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Abstract

This paper studies the semantics of hierarchical hnite-state machines that are composed using var

ious concurrency models, particularly dataflow, discrete-events, and synchronous/reactive modeling. It

is argued that all three combinations are useful, and that therefore the concurrency model should be

selected independently of the decision to use hierarchical FSMs. In contrast, most formalisms that

combine FSMs with concurrency models, such as Statecharts (and its variants) and Hybrid systems,

tightly integrate the FSM semantics with the concurrency semantics. An implementation that supports

the three combinations studied is described.

1. Introduction

While the complexity of electronic systems continues to increase exponentially, the fundamental

cognitive ability of human designers remains relatively static. Moreover, the ability to handle complex

ity does not increase even linearly, much less exponentially, with the number of designers, so complex

ity cannot be conquered through sheer numbers. Our impressive successes so far designing electronic

systems result primarily from our human ability to abstract. With the digital abstraction, for example.
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APreliminary Study of Hierarchical FiniteState Machineswith Multiple ConcurrencyModels

voltages become irrelevant, andsystems aredescribed withboolean expressions. With the synchronous

abstraction, time becomes discrete and individual circuit delays become irrelevant. Although these

abstractions cannot be used all the time, by using them most of the time we can design more complex

systems than would be possible if we had to be concerned throughout with voltages and delays.

The standard abstractions used for digital systems, however, are straining under the load of multi-

million transistor chips, networked, distributed applications, and the increasingly domain-specific

expertise required. Experiments with higher-level abstractions, where systems are constructed by com

posing subsystem modules, are promising. For example, the signal processing community heavily uses

so-called "block diagram languages" to modularly compose sophisticated algorithms. Software com

ponents, such as Corba or ActiveX, show promise as a way to modularize complex software systems.

The rules of interaction of modules or components, the semantics of the composition, is what we call

the model ofcomputation.

Most complex systems today are concurrent.Modules consist of relativelyautonomousagents that

interact through messaging of somesort.Models of computation that support concurrency are numer

ous. Apopular one today, made popular by the Java™ language, is threads, where a set ofsequential

processes operate on the same data. More sophisticated concurrent models of computation include

CSP(communicating sequential processes) [17], the pi calculus [25], dataflow [14], process networks

[19], discrete events [9], andthesynchronous/reactive model [1]. These models aremore sophisticated

in thesense thatcomplex concurrent systems canbe more easily designed, andthedesigns yield better

to analysis. The blockdiagramlanguages used in signalprocessing, for example, almostall have some

variant of dataflow semantics, and oftenyield to deadlock analysis andstaticscheduling.

While concurrency is a major source of complexity, it is not the only one. Increasingly intricate

sequential control also adds difficulty to design, particularly when errors in the control sequence can
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have fatal consequences for the user, as is the case in many embedded systems. Finite state machines

(FSMs) havelongbeenused to describe andanalyzeintricate control sequences. Because of their finite

nature, FSMs yield better to analysis than alternative control models, suchas sequentialprogramswith

if-then-else and goto. For example, with an FSM, a designercan enumeratethe set of reachable states

to ascertain that a particularly dangerous state cannot be reached.

Most modem electronic systems have both intricate control requirements and concurrency. Thus,

combining FSMs with concurrent models of computation is an attractive and increasingly popular

approach to design. Since Harel introduced that Statecharts model [16] in 1987, a number of variations

have been explored [28]. The Argos language [24], for example, combines FSMs with a synchronous/

reactive concurrency model [1]. The codesign finite state machines (CFSM) model [11] combines

FSMs with a discrete-event concurrency model.

Harel dramatically increased the usability of FSMs through two innovations [16]. First, FMSs can

be hierarchically combined. A single state a at one level of the hierarchy is interpreted as being in one

of several states, e.g. />, c, or d, at a lower level of the hierarchy. These are often called "or states"

because being in state a is interpreted as being in state b, c, or d. Second, FMSs can be concurrently

combined. An FSM with states a and b can be composed with an FSM with states c and J, resulting in

an FSM that is in state ac, be, ad, or bd. These are sometimes called "and states" because the FSM can

be in both state a and c, for example. Both innovations allow state machines to be represented com

pactly and intuitively.

While the static interpretation of "and states" is clear, their dynamics are far less clear. Given two

concurrent FSMs, when do they make state transitions, relative to one another? How should they com

municate their state and/or transitions? These questions greatly complicate the FSM model of compu

tation, and indeed were not completely resolved by Harel initially. This is part of the reason for the
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proliferation of variations of concurrent hierarchical FSM models of computation [28].

Harel loosely defined state transitions in concurrent FSMs to be simultaneous. A state transition

could broadcast an event, visible immediately to all other FSMs. The other FSMs could then make

state transitions immediately, and also broadcast events. As long as there is no circular logic (circular

dependencies among transitions), this notion of simultaneous transitions is well-defined. Real circular

dependencies can lead to genuine paradoxes and/or to underdetermined behavior. However, apparent

circulardependencies proveto be commonin practical systems, primarily becauseof the use of hierar

chy, so the model had to be refined. The Argos language [24] and others refine the model by applying

the synchronous/reactive (SR) principle [1], which resolves apparent circulardependencies by seeking

at each instant 2lfixed point, a globally consistent behavior. TheSR principle, first developed by Beny

in the Esterel language [4], gives a well-defined and determinate semantics to simultaneous concurrent

actions.

Perhaps because ofHarel's first useof simultaneous transitions, simultaneity has dominated; most

concurrent hierarchical FSM languages use some variant of simultaneous transitions. A few, however,

use more loosely coupled FSMs. In the codesign FSM (CFSM) model [11], for example, transitions

are placed on a real time lineand interaction between FSMs is governed by a discrete-event model of

computation.

Infact, hierarchical FMSs can be dropped into almost any concurrency model. For example, a pro

cess network is often described as a set of communicating Turing machines. Using FSMs instead of

Tbring machines, however, may greatly strengthen the formal analysis of such a system (at some cost

in expressiveness).

This paper advocates decouplingthe concurrency modelfrom the hierarchical FSM semantics. We

describe a family of models of computation, called *charts (pronounced "starcharts"). Unlike State-
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charts, CFSMs, Speccharts [26] and other concurrent hierarchical FSMs, *charts do not define a con

currency model, but rather show how to embed hierarchical FSMs within a variety of concurrency

models. Thus, the concurrency model can be chosen to match the problem at hand. Is tight synchroni

zation possible?Desirable? If not, then an SR model is inappropriate, and perhaps a dataflow or pro

cess networic model would be a better choice. Is there a globally consistent notion of time? If not, then

a discrete-event model will be inappropriate, and perhaps a CSP model would be a better choice. The

same hierarchical FSM language works with all of these concurrency models.

More interestingly, once we have decoupled FSM semantics from concurrency semantics, hetero

geneous combinations using multiple concurrency models become possible. Systems can truly be built

up from modular components that are separately designed, and each subsystem can be designed using

the models of computation best suited to it. We describe an implementation of ^charts in the Ptolemy

environment [8], where hierarchical FSMs can be combined with dataflow, discrete-event, and syn

chronous/reactive concurrency models.

We begin by adapting a standard notation for FSMs, which is compact and efficient when consid

ering an FSM in isolation, to get a notation more suitable for studying compositions of FSMs. To do

this, we have to put more emphasis than usual on the interaction between an FSM and its environment.

We then consider combining FSMs with three popular concurrent models of computation: dataflow,

discrete events, and the synchronous/reactive model. In the case of dataflow, we introduce a new subset

of dataflowcalled heterochronousdataflowthat combines particularly well with FSMs. We then briefly

describe an experimental implementation.

2. Finite State Machines

2.1 THE BASIC FSM

An FSM is a five-tuple [18]
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(0,S.A,a,^o) (1)

where

1. Q isdi finite set of symbols denoting states.

2. £ is a set of symbols denoting the possible inputs.

3. A is a set of symbols denoting the possible outputs.

4. G is a transition function mapping

Q is the initial state.

In one reaction, an FSM mapsa currentstatepe Q and an input symbol ae £ to a next state q e

Q and an output symbol be A, where G(p, a) = (q, b). Given an input word, or sequence of symbols

from theinput alphabet £, andan initial state, a sequence of reactions will produce a sequence of states

andan output word, or sequence of symbols from theoutput alphabet A. All sequences arepotentially

infinite.

A directed graph, called a state transition diagram, is popular fordescribing an FSM. As shown in

figure 1, each elliptic node represents a state and each arc represents a transition. Each transition is

labeled by "'guard!action'", where guard e £ represents the input symbol that triggers the transition,

andaction e Arepresents the output symbol when the transition is triggered. Thearc without a source

state points to the initial state, i.e. state a. During onereaction of theFSM, onetransition is triggered,

chosen from thesetofenabled transitions. Anenabled transition isanoutgoing transition from thecur-

b/v

a/u

FIGURE 1. A basic FSM.
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rent state where the guard matches the current input symbol. The FSM goes to the destination state of

the triggered transition and produces the output symbol indicated by the action of the triggered transi

tion.

In this paper, we focus on deterministic and reactive FSMs. An FSM is deterministic if from any

state there exists at most one enabled transition for each input symbol. An FSM is reactive if from any

state there exists at least one enabled transition for each input symbol. To simplify notation and ensure

that all our FSMs are reactive, every state is assumed to have an implicit self transition, i.e. going back

to the same state, for each input symbol that is not a guard of an explicit outgoing transition. Each such

self transition has as its action some default output symbol, denoted by £, which has to be an element

of A. Sometimes, this default symbol is interpreted to mean "empty" and is omitted from the output

word [18].

For example (see figure 1), suppose Q = {a, p), Z = {a, b]^ A = {e, m, v}, = and a: 0 x Z

0 XA is such that o(a, b) - (p, v) and a(P, a) = (a, m), then we also must have the implicit self transi

tions o(a, a) = (a, £) and a(p, b) = (p, £). A possible trace, or sequence of reactions, is shown in figure

2.

2.2 MULTIPLE INPUTS AND OUTPUTS

An FSM is embedded in an environment. The environment may in fact be part of the overall sys-

Current State a a p P

Input Symbol a b b a ...

Next State a p p a ...

Output Symbol £ V e u ...

FIGURE 2. A possible trace for the basic FSM in figure 1
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tern under design, or may be out of the control of the designer. In either case, it provides a sequence of

input symbols, and the FSM reacts by providing a sequence of output symbols, meanwhile tracing a

sequence of states.

Frequently, the interaction with the environment needs to be modeled in more detail. It may not be

convenient, for example, to consider the FSM to have only a single input symbol. Multiple inputs and

multiple outputs may be a more natural model. To handle this, the input alphabet can be factored and

expressed as a cross product Z = 2i X^2 X... X Here, the input to the FSM consists of M signals,

where the signal is a sequence of events represented by symbols from the signalalphabet Z;. The

FSM reacts to a set of M simultaneous symbols from the M signals.The outputalphabetcan be simi

larly factored. Reactions emit events on signals.

2.3 PURE AND VALUED FSMS

A common special case,called a pure FSM, is where the sizeof the input symbol set is a powerof

two, iZI =2^, and each signal alphabet has size two, IZ,-1 =2for 1<i <M. We interpret this to mean

that at a reaction, each signal consists of an event that is either present or absent (hence IZ/1 = 2). A

common notation in this scenario assigns a name to each signal, such as "a", and denotes thealphabet

corresponding to that signal byZ/= {a,a}, interpreted as {a ispresent, a isabsent}. Thus forexample,

consider anFSM with two input signals I = {a,b} and two output signals O= [u, v). The input alpha

bet is written l,= {ab, aS, ab, and the output alphabet iswritten A= {mv, mv, uv, uv], where e = mv

is the default symbol.

In a valued FSM, the input and output alphabets are again factored into signal alphabets, but at

least oneof these signal alphabets has size greater than two (it might even be infinite). We again inter

pret one element of such an alphabet to denote absence of an event, while the remaining elements

denote presence of an event and a value for the event.
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Ina pure FSM, thesizeoftheinput alphabet grows exponentially with the number ofinput signals.

Thus, it can become quite inconvenient to define a reactive FSM by explicitly specifying outgoing

transitions from everystate for every input symbol.This may be a very largenumberof transitions. To

avoid thisproblem, a singletransition may bearas a guarda subset of 2 rather thana single symbol. It

would thus represent an ensembleof transitions compactly. An arbitrary subsetof 2 can be defined by

a boolean expression in the input signals. Forexample, if 2 = {ab^ dBy the boolean expression

"-ifl Vb" (not a or b) represents the subset {abyabj^}. Thus, forpure FSMs, guards will be repre

sented as boolean expressions of the input signals.

Consider the example in figure 3 with states (2= {0(, p}, input signal alphabet /= {a, b] and output

signal alphabet O = {«, v}. The guard "-lO v b" of the transition from a to p is enabled by any input in

{ab, ab, HF}. Theguard "a" of the transition from p to p is enabled by any input in {oBy ab).

For valued FSMs, more complicated boolean-valued expressions are often used for the guards. For

example, suppose thatin a valued FSM, the signal is named "a" andhasthealphabet 2,- = SH, theset

of real numbers. Then a guard may contain comparison operators and real numbers, for example "a <

10". This compactly represents an uncountably infinite number of transitions.

For pure FSMs, actions are specified with a slightly different, but also reasonably compact nota

tion. The default output for each signal is assumed to denote an absent event. An action thus only lists

output signals that are to have present events in the current reaction. In other words, all output events

that are not explicitly emitted in an action are absent. For example, in figure 3, the action "m" of the

—\a V b/u, V

—ta A b

nGURE3. A pure FSM.
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transition from P to |3 implies output symbol uv, i.e. output signal u is present and output signal v is

absent event when the transition is triggered. The absence of v is implicit, not explicit, a fact that will

become important for hierarchical FSMs. If all events in an action are implicitly absent, the action is

omitted altogether. For example, in figure 3, the label of the transition from p to a consists of just the

guard "-ifl Ab*\ and when this transition is triggered, both output signals u and v are implicitlyabsent.

For valued FSMs, an action should denote any output value that is different from default. The

default is again implicitly emitted, and may denote absence of an event.

A possible trace for theFSMof figure 3 is shown in figure 4. Notethat in statep, when both inputs

a and b are absent, an implicitself-transition is taken and both outputsu and v are absent.

2.4 HIERARCHY

Thebasic FSM, which is flat andsequential, has a major weakness; most practical systems have a

very large number of states and transitions. Representation and analysis become difficult. One of

Harel's solutions to this problem ishierarchy. Ina hierarchical FSM, a state may befurther refined into

another FSM. We will call the inside FSM the slave and the outside FSM the master insuch a compo

sition.For example, wecan let the state p in figure 3 refined into anotherFSM but let the statea not be

refined, as illustratedin figure 5.

Ata fundamental level, hierarchy adds nothing tothe model ofcomputation. Nor does it reduce the

10 of 41

Current State a a P P P • • •

a present absent present absent absent

b absent absent present absent present
...

Next State a P P P a ...

u absent present present absent absent

V present present absent absent absent
...

FIGURE 4. A possible tracefor the embedded FSM in figure 3.
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number of states. But it can significantly reduce the number of transitions and make the FSM more

intuitive andeasy to understand. Thetransition from |3 to a in figure 5 is simply a compact notation for

transitions from yto a and6 to a. Thestatespace of theequivalent flat FSM is simply Q = {a, y,8}.

The inputalphabet for the slaveFSMis a subsetof the inputalphabet of its masterFSM.In a pure

or valued FSM, the input signals for the slave FSM are a subset of the input signals for the master.

Similarly, the output signals from the slave FSM are a subset of the output signals from its master.

The hierarchy semantics define how the slave FSMs reacts relative to the reaction of its master

FSM. A reasonable semantics defines one reaction of the hierarchical FSM as follows: if the current

state is not refined, the hierarchical FSM behaves just like a basic FSM. If the current state is refined,

then first the corresponding slave FSM reacts and then the master FSM reacts. Thus, two transitions

are triggered, so two actions are taken. These two actions must be somehow merged into one.

In the case of pure FSMs, it is easy to merge the actions and avoid conflicting definitions of the

output between the slave and the master. We take an output event to be present if the action of the mas

ter or any slave FSM below it emits an event on that output. Since an action does not explicitly emit the

symbol for absence of an event, no conflict is possible in this syntax. For example, if figure 5 is in state

p and substate y and input signal a is present, the triggered action of the slaveFSM is "v" and the trig-

—ifl V b/u. V

a A-nb/v C \ a/u Master FSM

—A b

^6 J Slave FSM
b/v

FIGURES. A hierarchical FSM.
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gered action of the master FSM is "m". Thus, the output of the hierarchical FSM is uv (both output sig

nals u and Vare present). A possible trace for the hierarchical FSM is shown in figure 6.

For a valued FSM, we adopt the convention again that an action makes no explicit mention of an

absent event. However, since two actions can both emit an event with different values, the syntax per

mits conflicting definitions of the output. In Esterel, a function can be specified to combine the con

flicting the definitions [4].For example,for two reals, the valuesmight be added.Weprefer to consider

this an error condition.Thus, for a valued (determinate) FSM, no two triggeredtransitionsshould emit

the same output signal.

In the example of figure 5, the hierarchical FSM has only two levels. However, the slave FSM can

actually be another hierarchical FSM, so thedepth of hierarchy is arbitrary. The semantics generalizes

trivially.

3. Heterogeneity — Mixing FSMs with Concurrency Models

Hierarchical FSMs arenot by themselves adequate fordescribing most complex systems. Forone

thing, numerical computations are extremely awkward to express within this model. For practical

application to complex systems, theFSM model of computation has to be combined with others.

One commonly used solution is to generalize the activity associated with an action. For instance,

in the Stateflow tool from the MathWorks, Inc., an action can invoke a function orassign a value toa

12 of 41

Current State a a P.7 P.8 a ...

a present absent present absent absent
...

b absent absent absent present absent

Next State a P.r P.5 a P.Y ...

u absent present present absent present
...

V present present present present present
...

FIGURE 6. A possible tracefor the hierarchical FSMin figure 5
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variable. Moreover, FSMs in this tool can be embedded within a block diagram system called Sim-

ulink, allowing for numerical computations outside the FSM. For many applications, this combination

is adequate. However, actions cannot themselves invoke Simulink block diagrams, so thehierarchy has

only two levels.

Function calls and variable assignments, by themselves, are still quite limited. They provide, for

example, no concurrency. One could work around this limitation by using procedures rather than func

tions, and permitting them to operate on global state outside the FSM. If this is done in an undisci

plined way, however, it would provide a very chaotic and poorly characterized programming model.

Imposing some discipline on this model seems essential. It needs a model of computation.

Unfortunately, the very richness of possibilities makes it difficult to decide a priori which models

of computation should be used. We advocate leaving that choice up to the application designer, rather

than building it into the language. Thus, the language must support heterogeneity. A convenient way to

support heterogeneity is the black box approach. For a system consisting of a set of interconnected

modules, each module can be treated as a black box. Some model of computation is chosen to govern

the interaction between boxes, but the contents of boxes need not be governed by this same model of

computation. The only requirement is that the interfaces of boxes must conform to a standard accepted

by the outer model of computation. Thus, a box may encapsulate a subsystem specified by one model

of computation within a system specified by another. In other words, heterogeneity allows different

models of computation to be systematically and modularly combined together.

Our hierarchical FSM model of computation is easily extended to support heterogeneity. A state

may be refined to a black box that reacts to some subset of the input signals by emitting events on some

subset of the output signals. Internally, this black box need not be an FSM. It could be, for example, a

Turing machine (that halts), a C procedure (that eventually returns), a dataflow graph, etc.
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In the reverse scenario, the FSM model of computation can be used to describe a module inside

some other model of computation, as long as that model of computation provides a way to unambigu

ously determine the input symbols and when a reaction should occur. For example, in figure 7, three

FSMs are embedded inside the blocks of a "block diagram language". The exact semantics of this

embedding (the interaction semantics) needs to be defined in terms of both the semantics of the block

diagram language and the FSM. Most interestingly, however, if the block diagram language has con

current semantics (e.g. dataflow), then the slave FSMs are concurrent FSMs.

In this section, we explore the interaction semantics of FSMs with various concurrent models of

computation, namely dataflow (DF), discrete-event (DE), and synchronous/reactive (SR). Our objec

tive is to developsemanticsthat supportsarbitrarynestingsof these concurrentmodelswithFSMs. We

wishfor an FSMto be able to define a module in a concurrent system and for a state to be able to be

refined toaconcurrent subsystem. The depth and order ofthe nesting isarbitraiy. As shown infigure 8,

we adopt the notation that square boxes indicate modules in a concurrent model of computation and

ellipses indicate states in an FSM.

3.1 TERMINATION

In general, the systems of interest may not terminate. Concurrent models ofcomputation are usu

ally defined with this in mind [12]. The reaction of an FSM, however, will usually need to take finite

a b c

^
® (bD @ (©

alb
^

bl c
^

cid

FIGURE 7. Three FSMs areembedded inside theblocks ofa block diagram language.
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time. This means that if a state refines to a concurrent subsystem, that subsystem must react in finite

timeto the inputs, possibly emitting output events as a result. This implies a finiteness of computation

that is not intrinsic to many concurrent models of computation.

For some models of computation, there is a simple solution [10]. The execution of a non-terminat

ing system can often be divided into a sequence of iterations. Each iteration can be associated with a

reaction of the master FSM. We require, therefore, that any concurrent model of computation that can

refine a state of an FSM have a well-defined finite iteration. We will explore the implications of this

requirement in terms of specific examples below.

The reaction of an FSM is discrete and for most applications will be required to take finite time.

The sequence of reactions, however, may not be finite if the input sequence is not finite. Thus, a model

of computation that can include modules refined to an FSM must be capable of supplying an infinite

sequence of inputs and requesting an infinite sequence of discrete reactions. This is not a problem for

any of the concurrent models of computation being considered.

3.2 DATAFLOW WITH FSM

The dataflow model of computation, originally introduced by Dennis [14], can be thought of as a

FIGURE 8. Hierarchical nesting of FSMs with concurrency models.

Alain Girault, Biiung Lee, and Edward A. Lee 15 of 41



A Preliminary Study of Hierarchical Finite State Machines with MultipleConcurrency Models

special case of the process networks (PN) model, originally introduced by Kahn [19]. In PN, a network

of concurrent processes communicate through unbounded FIFO queues. In the DF special case, a pro

cess consists of a sequence of discrete firings of a dataflow actor [22]. The DF special case is better

suited to our purposes since the discrete firings map naturally into reactions of a slave FSM playing the

role of a dataflow actor.

Both DF and PN, however, can easily describe applications that do not terminate, meeting our

objective in this regard. For DF (but periiaps not for PN), we can invent a natural definition of an itera

tion. Specifically, we will define an iteration of a DF graph to be the minimum set of actor firings

(greater than zero) that return the FIFO queues to the same size that they were at the beginningof the

iteration. Unfortunately, for general dataflow graphs, it is undecidable whether a finite iteration exists

[7].Moreover, there maynot be a uniqueminimum set of actor firings.

Toget around these problems, we specialize further to a subclass of dataflow called synchronous

dataflow (SDF) [21], for which these problems evaporate. In SDF, each time a dataflow actor fires, it

consumes and produces a fixed number of tokens on its input and output FIFOqueues. Even for this

more restricted model, some interesting fundamental issues arise. We advocate a semantics for com

bining SDF with FSM that is much more expressive than either SDF or FSM alone, but falls short of

the full expressive power of general dataflow. In exchange for this loss in expressiveness, intrinsic

properties ofa design, like deadlock orbounded memory execution, remain decidable, a very desirable

property for embedded systems.

3.2.1 Synchronous dataflow

Under the SDF model of computation, a system consists of a set of blocks interconnected by

directed arcs. The blocks represent computational functions thatmap input datainto output datawhen

they fire, and the arcs represent streams of data tokens^ and are conceptually implemented as
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unbounded first-in-first-out queues. Upon firing, an actor consumes a fixed number of tokens from

each input arc and produces a fixed number of tokens on each output arc. Thenumber of tokens con

sumed andproduced on each input and output canbe viewed aspartof thetype signature of theactor,

along with, ofcourse, thedata type of the tokens. These numbers can beused tounambiguously define

an iteration, or minimal set of firings thatreturn thequeues to theiroriginal size [21]. This is done by

writing for each arc a balance equation,

(2)

where the arc here is assumed to go from actor i to actorj, and on this arc, actor i producespi tokens

and actorj consumes cjtokens. Assuming there are Marcs and Nactors, then there will beAf equations

in N unknowns, r,-, 1 < / < TV. It can be shown that for a connected graph, there is either a unique small

est positive solution for the unknowns, called the minimal solution, or the only solution is r,- = 0,1 < /

< TV. When the minimal solution exists, we choose the solution r,- to give the number of firings of actor

i in an iteration. When there is no solution, the SDF graph is considered defective and an error is

reported. Thus, for SDF, it is decidable whether an iteration exists. If it does, it is unique, and the firing

schedule for an iteration can be determined at compile time. For details, see [21].

The simplest SDF graphs are homogeneous, defined to mean that every actor produces and con

sumes a single token on each input and output arc. For such graphs, an iteration always consists of

exactly one firing of each actor, r,- = 1, I < / < TV. The schedule of such firings must obey the data pre

cedences (a token must be in a queue before it can be consumed). Thus, to avoid deadlock, all directed

cycles in a homogeneous SDF graph must have at least one initial token (often called a delay) on at

least one arc in the cycle. Arbitrary SDF may require more than one initial token on some arcs, but

unlike general dataflow, it is decidable whether a given set of initial tokens is sufficient to prevent

deadlock [21].
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3.2.2 FSM inside SDF

When an FSM subsystem is a slave to an SDF actor, it must externally obey SDF semantics. Thus

it must consume and produce a fixednumber of tokens on every input and every output. In the simplest

case, the FSM subsystem refines a homogeneous SDF actor. Each input to the SDF actor provides a

single data token, which takes on values from some alphabet. The cross product of these signal alpha

bets forms the input alphabet for the FSM, perfectly matching our FSM model in section 2.2. The

actions of the FSM will be able to emit events on each output signal, representing each event by a sym

bol from the corresponding signal. Any outputs that are not emitted by the FSM in an action will be

assigned the default element of the alphabet, as usual.

The only subtlety in this approach is that an "absent" event appears explicitly as a token in the SDF

graph, where the value of this token encodes the "absent" interpretation using the default symbol. A

simple approach would be to encode presence and absence using boolean-valued tokens. In the other

concurrent models of computation, absence of an event will correspond to absence of a token. A key

property of dataflow,however, is that absence of a token is not a well-defined, testable condition, so the

absence of an event must be encoded in a (present) token.

Consider the example in figure 9, where there are two pure FSMs refining homogeneous SDF

actors. An iteration of the SDF graph consists of a single firing of each actor. Since there is no initial

token on the arc betweenthem, actor A firesbefore actor B in the iteration. The nameson the arcs ("a",

"b", "jc", etc.) indicate the names of the nearest input or output of a dataflow actor. Suppose that in

some iterationthe input tokens have values indicatingthat a is present and b is absent, and that both A

and B are in state a. The SDF system reacts as follows:

* Are A: Sincea is present,makethe transition from a to p, and let the outputjc be assigned the

value indicating it is present.
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• fire B: Since c=xis present, make thetransition backto state a, andlettheoutputybe present.

Although this simple example may not look like a concurrent FSM, it is one, in fact. Within an

iteration, A and B must fire sequentially. Across iterations, however, they can fire concurrently. The

firing ofA may be concurrent with the (/- m)^ firing ofB for any m>0 such that /- m>0.Ofcourse,

with more complicated SDF graphs, there can be much more concurrency,even within an iteration.

We can easily devise a syntax that permits an FSM to refine a non-homogeneous SDF actor. For a

non-homogeneous actor (i.e., an actor where more than one token of each input/output can be con

sumed or produced), we syntactically differentiate each token ofa given input or output by concatenat

ing its occurrence to its name. Borrowing notation from the Signal language [2], "a" denotes the most

recent (last) token consumed from input a, "a$l" denotes the next most recent token consumed, and

"a$2" the next most recent. Consider the example in figure 10, focusing for now on levels (d) and (e).

The numbers in parentheses at level (d) indicate the number of tokens consumed or produced by the

corresponding actor. The guard on the arc from a to |3 in A on level (e) is a a a$l, which means that

both tokens consumed from the a input must have the value representing a present event. In B, the

action y means that the first (oldest) output token on output y will have a value representing an absent

FSM

-V c/y

B

FIGURE 9. Two FSMs, refining homogeneous SDF blocks, are embedded in an SDF system.
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event (because y$l is not mentioned), while the second (newest) token on output y will have a value

representing a present event (because y is mentioned).

By default, state transitions occur whenever a dataflow actor that refines to an FSM fires. Some

times, however, we will prefer for transitions to occur only between iterations of the dataflow graph.

This will prove important below where states of the FSM may themselves be refined. In this case, there

are two types of firings of the dataflow actor that refines to FSM. In type A, no transition is taken and

FSM
fl$3 A (a$2 V (fl$l Aa))/y

(b)

bvb$\
Ic

a(4)^
K2)^

(c) >-(2)^

(d)

(e)

SDF

a(2)^
Jt(l) c(2) )<2).

|A (B
/

/
\

a AflSl/jf

FIGURE 10. Two FSMs, behaving like multirate blocks, areembedded inan SDFsystem.
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no action is performed, but if the current state is refined, the refinement subsystem is fired. In typeB,

the refinement system is fired, a transition is taken, and the corresponding action is performed. Type B

firings will always be the last of an iteration.

The notation described here has an obvious extension to valued FSMs. We leave the details to the

reader.

3.2.3 SDF inside FSM

If an SDF graph refines a state ofan FSM, when that state is the current state, the next reaction will

consist of one iteration of the SDF graph followed by a reaction of the FSM. If the slave SDF graph is

homogeneous (consumes a single token from each input and produces a single token on each output),

then it fits the FSM model naturally. At each reaction, each input has a symbol from the corresponding

signal alphabet. Even if this symbol is interpreted as denoting an absent event, it nonetheless provides

a token for the SDF graph to consume.

If the slave SDF graph is not homogeneous, the semantics becomes more subtle. Suppose for

example that the SDF subsystem of figure 10(d) is to be used as a slave within another FSM, say the

one at level (b). Solving the single balance equation for the subsystem at level (d) (there is only one arc

entirely inside the subsystem, and hence only one balance equation) indicates that one iteration will

consist of two firings of A and one firing of B. Thus, as shown at level (c), the type signature for the

subsystem indicates that four tokens will be consumed from input a and two from input b, and two

tokens will be produced atoutput y, inone iteration ofthe subsystem'. The semantics we choose isthat

the resulting composite SDF type signature becomes the type signature of the FSM subsystem itself.

Thus, whatever system the FSM at level (b) is embedded in must treat the FSM like an SDF actor with

1. Note that composing synchronous dataflow actors to create what appears to be a new synchronous dataflow
actor is not always possible. See [20] for a discussion of compositionality of dataflow. For the purposes of this
paper, we assume that such aggregation is possible for the applications of interest.
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the given type signature.

There are a number of potential complications. First, the FSM at level (b) might not be embedded

within an SDF environment. Suppose for example that it is embedded within a discrete-^vent environ

ment. In this case, the semantics must be that of SDF embedded within DE, which is covered in [10].

The key, therefore, is that an FSM that contains slave SDF graphs must itself be treated as an SDF

actor with the type signature determined by the slave SDF graphs.

A second major complication is that the type signature may not be the same in different states. In

this case, the FSM systemcannot be treated as an SDF actor because the number of tokens it produces

and consumes is dependent on its state. This possibility is extremely interesting, and represents a

major increment in expressive power, if it can be handled cleanly. We deal with it in the next subsec

tion.

3.2.4 Heterochronous dataflow

When an FSM system hasmore than onestate refined to an SDFgraph, the simplest caseis where

the type signatures of the SDF graphs are identical. Then the FSMsystem itselfis treated as an SDF

actor with this type signature. Consider however the situation where the type signatures are different^

Forexample, in figure 11, oneof the SDFgraphs consumes three tokens and produces one, while the

otherconsumes oneand produces two. In this case, there aretwo possible type signatures fortheFSM

subsystem, and hence it cannotbe embedded within an SDFgraph.

One option is to embed the FSM system within a dynamic dataflow (DDF) or boolean dataflow

(BDF) graph [7]. InDDFandBDF, thenumber of tokens consumed andproduced need notbeconstant

foreach actor. However, theprice we pay forthis approach is high. In DDF and BDF, many questions

1. Here, weareonlyconcerned with thenumber of tokens produced andconsumed, which is only partof the type
signature. Thedatatypes of thetokens might alsobedifferent, something thata language supporting heterochro
nousdataflow may wish to support. This is beyondthe scopeof this paper.
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about the systemare undecidable, such as whether it will deadlock and whether the memory required

by the FIFO queues is bounded [7]. Moreover, it seems that this choice of semantics provides more

generality than we really need for this application. So we invent a new model of computation that we

call heterochronous dataflow (HDF).

In HDF, an actor has a finite number of type signatures, where each type signature specifies the

number of tokens consumed and produced. When an HDF scheduler fires such an actor, it knows

which type signature is in effect. But type signatures are allowed to change between firings.

This model of computation is related to cyclo-static dataflow [6]. In CSDF, an actor cycles through

a finite list of type signatures. In HDF, however, the order in which type signatures are used is not

cyclic, nor even predictable.

HDF

[A

fc(2) a(3,l) xih2) yd)

C

FSM
a A a%\lx

J B

FIGURE 11. An FSM with states that refine to SDF subsystems with different type signatures.
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If we allow the type signature of an actor to change between any two firings, then it is easy to show

that this model of computation has the full expressive power of BDF and DDF, and hence of 'Hiring

machines. This is not necessarily a good thing, because questions become undecidable. However, if we

restrict the changes in type signamre to occur at more controlled points in the execution, then every

thing remains decidable.

When an HDF system starts execution, there is an initial type signature in effect for each actor.

These type signatures can be used to solve the balance equations, finding an iteration. The semantics

wechoose is thateachtypesignature mustremain constant for theduration of thecorresponding itera

tion. To ensure this, theFSM components do not change state until theirlast firing in an iteration. At

thecompletion of the iteration, a new setof type signatures is ineffect, so thebalance equations must

be solved anew to redefine an iteration.

In the example in figure 11, the top of the hierarchy is an HDF system. The middle actor in this

system has two possible type signatures, consuming three and producing oneor consuming one and

producing two. Since this is the only actor refined into an FSM, there are two sets of solutions to the

balance equations. Two corresponding schedules are {A,A,A,B,B,C,C) and {A,B,B,C,C,C,C}. Since

state a is the initial state of the FSM, the HDF system starts by executing the first schedule. Afterthe

second firing of B, the FSM is allowed to change state based on observations of the inputs. At that

point, if the two most recent consumed tokens (in the iteration) indicated "present," then the state

changes to p. After completion ofthe HDF iteration, instead ofrepeating the a schedule, the p sched

ule is invoked.

There are a number ofaltematives for implementing HDF. If the number ofpossible type signatore

combinations is small, as for the example in figure 11, it is probably best to precompute (at compile

time) allbalance equation solutions, and all iteration schedules. Unlike DDF orBDF, it is always theo-
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retically possible to precompute all schedules for all possible iterations. In general, however, the num

ber of type signature combinations is exponential in the number of HDF nodes, so this approach can

become impractical. Fortunately, the balanceequations can be solved in time that is only linear in the

number of arcs plus the number of actors, and a schedule can be found in time that is linear in the num

ber of firings and the numberof edges [5], so it maynot be impractical to compute schedules dynami

cally between iterations. We are currently exploring these implementation alternatives.

Although the number of type signature combinations can be exponential in the number of actors, it

is finite. For each combination, all key questions are decidable (deadlock, bounded memory), and

schedules can be statically constructed. Thus, we have retained the key advantage of SDF (decidabil

ity), but have dramatically increased its expressiveness.

HDF has one significant disadvantage. When a state transition occurs depends on a global solution

the balance equations, rather than a local definition. This could make using it harder, as it compromises

the modularity of a design.

Note that in figure 11, in addition to the type signatures implied by the SDF refinements of the

states, there are type signatures implied by the guards on the transitions. The guard a a a$l implies

that there are at least two tokens consumed from input a in one iteration (and that this input is pure).

The compiler will have to check that these constraints on the type signature are consistent with the type

signature of the refinement of the state from which the arc containing the guard emanates.

3.2.5 Dynamic Dataflow

The dynamic dataflow (DDF) and Boolean dataflow (HDF) models of computation permit actors

to consume and produce a variable number of tokens on each firing. This enhancement by itself is suf

ficient to make the models Turing complete (they can implement a universal Hiring machine) [7]. At a

fundamental level, these models are therefore much more expressive than SDF or HDF.The price we
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pay is that deadlock and bounded memory become undecidable and schedules can no longer (always)

be constmcted at compile time.

To combine FSMs with DDF and BDF, we use the concept of firing rules, formalized in [20]. For

the purposes of this paper, these firing rules simply imply that any dataflowactor must assert, prior to

any firing, how many tokens it needs on each input^ So if an FSM refines a DDF actor, then in each

state of the FSM, we must determine how many tokens need to be consumedon each input for the next

firing (the next reaction of the FSM).

The semantics we adopt is simple;at leastone token is consumed on everyinput signalmentioned

in the guard of any outgoing transition from the current state. If multiple tokens are mentioned for a

single signal, using the notation "a$r for any positive integer i, thenfor eachsuch signal, we find the

largest index i mentioned,and consume that many tokens plus one.

Thus, in eachstate, weknow howmany tokens willbeconsumed at eachinputin the nextreaction.

These numbers become the firing rules for the DDFactor refined by the FSM, specifying the number

of tokens that must be presenton the inputsfor the next firing to occur.

The inverse scenario is a bit more complicated. If a DDFgraph refines a stateof an FSM, thenthe

firing rulesof the DDFgraphare exported to the environment of the FSM.That is, whenthe FSM is in

the state so refined, the entire FSM becomes a DDF actor that will only be invoked when the firing

rules of the DDF subsystem, treated as an actor^ are met. This seems simple enough, but infact, most

realizations of DDF semantics are not compositional, meaning that a DDF subsystem cannot be

treated asan actor, and hence cannot have well-defined firing rules. Techniques formaking DDF com

positional, and fordetermining the resulting firing rules, arecovered in [20], and arebeyond the scope

1. In[20], anactor may also assert what thetoken values must be. It isa simple exercise toshow that omitting this
capability does notcompromise Tbring completeness. Moreover, forreactive FSMs, adding thiscapability
would not increase expressiveness. Thus, we omit it.
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of this paper. It is sufficient for our purposes here to know that it can be done.

3.3 DISCRETE EVENTS WITH FSM

Dataflow is a loosely synchronized concurrency model, where events are partially ordered accord

ing to their data precedences. Because of this partial ordering of events, many realizations of a data

flow system are possible, so systems are not overspecifled. Moreover, it implies a great deal of

concurrency, which can be exploited through parallel implementations. However, the resulting loose

synchronization is also a key weakness of dataflow. Because of it, dataflow is not well suited for

explicitly modeling resource sharing and resource usage. We study, therefore, two popular concurrency

models that are more tightly synchronized, DE and SR. The formal relationship among all of these

models of computation is studied in [23].

The discrete-event (DE) model of computation [9] is particularly useful for modeling distributed

or parallel hardware or software and their communication infrastructure. It carries a notion of global

timey a value, usually a real number, that is known simultaneously throughout the system. An event in

a signal occurs at a point in time. In a simulation of such a system, each event carries both a value and

a time stamp that indicates the time at which the event occurs. The time stamp of an event is typically

generated by the actor that produces the event, and is determined by the time stamp of input events and

the latency of the block. The DE simulator needs to maintain a global event queue that sorts the events

by their time stamps, and chronologically processes each event by sending it to the appropriate actor,

which reacts to the event (fires).

3.3.1 FSM inside DE

Since the DE model of computation, like dataflow, has well-defined firings, embedding FSM

within DE is straightforward from a control perspective. An FSM that refines a DE actor reacts when
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the DE actor fires, which occurs when there is an event at one of its inputs, and that event has the

smallest time stamp ofall events in the event queued If that event has a value, then that value ismade

available to the FSM for testing by the guards. If the other input signals do not also have events with

the sametimestampavailable for this reaction, thenthosesignals areassigned inputsymbol indicating

the absence of event. Unlike dataflow, absence of an event is represented in DE with absence of a

token.

In a reaction, an FSMthat refines a DE actormayemitoutputevents. Thoseoutputevents translate

directly intoevents in theDEdomain. However, inDE,they must beassigned a timestamp, something

that the FSM semantics doesnotprovide for. We choose semantics where the FSM system appears to

theDEsystem asa zero-delay actor. If an output is generated in a reaction, it is assigned thesame time

stamp as the input that triggered that reaction.

Consider theexample shown in figure 12. Suppose that an event for a with a time stamp t is the

next tobeprocessed intheglobal event queue, and both FSM A and B are instate a. Then, the DEsys

tem reacts as follow:

• Fire A: Since there exists anevent for a, A makes the transition from a to P, and emits the pure

DE

a

•
a/x

X c

Wl

3'.

b IA

w

m

FIGURE 12. Two FSMs that refine DE actors.

1. There is someambiguity when there is more than oneevent in theevent queue with thesamesmallest time
stamp. Various DEsimulators deal with situation differently. See[10] fora discussion of this issue. For thepur
posed of this paper, it makes no difference what technique is used.
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event x. In DE, thisevent will have time stamp t andthus will be the next to be processed.

• fire B: Since there exists an event forc, B makes the transition backto state a, andemits y. In DE,

the event on y will have time stamps /.

SinceDE semantics is event-driven, an actordoes not fire if thereare no events at its inputs. This leads

to some subtleties with guards. Consider the example in figure 13, and suppose that the FSM is in state

a. The guard on the only outgoing transition indicates that a must be absent for the transition to trigger.

Implicitly, however, b must be present, or the FSM would not react (there would be no event to trigger

a firing). Thus, it would be clearer to give the guard as —la a b. If the guard were given instead as

-ifl A-ife, the transition would never fire, since a and b are the only two inputs and the actor will not

fire when both are absent.

3.3.2 DE inside FSM

Much as we did with dataflow, if a state in an FSM refines to a DE subsystem, then the properties

of that subsystem are exported to the environment of the FSM. If that environment is not DE, but

something else, such as dataflow, then the semantics of DE within dataflow apply [10]. If more than

one state of the FSM refines, then all must refine to a DE subsystem, but the semantics imposes no

other consistency constraint, aswe had todo with SDF^

DE

a -na/x

b lA

JC

FIGURE 13. The guard on the upper transition is incomplete,
in that event b must be present if a is absent and the FSM is reacting.
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If the environment of an FSM is DE, the semantics is simple. The FSM will react when any of the

inputs is present. The input that triggers the firing will have as its time stamp the current time of the

environment. If the current state refines to a DE subsystem, then that subsystem will be simulated until

its current time matches that of the environment. In the meantime, it may emit events, which become

outputs to the environment with time stamps equal to the current time (or later).

As is always the case with DE modeling where zero-delay actors are permitted, there can be

semantic problems with directed cycles that have zero delay [23]. Consider theexample in figure 14.

When A reacts to an event on a, it starts a process by which an event will circulate through the cycle

forever with noadvance of time. There area number of solutions to problem, but allof them areintrin

sictoDE and not to the DE/FSM combination, and hence are beyond the scope of this paper.

3.4 SYNCHRONOUS/REACnVE SYSTEMS WITH FSM

Even though time is a real number in a DE system, for any well-behaved DE simulation, time in

fact advances in discrete steps. Recognizing that, we could instead use a model ofcomputation where

only the discrete steps are modeled, and not the time continuum. In addition, we can resolve the prob-

DE
a

•

h
•

a V b/x
X—^

•
c iC)"'

[B

HGURE 14. As with all DE modeling, zero-delay loops can cause difficulties.

I. A particular programming environment may impose constraints onthedata types of thetokens, but that isnotan
issue being addressed in this paper.

30 of 41 Alain GIrault, Bllung Lee, and Edward A. Lee



A Preliminary Study of Hierarchical FiniteState Machineswith Multiple Concurrency Models

lemhighlighted above withzero-delay feedback loops by adopting afixed-point semantics. With these

two innovations, we get the synchronous/reactive (SR) model of computation [1]. SR is synchronous

in the same senseas synchronous digitalcircuits.Timedelays in computations becomeirrelevant, so a

useful conceptual gimmick is to assume that computations take zero time. SR has a major advantage

over DE in that an SR model can be compiled into either sequential code or parallel circuits. DE, in

contrast, is difficult to implement efficiently in sequential code, although it is used routinely to specify

circuits, which are intrinsically parallel (via the VHDL and Verilog languages).

Execution of an SR system occurs at a sequence of global, discrete, instants called ticks (as in ticks

of a clock). At each tick, each signal either has no event (is absent) or has an event (is present, possibly

with a value). At each tick, signals are related by functions that have signals as arguments and define

signals. In general, directed cycles are permitted. I.e., for signals a and by and functions / and g, we

might have

a=fib)

b = g(a) (3)

Thus, at each tick, signals are defined by a set of simultaneous equations using these functions. A solu

tion is called a fixed point, and the task of a compiler is to generate code that will find such a fixed

point.

To ensure that the system is deterministic, that the implementation always finds the same solution

given the same inputs, each function is required to be monotonic in a very particular sense. Suppose

that a function/has input signal a with signal alphabet {e, a\y ai,... }.We augment the alphabet with a

special symbol J_, pronounced "bottom," that we interpret to mean "unknown." The function must be

definedfor input JL (the output will often, but not always be X). We then define a "flat" partial order on

the augmented set, {X,e, a\ya2,...}, as shown in figure 15(a). In thisdiagram, X is below("less than")
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everything else in the set, and no two other elements in the set are comparable (neither can be less than

the other). The function/is monotonic if

(4)

where the symbol is interpreted with respect to this partial order. The partial order and the notion

of a monotonic function is easily generalized to allow functions with multiple arguments. It is then

possible to use a fixed point theorem based on the Knaster-Tarski fixed-point theorem to show that any

network of such monotonic functions has a least fixedpoint, where "least" is with respect to this partial

order [13]. The least fixed point is taken to be the semantics of the network of functions. This basic

approach was pioneered by Scott [27]. Many practical implementations of the SR model have been

constructed, starting with the Esterel language [4].

Finding the fixed point is straightforward, in principle. The functions are simplyevaluated in any

orderuntil weconverge to a fixed point. Choosing a good orderforevaluating thefunctions cangreatly

impactperformance, obviously. Edwards givestechniques for choosing [15].

Functions are allowed to change between ticks. Thus, a module in SR has two distinct behaviors

that we call produce and transition. In the produce phase, the current function is evaluated to deter

mine outputs given the current information about the inputs. In the transition phase, the function is

changed in preparation for the next tick.

Most familiar functions are strict, meaning that all argumentsmust be known before the function
I

output is defined. Strict functions are always monotonic. A directed loop of strict functions has the

solution -L (unknown) for all signals.

e ...

X

FIGURE 15. Partial orders used to define SR functions.
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It is not uncommon, however, to have functions where the output can be determined even if some

of the inputs arenotknown. Theuseof non-strict functions allows directed loops with less trivial solu

tions. We will seethat FSMs canbedescribed asnon-strict functions that map input events into output

events in each reaction.

3.4.1 Simple FSM inside SR

Embedding an FSM as an SR module seems straightforwardin the following sense. If at a tick the

inputs to the FSM are known, then the FSM can react to them and possibly assert output events. Any

output events that are not asserted would then be known to be absent. However, there are two difficul

ties with SR. First, the current state of the FSM may refine to an SR or non-SR subsystem. Second, the

inputs may not be completely known. In particular, if the SR system includes a directed loop, then the

inputs cannot be known at the start of the tick for all the modules in the loop.

In this subsection, assume the states of the FSM are not refined. Consider the example in figure 16,

where there are two FSMs, A and B, embedded in an SR system and enclosed in a directed loop. In A,

SR

a A b/x

a A —J?/x

c/y

B

FIGURE 16. Two FSMs are embedded in an SR system.
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the function mapping the inputs a, b into the output x in state a is

/"(a, b) = (a A&) V(a AS) = a. This function does not depend on b, so if the FSM is in state

a and a is known to be present or absent, then we specify whether x will be present or absent without

knowing b. Thus, in state a, the SR function defined by this FSM is not strict. It only needs to know a,

not b.

The above analysis can be automated to get a simplified function for each output at each state

using standard techniques from digital logic design. These simplified functions will indicate for each

state what inputs need to be known to define an output.

We then define two phases of execution of an FSM within SR, also called produce and transition.

To complement firing types A and B used for FSM within dataflow, we might call these firing types C

and D, respectively. In the producephase, a type C firing, the FSM looks at the inputs and sees whether

any output function can be evaluated. If so, it is evaluated so that the output is defined. If not, it indi

cates that the outputs are still unknown. The produce phase may be invokedany number of times in a

single tick, as longas the output functions aremonotonic. The transition phase(a typeD firing) makes

whatever state transition is enabled by the current inputs, but ignores the action associated with that

transition.

The SR scheduler then executes in three phases (cf. [15]):

1. First, invoke the produce phasefor eachFSM (andotherSR blocks) however many times is

neededfor it to eitherdefine the outputsor reach a fixed point.An algorithm for ordering these

invocations is given by Edwards [15].

2. If any signals remain undefined, signal a causality loop error.

3. Invoke the transition function of every FSM in the SR system.

The iterative procedure in step (1) may seem costly at first glance, but experience indicates that with
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intelligent scheduling, convergence to a fixed point is very fast [15]. Moreover, the iterative procedure

is amenable to embedding in compiledcode, so it does not implyan interpreted execution style.

3.4.2 Refined FSMs inside SR

Weconsider two cases. If the current state of an FSM refines to an SR subsystem, then the produce

phase of the FSM should invoke the produce phase of the SR subsystem. No other change is needed. If

the FSM refines to non-SR subsystem, then we have to be more cautious. In that case, we assume that

the non-SR subsystem defines a strict function, and modify the SR scheduling as follows:

1. Same as above.

2. Look at all FSMs in the SR system where the current state refines to a non-SR subsystem and that

subsystem has not fired. If there are none, continue to step 3. Otherwise, if all of these have unde

fined inputs, then signal a causality loop error. Otherwise, fire all refinements that have all inputs

defined and repeat steps 1 and 2.

3. If any signals remain undefined, signal a causality loop error.

4. Invoke the transition function of every FSM in the SR system.

We do not have enough experience with this doubly iterative procedure to know how costly it is. This

is future work.

3.4.3 SR inside FSM

Embedding SR systems within FSM is straightforward. If the current state of an FSM refines to an

SR subsystem, then the semantics of SR are simply exported to the boundary of the FSM.

4. Implementation

An experimental implementation of several of the combinations discussed here has been imple-
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mented in the Ptolemy software environment [8]. The SDF, DE, and SR models were already present

in the software, and minimal modifications were required to interface them to FSM. The only signifi

cant complication encountered was that, in order to support arbitrary hierarchical combinations of all

four models, all four had to have hooks supporting the produce and transition phases of execution

required for partial evaluation in SR. For SDF and DE, the "produce" phase does nothing, and the

"transition" phase implementsa standard firing. Thus, SDF and DE have strict behavior. To get a mod

ular software architecture, the object-oriented principle of polymorphism is used, where the default

behavior of a model of computation is strict, but specificmodels can override this behavior.

5. Example

A commonly used example for control-intensive software environments is the "reflex game" [3].

Ourversion of thereflex game isa two-player game (tointroduce more concurrency). The inputs to the

system arecoin, ready, go,stop and time. All but the last areuserinputs, while the last simply counts

off time.Theoutputs are blueLt, yellowLt, greenLt, redLt andflashUlt, used to control a user interface.

Normal play proceeds as follows:

1. Eitherplayermay assertcoin to start the game. A status light turnsblue.

2. When player 1 is ready, he presses ready, andthestatus light turns yellow.

3. When player 2 presses go, the status light turns green and player 1presses stop asfast ashecan.

4. The game ends, and the status light tums red.

The game measures the reflexes of player 1 by reporting the time between ready and stop. There are

some situations where the gameends abnormally, and a "tilt" light flashes. These are:

1. After coin is asserted, player 1 does not press ready within L time units.

2. Player1 presses stop before or at the sameinstant thatplayer2 presses go.
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3. After player 2 presses go^ player 1 does not press stop within L time units.

One additional rule is that if player 2 does not press go withinL time units after player 1presses ready,

then go is asserted by the system, and the game advances to wait for player 1 to press stop.

Our realization of the game is shown in figure 17, To simulate the real-time behavior of the game,

we use DE as the topmost level (a), modeling the environment of the game (including the players). The

DB model contains a clock to generate time ticks, models of the two players, a reflex block modeling

the implementation of the game, and a display block. It also contains a merge block because either

player can assert coin.

At the next level of the hierarchy (b), inside the reflex block, we have a two state FSM. The states

are game off and game on. Inside the game on state, at level (c), we use an SR model consisting of the

two players. These are interconnected with a zero-delay feedback loop, so we exploit the fixed-point

semantics of SR.

At level (d), the two players are refined into concurrent FSMs. Player 1 starts in the idle state, and

when ready is asserted, emits a start event and transitions to the wait go state. This causes player 2 to

transition to the wait state and emit a yellowLt event. The rest of the behavior at this level should now

be evident from the figure.

In several states, we need to count ticks from the clock to watch for time outs. This counting is a

simple arithmetic computation that can be performed using the dataflow graph shown at level (e). This

graph simply counts ticks, compares the count against a constant, and emits a timeout event when the

threshold is exceeded.

6. Conclusions

We have described the combination of finite-state machines with three different concurrency mod-
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els, dataflow, synchronous/reactive systems, and discrete-event systems. These three concurrency

models have different strengths and weaknesses, and are thus applicable in different situations. Seman

tics are given for each one combined with FSM, and an example is described that uses all four models

of computation. The resulting combination is easily understood by anyone familiar with all four mod

els of computation, but obviously would be obtuse to someone familiar with only a subset. Using so

many models of computationin such a simple design would be ill-advised in practice, for this reason.

There are many issues that are not discussed in this paper. These include enhancements that are

possible in FSM, for example to support preemptive transitions, where the refinement of a state is not

fired prior to taking the transition. Another issue that is not dealt with is what should be done with the

state of a refinement of a state of an FSM. It is possible to support a "history entry," whereenteringa

state starts the refinement system in whatever state it was last in.
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