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Abstract

The problem of systematically synthesizing hybrid controllers which satisfy multiple control
objectives is considered. We present a technique, based on the principles of optimal control, for
determining the class of least restrictive controllers that satishes the most important objective
(which we refer to as safety). The system performance with respect to the lower priority objective
(which we refer to as efficiency) can then be optimized within this class. We motivate our approach
by three examples, one purely discrete (the problem of reachability in finite automata), one hybrid
(the steam boiler benchmark problem), and one primarily continuous (aflight vehicle management
system).

1 Introduction

Hybrid systems, that is systems that involve the interaction of discrete and continuous dynamics,
have attracted the attention of researchers from a number of traditionally distinct fields. Computer
scientists have approaohed the problem by extending techniques that have proved fruitful for discrete
systems. The main problem that has been addressed in this setting has been verification, that is
formally proving that a given system satisfies certain specifications. One approach to this problem
comes from the area of model checking [1, 2, 3, 4], where the emphasis is on systems and properties
that can be algorithmically verified. In problems where the model checking approach is applicable
the verification process can be completely automated; a number of computational tools have been
developed to take advantage of this property [5, 6, 7]. A different approach in the computer science
literature has been to extend deductive techniques [8, 9, 10]. Here the emphasis has been on devel
oping models [11, 12] that provide formal semantics for composition, abstraction, etc. and support
proof techniques such as induction on the length of the system executions, invariant assertions and
simulation relations. Even though automatic theorem provers can facilitate the process, most of the
responsibility of the proof with this approach falls on the designer.

'Research supported by the Army Resesu'ch Office under grant DAAH 04-95-1-0588, the PATH progreun. Institute
of IVansportation Studies, University of California, Berkeley, under MOU-238, and by NASA under grant NAG 2-1039.
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Researchers in the areas of dynamical systems and control have approached hybrid systems from a
"continuous state space and continuous/discrete time" pointofview. Oneeiforthas been in extending
the standard modeling [13, 14, 15] and simulation techniques [16, 17, 18] to capture the interaction
between the continuous and discrete components. Another has been in developing new analysis and
controller design methodologies by extending existing methodologies such as Lyapunov's theorems
[15, 19], discrete event control [20, 21, 22] and optimal control [23, 15, 24].

Ourwork falls under the last category. In recent years we have developed a methodology for designing
controllers for large scale systems, making use of techniques from game theory and optimal control
[24, 25]. We have successfully applied these techniques to a number of problems including automated
highway systems [26], air traffic management [27] and benchmark examples such as the train gate
controller [25]. The focus of our workso far has been on the hybrid phenomena that arise due to the
interaction between the multiple agents (e.g. vehicles, aircraft, etc.) in a large scale system. In this
paper wefocus on the hybrid issuesthat arise becauseof the hybrid nature of the dynamics themselves
(forexample a continuous system being controlled byswitches). Weare primarily interested in control
problems where multiple requirements are imposed on the design. This is usually the case for most
realistic systems. For example, when dealing with completely discrete systems the requirements
usually considered are those of safety (typically encoded by requirements over the finite runs of
the system) and liveness or fairness (typically encoded by requirements over the infinite runs). For
conventional control problems, on the other hand, the requirements considered are usually safety
(encoded by stability or constraints on the system trajectories) and efficiency (the requirement for
small inputs or bounds on the speed of convergence).

In such a multi-objective setting some of the requirements are usually assumed to be more important
than others, either explicitly or implicitly. The ranking of the requirements can be ignored if the goal
is to verify the performance of a given hybrid system, as the objective in this case is to ensure that
all the requirements are met. The priority is important from the point of view of controller synthesis
however, as one would like to ensure that the higher priority specifications are not violated in favor
of the low priority ones. This observation implicitly restricts the possible choices of the controllers
that can be used to satisfy the lower priority specifications. Ideally one would like to be able to
classify the controllers that guarantee the high priority specifications and attempt to optimize the
system performance with respect to the lower priority ones within this class.

Here we present a methodology for designing hybrid controllers for hybrid systems in such a multi-
objective setting. For simplicity we restrict our attention to two performance criteria. We will use
safety to refer to the high priority criterion and efficiency to refer to the low priority one. Using
optimal control tools weattempt to determine the largestcontrolled invariant safe set, i.e. the largest
set of states for which there exists a control such that the safety requirement can be satisfied. In
the process we also determine the class of least restrictive safe controls, i.e. all the controls that can
be used to satisfy the safety requirement for the safe states. The efficiency requirement can then
be optimized within this class. The resulting controller will typically be hybrid (even if the plant
dynamics are purely continuous) as it involves switching between the safe and efficient controllers.

Our analysis is based on the hybrid system model introduced in [28], which is outlined in Section 2.
The design algorithm (presented in Section 3) is motivated by three examples. The first is purely
discrete and involves the control of finite automata. Here the safety requirement is assumed to be
equivalent to a question of reachability of a region of the state space. Efficiency on the other hand
can be encoded by fairness constraints. We show how to determine the least restrictive class of safe
controllers, within which one should look for the controllers that satisfy the fairness requirements.



The second example is the steam boiler benchmark problem [29]. Here the plant itself is hybrid,
a continuous process (the level of water in the boiler) is to be controlled using discrete controls
(pumps being switched on and off). The safety specification is again a question of reachability in the
(continuous) state space; we would like the water level to stay within certain bounds. The efficiency
requirement on the other hand could be to minimize the number of times the pumps are switched
on and off or equalize the "on" time among pumps. Here we only address the question of safety.

Finally, the third example is primarily continuous and is motivated by the design of a flight vehicle
management system. We consider the speed and flight path angle dynamics of a passenger aircraft.
The plant is two dimensional, highly nonlinear and is influenced by two continuous inputs, the
thrust (controlled by the aircraft engine) and the pitch angle (controlled through the elevators).
Switching arises from the saturation of the thrust input, which imposes three modes of operation
for the aircraft: one where both its velocity and flight path angle are controlled, one where only the
velocity is controlled and one where only the flight path angle is controlled. Safety is again encoded
by a reachability requirement: the velocity and flight path angle should stay within specified limits
(imposed by the engine limitations, wing stall conditions, etc.). We classify the controllers that
guarantee safety and establish the mode switching required to implement them. Within this class an
efficiency requirement (the magnitude of the linear and angular accelerations) is then optimized.

2 Hybrid System Modeling

2.1 Hybrid Dynamical Systems

The basic entity of our models will be the hybrid dynamical system or hybrid automaton (the
terms will be used interchangeably). Hybrid automata are convenient abstractions of systems with
phased operation and they appear extensively in the literature in various forms ([2, 3, 12]). The
model we consider will be similar to models used primarily in model checking (in particular the ones
in [30] and [31]). We will take a more input/output approach, along the lines of the reactive module
paradigm [32]. For an overview of hybrid models from a dynamical systems perspective see [15].

A hybrid automaton is a dynamical system which determines the evolution and interaction of a finite
collection of variables. We consider two distinct kinds of variables:

Definition 1 A variable is called discrete if it takes values in a countable set and it is called
continuous if it takes values on a smooth manifold.

We will assume no special algebraic structure for the values of the discrete variables. The only
operations we will allow are assigning a value to a variable and checking whether the value of a
variable and a member of the value set (or the values of two variables that take values in the same
set) are equal. For simplicity we will assume here that continuous variables take values in subsets of
R" for some value of n. The variables in our model will be split into three classes: inputs (external),
outputs (interface) and state (private)^ We will denote the input space (set where the input
variables take values) by U == Ud x Uc the output space by Y = Yd xYc and the state space by
X = Xd X Xc. The subscripts D and C indicate whether the variable is discrete or continuous. To
avoid unnecessary subscripts we denote an element of U by u, an element of F by y and an element

'The terms in bold and in brackets can be used interchangeably, though we stick to the terms in bold most of the
time. The former are more common in control theory while the latter are more common in computer science.



of A" by (9, x). Tosimplify the notation we will omit Xd and q when there is only one discrete state
and Xc and x when there are no continuous states.

Our model evolves in continuous time, so we will assume that set of times of interest is of the form
T = [ti.tj] C R. The variableswill evolve either continuously as a function oftime or in instantaneous
jumps. Therefore the evolution of the system will be over sets of the form [tq, ri][ri, T2]... r„]
with Ti e T for all i, = t,-, r„ = and n = r/ < n+i for all f = 1,2,..., n - 1. The implication is
that Ti are the times where discrete jumps of the state or input occur. We will use T to denote the
set of all such "super-dense" time trajectories and r to denote an element of T.

Definition 2 A hybrid dynamical system, H, is a collection (X^UyY^Iyf^E^h), with X =
Xdx Xc, U = Ud xUc,Y = Yd xYc, I C X, f : X xU TXq, E C X xU x X, and
h : X xU -i-Y, where Xq, Uq^Yc are respectively open subsets o/R",R"*,Rp, for some finite values
of n^m^p and Xd,Ud,Yd are countable sets.

Here TXq represents the tangent space of Xq- We assume that / is time invariant^ and satisfies the
standard assumptions for existence and uniqueness of solutions to ordinary differential equation.

Definition 3 A run of the hybrid dynamical system H over an interval T = [ti^tj] is a collection
(r, q, X, y, u) with t eT, q ir Xd, x :t ^ Xc, y:T-¥Y and uir -i-U satisfying:

1. Initial Condition; (^(to), a;(ro)) € I.

2. Discrete Evolution; for all i either (g(T-,),x(r,j, u(r,),y(r/),x(r/)) 6 E and (y(r,),x(ri)) yt
(y(r/),x(r/)) or u(r/) 7^ u(r,).

3. Continuous Evolution; for all i with r/ < r,+i andfor all t 6 [t/, 7V+i];

= f{Q{t),x{t),u{t)) (1)
q{1) = (2)
{q{t),x{t),u{t),q{t),x{t)) e E (3)

4' Output Evolution; for all t £ r, y{t) = h(q(t)^x(i), u(t)).

It can be shown [28] that the definitions introduced here are rich enough to allow us to model regular
dynamical systems, discrete events, autonomous jumps, controlled jumps, etc.

2.2 Graphical Representation

If A/) is a finite set it is very convenient to represent the hybrid automaton by a directed graph. We
can associate a graph to a given hybrid automaton H using the following construction:

Nodes: the number of nodes in the graph is equal |A£)|. The nodes are indexed by the corresponding
discrete state value, g € A/j.

'With some additional notation the definitions can be given in terms ofthe flow ofthe vector field. Theadvantage
of this is that they would directly extend to other cases, such as time varying vector fields and discrete time systems.
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Figure 1: Hybrid automaton graph nodes

Continuous Evolution: to each node, g, we associate a vector field, /g, defined in terms of / by:

fgiXcxU TXc (4)

(a:,u) •—> f(q,x,u)

The implication is that while in the node q the continuous state evolves according to /,.

Node Invariants: To each node, 9, we associate an invariant:

Invg = |J{(a:, w)|a: € Xc.ue U, (g,a;,u,g,x) e E] CXc x U (5)

The interpretation is that the system can remain in node q if and only if (a;,u) € InVg.

Transition Guards: To the transition from node q to node q' we associate a guard:

Euggi = (J{(a:, u)\x^ x' 6 Xc^ u e U, (g, x, u, g', x') e E] CXc x. U (6)

The interpretation is that the transition can take place if and only if (x, u) € Engg/.

Transition Reset: To the transition from node q to node q' we associate a set valued map:

Resgg/(a:, u) = U{a;'|a:' € Xc, (g, x, u, q\x') ^ E} C Xc (7)

The interpretation is that if the transition takes place from (a:, u) then after the transition the state
can find itself in any (g', a:') with x' G ReSgg/(a:, u).

The above construction allows us to represent a hybrid automaton graphically as shown in Figure
1. Note that all the information about the discrete transitions (the node invariants, the enabling
conditions and the reset relations) is encoded by the set E of the hybrid automaton. Note also that
there is no requirement that g ^ g', i.e. loops to the same node are allowed.

2.3 Operations on Hybrid Dynamical Systems

A number of operations can be defined on hybrid dynamiccd systems [28]. Here we restrict our
attention to just one, called interconnection. It allows us to form new hybrid systems out of collections
of existing ones. Let be a collection of hybrid automata. Hi =
We can write the inputs and outputs in vector form as u,- = 6 Ui and t/j =
[W.i ••• yi,v,Y 6 Yi. Let:

U = {(l,l).(1.2),...,(l.mx),(2,l) (2,m2),...,(yv,l) (Af.mw)}
y = {(l,l),(l,2),...,(l,p,),(2,l) (2,p2),...,(iV,l) (Af.pw)}

Definition 4 An interconnection, J, of a collection of hybrid automata, {Hi}, is a partial map



An interconnection of hybrid automata can be thought of as a pairing yk,i) of inputs and
outputs. It is only a partial map (i.e. some inputs may be left free), need not be surjective (i.e.
some outputs may be left free) and need not be injective (i.e. an output may be paired with more
than one input). Let Pre(J) be the subset of U for which the partial map I is defined. Also let Ila
denote the projection of a vector valued quantity to the element with index a.

Definition 5 Given a collection of hybrid automata and an interconnection X, the symbolic
operation substitution, denoted by assigns to each input, Uij a map on Xi x ... x Xjsj x Ui x
...xUn, according to:

u- .^l if (iJ) i Pre(I)
\ XUni{X{i,j)) Vh,(i(i,j)) if{ij) € Pre(X)

If for all {i,j) € Pre(I), C Uij, operation can be repeatedly applied to the right hand
side by appropriate map compositions. The construction terminates for each Uij if the right hand
side either contains Uij itself or contains only Uk^i ^ Pre{X). The resulting map will be denoted by
("ij--♦*)•

Because there are a finite number of inputs, the construction of (u,j '^*) terminates in a finite
number of steps. To ensure that an interconnection is well defined as an operation between hybrid
automata we impose the following technical conditions:

Definition 6 An interconnection, X, of a collection of hybrid dynamical systems, is well
posed iffor all {i,j) € Pre{X), Yj^i^j) C tAj o.nd the map (u,j ->-♦*) does not involve Uij.

These requirements imply that {uij is well defined as a map between the following spaces:

{uij ) : Xi X... XXp,f X^0\Pre{I)i^l X... XUn) >nij(t/i X... XUn)

Fact 1 Every well posed interconnection, X, of a collection of hybrid dynamical systems,
defines a new hybrid dynamical system.

Proof: Let H = {X,U,Y,I,f,E,h} denote the interconnection automaton, defined by X =
Xi X. . .xX]\j, U= ^0\Pre{I)^^^ ^ xUi\f), Y= Vi X xVjfV, / = /i X. . .xl]\!, f = [/,• O(u,- '̂ *)]^1,
E C X xU XX with e = {q, x, u, q',x') e E if and only if (g,, a;,, (uj '̂ •')(g, x, u),q'i, x-) GEi for all
i = 1,..., AT and h = [hi o (u,- . •

The expression (uj '^*) denotes the map generated by applying to the elements u,-,!,...,
The terms in square brackets have the obvious interpretation as vectors. The symbol o denotes
composition of maps.

3 Multi-objective Controller Design

3.1 Design Framework

We assume that the plant is modeled by a hybrid automaton of the form described in Section
2. We further divide the inputs into two classes, control inputs denoted by u and disturbances.



denoted by d. The input space is accordingly split into two subspaces, (u,d) £ U x D. The
interpretation is that the designer can exercise control over the inputs but not over the disturbances.
This implies that the controller design should be such that the desired performance is achieved
despite the actions of the disturbances. Let PC denote the space of piecewise continuous and PC^
the space of piecewise diiferentiable functions of the reals and define the set of acceptable inputs by
U = {ue PC\u(t) 6 U Vt} and the set of acceptable disturbances by V = {d £ PC\d(t) £ D Vt}.

For simplicity, we restrict our attention to the case where two requirements are imposed on the system
performance; we refer to them as safety and efficiency. We assume that these requirements can be
encoded by a pair of cost functions, Ji and J2 respectively, on the runs of the hybrid automaton:

JiiPCxPC^ xUxV—^R (8)

The cost functions map a run of the automaton (?(•)> ^(0) ^ number. To distinguish
acceptable from unacceptable runs we can impose thresholds, Ci and C2 on the final costs. A run is
acceptable if J,(9('),a:('),u(-),d(-)) < Ci for i = 1,2. We also assume that the performance criteria
come with an implicit ranking, safety being more important than efficiency.

Here we restrict our attention to the case where each pair of inputs (u, d) generates a unique state
trajectory for a given initial condition (9°, x°). We informally refer to hybrid automata that possess
this property as deterministic hybrid automata^. In this case the cost function can be thought of as
a map:

Ji'. I xU xV —^ R (9)

3.2 Controller Synthesis

To guarantee that the performance specifications are met despite the action of the disturbances we
cast the design problem as a zero sum dynamic game. The two players in the game are the control
u and the disturbance d and they compete over the cost functions Ji and J2. We seek to determine
the best possible control action and the worst possible disturbance. If the performance specifications
can be met for this pair then they can also be met for any disturbance.

As higher priority is given to safety, the game for Ji is solved first. Assume that the game admits a
saddle solution, i.e. there exist input and disturbance trajectories, uj and dj such that:

«^r (9°) = nia-x min Ji (g°, u, d) = min max Ji (9°, u,d) = Ji (9°, a:°, u?, dj)
d^V u&J u^U d^V

Then the set:

yi = {(9,a:)eA-|J,*(,,a:)<C,} (10)

contains all states for which there exists a control such that the objective on Ji is satisfied for the
worst possible allowable disturbance (and hence for any allowable disturbance). If uj is used as the
control it will guarantee that Ji is minimized for the worst possible disturbance; moreover, if the
initial state is in Vi it will also guarantee that the performance requirement on Ji is satisfied.

However, uj does not take into account the requirements on J2. To introduce efficiency let:

= {u £U\ maxJi(g°,a:°, u,d) < Ci} (11)
d^'D

^Nondeterministic hybrid automata, a generalization ofnondeterministic finite automata, are not covered here.



Clearly:

W. (a° ~ ^"iW Î ^0 for (,0,10) 6Vi, as ul €Ui(q°,x<>)

U\ can bethoughtofas a feedback map : X ->• 2^, that maps to each state the subsetofadmissible
controls which guarantee that the requirement on Jx is satisfied; in other words, the least restrictive
class of safe controls. Within this class we would like to select the control that minimizes the cost
function J2- We again pose the problem as a two person zero sum game. Assume that a saddle
solution exists, i.e. there exist W2 and such that:

min^^ =J,(q'>,x'>,ul,d-2)

Then the set:

V2 = {{g.x)€X\Ji{q,x)<C2} (12)

contains the initial conditions for which there exists a control such that for any allowable disturbance
the requirements on both Jx and J2 are satisfied. As the min-max problem can only be posed when
Uxig^tX^) ^ 0 we have that V2 C Vx- The control law Uj ^-^d the set V2 are such that for all
(g°, a;°) e / n V2 and for all d € 2), Ji(q^^ a:°, W2, d) < Ci for i = 1,2.

As V2 C Vx there may still be states for which the requirement for safety can be satisfied whereas that
for efficiency can not. If the saddle solutions are in feedback form, the controller can be extended to
these states using the simple switching scheme:

u'(a 1) =/ (9'®)€V2\ (q,x)^X\V2

This will make the operation of the controller hybrid, even when the plant is purely continuous.
Such an extension may be particularly useful when trying to design fault tolerant controllers. The
occurrence of a fault significantly alters the system dynamics and may lead to severe shrinking of
the set V2. One would like to be able to resort to a controller that guarantees safety, even if the
requirements for efficiency have to be violated.

3.3 Technical Issues &; Special Cases

The above algorithm may run into technical difficulties, as there is no guarantee that the dynamic
games will have a saddle solution, there is no straightforward way of computing x°) and there
is noguarantee that the sets Vx (and consequently 2/i(g°, a;°)) and V2 will be non-empty. Fortunately,
in the examples considered here (as well as the ones [27, 26]) a solution can be obtained analytically,
or using simple numerical calculations. In general, sophisticated optimal control tools [33] can make
the solution of more general problems feasible, at least numerically.

Two special cases of the above algorithm deserve explicit mention. The first is the case where there
is no disturbance. The algorithm then calls for the solution to a pair of optimal control problems
(rather than games). The optimal solution for Jx will produce a set of states and classify the least
restrictive set of controllers for which the safety requirement can be satisfied. The optimal control
problem for J2 will then attempt to determine the best possible control in terms of efficiency within
this class. Application of this special case will be demonstrated in Section 6 on the flight vehicle
management system example.



The second special case is one in which there is no control. This is for example the case in which a
controller has already been designed and we are asked to verify its operation or determine the sets
of initial conditions for which the specifications are satisfied. The verification problem reduces to a
pair of optimal control problems. For further discussion of this special case the reader is referred to
[34].

4 Reachability in Finite Automata

4.1 Problem Description

Consider a standard, deterministic finite automaton G = (Q, E, 5,Qo) where Q is a finite set of states,
E a finite set of events, <5: Q x E Q a transition relation and Qo C Q &set of initial states. Let
L(G) denote the string of events (language) generated/accepted by G. Following [35] we assume that
the set of events is partitioned into two subsets, E = Eu UEc, where the events in Eg are controllable
(in the sense that they can be disabled at will) while the events in E^ are uncontrollable^.

In this setting problems of safety are usually cast as questions of reachability: can the designer ensure
that the automaton state will stay in a "good" subset Qq C Q of the state space (or equivalently
that it will not enter a "bad" subset Qq = Q \Qg)- Efficiency typically corresponds to questions
of fairness or liveness. The distinction is that safety questions can be answered by reasoning over
strings of finite length in L(G) while questions of fairness require reasoning over infinite strings. Here
we will show how reachability questions can be addressed using the techniques of Section 3.

4.2 System Model

We first cast the finite automaton G into the modeling formalism of Section 2. As there are no
continuous variables, Xc, Clc7yc 2ind / will be omitted. In the set up of [35], uncontrollable events
are given "priority" over controllable ones, in the sense that they can always take place independent
of the action of the controller. To capture this effect (and motivated by a discussion in [31]) we
assume that the evolution of the system takes place in rounds where a controllable event is followed
by an uncontrollable one. More specifically, we capture the evolution of G by a hybrid automaton
£r = {X,Dx[/, V,/,F,h} with X = Q, U = EcU{€}, D = EuU{€}, y = Q, I = Qo7 h(q, (d, u)) = q,

where we assume that 6{q, (€>«)) = Q- Note that H can "block" some inputs, i.e. there exist states
q that for some inputs (d, u), the next state is not defined®. This can occur if d = € and G blocks u,
if w= € and G blocks d or if both d ^ c and e. Let L{H) denote the strings of inputs accepted
by H.

Fact 2 The non-blocking traces in L{G) and L{H) are in one to one correspondence^ modulo (f, e)
transitions.

^Controllable events represent actions that thedesigner can choose (start processing, send message, etc.) whereas
the uncontrollable events are spontaneous actions of the plant (machine breakdown, message lost, etc.).

^This phenomenon is common in finite automata whenever the transition relation is a partiail map.



Proof; Consider the map Tqh that maps a run of G to a run of H by replax:ing every d € Eu by
(d, €) and every w€ Ec by (e, u) and the map Tjjq that maps a run ofi/ to a run ofG by dropping
all the €. By definition the maps are injective and surjective over the set of nonblocking traces and
Tgh o Thg and Thg o Tgh are both the identity. b

Fact 2 indicates that the proposed construction does not affect the language accepted by the automa
ton. Therefore, controlling the automaton H, (where the system evolution is assumed to take place
in rounds of uncontrollable and controllable events) is effectively the same as controlling the original
automaton G (where this restriction is not imposed). Clearly the dynamics of G can be captured by
a much simpler H, one with no c. We introduce the extra notation to help us preserve the "priority"
of d over u. We can interpret the transition structure E as saying that eis allowed only if d = £.

4.3 Reachability

Assume that a set Qb C Q is given and that the controller is asked to render the states in Qb
unreachable, despite the action of events in Eu. To ensure that the automaton H will not block for
the saddle solutions (soon to be calculated) and that priority is given to d over u we add two new
states, qG and ge, and redefine X = Q\J Qb = Qs U{g^} and / = / U{gc}. We then
complete the transition relation by redefining:

E = {(9i,(c^,w),g2) € A X (£) Xt/) XAl
92 = <5(gi,d) if d 7^ £, w= €,<J(gi,d)!
g2 = gG if d 7^ €,« = e,<5(gi,d) ^
92 = <^(9i.w) if d = €, w7^ c,(5(gi, w)!
92 = 9B if d = €, w7^ €,<5(gi,w) ^gi € Q

92 = 9G if d 7^ €, u 7^ c, <J(9i, d) '/
92 = 9B if d 7^ €,u 7^ c,(J(gi,d)!
92 = 9i if d = €,w = €

9i = 9b => 92 = 9B

9i = 9G 92 = 9g}

Here S(q,e)\ is used to denote that the map 5 is defined for the pair (g,e) € Q x (Ec UEu) and
5(g, e) ^that it is not.

To cast the problem in the setting ofSection 3 consider a discrete metric, m : Q x Q R, defined by
"^(91 >92) = 0 if gi = g2 and 1 if 91 7^ 92. It is easy to check that m satisfies the axioms of a metric.
The metric induces a map on pairs of subsets of Q by:

m : 2^ X 2^ —> R

(Qi,Q2) ^ TO ^ w(gi,g2)
(91.92)€QiXQ2

In other words, m(Qi,Q2) = 0 if Qi n Q2 7^ 0 and m(Qi,Q2) = 1 if Qi nQ2 = 0. By abuse of
notation we use m to denote both the metric and the map and m(g,Qi) to denote m({g},Qi).

Let d = {di,d2,...] e D* denote a sequence in D and u = {wi, W2, ...lei/* denote a sequence in U
and define their interleaving as (d,u) = {(di, ui), (d2, W2),...} G (£> x U)*. As G is assumed to be
deterministic, the above transition structure defines a unique state trajectory x = {go, gi,...} £ X*
for every go 6 / and every (d, u) e {D x Uy. The defining relationship is (g,-, (df+i, w,+i), g,+i) € E.
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The metric can be used to assign a cost to this run by:

Ji:Ix(DxU)' —+ R

(go, {d,u)) I—¥ - min m{g,Qb)

In other words, Ji{qo, (d, w)) = 0 if the run x enters the set Qb and —1 otherwise. The reachability
problem can now be thought of as a game between u and d over the cost function Ji. Consider
"feedback" maps D : X -¥2^ and U : X -^2^. The following algorithm allows us to determine the
least restrictive class of safe controls:

Algorithm: Calculation of safe sets and safe controls

Step 0: Set i = 1 and define Q'q = Qjg, b(q) = {e} and U(q) = Ufor all ^ 6 Qb-
Step i: Define:

NewQg = {qeQ\ Qsl^di eD,q' e Qb with (q, (d,-, e),q') € E]

If NewQ^ 7^ 0 increment i and for all q 6 NewQjg define U(q) = U and

b{q) = {di € D\3q' e Q'b with {q, {di,€),q') € E}

Redefine Q'b = Q'b UNewQ^ and return to step i. If NewQg = 0, then for all ^ G X \ Q'b define
b(q) = D and

U{q) = {m € U\(q, (i.UiU) eE=^q'§^ Q'b)

Define the safe set as Vi = Q \ Q'b- m

Fact 3 The algorithm terminates in at most |Q| steps.

Proof: The set Q'b constructed by the algorithm is monotone nondecreasing in the number of
steps, starts olf with \Q'b\ > |{gB}| = 1 and is upper bounded by \X\- I {qo can never be in Q'b).
The claim follows as \Q\ = \X\ - 2 and the algorithm terminates once Q'b stops increasing. •

Lemma 1 The system is safe if and only if J CVi.

Proof: First assume / C Fi. For every 90 G / and for every d* € D* choose u* € U* such that for
the run x = {go,gi, •••} generated by (d*,u*), u* G U(qi-\) if d* = c and u* = € if d* ^ c for all i.
Then, by construction of qi G Vi for all i, Ji(go, (d*, w*)) = —1 and the system is safe. Note that,
as g, G Fi it trivially follows that d* G D(g,_i) for all i by construction of D.

Now assume I (fiVi. Choose go € / H Vf and for every u* G V* choose d* G D* such that for the
run X= {go,gi,...} generated by (d*,ii*), d* G I)(gt_i) for all i. Then, by construction of £), there
exists i >1 such that g,- G Qb- In other words, Ji(go, (d*,«*)) = 0 and the system is unsafe. As
above note that by construction of U and by the choice of d*, u* G C/(g,_i) for all i. •

The above discussion reveals that (go) = —1 if go 6 Fi and Jr(go) = 0 otherwise. Therefore, as Ji
can take on only two values, any pair (u*,d*) that satisfies: d* G D(g,_i) and u" G U{qi-i) for the
corresponding run x = {go,gi,...}, is a min-max solution. Moreover:

11



Corollary 1 U defines the least restrictive class of controls that can guarantee that the system stays
safe whenever it starts safe.

Clearly, the least restrictive class of safe controls is in feedback form. The above construction can
also be used for standard reachability verification in finite automata, by letting Eu = S, Sc = 0. If
Qb is reachable, D provides an error trace starting at any state go £ ID Vf. In this special case the
€ construction is not necessary. This approach can in principle also be used to address more general
language inclusion problemsfor regular languages. However, it is likely to be prohibitively expensive
computationally, as it would require construction of the automata that accept the languages and
complementation of one of them.

5 The Steam Boiler

5.1 Problem Description

Our analysis of the steam boiler problem is based on the description given in [36], which is simpler
than the original specification of [29] in that the effect of faults on the system is not considered. The
steam boiler consists of a tank containing water and a heating element that causes the water to boil
and escape as steam. The water is replenished by two pumps which at time t pump water into the
boiler at ratespi{t) and p2{t) respectively. At every time, t, pump i can either be on (pi{t) = Pi) or
off {pi{t) = 0). There is a delay Tp. between the time pump i is ordered to switch on and the time
pi switches to Pi. There is no delay when the pumps are switched off. The requirement is that the
pumps are switched on and offso that the water level remains between two values Mi and M2.

Here we will use three hybrid automata to describe the system, one for the boiler and one for each
of the pumps. The specification of [36] also includes a valve that, together with the pumps, can be
used to bring the water level to a desirable initial condition before the heating element is turned on
and the boiling starts. As the valve is only used to set the initial condition, its operation will be
ignored in our safety calculations.

5.2 System Model

The boiler is modeled by a hybrid automaton, Hb = {Xb,Ub,YbJb, fB^EB^hs}, with a single
discrete state (suppressed to simplify the notation) and twocontinuous states, the water level w and
the rate at which steam escapes, r. We assume that both states are available for measurement, i.e.
Ye = Xb and yB = hB{xByUB) = xb- The system evolution is influenced by two discrete inputs.
Pi and p2 and one continuous input, the derivative of the steam rate, d. The physical properties
of the boiler impose bounds on the states and inputs: xb = [w rf e Xb = R X[0,W^ and
"B = [pi P2 d] 6 t/fl = {0,Pi} X{0, P2} X[—U2,Ui], where W,Ui,U2,Pi and P2 are positive
constants. Following [36] the dynamics are given by:

fsixB^UB) =
Pi + P2 - r

d

Eb — IJ {xb.ub^xb)
^B € Xb
"^B € Ub

12



Note that the set E does not allow any discrete jumps of the state.

Each pump can also be modeled by a hybrid automaton, i?p. = {Xp., C/p., Yp., /p., /p., j&p., /ipj,
with two discrete states g, = 0 and g,- = Pi that reflect if the pump is on or oflf and one continuous
state, Ti, that reflects the time that has elapsed since the pump was commanded to switch on, hence
^Pi — € Xp. = {0,/^} XK+. The evolution of the state is aflfected by a discrete input,
Up, = Ui € ^p% — takes the value 0 if the pump is commanded to switch off and 1 if the
pump is commanded to switch on. We assume that the pump state is available for measurement, i.e.
hp^ i^Pi?Wp,) —^pi• For consistency we restrict the pump initial conditions to:

<e/p< =( U {0,Ti))u( U
\Ti<Tp, ) \T,>Tp.

The dynamics are given by T, = fpiixp^, Ui) = Ui and:

Ep, = ((o,rp.),i,(F;-,rpj)u

( U((0,7i),0,(0,0))ju( U((0,r,),i,(0,r())| u
\Ti<Tp, ) \Ti<Tp^ J

U ((f;,ri),i,(P!,r()))u( U ((/^-.ro.o.co.o)))
<ri>Tp^ / Vr.>r,. /

The combined system automaton can be obtained as an interconnection of Hs^Hp^ and Hp^. The
interconnection map is X(pi) = g,- for i = 1,2. One can easily see that:

Fact 4 X is a well posed interconnection.

The resulting automaton will have two discrete and four continuous states. We will use x =
((9i>92))[u> r Ti T2]^) to denote the overall state.

Without loss of generality assume that all runs of the automaton begin at i = 0. Our goal is to
design a feedback controller for ui and U2 that keeps the water level in the interval w{t) G[Mi,M2]
for all <> 0. This requirement can be encoded by two cost functions:

ui, U2, d) = —inf u;(t) and J{(x°,ui,U2,d) = supu;(i) (14)
<>0 t>o

For a given run the requirements are satisfied if and only if Ji < -Mi and J[ < M2.

5.3 Saddle Solutions and Set of Safe States

We will treat the evolution of the system as a game between the inputs ui, U2 and the disturbance
d. For any initial condition x^ = ((g?, g2)j[^° Ti T®]^), consider the following candidate saddle
solution for the game with cost Ji:

W-r^Ui if

\ 0 if
t <<(0 =1for all t, and d*(t) = <{ ^ ^" ^0 (15)
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Lemma ^ (wj, u^.d*) is globally a saddle solution for the game between («i, U2) and d over Ji.

Proof: We check that the following inequalities hold for all 1°, ui, U2 and d:

The details are given in Appendix A. h

For cost J[ the saddle solution can be similarly calculated. Consider the candidate:

=0for all t and d'*{t) =| ~̂ (16)
10 if t ^

Lemma 3 {u'{^ ulf d̂'*) is a saddle solution for the game between (1/1,^2) and d overj'i.

Proof: Similar to the proof of Lemma 2, refer to Appendix A. •

It should be noted that the saddle solution is not unique in the latter case, as far as the ti, are
concerned. In particular, any Ui such that w{t) < 0 for all t will produce the same maximum water
level (equal to the initial water level). For example, any choice of u,- that starts with Wi(0) = 0 and
does not involve switching to 1 for more than at a time will lead to the same cost as the saddle
solution.

The saddle solutions allow us to determine the set of states for which there exists inputs for the
pumps such that the water level is guaranteed to remain between the specified limits for any steam
rate. To accomplish this we first need to determine the costs under the saddle solutions. Let
J*(a;°) = Ji(x°,u1,U2yd*), x* be the state trajectory generated by {ul^ul^d*)^ and Di = Tp, - r°
be the time at which pump i starts pumping water under input u*(t).

Lemma 4 IfW < PiP2 then Ji{x^) = min{tu*(Di), iy*(D2)}.

Proof: By direct calculation, refer to Appendix A for details. •

This fact allows us to calculate the boundary between safeand unsafe initialconditions. In particular,
we would like:

> Ml => w° > max{Mi - w*(Di) + Mi - w*{D2) + w°]

The calculations in the appendix indicate that w*{Di) — is independent of and is uniquely
specified by the values of r°, T® and T®• Therefore, the boundary between safeand unsafe states can
be thought of as a function w : [0, W] x Rj- which maps (r°,T'i°,r^) to the minimum water
level required for safety. The level sets ofwfor T® = 0 (i.e. pump 2 initially off) and for T® > Tp^
(i.e. pump 2 initially fully on) are shown in Figure 2. The safety boundary for any other value of
T2 will be a similar surface lying between the two surfaces of the figure. Safety (u;(t) > Mi) can
be maintained as long as the water level is on or above the corresponding surface. As expected the
higher the value of T2 the more states are safe (the surface moves down). The parameters used in
the figure were Mi = 0, f/i = 0.5, VF = 4, Pi = P2 = 2.5 and Tp, =Tp^ = 5.

Todetermine J'*, notethat w'*{t) < w^ for anyf, therefore, J'*{x°) = and anystate with w^ < M2
is safe with respect to J'. However, as noted earlier, the u* are not the unique minimizers of J', as
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Figure 2: Lower limit on w to avoid draining

any controls such that th < 0 whenever w = achieve the same value of JL As w = q\-\- q2 —r,
this observation leads to a boundary between safe and unsafe states. On the boundary, = M2
(the only situation where J' becomes safety critical) and = r(rp, T®) where:

(r?,rO)

0 if r? < Tp, and < T,
Pi if T? > Tp, and < T,
P2 if r? < Tp, and > T,

Pi + P2 if If > Tp, and Tf > T,

Pictorially, this boundary is shown in Figure 3. The interpretation is that any initial condition such
that either < M2 or = M2 and > f(ri°, Tf) is safe with respect to P.

5.4 The Class of Least Restrictive, Safe Controls

The calculation of the safe set also allows us to classify the controls that can keep the system safe
(water level between Mi and M2) provided it starts safe (iu° and r° in the ranges discussed above).
The class of safe controls is given in a state feedback form.

Lemma 5 A control law for (tii,W2) is safe with respect to Mi if and only if:

Ui € {0,1} and U2 € {0,1} if w > w(r, 0,0)
ui = 1 and U2 € {0,1} if w{r^ 0,0) > lu > w(r, Ti, 0)
ui € {0,1} and U2 = 1 ifw(r,0,0) >w> w(r,0^X2)

ui = 1 and W2 = 1 if w < w{r, Ti, T2)

Proof; The proof is a corollary of Lemma 2 and the properties of the saddle solution. For the "if"
part (proposed scheme is safe) it suffices to show that any u satisfying the above conditions leatds to
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Figure 3: Lower limit on r to avoid overflow

a state trajectory with > w{r,Tp^,Tp^) = Mi for all t (under the underlying assumption that
W < Pi^2)- The first three cases are relevant only if > u;(r,0,0), tn(() > w(r,Ti,0) and

> u?(r, 0, J2) respectively. As th is monotone in Ti and T2, the lower bounds are greater than or
equal to w{r,Tp^,Tp2) in all three cases. Therefore, the last case {w < w{r,Ti,T2)] is the only one
we have to worry about. Safety in this case is guaranteed by Lemma 2.

For the "only if" part (proposed scheme is least restrictive) we only need to worry about the last
three cases (the first case is trivially least restrictive). In the last three cases at least one of the
Ui is restricted to be Ui = 1. If Uj = 0 is used instead, the conditions on the three cases and
the monotonicity of w with respect to Ti imply that the resulting jump to T",- = 0 will result in
w < w{r,Ti,T2). In this situation, Lemma 2 guarantees that there exists a d (for example d = d*)
and a i > 0 such that w{t) < Mi. Therefore, any control scheme violating the proposed restrictions
is potentially unsafe. ^

Note that, as th is monotone in Ti and T2, the condition on the last case is enabled if and only if
all other conditions fail. The two middle conditions may overlap however. Therefore there is some
nondeterminism in the choice of safe controls (some states may be safe with either one or the other
pump on, but not neither).

Lemma 6 A control law for (^1,^2) is safe with respect to M2 if and only if:

ui e {0,1} and U2 € {0,1} if w < M2 or r > r{Ti,T2)
Ui =0 and U2 € {0,1} if w > M2 and r(Ti, r2) > r > r(0, T2)
ui 6 {0,1} and U2 = 0 if w > M2 and f{Ti,T2) >r> r{Ti,0)
Ui = 0 and U2 = 0 if w > M2 and r < min{r(ri,0),r(0,r2)}

Proof: The proof follows as a corollary of Lemma 3. For the "if" part, if lu = A/2 (the only safety
critical situation), the restrictions imposed on u guarantee that li? < 0 for d'* (and hence any d). For



the "only if part, any control violating the conditions of the lemma will potentially result in th > 0
when w = M2. •

Note again the nondeterminism in the choice of control in the middle two cases (the system may be
safe with either one or the other pump on but not both).

The class of controls specified by the lemmas are least restrictive in the sense that any control
will have to satisfy the lemma conditions to guarantee safety. If the control needs to satisfy other,
secondary, objectives on top of safety. Lemmas 5 and 6 give the class of controls in which the optimum
for the secondary objectives should be sought. The above calculations also lead to conditions for the
existence of safe controls.

Corollary 2 Safe control laws exist ifW < Pi-{• P2 aid iu(1^,0,0) < M2. Safe control laws do not
exist if W > Pi + P2-

6 Flight Vehicle Management Systems

The flight vehicle management system (FVMS) example is based on the dynamic aircraft equations
and the designspecification of [37]. The equations model the speed and the flight path angle dynamics
of a commercial aircraft in still air. The control inputs to the equations are the thrust T, accessed
through the engine throttle, and the pitch angle accessed through the elevators. The outputs
we wish to control are the speed V and the flight path angle 7. There are three primary modes of
operation:

1. Mode 1: The thrust T is between its specified operating limits {Tmin <T < Tmox)? the control
inputs are T and 0, and both V and 7 are controlled outputs.

2. Mode 2: The thrust saturates (T = Tmin VT = Tmax) and thus it is no longer available as a
control input; the only input is and the only controlled output is V.

3. Mode 3: The thrust saturates (T = Tmin^T = Tmax)i the input is again 0, and the controlled
output is 7.

Within Modes 2 and 3 there are two submodes depending on whether T = Tmin (idle thrust) or
T = Tmax (maximum thrust).

Safety regulations for the aircraft dictate that V and 7 must remain within specified limits: for ease
of presentation we simplify this safety envelope, S, of [37] to

s = {(V,7)l(Vmm <y < Vmax) H (jmin < 7 < 7max)} (17)

where V,ntn»Knaxi7mm,7max are constant values.

We would like to design a control scheme, an FVMS, to drive the aircraft between operating points in
S. The resulting trajectory (V(i),7(i)) must satisfy acceleration constraints imposed for passenger
comfort, and must not exit the envelope at any time. Here we describe the minimally restrictive set
of controllers which guarantees safe operation of the aircraft, by classifying all of the control inputs
that keep the {V{t),'y{t)) trajectory within the safetyenvelope and establishing the mode switching
logic required for safety. An "efficiency" requirement for passenger comfort is then optimized within
the class of safe controls.
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6.1 System Model and Problem Specification

The flight path angle dynamics of the aircraft can be summarized using two continuous state variables,
X= [V 7]^ € K X5^, where V (m/s) is the airspeed and 7 (rad) is the flight path angle:

T —D . . L 0COS7 ^ ^V= —-SSin7. 7=;;^-— (18)

where T (N) is the thrust, m (kg) is the mass of the aircraft, g (m/s^) is gravitational acceleration
and L and D are the aerodynamic lift and drag forces. The aerodynamic forces can be modeled by:

L = aLV^(l + c(e-•,)), Z5 = odV=(1 + 6(1 + c(9-7))2) (19)

where ai, and are the lift and drag coefficients, h and c are small positive constants, and 6 is the
aircraft pitch angle. We assume that the pilot has direct control over the thrust T and the pitch
angle thus u = Substituting (19) into (18) and assuming that b is small enough to neglect
the quadratic term in {6 —7) in the drag, leads to:

Xi

i2
= f{x,u) =

• , 1-^-gsiaxi + ^ui
ai,xi{l—cx2) _ gcosxz , ar.cxi

m Xl ' 771 U2
(20)

For these equations to be meaningful we need to assume that xi > 0 and that X2 is bounded above
and below by a realistic angle limit. Physical considerations also impose constraints on the inputs,

^ —[TjTitni Tinax] X\Omint^max] (21)

In our calculations we use the following aircraft parameters and state and input limits, which corre
spond to a DC —8 at cruising speed, at an altitude of 35000ft: m = 85000kg, c = 6, a£, = 30, ap = 2,
"Dmin —40000 N, Tjnax —80000 N, Omin —~22.5®, Oj^ax ~ 22.5°, Vmin —180m/s, Vrnnr —240m/s,
Ifmin = -22.5° and jmax = 22.5°. The bounds on the pitch angle $ and the flight path angle 7 are
chosen to be symmetric about zero for ease of computation. In actual flight systems, the positive
bound on these angles is greater than the negative bound. Also, the angles chosen for this example
are much higher than what are considered acceptable for passenger flight (±10°).

To guarantee safety we need to ensure that the aircraft trajectory x{t) 6 5 for all t. The additional
constraint of passenger comfort is satisfied if the aircraft linear and angular acceleration remain
bounded by O.lg:

\Mt)\<0.1g
ki(0®2(0l < O-ig ^ ^

6.2 Optimal Control Inputs and Safe Set of States

Safety is maintained by operating within the largest subset Vi of 5 which can be rendered invariant
by using a control input u eU. Let dS denote the boundary of 5, dVi denote the boundary of Vi.
We calculate the set Vi by solving an optimal control problem over a time interval [tytj]. As we are
interested only in whether or not the state leaves 5, we define tj to be the first time at which the
state leaves 5:

if = inf{r 6 K|x(r) ^ 5,x(<) € 5} (23)

®The bounds on the dynamics which arise from therelationship between the engine throttle and theforward thrust,
£uid the elevators and the aircraft pitch are introduced in the calculation through the constraints on the inputs and the
state variables.
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and we let t be free. If tj exists, then for ease of notation we set = 0 and consider negative
initial times t (without loss of generality, as the dynamics are time invariant). The cost function
Ji(a;,t, w(-)) depends only on the state at the terminal time:

Ji(a:,t,u(-)) =/(a:(0)) (24)

where l{x) is such that:
l{x) >0 a: € S\dS [Safe]
/(a:) = 0 X^ dS [Boundary] (25)
/(x) < 0 a: € E"\5 [Unsafe]

The optimally safe control input ^i*(-) is therefore the one which maximizes Ji(x,t, «(•)):

u*(.) = arg max Ji(x,t, «(•)), JJ"(x,t) = max Ji(x, <,«(•)) (26)

The Hamiltonian is given by
Hi(x,p,u) =pf{x,u) (27)

where p 6 is the costate. The optimal Hamiltonian is thus

Hiixyp) = m^Hi{x,p,u) = Hi(x,p,u*)

„ r / . .In, CX2) gcosx2 , aicxi= max[pi( -flfsmx2 + —wi) + p2( 1 ^2)]
ueu m m m xi m

For a given initial time i, the safe set of states Vi{t) is, from equations (24) and (25),

Fi(0 = {x € 5|3u(-) € W, Ji(x,t,u(-)) > 0} (28)

= {a:€5|j;(x,0>0} (29)

If we let t —00, the set Fi(i) becomes the "steady state" safe set:

Vi = Vi(-oo) = {x € 5|JJ(x, -00) > 0} (30)

with boundary dVi = {x € 5|Ji*(x, —00) = 0}. If Ji*(x,t) is a smooth function of x and t, meaning
that there are no "shocks", or discontinuities of Ji{x,t) as a function of x as i evolves, then Jj (x,t)
satisfies the Hamilton-Jacobi equation:

5Jl(x,f) ff*(T

with boundary condition Ji*(x,0) = /(x). In order to compute the steady state solution Jf (x, —00)
of (31), we assume that no shocks exist, and set the left hand side of the Hamilton-Jacobi equation
to zero. Thus, 'S normal to the vector field /(x, w*).

Consider the following construction. Define each edge of dS separately, as

/l(x) = Xi —Vmim (^) —~X2 "b Tmox» (®) —~^1 ~l" ^mou ^l(^) —X2 ~ ymin (^2)

with X€ 5. Weintroduce the following notation: J|(x, t, u(-)) = /i(a:(0)) is the cost function for edge
i, H{{x,p,u) is the corresponding Hamiltonian, and pi = dl\{x)/dx is the inward pointing normal
to /i(x) = 0. Starting with /{(a:), pi = [1,0]^, so that along this boundary, u* = Tmax but U2 is
indeterminate. Because of the loss of dependency of the optimal Hamiltonian on «2, the points in
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Figure 4: The safe set of states, Vi, and its boundary dVi

{x € 5|/{(a;) = 0} are called abnormal extremals. Define (Fmm,7o) = {a? € 51/}(a;) = OnffJ"(x) = 0}
and calculate 7o by:

7a = Sin (33)
mg mg

Integrate the system dynamics

X= f{x,u*), x(0) = (V;„m,7o) (34)

backwards from t = 0 to t = -T", where T is chosen to be large enough so that the solution to (34)
intersects {x £ 5|/i(x) = 0}. The optimal control Wj is required for this.calculation. At the abnormal
extremal (Kntm 7a), any U2 € [Omin, ^max] may be used. However, as we integrate the system, we leave
the abnormal extremal regardless ofthe choice of U2 instantaneously, and Wj is uniquely determined.
For all U2 £ [Omin,Omax\, for all <5 £ E"^, the inward pointing normal to /(ic(-<5), [uj ^2]^) is such
that p2 is negative, thus, U2 = ^mm* Denote the point of intersection of the solution of (34) with
{x € S\lj{x) = 0} as (Fa,7mox), and the solution to (34) between (V;rxt„,7o) and (Fa,7max) as
as shown in Figure 4. In this example, the abnormal extremal was not complicated enough to cause
difficulties in the construction; the general situation is considered in [38]. Repeat this calculation for
the remaining three boundaries. Only {x € 5|/J(x) = 0} contains a point at which Hl(x) vanishes.
We denote this point as {Vmax, 7b) where:

76 = sin (̂
mg mg

and similarly calculate dVi and Vt, as shown in Figure 4.

) (35)

Lemma 7 For the aircraft dynamics (20) with flight envelope S given by (17) and input constraints
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(21), the safe set of states V\ is the set enclosed by dVi, given by

dVi = {{V, 7)1 {V = Vmin) A (7mm < 7 < 7a) V
dVf V
(7 = 7max) A (Fa < y
(y —ynox) A (76 ^ 7 ^ 7mor) V
dVi V
(7 ~ 7mm) A {Vrnin ^ ^ ^ ^)}

(36)

Proof; The safe set is {a; € 5|Ji(a;, —oo) > 0}, where Ji(x, —oo) is the steady state solution to
the Hamilton-Jacobi equation. Starting with {a; € 5|/}(a;) = 0}, the optimal Hamiltonian Hl*(x,p)
satisfies:

' <0 a: € 5n/}(a:) = 0177 > 7o
=0 a; € 5n/{(x) = 0(77 = 7o
>0 XG5 (7/}(x) = 0 (7 7 < 7a

so that {x G5|(y = Vmin n (7mm < 7 < 7a)} IS Safe with respect to /}(x).

We now prove that for x GdVf, Jl*{x, -oo) = 0. Ji*(x, -oo) satisfies:

where ^Ji*(x,-oo)/dx is the inward pointing normal to {x|Ji*(x,-oo) = 0}. At each point x
in {x|Jj*(x,-oo) = 0}, /(x,u*) is tangent to {x|J/*(x,-oo) = 0}. Thus the solution x(t) to
X= /(x, u*) evolves along Ji*(x, -oo) = 0. By construction, x GdVf satisfies Ji*{x, -oo) = 0.

Repeating this analysis for {x G 5|/i(x) = 0}, we can prove that {V = ymox) A (76 < 7 < 7max)
is safe with respect to /3(x), and x G dVi satisfies Jf*(x, —00) = 0, On the remaining boundaries,
Hi*ix,p) and ^fj*(x,p) respectively are greater than zero, so (7 = 7max) A(ya < y < Vmax) and
(7 = 7mm) A{Vmin < y < y6) are Safe with respect to /i(x) and /i(x). •

6.3 The Least Restrictive Safe Control Scheme

The safe set of control inputs U\ can be characterized as a set-valued feedback map U\ •. S -¥ 2^:

Lemma 8 The safe set of control inputs is Ui{x) = U C\Ui(x), where:

^i(y,7)={ 0
T > ra(7)
0 = Bmin A r = Tmax
0 < 0c(V)
T < r6(7)
0 — 0max A T = Tmin
0 > 0d{V)

if{V,j)£S\Vi
if{V —Vmin] A (7mm ^ 7 ^ 7a)
if{v,7)edvf

(7 ~ 7max) A (V^ ^ y ^ '̂mox)
if (y —Vmax) A (76 ^ 7 ^ 7max)
if{Vn)^dV}

(7 ~ 7min) A {Vmin ^ V ^ V^)
0min ^ 0 ^ 0max ATmin ^ T < Tmax cls^

Ta(7) = (^nV^in + mgsin7

where
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Figure 5: Upper left boundary and lower right boundary of the safe set
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Proof: Consider the left side of dS. For each a; in {a: € 5|/}(a;) = 0}, denote by (ro(7),^a(7)) the
values of {T,9) for which the vector field f{x,[T,9Y) becomes tangent to /}(a;) = 0 (i.e. F = 0).
Setting F = 0 leads to equation (38), for all ^0(7) € [^mtn,^mox]. Therefore, the safe set of inputs
along {x e S\l\{x) = 0} are all T € [Tmin^Tmax] with T > Ta{y) and all 0 € [9min,&max]' At
the point (Fmtn>7i), where 7^ = {7|Ta(7) = T„itn} the cone of vector fields fiWminn'Xu) points
completely inside S. At 70 = {7|Ta(7) = r„xax} the cone of vector fields points completely outside
S, and Tmax is the unique thrust which keeps the system trajectory tangent to 5. This is illustrated
in Figure 5, which shows the upper left boundary of the safe set, and the cone of controls at the
point [Vminna)'

The calculation may be repeated for the right side of dS: {x GS\lf(x) = 0}. Here, let r6(7) be
the value ofthe input thrust for which /(a:, ^(7),^]^) is tangent to /?(a;) = 0, thus r6(7) is given
by equation (39). The safe set of inputs along {a; G S\lf(x) = 0} are all T G [Tmin.Tmax] with
T < Tb{y) and all 9 G At the point (V;„ox,76), where jb = {71^6(7) = Tmm}, Tmin is
the unique thrust which keeps the system trajectory tangent to S (lower right boundary of the safe
set, in Figure 5).

Similar calculations along the upper and lower sides of dS yield that the values of 9 for which the
vector field becomes tangent to dS are 9ciy) and 9d(V) of equations (40) and (41). •

In Figure 4, the portions of dVi for which all control inputs are safe (C/i(a;) = C/(a:)) are indicated
with solid lines; those for which only a subset are safe (Ui(a;) C U(x)) are indicated with dashed
lines. The map defines the least restrictive safe control scheme and determines the mode switching
logic. On dVf and the system must be in Mode 2 or Mode 3. Anywhere else in Vi, any of
the three modes is valid as long as the input constraints ofequation (37) are satisfied. In the regions
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S\Vi (the upper left and lower right corners of 5), no control inputs are safe.

6.4 Additional Constraints for Passenger Comfort

Cost functions involving the linear and angular accelerations can be used to encode the requirement
for passenger comfort:

J2{3:,u(-)) = m^|ii(t)|, Ji(x,u(')) = max |xi(t)a;2(0| (42)

The requirement that the linear and angular acceleration remain within the limits determined for
comfortable travel are encoded by thresholds:

J2{x, u{-)) < O.lg, J^{x, u(-)) < O.lg (43)

Within the class ofsafe controls, a control scheme which addresses the passenger comfort (efficiency)
requirement can be constructed. To do this, we solve the optimal control problem:

J|(a:) = min„ei/i-^2(aJ,^i(-))> w*(x) = argminugw, 72(a^, w(-))
J2{x) = min^giY, J^(a:,u(-)), u*{x) = argminugw,

From this calculation, we determine the set of "comfortable" states and controls:

(44)

1^2 = ^ O.lgAJ2*{x) < O.lp} (45)
^2{x) = {w € ^i|J2(a;,u(-)) < 0-lp AJ2(a^»^^(-)) ^ 0-lp} (46)

These sets may be easily calculated by substituting the bounds on the accelerations into equation
(20) to get

-0.1mg-\-+ mgsiny < T < 0.ImgadV^-\-mg siny
O-lmfi 1—C7 I mg CPS')/ ^ 0.1 m.g 1—c-y , mgcos-y (^'^)
OiV^c c CLi,V^c — — a^V^c c "• a^V^c

These constraints provide lower and upper bounds on the thrust and the pitch angle which may be
applied at any point (F,7) in V2. Figure 6 illustrates the set V2> within the safe set Vi.

7 Conclusions

We have presented a methodology for synthesizing controllers to satisfy multiple performance re
quirements for hybrid systems. In this paper we have restricted our attention to two requirements,
safety and efficiency; the methodology easily extends to an arbitrary number. We have illustrated
the key features of our approax:h using three examples, a purely discrete system, a continuous system
controlled by discrete inputs, and a continuous system with discrete modes of operation induced by
input saturation.

The notions of "maximal safe set" and "least restrictive safe controller" are central to our formulation.
They allow us to deal with the multi-objective nature of the problem by solving a sequence of nested
two player, zero sum games. These notions are also important in the hierarchical control context.
Assume that a number of controllers are synthesized (using the methodology introduced here for
example), each designed to deal with a particular situation, and we are asked to develop a discrete
supervisor to switch between them. The maximal safe sets for each controller provide necessary
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Safe Set ofStates Vj

Figure 6: Comfortconstraint intersected with the safe set (Ki) resulting in the "comfortable" set of
states {V2)

enabling conditions for the transitions of the supervisor; a particular controller should be invoked
only if the current value of the state lies in the corresponding safe set.

In the examples considered here the maximal safe sets and least restrictive safecontrollers naturally
emerged from the calculations. We would like to develop a formal methodology to capture this
procedure. The techniques used in the last example (FVMS) seem to be the most promising in this
respect. We are currently working on formalizing these techniques in the context of semi-permeable
surface calculation in pursuit evasion games. Semi-permeable surfaces form the boundary of the
maximal safe set and define regions where there are limitations on the allowable controls.

The methods presented in this paper can also have important implications for the introduction of
new controllers into so-called legacy systems for real time control. Legacy systems come equipped
with a controller with a guaranteed domain of validity, say Vi . Assume one would like to retro-fit
the system with a new experimental controller with unknown domain of validity, presumably in an
attempt to improve performance. This addition should be done in a way that does not compromise
the safetyof the system. One way of accomplishing this is to utilize the experimental controller only
in the interiorof the validity set Vj and resort to the legacy controller as soon as the state approaches
the boundary of Vi. Our methods are useful for systematically computing the switching logic among
the controllers and determining the switching boundaries.
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A Additional Proofs

Lemma 2 (uj, U2^d*) is globally a saddle solution for the game between {ui, U2) and d over Jj.

Proof; We check that the following inequalities hold for all a;°, ui, U2 and d:

Ji{x^, u\, U2, d) < J{x^, u\, U2, d") < J\(x^, ui, U2, d*)

The state evolution, under the saddle input is:

qm =

«.•(«) = -f ^

iff <rp,- TP
iff >7;,.-TP

Uyt" - r"f

-W{t - Tr) - ^ - r°Tr
P^(t-Di)-^-r°t
Pi(t - Di) - W{t - Tr) - ^ - r<>Tr
P2(t -02)-^- r°t
P2(t - D2) - W(t - Tr) - ^ - r^Tr
Pi(t - Di) + P2(t -D2)-^- r°t

27

if f < Tr A f < Di A f < Z?2

if f > Tr A f < Di A f < £>2

if f < Tr A f > Di A f < £>2

if f > Tr A f > Di A f < D2

if f < r,. A f < Di A f > D2

if f > Tr A f < Di A f > D2

if f < Tr A f > £>i A f > D2
Piit - Di) + P2(t - Di) - W(t - Tr) - ^ -r°Tr \n>TrAt>DiAt>D2



. . +t/lt if«<Tr
^ W i(t>Tr\ w

27 = rP+t

where Tr = is the time at which the steam rate reaches its maximum value under disturbance

d{t) = U\ and Di —Tp, —Tf is the time at which pump i starts pumping water under input
Even though there are eight possible expressions for w(t)^ once the initial condition (and hence
Di^D2 and Tr) is fixed only four of them need concern us. For example, if Di <Tr < D2 the only
possibilities are:

Ui _ ^0^

Ui^ ^0

^ iit<Di<Tr< D2

\{Di<t<Tr<D2
I Pi{t-Di)-W{t-Tr)-^-r°Tr iiDi<Tr<t<D2
[ Pi{t- Di) +Pi(t - Di) - W(t -Tr)-^- rTr \(Di<Tr<Di<t

First fix Ui = u* and allow d to vary. Let a;(i) denote the state evolution starting at a;° under
(ui,U2,d). Then:

w{t) = w*{t) - f (r(r) - r*(r))dr
Jo

But, by the assumed constraints on r and d, r{t) < r'*(r) for all t. Therefore w{t) > w*{t) for all t
and Uj, Uj,d) = —inft>oiy(t) < Uj, U2,d*).

Now fix d = d* and allow ui and U2 to vary. Again let a:(i) denote the state evolution starting at x°
under {ui,U2,d*). The constraints on the switching imply that q*{t) > qi(t) for all t > 0 (with the
obvious notational interpretation). But:

u)(f) =u;*(i) - f (^rM +92W - Qi{t) - 92(r))dr
Jo

Therefore, w{t) < w''{t) and Ji(a:°,Ui,U2,d") = -inf/>oiu(t) > Ji{x°,Ui,U2,d*). •

Lemma 3 (uj*, uj*, d'*) is a saddle solution for the game between (ui,U2) and d over J[.

Proof: As there is no delay in switching the pumps off, the state evolution, x'*(0, under the saddle
input is:

qi*{t) = 0 for all t

0^2 0

2U2 ^ - fe

Tl" = 0 for all t

As above, first fix u and allow d to vary. The resulting state trajectory will satisfy r{t) > r'*{t)
and therefore w(t) < w'*{t) for all t. Hence, J{(a;°, uf, uj", d) < (a:°, ui*, uj", d'*). Likewise, if
we fix d = d'* and allow u to vary, the resulting trajectory will satisfy qi{t) > ql*{t) and therefore
u;(t) > w'*{t) for all t. Hence, J((x°,ui,U2,d'*) > JJ(a;°,uj*,uj",d'*). •
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Lemma 4 IfW < Pi + P2 then J^ix^) = min{w*(jDi), u;'(D2)}.

Proof; To facilitate the algebra consider the derivative of the water level w* which is given by:

w'{t) = <

-Uit - r°

lA

>

< D At < £>2
-IV if i > Tr A i < D At < D2
Pi - U,t - r"

<

VI

> D At < D2
P\-W if t>Tr At > D At < D2
P2-Ult-T° if t<Tr At < D At > D2
P2-W if t>Tr At < D At > D2
Pi + P2 - V,t - r" if t<Tr At > D At > D2
Pi + P2 - w if t>Tr At > D At > D2

This expression leads us to distinguish the following cases:

Case 1: If IT > Pi + P2, then, for t large enough (in particular t > niax{7V, £>1, D2}), ^'{t) =
Pi P2 - M < 0 therefore w' -4 -co. Clearly in this case a game winning strategy does not exist
for Ui for any initial condition, as d can always force the water to drop below any level.

Case 2: If IT < Pi + P2 we can distinguish three further cases:
Case 2.I.* If IT < min{P].P2}, then:

f <0 if#< min{Di,£>2}
if <> min{£>,,D2}

Therefore, Ji"(x°) = ii'''(min{Di, D2}).
Case 2.2; If Pi < W < P2, then:

w'{i) <

if t < Di< 0

> 0

< 0

>0 if / > £>2

if £>i < / < D2 A / <

if Di ^ t ^ D2 A ? >

Therefore, t7i"(r°) = min{u?"(£>i), '̂"(£>2)}. By symmetry, the same will be true if P2 < M'' < Pi
Case 2.3; If max{Pi,P2} < W, then:

<0 if t < min{Z)i,£>2}
>0 if £>i < < < D2 A t <

<0 if £>1 < < < £>2 A t >

>0 if £>2 < < < £>i A < <

<0 if D2 ^ t K £)] A / >

>0 if i > max{£>i, £>2}

ih

Again, Ji*(x ) = min{tu*(Di), ty"(D2)}.

Overall, if we restrict our attention to Case 2 (where there is some hope that the system will be
safe), the above relations indicate that:

= min{io''(jDi), u?*(D2)}
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In fact, some algebra reveals that for safety one needs:

> max

> max
t Ml - F2{Di - V2] H

UiDl
n ' /i/f, •+.

w > max

> max

f Mi +W(Di - Tr) + +r°T^ 1 if Tr <I>i <£>2
[Ml- PiiDi - Di) + W(D2 -Tr)+^ + rTr J
f Ml +W(D2-Tr)+^+r<'Tr^ lifrr<D2<Cl
1 Ml -P2(Di - Di) +W(Di-Tr) + ^ + r^Tr )
I Mi +̂ +r<>Du lifD, <r,<D2
[Ml- Pi (£>2 - Di) + W{D2 - Tr) + ^ + rTr j
f Mi +̂ ^+r»£)2, |ifD2<rr<I>i
\ Ml - P2(Di - I>2) + W[Di -Tr) + ^ + rOTr J

}"
Mi + ^ + r"Di,

w" > max < ' u [ji n / if Di < £>2 < Pr
1 Ml - Pi(£l2 -£>,) + + r°D2

Mi +^ +r°D2,
Ml - PiiDi - D2) +^ +r°Diw° > max < ' ? UiD'' »- } D2 < Di < Tr
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