
learning are employed to ^d foe synaptic values (e.g. foe CNN template design or foe weight
space eiqiloration (Pgr96c]) should bealso considered inorder to take advantage of foe efficient
implementation of foe proposed model. For example, in order to obtain a more compact device,
such syn^se may replace foe multiplier-based one in a CNN designed for image halftoning
[Crou93] or in RBF networks usedfor classification.
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