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Abstract

Adaptive Quantization and Transform Coding

by

Jun Zhuang

Master of Science in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Martin Vetterli, Research Advisor

Universal lossless codes have been proven to exist [22], and practical universal

lossless coding schemes have been constructed [2][3][4]. Even though the existence of uni

versal lossy compression algorithms are established in the early 1970's, the development

of universal lossy codes remained most in the theoretical domain so far.

The first part of this project is motivated by the work by C. Chan and M. Vetterli

[12]. The approach here is to first collect some information about the source based on caus

al past real samples and then decide whether it is worthwhile to update the coder and send

the update as the side information. Unlike in [12], we confine the coder to be a tree struc

tured vector quantizer, which has a low complexity. As a simplified case, we showed how

to design such an adaptivecoder in the case of scalar quantization. Though similardesign

can be extended to the vector quantization case, we concluded that though we achieve low

complexity byconfining thecoderto be treestructured, theflexibility to adaptthequantizer

suffers as an expense for lowcomplexity, andtheside information is increased drastically.

Thus adaptive tree structured quantizerremains interesting in theory and after a brief dis

cussion we focusour attention on themorepromising backward adaptive Karhunen-Loeve

transform coding scheme.

Most the previous work on universal lossy compression are addressed in the vector

quantization framework, relativelylittle workhas beendone in the transformcodingframe

work. Transform coding techniques are widely used and among various transforms the Kar-

hunen-Loevetransform (KLT) is proven to be the optimal transformunder high resolution.



real bitassignment and Gaussian assumptions. In the second part ofthis project, ourobjec-
tive is todevelop apractical backward adaptive Karhunen-Loeve transform coding scheme.

Traditionally, despite its existence as the "optimal" transform, KLT is seldomused

in practical transform coding schemes. Oneof the major difficulties in applying KLTin

transform coding is that theKLT issignal dependent andneeds to besentthrough thecom

munication channels which is usually too expensive. In this project, weuse a completely

different approach. The essence of this approach is that we measure the autocorrelation of

the source signal based on the causal past decoded samples and derive the approximated

Karhunen-Loeve transform based on the measurement. Because both the encoder and the

decoder have access to these samples, nosideinformation is required. Asa further step, we
then proved when the source signal can be blocked into i.i.d. Gaussian random vectors,

whenthe stepsize of thescalarquantizer used is small, the adapted transform converges to

the true Karhunen-Loeve transform when both the number of samples used to measure the

autocorrelation and the numberof adaptation steps go to infinity. In practice, our simula

tions on AR(1) signal show that for finite number of samples and finite number of adapta

tions, the adapted transform is very "close" to the true Karhunen-Loeve transform.
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1 Introduction

1.1. Universal Lossy Source Coding

Data compression is about shrinking of data stringsbefore transmission or storage

in order to conserve communication or memory costs. In lossless compression, it is

required that theoriginal string ofdatacanbefaithfully reconstructed from thecompressed

data. In lossycompression,controlledfidelity degradation is allowed in the reconstruction

in orderto achieve higher compression ratio. Typical applications of lossless compression

include textcompression andcertain aspects in multimedia compression. Typical applica

tions of lossy compression include image, video, and speech compression.

In lossy data compression, two techniques are oftenused, namely, vectorquantiza

tion (VQ) and transform coding (TC). A brief introduction to transform coding can be

found in section 1.2 of this report. Readers who are not familiar with vector quantization

are referred to the book "Vector Quantization and Signal Compression" by Gersho and

Gray [1].

Lossydatacompression plays a vital rolein modem communications system. Con

sider a generic communications system (refer to Fig. 1-1) composed of five elements, a

signal source, an encoder, a communication channel, a decoder and a display or output

device. Thesignal source generates at fixed intervals one block or vector chosen among a

(continuous ordiscrete) set S ofpossible blocks (these blocks aregroups of samples of the

analog signal that is being transmitted). Call X,,..., X.,..., the blocks in the sequence,

where will typically denote the current block. The encoder maps each of the source



blocks X- into areproduction block i,- chosen from afinite codebook CaS and transmits

the index corresponding to the chosen codeword to the receiver through the communica

tion channel. The decoder maps the index to the reproduction codeword , which is then

presented in the display or output device. Note that we use the terms codebook and index,

commonlyemployed in the vectorquantization (VQ) literature, as a conceptualtool, with

out implying that the encoding procedures or the codebook design are necessarily similar

to those used in VQ.

s Encoder

X.

D Decoder

A

Y. 'i

Transmission

Channel

Figure 1-1. Block diagram of a generic communications system.

The fundamental limits to lossy data compression were derived by Shannon in his

rate distortion theory. The main theorem [22] of rate distortion theory is that for an U.d.

source X with distribution p (jc) and bounded distortion function d (a:,x) , there exists a

sequence of "optimal" encoding/decoding functions with rate R that achieve a minimum

distortion D.

Based on rate distortion theory, practical algorithms have been developed to design

encoders/decoders which approximate the "optimal" coder. More or less, these algorithms

all share a common feature which is that they either assume a model for the signal source



statistics p (j:) or build an empirical model (denote it by p (x)) based on the observations

of the source. When the signal source to be actually coded possesses the same statistics like

the model used, the coder designed by these algorithms performs very well.

One such example is the algorithm by Linde, Buzo, and Gray (in this report, we

refer to it as the LEG algorithm) which is often used to design the codebook for VQ.

During the codebook design stage, a training sequence is formed either by observing the

source for a certain period of time, or by drawing samples from a pre-stored database. Then

a codebook is designed based on this training sequence and is used to code the source sig

nal. When the source signal has statistics similar to that of the training sequence, good per

formance is achieved.

Another example is the discrete cosine transform (DCT) used in transform coding.

The sourcesignal is assumed to be a first-order Gaussian-Markov process witha largepos

itive correlation coefficient p (p —> 1). When the source signal actually coded can be rea

sonably approximated by such a signal, good performance can also be achieved.

However, more often than not, the statisticsof the signal source are unknownto the

coderand can in practice drastically differfrom the model assumed in the designing stage.

The LEG algorithm and discrete cosine transform coding (DCT), like other non-adaptive

data compression methods, do not perform well when the source statistics of real world

datadiffer fromthe statistics assumed by the coder. When usinga largecollection of facial

images to train its codebook using the LEG algorithm, a vector quantization coder, for

instance, will not perform well on images of landscapes, or brain computer aided tomog

raphies (CATs). Similarly, a discrete cosine transform coder will not performin coding a

text image as well as it does in coding a portrait image.

Therefore, it is natural to ask: without knowing thestatistics a priori^ can wedesign

a coder such that, for a given rate, it can asymptotically achieve the minimum distortion

given by Shannon's rate distortion theory? Suchencoder/decoder, if they exist, are called

universal lossycoders and the codingprocess is called universal lossysourcecoding.



Universal data compression (source coding) has a substantive literature. In the loss

less case, well-known algorithms include the dynamic Huffman algorithm [2], arithmetic

coding [3], and the Lempel-Ziv algorithm [4], [5]. These algorithms are not only theoreti

cally interesting, but they have also been found useful in many practical applications. The

concept of separating the task of statistical modeling and coding (e.g., Rissanen,[6]) also

had an impact on the way people think and use data compression algorithms.

The development of universal lossy data compression remained mostly in the the

oretical domain thus far. The works by Gray and others [7] in the early 1970's established

the existence of universal lossy compression algorithms. They were later extended to more

general source models by many others, e.g. [8], [9].

Currently, there are two typical approaches: The first approach [7] trains a "univer

sal codebook" in advance and makes it available to both the encoder and the decoder. The

"universal codebook" consists essentially of the union of optimal codebooks of all sources

within consideration, if the number of sources is not excessive, the "overhead" for taking

the union is asymptotically negligible. The second approach does not train a codebook in

advance. The encoder constructs a codebook base on the observation of a sufficiently long

prefix of source symbols, and transmits the codebook to the decoder. The algorithms of

Ornstein and Shields [9], and Ziv [10],[11] are such examples.

In [12] Chan and Vetterli proposed an algorithm called rate-distortion Lempel-Ziv

(RDLZ) algorithm using the framework of adaptive vector quantization. In their algorithm,

without knowing the statistics of the source, the coder starts with an initial codebook and

update the codebook according to the statistics of the source during the coding process. A

source vector can be simply encoded by a codevector in the current codebook, or it can

invoke the addition of a new codevector. Current codevectors can be moved around or even

deleted. These actions are taken to minimize the Lagrangian R + XD, where R is the bit

rate involved in taking an action, D is the distortion it introduces, and A. is a parameter

chosen to control the operating point of the algorithm on the operational rate distortion

curve. In a sense, bits are "traded" for a reduction in distortion by modifying the codebook.



In the adaptive scalar quantization case, Ortega and Vetterli [13]proposed a model-

based adaptive scalar quantization algorithm based on the quantized causal past data with

convincing simulation results. They divide the adaptive quantization problem based on

quantized past data into two parts, namely, model estimation and quantizer design. Without

knowing the statistics of the source, the adaptive quantizer starts with a uniform quantizer.

During the quantization process, the model estimation produces an estimate of the source

probability density function based on the causal past quantized data, which is used to re

design the quantizer using standard techniques such as Lloyd-Max technique.

The first part of this project is motivated by the work by C. Chan and M. Vetterli

[12]. The approach is to first collect some information about the source based on causal

past samples and then decide whether to update the coder and send the update as side infor

mation. Unlike [12], we confine the coder to be a tree structured vector quantizer, which

has a low complexity. As a simplified case, we showed how to design such an adaptive

coder in the case of scalar quantization. Though similar design can be extended to the

vector quantization case, we concluded that though we achieve low complexity by confin

ing the coder to be tree structured, the flexibility to adapt the quantizer suffers as an

expense for low complexity, and the side information is increased drastically. Thus adap

tive tree structured quantization remains interesting in theory and in this report we only

included a brief discussion illustrating the ideas how an adaptive tree structured vector

quantization scheme may be designed and will leave the design and experimental results

to the future work.

However, most of the previous work on universal lossy compression are done in

the vector quantization framework. So far, little work on universal lossy compression has

beendone in the transform codingframework. Transform coding is widelyused in current

image and video compression standards [14],[15]. The second partof this project is moti

vatedby addressing universal lossy compression in the transform coding framework. Spe

cifically, we present an adaptive Karhunen-Loeve transform coding algorithm.



1.2. Transform Coding and Karhunen-Loeve IVansform

Suppose that we have a block of consecutive samples of a stationary random pro

cess, and we wish to efficiently code this block with a specified number of bits. Let X

denote the sample vector X = (Xj, Xj,X/^)'. These samples will typically have sub

stantial correlation and separate quantization of each would be an inefficient way to encode

them when the quota of bits is relatively modest. The idea of transform coding is that by

performing a suitable linear transformation on the input vector X, we can obtain a new

vector T, also with /:components, often called transform coefficients or simply, coeffi

cients, with the feature that these coefficients are much less correlated than the original

samples. In addition, the information may be more "compact" in the sense of being con

centrated in only a few of the transform coefficients. Having in this sense removed redun

dancy, we hope as a result to be able to quantize these components more efficiently. Fig.

3-2 illustrates the structure of transform coding where T \s a k by k invertible matrix that

performs the linear transformation.

Figure 1-2. Transform coding



In general, the components of X are correlated with one another. However, it is

indeed possible to select an orthogonal matrix T, for a given p.d.f, describing X, that will

make Y = TX have pairwise uncorrelated components. This choice of transform matrix

that makes the linear transformation have this desirable matrix is called discrete time Kar-

hunen-Loeve transform and is defined below.

Let = £'[xx'] , denote the autocorrelation matrix of the input vector

X(assume E[X\ = 0). Let u. denote the eigenvectors of (normalized to unit form)

and X. the corresponding eigenvalues. Sinceany autocorrelation matrix is symmetric and

nonnegative definite, there are k orthogonal eigenvectors and the corresponding eigenval

ues are real and nonnegative. Without loss of generality we assume the indexing is such

that

>A.2>...>A.^>0

The Karhunen-Loeve transform matrix can bedefined as T = u', where

U = ---."it]

that is, the columns of U are the eigenvectorsof .

Then the autocorrelation matrix of Y is given by

Ry = = eIu'xx'u] = i/r^u =

0 0

1-
o

0 ^2 ... 0

0 ... 0

:

-

Thus we can see that the Karhunen-Loeve transform does indeed decorrelate the

input vector. It also follows that the variances of the transform coefficients are theeigen

values of the autocorrelation matrix of .



The optimality of Karhunen-Loeve Transform (KLT) for transform coding of a sta

tionary Gaussian source under high resolution and arbitrary real bit assignment assump

tions is well known [1]. Adaptive versions of KLT coding are not widely used because in

traditional adaptive systems (with side information) transmission of the KLT coefficients

can be prohibitively expensive. In Chapter 3 we propose a backward adaptive Karhunen-

Loeve transform coding scheme which can adapt to the source statistics without transmit

ting side information.

1.3. Outline of the Report

In chapter 2, section 2.1 describes adaptive tree structured scalar quantization

(TSSQ). Adaptive tree structured vector quantization (TSVQ) is discussed in section 2.2.

Chapter 3 describes adaptive transform coding algorithm. Section 3.2 gives two

theorems that show in theory backward adaptive Karhunen-Loeve transform coding exists.

Then section 3.3 presents a practical backward adaptive KLT coding algorithm and gives

a theoretical analysis of the algorithm by proving two theorems which shows the univer

sality of the adaptive algorithm. In section 3.4, practical issues are considered. Finally,

experimental results are presented in section 3.5.

Chapter 4 gives the conclusions, and indicates future work.



2 Adaptive TSSQ and Adaptive TSVQ

2.1. Introduction

In [12] Chan and Vetterli proposedan adaptive lossy data compression technique

called rate distortion Lempel-Ziv (RDLZ) using vector quantization (VQ) framework. In

their proposed algorithm, for each source vector, a full search through the VQ codebook is

used during the encoding process. The drawback of the full search technique is that its

complexity, especially when the vectorsize is large, is muchhigher than that of other tech

nique suchas treestructured VQ(TSVQ), which hasa much reduced complexity at a small

expenses of performance degradation. Thus, it is natural to ask: can we design a RDLZ

technique for TSVQ? The work presented in this chapter is motivated by this question.

Vector quantization isa generalization ofscalarquantization. Thetaskofdesigning

a quantization technique in the scalar case is, in general,easier than in the vectorcase. For

this reason, wefirst focus ourattention ondesigning a RDLZ technique for tree structured

scalar quantizer (TSSQ).

2.2. Adaptive TSSQ

Let X = (x,, jCj,...) , € /?, be a realization of a random vector X with proba

bility density function f{x) and cumulative distribution function F(x) , which are

unknown to thequantizer. Priorto thequantization process, thequantizer is set to be some

initial quantizer.



Wegroup data strings ^ j, jcj, ... into blocks of size L and at theendofeach block,

the statistics of the source(F(a:) , for example) are estimated based on the causal past m

blocks of unquantized data. The quantizer is then updated and is usedto quantize the next

block.

Denote the data blocks by Xj = (^{j-\)L+v quantized counter

part by Xj = (^(j_i)L+1'• Then at the end of the y-th data block,

A A

Pj = +1^ • quantizer for the next data block is, therefore.

In practice, when we update the quantizer for the ;-th block, we need to inform the

decoder of this update in the form of side information, which, in terms of the trade-off

between bit rate and distortion, is not always a wise thing to do. Thus, we need a criterion

to decide when to update the quantizer and when not to.

Thus, we can see that our adaptive quantizer should at leasthavethree parts:

1. Model estimation: Based on previous N unquantized samples we estimate the

distribution function (we decided on cumulative distribution function) of the source.

2. Quantizerdesign: for a givenestimatedc.d.f. design a new tree-structured scalar

quantizer.

3. Adaptation decision: decide whether or not to adapt the quantizer based on the

trade-off between bit rate and distortion.

The following sectionsdiscuss, one by one, these three parts.

2.2.1. Estimation of Source Statistics

For this part, we want to measure the cumulative distribution function F (x) of the

source based on the causal past unquantized samples. We set our objective as the follow

ing:

10



Objective 1: Given the N most recent unquantized sample occurrence

x{n-N),x{n-N+ \ ), , where N might be a constant or can be changed

by the speed ofadaptation algorithm, find an estimate P (jc) ofthe cumulative distribution

function (c.d.f.) of the source, F{x) .

We define, for V;c e R, n (jc) the count of samples falling in the region (-«», x) .

N

That is nW =

i= 1

/s fl /V

Let F (jc) = , then as N —> <», F (jc) is a consistent estimate of F (x) .
N

2.2.2. IVee Structured Scalar Quantizer Design

For this part, we set our objective as the following:

Objective 2: For a given c.d.f. F (jc) , design a tree structured scalar quantizer.

Before we give the procedure to design a tree structured scalar quantizer, we first

prove the following proposition.

Proposition 2-1: Given a random variable X taking value on real set R and having

fix) and F(jc) , respectively, as its density function and cumulative density function.

Then for a given set {a,b] , the conditional expectation E[X\a<X<b] is:

E[X\a<X<b] = 'p.. .tF(x)dx.
Fib)-Fia) Fib)-Fia)ia

Proof:

1

F(b)-F(a)
^xFix) |̂ -£F(j:)c/xj

11



= F(b)b-F{a)a 1 f^r(x)Jx n
F(b)-F(a) F(b)-F(a)L^^

There are several special cases:

Special case (1): a = , ^ < <»

ElX\a^X<b] =b-j^('_^F(x)dx

Special case (2): a > -oo, /? = ©o

£[X|a<A:<fc] =j-l—f^O-F{x))dx

Special case (3); a = -©o, ^ = ©©

E[X\a<X<b] = r (l-F(x))^ic-f F{x)dx
' 0 —oo

One may argue that in the special cases, the integration may not exits. However,

because in our application the empirical cumulative distribution function is always mea

sured based on finite number of source samples, this empirical cumulative distribution

function is always integrable.

For a random variable X which has c.d.f. F (jc) , the tree-structured scalar quan

tizer is designed according to the following procedure. In order to simplify the notations,

we give the design procedure for a binary tree quantizer with depth of two (refer to Fig. 2-

1).

12



R. /?2 ^3 R.

Figure 2-1. Tree structured scalar quantizer design

From Fig. 2-1 wecan see that a divides the real line into tworegions. Denotethese

two regions by and R^\^R^, respectively, b, the left child of a divides the

region R^KJR^ into two regions, /?, and /?2. c, the right child of a divides the region

R^KJR^ into two regions, R^ and R^. The reconstructed values ofregion /?,, /?2, R^j R^

are dy e^f and g, respectively.

Thenif thec.d.f.of the source is F (x) , then wedetermine the values of a, byg

in the following way:

a = E[X\X€ -(oo,oo)]

b = E[X\Xe

c = E[X\Xe R^UR^]

d = E[X\Xg /?,]

c = E[X\Xe R^]

/= E[X\XeR^]

13



g = .E[X\XeR^]

From Proposition 2-1, we already know how to calculate the conditional expecta

tion using the c.d.f. F (x) .

If we want to design a tree structured quantizer with depth larger than two, we can

design it in a very similar way.

2.2.3. Adaptation Criterion

When we update the quantizer, we need to send update information to the decoder.

Updating the quantizer reduces the distortion, but at the same time costs extra bits. Thus

there is a trade-off between the bit rate and the distortion. Thus we need a criterion to

decide when to send side information and when not to. This can be formulated as minimiz

ing a cost function, which in the current context is the Lagrangian J = R + XD.

Given the current c.d.f Fix) , the current quantizer Q^urrent candidate

quantizer Qcandidate' compute the additional bits needed to update the quantizer

A/?, and the reduced distortion AD if we replace Qcurrent ^candidate • ^ S'̂ en

parameter X, we then calculate AJ = AR +XAD. If A7 >0, the quantizer Qcurrent

replaced with Otherwise, keep the current quantizer Qcurrent unchanged.

2.3. Adaptive TSVQ

Having presented an adaptive quantization scheme for the scalar case, we now look

at adaptive quantization in the general vector case. Similarly, an adaptive TSVQ algorithm

should at least have three parts:

1. Model estimation: Estimate the source statistics based on previous N unquan-

tized samples.

2. Quantizer design: Based on the estimated source statistics, design a new tree-

structured vector quantizer.

14



3. Adaptation decision: decide whether or not to adapt the TSVQ quantizer.

2.3.1. Estimation of Source Statistics

Unlike in the scalar case, there is no obvious way to estimate the source statistics

in terms of its probability density function or its cumulativedensity function. In [12], Chan

uses the following method to estimate the source statistics: Denote the current codebook

^current- codebook is a set of reproduction ^-dimensional codevectors

fc
{c.e R J = 1, ...,M} , each of which is associated with a cell R. = = c } ,

J J * J

where x. is the quantized version of x., the source vector. Among the recent previous N

source vectors, we record the counts of the source vectors that fall into each codevector

cell. Denote this by /j^, the occurrence count for the y-th codevector among the N source

vectors. Then rij.j = 1,..., A/, give us some information on the source statistics.

In the TSVQ case, we propose a similar method to estimate the source statistics. In

orderto simplify the notations, weconsider a TSVQ with depth of two (referto Fig. 2-2).

Figure 2-2. An example of TSVQ

a, A,..., g are -dimensional vectors, a = e\_X\Xe . b and c divides vector
k

space R into two regions, /?j and /?2 respectively, d and e divides /?, into R^ and R^.

f and g divides /?2 into R^ and R^. d^e^f and g are also the reconstructed codevectors

15



of region R^ and R^, respectively. Among the N recent source vectors, we count

the number ofvectors falling into each region and denote them by «j, .Then we

6

know that = N, wj = n^ + n^ and Wj = + Then n., i = 1, 2,6 give us
'• = 3

some information about the source statistics.

2.3.2. TVee-Structured Vector Quantizer Design

As we have mentioned before, TSVQ imposes a strong constraint on the structure

of the codebook. The codevectors in the codebook are no longer independent of each other

as they are in the full search VQ case. As a result, new codevectors can no longer be hand

ily added or deleted. This is a disadvantage we have to face when dealing with structured

codebook. Nonetheless, we can still update the codevectors. Take the depth-two TSVQ in

the previous section as an example. There are vectors falling into region R^. Then we

can calculate the centroid of these vectors and replace the old codevector with this new

centroid. There are = n^ + vectors falling into region /?,, so we can calculate the

centroid of these n, vectors and use it as the new codevector for region /?,.

Generally speaking, ifamong the Nsource vectors there are rij vectors fall into the

region Rj associated with the codevector Cj, then we can move the codevector Cj to the

centroid ofthese rij vectors for the next data block.

2.3.3. Adaptation Criterion

Again, when we update the current codebook, we need to send the update informa

tion to the decoder. So we need a criterion to decide when to update the codebook and when

not to. A method very similar to the one mentioned in scalar case can be used here, when

the Lagrangian 7 = /? + XD is minimized, then update the quantizer. Otherwise, keep the

quantizer unchanged
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One important feature of TSVQ is that it is not only a codebook which is fast to

search but also a multi-resolution codebook. If we want to maintain this multi-resolution

feature, we need to send the update information of all the levels of the codebook to the

decoder. If we do not need to maintain this multi-resolution feature, we need only send the

update information about the bottom nodes of the tree to the decoder.

2.4. Comments and Future Directions

Adaptive vector quantization has been intensively investigated by researchers in

recent years. Chan and Vetterli [12] proposed a vector quantization compression scheme

with the goal to design an adaptive Lempel-Ziv coding scheme in the lossy compression

domain. Encouraged by their results [12], we began to focus on reducing the complexity

of the compression scheme. So we set our objective as to design an adaptive tree structured

vector quantization scheme which can adapt to the source statistics in a way similar to the

Lemple-Ziv algorithm.

As a case study, we studied tree structured scalar quantization and found that in the

scalar case, the source cumulative distribution function can be measured based on causal

unquantized samples, and the tree structured codebook can be designed based on this mea

surement. Trade-off between side information and the distortion can be evaluated based on

minimizing the Lagrangian.
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3 Adaptive KLT without Side

Information

3.1. Introduction

The optimality of the Karhunen-Loeve Transform (KLT) for transform coding of a

stationary source under high resolution and arbitrary real bit assignment assumptions is

well known [16], However, the KLT transform is signal dependent. This is both an advan

tage and a disadvantage: The advantage is that being signal dependent, KLT transform

coding inherently is an adaptive coding scheme. The disadvantage is that the KLT trans

form must be sent to the decoder during the coding process and in most applications it is

prohibitively expensive to send this side information.

In order to apply Karhunen-Loeve Transform in data compression, two approaches

have been investigated. The first approach is based on classification methods [23]. The

signal space is divided into a finite set of classes and a fixed Karhunen-Loeve transform is

designed for each class. In the coding process, the transform is switched between the col

lection of transforms to adapt to the local statistics of the source. The second approach is

based on the on-line adaptation algorithm. It can be described as following:

Let {X |̂r = 1,2,...} be a stationary random process and is blocked into

where the blocks have size of

L, 2L, 4L, 8L, 16L, ... respectively. The statistics of the random process is measured for

each block and the Karhunen-Loeve transform computed and is sent as side information

18



through the communication channel. When {X^^t =1,2,...} is stationary and L is suf

ficiently large, the computed transform will converge to the true Karhunen-Loeve trans

form and the number of bits needed to send the side information will become negligible

when the size of the block goes to infinity.

The above scheme has two drawbacks. First, when the block size becomes large, it

is difficult to estimate the source statistics for the block. Second, the above scheme is effec

tive only when the source is stationary. In the case of a non-stationary source, statistics

measured for large size block will not represent the local source statistics well.

In [13], Ortega and Vetterli proposed an adaptive scalar quantization scheme using

backward adaptation and achieved very good simulation results. Because the adaptation is

based on the causal past quantized data, no side information is needed. It is natural to ask:

is there a backward adaptive Karhunen-Loeve transform coding scheme and how well does

it perform? Motived by the question and in collaboration with Goyal, we propose in this

report a backward adaptive Karhunen-Loeve transform coding scheme (Figure 3-1).

x(n)

KLT calculation

Autocorrelation Estimation

x{n-N{n)) ... Jc(n-I)

T («)

xin)

—•

r

Delay

Speed of
Adaptation

Figure 3-1. Backward adaptive Karhunen-Loeve transform coding scheme
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3.2. Preliminary Discussions

3.2.1. Backward Adaptation

We consider a stationary random processes X(0) = = 1,2, ...}

depending on a vector 0 = (0,,...»0^^) of real-valued parameters and let 0* be an esti

mator of 0.

We group Xp Xj,... into blocks of size L and at theendof each block, 0 is esti

matedbased on m blocksof the causal past quantizeddata, and the coder, denoted by Q.,

is updated based on the estimation of 0.

Denote the data blocks by X^. = (y_ j) ^+i» •., X^^) and its quantized counter

part by Xy = (X(j_!)£+1,...,Xy^) . Then at the j-th data block:

0*; = +|) * quantizer for the next data block is, therefore,

Qj = .

3.2.2. Parameters Measurement Based on Quantized Samples

In this section,wewill showthatbackward adaptive KLTtransform codingscheme

exists. In order to simplify the notations, we present this section in the case of dimension

two without losing any generality.

Let (XpX2,...) be i.i.d. random vectors. X. is of the form:X. =

where X^and X^^^ take values from the real set [a, b] .The joint probability density

function of xf'\x?^^ is I0J ,where 0eis the parameter
vector.

let Q = {Q^,Q2) be an two dimensional quantizer, where and Q2 are,

respectively, level Lj and level Lj scalar quantizers of the real set [a,b] . Let
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R. sz {a = <b2^ <... <b^^^ =b} , i = 1, 2, be an L^.-level internal parti

tion of [a, b] and C- = (J) \j = 1,2,..., L.} is the reconstruction level for Q.

Assume we only observe the quantized causal past N data vectors. Denote by

n.j (N) the counts of X's falling into intervals ofthe partition R. xRj, i,j = 1,2:

N

nAN) = I

Assume the input source process is stationary with a M dimensional parametric

marginal density lej [e€/?^J. For /= l,2,...,Lp ;= 1,2,...,L2
denote

^(1)

P>j= J (3-1)
aO a'3)

- I"/- I

where

i = 1,2, ...,L, ,and; = 1,2, ...,L2.

Li L,

Note that X X = ^'
i=i>=l

Let L= J][Lp Then vector P = (p.j) ,z = 1, ...,L,, y= 1, ...,L2 is a L-
t = 1

dimensional vector.

Proposition 1 Assume (Xj, X2,...) are Ltd. random vectors, and L = M+ \.

Ifmatched with aprobability vector P = (p.j) ,equations in (3-1) have aunique solution
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^ = 8iPij) and g is acontinuous function, then /(j:|0) can be estimated consistently

based on quantized data n.j{N) .

Proof: For L = M+ \, any L - 1 of the equations in (3-1) uniquely determine 0

in terms of p.j's: 0 = g(p-j) . By ergodicity, when oo, n.j-^p.j ; hence
A

6 = 8 i^w tends to the true 0 as gets large because g is con

tinuous. •

Proposition 1 is actually an extension of the theorem 1 in [24]. Yu proved that

under certain conditions, parameters of stationary and ergodic one-dimensional random

variables can be consistently measured based on quantized samples. Here, we propose that

this is also true for multi-dimensional random variables.

To put things into perspective, consider the following special case:

Let X. = be a two dimensional Gaussian random vector with the

autocorrelation matrix

2
Oj pGjG2

2
pGjG2 O2

and mean [pj,|i2]'- Then it's distribution is

determined by parameter vector 0 = [Gj, G2, p, Pj, P2] •̂If equations in (3-1) has unique

solution, then it is possible to solve for 0 based only on n-j.

The next question is in the above special case, do equations in (3-1) have unique

solutions?

First, it is easy to verify that Gj, Gj, Pj, P2 have unique solutions (refer to [24]).

So p is the only parameter need to be determined. For the purpose of brevity, we leave the

discussion to the Appendix A.
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Proposition 2 Let X- be zeromean /:-diniensional Gaussian random vector with

autocorrelation matrix R^. Let T be an orthonormal transform and let Q best ^-dimen-

I f /u ^ 11
sional scalar quantizer with ^ ^ / reconstruction levels. Then the KLT

1= 1

transform can be consistently reconstructed based on quantized random vector X,.

Proof: Let Y. = TX. . Then is also a Gaussian random vector with autocor

relation matrix Ry = TR^T^. Thus R^ = 'fRyT. From theorem 1, we know that based on

the quantized data T,, the parameters of Y- (in this case, Ry) can bereconstructed. There

fore, the parameters of X- can also be computed and so does the KLT transform, which is

the transpose of the eigenvector matrix of R^. •

Theorem 2 implies that if we have an initial transform T and a -dimensional

fixed-rate quantizer Q formed by k scalar quantizers, for a Gaussian vector source with

autocorrelation R, wecanconsistently estimate R basedon thecausal pastquantized data.

Then the trueKarhunen-Loeve transform can be derived by finding the eigen-decomposi-

tion of R. Thus, backward adaptive KLTtransform coding scheme, in theory, exists.

3.3. Backward Adaptive Karhunen-Loeve Transform Coding

Theorem 1and 2 in the previous section have proved that backward adaptive Kar

hunen-Loeve transform coding exists in the parametric case. However, the method in the

orem 1 and 2 can not be implemented in a straightforward way; It requires solving non

linear equations, which is a non-trivial task. In this section, we will propose a practical

backward adaptive Karhunen-Loeve transform coding scheme (Fig.3-1).

3.3.1. Quantizer Mode!

In our adaptiveKarhunen-Loeve transform codingscheme, instead of usinga fixed

rate quantizer as we did in section 3.2, we use a subclassof uniformquantizers that can be
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described by a two-parameter models used. The operation of a representative quantizer of

this subclass is governed by the following general two-parameter (a, A) model:

if (a +/i)A<X<(a +n+l)A with a€ ^j and ne Zwhere X, Xg, Aand a
are the unquantized andquantized variables, the uniform stepsizeandshiftfactor, respec

tively. It is clear from this model that the two most important quantizers, namely the mid-

stepper (with dead zone) and the mid-riser (without dead zone) are characterized by

=-^ and a=0, respectively.

3.3.2. Overview of the Algorithm

Jt^
Let X = (xp jCj,...) , x.e R , be a realization of the k dimensional random

vector X with the autocorrelation matrix = e[xX^ .For an orthonormal transform T,

the output of the transform block,y = (yp ^2' •••) >where y. = Tx., is a realization ofa

random vector Y with autocorrelation matrix Ry. The quantizer Q consists k uniform

quantizers Q. with step size A.,/ = 1,2,..., ^. The output of the quantizer,

y = (5'py2» •••) ' where y. = Qiy^) is a realization of the k dimensional random

vector Ywith the autocorrelation matrix Ry. Let x = (jCp Jcj,...) ,where Jc. = fy.,

be the output of the inverse transform block. Then x is a realization of random vector X

with autocorrelation matrix R^.

Encoding the data string x = (Xp Xj,...) using a fixed transform gives an oper

ating point on the R-D plane. We want to adapt the transform so that the operating point

moves towards the R-D bound for the source. We also want to adapt the transform to the

local statistics of the source. In order to achieve adaptivity, the data string XpX2,... is
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grouped into blocks of size L and at end of each block, the autocorrelation matrix of X is

estimated based on the causal past m blocks of quantized data. The transform is then

updated and is used to quantize the next block.

Denote the data blocks by i)£+1» •••> ^ji) quantized counter

part by Xj = (^(y-i)L+1'• Then at the end of the y-th data block,

R= R(xj, ...yXj_^ j ^j ) .The transform for the next data block is, therefore,

T • — T • (X X ^

As an overview, the algorithm goes as follows:

1. Start with an initial transform Tj. Let7=1.

2. For the j th data block, on each source vector x, apply the orthonormal transform

Tj to obtain the coefficient vector y.

3. Apply the uniform quantizer 0 on y to obtain the quantized coefficient vector y.

4. Apply the inverse transform 7^. to obtain the reconstructed vector Jc.

5. At the end of7th data block, estimate the autocorrelation matrix R^ based on the

causal past mblocks quantized data and compute the new transform Tj ^, by finding the

eigen-decomposition of R^.

6. Let 7 = 7+1 and go to step 2.

3.4. Analysis

In this section, we will show that the algorithm we proposed in section 3.3 achieves

a certain '"universality''' for a source with unknown statistics. We assume the source statis

tics is characterized by its autocorrelation matrix R^ which is unknown to the coder. Ini-
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tially, the transform coder starts with an initial transform Tq. Rewrite the six-step

adaptation scheme in section 3.3 in terms of the autocorrelation matrix, we get:

Step 1. For a given and transform , initially n = 1,

( n\

Step 2. After the uniform quantizers, , the auto-correlation matrix of 7, is a

function of and the step-size of the quantizers, A. Let's denote it by

Rf =

Step 3. The reconstructed vector X has an auto-correlation matrix R^ , which is

.We perform an eigen-decomposition on so that Ri^^ = ^,,

where ^ j is an orthonormal transform and is a diagonal matrix.

Step 4. Let n = n+ \ and go to step 1.

In section 3,4.2 we will analyze the behavior of the algorithm, but first we need to

find out the effects of uniform quantizeron the autocorrelation matrix. More specifically,

we need to find out the function Ry = (Ry).

3.4.1. Effect of Quantizer on Autocorrelation Matrix

In [16] Cheded studied the following question:

Given a /:-dimensional unquantized (or input) vector signal X = [Xj,

which is quantized by a -dimensional uniform quantizer Q of step size A into a it-dimen

sional quantized (or output) vector Xq = [X^,,..., Xg^] ^ what is the exact relationship
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r k

between the (/?,, unquantized moment, E
.j=] .

, and its quantized coun-

r k

terpart, E n4
-7=1

The exact solution to this ^-dimensional moments relationship problem can be

summarized as follows: if W(m,, Mj, Uf^) and Wg(M,, Mj' •••» "jt) respectively,

the input and output characteristic functions (CPs) of the -dimensional quantizer Q

whose step size is Ay, / = 1,2,...,/:, then these two functions can be shown[17] to be

related by the following input/output CP equation:

^ f
W

I f 1^

« 7=1

X n

where i =

k sin^^^^-f-«y7tj

Am.7=1 |^+m.7C

2nj7U 2n^Jt

A
k

(3-2)

The /:-dimensional quantized (p,, ..., th moments is then computed according

to

n4
-7=1 -

(/?, +/72-^ ... +Pt)

.(p,+/>2+ ...+/?jt) ^ Pk
I OM, OM^ ...OM

1 ''^2

Now let's look at the effects of uniform quantizers on Gaussian random vectors.

Let X= [Xp Xj,..., X^]' be azero mean /:-dimensional Gaussian random vector with

autocorrelation matrix Let k = [XpX2...Xj be the output random vector of the
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quantizer. Denote ElXpCji , ^[i-] and £[x,^] by o,^, d,^.. b] and o]
respectively. Then from (3-1) and (3-2):

a. =
2 a2

a.+A.
1

12 ^
m = I

00 -2m Jt -3/
1

2n
4 a

22 .2 ,Vm TC Ay
cos {Inajtri) (3-3)

and, for 1*7,

= (^+5o•)®<7 + '̂u• (3-4)

where

1^/; =

•) tO;
-2m:7l^ -2m,7i

=>.7 = 2

m, = 1

x-i ^COS (27Cflj.m,) + ^ e 'cos{2Tiajm^

A.A.

I
m,, m, = 1

-2n

/ 2 2 2 2N
m.G, /n-,a,
—!—L + - ^

I A- a; ;

m, = 1

coslna.m^ cos2najm2S\nh

r . 2 \\4k o.jm^m2
-sin27Cflj./72 jsin 27ia^.m2 cosh

\ A,.A. ^

r. 2 ^4jto^,m2
V A.A.

I J

Equations (3-3) and (3-4) specify the function mentioned in the beginning of

section 3.4. The function shows the effects of uniform quantizers on the second

moments of Gaussian random vectors.

3.4.2. Main Theorems

After the above preparations, in this section we will prove three main theorems for

the proposed backward adaptive KLT transform coding algorithm.
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In [181, Goyai, Zhuang, Vetterli and Chan proved the following theorem:

Theorem 3 Let X = [Xj,.,, X~ (0, Z) , where Z is an unknown pos

itive definite matrix. Let ^ be a scalar quantized version ofX such that for n g Z either

(i)X,.€ [/tA,, («+l)A,.) =>^,- =(« +|)a, ;

(ii)X,.6 + =>-y, = nA,,

or

Then for any set ofpositive, finite quantization step sizes Aj,..., , all moments ofX can

be recovered exactly from the first and second moments of X.

Proof: For brevity, the proof below considers only case (i); case (ii) is similar. First

note that since X is a Gaussian random variable, all its moments can be expressed in terms

of its first and second order moments. Having already specified that X has zero mean, it is

completely characterized by C-j = E[X-Xj] ,1 <ij<k.

Simplifying expression from equations (3-3) and (3-4) gives

a. =
2 a2

o.+A.
1

12"^ Z

and, for

where

d - = (1 H- 6.) G" + U--,
y ^ y' y ^y'

2 2
\m K

29

4g
2\

(3-5)
a:

(3-6)



6.... = 2

^m, = 1

>^.7= I

« 2 2"/
6o -2m,7t

I- +

A,A.

mj.m, = 1'Wjm27C

2\

n 2 2®^/-2m2n -3

m, = 1

-2n

( 22 2 2^
^|g/ . ^2^7

a2 a2
^ A, A.

sinh

'"a 2 N
471

V A,A. y

22Forany positive , (3-5) describes a monotonic relationship between a^- and d,-,

2 A2 2
so each can be determined from . With C- thusly determined, (3-6) describes a

monotonic relationship between o-jond so c-jcan be similarly determined. •

Applying this theorem to recover the moments of the unquantized signal involves

finds the roots of (3-5) and (3-6).This is clearly verycomplicated. There are two situations

where we do not really have to find the roots of (3-5) and (3-6).

The first situation is when the quantization step sizes A., i = 1,..., it are small

2 2 1 2enough, (3-5) and (3-6) can be well approximated by dj = Cj +-^Aj and = C-j

respectively.

The second situation is when, as we will show next, there exists an iteration scheme

such that for any step size A below a certain threshold, the adapted transform exponen

tially converges to the true KLT transform. In practice, one iteration will result in trans

form close enough to the true KLT transform.

The next conjecture proposes that starting with an initial transform, without know

ing the autocorrelation matrix of the source, our adaptive algorithm will update the trans

form in such a way that under certain conditions the adapted transform will exponentially

converge to the true Karhunen-Loeve transform.
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In the summer of 1996, after our ICIP'96 paper was published, we became very

interested in the convergence properties of our proposed backward adaptive KLT algo

rithm. Onesimplification wemadeisthatweassume themoments of thequantized random

variables can be measured without noise. Based on this simplification, we then ask the fol

lowing question: Will the adapted transform of our algorithm converge to the true Kar-

hunen-Loeve transform?

The first intuition is that, because of the quantization effects, the autocorrelation

matrix of the unquantized random vector is different from that of the quantized random

vector, then the adopted transform will be definitely different from the true transform.

However, our numerical simulations show that, surprisingly, the adapted transform con

verges to the true transform veryfast, even for coarse uniform quantizer. We leave this as

conjecture in this report, because, even though our simulation strongly support the conver

gence, the current proof is not satisfactory. Nonetheless, we give the current version in the

following. We arecurrentlyworkingon providinga morerigorousproofof thisconjecture.

Conjecture 4Given the autocorrelation matrix of the source signal = t'dT,

which has no repeated eigenvalues and an initial transform T,, let « = 0,

step 1: /? =

Step 2: /?-, = C (/?^,) , where C is the function described byCheded in [16],

equations 43,44, and 45.

step 3:R. = f^R-T^

step4:i?- =

Step 5: n = w+ 1, go back to step 1

Then for ,3a > 0, for VA <a, T asn—><».

Proof: First let's define:

definition 1: define Z to be the set of all the diagonal matrix.
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definition 2: for VA, A= «„ ,define d(A, S) = ^ a.j
i*j

Fromthe definitions, the following are true:

lemma 1: A e 2 if and only if fif (A, 2) = 0

lemma 2: C (A) e 2 if and only if A e 2

After theabove preparations, we now begin toprove conjecture 4.

Wehave R. = f„C(R^)T„ =

also we know that \\'^n +1 •

=KQ(T/DTf„)T„
Rewrite the above equation and let = F t' and i/ = T f ., we have

^ n n n nn+\*

= H„aX
We can notice that:

G„G'„ = G'„G„ = /, =hX =/ and G„, =/<G„

Next, let = G^DG[ , then:

= G„,,/>G:,, = h'„G„DGX =
So far, we have:

CiXJ = «„A„<

/I + j n n n

Next, let's define Z = X - C (X )
n n ^ /I'

We have:

Then:

d(X„,,.X) =4//'„(Z„ +C(X„))H„,xJ
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Because we know that {X^

It is easy to verify that C has following properties:

(l)Z^ GZ ifand only if € Z

{2)d (Z„, Z) <ad (X„, Z) and a 0when A 0,

Next, we have:

(X„ ^Z) = z] =d(Z„, X)+o{d (Z„, Z)) (3-7)
Readers interested in a detailed discussion of equation (3-7) are referred to Appendix B.

Thus, for d (Z^, Z) small enough, we have:

J(X„^,,Z) <2d{Z^, Z) <2a^/(X„,Z)

Thus for 2a < 1,we have d (X^, Z) 0 as n .On the other hand, we already know

thatX^ = G^DG'̂ where Dg Zand G^G^ = g[G^ = 7. Because the autocorrelation

matrix has distinct eigenvalues, it isonly possible that I. Thus wehave T^—^T

as /I —> oo •

A detailed discussion in the two dimensional case of the above conjecture can be

found in [25].

It is worthwhile to make a commenton equation 3-7 here. This assumption is sup

ported by experimental results but we have not yet been able to prove it rigorously. Thus

inthis report, we use the word "conjecture" instead of"theorem". Currently, we are work

ing on providing a rigorousproof for this conjecture.

Basically, our intuition about why the adapted transform converges is thefollow

ing: Firstof all, the algorithm is stable (see theorem 5 below). Secondly, for a fine quan

tizer, R. = p/ is a good approximation ofequations3-5 and 3-6 and R^ have the

same eigenvector matrices.

Finally, the next theorem shows the stability of the algorithm.
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Theor6in 5 [18] Let X —[Xj, be Gaussian random vector and have

KLTT, i.e. Tis the orthonormai matrix such that TR '̂f = A,where = e[xx!~\ and

Ais adiagonal matrix with non-increasing diagonal elements. Let i = fq^TX) , where
^is a scalar quantization function that introduces zero-mean quantization noise. Then,

regardless of the quantization resolution, TE[M']T' is adiagonal matrix, so the KLT of
A

^differs from Tby at most a permutation.

Proof: Let Y = TX and e = q{Y) —Y. Note that since Tis Gaussian and has

uncorrelated components, the components are independent. Since the quantization is sca

lar, we have furthermore that e-is independent of Cj and T^for Then

TE\xk'̂ l' = TE{T:'q(Y)q(Y)'f]T:'

Then TE[kx']l' =E[q (Y) q(Y)"] =E{Yf]+EieY' +Ye' +ee']

In the final expression, the first expectation gives A, while the three remaining

expectations yield diagonal matrices because ofthe zero-mean and independence condi

tions. •

3.5. Practical Issues

3.5.1. Fast Algorithm to Estimate Autocorrelation Matrix

Akey issue in the backward adaptive Karhunen-Loeve transform coding scheme is

the measurement ofthe autocorrelation matrix. There is afast algorithm which we can uti

lize. Here we give a brief review. Readers are referred to [24] for more details.

We begin with computation of the autocorrelation given by
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N-]

r- = -^ ^ d.d. i = 0, —1I N ^ k k+1 2
Jt = o

We are interested in probkms inwhich the data blocklength N ismuch larger than

the output blocklength ^, so it would be wasteful to choose aFourier transform with block-

length on the order ofN. The sum can be broken into sections oflength nin order to fit the

problem to a smaller Fourier transform with blocklength n. Write

L-l
V-" (/)

"-i = L 'i
1 = 0

where

r.*"=-y</ ,d , 1= 0,1 l = 0,...,L-\
k = 0 2 2

and j '̂ Thus the task is to compute the vector for /=0,^-1•This we
do by computing appropriate cyclic convolutions using the hh l .

Let d\^^ - d for / =0, 1and d\^^ =0for i = L- 1.
'•^2

and

Then

g\'^=d i = 0,....n-1
'•^2

n- 1

k = 0
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Let and denote the Fourier transforms of and . Then

is the Fourier transform of the cycliccorrelation

n- 1

(0 j
- ^^k^iii +k)) i = 0, 1

k = 0

and half of these values are the desired values

•_ n « 1I ' ~ •••>2~^

Therefore we can first compute

L- 1

1 = 0

then compute its inverse Fourier transform s, and set

' ~ 0» •••, 2~^

To complete the development, we show how to eliminate some of the work. Instead of

using aFFT to get G^'\ use the formula

=£>r+(-!)*£>*'*"

The computation then takes the form

L- 1

/ = 0

An inverse Fourier transform completes thecomputation.
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3.5.2. Fast Karhunen-Loeve Transform

In order to carry out aKarhunen-Loeve transform it is necessary to determine the
covariance matrix of the data source. In practice, this will mean measuring the various vari
ance products for the source, which is atask not lightly undertaken. Alternatively, amodel
for the source may be assumed, and the eigenvectors of the associated covariance matrix
calculated. In either case, it is evident that the elements constituting the transform basis
matrix are functions of the data properties, and so the matrix does not necessarily have any
underlying structure and cannot, in general, be decomposed into sparse products to gener
ate an algorithm with areduced number of multiplications. It should be noted that, even
when the eigenvectors can be expressed analytically, as for Markov processes, the equa
tions lead to non-harmonic basis functions in general, and an underlying periodic structure

is absent. Atrue "fast" algorithm for the KLT does not exist, therefore. However, several
fast algorithms have been developed to approximate the KLT transform.

The first of these is that reported by Haralick et al [19]. Their treatment begins by
generating the covariance matrix of the (two-dimensional) image in the manner described
in?. The image is assumed to be stationary and isotropic, under which conditions the sub-
matrix partitions of the main covariance matrix turn out to be (approximately) multiples of
one another. Under this condition, each submatrix has the same eigenvectors, and the
eigenvectors of the covariance matrix of the image as awhole are formed by the direct
product of the submatrix eigenvectors and those of the matrix ofeigenvectors. Asubmatrix
is therefore generated such that the squared difference between the best multiple of its ele
ments and those ofasubmatrix ofthe covariance matrix is minimized when averaged over

all submatrix. Each submatrix is then replaced with the best multiple ofthe new submatrix.

The direct product representation then allows decomposition of the transform operation
into an equivalent fast process. Results using a4by 4block size show that the true KLT is
well approximated by the "fast" version, but also the difference between the true KLT and
the slant transform, for example in terms ofrms error is only a few tenth of 1%.

The second approach to the "fast" KLT is that of Jain [20] and is based upon the

separation of adata vector X= into aboundary response x^^defined by Xqand
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jc^ ^I, and apartial sequence X-jrj,,whereX = J:, Jain then shows that if Xis a

first order Markov sequence, the sequence Jf'-*^has, as its KLT, the sine transform. In
this, or the more general two-dimensional, case the partial sequence (or field) is regarded
as having been "pinned" at the boundary, giving rise to the so-called "pinned" KLT. Thus
the fast" KLT is in fact not so much afast algorithm as such, but adecomposition of an
image filed into sub-fields, for one of which the KLT is a(sinusoidal) fast transform.

An alternatively approach to the "fast" KLT has also been reported by Jain [21]. he
points out that each member of the family of the sinusoidal transform is the KLT of a
sequence having aparticular J-matrix as its covariance matrix. Since the transform all have
sinusoidal basis vector components, they are decomposable into fast algorithm structures.
The success of the method rests upon the assumption that the measured image covariance
matrix for the image or image sequence can be modelled as a simple function of a [J]
matrix for which a fast transfonn exists.

3.5.3. Speed of Adaptation

The remaining block to be defined in the encoder of Fig. 3-1 is that in charge of
determining the speed of adaptation. Our aim here is to dynamically determine at every
iteration the number of past vector samples Nthat should be used in estimating the auto-
correlation matrix.

The classes of error produced by the choice of memory can be separated into two
classes:

(a) Non-significant data: if not enough memory is used we may be dealing with a
non-significant (in astatistical sense) set of data and our estimation will necessarily be
erroneous.

(b) Source with memory: if the source statistics (as determined by time averages
over finite window) changes over time then an excess of memory will not permit sufficient
adaptivity and will result in loss ofperformance.
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One method to decide the speed ofadaptation is to keep two sets ofcounters, one

accumulating the long term statistics, the other accumulating the latest pattern of sample
arrivals. We choose to use the short tern data to estimate the auto-correlation matrix only
if the difference between short and long term data exceed a threshold. In this way, we try

to detect the changes in statistics while avoiding always using ashort term estimate, and
thus risking having to deal with non-significant data.

3.6. Experimental Results

3.6.1. Universality and Convergence

Consider the following method for transform coding ofascalar source. The source

samples are formed into vectors of size ^ = 8. These vectors are transformed by left mul

tiplication by aorthonormal matrix Tand then uniformly scalar quantized with step size

A. Assume the quantized values will be coded with an adaptive entropy coder. At the
decoder, and at the encoder for adaptation purposes, reconstruction is performed by left

multiplication by f. After every block of Nvectors, the transform Tis updated to be the

empirical KLT of the last mblocks of quantized data, where m is called memoryfactor
and m = oo isused to indicate that all past data is used in the autocorrelation estimation.

This backward adaptive KLT coding scheme has been tested on zero-mean, unit

variance AR( 1) source. The results ofthe first experiment, given in Fig. 3-2, show that after

a suitable amount ofdata has become available, close to optimal coding gain is achieved.

Thecorrelation coefficient of thesource is a = 0.9, thus theoptimal coding gain is 4.28.

An initial transform of T = /, a block length of N = 2, a memory factor of m = ««, and

quantization step size A= 0.01, 0.5, 1,and 2were used. This experiment shows the rela

tive importance of the number of samples available and the coarseness of the data. A
system that uses unquantized data in adaptation (thus requiring side information) would

have coding gain approximately as shown by the A = 0.01 curve; the relatively small dif-
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ference between this curve and the remaining curves shows that the dependence on the
coarseness is quite small.

optimal

A = 0.01

A =0.1

A =0.5

block number

Figure 3-2. Coding gain of adaptive system compared to optimal coding gain for various
coarseness levels

Conjecture 4 in the section 3.4.2 shows that if the autocorrelation matrix of the

reconstructed vectors can be measured with infinite accuracy, then as the number ofitera
tions goes to infinity, the adapted transform converges to the true Karhunen-Loeve trans

form when the quantizer step size A is small enough. In practice, however, the

autocorrelation matrix can only be measured based on a finite number of reconstructed

vector samples. In order to find out the behavior ofthe adapted transform when the mea

surement of the autocorrelation matrix is noisy, we set up the following simulation!

Let the source signal be an AR( 1) signal with the correlation coefficient a = 0.9.

We block the source into vectors of dimension ^ = 4. we set the quantization step size
A—1 and set the adaptation interval to be 100,200,300 and 500 samples respectively.

After each iteration, we compare the adapted transform with the tme Karhunen-Loeve
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transform and calculate the norm ofthe difference .The results are shown in

Fig. 3-3. As we can see, for afixed quantization step size, the adapted transform in practice
doesnT converge to the true Karhunen-Loeve transform. In theorem 5, we assumed the
autocorrelation is measured based on an infinite number ofsamples and is therefore noise

less. This assumption is no longer valid in our simulations. Here, the autocorrelation is

measured based on finite number of samples. Nonetheless, we can still see that even

though the adapted transform doesn't converge to the true Karhunen-Loeve transform, it
comes very close after one ortwo adaptations. Also, we can see that for a fixed quantiza

tion step size, as we increase the adaptation interval, the adapted transform becomes closer

to the true KLT transform. It is reasonable to expect that the adapted transform will con

verge to the true KLT transform as the adaptation interval grows to infinity.

Aal. N=100

A =1. N=200

3 3.5 4 4.5
number of interations

Figure 3-3. The adapted transform compared with the true KLT transform for fixed
quantization step size and various adaptation intervals. The two curves atthe bottom are

A = 1, N = 300 and A = 1, N = 500, respectively.

Conjecture 4 shows that the smaller the quantization step size, the faster the

adapted transform converges to the true Karhunen-Loeve transform. Fig. 3-4 shows the
2

relation between quantization step size Aand the norm of the error matrix |j7^ - •
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As we can notice in Fig. 3-4, for the first adaptation interval, the smaller the quantization
step size, the smaller the norm of the error matrix. However, as the adaptation proceed, the
norm of the error matrix when A= 3 becomes smaller than when A= 0.1. This means,
the relation between the quantization step size and the norm ofthe error matrix is not a

monotonous relation. The exact reason causing this non-monotonous relation is not clear

and should be further investigated in thefuture.

A = 0.1

3 4 t
number of iterations

Figure 3-4. The adapted transform compared with the true KLT transform for fixed
adaptation intervals {N = 100) and various quantization step sizes, A= 3, A= 2,
A- 1.5, A = 1 and A = 0.1. The three curves in between are, from left to right'

A = 1, A = 1.5 and A = 2.

In the above simulations, we have fixed the adaptation interval during the coding
process. However, when coding stationary source, we can also exponentially increase the
adaptation interval during the coding process. In the following simulation, we divide the

source to blocks of size N, IN, 4M 8M ..., where N = 100. We then adapt the transform
at the end of each block. The results are shown in Fig. 3-5. The quantization step size is

A= 1. The relation between the norm of the error matrix and the number of adaptations

42



is the solid line in the figure. In order to compare with the results obtained for fixed adap
tation intervals, we include the results of Fig. 3-3 (dashed lines). As we can see, for asta
tionary source, when we increase the adaptation interval during th encoding process, the
adapted transform goes to the true Karhunen-Loeve transform more quickly. Again, we
can expect that when the adaptation interval becomes infinity, the adapted transform will
converge to the true Karhunen-Loeve transform.

3 3.5 4
number of interations

A = 1, NslOO

A = 1. N=200

Figure 3-5. The adapted transform compared with the true KLT transform for
exponentially growing adaptation interval.

3.6.2. Advantage of Adaptivity

Aprincipal disadvantage of static coding algorithm is performance loss due to a
mismatch between a source and thesource assumed in the design. The second experiment

demonstrates the advantage ofusing this adaptive method in the case of mismatch. The

source has correlation coefficient a = 0.99 and is coded using an initial transform of

r = /, ablock oflength ofN = 50, and amemory factor ofm = 2. In Fig.3-6, perfor

mance is compared to the performances of the static KLT coders designed for correlation

coefficients of a = -0.9,0,0.5,0.9, and the true value of0.99. Forthe adaptive coder, the
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rates and distortions given are averages over blocks 2 through 26. As the mismatch
becomes larger, the performance gain from the adaptive system also becomes larger. The
loss in the performance due to aproperly matched static design is minimal

20i —— ®

0.4 0.5 0.6
Rate (bits/sample)

Figure 3-6. Performance comparison between adaptive system and fixed coders. Source
has acorrelation coefficient a = 0.99 and fixed coders are designed for various values of

a., including the true value, o smark performance of the adaptive system.
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4 Conclusions and Future Work

This project report has two parts. In the first part, we have presented adaptive tree
structured scalar quantization and adaptive TSVQ algorithms. We have shown that without
knowing the distribution of the source, by splitting the encoder into model estimation, tree
structured scalar quantizer design and update decision, an adaptive algorithm can designed.

In the second part we presented a backward adaptive Karhunen-Loeve transform
coding algorithm. We first proved backward adaptive Karhunen-Loeve transform coding
scheme exists in theory. Then we presented apractical backward adaptive algorithm which
estimates the autocorrelation matrix of the causal past quantized random vectors. After

analyzing the effects of uniform quantizer on the second moments of random variables, we
proved that the algorithm is stable and for zero mean Gaussian random vector source and
small quantization step size, the transform adapted by our proposed algorithm converges
to the true Karhunen-Loeve transform. We have tested our adaptive algorithm in the

coding of AR(1) source and have achieved promising results.

There are some issues that require further work.

First, in the adaptive TSVQ case, afuture work would be to implement the adaptive

scheme we have presented and apply it in image coding and compare the results with the
performance of the staticTSVQ.

Second, Karhunen-Loeve transform isthe optimal transform under high resolution,

real bit assignment and Gaussian signals assumptions. In this project we have proved the
universality of our proposed algorithm and have tested it on synthetic data. Future work
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should be to apply our adaptive algorithm in the coding of real image data and compare the
results with the performance ofthe discrete cosine transform (DCT) coding.

In our proposed backward adaptive Karhunen-Loeve transform coding scheme, the
size of adaptation interval ischosen quite arbitrarily. One of the future work should be to

find out how to decide the size of the adaptation interval and adjust it during the coding
process according to the change of source statistics.

Finally, in our backward adaptive Karhunen-Loeve transform coding scheme, we
did not specify how to select the size of vectors. In fact, during the coding process, the size
of vectors can be changed according to source statistics. When the source changes slowly,
we can chose a large vector size and when the source changes quickly, we chose a small

vector size. Thus one of the future work could be to find out how tochose the vector size

andchange the vector sizeaccording to local source statistics.
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Appendix A

A. 1 Parameters Measurement Based on Quantized Samples in the Gaus

sian Case

First, it is easy to verify that a,, Oj, 1X2 unique solutions in equations 3-1

(refer to [24]). So p is the only parameter need to be determined.

Letpj^. = j J/(jc,,j:2)d!x,d[r2,then

[(1+P^j*i^2-P- |̂-P-^2 +P-P '̂̂ i'̂ 2

where

Q{x^,X2) =exp{-^^-^(^jc^-2pjc,.X2 +j:2]}
^I-P

^PiiItis easy to verify that for p>0, 3Q.j such that <0 and for p<0, 3Cl-j such
u p

dp.-
that > 0. This implies that for p, there exists a quantizer whose p^. 's uniquely deter

mines p.

Thus, a,, 02, [ip II2 P unique solution in equations (3-1).
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Appendix B

B. 1 JustiBcation of Equation 3-7

Notations:

(1) denote the function described by Cheded by Q. That is, for a given matrix X, the

function maps it to Q (X) .

(2)define =X4
We are interested in the case when A, the quantization step size, is small. As we can

verify, for small A, we can write Q(X) =X+̂ 7+ A^jc (X) ,where tis any posi
tive integer and C (X) is another function of X and [C (X) || = 1.

We already know that (refer to previous proof):

e(^„) = and

="X".

Thus we have:

On the other hand, we have

which means

= A„., (2)

We know that H„., =X„

So after compare equations (1) and (2) we have

48



"nK»l =\ +"U'j[c(X„) -hI_ ,c(X„
This leads to

H„ =/+o(A'Jz)(f/„) (3)

where 5 is a positive integer and

||D(//„)|| = 1.

Thus we have

Which means

=A„ +Z„ +o(a'"^J£(W„,X„) (4)

where ||£(//„,X„) II = 1.

remember we have

Z,, =-^^-o(a')c(X„) (5)
Compare (4) and (5) we have

r/(X„^,,S) = r/(Z„,Z) +o(rf(Z„,X))
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