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1 Introduction

These notes were developed from the second part of an Advanced Topics in
Control Theory course taught at U.C. Berkeley in the fall of 1994.

The first chapter describes some of the mathematics of matrix Lie groups in a
self-contained manner. The second chapter introduces control systems with
left-invariant vector fields on matrix Lie groups. The examples are restricted
to 50(3) and 5F(3), although a section about the Wei-Norman formula
discusses how one may deal with the higher dimension case. Some recent
work by Walsh, Sarti, and Sastry [8] about steering algorithms on S0(3) is
also described.

2 Mathematical Preliminaries

This chapter describes some of the main topics in the mathematics of matrix
Lie groups. The coverage is by no means exhaustive; its purpose is to provide
a good base for the applications in the next chapter.



2.1 Groups, Fields, and Algebras

We begin with a set of definitions.

Definition 1 (Group) A group G is a set with a binary operation (•) :
G X G G, such that, Va,b,c in G, the following properties are satisfied:

1. associativity: (a -b) - c = a •{b -c)

2. 3 an identity e3 a - e = e •a = a

3. 3 an inverse a~^ 9 a • a~^ = a~^ • a = e.

A group G is called abelian if a •6 = 6•a, Va, b in G.

Definition 2 (Homomorphism) A homomorphism between groups, <j> :
G H, is a map which preserves the group operation:

<l>{a ' b) = (f>(a) •<^(6).

Definition 3 (Isomorphism) An isomorphism is a homomorphism which
is bijective.

Definition 4 (Field) Afield K is a set with two binary operations: addition
(+)^ and multiplication (•), such that:

1. K is an abelian group under (+), with identity 0

2. K —{0} is an (abelian) group under (•), with identity 1

3. (•) distributes over (-f) B a -{b c) = a -b a •c.

Some examples of fields are presented below.

R is a field with addition and multiplication defined in the usual way.

R^, with addition defined in the usual way and with multiplication defined
as:

(2:1,0:2) • (Vuyi) = (2:12/1,2:2^2)



for {xi, X2, 2/1, 2/2} in R, is not a field. Why not? If it were, we would have:

(1,0). (0,1) = (0,0)

(1,0)-^ .(1,0). (0,1) = (1,0)-^. (0,0)
(0,1) = (0,0).

This is clearly a contradiction. can be made into a field if we define (•) as
[xi^X2)' (2/1,2/2) = (a^i2/i - a:22/2»^ci2/2 + ^2yi)- We denote this field as C, the
set of complex numbers, where (0:1,2:2) = 0:1+ 22:2-

If we relax the requirement that K —{0} be an abelian group under multi
plication, we may define the quaternions as a field. This field is denoted H,
for Hamiltonian field.

The quaternions H are the set of4-tuples (2:1,2:2,2:3,2:4) = (2:i-}-22:2+y2;3-f-A:i4)
with addition defined in the usual way, and multiplication defined according
to the following table:

(•) 1 I J k

1 I I J k

I t -1 k -3

J J -k -1 2

k k J —2 -1

In the following we will be defining similar constructions for each of the fields
R, C, and H. For ease of notation, we denote the set as K € {R,C, H}.

We write K" as the set of all n-tuples whose elements are in K. If we
denote V? : K" —^ K" as a linear map, then has matrix representation
M„(K) € K" and Mn(K) are both vector spaces over K.

Definition 5 (Algebra) An algebra is a vector space with a multiplication
operation which distributes over addition.

Mn(K) is an algebra with multiplication defined as the usual multiplication
of matrices: for A^B,C € M„(K),

A{B-\-C) = AB-^AC

{B-\-C)A = BA + CA.



Definition 6 (Unit) If A is an algebra, x ^ A is a unit if there exists
y E A such that xy = yx = 1.

If is an algebra with an associative multiplication operation, and U £ A
is the set of units in A, then U is a. group with respect to this multiplication
operation.

2.2 Matrix Groups

The class of groups whose elements are n x n matrices is introduced in this
section.

General and Special Linear Groups

• The group ofunitsof M„(K) is the set ofmatrices M forwhich det(M) ^ 0,
where 0 is the additive identity of K. This group is called the general
linear group and denoted by GL{n,K).

• SL(n, K) C GL(n, K) is the subgroupof GL(n, K) whose elementshave
determinant 1. 5Z/(n,K) is called the special linear group.

Orthogonal Matrix Groups

• 0(n,K) C G'L(n,K) is the subgroup of GL(n,K) whose elements ma
trices A satisfy the orthogonality condition: = A~^, where is
the complex conjugate transpose of A.

Examples of orthogonal matrix groups are:

0(n) = 0(n, R) is called the orthogonal group.

U{n) = U(n, C) is called the unitary group.

Sp(n) = Sp(n, H) is called the symplectic group.

Note that for A € GL(n, H), A denotes the complex conjugate of the quater
nion, defined by conjugating each element, using

X ty + jz kw = X —ly —jz —kw.



An equivalent way ofdefining the symplecticgroup isasa subset of(?L(2n, C),
such that

Sp(n) = {Be GI(2n,C) : B^JB = J]B'̂ =
where the matrix J is called the infinitesimal symplectic matrix^ and is writ
ten as:

^01

J =

-1 0

0

0

0

0 1

-1 0

0

0

0

0 1

-1 0

Special Orthogonal Matrix Groups

• SO(n) = 0{n) n 5L(n,R) is the set of all orthogonal matrices of de
terminant 1. It is called the special orthogonal group.

• SU(n) = U(n)nSL(n, C), the set ofall unitary matricesofdeterminant
1, is called the special unitary group.

Euclidean Matrix Groups

• The Euclidean group is the set of matrices E{n) such that

E{n) = {/I € ; A =
R p

Qlxn I ,H€ G'T(n),p€ R"}.

• The special Euclidean group is the set of matrices SE{n) such that

SE{n) = {A6 r("+i)>:("+i) ; A= R p
QlXn I ,ReSO(n),peR^}.

Proposition 1 Let G C Mn(K) be a matrix group. Let j : [a^b] G be a
curve with 0 € (a, 6) and 7(0) = I. Let T be the set of all tangent vectors
7^(0) to curves 7. Then T is a real subspace of Mn(K).



Proof: If 7 and a are two curves in G, then 7'(0) and <7'(0) are in T. Also,
7<T is a curve in G with (7«7')(0) = 7(0)(7(0) = 1.

d
—(7(u)cr(u)) = y(u)(T(u) + 7(u)or'(u)

(7<7y(0) = 7'(0M0) + 7(0)<t'(0)
= 7'(0) + o"'(0).

Since 7(7 is in G, (7<7)'(0) is in T. Therefore, 7'(0)cr(0) + 7(0)(7'(0) is in T,
and T is closed under vector addition.

Also, if 7'(0) € T and r € R, if we let a{u) = 7(ru), then a(0) = 7(0) = I
and cr'(O) = r(T'(0). Therefore, r(7'(0) € T, and T is closed under scalar
multiplication. •

Definition 7 (Dimension of a Matrix Group) The dimension of the ma
trix group G is the dimension of the vector space T of tangent vectors to G
at I.

We now introduce a family of matrices which we will use to determine the
dimensions of our matrix groups. Let so(n) denote the set of all skew-
symmetric matrices in Mn(R),

5o(n) = {A G M„(R) : -}- A = 0}.

Similarly, the set

s«(n) = {A 6 M„(C) : + /I = 0}

denotes the skew-hermitian matrices, and the set

sp(n) = {Ae M„(H) •.A'̂ + A= 0}

denotes the skew-symplectic matrices. We also define

sl{n) = {A G M„(R) : trace(A) = 0},

and

se(n) = {A€ R("+')x(»+ '̂ ; A =
w p

0 0
G50(n),p G R"}.



Now consider the orthogonal matrix group. Let 7 : [a, 6] —> 0(n), such that
7(u) = A(it), where A[u) € 0(n). Therefore, A^{u)A{u) = I. Talcing the
derivative of this identity with respect to u, we have:

A'̂ {u)A{u) + A^(u)A'{u) = 0.

Since A(0) = /,
A'̂ (O) + >1'(0) = 0.

Thus, the vector space T/0(n) of tangent vectors to 0(n) at / is a subset of
the set of skew-symmetric matrices, so(n):

TiO(n) C so(n).

Similarly, we can derive

TiU{n) C su(n)

TjS'p(n) C sp(n)

Armed with our definition of the dimension of a matrix group, we conclude
that:

dim(9(7z) < dim so(n)

dimf/(n) < dimsu(n)

dim5'p(n) < dimsp(n)

We will now show that these inequalities are actually equalities.

Definition 8 (Exponential and Logarithm) The matrix exponentialfunc
tion, exp : M„(K) M„(K), is defined in terms of the Taylor series expan
sion of the exponential:

Ai A 3
A -r A i/x

The matrix logarithm log : Mn(K) M„(K) is defined only for matrices
near the identity matrix I:

Proposition 2 A € so(n) G SO{n).



Proof: = (e^) therefore, € 0(n). Using
det(e'̂ ) = we have det(e'̂ ) = e° = 1. •

Similarly,

A G su{n) => G U[n)\

A G sp{n) => G Sp(n);

A G s/(n) =» G 5L(n);

>l G se(n) => G SE(n).

Proposition 3 X G SO(n) => log(A') Gso(n).

Proof: Noting that log(Ay') = log(A) + log(l'') iff XY = VA, we take
the logarithm on both sides of the equation: XX^ = X^X = I. Thus,
log(A') + log(A^) = 0, so log(A') Gso(n). •

Similarly,

XeU{n) log(A) G 5u(n);

X G Sp(n) log(A) G 5p(n);

A G SL(n) =» log(A) G sl(n);

X G SE{n) => log(A) G 5e(n).

The logarithm and exponential thus define maps which send a matrix group
G to its tangent space T, and vice versa.

Definition 9 (One Parameter Subgroup) A one parameter subgroup 7
of a matrix group G is a smooth homomorphism 7 : R G.

The group operation in R is addition, thus, 7(22 + u) = 7(12) •7(1;). Since R
is an abelian group under addition, we have that

7(u + u) = 7(u + u) = 7(u) •7(u) = 7(1?) •7(12).

Note that by defining7 on some small neighbourhood U of 0 G R, 7 is defined
over all R, since for any a: GR, some € U and 7(0:) = (7(^2:))".



Proposition 4 If A ^ M„(K), then e is a one parameter subgroup.

Proof: Noting that e^'^^ = e^e^ iff XY = FX, we have

^A{u+v) _ ^Au+Av _ ^Au^Av^

since A commutes with itself. •

Proposition 5 Let ") be a one parameter subgroup of M„(K). Then there
exists A € Mn(K) such that 7(u) = e^".

Proof: Define A = <7'(0), where a{u) = log7(u), (ie. 7(u) = We
need to show that a(u) = i4u, a line through 0 in M„(K).

cr (u) = lim
^ ' v—O V

lim^Qg7(^ +u)-log7(u)
v—*0 V

_ lim ~ ^og7(^)
v—>0 V

limiHi^M
u—'0 y

= "'{0)
= A.

Therefore, a(u) = An. •

So, given any element in the tangent space of G at /, its exponential belongs
to G.

Proposition 6 Let A 6 7/0(n,K), the tangent space at I to 0(n,K). Then
there exists a unique one parameter subgroup 7 in 0(n, K) with 7'(0) = A.

Proof: 7(u) = is a one parameter subgroup of GL{n, K), and 7 lies in
0(n, K) since 7(u)^7(u) = = /. •



Thus,
dimO(n, K) > dim5o(n, K).

But we have shown using our definition of the dimension of a matrix group
that

dim(9(n, K) < dim5o(n,K).

Therefore,
dimO(n, K) = dim5o(n,K),

and the tangent space, at I, to 0(n, K) is exactly the set of skew-symmetric
matrices.

Now the dimension of so(n,R) is easily computable: we simply find a bcisis.
Let Eij be the matrix whose entries are all zero except the entry, whichis
1, and the entry, which is -1. Then Eij, for i < j, form a basis for 5o(n).
There are of these basis elements. Therefore, dim 0(n) = •

Similarly,

dim50(n) = ~

d\mU(n) =

dimSU(n) = n^ —1
d\mSp(n) = n(2n-fl).

2.3 Matrix Lie Groups and their Lie Algebras

We start our discussion of matrix Lie groups with some definitions from
differential geometry.

Definition 10 (Topological Space) A topological space is a set M with a
collection of subsets T of M having the properties:

1. 0 and M are in T;

2. the union of the elements of any subcollection ofT is in T;

3. the intersection of the elements of any finite subcollection ofT is in T.

10



T is called a topology on M.

Definition 11 (Homeomorphism) A homeomorphism f between two topo-
logical spaces M and N is a bijective, continuous map f : M N with a
continuous inverse f~^ : N ^ M.

Definition 12 (Manifold) An n-manifold is a topological space M with the
property that, if x ^ M, then there is some neighbourhood U of x such that
U is homeomorphic to R".

Definition 13 (Chart, Atlas, Maximal Atlas) A chart {<f, U) on an n-
manifold M is an open set U of M and a homeomorphism tp : U —»• R".
Two charts, {(p-,U) and ((t>,V), are said to have smooth overlap if the maps
<l>~^ o (jC) : R" —^ R" and o : R" —> R" are smooth. A family of charts
which covers M and whose members have smooth overlap is called an atlas.
A maximal atlas for M is an atlas which contains the maximum number of
charts.

Definition 14 (Differentiable Manifold) A differentiable manifold is a
manifold with an associated maximal atlas.

The atlas allows us to perform calculus on the manifold: the charts in the
atlas provide explicit homeomorphisms which refer the manifold to R", a
space in which we know how to integrate and differentiate. The requirement
that the charts have smooth overlap guarantees that these operations are
well-defined over the whole manifold.

We may characterize a smooth function f : M —*• N, where M is an m-
manifold and N is an n-manifold, according to the corresponding atlases on
M and N. Let (</?, U) be a chart on M and (^, V) be a chart on N. Let p £ M
such that U is an open neighbourhood of p and V is an open neighbourhood
of f{p). Then / is said to be smooth at p if

o / 0 : R"" R"

is smooth at ip(p).

11



We now introduce the concept of tangent vectors to manifolds. In R**, tangent
vectors to smooth surfaces are easy to picture, however smooth surfaces and
tangent vectors in an arbitrary manifold are not as intuitive to visualize.

Let M be a differentiable m-manifold with p € M. Let

A[p) = {(W, /) : p € W,W open in M, / : W —> R is smooth}.

Definevector addition and scalar multiplication on A{p) as, for (Wi, /i), (W2, /z) € A{p)
and r G R,

W,/l) + (1^2,/2) = (WinW2,/i+/2)
r{Wufi) = (w^,rf^).

Under these operations, A{p) is a real vector space. We make A(p) into an
algebra by defining vector multiplication as

W,/i)(W2,/2) = (W,nW2,/i/2).

Definition 15 (Tangent Vectors) A tangent vector ( to M at p is a lin
ear map f : A(p) —»• R satisfying, for f,g € A{p):

1. if f = g in a neighbourhood of p, then ^(f) = ^{g);

= f(p)i(9) + i{f)9{p)-

The second condition above is called the derivation law.

Consequences of this definition:

• If / is a constant function (f{q) = r,\/q ^ U), then V tangent vectors

L an = 0.

Proof:

^(f-g) = f{p)^{9)-\-^{f)9{p)
^{r-g) = r^ig)i(f)g(p)

Therefore, ^(f)g(p) = 0 since f(r •g) = r^{g). Since this holds Vp, we
have ^(/) = 0.

12



• If f(p) = g{p) = 0 then ^(fg) = 0.

Tangent vectors are operators which act on functions: if 7 is a smooth curve
in a manifold M, then 7 gives rise to a linear function

? = 7.(0 • Mp) R

defined by

which may be described as the directional derivativeof / at p in the direction
of 7. The tangent space of M at a point p, denoted TpM, is the set of all
tangent vectors to M at p.

Proposition 7 TpM is a real vector space of dimension m, the dimension
ofM.

Proof: With the definition of vector addition and scalar multiplication on
tangent vectors as follows, for € Tp(M)^r € R,

ii+vw = e(/)+^(/)

{rOif) = raih

it is easy to verify that TpM is a real vector space.

We now prove that the dimension of TpM is m.

Let (<p, t/) be a chart on M, where p 6 ^{U) C M and U G Suppose
that M sits in the ambient space R^, and assume that <p(0) = p. The best
approximation to ip : U —> M at 0 is the map:

<p(u) = <p(0) + dipo{u) = x-\- dipo(u).

Recall that is a smooth map from M to R"^ Choose an open set W in
R^ and a smooth map : R^ —^ R"^ that extends Thus o (p is the
identity map of f/, so, by the chain rule,

R™ Tp{M) R"

is the identity map of R"^. Therefore, dpo : R"" —> Tp[M) is an isomorphism,
and the dimension of Tp(M) is m. •

13



Definition 16 (Smooth Vector Fields) A smooth vectorfieldX on a man
ifold M is an assignment of Xp € TpM for each p € M, such that, if
f : M is a smooth function, then

(Xf)p = Xp(f) :M^R

is smooth over p.

The smooth vector fields on M form a real vector space. Indeed, it is easy
to check that if X and Y are smooth vector fields, then X + T is a smooth
vector field, since (A' + T)(/) = X(f) + y(/). If A is a smooth vector field
and r € R then rX is smooth, where rX(f) = r(A(/)).

Definition 17 (Integral Curve) Let c : [0,1] —> M 6e a curve on the
differential manifold M, and let X be a smooth vector field on M. The curve
c is said to be an integral curve of the vector field X if

c = X(c(t)).

Vector fields thus represent differential equations on manifolds.

The space of smooth vector fields becomes an algebra under the appropriate
multiplication operation. If we have two smooth vector fields X and Y, let
us define

{XoY)(p)(f) = Xp({Yf)p).

Now (Yf)p is a smooth function from M to R, thus

Xp{Yf)p : A(p) R.

However, Xp(Yf)p may not necessarily be a tangent vector. Consider an
example in which

M =

X =

Y =

d

dxi'

dx2

14



Thus,

and, for this example, the derivation law is not satisfied. Therefore, (X o Y)
is not a tangent vector, so the vector space of smooth vector fields is not
closed under this operation.

The candidate multiplication operation under which the vector space of
smooth vector fields becomes an algebra must therefore somehow cancel these
mixed partial derivatives.

Proposition 8 For smooth vector fields X,Y, the operator

f ^ X,(Yf) - Y,{Xf)

is a tangent vector.

Proof: We prove only that the operator defined above satisfies the deriva
tion law:

Xp{Y{fg)) = X,(f(Y(g)) + Y(f)g)
= X,(f)Y,{g) + np)X,{Y{g)} + X^(Y{fMp) + Y^mg)-

There is a symmetric formula for Yp(X(fg)). Thus

X,{yif9)) - YpiXifg)) = {XpY - YpX)(f)g{p) + f(p)(XpY - YpX)(g). •

We now have a multiplication operation which makes smooth vector fields
on M into algebrcis. Let [A", L'] = XY —YX denote the vector field defined
by [X,Y]p = XpY -YpX.

Definition 18 (Lie Algebra) A Lie algebra is a real vector space, V, with
a multiplication operation [ , ] which satisfies, for A,Be V,

1. [A,B] = -[B,A];

S. [A,B-^C] = [A,B]-\-[A,C],
[A-\-B,C] = [A,C]-\-lB,C];

15



3. for r GR, t[A^B] = [rA^B] = [A^rB];

I [A, [B,C]] + [B, [A, C]] + [C, [A, B]] = 0.

The fourth condition is called the Jacohi Identity.

Proposition 9 The set C(M) of smooth vector fields on a differentiable
manifold M forms a Lie Algebra under [ , ].

Proof; We have shown that C(M) is a vector space, and it is a matter of
substitution to show that [A', Y]p = XpY —YpX satisfies the four properties
listed above. •

The multiplication operation [A, Y] is called the Lie bracket of X and Y.

Definition 19 (Lie Group) A Lie group is a group G which is also a dif
ferentiable manifold such that, for a,b £ G,

1. (a, b) I—> ab

2. a I—> a~^

are smooth functions.

All finite dimensional Lie groups may be represented cis matrix groups. For
example, since the function det : R" —> R is continuous, the matrix group
GL(n,R) = det~^(R —{0}) is open. It can be given a differentiable structure
which makes it an open submanifold of R" . Multiplication of matrices in
GL{n,R) is continuous, and smoothness of the inverse map follows from
Cramer's Rule. Thus, GL{n, R) is a Lie group. Similarly, 0(n), SO[n), E{n),
and SE{n) are Lie groups.

In order to study the algebras associated with matrix Lie groups, the concepts
of differential maps and left translations axe first introduced.

Let M,N be differentiable manifolds and let M A be a smooth map.
Then induces a lineax map Tp{M) ^ r^(p)A':

{dtpo^){f) = C(/oV'),

16



for ^ € TpM,f € A{i?{p)). The map dip is called the differential of ip.

Let G be a Lie group with identity /, and let Xj be a tangent vector to G at
I. We may construct a vector field defined on all of G in the following way.
For any g € Gy define the left translation by ^ to be a map Lg : G G such
that Lg(x) = gXy where x 6 G. Since Gisa Lie group, Lg is a diffeomorphism
of G for each g. Taking the differentia] of Lg at e results in a map from the
tangent space of G at e to the tangent space of G at 5^:

dig : TeG TgG

such that

= dLg(X,).

The vector field formed by assigning Xg £ TgG for each g £i G is called a left
invariant vector field.

Proposition 10 If X and Y are left invariant vectorfields on G, then so is
[X,Y].

Proof: Let g £ G and / € A(g).

dL,[X,YW) = [X,YUfoL,)
= X,(Y(foL,))-Y,{X(foL,))

= dL,X,(Yf) - dL,Y,(Xf))

= X,{Yf)-Y,{Xf)
= [X.YUf). •

Also, if X and Y are left invariant vector fields, then X -^Y and rA, r € R
are also left invariant vector fields on G. Thus, the left invariant vector fields
of G form an algebra under [ , ], which is called the Lie algebra of G and
denoted jC(G). C{G) is actually a subalgebra of the Lie algebra of all smooth
vector fields on G.

With this notion of a Lie group's associated Lie algebra, we can now look
at the Lie algebras associated with some of our matrix Lie groups. We first
look at three examples, and then, in the next section, study the general map
from a Lie algebra to its associated Lie group.

17



Examples:

• The Lie algebra of GL(n, R) is denoted gl(n^ R), the set of all n x n real
matrices. The tangent space of GL(n^R) at the identity can be iden
tified with R" since GL(n, R) is an open submanifold ofR"^. The Lie
bracket operation is simply [A,B] = AB —BA^ matrix multiplication.

• The special orthogonal group 50(72) is a submanifold of GL(72, R), so
50(72)7 is a subspace of GL{n^ R)/. The Lie algebra of 50(72), denoted
50(72), may thus be identified with a certain subspace of R" . We have
shown in the previous section that the tangent space at I to 50(72) is
the set of skew- symmetric matrices; it turns out that we may identify
50(72) with this set. For example, for 50(3), the Lie algebra is:

' 0 —W3 W2 • 70i '
V

5o(3) = <w = W3 0 -lOl ,70 = 702 •

_ —W2 Wi 0 . ""^3 .

The Lie bracket on 50(72) is defined as [iOa,i^6] = (i^a x ^^6), the skew-
symmetric matrix form of the vector cross product.

• The Lie algebra of SE{3), called 5e(3), is defined as follows:

^e(3) = =

The Lie bracket on 5e(3) is defined as

[6,61 =66 -66 =[ X X

w V

0 0
10, o €

2.4 The Exponential Map

In computing the dimension of 0(72, K) in Section 2.2, we showed that for
each matrix A in 0(72, K)/, there is a unique one parameter subgroup 7 in
0(72, K), with 7(7/) = such that 7^(0) = A. In this section we introduce
a function

exp : TeG 0,

18



for a general Lie group G. This map is called the exponential map of the
Lie algebra C(G) into G. We then apply this exponential map to the Lie
algebras of the matrix Lie groups discussed in the previous section.

Consider a general Lie group G with identity e. For every ^ € TeG, let
: R —y G denote the integral curve of the left invariant vector field

passing through e at t = 0. Thus,

= e

and

One can show that (l)^(t) is a one parameter subgroup of G. Now the expo
nential map of the Lie algebra C{G) into G is defined as exp : T^G G such
that for s € R,

exp(^s) = <l>^(s)

exp(0 = <^^(1).

Thus, a line in C{G) is mapped to a one parameter subgroup <l>^(s) of G.

Wedifferentiate the map exp(^s) = (f>i(s) with respect to s at s = 0 to obtain
d(exp) : TgG —> TgG such that:

d(exp)(i) = <l>[(0) =

thus, d(exp) is the identity map on TgG.

By the inverse function theorem,

exp : C(G) G

is a local diffeomorphism from a neighbourhood of zero in C{G) onto a neigh
bourhood of e in G, which is denoted as Go, the identity component of G.

We now discuss the conditions under which the exponential map is surjective
onto the Lie group.

Definition 20 (Path Connected) For any two points x and y of a topo-
logical space X, a path in X from x to y is a continuous map f : [0,1] X
such that f(0) = X and f(l) = y- X is said to be path connected if every
pair of points of X can be joined by a path in X.
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Go is path connected by construction: the oneparameter subgroup exp(fs) = <t>^(s)
defines a path between any two elements in Gq.

Proposition 11 If G is a path connected Lie group and H is a subgroup
which contains an open neighbourhood U of e in G, then H = G.

Proof: See Curtis [1].

Wemay thus conclude that if G isa path connected Liegroup, then exp : C(G)
is surjective. If G is not path connected, exp(£(G)) is the identity component
Gq of G.

For matrix Lie groups, the exponential map is just the matrix exponential
function, where >1 is a matrix in the associated Lie algebra.

• For G = 50(3), the exponential map expiu, w € 5o(3), is given by

which can be written in closed form solution cis:

^+ II II +113112(1 - II ^ ID-
II "<11 IIII

This is known as Rodrigues' formula.

• For G= SE{d), the exponential map exp^, ( e se(3) is given by

=

for ly = 0, and

=

for 10 0, where

I V

0 1

e^ Av

0 1

A= /+,r-^(l-cos||to||)+
II ^ II' II ^ IP

20
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2.5 Canonical Coordinates on Matrix Lie Groups

Let {Xi,-Y2,..., A'n} be a basis for the Lie algebra C(G). Since

exp : C[G) —> G

is a local diffeomorphism, the mapping <7 : R" —> G defined by

g = expfaiXi + ... + cr„A'"n}

is a local diffeomorphism between cr € R" and 5 € G for in a neighbourhood
of the identity e of G. Therefore, a : U ^ R", where U C G is a neighbour
hood of e, may be considered a coordinate mapping with coordinate chart
(o-,U). Using the left translation Lg, we can construct an atlas for the Lie
group G from this single coordinate chart. The functions <7t are called the
Lie-Cartan coordinates of thefirst kindrelative to the basis {Ai, A2,.. •, Xn}-

A different way of writing coordinates on a Lie group using the same basis
is to define 0 : R" —> G by:

g = exp Ai^i exp Ai02 ••.exp A„0,1

for ^ in a neighbourhood of e. The functions (^1, ^25 •••^n) are called the
Lie-Cartan coordinates of the second kind.

An example of a parameterization of 50(3) using the Lie-Cartan coordinates
of the second kind is just the product of exponentials formula:

R =

cos(0i) —sin(^i) 0
sin(^i) cos(0i) 0

0 0 1

where R G 50(3) and

cos(02) 0 sin(02)
0 1 0

—sin(02) 0 cos(02)

1 0 0

0 cos(^3) —sin(03)
0 sin(^3) cos(03)

1

0

0

0

1

0

0

1

0

1

0

II

1

0

0

y = 000 z = 1 0 0

0 1 0 .

0

0

r-H
1

1

—1
0

0

0
1

This is known as the ZYX Euler angle parameterization. Similar parameter-
izations are the YZX Euler angles, and the ZYZ Euler angles.
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A singular configuration of a parameterization is one in which there does
not exist a solution to the problem of calculating the Lie-Cartan coordinates
from the matrix element of the Lie group. For example, the ZYX Euler
angle parameterization for 50(3) is singular when O2 = —7r/2. The ZYZ
Euler angle parameterization is singular when 0\ = —9z and 62 = 0, in which
case R = illustrating that there are infinitely many representations of the
identity rotation in this parameterization.

2.6 The Campbell-Baker-Hausdorff Formula

The exponential map may be used to relate the algebraic structure of the Lie
algebra C{G) ofa Liegroup G with the group structure of G. The relationship
is described through the Campbell-Baker-Hausdorff (CBH) formula which is
introduced in this section. The notions of conjugation and adjoint maps
are first described. The structure of a Lie algebra in terms of its structure
constants is also presented.

If M is a differentiable manifold and G is a Lie group, we define a left action
of G on M as a smooth map ^ : G x M M such that

1. $(e,a;) = x for all x € M

2. for every gji £ G and x € M, ^(^f,$(/i,a:)) = ^{gh,x).

The left action of G on itself defined hy Cg : G G:

Cg(h) = ghg~^ = Rg-iLgh

is called the conjugation map associated with g.

The derivative of the conjugation map at e is called the adjoint map, defined
as Adg : C(G) —> C(G) such that, for ^ € C(G), g eG,

Adg(0 = (n(Cg))(0=m-^Lg)(0.

If G C GL(n,C), then = 9i9~^'

The lower-case adjoint map ad^ : C{G) —> C{G) is defined as
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Lemma 1 (Campbell-Baker-HausdorfFFormula) If x^y E C{G), then

Ade^y = e'̂ ye''̂ - yA[x,y]-\- ^[x, [x, y]] + 2/111 +•••
= 2/ + ada:y + + ••*

The CBH formula is a measure of how much x and y fail to commute over
the exponential: if [x,y] = 0, then Ad^^y = y.

If {Xi,X2,..., A''n} is a basis for the Lie algebraC(G), the structure constants
of JC(G) with respect to {^"1, A2,. •. ,Xn} are the values cfj € R defined by:

k

Lemma 2 Consider C(G) with basis {Aj, A2,..., A„} and structure con
stants c^j with respect to this basis. Then

"tj

r 1

n exp(pjAj)Aj n exp(-pjAj) = (kiXk,
j=l j=r k=l

where pj G R and ^ki ^ R-

Proof of 2: We first prove the lemma for r = 1. Using the CBH formula,
write:

00 Jk y.

exp(piAi)A,exp(-piA'i) = A,- + ^
k=l

The terms ad^^ A',- are calculated using the structure constants:

adx,X, = £c^>Xr-ni

ni =1

n n

<'4,Xi = E E
ni=l 712=1

«4. A, = E E ••• E A„.
n]=l 712=1 nfc=l
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Substitute the above formula for ad^^Xi into Xi +
that since each of the c^j is finite, the infinite sum is bounded. The (ki are
consequently bounded and are functions of cf^-, A;!, and pj. The proof is
similar for r > 1. •

3 Left Invairiant Control Systems on Matrix
Lie Groups

This chapter uses the mathematics developed in the previous chapter to
describe control systems with left-invariant vector fields on matrix Lie groups.
For an n-dimensional Lie group G, the type of system described in this section
has state which can be represented as an element g € G. The time differential
equation which describes the evolution of g can be written as:

n

1=1

where the u,- are the inputs, and the Xi are a basis for the Lie algebra C{g).
In the above equation, gXi is the notation for the left invariant vector field
cissociated with Xi. The equation represents a driftless system, since if Ui = 0
for all z, p = 0.

In the first section, the state equation describing the motion of a rigid body
on SE{S) is developed. The second section develops a relationship, called the
Wei-Norman formula, between the inputs Ui and the Lie-Cartan coordinates
of the group. In the third section, the problem of steering a control system
on 50(3) is studied through a specific example.

3.1 Frenet-Serret Equations: A Control System on
SE{3)

In this section, arc-length parameterization of a curve describing the path of
a rigid body in is used to derive the state equation of the motion of this
left invariant system.
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Consider a curve

Q!(s) : [0,1] -> R^,

representing the motion of a rigid body in 3-space. Represent the tangent to
the curve cis

t{s) = a'(s).

Constrain the tangent to have unity norm, ||<(5) ||= 1, so that

<<(s),<(s) >= 1.

Now taking the derivative of the above with respect to s, we have

<t'{s),t{s)> + <<(s),<'(s)>= 0,

so that <'(s) ± i(s). Denote the norm of t'(s) as

\\t'(s)\\= k(s),

where k(s) is called the curvature of the motion: it measures how quickly
the curve is pulling away from the tangent. Let us assume /c > 0. Denoting
the unit normal vector to the curve a(s) as n(s), we have that

/'(s) = /c(s)n(s),

and also

<n(s),n(s)>= 1

so that n'(s) ± n(s).

The binormal to the curve at s is denoted as 6(s), where

b{s) = t{s) Xn(s),

or equivalently,

Let

n(s) = b{s) Xt{s).

n'(s) = T(s)b(s),
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where t(s)^ called the torsion of the motion, measures how quickly the curve
is pulling out of the plane defined by n(s) and b{$). Thus

b'(s) = t'(s) Xn{s) Xn'(s)
= /c(s)n(s) Xn(s) + t(s)r(s)6(s)

= T(s)t(s) X b(s)

= T(s)n(s),

where n(s) x n(s) = 0.

Similarly,

n'(s) = b'(s) X^(s) + b(s) x t'{s)
= r(s)n(s) X <(s) + /c(s)6(s) x n(s)

= —t(s)6(s) —«:(s)t(s).

We thus have:

q'(s) = t{s)

t'{s) = «:(s)n(s)
n'{$) = —T(s)b{s) —K{s)t(s)
b'{s) = r(s)n(s).

Since i(5),n(s), and b{s) are all orthogonal to each other, the matrix with
these vectors as its columns is an element of 50(3):

Thus,

and

[t(s), n(s), b(s)] e 50(3).

€ 5£;(3),
t(s) n(s) 6(s) a{s)

0 0 0 1

d <(s) n(s) b{s) a(s) t{s) n{s) b{s) q(s)
ds 0 0 0 1 0 0 0 1
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These are known at the Frenet-Serret equations of a curve. The evolution of
the Frenet-Serret frame in is given by

9 = 9^,

where g € SE(3) and X is an element of the Lie algebra se(3). We may
regard the curvature k(s) and the torsion t(s) as inputs to the system, so
that if

uj = k(s)

U2 = -t(s),

then

9 = 9

• 0 -Ui 0 1 •

Ui 0 -U2 0

0 U2 0 0

L 0 0 0 0 J
which is a special case of the general form describing the state evolution of
a left invariant control system in 5jF(3).

An example of the general form of a left invariant control system in SE{3)
is given by an aircraft flying in R^:

9=9

• 0 -U3 «2 U4

W3 0 -Ul 0

-U2 Ui 0 0

[ 0 0 0 0 J

The inputs ui,U2, and U3 control the roll, pitch, and yawoi the aircraft, and
the input U4 controls the velocity in the forward direction.

Specializing the above to SE(2), we have the example of the unicycle rolling
on the plane:

• 0 -U2 1 "

II

U2 0 0

. 0 0 0 .

In this case, the input U2 controls the angle of the wheel.

The previous formulation describes kinematic steering problems since it is
assumed that we have direct control of the velocities of the rigid bodies. In
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the control of physical systems, though, we generally only have access to
the forces and torques which drive the motion. A more realistic approach
would therefore be to formulate the steering problem with a dynamic model
of the rigid body, which uses these forces and torques as inputs. Dynamic
models are more complex than their kinematic counterparts, and the control
problem is harder to solve.

3.2 The Wei-Norman Formula

In this section we derive the Wei-Norman formula, which describes a re
lationship between the open loop inputs to a system and the Lie-Cartan
coordinates used to parameterize the system.

Consider the state equation of a left-invariant control system on a Lie group
G with state g £ G:

n

9 = 9(^^iUi),
t=i

where the u,- are inputs and the Xi are a basis of the Lie algebra C{g).

We may express g in terms of its Lie-Cartan coordinates of the 2"*^ kind:

g(t) = erp(7i(t)Xi)erp(72(<)A'2) •••exp{-fn{t)Xrx).

Thus,

9 =
t=l j=l j=t

= 7,'(<)(f[ exp(7j^j))"'̂ .(n exp(7j-'̂ i))
:=1 j=l i=l

= fli:7.'(oE6.(7)^it,
1=1 k=l

Where the last equation results from Lemma 2. If we compare this equation
with the state equation, we may generate a formula for the inputs to the
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system in terms of the Lie-Cartan coordinates:

so that

* Ui{t) '
U2(i)

—

^n(f)

m
iS)

[ m

7iW 1
• -1

Ui(t)

7^(0 U2{t)
• =

•

. Un(t) .

The above is known as the Wei-Norman formula. It transforms the problem
from a differential equation on Lie groups to one in R": steering from an
initial configuration gi to a final configuration gj is converted into steering
from 7(0) to 7(1), both vectors in R".

3.3 Steering a Satellite on 50(3)

This section introduces a set of algorithms for steering on 50(3). The simple
structure of the group is exploited to solve for the control inputs directly,
instead of using the Wei-Norman formulaof the previous section to transform
the problem. The algorithms and results are described in detail in the paper
by Walsh, Sarti, and Sctstry [8].

A satellite is a rigid body floating in space. There are rotors or momentum
wheels attached to its body which create linearly independent momentum
fields which rotate the satellite to any configuration in 50(3). The satellite
may be modelled as a drift free system on 50(3):

9 = gbiui gb2U2 + ghus,

where g G 50(3), hi Gso(3), and the u,- GR are scalars. The vector 6,- G R^
describes the direction and magnitude of the momentum field created by the

momentum wheel on the satellite. Given an initial state gi and a desired
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final state wish to find control inputs ui(i), U2(<), U3(0 which will steer
the system from p,- to gj in finite time T.

First, consider the Ccise in which Ui ^ 0 for 2 G {1,2,3}. Since we have
assumed that the momentum fields are lineaxly independent, the input vector

A A A

fields 6iUi, 62122, and 63U3 span the tangent space so(3) at every point of
50(3). If we assume that the inputs are constant (121,222,123) and applied
over one second, the solution to the state equation is

gj = giexp(biui + 62222 + 63223).

Since the exponential map is surjective onto 50(3), for any initial configura
tion gi and final configuration ^/, inputs (221,222,223) may be calculated which
steer the system from gi to gj, hence the system is completely controllable.
This is the easy Ccise.

The second case that we consider is the two input system in which 221 = 0.
We claim that even without the first vector field, the system is completely
controllable. An intuitive way to see why this claim is valid is to consider
the ZYZ Euler angle parameterization of 50(3). If rotation about the y axis
corresponds to pitchy and rotation about the z axis corresponds to roll, then
rotation about the x axis {yaw) may be generated from the two vector fields
corresponding to pitch and roll. To see this, let R € 50(3) be defined as
R = gr^gj' We may parameterize R as

Recalling that the ZYZ Euler angle parameterization is singular ai R = I,
we perturb the representation about R = I with respect to the angles O2 and
O3 to obtain:

ifl I _ i
<^^3 1h=/
dR
de-i

= (Ad^-ie^y)

= y + ad.ie^y++...

= y + -^3[z,j] + ...

Where the last equation results from the CBH formula. Since

[z,y] =z{z xy) = -X,
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perturbations of R with respect to O2 produce motion in the direction of x.

Considering the same control problem as in the three input case, we proceed
to calculate the required inputs (ui(i),U2(<)) through a series of steps.

If the momentum vectors 62 and 63 are not orthogonal, the first step is to
orthogonalize their actions using the Gram-Schmidt algorithm. If V2 corre
sponds to pitch and V3 corresponds to roll, then Gram-Schmidt produces:

W3 0\\ 0\2 ^^3

W2 0 022 V2

where

Ai = (II 63

A2 = —

Thus, defining ui, 02, and as as the lengths of time that vs (roll) is applied,
V2 (pitch) is applied, and then vs applied again, the equation to solve is:

A A A A

g~^gj = expi^ubsdi) exp((3i2bsa2 + 1^22^2) exp(Ai63a3).

The second step is to transform the system so that the input vector fields
are the canonical ones for R^. We construct the matrix K € 50(3):

K = [^163 (1^12^3 + 022^2) (Al^a X(012^3 + 022^2))]-

Now J\~^0ub3 = ei and K~^{0\2b3 + fe^2) = ^2, where ei and 62 are the
standard first two basis vectors for R^. Defining the similarity transform as

m = K-^g-'gm.

and taking the derivative of the above, results in

g{i) = g{i)(eiVi-\-e2V2),

which is in the desired canonical representation.
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The third step is to solve the general form of the roll-pitch-roll equation for
the coordinates (ai,a2,a3)- Denoting

sm CL\

OOS CL^ — ^£12

etc., we obtain

§f = (giK)~^ff/K = exp(eiai)exp(e2a2)exp(eia3)
Cqj •®02^03 ^02^03

•Soi "^02 ^01^03 ^ajCa25o3 ^01^02^03

-~CQj3a2 "Soj Cqj -}- CfljCajSas ~'®oi"®a3 "I" ^01^02^03

Denoting the elements of §/ as p,j, we may solve for (ai, 02,03):

ai = atan2(52i, -^31) if ffsi 0

= acot2(-^3i,^2i) else

02 = atan2(^ii sin(ai),^2i) if 521 / 0
= atan2(^ii cos(ai), —531) else

03 = atan2(^i2,iii3) if ffi3 ^ 0

= acot2(pi3,5i2) else

Finally, in the fourth step, the a,- calculated in the previous step axe used to
compute the actual controls. Assuming the system is steered from p,- to
in the time duration T, the controls below are applied each for a duration of
Z.
3*

(ui, 112)1 = (3Ai^,0)
(111,112)2 = (3/3i2-^,3/322-^)
(Ul,W2)3 = (3Ai^,0).
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3.4 Concluding Remarks

The representation of a system as one with left-invariant vector fields on
matrix Lie groups:

n

9 = 9(I^^iUi),
t=i

is a natural one for systems describing the motion of a rigid body with
respect to a coordinate frame attached to the body. Aircraft, underwater
vehicles, and satellites such as the one modelled in the previous section are
all important examples of systems which may be modelled and controlled
using matrix Lie groups.

The appeal ofthis theory is that it is mathematically simple: once the system
has been modelled using matrix Lie groups, the computation of the controls
required to place the system in a desired final configuration is no harder than
the corresponding problem in linear system theory.

The theory of Lie groups and Lie algebras is of current interest in optimal
control theory, in which a control solution issought to minimize a prespecified
cost function. The optimal control problem reduces to solving two differen
tial equations - a problem which is theoretically simple on R" but becomes
very complicated on a differentiable manifold, since the differential equations
are only defined locally on each coordinate chart. If the manifold is a Lie
group, however, the optimal control problem may be simplified. Using the
exponential map from £(G) to G, the problem may be formulated on the
Lie algebra C(G) of the group. For groups such as 50(3) and 5£(3), the
Lie algebras are isomorphic to i?", allowing for a global definition of the dif
ferential equations. Optimal control on Lie groups therefore not very much
more complicated than optimal control on i?".
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