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Preface

The field of cellular neural networks (CNN) is very attractive. The CNN spreads out the
ideal of local connectedness and emergent computation. Encountering with the huge body
of literatures of this field one can find that CNN is mostly nourished from two main fields:
One is the concept of cellular automata and the other is artificial neural networks. As
an inter-discipline product, the CNN mainly comes from the tendency of finding a neural
network which can be easily implemented by the state-of-the-art VLSI technique and finding
a high speed parallel super-computing platform based on ana-logic computation.

Since its heavy color of circuit implementation and the inspiration to the first generation
CNN chip and the possible applications to the image processing field, lot of successes mis-
leaded the CNN community to focus on developing a parallel image processing chip using
ana-logic paradigm. Since 1988, very little had been done to consider the inner philosophic
ideal that the CNN concept contributed to the science. While the western circuit commu
nity are facing the successes of new concept, new principle, new applications, new chips
and most important, new papers on conventional CNN whose main principles were mainly
built up in the two pioneer papers of Chua and Yang. During 1988 to 1996, in the western
world, the CNN is restricted in the range of low-level CNN, it seems that no one try to
unified the CNN universe from the non-circuitry point of view. And all the generalizations
were restricted in the low-level of artificial intelligence{A\). From the mathematical point
of view, the development of CNN in western world during these 8 years emphasized the
function instead of functional, implementation instead of generalization.

However, the case was totally diflFerent in China where instruments and computational
power were too weak to support VLSI design and large scale simulation of image processing,
the research of CNN was focused on the systematic levels. In early 1993, a CNN group leaded
by Tao Yang began to develop a new CNN structure which could embed fuzzy logic. This
structure was latter found to be a type-II fuzzy CYA(FCNN) , which then was embedded
into a more general FCNN framework. Until early 1995, all the branches of FCNN had been
set up and lots of applications of FCNN to mathematical morphology, image processing and
AI had also been founded.

This monograph contained almost all the results that presented by this group during
1993 to 1996. Since almost all the early results were presented in Chinese, none of them
was known in the Western World until early 1995 when Tao Yang went to University of
California at Berkeley and shared his fuzzy ideas with the CNN group there.

This monograph is not only the first book of FCNN but also the first collection of all the
results of FCNN so far. And most of them are brand new to western CNN community. We
hope that the new ideas in this book can be shared by the whole Western CNN community
in its English form.

However, FCNN had been overcome lots of unbelievable obstacles both in China and
Western world. Sometimes, the only straw for us to clutch at in the ocean of criticisms is
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the noble model of Prof. L. A. Zadeh who himself also experienced what we did. We would
like to cite what he felt to express what we did:

"For the most part, however, what I experienced was skepticism and hostility. Even through
I had a thick skin, there were occasions when I had to control my emotions." [L. A. Zadeh,
"The evolution of systems analysis and control: A personal perspective", IEEE Control
Systems, vol.16, no.3, June 1996, pp. 95-98].

However, even we have thicker skins than that of Prof. Zadeh's, sometimes we find that
we can not control our emotions by using any fuzzy or non-fuzzy control strategies.

October, 1996



Chapter 1

Introduction

In this chapter we give an overview of the state-of-the-art of cellular neural neit(;or/;(CNN).
This overview will give the readers who are not very familiar with CNN all the elementary
concepts, expressions and symbols used in this field. For experts in this field, we will show
why from the systematic point of view, the structure of discrete-time CNN(DTCNN) is more
important than the other CNN structures appeared during the same period, e.g.. Delay-type
CNN(DCNN), CNN with nonlinear synaptic laws(NCNN), and chaotic CNN(CCNN). We
also show that CNN universal machine(CNNUM) is a secondary level concept which can
not be mixed with the concepts of CNN universe in the first level (the elementary level)
which consists of all the existed conventional CNN and FCNN. The purpose of this chapter
is not to survey all the existed CNN literatures but to show that the existed CNN map from
a systematic point of view instead of only a circuitry point of view.

1.1 The State-of-the-art of CNN

CNN is a kind of locally connected network. It originally stemmed from the concept of
cellular automafa(CA)[101, 322, 83, 227, 105] and artificial neural network (ANN)[125, 31,
294, 68,192, 399,173,157]. The local connectedness is the most significant property of CNN,
which is a significant difference to other ANN. The continuous dynamics distinguishes CNN
from CA. The local connectedness restricts the ability of CNN for solving lots of global
problems which can not be decomposed into local components. However, the local property
has its advantage such as easy implementation by using VLSI technique and efficiency for
local problems. Another important aspect of this structure is that it provides a paradigm
for studying emergent computation[87] and the relevant topics, e.g., artificial life(AL)[340,
177, 320], besides some other models such as CA and spin glass model[190].

CNN was first introduced in two twin papers[47, 46] in October 1988. This decade
viewed a rapid growth of this field. So far, there had been published one book[271], four
conference proceedings[242, 243, 244, 245] and lots of special issues in different international
journals[204, 205, 207, 206, 203].

Since its first introduction in 1988 [47, 46] there had been developed lots of different
branches of this field. The main branches are motivated by engineering applications and
the results from biological sciences, especially those results from retina research because
retina and CNN structures share lots of common properties such as layer structures and
local connectedness[136]. The engineering field keeps trying to find the easy implementation
of different CNN structures by different techniques including VLSI, optical component and
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quantum dot techniques. So far, CNN is mainly used in image processing because the
two-dimensional (2D) array of cells is directly connected with the digital image which is
normally a 2D array of small units called pixels.

Since image processing is well-studied and is one of the most challenging field in artificial
intelligence and signal processing, the relation between it and CNN is two folds. First, there
exist lots of existed results from the linear and nonlinear image processing which can be
directly mapped into CNN structures. Almost all the early work and lots of the recent work
are concentrated into this direction[209, 311, 67, 53, 57, 321, 305, 214, 209, 316, 144, 300,
55, 220, 93, 262, 396, 195, 169, 268, 336, 44, 229, 299, 310, 251, 359]. Almost all the results
along this direction employ computational CNN structures which only map the existed
image processing algorithms into the weight arrays of CNN. The new tendency in the CNN
research is the embedding of nonlinear synaptic laws into the linear CNN framework. This
is directly motivated by nonlinear image processing techniques. Again, lots of work in this
direction is focused on computational CNN[250]. On the other hand, the CNN structures
also contribute to image processing with new computational arrays and learning algorithms.
However, this is a brand new direction, lots of work should be done and this direction is not
yet well-understood because there is no existed paradigm as image processing can be used.

Although there may also exist some other techniques such as optical computing array
[25, 90, 306, 308, 89, 139] and quantum dot computing array, so far, VLSI technique is
the only way to implement CNN[334, 112, 330, 84, 17, 138, 331, 113, 175, 235, 41, 217,
211, 281, 284, 76, 174, 81, 137, 154, 274, 199, 16, 253, 163, 162, 20, 237, 167, 283, 296,
160, 79, 22, 69, 338, 159, 176, 297, 298, 232, 80, 6, 82, 38]. Lots of VLSI implementation
are designed for special task with fixed templates[332, 347, 254, 56, 168, 313], while the
other try to design the programmable chip in which the templates are adaptable[24, 36,
62, 9, 114, 110, 111, 109, 213, 212, 164, 252, 280, 285, 70, 8, 45, 248, 288, 75, 287, 61,
37, 161, 58, 286, 210, 182, 71]. And some software and hardware accelerating board were
also developed[333, 270, 261, 259, 171, 260, 178, 179, 165, 72, 236]. In the VLSI based
implementation, the digital ones and the analog ones were both presented. The input and
output problems can be solved by using the embedded optical sensor and optical interface
in every cell[77, 78, 313, 314, 297, 309, 140, 21, 19]. However, the state-of-the-art chips are
not better than the existed programmable DSP chips which had been developed for many
years and widely used today. But we can not overlook the potential power in the future
CNN chips. This is one of the main reasons why the study of CNN is becoming more and
more attractive.

In a word, the state-of-the-art CNN structures emphasize the VLSI implementation and
applications to image processing. There almost exist no work considering the global CNN
universe from a systematic point of view.

1.2 Structures of the conventional CNN

1.2.1 Elementary CNN

Definition 1

The elementary processor in a CNN array is called cell.

Remark: A cell is the most elementary unit in a CNN array, which builds up the structure
of a CNN. We denote a cell respectively by Ci, Cij and Cijk in a ID, 2D and 3D CNN array.
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Definition 2

Let r 6 N be a positive integer, the r-neighborhood system, Nr{i), Nr{ij) and Nr{ijk) of
a center cell C,, Cij, Cijk in a ID, 2D and 3D CNN, is respectively defined by

Nr{i) = {Cj : max(di(j - 0) < (1-1)

where di(-) is a distance defined in R.

= {Cki : max(d2(^ - - j)) < r} (1.2)

where d2(-, •) is a distance defined in R^.

Nr{ijk) = {Cpqr I max(d3(p -i,q- J, r - k)) < r} (1.3)

where .,.) is a distance defined in R^.

Remark: r-neighborhood system is the core definition for describing the local connectedness
of a CNN. This concept only define the possible longest synaptic weight that may affect a
center cell. It does not give the structure and the connections between cells. Although we
can also define the neighborhood system in R", n > 3, in view of the near future techniques,
we find n < 3 is enough.

We then define the dynamics of a cell in CNN. Here, only the 2D case is given. The ID
and 2D cases are similar.

Definition 3

An elementary CNN is an M x A" array which consists of M rows and N columns cells,
every cell Cij is given by the following equations:

1. State equationcell, state equation

= -•A(i,j\k,l)yki(t)
^ Cki£Nr{i3)

+ ^ B(i,j\k,l)uki(t)^-Iij{t) (1.4)
Ckl^Nriij)

where Xij, Uij and yij denote the state variable, input and output of cell Cij, respectively.
k, I) and B{i,j; k, I) denote the feedback and feed-forward synaptic weights between

cells Cij and Cki, respectively. Iij{t) is the bias (also called threshold) of cell Cij, which
may be static, time-varying, space-invariant or space-varying. C > 0 and > 0 are the
values of the capacitor and the resistor, respectively L yij is given by

2. Output equation

Vij = \ +1| - kii - 1|] (1-5)
Uij is given by

^Of course, a cell is not necessary to be a first-order dynamic system, it ceui also be represented by a
high-order ordinauy differential equation or a functional differential equation.
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3. Input equation

Uij = fuiEfj) (1*6)

where Eij is the detected signal, e.g. the intensity of light detected by the embedded
optical sensor in cell Cij. In the elementary CNN, /u(-) is used to normalize the detected
signal to a proper range.

4. Initial condition a:ij(0).

5. Boundary condition.

Remark: In a VLSI implementation of CNN, Uij, Xij, and are three voltages. is a
bias current.

If the CNN is space-invariant, then Eq.(1.4) can be written into a 2D convolution form
as[46]

+ + + (1.7)

where denotes a 2D convolution. A is called feedback template and B is called feed
forward template.

1.2.2 Different CNN structures

Since its invention[47, 46], different CNN structures had been proposed for different appli
cations and from different biological models.

In the motion related applications[266], time delays are introduced into the CNN struc
ture and give a delay-type CNN (DCNN) which is defined by[263, 266]

A{i,j:kJ)yki{t)
Ckl^Nriij)

+ t)
Ckt€Nr{ij)

+ ^ B'̂ {i,j;k,l)uki{t-T)
Ckl&Nr{ij)

+ B{iJ;kJ)ukiit)-\-I (1.8)
CklGNr{ij)

where r € R+ is called time-delay. DCNN was proved to be essential in motion related
CNN-applications [266]. There exists some theoretical results on the stability of DCNN
in [86, 98, 388, 135, 273, 50, 272, 48]. Since DCNN is governed by a set of functional
differential equation (FDE), some complex phenomena, e.g., chaos, were observed even
only small number of cells were used[49, 97], and some results of predicting the chaotic
sequence generated by chaotic DCNN is presented in [99].

Since only linear synaptic weights are not enough to deal with some image process
ing tasks where non-linear properties are embedded, the CNN with nonlinear synaptic
/aius(NCNN) were introduced[86]. A general NCNN can be given by

Xij = A(x(iV,-(2j)), VL(Nr(ij)),^ *Xij 4- B(x{Nr(ij)), u(A'r(u)), i) *Xij
-\-l(x{Nr{ij)),ii{Nr(ij)),t^ (1.9)
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where x(A'V(u)) and u{Nr{ij)) denote all the state variables and inputs within Nr{ij).
respectively. In this case, synaptic laws are functions of time, state variables and inputs
within the neighborhood system.

Since CNN is a nonlinear dynamical array, there also found some complex phenomena,
e.g., chaos, even when a few cells is used[317, 404, 403, 401, 14, 400, 405, 402, 12]. The
strange non-chaotic attractor is also observed in 2-cell quasi-periodically forced CNN. If an
array of cells is used, the hyper-chaos also emerges[13]. Since the control of chaos is also
a very active field in view of its possible applications to spread spectrum communication,
secure communication and measurement improvement, some control methods are also used
to control the chaos generated by CNN[94, 150].

There also exists some other kinds of CNN structures such as chaotic CNN{CCNN)
where every cell is a chaotic dynamic system[107, 42] which can be used to model some
kinds of emergent computation behaviors and be used to simulate some wave and pattern
formation phenomena in active medium[228, 152, 43, 42]. In CCNN arrays some nonlinear
dynamic behaviors such as synchronization[151], cluttering and cooperative phenomena are
also found[201, 202]. The existed results of CCNN consist of two main branches. One is try
to study how to used the elementary CNN to generate chaotic signal and directed to the
relevant applications[107,194,42]. The other branch is to study how to use chaotic elements
as elementary cells to model spatio-temporal chaotic processes[228, 13, 151, 202, 152].

Multi-layer CA^A^(MCNN) uses more than one layer CNN's to perform a single task[191,
47, 118].

The CNN universal machine (CNNUM)[265, 264, 267, 257, 258, 54, 307] is not an
elementary CNN structure, it is a platform for integrating the flow of CNN operations, we
do not discuss it in this book, the interested readers are referred to [265, 264, 267, 257, 258,
54, 307]. However, the CNNUM is an important tool for organizing different kinds of CNN
structures to perform a more complicated task that a single CNN can not do. The CNNUM
structure sometimes can also be used to solve some global problem which are difficult to
be decomposed. In fact, the CNNUM had been proved to be as universal as a Turing
Machine[54]. Since it is only a platform for CNN operations, any kind of CNN should be
included in the core of this platform, including DTCNN[307] and FCNN[351, 352]. However,
the state-of-the-art CNNUM has only the elementary CNN core[267], this platform needs
further improvement.

1.2.3 Discrete-time CNN

Since analog and digital, continuous and discrete-time methods represent the state-of-the-art
implementation of information processing processes, it is very natural to modify the original
continuous CNN model into a discrete-time structure[120]. A discrete-time CNN^DTCNN)
is defined by the following discrete dynamic equations:

1. State equation

A{iJ;k,l)yki{k)-{- ^ B{iJ:kJ)uki-\-1
Ckl^Nr{i,j) Ckl^NriiJ)

A<i<M,l<j<N (1.10)

2. Output equation

yij{k) = F(xij(k - 1)), 1 < «• < M, 1 < i < iV (1.11)
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3. Initial condition

a:ii(0), l<i<M,l<j<N (1.12)

4. Input equation

5. Boundary condition

Xij{t) e R, yij{t) € {0,1} and Uij e {0,1} are state, output and input of cell a-i, respec
tively. / G R is the bias, k £ Z is the discrete time. F(') is the nonlinear output property
of a cell, it should be easy to be implemented by using VLSI techniques.

Similarly, we can rewrite Eq.(l.lO) into the following form:

Xij(k) = A* yij{k) -\-B* Uij -\r I (1-13)

One can see that the structure of DTCNN is close to that of a CA. One advantage
of DTCNN over the elementary CNN is that it has both binary input and output which
makes the connection between two different chips very easy. And the DTCNN has a stronger
robustness than elementary CNN.

Although DTCNN may be viewed as a discrete form of CNN, it is not necessary to think
that CNN can do all what a DTCNN can do. For example, let we consider the following
DTCNN defined by[349]

1. State equation

Xij{k) = A* yij(k), I < i < M,1 < j < N (1-14)

2. Output equation

yij(A: -i-1) = f(A * yij{k)) ©yij(k - 1),1 < i < M,1 < j < N (1.15)

where © is the exclusive OR(XOR).

3. Cell nonlinearity

4. Initial condition

2/u(-l), 2/^(0), l<i<M,l<j<N (1.17)

One can see that the nonlinearity of the above cell is different from the original one
in [120], we used this nonlinearity to guarantee that the outputs of this DTCNN can be
represented by 0-1 logic. The output equation is also different from that in the original
paper[120] and needs a 2-bits local digital memory for storing the previous outputs. Since
XOR is reversible, from Eq.(1.15) we have:

yij{k - 1) = f{A * yij{k)) © yij{k+ l)A < i < M,1 < j < N (1.18)

.which means that if we know the output yij{k-\-l) aX k-\-1 and the output yij{k) at k then
we can find the output yij{k —1) at A: —1. This kind of DTCNN is reversible(RDTCNN),
which has no corresponding CNN structures.
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Although it had been shown that a CNNUM program can model the behavior of any
DTCNN, we should note that the invention of DTCNN played a very important role in CNN
history. First, its importance comes from the introduction of discrete-time dynamics into the
CNN framework. It shows us the possibility that in CNN universe, a cell may have different
kinds of dynamics except for continuous dynamics. The invention of DTCNN reminds us
that cell dynamics should evolve in the event space., which may include the time axis and
any event sequence. This is the direct motivation for the unification of CNN structure as will
be shown in Sec. 2.1. Second, if we break the restriction of implementation consideration,
DTCNN directly enlightens the concept of "structural dynamics" of neighborhood system,
which is a most important concept in CNN universe. This concept will be discussed in Sec.
2.1.

There exists some stability results of DTCNN in [120, 128]. Some other theoretical
results can be found in[304, 231, 230, 92, 88,184]. The learning algorithm based on DTCNN
is presented in [122]. DTCNN can also be used in associative memories[34, 32], image coding
and decoding[145, 14.3], image thinning[134, 132] and other applications[124, 216], Some
DTCNN were designed to have continuous output[52, 345], this kind of DTCNN emphasized
the discrete nature in time instead of both in time and input/output. There also exists lots
of work on hardware implementation of DTCNN[215, 234, 346, 133, 121, 119, 7]. Since
DTCNN are nonlinear discrete-time dynamic systems, complex phenomena, e.g., chaos,
can also be easily found[233, 345]. The multi-layer DTCNN structure can be found in[118].

1.3 Notes

Since CNN can also function as local connected learning networks, lots of literatures con
cerning with learning algorithms of CNN were presented[198, 33, 318, 104, 127, 197, 2, 327,
186, 185, 108, 290, 191, 18, 116, 291, 106, 183, 315, 319, 247, 328, 3, 256, 170, 326, 312,
406, 123, 329, 407, 225]. Since almost all these learning algorithms are similar to those used
in ANN, we do not discuss them here. The interested readers are refereed to the above
references.
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Chapter 2

Fuzzy CNN

In this Chapter, we present the principles and structures of FCNN in the framework of a
unified CNN structure. We first present the unified CNN structure from a systematic point
of view, then FCNN is developed from this unified CNN structure by introducing fuzzy set
theory into it.

Fuzzy set theory provides an inference methodology which approximates human reason
ing capabilities and can be applied to knowledge-based system[393]. It provides a math
ematical strength to capture the uncertainties associated with human cognitive processes,
e.g., thinking and reasoning. Also, it provides a mathematical methodology to model lin
guistic statements and knowledge.

While fuzzy theory provides an inference mechanism under cognitive uncertainty, CNN
structures offers advantages such as learning, adaptation, fault-tolerance and parallelism.
However, it seems that a CNN cell which is typically of 3 x 3- or 5 x 5-cell neighborhood
system is a poor model of a real neuron which is typically of thousands of synapses[4, 153,
172, 241]. There exist some uncertainties in CNN synaptic weights. On the other hand, the
input information (e.g., images) may also bear some fuzziness which comes from sensing,
transmitting and processing. The information flow propagating in a CNN is mostly like a
fuzzy process if inputs and/or synaptic weights are fuzzy.

The conventional CNN has a poor interface to the knowledge of human expert which is
represented by fuzzy IF-THEN rules and the experience of human expert which is described
by linguistic statements. From above we know that it is very necessary to integrate fuzzy set
theory with the CNN paradigm and give birth to a new concept called fuzzy CA7V(FCNN).

The concepts of FCNN are reasonable extensions of CNN from classical sets to fuzzy
sets. The principles of FCNN is based on the uncertainties in human cognitive processes
and in modeling neural systems.

For purpose of giving the reader an overview of the position of FCNN in the CNN
universe, we first give the unified CNN structure and then we discuss FCNN as an important
generalization of the unified CNN structure.

2.1 A unified CNN structure

Since CNN is an infant, it is hard to predict its potential structures for different applications.
Also, it is hard to predict the possible structures that the future devices and new materials
may implemented. The authors of [43] presented a kind of generalization of CNN structure
which is a circuit based unification. Although the concept of CNN is developed based on
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the circuit theorj', it is indeed a much wider concept from the systematic point of view
because it reflects some aspects of life systems where some biological cells also share the
local connectedness nature. In this book, we unified the CNN in a systematic framework.
We present a unified CNN structure which includes all the existed CNN structures as its
subclasses and make FCNN as an important generalization, which embeds fuzzy dynamics
and fuzzy information flow (linguistic flow) into the unified CNN structure.

The most basic properties and principles of the unified CNN structure are local con
nectedness, dynamics and the concept of cell.

The local connectedness emphasizes not only the easy implementation but also the inner
nature of lots of biological, physical and social phenomena which are reflected the new
tendency in artificial intelligence and artificial life where a new concept of decentralization
is proposed[340]. On the other hand, the local connectedness also provides us with a tool
to imitate the emergent behaviors of life systems[87] besides CA.

The dynamics provides the unified CNN structure with the ability of self-organization,
learning ability and the basic condition for emergent computation. Without dynamics, the
CNN is only a computational array which does not have any significant difference from the
existed parallel image processing chip or parallel signal processing chip.

The cell is the elementary unit of CNN, which is a trade-off between implementation and
function. A simple cell structure provides a bigger cell population and larger neighborhood
system but a relatively simple cell function. Sometimes, since the emergent computation
is hard to deal with, one may want to embed more controllable (programmable) functions
into a cell such that the control of the CNN behavior becomes easier. But a more compli
cated cell decreases the cell population and the size of neighborhood system or makes the
implementation very difficult.

It is easy to understand that cell may be any kind of individual. Local connectedness can
be measured by a "distance". The new concept we used to define a unified CNN structure is
the dynamics which consists of cell dynamics, neighborhood system dynamics and synaptic
weight dynamics.

1. Cell dynamics

X((U) A P»(x(Af,(U)),«(iVi(U)),/(U),u) o5.(U) (2.1)
where .'r(A^,(U)) and u(iVt(lJ)) denote all the states and inputs within the neighborhood
system A^t(LJ). "U" is a generalized time, which may denote the order of an arbitrary
event sequence, e.g., discrete event sequences. Symbol "o" denotes a combining relation
between information flow (I>a,(-, •, •)) and structural flow (5t(')). Symbol ^ denotes
an arbitrary relationship from right hand side to the left hand side. This relation may be
defined by an ODE, a PDE, an FDE, a discrete-time dynamics, a linguistic dynamics, a
conceptual dynamics, a functional dynamics or any other dynamics.

2. Neighborhood system dynamics

1V.(U) A •(•)},/(•),•) (2.2)
3. Synaptic weight dynamics

'This symbol comes from an ancient Chinese philosopher ZHUANG ZHOU who believed that aU the
things one could define came from one's heeirt(brain). In this sense, this symbol means: "from aU the things
one can define".
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5:(U) i— P5(cells within A^t{U)) (2.3)

where Vx{-^ •, {*» %') ^5(*) «^re three dynamic systems/or transformations.
Remarks:

1. Cell dynamics can be any dynamic system, function or functional, continuous or
discrete-time, given a variable called state^ a variable called input and a variable which can
be accessed by the other neighbor cells called output.

2. Neighborhood system dynamics consists of any fixed, time-varying, space-varying,
and movable organization rules. Even a random connection is possibly used. The only
elementary principle here is local cluster of a collection of cells with any possible manner
and organization.

3. Synaptic weight dynamics only defines the connection type within a neighborhood
system. It may be a relation of matter transmission, chemical exchanges or energy exchanges
and any other physical or non-physical relationships.

Definition 4

A unified CNN is defined by a cell dynamics in Eq. (2.1), a neighborhood dynamics in Eq.
(2.2). And given a cell C, which is restricted by the following neighborhood restriction:

Ni{\J) < driCi) (2.4)

where dr{Ci) denotes a kind of distance, which is less than r, from Cj.

Fig. 2.1 show the concept of this kind of unified CNN structure. In Fig. 2.1 the general
time is labeled by "1" and "2", However, it only denotes two "snapshots" of the dynamics.
In a real unified CNN model "U" may be continuous or discrete(or some cells are continuous
while the other are discrete). In Fig. 2.1, every small circle denotes a cell and the black dot
denotes cell C,-. The regions within the closed solid or dashed curves denote the neighbor
hood systems of €{. The thin arrowed curves denote the direction and form of information
flow. From Fig.2.1 one can see that Vj\f changes the shape of neighborhood system and also
changes the numbers of cells within the neighborhood system at different moments. T>s
changes the information flow directions and the connecting relationship between a center
cell and its neighbor cells.

2.2 Principles of general FCNN

An FCNN structure should maintain two main features: 1) local connectedness between
cells, and 2) simple cell structures and characteristics. A general FCNN is defined by:

Definition 5

1. Cell dynamics

Xi(U) ^ Pi(i(iVi(U)),ti(JV.(U)),/(U),U)oSi(U) (2.5)

2. Neighborhood system dynamics
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C•^

N;(2)

/ S;{1)/>

Figure 2.1: Unified CNN structure. In this figure only the neighborhood system dynam-
ics(upper) and synaptic weight dynamics(Iower) are shown.

iVi(U) ^ VN{x{Ni(U)),^Ni{U))J{U),U) (2.6)

3. Synaptic weight dynamics

5i(U) i— p5 (cells within iV,(U)) (2.7)

Remark: This is a generalized case of the general CNN framework presented in Sec.2.1.
In this definition, over a character means that the character may represent something
related to fuzzy set, e.g., fuzzy number, linguistic statement and conceptual variable. How
ever, this definition is too general to be implemented and applied to special applications.
In this book, we use the following operational definition of FCNN to unified all the existed
FCNN structures.

Here, only the 2D cases are considered. For ID and 3D cases, the definitions are similar.

Definition 6

A cell Cij in an M X AT general FCNN is defined by
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1. State equation

C
dxijit)

dt

Ckl^Nr{i,j) CkieNr(i,3)
S y.

conventional part

{^Af(i,y,k,l)i.-^l{}')3\ 0)' J'fcKO)
\J^Bf{i,y,k,l){^s{h Ft ^)) if^Ukii'̂ kl)^

V V I.. ''

fuzzy part

,l<i<MA<j<N (2.8)

2. Output equation

Vijit) = fianj {xij{t)),l <i<M,l<j<N (2.9)

Remarks

1. From Eqs.(2.8) and (2.9) one can see that this structure is a type-III FCNN (see
Sec.2.3). It can be degenerated to type-I, -II FCNN's and conventional CNN.

2. One can see that the fuzzifier layer is embedded in the fuzzy part. The reason that
we don't insert a separate fuzzifier layer is that we can choose simple membership functions

k^Af(i,ykA){')^ k''Bf{i,yk,i){')^ l^ukii')^ and fJLxiji') which can be easily implemented by VLSI
technique. It is easy to see that the fuzzy part consists of all the nonlinear synaptic laws
while the conventional part consists of all the linear synaptic laws. However, we can not
conclude that FCNN is only a kind of NCNN. Remember that the fuzzy number (i.e., a
convex and normal fuzzy set on a real line) can propagate through an FCNN structure. For
example, consider the following FDTCNN:

(Aj{i, j] k,l),yki[k)j
(2.10)

yki(k) = Fx(xki{k)) (2.11)

where the symbol over a variable is used to denote that the variable is a fuzzy number.
It is very clear that no conventional NCNN can implement this structure.

3. The membership function jUx,j(*) in a conventional CNN may be interpreted as an
"output function". Sometimes we would like to view it as a defuzzifier. For example, if we
choose fixij (•) as:

x < 0
j. >Q (2.12)

then it defuzzifies all states into classical logic variables.
4. (•) and ^Bcfc,€Wr(i,j) (') simple operations on fuzzy sets, e.g., union,

intersection, algebraic product, algebraic sum, bounded sum and bounded difference. Also,
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they may be complicated operations, e.g., similarity between two fuzzy numbers. By the
wa}', (•) ^-nd (') combination of the above operations.
They can use any number of entries in A/ and Bj and use any yki and Uki in Nr{i,j). It is
not necessary to keep the tradition of the conventional CNN where every entry in .4 or B
can only multiply a yki or a Uki because the relation between the (local) structure (synaptic
weights) and the (local) information flow (inputs, state variables and outputs) is the only
thing which we concern about in an FCNN.

5. It is easy to see that the general frame given by Eqs.(2.8) and (2.9) can be easily
generalized to fuzzy DCNN(FDCNN) and fuzzy DTCNN(FDTCNN).

2.3 Classification of FCNN

Fortunately, there existed lots of literatures of FNN since 1974[181]. According to the
method presented in [35], we can lump FNN into 3 types: 1) Type-I FNN, which has
real signal and fuzzy weight[343, 344], 2) Type-II FNN, which has fuzzy signal and real
weight[149, 295], and 3) Type-Ill FNN, which has fuzzy signal and fuzzy weight[146, 126,
26, 28, 223, 91]. We borrow the concepts of FNN to FCNN structures, so there also exist
this kind of classification.

Since FCNN is a generalization of CNN from classical set to fuzzy set, it is not strange
to enable a generalization of almost all the conclusions and applications of the conventional
CNN. Corresponding to the classification presented in Sec.1.2.2, the FCNN structures can
also be classified in that way. With the ability of interpreting linguistic statements, the fuzzy
set theory should introduce the ability of processing linguistic inputs into FCNN. From this
point of view, we hope that FCNN can model not only structures of neural systems, as the
conventional CNN does, but also the behaviors and function of neural systems, namely, the
cognitive processes.

From the above statements one can see that the classification of FCNN can be done

along both the CNN direction and the FNN direction. There also exist some differences
between the FNN and FCNN. In an FCNN, the cell property is not necessary space-invariant
which means that FCNN has more possibility than FNN. For example, we can define the
type-IV FCNN while there doesn't exist the corresponding type-IV FNN. A type-IV FCNN
may contain all kinds of cells belong to any type-I, -II, and -III FCNN. This structure
gives the type-IV FCNN the ability of processing both signals(real numbers) within some
neighborhood systems and processing more general information flow (e.g., conceptual or
linguistic variables) within some other neighborhood systems.

One can see that a type-II FCNN is the closest one to the conventional CNN because
it has real weight. On the other hand, type-II FCNN has the simplest structure for VLSI
implementation, this is the reason why so far almost all the results of FCNN are focused
on this type.

2.4 Different structures of FCNN

Since it is impossible to study all the kinds of FCNN's in Eqs.(2.8) and (2.9) in a single
book, we will focus on one of its simplest case, in which only the fuzzy logical OR (V or
MAX) and the fuzzy logical AND (A or MIN) are integrated. On the other hand, MAX and
MIN are the simplest fuzzy union and intersection operations which can be implemented
by using VLSI technique.
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The structure of FCNN is a tradeoff between VLSI implementation and general function.
For the purpose of VLSI implementation, the FCNN proposed in this book integrates the
fuzzifier, the defuzzifier and the fuzzy inference engine into a planar structure. The nonlinear
dynamics of the conventional CNN is kept in the new FCNN structure.

2.4.1 Type-I and Type-II FCNN

In this section, we give the structure of type-I and type-II FCNN's which will be used in
this book. Also, only the 2D cases are given.

A cell Cij in an M X N type-I FCNN is defined by

State equation

CkieNrii,])

+ Y B{i,j]kJ)uki +1
Cki£Nr{i,j)

l)i'̂ kl))
A<i<M,l<j<N (2.13)

Output equation

Input equation

2/tiW = I <i < M,1 < j < N (2.14)

Uij = Eij, I <i < M,1 < j < N (2.15)

Constraint conditions

l^ijl <lA<i< M,l<j < N (2.16)

Parameter assumptions

C > 0, > 0

\f{xij{t))\ < 1,1 < i < M, 1 < i < AT (2.17)

Boundary condition and initial condition

In a type-I FCNN, there exist fuzzy synaptic weights Af(i,j;k,l) and Bf{i^j;k,l) (In
this chapter, we use symbol """ over a character to denote a fuzzy number. The relation
between a fuzzy feedback synaptic weight and an output is defined by the membership
function /J'Af{i,j',k,i){yki)' The relation between a fuzzy feed-forward synaptic weight and an
input is defined by the membership function fJ'Bf{i,r,k,l){'̂ kl)- The inputs and outputs are
crisp variables in a type-I FCNN.



16 CHAPTER 2. FUZZY CNN

Remark: One can see that fuzzy synaptic weights introduce a set of nonlinear synaptic
laws into a type-I FCNN. In general case, the concept "template", which is very useful in
conventional CNN[46] is not suitable for describing fuzzy synaptic laws.

A cell Cij in a type-II FCNN is defined by

State equation

E A(iJ-,k,l)yu(t) + I
^ Cki€Nr{i,j)

+ 1] k, FAc,,eNr(i,3)
OklQNr(i,j)

A<i<M,l<j<N (2.18)

Output equation

= Iixij{xij{t)), I < i < M,1 < j < N (2.19)

Input equation

Uij = Eij, l<i<M,l<j<N (2.20)

Constraint conditions

< 1,1 < 2 1 < j < iV (2.21)

Parameter assumptions

C > 0, iilx > 0

\fj'ukl{y'ki)\ < 1, \fj'xij{xij(t)) \ <lA<i< M,l<j < N (2.22)

Boundary condition and initial condition

where fiukl{-) and Hxij{') are two membership functions. In a type-II FCNN, all the
synaptic weights are crisp. Inputs and outputs are supposed to be fuzzy. They are described
by membership functions fiuki(') and fixiji')- One can see that fixiji') corresponds to the
output function in a conventional CNN.

The above type-II FCNN is sometimes called multiplicative type-II FCNN. Correspond
ingly, there also exists the additive type-II FCNN whose state equation is given by

= ~xijit)+ E Mi,r,k,l)ykiit) + f
CkieNriiJ)

+ B{iJ;k,l)uki-\-FAc^^^j^^^i^j^(Af{iJ;k,l) + yki{t))
Ckl6Nr(i,j)

iBf{i,j] k, I) -I- PukliUkl))

,l<i<MA<j<N (2.23)
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A subclass of the additive type-II FCNN had been found to be a universal paradigm for
implementing mathematical morphology operations[351, 352].

In type-I and type-II FCNN's, Fa{') and Fb{-) denote two fuzzy local operators defined
in Nr{i,j)^ which may be any fuzzy logical expression combined by fuzzy OR "V" and fuzzy
AND "A". For example, suppose Fa{-) denotes the following fuzzy logical expression in a
1-neighborhood system:

Fa Xij /\ ^i—k,j—l
-l<kj<l

(2.24)

where X{j denotes fuzzy variable (for example, the gray value of the pixel (t,i)). Then we
have

~ /\ l^Af{i,j;k,l){ykl) (2.25)
Cki€Ni{i,j)

and

= A ^fi^J'̂ kJ)yki (2.26)
CkiGNi{i,j)

A simple and most commonly used type-I FCNN is given by

dt

Ckl^NriiJ) CkieNriij)

+ A ^Afminiid;k,l){ykl) V ^Afmaxiid;k,l){yki)
CkiENr{i,j) Cki^Nr(i,j)

+ A f^Bf^i^{t,j-,k,l){Ukl)+ V
CkiENr{i,j) Cki€Nr(i,j)

,l< i < < j < N (2.27)

If FCNN is space-invariant, then in view of the method used in conventional CNN[46]
Eq.(2.27) can be rewritten as the following 2D convolution form:

/~idxij
IT
1 . r, T= - -FA* yij + B * Uij 1

•ttx

~f"Ay7nin©min2/tj "b -^fmaxCmaxyij 4" DfjninQmin'^ij "b ^Jmax^max^ij
A<i<M,l<j<N (2.28)

where * denotes a 2D convolution. A, B are feedback and feed-forward templates, respec
tively. Ajrnin^ Ajmaxi Bfmin and B/max are fuzzy feedback MIN template, fuzzy feedback
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MAX template, fuzzy feed-forward MIN template, and fuzzy feed-forward MAX template,
respectively, ©mox denotes a 2D operation as shown in following example:

A/maxOmaxJ/tj = \/ (2.29)

and Omin denotes a 2D operation as shown in following example:

AfminOminyij = /\ '̂'Afrjtinihj;k,l){ykl) (2..30)
Cki£Nrii,j)

From the above one can see that fuzzy templates Aj and Bj are local fuzzy patterns
which are fuzzified for purpose of fitting a more loose relation between fuzzy templates and
signal patterns.

A simple and most used type-II FCNN is given by

dxij
dt

^ CkieNriij) CkieNriij)

"b /\ k, l)yiii\/ -^fmaxih j'i k,l)ykl
Cki^Nrii,j) CkiQNr(i,j)

~b /\ j'} k, P \/ Hfmax{^^jik,l)flu{'̂ kl)

,l<i<M,l<j <N (2.31)

Also, Eq.(2.31) can be rewritten as the following 2D convolution form:

CdxiAij
dt

1 . r
= + A* yij + B * Uij +1

ttx

"bAyrnin ©mtn yij "b Ajrnax ©max yij "b Bfmin Cmin Mu(^jj)

pHjmax ©max Mu(^tj)
, 1 < 2 < M, 1 < y < A' (2.32)

where A/minj ^jmax^ Hjmin and Bfmax are feedback MIN template, feedback MAX tem
plate, feed-forward MIN template, and feed-forward MAX template, respectively, ©max
denotes a 2D operation as shown in following example:

A/max ©mox J/tj — max{i,j;k,l)yti (2.33)
Ckl^NriiJ)

and Omin denotes a 2D operation as shown in following example:

Afmin Omin yij — /\ •^fmini'̂ i j'i k^l)yifi (2.34)
Ckl^Nr{i,j)
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2.5 Differences between FCNN and FNN

One should also see that FCNN structure has a significant difference from other FNN
structures. In an FCNN, the fuzzifier layer and the defuzzifier layer, which always appear
in a standard FNN structure, are embedded into a single layer. This planar structure is
mostly suitable for 2D VLSI implementation because links between two chips are avoided.
So, an FCNN universal cell should be programmable for different membership functions
and allow some basic programs of fuzzy operations (relational computation).

The most significant characteristics of FCNN are the local connectedness of the cells.
This spatial(or, relational) local connection can be used to derive different spatial(or, rela
tional) structures of FCNN cells. Any FNN structure which is based on the local connect
edness will fall in the range of the FCNN concept.

To understand the differences between FCNN and FNN, we first show how can we get the
FCNN structures from the crossover of FNN and CNN. A typical FNN has three layers as
shown in Fig.2.2(a). The first layer is used to give the crisp inputs some fuzzy measurements.
The nonlinearities in the neurons of this layer are some membership functions. The second
layer is used to calculate the relationship between different fuzzy variables from the first
layer. The fuzzy computations are embedded into the nonlinearities of this layer. The third
layer is used to give some crisp forms of outputs. It's easy to see that if the inputs are
already fuzzy variables(e.g., the gray value of a pixels in a digital image) then the first layer
can be eliminated. Also, if we need some fuzzy outputs (e.g., outputs which are used by a
high-level AI system), then the third layer can be eliminated.

Fig.2.2(b) shows the typical structure of a signal layer conventional CNN. One can see
that this single layer CNN contains an input function sub-layer, a cell dynamics sub-layer
and output function sub-layer. In a conventional CNN, the input function is usually a linear
function and the output function is a piecewise linear function. Of course, we can use more
complicated nonlinearities as input and output functions.

Then we are in the situation to show how can we combine the both structures in

Fig.2.2(a) and (b) into FCNN, which is shown in Fig.2.2(c). We only shown a single layer
FCNN structure. One can see that by using different membership functions as the input
functions, we embedded the fuzzifier layer of FNN into the input function sub-layer of
FCNN. We combine the cell dynamics of CNN and the fuzzy operations of FNN into a
fuzzy-crisp mixed dynamical sub-layer which contributes the cell dynamics of FCNN. the
fuzzy-crisp mixed dynamics makes our FCNN structure can solve both crisp and fuzzy prob
lems. Finally, we choose the nonlinearities of the defuzzifier layer of FNN as the output
functions of FCNN. The output function sub-layer is equivalent to the defuzzifier layer of
FNN. Of course, the FCNN structures carry out the properties of local connectedness from
CNN.

2.6 A brief history of FCNN

In early 1993 the FCNN structures were first presented in China by a Chinese group, which
consisted of a fuzzy mathematician, a biologist, a physical professor, a control engineer
professor, and more then 20 Ph.D and master students form these fields, guided by Tao Yang
who is an assistant professor of electrical engineering. From early 1993 to 1996, this group
presented over 20 technical papers in Chinese on FCNN both in theory and applications
[.374, 367, 369, 371, 375, 372, 368, 365, 370, 363, 364, 373, 366, 379, 377, 380, 378, 376, 381,
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Figure 2.2: FCNN structure is a crossover of conventional CNN and the FCNN. (a) The
typical structure of the FNN. (b) The typical structure of the conventional CNN. (c) The
structure of the FCNN.
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385, 386, 384, 382, 383]. Then, this group try to translate all the results into English and
contributed them to the international academic and engineering communities. The series
work of FCNN from this group have been or will be published in different international
conference proceedings and journals [350, 351, 352, 354, 353, 356, 355]. This book contains
almost all the results of the translated papers.

At the very beginning, lots of constructive, non-constructive, professional and non-
professional criticisms from some authorities of CNN field , fuzzy field and neural network
field were poured on the new concept of FCNN. But the group leaded by Tao Yang knew
what they did was an inevitable tendency of this field just as the fuzzy set to conventional
set theory. Two years later, some of the primary results were received by the international
community. The first English paper that this group sent to IEEE Transaction on Circuits
and Systems, which is the only journal in the world has a separate section and an associate
editor for CNN, as a short Express Letter dated Oct.23, 1994, after numerical revisions,
eventually published in October issue of 1996[350]. Wethink this may be the longest delayed
Expressed Letter in the history of this journal. However, this was the first victory in the
history of FCNN and announced the reinvention of this branch in Western Community.
We want to thank the editors of this journal for not abandoning this orphan and the
knowledgeable, high-level reviewers for their first rate comments which were invaluable to
the growth of this branch. And after that, Tao Yang went to the University of California
at Berkeley(UCB) as a visiting scholar. There he jointed the CNN group of UCB and
published two conference papers which are something that very elementary to the type-II
FCNN[356, 355].

At the time we wrote this book, since the only existed publications are these two papers
in proceedings of CNNA'96[356, 355], in which only the basic structure and the elementary
theoretical results of the simplest type-II FCNN were presented. The titles of these two
papers were proved to be misleading because they gave the readers an impression that the
type-II FCNN was all what the FCNN concept and structure meant. Based on this, it was
not strange that some reaxiers argued that "FCNN is only a kind of NCNN". This illusion is
totally wrong because the results that will be published elsewhere soon have clearly shown
that FCNN is much more that the simplest type-II FCNN—although this kind of FCNN is
well studied, well understood, and well known. This is one of the reasons why we want to
published this book. We also hope that the collection of the work which performed in the
last three years can give the reader a panorama of what FCNN is.

Here, also exist lots of obstacles for the birth of FCNN just like the birth of fuzzy
set theory itself. The obstacles mainly come from two fields. One field is the artificial
neural network(ANN) people who found lots of applications of FCNN (or generally CNN) to
image processing problems didn't need the learning ability which is a significant trademark
of ANN. They can't image how a structure without learning algorithm can be called as
"something-NN". This problem should be fought back together with the CNN people. Yes,
some FCNN (or CNN) have fixed weights and do not have any learning ability because we
use this kind of FCNN as a platform which we called computational FCNN. Although the
weights are fixed, they are trained by examples before we can use them as computational
FCNN. On the other hand, the ANN people will find that lots of weights of computational
FCNN are trained by the standard learning algorithms of ANN(e.g., BP algorithms and
Hebbian algorithms).

Some other arguments come from the conventional CNN people. They found that the
first generation of type-II FCNN has a very similar form as NCNN, so they decided to
say that FCNN was only an NCNN, there existed nothing new. But they did not see the
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type-I, -III and even -IV FCNN, where the revolutionary changes were introduced from the
information point of view to explain why the information—even the linguistic variables, the
fuzzy numbers, the conceptual variables and some other functional things besides signals(the
real numbers)—can flow through FCNN structures. The conclusion is that FCNN is a more
general concept than the conventional CNN and it should not be a small subset of the
conventional CNN.

Once again, those CNN people who have blind faith in the conventional CNNUM will
try to figure out all the strange CNNUM programs and some complicated piece-wise linear
nonlinearities with many breakpoints to embedded the fuzzy concept into the conventional
CNN framework. We find that it is totally unnecessary because given the VLSI techniques
for implementing fuzzy chip and CNN chip, we can easily fabricate the FCNN chip. We
think that the natural tendency is to choose the new concept and build the new chip
instead of being trapped into the old and narrow concept. Anyhow, time will tell us what
will happen.
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Chapter 3

Theory of FCNN

In this chapter, we study the elementary theory of different kinds of FCNN. This chapter
is the collection of our papers[350, 354, 353, 356, 367, 369, 371, 380, 385]. In this chapter,
we always present the results for type-II FCNN first and then present the corresponding
results of type-I FCNN.

3.1 Elementary theory

In this section, we study the dynamical range of type-I and -II FCNN. The dynamical range
is important to a physically implemented FCNN because only we know the dynamical range
then we can choose the power supply, and physical structures of FCNN. Also, the existence of
equilibrium point for type-I and -11 FCNN is studied for guaranteeing the correct operation
of FCNN.

3.1.1 Dynamical range of type-II FCNN

To guarantee that FCNN's can be realized by physical systems, we should study its dynamic
range. In this section, we study the dynamic range of type-II FCNN in Eq.(2.31). First, we
need the following definition:

Definition 7

Dissipative FCNN: Let E be a compact set in if all solutions of an FCNN finally
fall into E and stay in E, then this FCNN is called a dissipative FCNN.

Remark: The dynamical range of a dissipative FCNN is E.
Let

_f0 ,when (A:,/) = (2,i) and A(i,i;A:,/) < 0 . .
• " \ 1 ,when {kj) = {ij) and A{iJ;kJ) > 0, or, {k,l) / {ij)

then we have the following theorem:

Theorem 1

The type-II FCNN in Eq.(2.31) is a dissipative FCNN and all its solutions with any initial
conditions a:,j(0) finally fall into the following compact set:

25
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Ei R'̂ '̂ /Qi f| R'̂ '̂ /Q2 (3.2)

where

ij k,l k,l

4"\J l-^/mar (^5 J? 4" l\\^Smin (^5 J 0
fc,/ k,l

-{•y\Bjmax(hj'-> k, l)\+ k, /)|)]^
k,l k,l

> E[%(E oi<A«+E iB(i, j; A:j) I+|/i
i,j kJ k,l

4" |̂24fmaxi^ij: 01^ '̂ 4" \J\-^jminij") J! ^ |<^A:/
A,/ fc,/

+y\Bfmax{iJ;kJ)\-\r\/\Bfmin(iJ',kJ)\)?} (3-3)
k,l k,l

^2 = {x| \xij\> Mij ^ RAYl\A{iJ;kJ)\cf>ki+y^\B{iJ;kJ)\-h\I\
k,l k,i

4"\J\^Jmax{. '̂) j? 4" ^/l-'̂ .yTnin(^j j> 0
Jb,/ k,l

4"\/\Bjmax{h j'̂ 01 4" ^\Bjmin{h j'̂ '̂01)}'
k,l k,l

l<i<M,l<j<N (3.4)

where x = col{xii,..., xmn)-

Proof; (1) We construct a radially unbounded positive definite Lyapunov function:

, M N

yi =^EE4 (3-5)
t=ij=i

Differentiate Vi along the solution of Eq.(2.31), and since \yij\ < 1, |uij| < 1 and
lMu(^ii)| < I5 we have:

dVi.

dt '̂ 942.31)

J;k,l)ykiXij + ES(iJJj ^)'̂ klXij 4" -fXij
i,j k,l k,l

-\-Xij \JA.Jmax{ij',kj)yki + Xij/\Ajmin ihj;kJ)yki
k,l k,l
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k,l k,l

< Y1 k,l)<l)ki\\xij\ + \B{iJ;k,/)||xij|
i,j ^ k,l k,l

\^ij\\/\^jTnaxi^j j'̂ k,l^<^kl\ "I" \^ij\\/\^fTnin{'̂ ^j'̂ k,l)(f)kl\
k,l k,l

j^ ky l) \-\- j\ /?, Ol)j
k,l k,l

^ E-^[i= '̂ii - %(E')!«>«+Emi,r,k,i)\+1/|
i,j k,l k,l

"I"\J\'̂ fmaxij"> j'l k^ l^\4^kl "i~ \J\^Jminij'j'i k. l)\<f>kl
k,l k,l

"I"\/\Bjmax{h ji k,
k,l k,l

+E X (E !'<('> I'-- +E i; ')i+1/|
i,3 kJ k,l

"i"\l\'̂ fmax{ii ji k^ i)\^kl "1" ^i-'̂ /mm(®5 jyk, l)\<f>kl
k,l k,l

'\'\/\Bfrnax{L.j', A:, /)| +^\Bjmini'̂ ^ jk, /)|̂
k,l k,l

< 0 (3.6)

The last inequality is satisfied when x €
(2) Then we construct MN radially unbounded Lyapunov functions with respect to the

state variable Xij:

Vij =Yxijsgn{xij), 1<i<M,l <j <N (3.7)
where sgn{-) is the signum function.

Along the solution of Eq.(2.31), we calculate the Dini upper-right differential as:

D'̂ yij\Eq.{2.3l) < + 1^1
k,l kJ

'\'\/{•^fmaxi^i jj k, l)\(l>kl d" \/|-^/Tnm(^i y>k, l}\<f>kl
k,l k,l

'i'̂ \Bfmax{h jy 01 d" ^\Bfmin{hjy k, /)|̂
k,l k,l

< 0 (3.9)

thelast inequality issatisfied when x € ^2- So, thesolution ofEq.(2.31) will fall in R^^/Q.2y
and fall in E and stay in E. If a:(0) € E, then a:(t) € E,V£ > 0. So, E is an w-invariant set,
in R^^/E there exists no stable equilibrium point of the FCNN in Eq.(2.31). •

Remark: This theorem gives the dynamical range of an FCNN, in practical circuit
design, we can choose proper parameters to guarantee that the FCNN can work in the
typical power supply voltage range of IC circuits.
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Our conclusion is more accurate than that given by Theorem 1 in [47]. For comparison,
we list the conclusion in [47] as follows: the bound on the state of a cell Cij is:

k,l kJ

= 1 + M, |xij(0)| < 1,1 < i < M, 1 < i < (3.10)

Let Afjriini^^j'i^i^) —0, Hfmini^j^^ —0 and J 5 0 —
0, 1 < < M, 1 < j, I < N. Since the solution falling in R^^/Q2, we have the
corresponding bound given by Theorem 1 with respect to the state of Cij as:

(1) If maxtj Mij > 1, then

0,x(0))| < m^xMij = M,
ij

N(0)| < 1,1 < e < M, 1 < i < A' (.3.11)

(2) If maXtjMij < 1, then

ia:ij(t,0,x(0))| < l,|a:ij(0)| < 1,1 < «< M, 1 < j < A' (3.12)

(3) Vx(0) € R^^\ there exists a T > 0, such that when t >T we have

|a:tj(t,0,x(0))| < maxM,j = M (3.13)
ij

The bounds in Eqs.(3.11) and (3.12) are more accurate than that in Eq.(3.10). And the
Theorem 1 in [47] has no conclusion corresponding to the conclusion in Eq.(3.13).

The following theorem guarantees that the FCNN in Eq.(2.31) has at least one equilib
rium point.

Theorem 2

The FCNN in Eq.(2.31) has at least one equilibrium point.

Proof: Let the right hand side of Eq.(2.31) be 0, then we have:

^ij = X! X) B{iJ;kJ)Ukl-\-1
CkiENrii,j) Cki^Nr{i,j)

~l~ /\ Ajmini^: l)ykiAjmax{}t j'tk^t)ykl
Ckl^Nr{i,i) CkieNr(i,j)

+ A Bjmin{h j'l ^)f^u{'̂ kl)
Ckl^Nr{i,j)

"b \/ •^/max(^j ^5 0^tt(^fc/)j
Cki€Nr{i,j)

, 1 < i < M, 1 < j < AT (3.14)

Consider the following vector operator:

$ = (©ij(x))MN (3.15)
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where

6ij{K) = Rx[ ^ B{iJ;kJ)uki +1
Cki €Av(i,j) Cki€Nr(iJ)

"f" /\ AjjniYi[i>j\h^t)yjji-\- \l Affnax{^ij'f^^^)ykl
Ckl€Nr{i,j) Ckl€^'r{i,j)

"I" /\ Hfmin{,L, j'ik^l^y.y_{U}il)
CklQNr{i,j)

+ \J B,max{hj\kJ)yLu{uki)\
Ckl^Nr{i,j)

,l<i<MA<j<N (3.16)

and X = col{xii,

Let

M = maxiyRj:]^ ^ \A{iJ;kJ)\-\- ^ \B{iJ;k,l)\-{-\I\
CktENr{i,j) CklENr(i,j)

CkieNr{i,j) Ckt&Nrii,i)

+ V \B/miniiJ-,k,l)\+ V |B/m.x(i.i:fc,')l]} (3-17)
Cki€Nr{i,j) Cki^Nr{i,j)

Then the vector operator $ maps the following set

S = {x||a;jj| <MA<i<M,l<j<N} (3.18)

into itself. Since 5 is a convex compact set, from Brown's fix-point theorem, we know
$ : 5 I—> S has at least a fix-point x = x*. And x* is an equilibrium point of FCNN in
Eq.(2.31). •
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3.1.2 Dynamical range of type-I FCNN

Theorem 3

The type-I FCNN in Eq.(2.27) is a dissipative FCNN and any of its solution with any
initial condition a;tj{0) will fall into the following compact set:

E = fl (3.19)

where

= {x| OIni + 01 +1^1 +4)]^
ij k,l k,l

. .R
> E[^(E r. k, iMu +E 01 +10 +4)]'} (3.20)

i,j k4 k,l

^2 = {x| I>M{j =i2ar(E l^( '̂ 0 k, I)\<i>ki
k,l

i-J2\B{iJ;kJ)\ +\I\-^4)},
k,l

l<i<M,l<j<N (3.21)

where x = co/(a:ii,.... xmn)-

Proof: (1) We construct a radially unbounded positive definite Lyapunov function:

, M N

t=l j=l

Differentiate V'l along the solution of Eq.(2.27), and since |y,j| < 1, |ujj| < 1 and |;:i(-)| ^
[0,1] (ft(-) is any of and Ms,()(•)). we
have:

dVi,
-^l£:,.(2.27)

53 i T> ^ >A{i^j^ ^)yki^ij "1" ^ ^ k, l^UkiXjj -j- Ixij
i,j ® k,l k,l

kJ k,l

-^^ij\/f^BfmaAiJ',k,l){Ukl) +^ijf\t^Bfminii,r,k,l){Ukl)]
k,l k,l

< E~;^[l^»ji^ - ^x(E \M^J'̂ kJ)<pkl\\Xij\
i.j ^ k,l

+ E l^(^"'0^iOlkoi + l^lkiil
kJ

+l^tj I\/l^^fmax{i,j;k,l) (j/w) I+ ktjI fmin(ij',k,l) (S/W )|
k,l k,l
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+ +l '̂J IA l)]
k,l k,l

ij ^ U

+E +l^ll^ul +4|x,j|)]
kj

^ E -:^[l '̂il - ^i'£\Mi,r^k,l)\<t>kl+Yi |S(i,i; A;,/)| +|/| +4)]'
i,j ^ k,l k,l

+E x(E IMiJ; k, iMk, +E \Bihn k, 01 +1/1 +4)'
uj k,l k,l

< 0 (3.23)

The last inequality is satisfied when x € f^i.
(2) Then we construct MN radially unbounded Lyapunov functions with respect to the

state variable Xij:

Vij =^Xijsgn{xij), I<i<M,1 <j<N (3.24)
where 55'n(-) is the signunni function.

Along the solution of Eq.(2.27), we calculate the Dini upper-right differential as:

^"^Kj|Eg.(2.27) < + 1^1
k,l k,l

k,l k,l

+VlMB/«„(i,i;M)("w)| +/\\l^Birr,iM;k,l)iUkl)\)
k,l k,l

< (-^\xij\ +^\A{iJ;kJ)\<l)kl
k,l

4- |̂B(i,i;fc,/)|+|/|-h4)
k.l

< 0 (3.2.5)

thelast inequality is satisfied when x € ^22- So, the solution of Eq.(2.27) will fall in R^^^ /Q,2^
and fall in E and stay in E. If x(0) € E, then a;(t) € E,Vf > 0. So, E is an a;-invariant set,
in R^^/E there exists no stable equilibrium point of the FCNN in Eq.(2.27). •

The following theorem guarantees that the type-I FCNN has at least one equilibrium
point.

Theorem 4

The FCNN in Eq.(2.27) has at least one equilibrium point.

Proof: Let the right hand side of Eq.(2.27) be 0, then we have:



32 CHAPTER 3. THEORY OF FCNN

Xij = Ri[ ^ A{i,j;k,l)yki+ B{i,j:k,l)uki +1
OkiENr{i,j)

CkiENr(i,j) CkiENr(i,j)

+ A + V f^BfmaAiM)i'̂ kl)]
Cki€Nr{i,j) CkiENriiJ)

A<i<M,l<j<N (3,26)

Consider the following vector operator:

^ = (<^,7(x))mn (3.27)

where

(l>ij{x) = Rxi X] Mhj'̂ ^J)yklA ^ B{iJ;k,l)uki+1
CklENrii.j) CklE^r{i,j)

/)(yw)+ V y'AjmaAiM){yki)
CkiENr(i,j) CktENr(i,j)

+ A y-BfminiiJMi^kl) + V f^BfmaxliJ-.kM'̂ kl)]
CklENr{i,j) CklSNr{i,j)

A<i<MA<j <N (.3.28)

and X = col{xii, ...,xmn)'
Let

M = max\Rx[ Y1
CkiENriiJ)

+ E |B(^7U->^)I +|/|+4]} (3.29)
CkiENr(iJ)

Then the vector operator O maps the following set

S = {x||xij| < M, 1 < i < M, 1 < j < AT} (3.30)

into itself. Since 5 is a convex compact set, from Brown's fix-point theorem, we know
^ : S I—> S has at least one fix-point x = x"'. And x* is an equilibrium point of FCNN in
Eq.(2.27). •

3.2 Global stability

3.2.1 Results for type-II FCNN

Since every pixel of input image can be viewed as a fuzzy singleton, we can choose fiui') as
^u(.t) = X, then the type-II FCNN in Eq.(2.31) can be rewritten as:

dx ** 1
B{i,j:,kJ)uki +1

CktENr{i,j) CktENriiJ)
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+ A ^Jmin{i,j',kJ)ykl-\- \/ Ajmax{iJ;fc,l)ykl
Ckl^Nr{i,j) Ckl€Nr{i,j)

/\ -^/min{^1J\/
Ckl^NriiJ) Ckl£Nr(i,j)

A < i < ma < j < N (3.31)

Output equation of Cij is given by:

Viji^) ~ ~ 2 "b 1| ~ ~
,l<i<MA<j<N (3.32)

Constraint conditions are given by:

|a:ij (0)| <1, Uij <1, 1<i<M, 1<j <A* (3.33)
Parameter assumptions:

C > 0, i<!x > 0

J j 0 ~ ^fmin (^} ^5
^fmaxih j\ 0 ~ •^fmaxi^i ^ij)
l<i<MA<j<N (3.34)

In state equation Eq.(3.31), if there exits no fuzzy logical relation between two cells Cij
and Cki, then we say that the fuzzy connections between them are non-existed, else we say
that the fuzzy connections between them are existed. We only study the FCNN with flat
fuzzyfeedback MIN templates and flat fuzzyfeedback Max templates. A flat fuzzy feedback
MIN template is defined by:

Afmin{hj;k,l) = oc,'iCki € Nrihj) and is existed. (3.35)

where o; is a constant. A flat fuzzy feedback Max template is defined by:

AjmaxiiJ; k, I) = /?, VCw GNrihj) and A/maxiiJ; k, I) is existed. (3.36)

where ^ is a constant.

Then Eq.(3.31) can be rewritten as:

, 1 mn mn .mat

® j=l j=l
- MN - MN - MN

+\/j=i "b Aj=i ^Jmin{A)^3 +V^=1 ^Imax{A)'̂ 3
,i= 1,2,...,MA (3.37)

Where

_ f Q, if corresponding AfminiiJ'̂ kfl) is existed. . g.
1 undefined, ifcorresponding Afmin{iAi k,l) is nonexisted.
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(2)

l3. if corresponding Ajmaxii-.j'-, k, I) is existed.
Pij — [ undefined, if corresponding A:, 0 is nonexisted.

From parameter assumptions in Eq.(3.34), one can see that

Cl{j = Qji, Q'jj = Oiji^ Pij —(3ji

We then have the following corollary:

Proposition 1

Suppose that x and x' are two states of FCNN in Eq.(3.37), then we have:

(1)

- MN - MN ,

Aj=i - Aj=i S

MN - MN

3=1

MN

- V-l'i'< E IAil|/(xj) - f(x'̂ )\ (3.42)
3=1

Proof:

(1) Suppose that there exist k and I such that

then we have

- MN

Aj=i ~ ^ikfi^k)

- MN

A,-=l O'ij/i':'}) = Olilfix',)

MN r MN

Aj=i - Aj=i

< maxyQ!it/(a:t) - ait/(xj.)|, jaii/(xi) - a!ii/(i;)|
MN

3=1

(2) Suppose that there exist k and / such that

~ MN

3-

~ miy

V,=1 = 0ikf(xk)

-MN

(3.39)

(3.40)

(3.41)

(3.43)

(3.44)

(3.4.5)

(3.46)

(3.47)
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then we have

<max |̂/3a-/(xt) - \0iifixi) -0iif{x\)
MN

•

Let

|-4| — + lajjl +

then we have the following theorem.

MNxMN

35

(3.48)

(3.49)

Theorem 5

Suppose that the spectral radius of matrix Rx\A\, < li then the type-II FCNN
in Eq.(3.37) has only one equilibrium point, and this equilibrium point is globally stable.

Proof: The existence of equilibrium point of FCNN in Eq.(3.37) is guaranteed by Theorem
2. Now, we only need to prove that the FCNN has less than two equilibrium points. Let
the right hand side of Eq.(3.37) be 0, we have:

MN

Xi —Rx ^ ^ "b R'X ^ ^̂ ij^j "b Rxl "1" /\j—i
j=l j=l

- MN - MN _ - MN

,i= 1,2,..., MAT (3.50)

Let and = co/(xf\..., be two solutions of Eq.(3.37),
then we have:

MN MN

< Rx^ \(lij\\f{x] ^) - /(4 ^)| + )
i=i

7^^ (o\ ,~,MN ... -MN-Rxh.^,0Ciif(xf) +
MN MN

< Rrtl l«ol|/^") - /(4")| + E l«ol|/(^i") - /(4")|
i=i

MN

+Rs E iftii|/(4") - /(4")
3=1

MN

j=i

< fix E +l"iji +lAji) i®5'' -
j=l

(.3..51)
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The second inequality is in view of Proposition 1.
We then write Eq.(3.51) into a vector form as follows:

- Xi Fmat ^mn\J

< /?x|A|co/(|a:i^^ - x\ ^1,
< ... < (fl,|A|)'"co;(|a:S'' - sp'l,..., - ^m'vI)

Since p(^Rx\A\j <1, we have

lim = 0
m-j-ooV /

Then we have:

x(" = x<2)

which yields that the FCNN in Eq.(3-37) has only one equilibrium point, x"
Since x"" is the only equilibrium point, followed Eq.(3.37) we have:

C
djxj - a:-)

dt

MN

= - ^i) +
Rx

- MN

3=1

+
- MN

f\j-1 ) Aj=1 ^^3 / ()

+

~MN ~ MN

Vi=. - V,=. Ai/(x-)
,f = 1,2,..., MiV

(3..52)

(3.5.3)

(3.54)

(3.55)

Since p[Rx\A^ <1, {e - J?x|A|) is an M-matrix, where Eis the unity matrix. So,
there exits a group of positive constants, pi > 0, z= 1,2,..., MN", such that:

MN

+kul +\N\) <0
Rx • 1^ 1=1

,i = l,2,...,MiV

We construct the following Lyapunov function:

. MN

3=1

(3.56)

(3.57)

When X= x*, we have F(x) - 0. When |.Tj - -> +oo, we have V'(x) -»• +oo.
Along the solution of Eq.(3.55), we calculate the Dini upper-right differential of V'(x)

as:

D+V*(x)

MN

Eg.(3.55)

MN / , MN I .
— Pi ~ ~/(^nj "b |Ai=i ^iifi^i)
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r MN - MN ~MN

-Ai=i + Vi=i - Vi=i
MN / . MN

^ ^ - ^il +H M\fM - fi^l)
j=l \ ^ i=l

MN MN \

+E - /(^n|+E ift'.i|/(^.) - /(^n|
1=1 j=i /

MN . MN MN

3=1 j=l i=l

MN MN MN

S ~ S Pi J2 +IAil)kj - Xj\
® t=l j=l

MN

^ +l<^ul +lAjl)

3=1

MN

= E
3=1

< 0

iXj-Xjl

37

(3.58)

The second inequality is in view of Proposition 1. The second equality is in view of parameter
assumption in Eq.(3.40). The last inequality is satisfied when x ^ x*. •

Similarly, we can have the following theorem:

Theorem 6

Suppose that the following matrix

diag(—— +an +|q!,-,| +|Ai|̂ ^

+((1 ~ +l<^ul +Ifel))
MNxMN

MNxMN

is a Hurwitz matrix, then the equilibrium point x = x* is globally stable. Here

_ f 1 J = j

Proof: Since

diag (~^ + +1<^"I +lA'ti)
+((1 - <5tj)(|atj| +laijl +IAjD)

is a Hurwitz matrix, we have

-diag(-^ +an +\an\ +|At|)
-((1 - %)(|atj| +|atj| +IAjD)

MNxMN

MNxMN

MNxMN

MNxMN

(3.59)

is an M-matrix. Then, from properties of M-matrix, there exits a group of positive constants,
pj > 0, ?• = 1,2,..., MN, such that:

+ <^33 +
J^X
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MN

1=1

,j = 1.2,..., MiV (3.60)

We construct the following Lyapunov function:

. MN

V*(x) =^ H Pji^j - Xj)sgn{xj - >0 (3.61)
j=i

where sgn{-) is the signum function. When x = x*, we have V'(x) = 0. When \xj - Xj\ -¥
+00, we have V(x) —^ +oo.

Along the solution of Eq.(3.55), we calculate the Dini upper-right differential of V*(x)
as:

D+y(x)
^ ^ Eq.(3.55)

MN , MN ,

= - /«)) + (Ai^i
j=l t=l

~ MN ' MN ~MN T

~Ai=i + (Vi=i - Vi=i
MN .

j=l ^
MN

t=l

- MN - MN

+iA,=i^i'/M-A,=i^i'/(^r)i
-MN - MN

+iV,=i Mi^i) - V,=i
MN ,

^ IT Pj + ^jjlfi^j) - /(a^j)l
j=i ^

MN

t=I

MN MN

+ E - /(»^ni+Ei/3i.ii/(i.) - /(^nil
i= I 1=1

MN ,

- E + l°Jjl + 1^1)1/(2=^) - /(®i)l
j=i

MN MN

+ Pj (1 ~ + kjti + \Pji\)\f{^t) - f{^i)\
j=l i=l

MN ,

= Y1 Pji--^ +^jj + I^Jil + \Pjj\)\fi^j) - f{^j)\
j=i

MN MN

+ XIP' ~ + l^iil + WijDlfi^j) - f{^j)\
i=l i=I
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MN

= ~^ +II + Ife I)
i=i

MN

+ Pt(l + lA'ji)] l/(^j) f{^j)\
1=1

< 0 (3.62)

To get the first inequality, one should note that

- f{ '̂j))s9n{xj - x]) = ajj\f{xj) - f{x*)\ (3.63)

The second inequality is in view of Proposition 1. To get the third inequality, one should
note that

-\xj-x*j\<-\f{xj)-fix*)\ (.3.64)

The second equality is from parameter assumption in Eq.(3.40). The last inequalitj' is
satisfied when x*. •

3.2.2 Results for type-I FCNN

We recast the type-I FCNN in Eq.(2.27) into:

d . MN MN
C-^ = —^Xi+Y^aijf(xj) + Y^bijUj + I

- MN

Aj=l fmin (ij) iVj)
"MN

- MN

+Aj=l
-MN

+Vj=l
,i= 1,2,...,M.V (.3.65)

We need the following proposition:

Proposition 2

Assume that for two points and there exists a k such that:

=f^Afmin{ik){f{Xk^)) (3.66)

then

lAj=l )) " Aj=l ))l
< (3.67)

Similarly, let there exists an / such that:

- MN ...

Vj=i M.4,„„(ii)(/(2:1 ')) =I^A,„,Aik)(f{A ')) (3.68)
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then we have:

- MA* - MjV

iVj=i ''-4/™ox(ij)(/(4")) - Vj=,

Proof: 1. Assume that there exists an k such that

MN

A,=i ')) =MA,„t„Uh)(fix[ ')) (3.70)
We have

- MN ~ MN

))- ))l

= lMA,„„(rt)(/(4'')) -/'A,„i„(.Vb)(/(«L '̂))l
< iPA,„,„(»)(/(4")) - MA,„<„(./t)(/(4"))l (3-71)

2, Assume that there exists an h such that

.-.MN

I^A,^AiMn4'̂ )) =#'A,„„,.„)(/(x!,'')) (3.72)

We have

rn (91lVj=i''̂ ;m.x(ij)(/{4 ))-Vj=l''A,„,„(«)(/(^l ))l
= lMA,„„(ii)(/(2:P')) -/'A,„„(iM(/(®fc'))l
S lMA/„„(tl)(/(4 ')) ~/'A/„„(ii)(/(^l '))l (-3.73)

•

Assume that all the globally Lipschitzian, i.e., for any
Pj and Pj we have:

(yj) - (yj) I< afj lyi - y] I (3.74)

and

l''A,„„(ii)(yi) - lyj - yjl (3-75)

And we assume that

aij = aji, aff = o:jf, pff = (3.76)

In this case, we let

\A\ = (layI+

then we have the following theorem.
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Theorem 7

Suppose that the spectral radius of matrix Rx\A\, p(^Rx\A\^ <1, then the type-I FCNN
in Eq.(3.65) has only one equilibrium point, and this equilibrium point is globally stable.

Proof: The existence of equilibrium point of FCNN in Eq.(3.65) is guaranteed by Theorem
4. Now, we only need to prove that the FCNN has less than two equilibrium points. Let
the right hand side of Eq.(3.65) be 0, we have:

X{ =

MN MN'''' jy / \

Rx + Rx 2!^ + Rxl + •^a:/\ ._J \ )
j=l j=l

~ MN I . ~ MN
V,=i [fM) + M

r-

~ MN

,i= 1,2,...MN (3.78)

Let and ..., arjjjv) solutions of Eq.(3.65),
then we have:

Ix!" - xP'l

< Rx^\a{j\\f{xf^)-f{xf^)
j=i

I^Afmax(i3)(fi^j )) ~ j-i ^Afmax{i3)(f ))
MN

Rx 53 Wij\\f{xfb -
3=1

'̂ Rxlf^Afminiik) (/(^l ^)) ~f^Afminiik) {/i^k ^)) I
+Rx\P'Afmin{il){^f(^\ ^)) ~f^Afmin(il){^f^^\ ^))l

MN

Rx 53 +lA^l) - ^^1

- MN

(3.79)

The second inequality is in view of Proposition 2. The rest of the proof is similar to that
of Theorem 5. •

Similar to Theorem 6, we have the following theorem:
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Theorem 8

Suppose that the following matrix

diag(-± +au +aff+0lf)^^^^^
+((1 - +a^+

is a Hurwitz matrix, then the equilibrium point x = x* is globally stable. Here

= (3.80)

3.3 Local stability

3.3.1 Results for type-II FCNN

In the FCNN as in Eq.(.3.37), the state variable of every cell, Xi{i = 1,.... MA'), can stay in
three diflferent intervals: (-oo, -1], (-1,1) and [l,oo), which correspond to three different
cell outputs: —1, Xi and 1. So, the state space of the FCNN can be divided into 3 '̂'̂ ^
separated regions, Di{i = 1, ...,3^^). Every Di is an MA-dimensional hypercube.

Suppose that x* is an equilibrium point of the FCNN in Eq.(3.37), and it is an inner
point of Dk' Then there exists a neighborhood of x*, which is in the interior of Dfc. Let

MN

(.3.81)
J=1

be the biggest hyper-ball in Dk. We can rewrite Eq.(3.37) in G as follows:

C-
dt

MN

= -^(Xi - a:n +E - f(x]))
- MN 7 MN ~MN ~ MN

"'"[Aj=i ~/\j-i +[Vj=i ~Vj=i
1 ^

= + X! aija{x]){xj - a:J)

7 MN 7 MN ~MN ~ MN

"'"[Aj=i ~/\j-i [Vj=i ~Vj=i
,2= 1,2,..., MA' (3.82)

then we have the following theorem.

Theorem 9



3.3. LOCAL STABILITY 43

Suppose that the following matrix

+((1 - ^ij]<^{''j)iWij\ +kiji +

is a Hurwitz matrix, then the equilibrium point x = x* is asymptotically stable in the
basin of attraction G. Here

= 'IZi (3-83)0 j

and

::7 w>i

Proof: Since

+((1 - +kijl +iftil))

is a Hurwitz matrix, we know that

-diag{-^ +t7(ar*)(a,-i +|o;ij| +l/?it|))MArxMA^
tlx

-((1 - Sij)<T(Xj){\aij\ + |o,j| + \f3ij\))MNxMN

is an M-matrix. Then, from properties of M-matrix, there exits a group of positive constants,
Pi > 0, z = 1,2,MN^ such that:

+ IfeD)
MN

+ ~ + l^iil + < 0
i=l

,; = 1,2,...,MA^ (3.85)

We construct the following Lyapunov function:

. MN

= rY^ - x])sgn{xj - a:^) > 0 (3.86)
j=i

where •S5fn(-) is the signum function.
Along the solution of Eq.(3.82), we calculate the Dini upper-right differential of V*(x)

as:
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D+V(x)|
^ 'Ie9.(3.82)

jW m

= Pj ~ ^j) ajiO'{X(){Xi —Xj )+ (/\^_J ^jifi^i)
j=l ^ i=l

~ MN -MN -MN ,

"Ai=i + (Vi=i - Vi=i
MN ^ MN

—^]Pj [ p~l^i ~^jl 4" ~^jl 4" ^ (̂1 ~^j:)^(^j) l^jtl l^i ~ I
3=1 i=l

; MN - MN 'MN - MN .

+iAi=, "ii/(^.) - Ai=i +IV.-,, M(^i) - V.-,i fti/(^.*)i
MN j MN

— y VPj ~ ^jl l^ji ~ ^jl 4" ^ (̂1 ~ ^ji)^{^i )l®jiil^i ~ I
J=1 ^ t=l

MN MN

+ E i^i«ll/(^i) - fi^i)\ + E\WM - fi^Dl
i=l i=l

MN ,

^ El/^ijl)^(a^j))kj - ^j\
3=1 ^

MN MN

+ E E(1 ~ <^ii)<^(a^n(|aiti + lo^iti + - ^i\
j=l i=l

MN ^

i=i

MN MN

+ E E~ %)<^(2^i)(l«til + k.jl + lAjDIa^i - x]\
i=i j=i

MN ,

i=i ^

MN

+ E ~ ^v)^(^j)(l^i3l + + l^«il l^j - ^j
i=l

< 0 (3.87)

The second inequality is in view of Proposition 1. The last equality is from parameter
assumption in Eq.(3.40). The last inequality is satisfied when x ^ x* and x in hyper-ball
G. So, G is the basin of attraction of the equilibrium point x*. •

3.3.2 Results for type-I FCNN

Similar to Theorem 9, we can get the following theorem for type-I FCNN:

Theorem 10
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Suppose that the following matrix

dia9{~ +<7(xr)(a,i +aff + (3.88)
+({1 - (SyX^pdayl +a^j+ (3.89)

is a Hurwitz matrix, then the equilibrium point x = x* is asymptotically stable in the
basin of attraction G. Here

and

j / 1 -̂ i
^'"10 (3.90)

3.4 Type-II Fuzzy DCNN

In [266], conventional DCNN was introduced. In [380], we presented the corresponding
results of fuzzy DCNN(FDCNN). This section contains the main results of [380, 385].

An M X TV type-II FDCNN is described by the following state equation:

C
dxjj (t)

dt

^ CkieNriij)

CkieNriij) CkteNriij)

+ /\ Afmin{i^j;kJ)yki{t)-^ V Afmax{hj',k,l)ykl{t)
Ckl£Nrii,j) Ckl^Nr{iJ)

+ A ^)ykl{t - t)
Ckl£Nr{i,j)

+ V A}^^Ji,j:k,l)yki{t-r)
Cki£Nr{i,j)

"1" A Bfmin{hjik.,l)Ukl{t^-{- \J -S/moxJi ^5
Cki£Nr{i,j) Cki£Nrii,j)

A<i<MA<j<N (3.92)

We repack the state variables Xij into a vector x of size n = MN. Similarly, the input
and output variables u,j and yij are repacked into u and y using the same labeling order.
The initial conditions for an FDCNN is given by:

Xij{t) = xoij{t), t e [-r,0] (3.9.3)

We will assume that xoij{t) is a continuous function.
Then we recast the state equations Eq.(3.92) into following functional differential equa

tions (FDE):
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Cx = CF(f,Xf) =--^x(t) +A(/(xW)) +i'"(/(x(«-T)))
lix

+5(u(£)) +1

~t~-^min ©mtn (/(x(t))) + •^min ^min (/(x(£-r)))

"I""^mox Gmox (/(x(i))) + •^max ©max (/(x(£-r)))

"t"Bmin ©mtn (^(0) "f" Bjnax '^max (u(£)) (3.94)

Xf € Cr is defined as

xt(^)j = x(£ + 9)i, 0 e [-r, 0] (3.95)

3.4.1 Existence and Uniqueness of solutions

Proposition 3

Given the initial condition

xo(£) = d{t), <j>(t) € Cr (3.96)

then the FDCNN in Eq.(3.94) has a unique continuous solution for t £ [0, oo).

Proof: we need to show that Eq.(3.94) has a unique solution. First we show that F{t,xt)
is globally Lipschitzian, i.e.

|F(£, ^) - F{t, <l>)\ < L lip —(f>\ for all ip,<p£ Or and all t (3.97)

for some constant L. If we define

k,l i,j k,l

t,J,k,l t,J,k,l

+ mf^{\Amax{iJ; k, 01} + n:iax{|.4;;„^(e,y; fc, 0|} + (3.98)t,3,k,l 3,J,k,l Hx^

, then L qualifies as our Lipschitz constant.
Since the input is continuous, F{t,tb) is continuous with respect to t for all ip. The

conclusion then follows from [73, page 308-309]. •

Proposition 4

If the initial condition are bounded by K > 0, then all states Xij of a type-II FCNN in
Eq.(3.92) are bounded for all time in absolute value by the sum:

M = K + Rx\I\

-\-Rxm&x{Y^{\A''{iJ;kJ)\+\A{iJ;kJ)\-^\B{iJ;k,l)\)}
k,i

+Rxmei,x{\/ \Afmax{iJ,kJ)\-]-\/\A}^^^{iJ,k,l)\
ki ki

+y\Af k,l)\ + \/\A}„i„{i,j,k,l)\
kl kl

+ \/\Bfmin{hj,kJ)\-h\/\Bfjnax{iJ,kJ)\} (3.99)
kl kl

and the u;-limit points of Xij{t) are bounded in absolute value by (M —A*).



3.4. TYPE-II FUZZY DCNN 47

Proof: It is sufficient to follow the proof of theorem 1 of [47] to see that also in this case it
is possible to recast the equations of the network in the same form of Eq. (4a) of [47]:

dx • • 1
(3.100)

where fij depends only on yki{t) and yki{t —r) and gij depends only on the inputs and the
bias, and for both it is possible to compute an upper bound in the same way as in [47]. •

3.4.2 Stability Results

Given two points x.x* € , and the following function, E : such that

for E(x - X*) = {(7{xi — which is defined by:

a{xi - xH = f{xi) - f{Xi)

Xi-X*, € [-1,1]
sgn{xi) - X-, Xi ^ [-1,1],x- € [-1,1]
Xi - sgn{x'̂ ), Xi € [-1, l^x' ^ [-1,1]

(3.101)

Suppose x" is an equilibrium point and let w = {ti?,}MNxi = x —x", then Eq.(3.92)
can be rewritten into:

Cwi = --^Wi + +^aJj(T{wj{t - t))
® j j

j j

j j

+y0iinxAt))-yPiim(t))
j 3

+V/?zy(^j(f - '̂ )) - - t))
j 3

i= l,2,...,MiV. (3.102)

Also, we study the stability of the type-II FDCNN with fiat fuzzy templates. Similar to
that in Proposition 1, we have the following proposition:

Proposition 5

Suppose X and x' are two solutions of type-II FDCNN in Eq.(3.102), then we have:

(1)

- MN - MN

A,=i - t)) - Aj=i - '•))
MN

< H lafjll/feCf - t)) - - '•)) (3.103)
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(2)

- MN

J

MN

MN

Ay(«i(( -/)) - Wiit - r))

j=l

Let

i-^l —(kij +ajjl +l^ijl +\Pij\ +laljl + \Pij\)

then we have the following theorem.

MNxMN

(3.104)

(3.105)

Theorem 11

Suppose that the spectral radius of matrix Rx\D\, p(^Rx\D\j < 1, then the FCNN in
Eq.(3.102) has only one equilibrium point.

Proof: Let the right hand side of Eq.(.3.102) be zero, then we have the corresponding
equilibrium equation as:

^ 3 3

3 3

- t)) - - t))
3 3

3 3

+VAy(^j(^ - '̂ )) - - -r))=0.
3 3

i= 1,2,..., MAT.

At the equilibrium point, we have:

<(f - '̂ ) = Wi{t),(T{Wi{t - t)) = <t(w-(0),
f{Xi{t - t)) = f{xi{t))J{x*{t - t)) = /(x-(0), Vi

then we can recast Eq,(3.106) into

^ 3 3

- A^i3fi^*jit))
3 3

+A®.y (^AO) -

(3.106)

(3.107)
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+VAi/(xi(i)) - y0iif(x-(t))
i J

+V/j.y(^i(«)) - VAy(^iW) = 0,
3 3

2 = 1,2,..., MAT. (3.108)

then we have:

3 3

- /\aijf(xj{t))
3 3

3 3

-^y/3ijf{xj{t)) - yPijfix'jit))
3 3

+V^y(^iW) -
3 3

z = l,2,...,MM (3.109)

In view of |<7(a:) - (7{y)\ < |a: - y\, and using the similar process of the proof of Theorem 5
we complete the proof. •

Let H = {hij)n4!\jxMN satisfies:

. _/ i =}
" ~ \ -|o.il - K\ - \Cv\- - \0ii\ - \0h\, i #J ^ '

then we have the following theorem:

Theorem 12

The origin of Eq.(3.102) is global asymptotically stable if iif is a nonsingular M-matrix.

Proof: We construct the following Lyapunov function:

MN

y(w(t)) = ^p,(Cs5ra(u;,(i))u;i(i)
t=i

MN t

+X! / {Kil +l»&l +l/^iil)kK'(«))M^) (3.111)
j=i

where pi > 0,i= 1.2,..., MN^ are constants.
Along the solution of Eq.(3.102), wecalculate the Dini upper-right differential of V(w(i))

as:

L)+V*(w(t))
£9.(3.102)

MN

= Pi{-^9n{wi{t))Cwi{t)
i=l
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MN

+ - t))|]}
3-1

MN j MN

- S + sgn{wi{t)) ^ aija(wj{t))
1=1 j=i

MN

-\-$gn{wi{t)) ajja{wj{t - r))
j=i

(~ MN - MN
-\-sgn{wi{t)) 0!ijf{xj{t)) - /\.^^ aijf{xj{t))

f~MN ; MN
+5^n(Wj(t)) \[\.^^ OL\^f{^A^ - '̂ )) - Aj=i - ^))

/~MN -MN-hsgn{wi{t)) (y.^^ Aj/(a?i(0) - Vj=i
f~MN -MN

+sgn{wi{t)) - r)) - f3ijf{x*{t - r))

MN

+X^(Kjl +|a-ji +l/?ril)[k(u^j(0)i - - -r))!]} (3.112)
j=i

In view of |<T(iy,)| < liy,! and from the similar process of proof of Theorem 5 and in view of
parameter assumptions in Eq.(3.76), we have:

T)+V*(w(i))
£;g.(3.102)

MN .

< - ^ - 141 - \<^ii\ - 141 - \M - IPIil)
MN

- Y2 pAM +141" +141 +i4i)}i^KW)i
j^i

MN / n \

= - IPi^ii + kKW)l <0 (3.113)
t=l \ /

The last inequality is satisfied when w 7^ 0. •

3.5 Type-I FDCNN

An M X N type-I FDCNN is described by the following state equation:

C
dxij (t)

dt

= --^^iA^)+ A{uj',kJ)yki{t)
Ckl^Nriij)

+ Y A''{Lj:k,l)yki{t-T)+ Y B{i,j\kA)uki{t)-\-I
CkiENr(ij) Oki€Nr(ij)
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+ A V (M;W) W)
Ckl€Nrii,j) Cki^Nr{i,j)

CkieNr{i,j)

CfcfeAV(t.i)

Cfc/GiVr(tJ) Cki€Nr{i,j)

A<i<MA<j <N (3.114)

Similarly we have;

Proposition 6

Given the initial condition

xo(0 = dit), d{t) 6 Cr (3.115)

then the FDCNN in Eq.(3.114) has a unique continuous solution for t € [0,oo).

Proposition 7

If the initial condition are bounded by A* > 0, then all states Xij of a delay-type cellular
neural network are bounded for all time in absolute value by the sum:

M = A -b R^\I\

ARx max { fc, /)| -b \A(i,j-, A;, /)|}
k,i

-bCAa; (3.116)

and the a;-limit points of Xij{t) are bounded in absolute value by {M —A'). •

By repackingx = {xij}MxN in to an ID vector x = wecan rewrite Eq.(.3.114)
as:

dx^
dt

2 ^

= "b

CjeNrii)

+ aijyj{t-r)+ Y. bijUj{t)-\-I
CjeNrii) c^eNrii)

-A/mox(0")
CjENrii) CjSNrii)

CjeNrii)

CjeNrii)

+ A fminiij) ySfmaxiij) («;W)
CjeNrd) CjeNrii)

,l<i<MA<j <N (3.117)
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Suppose X* is an equilibrium point and let w = {ty^MiVxi = x —x", then Eq.(3.117)
can be rewritten into:

Cwi = + +
^ j 3

+A^^/mtn(ti) {yj (^)) — (^j (^))
3 3

+A''-45„,„(0)(yi(f -'-)) - - r))
3 3

+V^^/moiOi)(2/i(0) ~\/t^Afmaxii3){yj(^)^
3 3

3 3

i= 1,2,..., MA*. (3.118)

Similar to that in Proposition 2, we have the following proposition:

Proposition 8

Assume that for two points x^^^ and x^^^ there exists a k such that:

- '"))) = - '")))

then

lAj=i '(« - r))) - (t - •^)))l
< (/(«!''(« - '"))) - - r)))| (3.120)

Similarly, let there exists an / such that:

Vj=, - '"))) = - '"))) (3-121)
then we have:

-MN ~MN

IV,=, - r))) - V,^, - r)))|
S ifa,„„(./)(/(^!"(1 - ^))) - fA,„„(io(/(^r(t - ^)))l (3.122)

Assume that all the l<A,„i„(ij)(-), /'.4,„„(.j)(-). f'4;„i„(.j)(-) a-n^ „„(,•,)(•) are globally
Lipschitzian, i.e., for any yj and y'̂ we have:

~ /^^/min(»j)(2/i)l ^ (3.123)

lf.4,„„(0)(yi) - yA,„^Aij)(y'i)\ ^ 0ii (3.124)

if4^mm(b)(!'i) ~f.</m.n('j)(l'j)l - *^0^ (3.1-2.5)
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•jtM
^ 0iJ (3-126)

And we assume that

Oij = Oji, off = off, isff = 0jf
= = 131^ (3.127)

Let

|L> |̂ = (|aij +ajj\ +laff|+\pff|+\ajf^\+ (3.128)

then we have the following theorem.

Theorem 13

Suppose that the spectral radius of matrix Rx\D'̂ \, pi^Rx\D'̂ {^ <1, then the FCNN in
Eq.(3.118) has only one equilibrium point.

Proof: It the same as those in Theorem 7 and Theorem 11. •

Let = {hij)MNy.MN satisfies:

M_ / i - Kil - Will - Wli^l - Wu\ - Wil'l i=i
1 - kill - \<4f\ - Wll'l - Wffl - Wifi, i# j

then we have the following theorem:

Theorem 14

The origin of Eq.(3.118) is global asymptotically stable if is a nonsingular M-matrix.

Proof: Similar to that of Theorem 12. •

3.6 Stability of Discrete-Time FCNN

Fuzzy discrete-time cellular neural networks(FDTCNN) is a very important branch of fuzzy
cellular neural networks(FCNN). FDTCNN is governed by a set of difference equations. We
presented the structures of FDTCNN and provide some stability criteria for them.

The dynamics of a cell Cij in an M x iV FDTCNN is given by
State equation

a^ij(^+l) = V + /\ A2{i,j:kJ)yki{t)
Ckt^Nriij) CklSNriij)

"I" \/ j'i k,l)Ukl
Ckl^Nr{ij)

+ /\ B2{i,j;kJ)uki-\-I (3.1.30)
Ckt€Nr{ij)

where i € N is the discrete-time. Uij, Xij and yij are input, state and output, respectively.
V and A denote fuzzy OR and fuzzy AND, respectively. In this paper, we let V =
and A = niin. Ai{i^j;k,l) and A2{iij;k,l) denote the fuzzy Max feedback synaptic weight
and fuzzy Min feedback .synaptic weight, respectively. Bi{i,j',k,l) and B2{i,j;kJ) denote
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the fuzzy Max feed-forward synaptic weight and fuzzy Min feed-forward synaptic weight,
respectively.

Output equation

ViAt) = fixiAt)) (3.131)

Parameter Assumptions

Ai(iJ:k,l) = Ai{kJ:i,j),A2{iJ;kJ) = A2{k,l]iJ), (3.132)

Let x'j be an equilibrium point of the FDTCNN and let e,j(i) = Xij{t) —x'j, we can
recast Eq.(3.130) into

€ijit-\-l) = [ V Ai{i,j;kJ)yki{t) - \/ Ai{iJ:k,l)yii]
Ckl&Nriij) Ckl^Nr(ij)

+[ A M(hj;kJ)yki{t)
Ckl^Nriij)

- A (3.1.33)
Ckt£Nr{ij)

Let

<7(efc/(t)) = f{xki{t))-f{xli) (3.134)

Similar to the Corollary 1 of [350], we need the following proposition.

Proposition 9

Let and {xij2} be two states of FDTCNN in Eq.(3.130), then we have

y Ai{iJ;kJ)ykii- \/ Ai{iJ;k,l)yki2
Ckt^Nr{ij) Ckl^Nr{ij)

^ \M{hj',k,l)\\ykn-yki2\ (3.135)
Ckl^Nr(ij)

and

A A2{i,j;kJ)ykii- /\ A2{iJ; kJ)yki2
Cki€Nr{ij) Cki£Nr{ij)

^ \^2{iJ^k,l)\\ykn-Vkiil (3.1-36)
CkiGNr{ij)

Proof:

Similar to that of Corollary 1 of [350]. •

Theorem 15

The equilibrium point of the FDTCNN in Eq.(3.130), is asymptotically stable if

Yi |Ai(i,;;ft,/)|+|/l2(j,i;fc,0|)'<l (3.137)
Ckl^Nr{ij)

and

|<r(e;,(l))| < L\eiAt)\ (3.138)

where L > 0 is a constant.

Proof:
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We define a Lyapunov function as

M N

^ = (3-139)
i=l j=l

Taking the forward difference of V along the solution of Eq.(3.133) we get

M N

V k, l)yki{t) - V Ai{i,j;kJ)yii)
i=l j=l Ckl£Nr(ij) CkieNriij)

+( /\ A2{i,j;kJ)yki{t) - /\ A2{i,j;k,l)yli)]'̂
Ckl€Nr(ij) Ckl^.'^riij)

-elit) (3.140)

In view of Proposition 9, we have

M N

AV < EE[ E \MiJ;k,l)\\<7{et,m
i=l j=l CkieNr(ij)

CklS.'^'r(ij)

M N

^ m \M{i^r->kJ)\F\A2{hj\k,l)\fG'̂ {eki[t)) - e? (t)
t=l j=l CkieNriij)

M N

^ EE( E \M{hi\kM+\M(i,rXl)\)'L\l(t)-el(t)
i=lj=l CkieNriij)

M N

= EE( E l>ll(Ar,/;^,i)|+|A2(^^/;^i)|)2IMi(0-4W
i=lj=l Cij^Nr(kl)

M N

= EE4(0[( E \Ai{kJ;iJ)\ + \A2{kJ;iJ)\fL'-l] (3.141)
i=l j=i Cij€Nr{kl)

We can see that if

LH Y1 |Ai(fc,/;i,j)| + |.42(fc,;:l,j)|)2< I (3.14-2)
CrjeNrikl)

then AV is negative, which implies the asymptotic stability of the equilibrium point
Since the symmetric property of the neighborhood system and the parameter assump

tions, we can recast Eq. (3.142) into

IH E |Ai(i,i;fc,()| + |A2(i,j;fc,0l)'< 1 (3.143)
Ckl^Nriij)

•

We give a structure of FDTCNN which is governed by a set of nonlinear difference
equations. Based on a discrete Lyapunov function, we present a stability criterion for
FDTCNN. FDTCNN can also be used in some typical applications of FCNN as we have
presented before[351,352]. Furthermore, FDTCNN can also be used to model some discrete-
time and spatial-distributed phenomena such as highway traffic flow.
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Chapter 4

FCNN as Computational Arrays

In this chapter, we present the FCNN structures which function as computational arrays.
Since the most used interpretation of fuzzy AND and fuzzy OR are minimum and maximum
calculations and since mathematical morphology[292,293,129,117] is closely connected with
fuzzy logic because it is essentially concerned with min and max operations[103], FCNN
is a paradigm for implementing morphological image operators. The applications of FCNN
as a computational min-max network are also presented in this chapter. So, we show that
FCNN functions as a low-level computational structure just as the conventional CNN does.
The advantage of the applications of FCNN to the image processing problems presented
in this chapter is that type-II FCNN can implement max and mm operations in a very
natural and efficient way than the conventional CNN does. To show this advantage of FCNN
over conventional CNN, the comparison between FCNN-based and conventional CNN-based
mathematical morphological operations is also presented. This chapter is the collection of
the results in our papers: [351, 352, 354, 353, 355, 360, 375, 372, 368, 365, 379, 377].

4.1 Basic knowledge of mathematical morphology

Mathematical morphology[292, 293, 129] is a theory which is concern with processing and
analysis of image, using operators and functional based on topological and geometri
cal concepts. During the last decade, it has become a cornerstone of image processing
problems. Morphological operations have been widely used for object recognition[302,
301], edge detection[180], shape analysis[239], thinning[148], image coding[102, 188], and
smoothing[147].

Four basic transformations in mathematical morphology are: dilation, erosion, opening
and closing. These basic transformations permit to extract contours, skeletons, separate
close objects, compute geodesic distances, etc.[292, 293, 129]. The basic idea of mathe
matical morphology is to probe an image with a structuring element and to quantify the
manner in which the structuring element fits(or does not fit) within the image. In general,
the structuring element has a simple shape and is very small compared to the image being
investigated.

Let f : X E and s : S E he maps for image and structuring element, respectively,
where E is the range of gray values. X is a gray-scale image, 5 is a weighted structuring
element. Then the basic morphological operations of erosion and dilation for gray-scale
images are given by[117]:
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Gray-scale Erosion:

A'©5 = min{/(a: + 2) - .5(2:)} (4.1)

for all 2: € 5 and x + z ^ X.

Gray-scale Dilation:

X @S =• max{/(x - z)5(2:)} (4.2)

for all z £ S and x — z £ X.

With the definition of gray-scale erosion and gray-scale dilation, gray-scale opening and
gray-scale closing are given by:

Gray-scale Opening:

XoS= {X e5) © 5 (4.3)

Gray-scale Closing:

A'#5 = (A®5)e5 (4.4)

For the purpose of implementation of gray-scale morphological operations by FCNN, E is
normalized within [0,1].

For example, let 5 be within a 3 x 3 square with the origin located at its center as
follows:

5 =

hi h2 hz

hs Hq
hj hs hz

(4.5)

where hi ~ /19 denote gray values of corresponding entries of structuring element. An entry
in a structuring element is defined if there exists an operation, is undefined if there exists
no operation (or simply set an undefined entry as +00 in erosion and as -00 in dilation).
A structuring element whose defined entries have the same value is called a fiat structuring
element

4.2 Implementation of morphological operations

Since type-II FCNN is a combination of min and max operations with parallel dynamics of
CNN, it is very convenient to implement morphological operations in it's structure. Another
reason for using FCNN in morphology is that given a relatively small and simple shaped
structuring element the morphological operations have strong local property. And a big size
structuring elements can be decomposed into a set of smaller size structuring elements. This
makes the possible applications of 3 x 3- or 5 x 5-neighborhood FCNN's to image processing
problem where large structuring element is needed. FCNN is found to be a universal
parallel array to implement morphological operations for processing both binary and gray
scale images[.351, .352]. In this section, we use different FCNN structures to implement the
basic morphological operations. Although the results presented in this section is based on
FCNN, one can very easy to find the corresponding FDTCNN's.
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4.2.1 Using multiplicative FCNN

The following multiplicative FCNN^[350] is used to implement a morphological operator
with a flat structuring element:

dx *' 1

, 1 < z < M, 1 < i < (4.6)

The parameters for implementation of erosion with a flat structuring element are given
bv:

I — h. Rx —1, Bfmax —0? Bfmin — (4-^ )

where h is the height of the flat structuring element S.
The parameters for implementation of dilation with a flat structuring element are given

by:

I —h> Rx —1,Bfmax — Bfmin —0 (4'8)

where Sd = {—3: : x € 5}
For example, let 5 as that in eq.(4,5), then Sd is given by:

Sd =

hs hs hi

h^ h^ hg
hz ^2 h\

—Bfmax (4'9)

4.2.2 Using additive FCNN

The following additive FCNN is used to implement erosion and dilation with any structuring
element besides flat ones[351, 352, .355]:

fj X' ' 1 "

,l<i<M,l<j<N (4.10)

The additive FCNN for implementing erosion has the following parameters:

Rx —1« Bfmax ~ undefined, Bfmin ~ ~S (4.11)

We call the above FCNN as an erosion FCNN, Image X is its input and its initial state is
arbitrary. When we say a template is "undefined", it means that the template is not used
by the CNN.

^An FCNN is Ccilled multiplicative if it has multiplicative fuzzy synaptic laws. .An FCNN is called additive
if it heis additive fuzzy synaptic laws.
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The additive FCNN for implementing dilation is given by

Rx — Pfmin ~ undefined,Hjrnax ~ Rd (4.12)

We call the above FCNN as a dilation FCNN. Image X is its input and its initial state is
arbitrary.

Then opening can be implemented by using an erosion FCNN followed by a dilation
FCNN. Closing can be implemented by using a dilation FCNN followed by an erosion
FCNN.

Fig. 4.1 shows examples of implementation of basic morphological operations to a gray
scale image using FCNN. The structuring element is given by

S = \ ^

X -L X
25 25 25

— 0 —
2.^5 : 25
j. j_ X
25 25 25

(4.13)

as shown in Fig. 4.1(a). Fig. 4.1(b) shows a gray image X of size 63 x 63 and 256 gray
levels. Fig. 4.1(c) shows the output of the dilation FCNN. Input is A'. Fig. 4.1(d) shows
the output of the erosion FCNN. Input is X. Fig. 4.1(e) shows the output of dilation FCNN



4.3. APPLICATIONS TO IMAGE PROCESSING

10 20 30 50 60 20 30 40 50 60

Figure 4.1: Implementation of gray scale morphological operations to gray scale images
using additive FCNN. (a) A non-fiat gray-scale structuring element, (b) Input image of a
Chinese girl, (c) Output of dilation FCNN. (d) Output of erosion FCNN. (e) Output of
opening, (f) Output of closing.

when the image in Fig. 4.1(d) is input. So, it's the opening of X. Fig. 4.1(f) shows the
output of erosion FCNN when the image in Fig. 4.1(c) is input. So, it's the closing of X.

4.3 Applications to image processing

4.3.1 Grey-scale reconstruction

We first give the concept of morphological reconstruction [337, 293, 292] briefly. Let an
image / be a map from a finite rectangular subset Di of the discrete plane 7? into a
discrete set E = {0,1,..., N —1} of gray levels. A binary image I can only take values 0 or
1 and is often regarded as the set of its pixels with value 1. Given a set X and two pixels
p, g € A', the geodesic distance between p and g, dx[p, g), is the length of the shortest paths
joining p and g which are included in A'.

Definition 8

Binary Geodesic Dilation: Let X C be a discrete set and Y C A'. The binary geodesic
dilation of size n > 0 of F within X is the set of the pixels of X whose geodesic distance
to y is smaller or equal to n:

&xhy) = {P^X\dx{p,Y)<n} (4.14)

Geodesic dilation of size n can be obtained by iterating n elementary geodesic dilation,
Di!'(y):

D!,"'(y) = Dl!'oD^'o...oD^'(y) (4.15)

The elementary geodesic dilation can be obtained via a standard dilation of size one
followed by an intersection

D''>(y) = (y®s)n;>f (4.16)



62 CHAPTER 4. FCNN AS COMPUTATIONAL ARRAYS

Definition 9

Reconstruction for Binary Images: The reconstruction of binary image X from Y C A' is
obtained by iterating elementary geodesic dilation of Y inside X until stability, denoted
by

Rx(y) = U Dx'O') (4-17)
n>l

In Definition 9, the set X is called mask and Y is called marker. Fig. 4.2 illustrated
this definition. In Fig. 4.2(a), the light shadowed regions denote the mask A, and the dark
shadowed regions denote the marker Y. From Fig. 4.2(b) one can see that all the regions
in X which are marked by the marker set Y are recovered while the other regions in X are
deleted. Then the above definitions can be generalized to gray-scale cases.

Definition 10

Gray-scale Geodesic Dilation: The elementary gray-scale geodesic dilation ofgray-scale im
age J < I "under" I is defined by

= (J®S)A/ (4.18)

where "A" stands for the point-wise minimum and J 0 5 is the dilation of J by fiat
structuring element S.

Gray-scale geodesic dilation of size n > 0 is then defined by

d5."'(J) = D^"odJ''o...oD^''(J) (4.19)
^ V

n

Definition 11

Reconstruction for Gray-scale Images: The gray-scale reconstruction R/(J) of gray image
I from J < I IS obtained by iterating gray-scale geodesic dilation of J "under" I until
stability is reached, i.e.,

R/(J) = V d}"'(7) (4.20)
n>l

Fig. 4..3 illustrates this definition. In Fig. 4.3(a), the marker J is denoted by shadowed
region and the mask is outlined by a curve which has two peaks. Note that J is totally
under I and only the left peak of I is marked by J. Fig. 4.3(b) shows the result of gray-scale
reconstruction. Just like binary reconstruction extracts those connected components of the
mask which are marked, gray-scale reconstruction extracts the peaks of the mask which are
marked by the marker image.

Definition 12

Gray-scale Geodesic Erosion: The elementary geodesic erosion (J) of gray-scale image
J > I "above" I is given by

E '̂'(7) = (Je5)v/ (4.21)
where "V" stands for point-wise maximum and J05 is the erosion of./ by fiat structuring
element S. The gray-scale geodesic erosion of size n > 0 is then given by

E^"'(J) = oE '̂' o... oE '̂'(J) (4.22)
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(a)

(b)

w

H

\

63

Figure 4.2: Binary reconstruction of mask X from marker Y. (a) Mask X (light shadowed
regions) and marker y(dark shadowed regions), (b) Result of reconstruction.
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Figure 4.3: Gray-scale reconstruction of mask / from marker J. (a) Mask I and marker J
(shadowed region), (b) result of reconstruction (shadowed region).
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Definition 13

Dual Reconstruction for Gray-scale Images: The dual gray-scale reconstruction RJ(J) of
mask I from marker J is obtained by iterating gray-scale geodesic erosion of J "above" I
until stability is reached:

RK^) = A (4-23)
n>l

Then we use the flow-chart of CNN series as shown in Fig. 4.4 to implement gray-scale
reconstruction. In Fig. 4.4, the FCNN with two input layers implements min operation
between its two inputs, {uiji) and {uij2}. Its output is image This FCNN is given by:

Xij = -Xij -t- min(ti,ji, Ujja) (4.24)

The minus CNN is given by:

X{j = ~Xij -|- {ujj^ ^tj4) (4.25)

Image is initialized using marker J.
Similarly, we can also implement the dual gray-scale reconstruction by replacing dilation

FCNN with erosion FCNN in Fig. 4.4, and give the FCNN with two input layers in Fig.
4.4 the following state equation:

Xij = -Xij max(w,ji, Uij2) (4.26)

, which implements max operation in this case.
To illustrate the usefulness of FCNN based gray-scale reconstruction aJgorithm, we used

this algorithm to remove black dot noises as shown in Fig. 4.5. Fig. 4.5(a) shows the image
in Fig. 4.1(b) and some black dot noises. The noises can be removed by applying opening
operation as shown in Fig. 4.5(b). The structuring element is given by:

S =

0 0 0

0 0 0

0 0 0

(4.27)

It is a flat structuring element with height 0. Compare the image in Fig. 4.5(b) with the
one in Fig. 4.1(b), one can see that some details of the original image is also removed. To
overcome this problem, we use the image in Fig. 4.5(a) as mask I and that in Fig. 4.5(b) as
marker J and apply the gray-scale reconstruction algorithm. The output is shown in Fig.
4.5(c). One can see that some details are recovered.

Another application of FCNN based gray-scale reconstruction algorithm is scratch re
moval. Although the traditional CNN can be used to remove scratches in an image[335],
the locations of the scratches should be known in advance. FCNN can remove scratches in

an image without knowing their locations. Fig. 4.6(a) shows the scratched version of the
image in Fig. 4.1(b). To remove scratches, we can use FCNN based opening operation. The
output is shown in Fig. 4.6(b). Then the FCNN based gray-scale reconstruction algorithm
is used to recover some details removed by opening operation. The mask I is the image
shown in Fig. 4.6(a) and the marker J is that in Fig. 4.6(b). Fig. 4.6(c) shows the final
result. One can see that some details are recovered. The structuring element is as that in
Eki.(4.27).



66 CHAPTER 4. FCNN AS COMPUTATIONAL ARRAYS

Start

Marker J

Load image J

Input imag^

Dilation FCNN
structuring element 8

Mask

IFCNN with two input layers

lmage#3 lmage#4

Uii.

Minus CNN

Output=0

Stop

Load image#3

Figure 4.4: The flow-chart of CNN series for implementation of gray-scale reconstruction
using FCNN series.
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Figure 4.5: Remove black dot noises using FCNN based gray-scale reconstruction algorithm,
(a) Image with black dot noises, (b) Output of FCNN based opening operation, (c) Output
of FCNN based gray-scale reconstruction algorithm.
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Figure 4.6: Remove scratches using FCNN based gray-scale reconstruction algorithm, (a)
Scratched image, (b) Output of FCNN based opening operation, (c) Output of FCNN
based gray-scale reconstruction algorithm.
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The number of templates used by the FCNN based gray-scale reconstruction algorithm
is Zk, where k is the number of loops till the "Minus CNN" outputs O's. k is very sensitive
to the structure of the mask image, in the worst case, k may be very close to an half of
the size of the mask image, k is not sensitive to the size and the shape of the structuring
element. In the above two simulations, A; = 11.

4.3.2 Euclidean distance transformation

The distance transformation based on Euclidean distance is not sensitive to the orientation

of the object. The mathematical morphology distance transformation uses a predefined
structuring element. By defining the center of the structuring element as the origin point
O, we can denote all the points by their distances from O (thereby O is denoted by 0). The
weights (entries) of an Euclidean distance structuring element are:

Se = X

4.0

• 3.6 3.2 3.0 3.2 3.6 .

3.6 2.8 2.2 2.0 2.2 2.8 3.6

3.2 2.2 1.4 1.0 1.4 2.2 3.2

0 3.0 2.0 1.0 0.0 1.0 2.0 3.0

3.2 2.2 1.4 1.0 1.4 2.2 3.2

3.6 2.8 2.2 2.0 2.2 2.8 3.6

•
3.6 3.2

00
3.2 3.6

•

4.0 (4.28)

where A > 0 is used to normalize the value of the biggest entry into the interval [0,1]. Only
those distances of 4A or smaller are shown.

Suppose a binary image X consists of two classes: object pixels, which have values
I's, and background pixels, which have values O's. Then the distance transformation is
implemented by the following gray-scale erosion:

Xei-Ss) (4.29)

where the minus before Se is used to give a positive distance measure in the output.
The size of the distance structuring element must be at least as large as the largest

object in the image, otherwise the central pixels of the object will remain I's. However, the
big neighborhood operation is very difficult to be implemented using VLSI techniques in
FCNN. It is necessary to decompose a big structuring element into smaller ones.

From the properties of gray-scale mathematical morphology operators, when an image
X is eroded by a large size structuring element S' which can be decomposed into dilation
of several small structuring components 5,- as follows:

5' = 5i®5^©...©5; (4.30)

, then we can obtain the same results by sequential erosion with these small structuring
elements[292] as follows:

xes'= {...{X 0 51) 0 5^...) 0 5;, (4.31)

A Euclidean distance structuring element Se can be segmented into the point-wise
m<iximum selection of multiple linearly sloped structuring components^ 5t[189] as follows:

- 5£; = max(5i, 52,..., Sn) (4.32)

Â structuring element is said to be linearly sloped when it is contained in a piecewise linear hyper-plane.
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where Si is of size {2i+ 1) x {2i+1), and the entries outside the window are regarded as
-oo[292, 129]. Let Si{k,l) denote the (k,l)-th entry of Si, then Eq.(4.32) can be recast as:

-SE{k,l) = max{Si{k, I), S2{k, /), ...,Sn{k, I)) (4.33)

Then, the gray-scale erosion of X with a Euclidean distance structuring element is
equivalent to the minimum of the outputs when the image is individually eroded with these
structuring components, which can be expressed as follows:

X © {—Se) = min(X 0 Si,X © S2,..., A © Sn) (4.34)

Since each structuring component Si,i = l,...,n, in Eq.(4.32) has linear slopes, it can
be further decomposed by using the method in Eqs.(4.30) and (4.31) into dilation of its
structuring subcomponents Sij, i = 1,..., n;j = 1,..., i; such that:

Si = Sii 0 Si2 0 ... 0 Sii, i = 1,..., n (4..35)

Every Sij, i = 1,..., n,j = 1,..., i, is a 3 x 3 structuring element, which is given by:

iy/2
Six = -A

where

and

iyj2 y/P + (i —1)2
y/i'̂ (i - 1)2 X

iV2 y/P + {i- 1)2

X =
0, %-\

don't care, i > 1

y/PTTT^
iy/2

= A

0 a 0

a y a

0 a 0

J = 2,3,

(4..36)

(4.37)

(4.38)

where a = y/P -i- {i —j + 1)^ —y/i"^ + (i —i)^ and y denotes a don't care element. In this
case, A can be chosen as A < such that all entries in 5^ are not bigger than 1. An

example of this kind ofdecomposition can be found in [303]. The block diagram of Euclidean
distance transformation based on this decomposition is shown in Fig. 4.7. One can see that
all the structuring elements are of size 3x3.

(jmage^
© ^ © S>p j

Min (Output Imag^

e ^ • • • e^n

Figure 4.7: The block diagram of Euclidean distance transformation using decomposed
structuring element algorithm.
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Figure 4.8: The flow-chart of CNN series for implementation of Euclidean distance trans
formation using FCNN's.

We use the flow-chart of CNN series as shown in Fig, 4.8 to implement this algorithm.
One can see that this flow-chart has the same structure as the block diagram shown in Fig.
4.7 except that the "MIN" block with n inputs in Fig. 4.7 is replaced by n —1 FCNN's
each with two input layers. In Fig. 4.8, the FCNN with two input layers implements min
operation between its two inputs. This FCNN is given by:

Xij — "b ^tj2) (4.39)

where {ujji} and {wtj2} denote its two inputs. The output image is the final result when
all the FCNN's settle down.

Since FCNN is a parallel, dynamic, computational array, no matter what the size of
the input image is, it will finish its operation within a characteristic time, tcnn- In Fig.
4.8 erosion FCNN's and other n —1 FCNN's are used, the time complexity of our
algorithm is (0.5n^ -J- l.on —1)tcnN' tcnn has the order of 10~®s, one can see that the
time complexity is very small.

Fig. 4.9 shows computer simulation results. Fig. 4.9(a) shows a binary image of a
Chinese character "YANG" of size 64 x 64. Fig. 4.9(b) shows the output image of the
flow-chart shown in Fig. 4.8 with w = 5, A = The result is represented by 256 gray
levels. In this case, the time complexity is 19 tcnn-

In this section, FCNN is used to implement Euclidean distance transformation, which
is a global problem. So, the results in this paper demonstrate that FCNN can also solve
global problems using a flow-chart of FCNN's. Since distance transformation has found
applications to skeleton extraction and shape factor extraction, the FCNN's can be used to
offset the computational loads in these applications.
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Figure 4.9: Implementation of Euclidean distance transformation using FCNN. (a) A binary
image of a Chinese character "YANG", (b) Output image of the FCNN based Euclidean
distance transformation algorithm.
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4.4 Compare with the conventional CNN

In this section, the differences between CNN based and FCNN based mathematical mor
phology operations are presented. The performances of the CNN-based mathematical mor
phology operations are analyzed. The stability and the basin of attraction of CNN-based
erosion and dilation are studied. The CNN-based erosion and dilation may introduce some
time-varying errors in their outputs. For comparison, the performances of the FCNN based
gray-scale mathematical morphology operations is also presented.

When binary mathematical morphology operations is concerned about, there are three
kinds of CNN structures can be used. That a DTCNN[120] can be used to implement
morphological operations is based on the decompose of the basic erosion and dilation with
a threshold in (0, 1)[358]. That a CNN can be used to implement morphological operations
is based on the saturation operation regions in the standard cell[395]. That a FCNN[350,
351, 352, 354, 353, 356, 355] can be used to implement morphological operations is based on
the correspondence of OR and AND to FUZZY OR and FUZZY AND when only boolean
set is encountered [351, 352]. Of course, using FCNN in this case is something funny like a
gun being used to hit a fly.

The difference between the DTCNN-based and the CNN-based methods lies in the fact

that in a DTCNN structure, a single template can be used to implement both the erosion
and dilation operations while the input function and the output function are switched
between two configurations. This structure is most suitable for VLSI implementation with
fixed parameters. On the other hand, the CNN structure needs two sets of templates to
implement erosion and dilation, respectively. Since an analog CNN chip with the ability
of dynamically programming templates is far from practical applications, the results may
remain a long time as a computer simulation which is much slower than a specially designed
digital binary morphology chip. So, the DTCNN maybe the only CNN implementation of
binary mathematical morphology in the near future.

When we concern about the gray-scale mathematical morphology, both CNN and FCNN
can be used. When the CNN-based method in [395] is used, every synaptic law is a thresh
old type nonlinear function of difference between output and inputs with a programmable
threshold, which corresponds to the gray value of the entries of the structuring element.
For example, in a 3 x 3 structuring element, a cell has 9 threshold type nonlinear synaptic
laws and other 9 minus operations. When an FCNN [351, 352] is used, only a min (or
max) operation is needed. So, the FCNN implementation is much simpler than that of
CNN. Since the CNN structure proposed in [395] is structurally unstable, there exist some
problems in its VLSI implementation. On the other hand, this structure is very sensitive
to initial conditions and in some case it will provide unstable and error results. However,
the FCNN implementation is globally and asymptotically stable and its output is error free.
In this section, we show that the FCNN-based mathematical morphology is superior to the
CNN-based one.

In [395], the authors proposed two CNN structures to implement the basic gray-scale
morphological operations. The CNN-based erosion is given by:
State equation:

iij = -Xij + Vij + ^ -Of/Cufc/ - a:,j) + 1, a;ij(0) = -1 (4.40)
Ckl€Nriij

where the function D|j(,) is given by:
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0, X> Sij{kl)
= \ -1^ a: < Sijlkl)

0, (kl) undefined

where Sij(kl) is defined by:

Sij{kl) = s{k-ij- j), {k - ij - j) e S

The output equation is given by:

Vij ~ "b 1| ~ \xij —1|)

And the CNN-based dilation is given by the following state equation

iti = -^ij + Vij + 13 - Xij) - 1, a:ij(0) = 1
Ckl^Nriij

where the function D^i(.) is given by

where Sij(kl) is defined by:

' 1, a: > Stj(kl)
0, X< S*j{kl)
0, Sij{kl) undefined

S^j(kl) = s{i-kj-l), {i-kj-l)es

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

The output equation is the same as that in Eq.(4.43). Without loss of generality, in this
paper we only study the 0 height flat structuring element of size 3x3, i.e..

5 =

0 0 0

0 0 0

0 0 0

then the erosion CNN in Eq.(4.40) can be written as:

Xij — Xij "b yij "b ^ Xij) -b 1
Ckt€.Ni{ij)

where the function dsi-) is given by:

dsix) =
0, a: > 0

-1, a: < 0

(4.47)

(4.48)

(4.49)

Assume that the input Uij is normalized to (—1,1), then the equilibrium point is given by:

13 dsim - Xij) =-1
Cki€Ni{ij)

(4..50)

We sort Uki in Ni{i,j) by a non-increasing order as {wi, U2,..., us, ug}, and assume that
ui ^ U2. We then study the stability of this equilibrium point. We have the following
theorem:
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Theorem 16

Given Ui ^ U2, Wi is an asymptotically stable equilibrium point in the basin of attraction
(-oo,Ui).

Proof: If ui ^ U2, then it is easy to see that x*j = Ui is a solution of Eq.(4.50). We
construct the following Lyapunov function:

K'iW = > 0 (4.51)

where Xij € (-oo, Wi). Differential Vij(t) along solutions of Eq.(4.48), we have:

dt £,.(4.48) -

= {xij - Ui){-Xij + yij + - Xij) + 1)

- {xij - iii){-Xij + yij + 1) < 0 (4.52)

The last inequality is in view of Xij < ui. It is easy to see that since Xij < wi < 1, we have
(—+ 2/tj + 1) > 0- O

When u\^ U2y it is very easy to see that any Xij € [^1,^2) is an equilibrium point of
Eq.(4.48). In case when U2 —U1 is very big, any noise in the circuit will make the cell output
any value in [mi,«2)- So, the performance of this circuit is not very good. On the other
hand, this circuit is structurally unstable. In a VLSI implementation, a very small positive
error in A template will eventually blow up the state.

When ui = U2 = ... = i < 9, the cell in Eq.(4.48) has no equilibrium point. In
fact, the cell will fluctuate around an m-equilibrium point[34S], which will stay at ui with a
probability of zero measurement[357].

Also, when the structuring element in Eq.(4.47) is used, the dilation CNN proposed in
Eq.(4.44) can be written as:

Xij =-Xij + yij 4- ^ dniuki - Xij) - 1 (4..5.3)
Ckt€Ni{ij)

where the function d^i-) is given by:

=•! n' : ^0
Assume that the input Uij is normalized in (-1,1), then the equilibrium point is given by:

dniuki - Xij) = 1 (4.55)

We then have the following theorem.

Theorem 17

Given us^ uq, uq is an asymptotically stable equilibrium point in the basin of attraction
(«9,+00).

Proof: If Us / wg, then it is easy to see that x*j = ug is a solution of Eq.(4.55). We
construct the following Lyapunov function:

Viiit) = - «9)' > 0 (4..56)
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where Xij € (w9,+oo). Diflferential Vij{t) along solutions of Eq.(4.53), we have:

dVijjt)
dt Eq.(4.53)

= {Xij - Ug)xij

= {xij - Ug){-Xij + yij + ^ doiuki - Xij) - 1)
Cki^Ni{ij)

= {xij - U9){-Xij + yij - 1) < 0 (4.57)

The last inequality is in view of Xij > ug. It is easy to see that since Xij > ug > —1, we
have {-Xij + yij - 1) < 0. •

If Us 7^ ug, then any Xij € (w8,ug] is an equilibrium point of Eq.(4.53). Also, when
ug = Us = ... = Uj, j > 1, the cell in Eq.(4..53) has no equilibrium point.

To show the output errors of the above CNN-based erosion and dilation, the following
simulations shown in Fig. 4.10 are used. Fig. 4.10 (a) shows an artificial image of size
20 X20 with 256 gray-level. In this simulation, we normalize the input image to (-1,1).
So, the voltage Ou corresponding to the 128th gray level. And a gray-level corresponding
to about Smu. It is easy to see that with the structuring element in Eq.(4.47), the erosion
will make all the pixels to the 128th gray level, and the dilation will make all the pixels
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Figure 4.10: The output results of CNN-based mathematical morphology operations pro
posed in [395] (a) An artificial image, (b) The output oferosion CNN in Eq.(4.40)at f = 4s.
(c) The output of erosion CNN in Eq.(4.40) at i = 4.3s. (d) The output of dilation CNN
in Eq.(4.44) dXt = 4s. (e) The output of dilation CNN in Eq.(4.44) at f = 4.5s.

in the center region to the 140th gray level and all the pixels in the outer region to the
128th gray level. Fig. 4.10(b) shows the output result of CNN in Eq.(4.40) at t = 4s.
The initial state is -1. One can see that this output is totally different from the standard
erosion result which should be a flat surface with height 128- However, since in this case
the CNN in Eq.(4.40) is not stable, it will oscillate forever. To demonstrate this, we show
the snapshot at f = 4.3s in Fig. 4.10(c). One can see that Fig. 4.10(c) is totally diflferent
from Fig. 4.10(b) and there exist more errors in Fig. 4.10(c). From above we know that
the erosion results given by the CNN in Eq.(4.40) are "random" images with uncontrollable
and unpredictable errors which are decided by the input images and the stop moments.

The same can be addressed to the dilation CNN in Eq.(4.44). Fig. 4.10(d) shows the
output of CNN in Eq.(4.44) at i = 4s. And Fig. 4.10(e) shows the output result at t = 4..5s.
One can find that it is hard to believe the output results of the CNN in Eq.(4.44) because
the results in Fig. 4.10(d) and Fig. 4.10(e) share no similarity. In the above simulations, a
fourth order Roung-Kuta method with step size 0.01 is used.

When the input image is a real image, the errors in the output results of the CNN's in
Eqs.(4.40) and (4.44) are very hard to be predicted and controlled. The simulation results
are shown in Fig. 4.11. Fig.4.11(a) shows a face image of a Chinese girl of size of 63 x 63
with 256 gray-levels. Also, the structuring element as in Eq.(4.47) is used. The difference
of gray value of the output of the CNN in Eq.(4.40) and the standard erosion at f = 45 is
shown in Fig.4.11(b). One can see that there exist lots of errors. The largest error is equal
to -5 gray levels. The initial state is -1. The difference of gray value of the output of the
CNN in Eq.(4.44) and the standard dilation at f = 4s is shown in Fig.4.11(c). Also, one can
see that there exists lots of errors. The largest error is equal to 5 gray levels. The initial
state is 1. In the above simulations, a fourth order Roung-Kuta method with step size of
0.01 is used.

We then use the FCNN in Eq. (4.10) to implement erosion and dilation. It's very easy
to see that the above two FCNN's are globally and asymptotically stable. On the other
hand, a local max/min operation is much easier to be implemented than 9 programmable
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Figure 4.11: The output results of CNN-based mathematical morphology operations pro
posed in [395]. (a) The gray-scale image of a Chinese girl, (b) The difference of gray level
between output of CNN in Eq.(6.60) and the standard erosion at t = 4s. (c) The difference
of gray level between output of CNN in Eq.(4.44) and the standard dilation at i = 45.
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Figure 4.12: The output results of FCNN-based mathematical morphology operations pro
posed in [351, 352]. (a) The output of erosion FCNN in Eq.(4.10) aXt = 35. (b) The output
of dilation FCNN in Eq.(4.10) at t = 35.

thresholding nonlinear synaptic laws. The output results of the FCNN-based erosion and
dilation are error free.

Fig. 4.12(a) shows the output of the erosion FCNN at f = 35. The structuring element
as that in Eq.(4.47). Fig. 4.12(b) shows the output of the dilation FCNN at t = 35. In
both simulations, the input is that image shown in Fig. 4.10(a). The initial conditions are
arbitrary. One can see that the FCNN-based erosion and dilation give the error free results.

In this chapter, the performances of the existed CNN and FCNN implementations of
mathematical morphology operations are studied. We find that the CNN-based mathemat
ical morphology operations proposed in [395] output results with time-varying errors which
are input image dependent. And the CNN structures in [395] is structurally unstable. The
error free and globally asymptotically stable implementations of morphological operations
are based on FCNN[351, 352]. Although wedon't argue that the FCNN-based mathematical
morphology operations are the only choices of the future CNN-based morphology engine, if
one want an error free and totally stable CNN-based morphology engine, so far the FCNN
is the best choice.

4.5 Other applications to image processing

In this section, we present some applications of type-II FCNN as min —max network and
some applications of type-II FCNN. Although min —max network is a special case of
mathematical morphology network, they give us examples to show how natural an FCNN
can be translated to this kind of applications. Since the applications of type-I and even
type-Ill FCNN's are still an unexplored field, the other examples presented here are used
to show what kind of potentials a type-I FCNN may have.

4.5.1 Fuzzy shrinking and expanding using type-II FCNN

"Shrinking" and "expanding" operations on two-vaJued digital image are useful for noise
removal and segmentation[255]. The authors of [193] had generalized these operations to
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process gray-scale images. Forsimplicity, we use two-valued images to demonstrate how the
shrinking and expanding operations work. Let X be a two-valued imagewhich suffers from
salt-and-pepper noise, so, X contains regions consisting primarily of O's with a sprinkling
of isolated I's and vice versa. Any set of I's that is no more than two pixels wide will
removal by using a shrinking operation, in which I's are changed to O's if they have O's as
neighbors, followed by an expanding operation, in which O's are changed to I's if they have
I's as neighbors. Similarly, expanding following by shrinking destroys sets of O's that are
at most two pixels wide.

More generally, we can use k repetitions of shrinking followed by K repetitions of ex
panding to eliminate sets of I's that are at most 2k pixels wide. Shrinking and expanding
operations can be used to detect elongated parts of objects in an image. They can also
be used to detect the clusters or dense regions in an image composed of isolated I's on a
background of O's (or, vice versa).

If we perform k repeated expansions where k is at least half the distance between the
I's in a cluster, the cluster will "fuss" into a solid region; when we subsequently perform k
repeated shrinks, this region will remain large. On the other hand, I's that don't belong to
cluster will expand but not fuse with other I's, so that when they are shrunk, they shrink
back to single I's.

In two-valued image, shrinking the I's is equivalent to computing the logical AND of
each pixel with its neighbors, and expanding the I's is equivalent to logically ORing each
pixel with its neighbors. So, we can generalize shrinking and expanding operations in the
case of gray-scale image by using fuzzy AND, A, and fuzzy OR, V, to replace the logical
AND and logical OR. We then present the FCNN's for implementing fuzzy shrinking and
fuzzy expanding.

We use the type-II FCNN in Eq.(2.32) to implement fuzzy shrinking and fuzzy expand
ing. The template for implementing fuzzy shrinking in a 1-neighborhood system is given
by:

A —0, E —0, I —0, Afjnin —0, Afmax —0, Rx —1,

111

1 1 1

1 1 1

Hfmax —0)Hjmin — (4..58)

The template for implementing fuzzy expanding in a 1-neighborhood system is given
by:

A —0, 5 —0, / —0, Afmin —0, Ajmax — Rx —1?

1 1 1

1 1 1

1 1 1

Hjmin —0? Hfjnax — (4.59)

The inputs of the two FCNN's in Eqs.(4.58) and (4.59) are gray-scale images, initial
states are arbitrary.

Fig. 4.13 shows the results of noise removal by repeatedly applying shrinking FCNN in
Eq.(4.58) and then repeatedly applying expanding FCNN in Eq.(4.59) to an artificial image.
Fig. 4.13(a) shows an artificial image of size 64 x 64 and 256 gray levels consisting of a
noisy white rectangle on a noisy background. The mean gray levels of the rectangular and
the background are 220 and 140, respectively, with the deviation 30 for each. Fig. 4.1.3(b)
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Figure 4.13: Using shrinking FCNN and expanding FCNN to remove noise in a gray-scale
image, (a) The noisy image containing a noisy bright square in a noisy dim background,
(b) The result of applying the shrinking FCNN 3 times to the image shown in (a), (c) The
result of applying the expanding FCNN 3 times to the image shown in (b).
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shows the result of repeatedly applying shrinking FCNN for three times. Fig. 4.13(c) shows
the result of repeatedly applying expanding FCNN for three times to the image in Fig.
4.13(b). One can see that the noises are removed.

It is easy to see that shrinking and expanding is closely related to the erosion and the
dilation operations which we have presented in Sec.4.2.

4.5.2 Edge detection using type-II FCNN

Now we use type-II FCNN's to detect edges of an object from its background under a low
SNR condition. From Sec.4.5.1 we know that the fuzzy shrinking and expanding operators
can remove noise in a very effective manner. They are used to pre-process the image before
edges are detected. Let S denote the object and 5 denote its complement. Then, a single
shrinking step means that all points of 5 which are neighbors of points in S are deleted from
5. If the difference between the mean gray values of the object and the background is big
enough, then the deleted points from S during a single shrinking operation is a reasonable
boundary of S.

Fig. 4.14 shows the results of edge detection under a low SNR condition using type-II
FCNN. Fig. 4.14(a) shows an artificial image of size 64 x 64 and 256 gray levels consisting
of a noisy white rectangle on a noisy background. The mean gray levels of the rectangle
and the background are 220 and 190, respectively, with the deviation 30 for each. Before
the edges can be detected, the fuzzy shrinking CNN in Eq.(4.58) and the fuzzy expanding
CNN as in Eq.(4.59) are repeatedly applied 7 times each to remove noise. The result is
shown in Fig. 4.14(b). Then the following type-II FCNN is used to get edges from image
shown in Fig. 4.14(b).

4 = 0, / = 0, Afuiin ~ 0? Ajmax ~ 0, Rx —1, Bfmin ~ 0

0 0 0 -1 -1 -1

B = 0 1 0 »Bfmax — -1 -1 -1 (4.60)
0 0 0 -1 -1 -1

The result is shown in Fig. 4.14(c). One can see that a reasonable edge is detected.

4.5.3 Fuzzy medial axis transformation using type-II FCNN

The medial axis transformation(MAT) can be regarded as a generalized axis of symmetry
of a figure, and constitutes a kind of "skeleton" [226]. MATcan be defined by a propagation
process toward the inside of a figure. The contour is the initial wavefront of the propagation
process, and the propagation velocity is fixed. Wavefront superposition is not allowed, and
wavefront intersection points are the points of the MAT. In the case of gray-scale image,
the propagation of a wavefront can be modeled by a sequence of fuzzy shrink operation,
and the MAT can be constructed by a simple process of iterated fuzzy shrinking and fuzzy
expanding.

Let A" be a gray-scale image and A*' denotes the result of expanding X k times. Simi
larly, let A~^ denote the result of shrinking A k times. Then it's easy to see that

(A-')^' < < (A^)-* (4.61)

where i and j are nonnegative integers. The difference result

Dk = - (A-')' (4.62)
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Figure 4.14: Edge detection under alow SNR condition using type-II FCNN. (a)An artificial
image containing a noisy white rectangle on a noisy background, (b) Result of noise removal
using shrinking FCNN and expanding FCNN 7 times each, (c) Result of edge detection using
FCNN.
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Figure 4.15: The flow-chart for implementation of fuzzy MAT algorithm using type-II
FCNN.

is everywhere nonnegative. Then the fuzzy MAT is given by

n

k=l

(4.63)

where n is the number of iterations, which is somewhat greater than the radius of the largest
high gray value region. The time complexity of the algorithm is proportional to the image
size times the number of iterations. However, by using FCNN's, the time complexity would
be proportional to the number of iterations. The flow-chart of this algorithm is shown in
Fig. 4.15.

Fig. 4.16 shows a gray-scale image and its fuzzy MAT. Fig. 4.16(a) shows a gray-scale
image containing two circles of size 128 x 128 and 256 gray levels. The mean gray levels
of the circles and the background are 230 and 120, respectively, with the deviation 10 for
circles and 30 for background. Fig. 4.16(b) shows the output image of the flow-chart in
Fig. 4.15. The fuzzy shrinking template is given by Eq.(4.58) and the fuzzy expanding
template is given by Eq.(4.59) One can see that the high fuzzy MAT values constitute very
reasonable "skeletons" of the circles.

4.5.4 Face image processing using type-I FCNN

For the purpose of face recognition[39], facial expression animation[358] and synthesis[289],
and compression of face image[51, 325], we need to model face images. Two of important
steps of modeling face images are face image segmentation and feature extraction. The
structural features of a face image include eyebrows, eyes, nose and mouth. For facial
expression animation, the deformation of cheeks is of interest.

Although the authors of [358] used a 2-layer conventional CNN to animate facial expres
sions, they didn't provide the method to locate the key-points, which specify the locations
of eyes (eyebrows) and mouth. Of cause, we can locate eyebrows, eyes, nose and mouth
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Figure 4.16: Fuzzy medial axis transformation using type-II FCNN. (a) The original image
containing two noisy white circles with a dim noisy background, (b) The Fuzzy medial axis
transformation of (a).
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by using a series of templates which perform the corresponding digital image algorithms as
surveyed in [39]. In this subsection, we show how the following two simple type-I FCNN's
can be used to solve this problem.

One of them is given by:
State equation

Output equation

Xjj — Xij + BfrninQmin'̂ ij

Vij = ^

0, Xij < 0
Xij, 0 < Xij < 1
1, Xij > 1

The other is given by:
State equation

Xij — Xij -f- BjmaxQmax^ij

The output equation is the same as in Eq.(4.65).

(4.64)

(4.65)

(4.66)

Example 1: Locating low boundaries of eyebrows, eyes, nose and mouth

In this example, the templates Bfmin and Bjmax in Eqs.(4.64) and (4.66) are given by:

Bfmin —

where is an algebraic negative and ".4" denotes the fuzzy complement of A.

Bjmax —

where the fuzzy number A is given by:

' 0,

1 11 n
| A

-CB -C

A-CA

(4.67)

1

1

-CB-C (4.6
8)

1

I1a{x) =

the fuzzy number B is given by:

X < 0.5

max(0, k{x - 1) + 1), 0.5 < a: < 1

, V f 7naa:(0,-Aja: + 1), x < 0.5
=I 0, 0.5"< ^<1

the fuzzy number C is given by:

, ._J max(0, —mx + 1),^^c\x) —y 77202^(0, m(x - 1) -I X < 0.5

+ 1), 0.5<x<l

(4.69)

(4.70)

(4.71)
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From above, one can see that the fuzzy numbers A, B and C are piecewise linear for
the purpose of easy VLSI implementation. To show how the definition "Omin" works, we
rewrite Eq.(4.64) in an explicit form as:

as:

Xij — ~l~

AI
I ~~ MvA (Wt+1J—i),

1 i,j), 1
1 - //e ), 1 + (wi,j+i),

1 + ), I- IIA (^t+i,i+i)
(4.72)

Also, to show how the definition "0mox" works, we rewrite Eq.(4.66) in an explicit form

Xij — Xij -{- \J
( /z^(u._i,j_i), -ixc{ui-i^j), ;u^(u._ij+i),

-^C ), /AB (Wt,i), -fJ-C {Uij+I), (4.73)

The simulation results are shown in Fig. 4.17. Fig. 4.17(a) shows a face image of a
Chinese girl of size 63 x 63 and 256 gray levels (normalized within [0,1]). This image is fed
into the input of FCNN in Eq.(4.66), the output image is shown in Fig. 4.17(b). Then the
image in Fig. 4.17(b) is fed into the input of FCNN in Eq.(4.64), the output image is shown
in Fig. 4.17(c). From Fig. 4.17(c) one can see that the low boundaries of eyebrows, eyes,
nose and mouth are marked by black lines. In this simulation, we choose k = 2 and m = 4.
However, different face images should choose different k^s and m's.

Example 2: Segmentation of face

In this example, we show the segmentation of "flat" parts of a face image, which contain
cheeks, chin and forehead. The two type-I FCNN's in Eqs.(4.64) and (4.66) are used. The
templates B/min and Bjmax are given by:

Bfmin —

Bfmax —

ABA

B B B

ABA

A B A

B B B

A B A

(4.74)

(4.75)

The fuzzy number A and B are the same as those in Eqs.(4.69) and (4.70).
The simulation results are shown in Fig. 4.18. Fig. 4.18(a) shows the output results of

the FCNN in Eq.(4.64). The input image is that shown in Fig. 4.17(a). Then the image
in Fig. 4.18(a) is fed into the input of FCNN in Eq.(4.66), the output image is shown in
Fig. 4.18(b). From Fig. 4.18(b) one can see that all the fiat regions of face (e.g., forehead,
cheeks and chin) are marked by light regions. We choose k = 2.
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Figure 4.17: Locating structural features of a face image using type-I FCNN. (a) A gray
scale face image of a Chinese girl. (b)The output image of the FCNN in E}q.(4.66). Input
is the image in (a), (c) The output image of the FCNN in Eq.(4.64). Input is the image in
(b).
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Figure 4.18: Segmentation of a face image, (a) The output image of the FCNN in Eq.(4.64).
Input is the image in 4.17(a). (b) The output image of the FCNN in Eq.(4.66). Input is
the image in (a).
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Chapter 5

Embed Linguistic Statements into
FCNN

In this chapter we presented some inner properties of FCNN which functions as an intel
ligent component in the CNN universe as an interpreter between the high-level knowledge
expression and the low level hardware implementation. Comparing the results provided in
Chap. 4, we can see that this chapter emphasizes the high-level ability of FCNN structures.
And the high-level ability is the significant difference between conventional CNN and FCNN.
This chapter is a collection of the following papers [354, 355, 362, 361, 364, 376, 384, 383].

5.1 FCNN: Interfaces between human expert and CNN

In an artificial intelligent system, the motivation is to make a brain model as the core
of the system. A conventional CNNUM can't function as this core even though it had
been proved to be a Turing machine[54] (Turing machines cannot answer a simple question:
"How are you feeling?") and even though it can be used to explain lots of visual phenomena
[358, 59, 339](Seeing is not thinking.). On the other hand, the FCNN structure can be used
as an interface between the human expert and the conventional CNN. In this sense, the input
of an FCNN is the knowledge of human expert which is described by linguistic statements,
and the outputs are sets of "templates". In other words, the FCNN is used to translate
linguistic or higher level statements which are expressed as fuzzy rules into CNN templates.

5.1.1 Fuzzy set theory and fuzzy property of images

In every phase of image processing, there exist lots of uncertainty[342], e.g., additive and
non-additive noise in the sensing and transmission processes; the lose of information while
3D shape or scene is projected into 2D image; lack of the quantitative measurement of im
age quality and imprecision in computations; ambiguity and vagueness in representations,
definitions and interpretation of complex scenes. The fuzzy set theory[393] provides a math
ematical strength to capture these uncertainties[155, 142]. It has found wide applications
in image processing such as[342, 394, 240, 155, 142, 226, 193]: image modeling, prepro
cessing, segmentation, object/region recognition and reasoning aspects of image processing
problems.

While fuzzy set theory provides an inference mechanism under cognitive uncertainty,
the CNN[47, 46] offers advantages such as learning, adaptation, fault-tolerance, parallelism
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and generalization. Although fuzzy logic is a natural mechanism for modeling cognitive
uncertainty, it may involve an increase in the amount of computation required (compared
with a system using digital logic). This can be readily offset by using FCNN, which has the
potential for parallel computation with high flexibility.

A fuzzy set A with its finite number of supports Xi^ i = 1,..., n, is defined as an ordered
pair

A = (^t))} {^*1}

or, in a union form,

A= [Jfii/xi,i= (5.2)
i

where the membership function fJ.A(^i) in the interval [0,1] denotes the degree to which an
event Xi may be a member of A. fiA = 0 represents no membership and fiA = I represents
full membership. This characteristic function can be viewed as a weighting coefficient which
reflects the ambiguity in A. A fuzzy singleton is a fuzzy set which has only one supporting
point. In digital image this concept is very useful because a pixel can be viewed as a fuzzy
singleton.

The operations on fuzzy sets are extensions of those used for traditional sets. Some of the
common operations include comparison, containment, intersection, union and complement.
Assuming U to be the universe of discourse, A e U and B € U, these operations are defined
as follows:

Comparison: is A = B 1

A = S iff/^^(a:) =/fB(a;), Va: € 17 (5.3)

Containment: is A C B ?

A C B iff iia(^) < V® € B (5.4)

Union: The union of two fuzzy sets A and B, AV B, is given by combining the mem
bership functions of A and B. Although there have been several different union operations
defined[341], the most common, and so far the simplest, union is defined as

Pas/B = max{fj,A{^), e U (5.5)

Intersection: Like the union, the intersection of two fuzzy sets A and B, A AB, is given
by combining the membership functions of A and B and is defined as

FaaB = mm{/z^(a;),/iB(x)},Va: 6 U (5.6)

Complement: The complement of the fuzzy set A , A, is defined as

pj{x) = 1 - /Lt^(a;), Vx € B (5.7)

In addition to these operations, De Morgan's law, the distributive laws, algebraic op
eration such as addition and multiplications, and the notion of convexity have fuzzy set
equivalents[393].
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Remark:

The traditional CNN can implement the following fuzzy operations:
Comparison can be implemented by using a minus operation template and then checking

the output is zero or not. Containment can be implemented by using a minus operation
template and then checking the sign of the output. Complement can also be implemented
by using a minus operation template. However, intersection and union can't be implemented
by using the traditional CNN, and they can be implemented by using FCNN.

A gray level image possesses ambiguity with each pixel because of the possible multi
valued levels of brightness. If the gray levels are scaled to lie in the region [0,1], we can
regard the gray levels of a pixel as its degree of membership in the set of high-valued "bright"
pixels—thus a gray image can be viewed as a fuzzy set. Regions, features, primitives,
properties, and relations among pixels that are not crisply defined can similarly be regard
as fuzzy subsets of images[394, 240].

With the concept of fuzzy set, a gray-scale image X ol M x N pixels and gray levels
belong to [0,1] can be considered as an array of fuzzy singletons, each with a value of
membership function denoting the degree of having brightness relative to some brightness
level in [0,1]. On the other hand, the fuzzy property of an image also comes from the
uncertainty of relationship between different pixels. This is the basis for application of
FCNN to image processing.

5.1.2 FCNN as an interpreter

The human experts are usually use the linguistic statements to evaluate and describe the
image. When we take a picture we may mostly say "get a little blur" instead of "filtering
by a low pass filter". Or we most likely to say "there exist some black dots !" instead of
"there exist impulsive noises at pixel (3,4), (44,94) and (123,321)".

Based on the fuzzy description of images, lots of fuzzy methods are developed to deal
with image processing problems. One can find that a conventional CNN chip is very hard
to embed the linguistic if-then rule based fuzzy image processing techniques into the tem
plates. To overcome this problem, we need an interpreter between human experts and the
conventional CNN. From lots of previous work[3o0, 351, 352, 354, 353, 356, 355, 362, 361,
374, 370, 364, 376, 384, 383], we found that FCNN can efficiently embed the fuzzy rules
into its structures. This capability of FCNN is found very useful to interpret the linguistic
knowledge accumulated these year from the field of fuzzy image processing.

On the other hand, the study ability of FCNN also provides us with a possibility of
"teaching" FCNN using linguistic statements and make the design of CNN structures for
special image processing tasks much easier. If we think that the only way a human expert
communicated with a conventional CNN is the template design or collecting a huge body of
date to train the CNN structure, we can find that by teaching an FCNN using our language
may be a more direct and easy way than the method we used so far. In this chapter we
only presented the method for embedding linguistic statements into FCNN structure. We
also found FCNN can learn its structure from linguistic input in Chap. 6.

5.2 Embedding fuzzy inference into FCNN

In [355, 364], the FCNN structure for implementing the following kind of fuzzy IF-THEN
rule was presented. The rule is given by:
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Rule 1:

® is Ai and ^ is ^2 ... and
.-(2)

^^c^eNriiJ) ° then Vij is B.

where '̂'̂ cll€iVr(t,j) ° ^kh I < i < M, is an algebraic or fuzzy local operation defined in
Nr{i,j). Ai, 1 < i < M, is a fuzzy variable. S is a fuzzy variable and the consequent. The
corresponding FCNN structure for implementing the above IF-THEN rule is given by:

State equation

Xij = -Xij -f f\[jlAi ° °
5—, °^w)) (5-8)

Output equation

Vij =/iB(ar,i) (5.9)

where //^, (.), z = 1,2,..., M, and mb(-) stre membership functions of Ai and B, respectively.
In [.352, 354], we presented the FCNN structure for embedding the fuzzy inference

ruled by else action (FIRE) operators which are a recently proposed family of fuzzy op
erators for image processing[277, 275]. The FIRE operators are based on a fuzzy IF-
THEN-ELSE architecture to perform many important image processing tasks, e.g., image
enhancement[279, 276] and edge detecting[277, 275].

First, we introduce the FIRE operators briefly. Consider an T-level gray-scale image
U. Suppose Uij is a pixel in U. And Uki is a pixel in the neighborhood of Uij, then we
define Xki = \uki —Uij\ as "gray value difference". We also need the membership function
of linguistic variable ZERO(ZE), the membership function of linguistic variable
WHITE(WH), Aiwjf(®), and that of linguistic variable BLACK(BL), ^bl(^)'

In general, an FIRE operator consists of a group of N IF-THEN-rules and one ELSE-rule
as:

Rule 2:

IF xi is All and ... .. and xm is Aim THEN y is Bt

IF xi is A;vi and .. ... and XM is Aa'm THEN y is Bt
ELSE y is Be

where M is the number of input variables. Aij, i = 1,..., iV; j = 1, M, is the fuzzy set
corresponds to the j-th input variable in the i-th THEN-rule. Bj is the common consequent
set of the group of THEN-rules, Be is the consequent set of the ELSE-rule. One can see
that every THEN-rule in Rule 2 has the same structure as Rule 1. If Bt is different for
every THEN-rule, we can use N layers of FCNN in Eq.(5.8) to implement Rule 2. Since
all the THEN-rules have the same consequent, we can use a simpler FCNN structure to
implement Rule 2.

Let Aj be the strength of the i-th THEN-rule in Rule 2, we have

= A (5.10)
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Figure 5.1: Rules for FIRE edge extractor.

where //>!,_, (.) is the membership function of Aij.
Let Xt be the strength of the THEN-sub-rule in Rule 2, we have

Xt = V Xi

Let Xe be the strength of the ELSE-rule in Rule 2, we have

Xe = 1 ~ Xt

95

^ y

•

(5.11)

(5.12)

Finally, the output y is given by a trade off between Xt and A^; by using a proper
defuzzifier. There is no unique way to perform the defuzzification. And there exist some
considerations for choosing defuzzifiers. Several existed methods for defuzzification take
into consideration the shape of the clipped fuzzy numbers[30]. Also, the complexity of
computations and the possibility of VLSI implementation are taken into account. Usually,
according the principles given in [354], the defuzzifier is implemented by the so called output
function in the conventional CNN (In our FCNN, it's called an output membership function
or defuzzifier function). So, the simplest defuzzifier is the threshold function when only the
binary output is needed.

5.3 Application to image processing

5.3.1 Fuzzy inference edge detector

We then give the FCNN structure which can be used to embed the FIRE edge extractor[277].
An FIRE edge extractor is illustrated in Fig.5.1. In Fig.5.1, the membership functions of
ZE, BL and WH are defined as trapezoidal shape. To simplify the structure of FCNN, we
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only use Aj to defuzzify the output. We use only one layer of FCNN to implement all the
THEN-rules shown in Fig. 5.1. The state equation is given by:

Xij — Xij + ^ij)i /\ f^Zsi'̂ kl
THEN—rulel THEN—rule2

/\ fJ'ZEiukl - Uij), /\ f^ZEiUkl - Uij)]
THEN-ruleS THEN-rxileA

= /\ IJ'ZEiUkl-Uij),

A f^ZEi^kl - Uij)i
kl€{ii,j+l),ii+l,j)}

A I^ZEi'i^kl - Uij),

A t '̂ZEi'̂ kl - «tj)] (5.13)

It should be noticed that a don't care pixel in Fig. 5.1 introduces no template relation. One
can see that the equilibrium point of the state variable gives the strength of the THEN-
rules, Aj. The output equation of the above FCNN functions as a defuzziher and is given
by:

f 0,
1 1, liwalxij) <h

where yij denotes the classical truth value of the pixel to be an edge pixel and ^ > 0 is the
threshold.

The simulation results are shown in Fig. 5.2. Fig.5.2(a) shows the original gray-scale
image of size 63 x 63 with 256 gray levels. Fig.5.2(b) shows the state of FCNN in Eq.(5.13)
which is the fuzzy inference result. Fig.5.2(c) is the corresponding output which is the
thresholded(defuzzified) result.

5.3.2 Impulsive noise removing via fuzzy inference

In this section, we consider the impulsive noise removal problem. Median filters are usually
used to remove impulsive noise [10, 391]. Unfortunately, a median filter may blur fine
structures of an image and cause edge jitter, streaking. To overcome this problem, an
efficient method is that the median filter only filter those pixels where impulsive noises are
existed and keep the other pixels unchanged[10]. To do this, the first step is to identify
impulsive noises. From our experience, an impulsive noise always seems to introduce a
significant gray value difference to its neighbors. This experience can be expressed by the
following fuzzy IF-THEN rule:
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Figure 5.2: FCNN-based fuzzy inference for edge detection, (a) Input image of a Chinese
girl, (b) Output of FCNN-based fuzzy inference, (c) Thresholding results of the image in
(b).
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IF iiF{uij-i - Uij) is big and —Uij) is big
and

fiF{ui-i,j - Uij) is big and fipiui+ij - Uij) is big
and

I^F{ui-i,j-i - Uij) is big and fiF{ui+i,j+i - Uij) is big
and

MF(Wt-ij+i - Uij) is big and /ipCwt+ij-i - -Wij) is big,
THEN Uij is an impulsive noise.

Where the membership function ij>f{') functions as a fuzzifier. In this paper, we choose
fiF{-) as the following piecewise linear function:

- V J min(l,a: < 0
I min(l,A:a:), a: > 0 (5.15)

where A: > 0 is a constant. If the input of a FCNN is normalized within [0,1] and let A: = 1,
then Eq.(5.15) can be rewritten as:

Hf{x) = |x|, -1 < X< 1 (5.16)

And the membership function of linguistic variable big, fjLbigi-), can be obtained by using
training method proposed in [10]. We use the membership function /inoise(-) to denote the
degree of truth of the sentence "there is an impulsive noise". So, fJLnoise(') = 1 denotes "there
is (exactly) an impulsive noise"; f^noisei-) = 0 denotes "there isn't an impulsive noise". To
ease the VLSI complementation of FCNN, weusually choosefibigi-) and finoisei-) as piecewise
linear functions.

Then the following FCNN can be used to identify impulsive noises:
State equation

Output equation

Xij — Xij + ^ f^bigi\Ukl '̂ tjD
Cki€Ni{i,j)/Cij

Vij —Mnotse (Xtj)

(5.17)

(5.18)

Generally, to fine the corresponding template of an FCNN structure as in Eq.(5.8) is
very difficult and unnecessary. Fortunately, since the relation between synaptic weights
and inputs in Eq.(5.17) is not very complicated, the FCNN in Eq.(5.17) has the following
space-varying nonlinear Bfmin template:

BJminimi) © Uij =
i^higi\Ui—l,j—l —Wtjl) IJ,big{\ui—iJ — f^big{\Ui—lJ+l —Wijl)
flbig{\Ui,j—i —Utjl) UbigilUij+i —U,jl)

fJ>big{\Ui+iJ—i —Utjl) f^big{\Ui-\-l,j ~ Wijj) flbig{\Ui+l,j+l —l^ijl)
(5.19)

However, even in this simple case, the usage of template seems to complicate the expression.
It is easy to see that the above FCNN will identify impulsive noise in a parallel way over

the whole image. Here, fibigi-) and finoisei-) are usually difficult to be chosen and depend on
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the statistical properties of impulsive noise. To overcome this problem, we can train these
membership functions by a 3 x 3 FCNN. Some efficient learning algorithms for this kind
of FCNN had been developed for learning /ibigi-) and Mnoisei-) from examples, these results
will be presented in Chap.6.

The simulation results are shown in Fig.5.3. Fig.5.3(a) shows a real face image of size
63 X 63 and 256 gray levels. In Fig.5.3(b), some impulsive noises of mean value and
deviation are added. This image is denoted by Fig.5.3(c) shows the output result
of a median filter. This image is denoted by {u]l}. One can see that the fine structures of
the image in Fig.5.3(a) is totally destroyed because Fig.5.3 (a) has a low resolution and lots
of details have characteristic width of 1 pixel. Fig. 5.3(d) shows the output of the FCNN
in Eqs.(5.17) and (5.18). In this image, the gray value of every pixel denotes the degree of
being an impulsive noise. A black pixel means that it is an impulsive noise (or, finoise = !)•
A white pixel means that it isn't an impulsive noise (or, finoise = 0). A gray pixel, which
occurs at boundaries or edges, means that it is suspected to be an impulsive noise. This
image is denoted by {^noise}- simulation, wenormalize the gray-level within interval
[0,1], then Ubigi') is given by:

f^big = x,0 < X < 1 (5.20)

and ftnoise(') is given by:

r 0, a: < 5
f^noisei^) —\ p—g' S K. XK. p (5.21)

I 1, x>p
where p > s > 0 are two constants, p= s =

Then we are ready to give the output result ofour FCNN-based median filter, Wjm}'
We have

= (1 - (5-22)

The output result is shown in Fig. 5.3(e). One can see that this result is much better than
that in Fig. 5.3(c).

The median filter may be implemented by some conventional CNN's. So far, there exist
three kinds of CNN-based median filters. The first one[218][219] needs n cells to sort n
samples. The second one[23] reduces the cell number to one and needs a neighborhood of
odd number of cells. The third one[249][269], which is supposed to be an improved version
of the second one, needs a neighborhood of even number of cells. In this section, some
analysis of the second and the third CNN-based median filters are proposed. For simplicity,
we only consider the CNN's with neighborhood size of 3 x 3 (i.e., iVi(2,y)), the analysis of
the general case is similar.

The median filter given in[23] has the following state equation:

~ ^ ^ (5.23)
Cki€Ni{i,j)

where the function sgn{) should be defined by

sgn{x) = ^
-1, a: < 0
0, a: = 0 (5.24)
1, X > 0
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Figure 5.3: Using FCNN to remove impulsive noise, (a) The image of the face of a Chinese
girl, (b) Impulsive noises are added, (c) Output of a median filter, (d) Output of FCNN
shows the degree of being impulsive noise, (e) Output of FCNN-based median filter.
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If the input set {uki\Cki € Ni{i,j)] issorted into a nondecreasing order as: {wi, •••) W5,ug. wg},
then the median value should be u^. Let denote the number of elements in the set

= U5,k > 5} and n~ denote the number of elements in the set {uk\uk = Us,k < 5},
then it is easy to see that if n"*" = n~ then ug is the only equilibrium point of the cell in
Eq.(5.23). In this case, we study the global stability of this equilibrium point. We have the
following theorem:

Theorem 18

Given n'^ = n~, then W5 is asymptotically stable in the basin of attraction (—00,00).

Proof: We construct the following Lyapunov function:

= l/2(xy(t) - U5)2 > 0 (5.25)

ViJ{t) > 0 for any Xij{t) ^ U3. DiiFerential Vij(t) along the solutions of Eq.(5.23), we have:
f/V' •

l£:g.(5.23) — —Us)Xij{t)

= (2^0(0-"5) sgn{uki-Xij{t))
Cki^Ni{i,j)

= {n^+ n" + l)(a;tj(i) - u^)sgn(u^ - Xij(t))
+(a;ij(t) - Us) sgn{uki - Xij{t))

{i,j),Uki^Us

= -(271+ + l)kij(t) - Usi + (x,j(0 - U5)a
< (x,j(i) - U5)a (5.26)

where

a= X) sgn{uki - Xij{t)) (5.27)

It is easy to see that when Xij < U5, a > 0 and when Xij > U5, o < 0. So, we have:
(xij{t) —Us)Or < 0 for any ^ U5. Then we have:

-^l£;g.(5.23) <0 (5.28)
The equality is satisfied only when Xij = U5. So, the median value is asymptotically stable
in the basin of attraction (—00,00). •

However, if 7i+ 7^: n~ then the cell in Eq.(5.23) has no equilibrium point. In this case,
this median filter has no stable output in the common sense. In the simulations we found
that the output of the cell will fluctuate around a certain value with a very small deviation as
time becomes sufficiently large. To describe this fact, we need the following definition[348]:

Definition 14

Equilibrium point for the mean (m-equilibrium point): x*j is said to be an m-equilibrium
point of Eq.(5.23) if

^E{xij(t)} = x'ij (5.29)
t-^oo

and

lim E'{i:ij(f)} = 0 (5.30)
t-¥00

Then we have the following theorem:
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Theorem 19

Let Xij = W5 - d'it) and dr{t) € (-<5, <J), where 6 = 5,-, di = inf(\ui - U5I), i e 9,
m ^ U5. And suppose

£:{sffn(cr(J))} = (5.31)

then U5 is an m-equilibrium point of Eq.(5.23) when vA' -^rT.

Proof:

E{sgn(uki-Xij)]

= ^ E{sgn{uki-us + d^it))}

= ^ E{sgn{uki-U5 +d''{t))}
OklSiV"I{i,j),Uf(i^U5

+ S E{sgn{uki-u^-\-d'it))}
Cki€Ni {i,j),uifi=U5

= (n*^ - n") + (n"^ + 7i~ + l)E{spn(d*(f))}
= 0 (5.32)

The fourth equality is in view of d*{t) € (—^, ^). ^
Remark: We don't argue that is the only m-equilibrium point. In fact, there are

infinite m-equilibrium points, x*j''s, given different E{sgn{xij{t) —a;*^-)}. This is possible if
there exists noise in the circuit. Fig.5.4 shows the effect of noise on m-equilibrium points.
In this simulation, we let {tfi, U2, ..., U5, ..., us, W9}={0.4, 0.5, 0.5, 0.5, 0.5, 0.6, 0.7, 0.8,
0.9}, i.e., U5 = 0.5, = 0,n~ = 3. Vn{t) denotes the additive noise in Xij(t). Fig.5.4(a)
shows the cases when Un(0 = Kv is a DC bias. One can see that the m-equilibrium points
are changed by different DC biases. For purpose of comparison, Fig.5.4(b) shows the cases
when Vn{t) uniformly distributes between -Kv ^ Kv. The change of m-equilibrium point
is similar to that in Fig.5.4(a). Since these results are initial state independent, we find
the CNN-based median filter in Eq.(5.23) has a promising robustness. Given a low level
of additive noise, the m-equilibrium point of Eq.(5.23) is very closed to the median value
when n"^ ^ n~. In most cases, this CNN-based median filter can output satisfied result.
When this median filter is used to process a 256 gray-scale image, it can always output the
correct median value because the offset of an m-equilibrium point from a real median value
is 3 times less than the value corresponding to 1 bit (We normalized 256 grav-scale in [-1,
!])•

The authors of [249] proposed a CNN-based median filter as follow:
State equation:

Xij{t) = -Xij-^f{xij)-\- sgn{xij{t) - Uki) (5.33)
CkieNiii,j)/Cij

Output equation:^

f{xij{t)) = l/2{\xij{t) -f 1| —\xij(t) —1|) (5.34)

^The authors of [249] and [269] didn't give the explicit expression of the output function but described
it as([249], p684) "a sigmoid-type piecewise linear function".
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Figure 5.4: (a) m-equilibrium points with diiFerent DC biases in Xij{t). (b) m-equilibrium
point with different uniformly distributed noise in Xij (t).
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Then the authors of [249] argued that "General rank order filters can be implemented
simply changing the bias value of the template(e.g., MIN filter: 1=8; MAX filter: I=-
8)"([249], p684).

However, [390] gives the following description of a median filter: "To computer the
output of a median filter, an odd number of sample values are sorted, and the middle or
median value is used as the filter output." Since the CNN-based median filter in Eq.(5.33)
uses only eight sample values in Ni{i,j), it is not a median filter and its result is very
sensitive to initial conditions. For example, suppose this eight values are sorted into a
nondecreasing order as {wi,..., W4, ws,..., tis} and U4 7^ u^. If a:tj(0) < U4, then a:,j(oo) =
U4 + 6,S 0"'". If > W5, then a:ij(oo) = «5 -h (5, ^ 0~. If a;,j(0) is a random number
such that U4 < Xij{0) < W5, then Xij{oo) = is also a random result. When (us- U4) is
big, (e.g., there exists an edge in iVi(i, j)), this CNN-based median filter seems to output a
random result when noise exists in a:jj(0). So, this CNN-based median filter is much worst
than that in Eq.(5.23). Also, it can't be a rank-order filter with different biases.

To show this kind of randomness in a real image processing problem, we use the CNN-
based median filter in Eq.(5.33) to process the real gray-scale image as in Fig.4.11(a).
Fig.5.5(a) shows the difference between the median filtering result and the output of CNN
in Eq.(5.33) with initial condition a;jj(0) = -1. Fig.5.5(b) shows the difference between the
median filtering result and the output of CNN in Eq.(5.33) with initial condition a:,j(0) = 1.
Fig.5.5(c) shows the difference between the median filtering result and the output of CNN
in Eq.(5.33) with initial condition a:ij(0) = Uij.

5.3.3 Other applications

As indicated in [278], the FIRE smoother, the FIRE sharpener, the FIRE high-pass filter
and the FIRE image enhancement can also be easily implemented by FCNN using the same
methods presented in this chapter.

For example, we use an FDTCNN to implement the the FIRE sharpener. The rule is
shown in Fig.9.1 which is applied to a 256-greylevel digital image. It should be noted that
all the inputs in the rules are gray-value difference between each pixel at the neighborhood
system and the center pixel. This is the so called "relative in the antecedents" approach[278].

To implement this fuzzy sharpener, we let Eij denote the grey-value of pixel then
we have the following multi-layer FDTCNN structure:

The State equation of FDTCNN #1 which is used to implement the 1st rule in Fig.9.1
is given by:

= ^ min _ /xp{Eki-Eij) (5.35)

where /ip(.) is the membership function of fuzzy set F as shown in Fig.9.1.
The State equation of FDTCNN ^2 which is used to implement the 2nd rule in Fig.9.1

is given by:

= ^ _ miEki-Eij) (5.36)CkieNi{t3)/Cij

where fiNi-) is the membership function of fuzzy set N as shown in Fig.9.1.
The State equation of FDTCNN #0 which is used to implement the ELSE rule in Fig.9.1

is given by:

x^j{k) = min(l - xjjik - 1), 1- xjj{k - 1)) (5.37)
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Figure 5.5: (a) The difference of gray value between a median filter and the CNN in Eq.(5.33)
with initial condition = —1. (b) The difference of gray value between a median filter
and the CNN in Eq.(5.33) with initial condition a;ij(0) = 1. (c) The difference of gray value
between a median filter and the CNN in Eq.(5.33) with initial condition a:,j(0) = Uij.
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Definitions of fuzzy sets
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Figure 5.6: The rule-base for fuzzy sharpener presented in[278].

The above three layers share a single output layer as:

Vijik) = 1))

(5.38)

where cq, Ci and C2 represent the centers of triangular-shaped fuzzy sets Z. N and F,
respectively, wo, and W2 represent the widths of triangular shaped fuzzy sets Z, N and
P, respectively. One can see that the output result in Eq.(5.38) is a kind of defuzzified
result.

Since in this section we only want to show how can we map the nonlinear fuzzy oper
ators into FDTCNN, we do not want to discuss the advantages and the disadvantages of
these kinds of image processing techniques, the interested reader are referred to [276, 277,
275, 279, 278] and references therein. All the disadvantages and the advantages of these
kinds of methods are due to themselves but not FDTCNN(or general FCNN). The only
thing FDTCNN can do here is to provide a computational platform to offset the possible
computational complexity.



Chapter 6

Learning algorithms of FCNN

In this chapter we present the results which distinguish a FCNN from a computational
array. It means that the FCNN can learn it weights from examples or from the existed
knowledge and the experience of human experts.

There had been existed lots of references on learning algorithms of different CNN
structures[122, 32, 198, 33, 318, 104, 127, 197, 2, 327, 186, 185, 108, 290, 191, 18, 116,
291, 106, 183, 315, 319, 247, 328, 3, 256, 170, 326, 312, 406, 123, 329, 407, 225]. Learning is
one of the promising properties of CNN which distinguishes a CNN structure from a parallel
computational array. On the other hand, the FNN literatures also provide us with lots of
special learning algorithm concerning the high nonlinearity of FNN[344,146, 26]. Nourished
by these two fields, the learning algorithms of FCNN were also developed. One difference
between the learning algorithms for FCNN and those for conventional CNN is that the
learning algorithm of FCNN may have the linguistic variables as its examples(input-output
pairs). In some cases, when the experience of a human expert is easy to be obtained and
the measuring data is hard to be obtained, this learning ability may be very useful.

In Chap. 4, we have shown that additive FCNN is a universal framework of implementing
different kinds of mathematical morphology operators. Although mathematical morphology
is very useful in signal processing as shown in Chap. 4, one key problem is the choice of
structuring elements for different tasks. Normally, the structuring elements are chosen
by trial-and-error method. Recently, some morphological (neural) networks with learning
ability was presented[63, 64, 11, 65]. But the structure of a morphology(neural) network is
too complicated to be implemented by using the state-of-the-art VLSI techniques. On the
other hand, we find that when FCNN are used as computational arrays, some of them (see
examples in Sec. 4.2) are in fact morphological networks. So, we can train FCNN with
examples and find the structuring elements from the results.

Since FCNN is a combination of two mature fields: fuzzy set theory and CNN, lots of
regions are waiting for exploring. At the very beginning when we try to set up the framework
of this brand new field, there exist two basic motivations. One comes from mathematical
morphology[292, 293, 129] which is a very elegant framework for signal processing from the
geometrical point of view. We found both FCNN and mathematical morphology operators
share two elementary features: local connectedness and max/min operations. The other
motivation comes from the necessity of development of an interface between the human
experts (users) and the low level conventional CNN structures. In [351, 352, 355, 375, 372,
368, 365, 363, 378], we presented the results which were prompted by the first motivation.
In [354, 353, 355, 364, 376, 384], we presented results which were prompted by the second
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motivation.

An FCNN structure can be used as either a computational array or a learning array.
In Chaps. 4 and 5, the FCNN's were used as computational arrays. However, the learning
ability of FCNN is also a very important aspect because only when an FCNN can learn
its parameters from both real number examples and linguistic statements, it can actually
perform as an "intelligent" interface between human experts and the low-level CNN's(e.g.,
the conventional CNN). This chapter is the collection of our following papers:[362, 387, 370].

6.1 Learning structuring elements

In this section, we presented some learning algorithms for additive FCNN's. The learning
algorithms are based on the FDTCNN structure. Although FDTCNN can be viewed as a
corresponding concept of DTCNN[120], it is not necessary to obey the tradition of standard
DTCNN in which the output should be binary. Then these learning algorithms are used
to learn structuring elements from examples. In this view, these FDTCNN structures are
mathematical morphology networks with learning abilitj'.

A general framework of type-II FDTCNN is given by:

Uki) (6.1)

where F^(-) and F^{•) are two local fuzzy operations defined in Nr{i,j). Af(i,j;k,l) and
are fuzzy feedback synaptic weight and fuzzy feed-forward synaptic weight,

respectively.
In this section, we study the learning algorithm of the following type-II FDTCNN:

+ 1) = (6.2)

This FDTCNN is a kind of uncoupled DTCNN. It maps the input to the output by a single
iteration. This computational structure is very useful in implementation of mathematical
morphology operators[129].

6.1.1 Learning algorithm of additive type-II FDTCNN

In [351, 352] we have shown that the following FDTCNN is very useful to implement gray
scale mathematical morphology transformations:

State equation:

^ij{k F 1) = /\ {HfjninihJ^k^l^-^-Ukl)
Ckl€Nr{t,j)

"1" \/ {,Hffnax{,liJik^l^-\-Ul{l)
Cki€Nrii,j)

, 1 < i < M, 1 < i < AT (6.3)

Since the operations between fuzzy feed-forward synaptic weights and the inputs are ad
ditions, the above FDTCNN is called additive FDTCNN. The output equation is given
by:

yij{k) = f{xij{k)) =^{\xij{k) +1| - \xij{k) - 1|),
l<i<M,l<j<N (6.4)
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The parameters of DTCNN in Eq.(6.3) for implementation of erosion are given by:

Bjmax = undefined, Bfmin = -S (6.5)

where 5 is the structuring element.
And the parameters of DTCNN in Eq.(6.3) for implementation of dilation are given by:

Bfrnax — Rfmin —Undefined (6.6)

where S/j is given by:

Sd = {-a: : a: G5} (6.7)

In this section, we will study how can an additive FDTCNN learn the structuring element
when only a set of examples {(utj,Otj)} is available, {uij} is input set and {Oij} is output
set. Since the structuring element are embedded in the feed-forward templates of the
FDTCNN, the objective of training the network is to adjust the weights so that a set of
inputs produces the desired set of outputs. This is driven by minimizing the square of the
difference between the desired output {Oij} and actual output {j/tj}, for all the samples to
be learned:

E = - yaf (6-8)

It is well known that:

2

dE _ dE dyij dxjj
minimi j] Q) ^Vij ^B j\p^<j)

dE dE dyij dx

d-Bjmaxihj]Pi Q) dBjmaxi^^ j] Pj Q)

Let us expand the first terms in the right hand side of Eqs.(6.9) and (6.10) as

dE

(6.9)

(6.10)

= ~{Oij —yij) (6'H)

and expand the second terms in the right hand side of Eqs.(6.9) and (6.10) as:

Then let us expand the third term in the right hand side of Eq.(6.9) as:

dxij
dBjmin{hj]P, g)

_ ^Acfci€Ar(t,i) (Bjminih 3'i 0 "b ^kl)
^Bfmin (^5 j5 g)

_ ^^^^{Bfminjh j}P^ ?) ~b Upg; hcki€Nr{i,j),{k,l)^{p,q)iBfmin{hji 0"b Ukl))
~ dBfminiiJ;p,q)

_ 9) + hckiENr{i,j),ik,l):^{p,q)iBfmin{hjik^l)-\- Ukl))
d{Bf minimi Pi 9) ~b Upg)

= (6.13)
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where

y —H j F (6.14)

and

X— l\ F Ukl) (6.15)
Ckl^Nr{iMk3)^M

Then we consider the so called "smooth derivative"[26] of min{y^x)- In the classical
sense, max(y^x) derivable into the open intervals y < X s-nd y > X t>ut the derivative is
not defined at y = x? i-e-

if y>x (gjg)
dy { h tf y<x

From Eqs.(6.9) and (6.16) we know that the FDTCNN will stop learning when y > x-
This makes the learning process very slow. In the worst case, this can even make the
learning process impossible. To overcome this problem, we notice that Eq.(6.16) only gives
the crisp truth value of statement: "y is less than x". In this view, we can fuzzify Eq.(6.16)
using different schemes to make the FDTCNN learning in a fuzzified way. One example
can be found in [26]. But the method used in [26] can not be used here, we fuzzifier our
"smooth derivative" as:

amin(y,x) _ / 1, y<X
y>x

where y € [-1, l],x € [-1,1].
Similarly, the third term in the right hand side of Eq.(6.10) can be expanded as:

where

and

dBfrriaxi} iI'iPiQ)

d mBx{BfTnax{h j'iPi Q) "h Cki^Nr{i,j),{k,l)jt{p,q){BfmaxiL. j', fc, /) + W&/))
Wjmax{hj\Pi ?) + Wpg)

^max(2:, ^)

^— \/ iBfmax{hji^ji)FUkl) (6.20)
Cfci€iVr(t,i),(fc,/)^(p,g)

Similarly, we use the following " smooth derivative" to guarantee the learning process
of FDTCNN in Eq.(6.10):

(6.18)

A—Bfmax{^j\PiQ)FUpq (6.19)

^max(2, ^) _ f 1, z> ip
= S ^ (6.21)
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We denote by Sij, therefore:dy,

dw(i.,j\kA) dw(i^j;k.,l)
(6.22)

where w{i,j:kA) denotes Bfminihj'rkJ) or Finally, the changes for the
weights will be obtained from a <5-rule with expression:

then we have

and

dxi'j
An;(i, j; k, /) = fiSijOij-

dwiij;kj)

where k, I) as that in the Eq.(6.37). is a positive constant.

6.1.2 Examples

In this section, the learning algorithms of FDTCNN are used to learning structuring ele
ments from examples. We use two examples to show the usefulness of the learning algorithms
to structuring element learning. Let the structuring element 5 be:

S =

0.11 0.15 0.13

0.16 0.19 0.18

0.12 0.17 0.14

Bfmax —Bd —
0.14 0.17 0.12

0.18 0.19 0.16

0.13 0.15 0.11

Bjrnin — S —
-0.11 -0.15 -0.13

-0.16 -0.19 -0.18

-0.12 -0.17 -0.14

(6.2.3)

(6.24)

(6.25)

(6.26)

Then we use the dilation operator to generate 2000 samples {(utj,0,j)} as the training
data to train a dilation FDTCNN. The learning process of the Bjmax template is shown
in Fig. 6.1. One can see that the elements of Bjmax approached to correct values(see
Eq.(6.25)). The initial conditions for Bjmax template is 0. fi = 1. Since the Bjmax
template is of size 3 x 3, we only need a 3 x 3 FDTCNN to learn the structuring element.

Next we use the erosion operator to generate 2000 samples {{uij^Oij)} as the training
data to train an erosion FDTCNN. The learning process of the Bjmin template is shown
in Fig. 6.2 . One can see that the elements of Bjmin approached to correct values(see
Eq.(6.26)). The initial conditions for Bjmin template is 0. fj, = 1. The above examples
show that our FDTCNN learning algorithm works well.

6.2 Advanced learning jdgorithms of additive discrete-time
FCNN

The breakpoints of min and max operators pose a big problem on their derivatives. In
practice there exist two methods to overcome this problem. The first one is to use bounded-
addition and multiplication to replace the min and max operators. Although this method
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Figure 6.1: Learning process of dilation FDTCNN.

bypasses the problem of derivatives, the trained network may be functionally very different
from the original one. The second one is to develop a rigorous and systematic theory for
the differentiation of min and max functions by means of step function[141], functional
analysis[398] and some special functions[397].

For purpose of deriving the A-Iearning law for FDTCNN, we have to cope with the
partial differentiation of E with respect to and B/maxihj'ikJ), such a dif
ferentiation can not be given in a conventional sense.

By Theorem 8 of [397] we know that the following two expressions are satisfied almost
everywhere in real field R.

Be dE ^y^j Bxii .
BBfmin(i, j; P: g) ^^0" BBjiP-. ?)

Be _ dE dyij Bxjj
dBjmaxiiJ; p, q) BBjmax{i,j-,P, g)

(6.28)

where d denotes a partial derivative in a conventional sense and B denotes the partial
derivative presented in [397].

Let us expand the first term in the right hand sides of Eqs.(6.27) and (6.28) as

dy„-
(6.29)
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Figure 6.2: Learning process of erosion FDTCNN.

and expand the second terms in the right hand sides of Eqs.(6.27) and (6.28) as

^yij n / ^
dxij " ~ \ 0, \xij\ >1

Then let us expand the third term in the right hand side of Eq.(6.27) as

dxjj

dBjmin{i,j',P, q)

0 "h ^kl)
dBfmin{iJ;p, q)

q) "h ^Cki&Nr{i,j),{k,l):i^{T>,q){^frn.in{h j]k, I) + Wfe/)}
dBjmin{hj',P, q)

^niili(^/mtn(2j j ; q) d" ACfcj€iVr(i,j),(Jfe,/)^(p,g)(-®/"itn( '̂.7' 0 ~1" ^w))
fmin{}i j\Pi q) "1" Wpg)

^min(y,x)
By

(6.30)

(6.31)

A Iwhere y —Bfminih j\Pt q) + Wpg ^-I^d X—ACki&Nr{i,j),{k,l)^(p,q){^fminih j k̂,I) + Ukl).
Since mm(-,') and max{-,-) are not differentiate functions in the conventional sense,

we need to show that under certain conditions all min-max functions are continuously
differentiable almost everywhere in the real number field R. Fortunately, a rigorous theory
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on this problem had been presented in [397]. To make this paper self-contained, we need
the following definition and lemma:

Definition 15

(Definition 1, p.ll41, [397]) A function fior : R »->• R on the real number field R is defined
as

flor (^) —^
1, x > 0

x = 0 (6..32)
0, a: < 0

Proposition 10

(Corollary 1, p.ll43, [397]) Suppose a is a real number and f{x), hi{x) = aVf{x), and
h2{x) = aAf{x) are real variable functions. If they are all differentiable at point x, then

M = (6.33)
dx dx dx

dh2(x) d[aAf{x)]_ d/(a:)
—= = j = flor[a-(6.34)

dx dx dx

It follows from Proposition 10 that

5min(y,x)
dy

Similarly, the third term in the right hand side of Eq.(6.28) can be expanded as

dxjj
dBfmaxiiJlP, y)

_ ^ 3'iPi Q) "h Cki£Nr(i,j),{k,l)^{p,q){^fmaxiL, j 'i I) + W^/))
d{Bfrnax{hj]Pt ?) "i" l^pq)

dmax{z, rp)

= flor ix - y) (6.35)

dz
= flor(z - (6..36)

where 2: i R/max(i,j;P,g) +tipg and V' =Vcw€Nr(M),(fe,096(p,g)(^/mar(i,i; ^,0 +
We denote by 5ij, therefore

(6.37)
dw{ij;k,l) dw{ij;kj)

where w(i,j;k^ I) denotes Bfminihj'^ k, I) or Bjmax(i,j'^k, I). Finally, the changes of weights
will be obtained from a 5-rule with expression

dx''
Aw(i, j; k, I) = pSijOij ^ (6.38)

Ow{i,r,kJ)

where w(j,j;A:,/) as that in Eq.(6.37). yu is a positive constant.
The following two theorems guarantee that the learning algorithm in Eq.(6.38) make

sense almost everywhere in R and the learning results will be a local minimum of the cost
function E.
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Theorem 20

For the erosion FDTCNN in Eq.(6.o) and the dilation FDTCNN in Eq.(6.6), and the
cost function in Eq.(6.8), the partial differentials in Eqs. (6.31) and (6.36) exist almost
everywhere in R.

Proof: Since Xij^s in both erosion FDTCNN and dilation FDTCNN are (V, A)-functions,
i.e., functions containing V and/or A operations, it follows from Corollary 4 of [397] that
the partial diflferentials in Eqs. (6.31) and (6.36) exist almost everywhere in R. •

Theorem 21

The ^-rule given in Eq.(6.38) guarantees the erosion FDTCNN in Eq.(6.5) and the dilation
FDTCNN in Eq.(6.6) to converge to a local minimum of E in Eq.(6.8) with Probability
1 with increasing iteration index.

Proof: Similar to the proof of Theorem 10 of [397], let us prove the theorem in two steps.
First, using the similar process in the proof of Theorem 10 of [397], we immediately know
that E in Eq.(6.8) is differentiable with respect to discrete time with Probability 1.

Then, as the second part of the proof, we show that E always decreasing whenever it is
differentiable. Suppose E is differentiable at time t, then,

dE ^ \ X dE dw^ifj'̂ k^l^

— yi ~—0

dE dE

•

it CkteNriij) 0 dwiij; k, I)
< 0 (6.39)

6.2.1 Examples

In this section, the advanced learning algorithms of FDTCNN are used to learning structur
ing elements from examples. In this sense, the FDTCNN is a kind of morphological network
with learning ability. We use two examples to show the usefulness of the learning algorithms
to structuring element learning. Let the structuring element 5 be the same in Eq.(6.24), we
then use the dilation operator to generate 2000 samples{(Wtj, Oij)} as training data to train
a dilation FDTCNN. The learning process of Bjmax template is shown in Fig.6.3(a). One
can see that elements of B/max approach correct values(see Eq.(6.25)) within 300 iterations.
The initial conditions for Bjmax template is 0. ^ = 1. Since the Bjmax template is of size
3 X 3, we only need a 3 x 3 FDTCNN to learn the structuring element.

Next we use the erosionoperator to generate 2000 samples {(uij, Oij)} as training data to
train an erosion FDTCNN. The learning process of B/min template is shown in Fig.6.3(b).
One can see that elements of Bfmin approach correct values(see Eq.(6.26)) within 400
iterations. The initial conditions for Bfmin template is 0. /z = 1. The above examples show
that our FDTCNN learning algorithms work well.
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Figure 6.3: Learning process of dilation FDTCNN and erosion FDTCNN by using the ad
vanced learning algorithms, (a) Training dilation FDTCNN. (b) Training erosion FDTCNN.

Comparing the results in Fig.6.3 and those in Figs.6.1 and 6.2 we find that the learning
time of the learning algorithms presented in this section is much shorter than that presented
in previous section.

To show the fact that the learning algorithm can get correct learning results, we also
show the learning results of different types of structuring elements.

The next one is the so called flat structuring element, which has its elements all the
same grey-scale values.

0.2 0.2 0.2

S= 0.2 0.2 0.2

0.2 0.2 0.2

(6.40)

The learning process of B/max template is shown in Fig.6.4(a). One can see that entries
of B/rnax approach correct values within 900 iterations. The initial conditions for Bjmax
template is 0. The learning process of Bfmin template is shown in Fig.6.4(b). One can see
that elements of Bfmin approach correct values within 1400 iterations. The initial conditions
for Bfmin template is 0. -A.lso for comparison, we present the results of the learning algo
rithms presented in the previous section. The learning process of Bfmax template and Bfmin
template are shown in Fig.6.4(c) and Fig.6.4(d), respectively. The results in Fig.6.4(b) and
Fig.6.4(d) are something misleading due to the low resolution of the printer. After 1400
iteration, the learning errors in Fig.6.4(b) are much smaller than those in Fig.6.4(d).

We have performed extensive simulations using different templates, it seems very hard to
find the cases when the learning algorithms does not converge to the correct results(global
minimum).

We present learning algorithms which make additive DTCNNs learn their templates
from examples. The applications to learning structuring elements used by grey-scale erosion
and grey-scale dilation from examples are presented. The FDTCNN structure used in this
paper is a type-II uncoupled FDTCNN. We present theoretical results to guarantee that
our learning algorithms to converge to a local minimum of the cost function. Since the
surface of E is very complex, the choice of initial conditions and // is very important to
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Figure 6.4: Learning process of dilation FCNN and erosion FCNN for fiat structuring
element, (a) Training dilation FCNN using advanced learning algorithm, (b) Training
erosion FCNN using advanced learning algorithm, (c) Training dilation FCNN using the
old learning algorithm of the previous section, (d) Training erosion FCNN using the old
learning algorithm of the previous section.

get global minimum. The authors of [397] proposed a method to get global minimum by
randomly choosing many groups of initial conditions and then choosing the best one from
these training results. However, the local minimum problem is still an open problem for
almost all the existed learning algorithms.

6.3 Learning from linguistic inputs

In this section, a learning algorithm for an FDTCNN is presented. Unlike the fuzzy cellular
neural networks we proposed before[350, 351, 352, 354, 353, 356, 355], this FDTCNN can
process fuzzy number inputs besides real number inputs. Its learning algorithm is also
based on fuzzy number inputs. One application to impulsive noise identification is given to
demonstrate the usefulness of this FDTCNN and its learning algorithm. First, a learning
FDTCNN, which has fuzzy number input and state, is used to learn its crisp templates from
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the linguistic inputs. Then, these templates are embedded into a computational FCNN
structure, which has crisp input and state, for purpose of impulsive noise identification.

6.3.1 Learning algorithm

Generally, an FCNN can be used as a computational array or a learning array. As a
computational array, the synaptic weights being pre-designed and fixed, FCNN is a universal
framework of mathematical morphology network[351, 352] and a paradigm of processing
local linguistic statements[354, 355]. As a learning array, FCNN should organize its own
knowledge by learning from examples which may be related to crisp numbers or fuzzy
numbers. Since the conventional CNN can only process the numerical information from
sensors (e.g., camera), it can't learn from the linguistic information of human experts.
However, in a hybrid system, the knowledge represented by fuzzy if-then rules usually plays
an important role in the high-level of image processing and understanding. So, we hope
the learning ability of FCNN can bridge the gap between the linguistic knowledge and the
low-level image processing ability of the conventional CNN(or, the conventional CNNUM).

When we train a CNN, we need a set of examples which consists of a set of phenomena
and a set of corresponding results. So, we have to collect enough data. In some cases we feel
CNN is so stupid that it can only learn knowledge from data which may cost lots of money
or WcLste lots of time to be collected. However, human experts haxi accumulated a huge body
of knowledge and experiences which can not be expressed by data but linguistic statements.
If we can make a CNN-based hybrid system which is smart enough to "understand" and
"learn" knowledge of human experts', we may save money and time. In this view, FCNN
functions as the interface between human expert and the low-level conventional CNN. The
input of FCNN is the linguistic statement of human expert, and the output is the templates
for low-level CNN structures.

In this section, we proposed an FDTCNN structure which can be trained by fuzzy
number (i.e., a convex and normal fuzzy set on a real line[156]). This FDTCNN has a crisp
structure which allows fuzzy number information flow through it. So, the synaptic weights
in this FDTCNN are crisp set while the inputs, states and outputs are fuzzy numbers. This
FDTCNN structure can process the knowledge of human expert's.

In particular, we teach this FDTCNN how to remove impulsive noise in an image using
linguistic variables. Toremove impulsive noises in images, median filters are usually used[10,
187, 238]. Although median filters have some edge-preserving capabilities, they distort the
fine structures of images (thin lines in the image may disappear and the image becomes a
little blurred). One can use weighted median filters[392] or conditional median filters[10,
187] to improve the performance. However, setting weights of a weighted median filter
is very dilRcult, so we don't discuss this kind of median filter henceforth. A conditional
median filter outputs the median value if an impulsive noise is identified and keeps the
input value unchanged if no impulsive noise is identified. So, identification of impulsive
noise plays the most important role in conditional median filter. In [10, 187], the fuzzy rule
based methods are used to identify impulsive noise and have high performances. However,
to design the fuzzy rules and choose the membership functions are difficult. To overcome
this problem, the FDTCNN learning algorithm is used to learn these fuzzy rules from the
linguistic examples which are based on our experience.

In this section we use the symbol " " " over a character to denote a fuzzy number. To
reduce the computational complex, the LR-type fuzzy number[74] is used. A fuzzy number
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X is said to be LR-type if and only if

\ fory<c,a>{)
\ (y-c\ f ^ u n
[ y>c,b>o

where fij; is the membership function of f, gii') ^-nd gni') are the reference functions for
left and right references, c denotes the mean values of i. a and 6 denote left and right
references, respectively. If a and b are both zero then x is degraded to a crisp number.

We define addition of two fuzzy numbers x and y as:

fj,i+y(z) = max{jUx(a:) AfJ'y{y)\z = x + y] (6.42)

and define multiplication of a real number k and a fuzzy number x as:

f^kxiy) = ma.x{fii{x)\y = kx} (6.43)

For a monotonically increasing function /(•), we define f{x) as

M/(x)(y) = max{fii{x)\y = f(x)} (6.44)

The h-level set, x^, of x is defined by:

x^ = (a;) > h,he (0,1]} (6.45)

So, x^ is a closed interval denoted by:

x^ = [x^, xi;] (6.46)

where the subscripts "L" and "U" denote the lower limit and the upper limit, respectively.
We define addition of two intervals [xl.,xu] and [yi^yu] as[5]:

[xL, xu] + [yi, yu] = [xL + yi, xu + yu] (6-47)

and define multiplication between a real number k and an interval [xi,.,xij\ as[5]:

l<l
max{-) and min{') operations are defined by:

max{[a:L, xu], [t/L, yu]} = [max(xL, yi)-,max(xt;, yu)] (6.49)

min{[xL,xu],[yL,yu]} = [min(xL, 2/l), niin(xc7, t/i;)] (6.50)

For a monotonically increasing function /(•) we define f{[xL,xu]) as

f{[xL^ arc;]) = [/{xl), f{xu)] (6.51)

Then the following relations can be easily found:

(x 4- y)^ = x^ Fy^ (6.52)
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(kx)^ = kx^ (6.53)

{fix))' = f(x') (6.54)

(max{^, y})^ = max{fy^} (6.55)

(min{x, y})^ = min{x'̂ , y^} (6.56)

A cell Cij in an M x FDTCNN used in this section can be defined by:
State equation:

Xij (i + 1) = Fc^ieNr{i,j) i; < i < M,l < j < N (6.57)

where Xij{t + 1) is the state of Cij at discrete-time t + l. Xij{t + 1) is a fuzzy number. F(-)
denotes a fuzzy local operator defined in r-neighborhood Nr{i,j). Uki is the input of Cki
and a fuzzy number.

Since the above FDTCNN doesn't have feedback synaptic weight, its output equation
is given by:

= f{xij(t)), I<i<M,l<j<N (6.58)

where /(•) is a monotonically increasing nonlinear function given by:

/(^) = 1_ e-2(.-0.5) (6-59)

The conventional DTCNN has an /(•) as a S5n(-) function[120]. However, when an
FDTCNN is subjected to a learning process, a continuous first order derivative of /(•)
should be used. It is easy to see that /(•) defined in Eq.(6.59) satisfies this condition.

Remarks:

On can see that the FDTCNN structure in Eq.(6.57) is completely different from the
structures we proposed before[350, 351, 352, 354, 353, 356, 355]. In our previous FCNN
structures the membership values were mapped to either crisp values or other membership
values, which are real numbers, i.e., only the real numbers are propagated through these
FCNN structures. The FDTCNN structure in Eq.(6.57) can map fuzzy numbers to crisp
values or fuzzy numbers and allows fuzzy numbers propagate through it. Although in
[350, 351, 352, 354, 353, 356, 355] we have demonstrated that the general FCNN structure
is not a kind of conventional NCNN, we didn't present examples of FCNN structures which
cannot be included into the classical CNN with nonlinear synaptic laws. However, it is easy
to find that the FDTCNN in Eq.(6.57) is totally different from any kind of conventional
NCNN because the fuzzy number can flow through this structure.

This FDTCNN structure is very useful to classification problems where input patterns
are fuzzy numbers. Since the structure in Eq.(6.57) is very general, we would like to study
the learning algorithm of one of its simple form as follow:

Xij{t-\-l) = Y Bi(Lj;k,l)uki-\- /\ B2{iJ;k,l)uki,
Cki&Nr{i,j) Cki€Nr{i,j)

l<i<M,l<j<N (6.60)
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This FDTCNN shares the same mathematical form of a simple min/max FCNN we proposed
in[350, 351, 352, 354, 353, 356, 355]. However, since its inputs and states are totally different
from those we proposed before, it is a new FCNN structure.

In this section we propose the learning algorithm of DTCNN for two-class classification
problems. Assume that we have the following example set:

(6.61)

where is a set of fuzzy number given by:

{wtj} = {ukl\Cki € Nr{iJ)} (6.62)

Oij is a classification result given by:

_ J 1, ifCij belongs to class 1
y 0, if Cij belongs to class 2 v • •;

If we use the output of Cij to denote the classification result of Cij, we have

.... / 1, ifCij belongs to class 1 .....
= if Ci^elongs to cla^ 2

From above one can see that yij{t) degenerates to a crisp number. It is because the
nonlinear output function /(•) functions as a defuzzifier. An explicit expression of this kind
of defuzzifier can be given by:

c...)

where h € (0, Ij.
Then, given an /i-level set of yij, our training objective is to minimize the following cost

function

£=i ^ max(Oy - (6.66)
ij

where

max(0 - u*)^ - I (6 671max(C„ y„) - | if q.. =q (6.67)

From above one can see that we should train the FDTCNN using different A-level sets.
An increase of the number of h-level sets improves the training results but increases the
training time too. So, there may be a trade-off between the number of /i-level sets and the
performance of the training results. To train the FDTCNN, we use the following learning
rules to update two kinds of feed-forward synaptic weights and
respectively:
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op r^- /3ABi{iJ;p,q){t) (6.68)\ oBi[t,j;p,q}/

(dE \
^^B2{iJ;p,q){t) (6.69)

where t is the learning iteration. Cpq € Nr{i,j)' and are learning rate and momentum
rate, respectively. In the right hand side of Eq.(6.68) the is given by:

dE dE dm dx^j

where

and

dBi [ij; p, q) dyij dx'>- dBi («, j; p,q)

dx-
^ -SO (6.70)dBi{t,j-,p, q)

p_ ^ TTI
dya \{Oii-f(x^iu))^ if =Q

f'i^ijl)^ if Oij = 1
dxij \ fix-ju)^ if Oij = 0 (6.72)

Since Xij is a fuzzy number, then we can train the FDTCNN using the /i-level interval
numbers as:

where

dBi{iJ;p, q)

^yCkieNrii,j)Bi{iJ-,kJ)Uki
dBi{i,j;p, q)

amax ^Bi(t, j;p, q)u^q, Vcfc,eNr(t,i),w?£pg^i(^i;
dBi(i,j\p,q)

Ul
//• s - \

a max B, (i, r,p,
-u''

dBi{iJ;p,q)u^g^

amax(tii,5) ft
•Wp^ac (0-^d)

dui

if Bi{i,j\p,q) > 0

if Bi{iJ;p,q) < 0
(6.74)
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Then we consider the so called "smooth derivative"[26] of max{ui,E). In the classical
sense, max(ui^E) is derivable into the open intervals < E and > E but the derivative
is not defined at Ui = E, i.e.,

amax(wi,E) f 1, ifui>E
— = \o, ifm<E

From Eq.(6.75) we know that the FDTCNN will stop learning when Ui < E. This
makes the learning process of FDTCNN very slow. In the worst case, this can even make
the learning process impossible. To overcome this problem, we notice that Eq.(6.75) only
gives the crisp truth value of statement: "wi is greater than E". In this sense, we can fuzzify
Eq.(6.75) using different methods. One example can be found in [26]. But the method used
in [26] can not be used here, we fuzzifier our "smooth derivative" as:

^max(«i,E) j 1, if > E_ f
[1 \ mLi^jg-,|̂dui 1 min{fj^, M}, if ui <E (6.76)

Then we have

diij f "1 > -
= \ .-,h JH|\ .c (6-")

Similarly, in the right hand side of Eq.(6.69) the gi™"

dB2{hj;p,q) dB2(iJ;p,q)

where S and 0 are given by Eqs. (6.71) and (6.72), respectively. Then we have

dx^j

where

dB2{iJ;p, q)

dB2(h3\p,q)

dmin (b2{ij; p, q)u^q, ^Ckl€Nrii,j),kl^pqB2 («, j; k, 1)4^
dB2{iJ;p,q)

T
"2

// -

^min lB2{iJ;p,q)u'̂ ^, /\ B2(i,j;kJ)4i)
_ Cki€Nr(i,}),kll^pg -/i

dB2{iJ;p,q)Upq»
/

«2

amin(n2,Y) ^
du2 '''* ^ ^^

u pq*

\4qv^ 2/^2(«,j;p,g) < 0 '



124 CHAPTER 6. LEARNING ALGORITHMS OF FCNN

Similarly, the "smooth derivative" of min(w2)T) can be given by:

^min(«25T) f 1, ifu2<T
du-.

Then we have

dxfj
dB2{iJ;p, q)

min{^,li^}, if U2>T

if U2 <T_ f
~ wi. min{^, |i^}, if U2>r

"p?"

(6.81)

(6.82)

6.3.2 Application to impulsive noise identification

Impulsive noises in an image can be removed by using nonlinear filter such as medium filter,
rank-order filter or using mathematical morphology operator. However, almost all the above
filtering methods blur the fine structures of the parts of the image where impulsive noises
don't exist. So, there exists a kind of expert knowledge based method to remove impulsive
noises while keep the region without impulsive noise unchanged[187, 10]. The first step
of this kind of method is to identify the locations of impulsive noises based on linguistic
statements of knowledge of impulsive noises.

If we assume that a real image are smooth enough, then an impulsive noise will introduce
a significant difference of gray value from its neighbors. Our visual system has an experience
that if a pixel has a gray value which is significantly different from all its neighbors should
be an impulsive noise. To make this experience understandable to an FDTCNN, we first
translate it into a set of fuzzy if-then rules[187].

Consider a 3 x 3 neighborhood {Ni{i,j)) and use Uij to denote the gray value of pixel
{i,j) in the image, we have:

If \uij-i —Uij\ is big and |wij+i —Uij\ is big
and

If —Uij\ is big and |wt+ij —Uij\ is big
and

If - Uij\ is big and |w,+i,j+i - Uij\ is big
and

If |w,-i,j+i - Uij\ is big and |w,-+ij_i - Uij \ is big
THEN Uij is an impulsive noise.

Where is a fuzzy number. Since the characteristics of impulsive noises are changed
from one image to another, the human experts will have different qualitative statements
for ""bi '̂. The FDTCNN can do a trade-off between the judgments of human experts by
learning from different linguistic examples (knowledge from different human experts).

To train the FDTCNN, we define the fuzzy number big^ middle and small as shown in
Fig. 6.5. From Fig. 6.5 one can see that membership functions of fuzzy numbers smalf
middle and big can be expressed by:

Ps(x) =
0, a: < 0
max{0,1 - 3a:}, a: > 0

tiM(x) = max{0,1 - 4|- - a:|}

(6.83)

(6.84)
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Figure 6.5: Membership function of three fuzzy numbers: sinall{S), middle{M) and big{B).

Fb{x) =
max{0,1 - 3|1 - a:|}, a: < 1
0, a: > 1

(6.85)

From above we know that we can used the following FDTCNN to identify impulsive
noise:

+ /\ ^min{k,l){t)Ui^ijj^i
/:€{-!,0,1},/€{-!,0,1}

, 1 < e < M, 1 < J < iV (6.86)

where Bmax = {Bmax{k, /)}3x3 and Bmin = 0)3x3 are two feed-forward templates.

Wi+fc.i+z denotes the fuzzy number which isused to describe the uncertainty of \ui+i(j+i—Uij\.
Since juij - Uij \= 0 is always true, B„,,n(0,0) and B„iaa;(0,0) are don't care entries. In this
paper, we let (0,0) = 0 and Bmox(0,0) = 0.

Since the FDTCNN in Eq.(6.86) is space-invariant, to learn a 3 x 3 template, we only
need a 3 x 3 FDTCNN. And since the training process only needs knowledge form a human
expert, we can generate the training examples as shown in Fig. 6.6. In Fig. 6.6, every input
pattern denotes a possible configuration of in Ni{i,j). There are two classes of
examples are illustrated. There is only one pattern in class 1 which has output 1(impulsive
noise) while all the 8 patterns in class 2 have outputs O's(not an impulsive noise).

We train the FDTCNN using examples choosing from class 1 and class 2 randomly.
During the first 2000 examples, we chose 80% of examples from class 1 and the rest from
class 2. This makes the learning precess faster. After that, we choose only 8% of examples
from class 1. This makes the learning process slower and smoother.

Fig. 6.7 shows the learning curves of Bminil, 1) and Bmaxil^1) with parameters: a =
0.5, 0{t) = 0.5 X (0.999)^ The initial values of the entries of templates Bmin and Bmax
are chosen randomly in interval (0,1). Since the ranges of inputs and outputs are in [0,1],
in the learning process we restrict the dynamical ranges of Bmini^J) and Bmax{kJ) in
interval [-1,1]. From Fig. 6.7 one can see that B„i,„(l, 1) approaches 1 while BmaxC^A)
approaches 0. In this simulation, we use 3 level sets (h= 5,|, and 1) ofevery fuzzy number
input pattern to train FDTCNN. After being trained by 40000 examples, the FDTCNN
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Figure 6.6: Illustrations of patterns of training examples in two classes. Class 1 denotes
that there exists an impulsive noise. Class 2 denotes that there doesn't exist an impulsive
noise.

learns the following templates:

Br

Br

( 0.996746 0.996926 0.99474.3
0.996385 0.000000 0.997409

0.997262 0.997369 0.996796

( -0.000003 -0.000001 -0.000002
-0.000001 0.000000 -0.000002

\ -0.000002 -0.000002 -0.000003
(6.87)

One can see that every entry in Bmin is very close to 1 and every entry in B^ax is
very close to 0 (one should notice that the central entries of both templates are don't case
entries). We then use the templates in Eq.(6.87) to process a 63x 63 gray-scale image of 256
gray levels, which consists of impulsive noises of mean value 220 and deviation 35, shown
in Fig. 6.8(a). The image in Fig. 6.8(a) is used as Uij, 1 < ij < 63. is normalized such
that condition

max max \uki —Uij\ < 1
ij kl&Ni{i,j)

(6.88)

is satisfied. After training, synaptic weights of the FDTCNN can be fixed and the FDTCNN
is also degenerated into a computational array whose inputs and outputs are crisp values.
So, the crisp form of the trained FDTCNN used in this simulation can be written as:

Xij (t + 1) = ^ max. Bmaxj)|Uk\ - Uij\

Bmin{k ~

, 1 < i < M, 1 < i < iV (6.89)

max •*-'7710x1
Cki^Nx{i,3)

+ min
Ckl^Ni{i,3)
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Figure 6.7: Learning curves of 1) and Bmax{I^ 1).

Fig. 6.8(b) shows the output of the above FDTCNN, from which one can see that every
impulsive noise is identified except those in the first and the last rows and those in the first
and last columns. It is because we used these cells as dumb cells (boundary cells) for 3 x 3
templates in our simulation. Fig. 6.8(c) shows the thresholded result of Fig. 6.8(b), from
which one can see that all impulsive noises are identified. One can see that we never use
the crisp examples to train the FDTCNN but it works well when it processes crisp inputs.

We have proposed an FDTCNN structure which can learn from the fuzzy number ex
amples. We also developed a learning algorithm for this FDTCNN structure. Since the
templates are space-invariant, we can only use an FDTCNN of the same size of the biggest
template to train the synaptic weights. After training, the templates can be used as a
standard template for low-level computational FCNN to solve the corresponding image
processing problems.

Since fuzzy numbers can be propagated through this FDTCNN structure, this FDTCNN
can learn its templates from linguistic knowledge. In some cases where training examples
are difficult to be collected and the knowledge of human expert is available, this structure
should be useful. On the other hand, this structure can also be used as an interfsice between
the conventional CNN and human experts, designers and users in a CNN-based hybrid
image processing system. So, this structure will extend the CNN concept from low-level
image processing to high-level image processing and from structure-base image processing
to knowledge-based image processing.
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Figure 6.8: The computer simulation results of impulsive noises identification using the
trained FDTCNN. (a) The image containing impulsive noises, (b) The output of the trained
FDTCNN. (c) The thresholded result of (b).



Chapter 7

Generic algorithm for FCNN

FCNN structures can be used effectively to solve fuzzy IF-THEN-ELSE rules based image
processing problems. Given a set of local fuzzy rules, a systematic method is presented for
selecting the corresponding FCNN structures in Chap.5. The membership functions of the
linguistic variables used in the fuzzy rules should be chosen according to different rules.
In a fuzzy IF-THEN-ELSE rule the membership functions, whose choice is usually a very
difficult and time-consuming process, play very important roles. In this chapter, a real
coded genetic algorithm{GA) is used to optimize the membership functions of the chosen
FCNN structure. The corresponding crossover and mutation operations are presented. The
crossover operation consists of three schemes which are the trade off between the evolution
of the best individual and that of the other population. The mutation operation consists
of a local one and a global one. The local one makes the evolution search the local basin
of the best individual while the global one makes the evolution search the global problem
space to overcome the trap of a local optimization. Then the GA is used to optimize the
membership functions for solving the edge extraction problem with ill-conditioned examples.
This chapter is a collection of our papers: [361, 383].

7.1 Genetic algorithm for optimizing FCNN

GA's are optimization approaches motivated by creature evolution. They combine robust
ness with the ability to explore huge search space quickly. The basic knowledge of GA can
be found in [66, 100]. GA exploits the collective learning process within a population of
individuals, and each individual represents a search point in the space of potential solutions
to a given problem. The applications of GA to fuzzy logic [115, 15, 85, 130] can roughly
lumped into two categories: 1) optimization of the membership functions of fuzzy sets, and
2) automatic learning of fuzzy rules.

We use GA to optimize the membership functions of FCNN. The correct choice of the
membership functions plays an important role in the design of FCNN. There exists some
applications [115, 15, 85, 130] show that GA are capable of optimizing the membership
functions. The basic idea is to represent the complete set of membership functions by
an individual and to evolve shapes of the membership functions. We only use the GA to
optimize the normalized trapezoidal membership functions which can be represented by a
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4-tuple as follows[30]:

fiAix) = <

X—

a(2)_a(i) '

1,
X—

a(3)_a(4) '

0.

for < X< a '̂̂ \
for < X <

for X <

otherwise.

(7.1)

where A is a trapezoidal fuzzy variable.
A typical GA starts with a randomly chosen population of individuals. Then this pop

ulation undergoes evolution in a form of natural selection. In each generation, relatively
good individuals are reproduced to give oflfsprings that replace the relatively bad individuals
which are eliminated. An evaluation or fitness function is used to distinguish good and bad
individuals. A typical GA consists of three basic operations: 1) evaluation of individual
fitness, 2) formation of a gene pool, and 3) recombination using two basic genetic operators:
crossover and mutation. The GA used in this paper is shown as follows:

/* initialize */
Generation f = 0;
Initialize the gene pool=GP(0);
while {not termination-condition) do

generation t=t-|-l;
select individual C(t-\-1) = {c,} 6 GP{t —1);
crossover Ci,Cj €C{t-l) and get C{t);
evaluation and selection C{t) and get GF{t);
mutation GP{t);

end

Since in an FCNN-based FIRE edge extractor, only two fuzzy variable ZERO and
WHITE are used, the individual in the gene pool, c^, can be represented by:

= Ct(2),Cic(3), Cki4),Ck(5),Ck(6), Ck{7), ct(8)}

(7.2)

where (a^ ,4^'i4^'' 4 '̂) ^4-tuple for determining the trapezoidal membership function
of ZERO and (6^*', b'j^K 6^,''') is that for WHITE.

Then the initialization of the gene pool is given by the following process. Suppose ^ is
a pseudo-random number distributed in (0,1). It is easy to see that the only choice of

of ^ze{x) is = 0. Then a^^^ is chosen by

(4) _ i
ai' = (7.3)

and then a^^ and are respectively chosen by:

4 '̂ = 4''+o(4''' - 4'') (7.4)
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4 '̂ =4 '̂ +|(4''' - 4 '̂) I'-o]
It is easy to see that for fMwH{x) has a best choice of = 1. Then b\^^ is given by:

6^ =0.5 +1 (7.6)
and then 6^^^ and are respectively chosen by:

4" =4"+|(4"-4'*) (")

4" =4"+1(4" - 4") (7-8)
Crossover is given by the max-min-arithmetical algorithm presented in [85]. Assume

that ci = {ci(l), Ci(2),Ci(8)} and C2 = {c2(l),C2(2), ...,02(8)} are two individuals to be
crossed, then the four offsprings are given by:

= {cUi)\cUi) = c^ciii) + (1 - a)c2(e), i = 1,2,8} (7.9)

4 = {c5(0k2W = (1- a-)ci(0 + ac2(z),z = 1,2,...,8} (7.10)

C3 = {C3(i)lc3(i) = max(ci(t) + C2(!)),i= 1,2,...,8} (7.11)

c't = {c:(i)|c:(j) = min(ci(!) + C2(0).t = 1,2,...,8} (7.12)

where a G (0,1) is a constant. And then the best ones are selected. The are three crossover
schemes used in our GA. The first one, which occurs with a probability pd, is the crossover
between the best individual and the worst one. And then the worst one is substituted by
the best offsprings. The second one, which occurs with a probability Pc2i is the crossover
between the best individual and any of the sub-worst one. And then the sub-worst one
is substituted by the best offsprings. The third one, which occurs with a probability Pc3i
is the crossover between any two of the sub-best ones. And then the two sub-best one is
substitute by the two best offsprings.

Mutations consist of a local mutation scheme and a global mutation scheme. The local
mutation, which occurs with a probability pmii is given by following process. Assume that
an element of an individual Ck = {cfc(l), ..., cjfc(i), ..., CAr(8)}, Ck{i),i = is chosen
for local mutation and assume that the domain of 0^(2) is [d',d'"], then the result is a new
individual Ck = {cjb(l),...,c](.(i), ...,CAr(8)}, where c^(i) is given by:

4(0=I ^̂ (7.13)1 -c]b(^)), else

where is a pseudo-random number distributed in (0,1). The [d', d**] for each element ofin
dividual Ck is given by: {([0,0], [0, [a^^^ 1]), ([0, M^^], [M^^6^^^], [1,1])}

The global mutation, which occurs with a probability Pm2y is the same as initialization.
So, the local mutation can be used to improve the existed individual while the global
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mutation continuously added new types of individuals into the gene pool during the evolving
process.

To evaluate the performance of an individual Ck, the output of FCNN in Eqs.(5.13) and
(5.14), yij, is compared with the ideal output {oij}, by using an error function:

where

t j

«W. foroij = 0
^(«), foroij = l

(7.14)

(7.15)

is the evaluation weight. In our simulations, we let a(i} = 1 and I3{t) = 0.5 + 0.5f. And we
define the global fitness of the generation gene pool GP(t), Emini as

a;=1

where n is the number of population in the gene pool.

(7.16)

7.2 Application to image processing

In this section, the computer simulation results are provided. We used the GA to choose

f^zsi') and Fig- 7.1(a) shows the original gray-scale image of size 63 x 63 with
2-56 gray levels. The image is normalized to [0,1]. Fig. 7.1(b) shows a bcid version of edge
detected result. One can see that lots of noises existed in this result and the edge is almost
indistinguishable. Then we use GA to learn fizsi-) ^i-nd fiwHi-) froni this ill-conditioned
example. The parameters of the GA used in this simulation are chosen as:

population size:
n = 10.

probability of crossover:

Pel = 0.1, Pc2 = 0.1, pc3 = 0.2.
Max-Min-Arithmetical crossover parameter:

a = 0.618.

probability of mutation:

Pml — 0.2, Pjn2 — 0.5.
stop conditions:

If Emin trapped into a local minimum more that 45 generations.

After 100 generations, we get the following individual:

(a^^i, a '̂̂ \ a^^i) = (0.000000,0.004611,0.007106,0.043000)
{b^^\b^^\ b^^\ 6^^i) = (0.543300,0.67.5663,0.6890.58,1.000000) (7.17)

the corresponding output is shown in Fig. 7.1(c). One can see that the edge characteristics
are enhanced while the noise is suppressed. In this simulation, h in Eq.(5.14) is chosen as
ft = 0.
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Figure 7.1: FIRE edge detection using GA and FCNN. (a) Input face image of a Chinese girl,
(b) A noisy training example of edge detecting, (c) Output of FCNN after ICQ generations,
(d) Evolution process.

One should notice that the contour of the whole face which is almost diffused by noises
in Fig. 7.1(b) is perfectly recovered by the FCNN and GA as shown in Fig. 7.1(c). And also
the contours of the two eyes and the mouth are significantly recovered and filled into closed
curves while those in the example in Fig. 7.1(b) are broken lines. Maybe from the crisp
or classical image processing point of view, the learned result in Fig. 7.1(c) is a "terrible"
one since there exits a huge error from the original examples. But from the human expert's
point of view (i.e., from our cognitive point of view), the result in Fig. 7.1(c) is much better
than its original example. In the first view, this kind of improvement is unbelievable because
our common sense is that any learning algorithm of an artificial neural network (ANN) is
an approximation to its supervisor examples. The usual example that an ANN learning
simulation can give is that use a perfect crisp algorithm to generate some input-output
examples and then use an ANN to learn the known crisp algorithm from the input-output
pairs. In this view, the trained ANN should be not better than the crisp algorithm. Why
the FCNN in the simulation performs better than its supervisor examples? In this case,
the improvement come from the structure of the FCNN. When we come back to Sec.5.3
and Fig.5.1, we can find that the human expert's intuition (or experience, knowledge) for
the concept of "edge" has been embedded into the FCNN structure as shown in Eq.(5.13).
So, by using this example, we remind the ANN people that structure is also a kind of very
important aspect of ANN besides learning.

While the learning ability of our brain is over emphasized these days, we should also
remember that our brain has a unique structure which cost the nature billions of years to
evolve. So, the structure of our brain is also a kind of knowledge. How this kind of structural
knowledge become useful? The answer is learning. Come back to the example shown in Fig.
7.1, one can see that in the evolution of learning, the edge extracting knowledge embedded
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in FCNN structure is gradually correct the errors existed in the supervisor examples. Our
simulation had been shown that any distortion existed in the knowledge structure as shown
in Eq.(5.13) or Fig.5.1 gave a much worse result.

From this example, one can also find the evidence that FCNN is a high-level CNN
structure which can embedded the human expert's knowledge in a very efficient way and
performs some intelligent behaviors.

Of course, if we can get the perfect examples, the conventional CNN may be a better
choice to learn from these examples. In fact, an excellent example of DTCNN learning
algorithm of edge detection had been proposed in [122] long time ago. But the question
is how the conventional CNN performs when only ill-conditioned examples are available.
Without the prior knowledge of the task embedded in its structure, the CNN will be puzzled
and wander in the problem space and be settled down to an arbitrary local minimum in the
vicinity of its initial condition.

Why don't use both the ill-conditioned examples and the prior knowledge (usually rep
resented by a set of rules or linguistic statements) to train our model? If we can use this
method, we can let our model use its "knowledge" to judge whether an example is good
or bad. And then big weights are automatically assigned to the good examples and small
weights are automatically assigned to the bad ones. Structural representation of knowledge
plays a very important role in human intelligence. One can see this by thinking that a
monkey who is supposed to be trained for a couple of thousand years will still not wiser
than a normal human individual. It's because the structure evolution of human brain from

the monkey brain cost billions of years. On the other hand, the learning skills of a monkey
and a human individual may be the same in the nature.

We keep emphasizing that there are two motivation of inventing FCNN: one is mathe
matical morphology and the other is embedding human knowledge into CNN structure. So,
this chapter provides another result motivated by the latter one.
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Chapter 8

Linguistic Flow in Discrete-Time
FCNN and Its Stability

8.1 Introduction

In this chapter, a type-Ill fuzzy discrete-time cellular neural network(FDTCNN) structure
is presented to implement local linguistic dynamic systems. The theoretical results of equi
librium points and stability of this FDTCNN are presented. The state transient process of
this FDTCNN is analyzed by using fuzzy mathematics, Markov chain and graph theory. An
efficient algorithm is presented to check the existence of globally stable equilibrium point.
Examples in a two-cell FDTCNN are used to demonstrate theoretical results. Finally, de
signing examples of a 1-D FDTCNN are presented to simulate the traffic flow of a highway
system. Computer simulation results are given.

Type-II FCNN's are mostly studied and understood[350, 351, 352, 353, 356, 355] be
cause it has crisp synaptic weights. In the near future, we believe that the first generation of
VLSI implementation of FCNN will be type-II FCNN because type-II FCNN is the simplest
structure in the FCNN universe. The type-II FCNN is a universal paradigm for implement
ing mathematical morphology operators[351, 352] while the conventional CNN structures
can only give some wrong results with uncontrollable errors[360].

The most parts of type-I, -III and -IV FCNN still remain unexploited. We study ar
chitectures and theory of type-Ill FCNN in this chapter. Unlike our previous works where
FCNN's were studied in the framework of VLSI implementation, we study type-Ill FCNN
in a systematic framework. In a VLSI implementing framework, we define the informa
tion flow as a "signal". However, in a type-Ill FCNN, we define the information flow as a
"linguistic variable(or, flow)". It is very necessary to exchange linguistic variables between
cells when each cell represents a complex system (e.g., a human individual). In a type-Ill
FCNN, synaptic weights are used to model structures and characteristics of linguistic flows
between cells, which exist in an out world called circumstance. In a word, synaptic weights
are fuzzy models of the relationship between cells and that between cells and circumstance.

8.2 Structures of fuzzy discrete-time cellular neural net
works
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Figure 8.1: A type-Ill FCNN is used to model the linguistic relationship between cells and
the relationship between cells and circumstance.

Fig.8.1 shows the relationship between cells and that between cells and circumstance. Every
cell exchanges linguistic flows with all the cells within its neighborhood system. A cell can
also exchange linguistic flows with its circumstance. We use a circumstantialfactor to denote
a local circumstance unit which can exchange linguistic flows with cells. For example, if
a cell denotes a driver, then circumstantial factors may be signs along a highway. Since a
driver can only see signs that immediately before it or behind it, we flnd that circumstantial
factors also share local properties. By using linguistic dynamics to model the system shown
in Fig.8.1, we need to consider cell dynamics and circumstance dynamics. We use "inputs"
to denote all the things related to linguistic flows between cells and circumstantial factors.
We use "state-variables" to denote all the things related to linguistic flows between cells.
Then an M x W 2-dimensional type-Ill FDTCNN is given by

(A:+l)= F 1 < j < M, 1 < i < JV'13 (8.1)

where F (•) denotes a linguistic dynamic system defined in neighborhood system
Nr{ij). Xij{k) denotes the linguistic state of cell at discrete moment k. Uij{k) denotes
the linguistic input iiom a circumstantial factor {i,j) at discrete moment k. We should note
that both Xij{k) and Uij{k) are linguistic variables. Although the type-Ill FCNN in Eq.(8.1)
has the same form as that of a general conventional DTCNN, the information flows and
structures are totally different. A simple form of Eq.(8.1) can be written as the following
fuzzy relational equation:

Xij{k + 1) = Xij{k) o Rij, I < i < < j < N (8.2)
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where Xij(k} is a 1 x (2r+1)^ row vector which consists ofall the possible linguistic states
within Nr(ij}. Rij is a fuzzy relation. This fuzzy equation is borrowed from models of fuzzy
control systems[60, 389]. We can see that Rij is something similar to feedback template
used in conventional DTCNN. Since Rij is a fuzzy matrix., the FDTCNN in Eq.(8.2) has
fuzzy synaptic laws. If the FDTCNN in Eq.(8.2) is space-invariant, then it can be recast
into

xij{k + 1) = Xij(k)oR',l<i<M,l<j<N (8.3)

If we repack all state variables of an M x W FDTCNN into a 1 x MN row vector, X(k),
then Eq.(8.3) can be recast into

X(k^\) = X(k)oR (8.4)

In this case, we view a,n M x N FDTCNN as an MN order dynamic linguistic system. In
this chapter, we call the matrix R a relation matrix.

8.3 Different ways to check global stability of type-Ill FDTCNN

Since a phenomenon can be interpreted and modeled under different frameworks, it is not
surprising that usually the same problem can be analyzed using different mathematical tools.
To study the global stability of type-Ill FDTCNN, we can use tools from fuzzy mathematics
(Type-Ill FDTCNN is modeled as a fuzzy relational system.), Markov chain (The behavior
of FDTCNN is modeled as a transient process from one linguistic state to others.) and graph
theory(The special properties of relation matrices make corresponding directed graphs have
some promising properties). In this section we present different theoretical results and a
practical algorithm for checking the global stability of FDTCNN. Since an FDTCNN may
have different limit cycles as indicated in [323] and we should design our fuzzy systems by
underlying theory rather than by trial and errors[324], the different methods presented here
may benefit to the future work.

8.3.1 Methods from fuzzy mathematics

If only finite number of linguistic sets are needed to denote all possible state-variables, then
we can use finite number of unit row vectors to encode all of the state-variables. Suppose
that there exist m referential fuzzy scis[222, 246, 95] Xi, X2, Xm defined in the space
X. We use a 1 x m unit row vector, Xi, to encode any a fuzzy set Xi by making the i^^
element one and the others zeros, e.g., Xi = (1,0,0, ...,0) denotes .Yi, X2 = (0,1,0,..., 0)
denotes X2^ etc.. Then Eq.(8.4) can be rewritten as

X(k-\-l) = X{k)oR (8.5)

where R is called as a referential relation matrix.

Definition 16

(Linguistic equilibrium point) If a linguistic state Xe satisfies

X^ = XeoR (8.6)

where i? is an m x m matrix whose rows are 1 x m unit vectors, then X^ is a linguistic
equilibrium point of FDTCNN in Eq.(8.5).
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Proposition 11

(Corollary, p.31, [95]) The fuzzy system

X{k + 1) = X{k) 0 R (8.7)

is stable at the linguistic equilibrium point Xe for an arbitrary initial linguistic condition
A'o if there exists a positive integer N, when n> N, the row vectors of are unit vectors
and

fi»oXf=(l,l, 1)'"

where " denotes the transpose.

(8.8)

Theorem 22

(Global Equilibrium Point) The FDTCNN defined by Eq.(8.5) has a globally stable lin
guistic equilibrium point A'g if there exists a positive integer iV, when n> N

is satisfied.

Proof:

It is easy to see that

f x.^

FT =

\X,/

= (1,1,....,1)'

(8.9)

(8.10)

Followed Proposition 11, we get the conclusion. •
Remark: Although this theorem gives a criterion for checking whether an FDTCNN has

a global equilibrium point or not, it fails to point out what kind of structure of R implies a
global equilibrium point. In next subsections, we give constructive methods for choosing a
proper R such that an excepted linguistic state can be a global equilibrium point. However,
when m is not too big, this theorem gives a very straightforward and simple method to
check whether an FDTCNN has a globally stable equilibrium point or not.

8.3.2 Methods from Markov chains

In this section, we study the existence of the longest periodic evolving process(limit cycle)
of FDTCNN's. Without loss of generality, in this chapter, we always suppose that a finite
FDTCNN only has m < oo possible linguistic states. This means that we view FDTCNN as
a discrete state system[324] in a finite linguistic space. The longest period of this FDTCNN
is m. This means that no matter what the initial linguistic state Xq is, the FDTCNN will
go through all possible linguistic states each for once and then come back to Xq at the
iteration. Since this is the only way to go through all possible linguistic states, a minor
revision can derive a criterion of existence of globally stable equilibrium point.



8.3. DIFFERENT WAYS TO CHECK GLOBAL STABILITY OF TYPE-IIIFDTCNN141

Since ^ is an m x m matrix whose row vectors are unit row vector, Eq.(8.5) can be
rewritten as a classical multiplication form

X(k4-l)=X{k)R (8.11)

Since

fjj > 0
m

= l,i = 1,2, ...,m (8.12)
j=i

J? is a Markov matrix. Comparing the form of Eq.(8.11) with that of a Markov chain[1-58],
we find that the linguistic evolving process of an FDTCNN can be modeled by a Markov
chain. In this sense, the referential relation matrix can also be called as a transition matrix.

Definition 17

(Definition 2, page 50, [96]) An n x n matrix A = {a,fc} is called reducible if the index set
1,2,...,n can be split into two complementary sets (without common indices) e'l, 22,.... v;
ki, k2...., Atj, (// + 1/ = n) such that

(^iak0=O (a= 1,2, ...,/x;/3= 1,2, ...,z/) (8.1.3)

otherwise the matrix is called irreducible.

Definition 18

A matrix is regular if some power of it is positive. A matrix is not regular is non-regular.

Proposition 12

(Theorem 3.4.7, page 305, [221]) An irreducible non-regular transition matrix is periodic.

Remark: If the transition matrix of a linguistic evolution process with m linguistic states
is periodic, then for any initial linguistic state Xo the FDTCNN will come back to A'o after
m iterations.

Theorem 23

The FDTCNN is periodic if R is irreducible.

Proof: The FDTCNN can only stay in a distinct linguistic state in each iteration. This
means that each row vector of n > 1, can only have one nonzero entry which is 1.
Hence, the referential relation matrix R is non-regular. If R is irreducible, it follows from
Proposition 12 that the FDTCNN is periodic. •

Remark: Although Theorem 23 only gives conditions for an FDTCNN being periodic,
this theorem can be easily used to construct an FDTCNN which has a desired global
equilibrium point as will be presented in next subsection.
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8.3.3 Methods from graph theory

The basic knowledge ofgraph theory can be found in a famous book by Prof. W.K. Chen[40].

Definition 19

The directed graph of an m x m referential relation matrix R = {rij)mxm^ T, is obtained
by connecting m nodes Pi, P2,Pm by a directed edge directed away Pi and directed
toward Pj if fij ^ 0.

Definition 20

A directed graph F is strongly connectedli for any two nodes Pi and Pj, there is a directed
path from Pi to Pj.

Proposition 13

(Theorem 6.1.3, page 218, [208]) An m x m matrix R is irreducible if and only if the di
rected graph of R is strongly connected.

Theorem 24

If an m X m matrix R* = [r*] is an irreducible matrix, and r*,i = 1,2,m, are 1 x m
unit row vectors, the referential relation matrix R = (f,) is given by

f, = r*, i ^ e,l < i,e < m

fi = Xe,i = e (8-14)

where Xe denotes the unit row vector whose e*^ entry is1, then the FDTCNN hasa global
equilibrium point Xg. And the FDTCNN will get this global equilibrium point within m
iterations.

Proof: The proof is straightforward. We use i^-,1 < i < m, to denote the m linguistic
states of the FDTCNN. Since R* is an irreducible matrix, from Proposition 13 we know
that its directed graph P* is strongly connected. And since every row in R" is a unit row
vector, we know that for any two nodes P* and Pj in F*, they can not be directed toward
the same node. Otherwise, there will exist no directed path between P* and Pf which is
contradicted to the fact that F" is strongly connected. Without loss of generality F* is
illustrated in Fig.8.2(a). We denote the directed graph of R by F, then by Eq.(8.14) all the
edges of F are the same as those in F* except for the one from node Pg directed towards
node Pe+i- This edge is replaced by a self-loop of node Pg as shown in Fig.8-2(b). Then all
the initial states will be absorbed by node Pg within m iterations. •

Of course, the directed graph does not need to be strong connected. Since a tree does
not contain any loop, we want to find how can a tree imply a globally stable equilibrium
point.

Proposition 14

In the directed graph of the referential relation matrix R, there exists one and only one
directed edge directed away a node Pi,l < i < m.

Proof: In matrix R = [rj], each row vector f, is a unit vector, i.e., only one element of
r,-, say, r,j, 1 < i < m, is nonzero (rij = 1). This means that for each 1 < i < m , there
exists one and only one directed edge directed away the node Pi. •
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Figure 8.2: Illustrations of the directed graphs used in the proof of Theorem 24.

Theorem 25

If in the directed graph of a referential relation matrix jR, there exists one and only one
self-loop at node Pg? and by redirecting this self-loop to a datum node Poo (the 0 vector),
we get a modified directed graph, if the modified directed graph is a tree, then A'g is a
global equilibrium point.

Proof: First, as shown in Fig.8.3, we label the datum node as Poo- Without loss of
generality, we assume that the node Pn has a self-loop. Then we can break this self-loop by
replacing it with a directed edge from Pu to Poo- Let set {P2i) denote nodes that connected
to Pii by an edge. It follows from Proposition 14 that all the edges which connect node Pu
and nodes in set {P2t} directed towards node Pu. This is illustrated in Fig.8.3. Similarly,
let set {Pst} denote nodes that connect to a node in {P2t} by an edge, all the edges which
connect nodes in set {P2t} and nodes in set {Psi} directed towards the nodes in {P2t}- By
using the same process we know that for a given k all the edges which connect nodes in
set {Pfct} and nodes in set {P(a_i),} directed towards the nodes in {P(A:_i)t}. Since a finite
FDTCNN can only have finite number of linguistic states, we can find a K such that when
k > K, the set {Pki} is empty.

Since the modified directed graph is a tree, there exists no node which does not in the
node set P = {Pti}. Hence, for any node Pii € P, there exists a directed path from
Pij to Poo containing less than K -}-1 branches. At the end, if we delete the datum node and
redirect the edge from Pu to Poo as a self-loop of Pu, then any initial state will get node
Pii within K iterations and stay there forever, i.e., Pu is the globally stable equilibrium
point. •

Given a big number of cells, to draw the directed graph of a referential relation matrix
P is a tedious task. To try to figure out whether the modified directed graph is a tree is
an even time consuming task. But the importance of Theorem 25 is that it gives a very
clear guidance to construct a practical algorithm for checking if a given linguistic state is a
globally stable equilibrium point or not.

Algorithm 1: Criterion for checking global equilibrium point
Assumption: In the referential relation matrix R = (rij)mxm, there exists one and only

one index e, 1 < e < m, such that fee = 1-
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Figure 8.3: Illustration of the tree structure of the modified directed graph of referential
relation matrix R. Only a part of the whole graph is shown in details.

Step 1: let r^e = 0.

Step 2: scanning through all index i, 1 < i < m. If rki = 0 for all 1 < ^ < m, then set
fik = 0 for all 1 < fc < m.

Step 3: scanning though all index f, 1 < i < m. If rki = 0 for all 1 < < m, and there
exists a r,j = 1 for 1 < j- < m, then goto step 2. Else goto step 4.

Step 4: if ^ is a 0 matrix, then Xe is the global equilibrium point.
Remarks: The Step 1 is used to redirect the only self-loop to the datum node Fqo- Step

1 transfers the directed graph of R into the modified graph of R. From Theorem 25 we
know that if the modified graph is a tree then Xe is the global equilibrium point. To check
if the modified graph is a tree or not, we can keep deleting "leaves" of the graph till no more
leaves left. We define a leaf as an edge which has a free node. A free node is a node towards
which no edge is directed. The leaf deleting is performed in Step 2. Since this process does
not destroy any loops, what left after Step 3 are edges which are belong to some loops. If
there is nothing left, then the modified directed graph is a tree which implies that A'e is the
global equilibrium point.

8.4 Examples of a two-cell FDTCNN

In this section we present some examples to show how the theoretical results in the previous
section can be used to analvsis the behavior of a two-cell FDTCNN.
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8.4.1 Stable Cases
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Here, we study an infinite 1-D type-III FDTCNN. We suppose that a cell Ci, i € Z de
termines its next state by checking its state and those of cells Ci+i and C,_i. This is a
simple linguistic model of traffic on an endless high way. We suppose that a driver changes
its speed according to the speeds of the car before it, the car after it and its car. In this
chapter, we suppose that a cell(car) can stay in three linguistic states S(small), M(meddle)
and L(large).

Figure 8.4: A 2-cell 1-D FDTCNN.

Referentia

Num

ber at

k

a:i(A:) X2ik) a:i(Ar4- 1) X2{k-\rl)

Reterentia

Num

ber at

k-kl

100000000 S S S M 010000000

010000000 S M S M 010000000

001000000 S L S M 010000000

000100000 M S S M 010000000

000010000 M M M S 000100000

000001000 M L S L 001000000

000000100 L S M S 000100000

000000010 L M S S 100000000

000000001 L L S L 001000000

Table 1: Dynamics of the FDTCNN in Fig.S.f with globally stable output.

First, we study the case when onlj' two cells with wrap-up boundary condition is used
as shown in Fig.8.4. There exist 3^ = 9 referential fuzzy sets defined in {Ci,C2}, the
linguistic dynamics of the FDTCNN is given in Table 1. In Table 1, the first column gives
the referential number of the linguistic state (a:i(A:),a:2(fc)), e.g., (a:i(/:), a;2(A;)) = (5,5} is
encoded by (100000000). Similarly, the last column gives the referential number of the
linguistic state (a:i(A:-f l),ar2(Ar+1)). Let X{k) = (a:i(A;),a:2(A:)) where a:i(A:) and X2{k) are
linguistic state of Ci and C2, respectively. Then we have

R =

/ 010000000 N ( 010000000 ^
010000000 010000000

010000000 010000000

010000000 010000000

000100000 ,R' = 010000000

001000000 010000000

000100000 010000000

100000000 010000000

V 001000000 010000000 }

(8.15)

Followed from Theorem 22 we know that X2 = (010000000), i.e., xi = S, X2 = M, is
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a globally stable equilibrium point of the DTCNN in Fig.8.4. Since (010000000) is the
only entry in R which satisfies fee = 1» by using Algorithm 1 we can also draw the same
conclusion. After setting f22 = 0, we do the follows. Firstly, since columns 5 ~ 9 of ^ are
zeros, we set the rows 5 9 into zeros and get Ri. Secondly, in jRi the columns 1, 3 and 4
are zeros, we can set the rows 1, 3 and 4 into zeros and get R2 which is 0. Thus A'2 is the
global equilibrium point.

Rr =

/ 010000000 N ( 000000000 \
000000000 000000000

010000000 000000000

010000000 000000000

000000000 ,R2 = 000000000

000000000 000000000

000000000 000000000

000000000 000000000

\ 000000000 yi i, 000000000 /

(8.16)

We also present the directed graph in Fig.8.5. From Fig.8.5 we can find that Pii = P2.
{P2i} = {Pi^Ps^P^} and {P3,} = {P^, Pe, Pt^Ps^Pq}- We use these examples to show the
inner connectedness between the three different methods presented in Section 3.

{P.}; {P2i}
\ \

22 '̂Z ^

/ \ 7 ^

P34=Ps

Figure 8.5: The directed graph of the referential relation matrix R in Eq.(15).

The simulation results are shown in Fig.8.6 with different initial conditions. In Fig.8.6,
the vertical axis denotes cell number while the horizontal axis denotes the iteration number

(discrete time). One can see that the FDTCNN gets its global equilibrium point within 3
iterations with any initial condition.

8.4.2 Periodic cases and their stable revisions

We study the cases when the FDTCNN has a periodic output pattern. A local rule of
periodic behavior is given in Table 2.
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0,5i 1 0.5i

Figure 8.6: Simulation results of the two-cell FDTCNN with different initial conditions.
Here, S, M and L are encoded by white, grey and black, respectively, (a) Initial condition
(a:i(l),X2(l)
{a:i(l),X2(l)
(.Tl(l), 2:2(1}
(3:1(1), 2:2(1)
(a:i(l),X2(l)

= (5,5). (b) Initial condition (a:i(l),2:2(1)) = (5,M). (c) Initial condition
= (5, Z).(d) Initial condition (a:i(l),2:2(1)) = (M, 5). (e) Initial condition
= {M,M). (f) Initial condition (2:1(1),2:2(1)) = {M,L). (g) Initial condition
= (L.S). (h) Initial condition (2:1(1),2:2(1)) = {L,M). (i) Initial condition
= {L..L).

xi{k) X2{k + 1)

100000000 s s S M 010000000

010000000 s M S L 001000000

001000000 s L M S 000100000

000100000 M s M M 000010000

000010000 M M M L 000001000

000001000 M L L S 000000100

000000100 L S L M 000000010

000000010 L M L L 000000001

000000001 L L S S 100000000

Table 2: Dynamics of the FDTCNN in Fig.8.4 with periodic output patterns.
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From Table 2 we can construct the referential relation matrix R as

010000000

001000000

OOOIOOOOO

000010000

000001000

000000100

000000010

000000001

100000000

(8.17)

which is irreducible. From Theorem 23 we know that the output will be oscillated with the
longest period. The simulation results are shown in Fig.8.7. It is a period-9 pattern.

5 10 15 20 25 30 35 40

Figure 8.7: Periodic output of the two-cell FDTCNN. Here, S, M and L are encoded by
white, grey and black, respectively.

Since an m x m matrix R is irreducible if and only if the directed graph of R is strongly
connected, and in the directed graph there exists one and only one edge directed away a
node, there exist 9! different period-9 output patterns in the FDTCNN shown in Fig.8.4.

We also show another stable example which is modified from the periodic result given
by the referential relation matrix in Eq.(8.17). Suppose we want the linguistic state {MM)
be the global stable equilibrium point, according to Theorem 24, we can change the fifth
row of R from (000001000) into (000010000) such that the new R is given by

010000000

001000000

OOOIOOOOO

000010000

000010000

000000100

000000010

000000001

100000000

(8.18)

Then all the initial linguistic patterns should get [MM) within 8 iterations. The simulation
results is shown in Fig.8.8. Since the iteration 1 is the initial condition (MX), we can see
that the FDTCNN get the designed global stable point in 8 iterations which is the longest
evolving process before being absorbed by linguistic pattern(MM).
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Figure 8.8: The simulation result of a globally stable output linguistic pattern. Here, S, M
and L are encoded by white, grey and black, respectively.

8.5 Examples of a 1-D FDTCNN

In this section we will use an example to show how can we design local linguistic rules
for achieving a certain global performance. The system we consider is a highway system.
Every cell is a driver. The goal is to design a set of local rules such that a stable, safe
and efficient traffic flow, say. all drivers have speed M, is the global equilibrium under any
initial condition.

We suppose that a driver changes its speech according to the speeds of both the drivers
who are immediately before and after him. We have to study a 1 x 3 neighborhood system
which can be described by .3^ = 27 referential fuzzy sets defined on {C'z_i,C,-.C'i+i}. —oo <
i < +OC. First, we design the fuzzy relation matrix R such that the linguistic pattern
[MMM) is the global equilibrium point of all the 27 linguistic patterns.
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One of this fuzzy relation is given by the following referential relation matrix

R =

( 000000000 000010000 000000000 \

000000000 000010000 000000000

000000000 000000100 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000000000 010000000

000000000 000010000 000000000

000000000 000000000 001000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000000000 000000100

000000000 000010000 000000000

000000000 000010000 000000000

000000000 000010000 000000000

000001000 000000000 000000000

000000000 000010000 000000000

000000000 000010000 000000000 /

(8.19)

By using Algorithm 1, it is very easy to find that the vector (000000000000010000000000000),
which corresponds to linguistic pattern (MMM), is the global equilibrium point of a 3-cell
FDTCNN with wrap-up boundary condition. The corresponding linguistic local rules are

T./:
'^i-1 Xi ^i+l x'- ^'t+1 J ^i-1 Xi

s s s M M s s M L s s M

s s M M M s M M L s M M

s s L L M s L M L s L L

s M s M M M s M L M s M

s M M M M M M M L M M M

s M L M M M L M L M L M

s L s s M L s M L L s M

s L M M M L M M L L M iVI

s L L s M L L M L L L M

Table 3: Local rules of the 1-D FDTCNN used to model a high way traffic jlou

In the above, we only give the conditions under which an arbitrary 1 x .3 pattern with
wrap-up boundary approaches [MMM), A wrap>-up 1x3 pattern, {xi-i{k),Xi{k), Xi+i{k))
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can be represented by

—'^j+l(^)«1 (^)? ^t(^)1(^)• ^t+2(^) — 1(^))

left boundary center pattern right boundary

We then study the cases with the following boundary conditions:

(.Tj_2(^) ^ ^e+1 (^)? 1(^)) (^)»"^i+l (^): ^i+2(^) 7^ •'̂ i—1(^))

left boundary center pattern right boundary
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In Table 3 we find that a 3-cell pattern which consists of at least one M approaches (MMM)
pattern. Similar, those 3-cell patterns which change their center cells to M's will also
approach [MMM) patterns. Only the following four patterns, SSL, SLS, SLL and LSL
may not result in [MMM). Since there doesn't exist periodic structure in these four
patterns by using the local rules in Table 3, we conclude that all the cells in an infinite
chain approaches M state with arbitrary initial conditions.

The simulation result is shown in Fig.8.9(a). We use 100 cells with a wrap-up boundary
condition. One can see that all cells go to M states at the second iteration. However, for
most of local rules, the FDTCNN approaches an unstable state. If we only change one local
rule in Table 3 such that the local rules are given by Table 4, then the FDTCNN will output
some periodic solutions. The simulation results are shown in Fig.8.9(b).

x^'^i-1 xf ^t+i x^ ^i+l ^i+i

S s S M M S S M L S S M

S s M M M s M M L S M M

s s L L M s L M L s L L

s M S M M M S M L M S M

s M M M M M M S L M M M

s M L M M M L M L M L M

s L S S M L S M L L S M

s L M iM M L M M L L M M

s L L S M L L M L L L M

Table 4: Local rules of the 1-D FDTCNN which generate periodic output pattern.

8.6 Conclusions

Since restrictions from the state-of-the-art technology, fuzzy systems are always imple
mented in traditional platforms. This really makes some distortions of the cream of fuzzy
mathematics. If conventional mathematics are used to model quantitative phenomena, then
fuzzy mathematics are used to model qualitative ones. The similar relationship exists be
tween conventional CNN and FCNN. Although someone may find that the type-II FCNN
structures presented so far are similar to some conventional CNN structures with nonlinear
synaptic laws, FCNN is not a subset of conventional CNN. Since the conventional CNN is
developed in the conventional mathematic framework, it can not model qualitative phenom
ena. The nature of FCNN is qualitative. The conventional CNN and the FCNN view the
same gray-scale input image in two different ways. For conventional CNN the gray value of
a pixel is an isolated value, i.e.. a point in an interval. On the other hand, FCNN views the



mCHAFTER $. LIh'CWTSTIC FLOW IN DISCRETE-TIME FCNN AA'D ITS STABILITY

2 4

Iterations

Li U i I >ji> IIU r I i i 1 i I III 111111111111111111 a 1jj t IjlOpn I (I ill 11n 1111IIIIIIM BIII11111IIIIIII1111111 id
11111 III i I ill f 11IIII1111111 i IIII i III t i 111111II111 ij
[fiyi'ijjjVijYOYriYriYiTiViViViYrriYiTiTriTn'rrn'i.

20 |JJjJJJJJJJJJJJJJJJJJJJJJJJjJJJJJJjJJJJJJJJJJJJJJ.
30 511 I'M 1111 iIH iTlTlTlTllYllTrilTlTiTlTlTflTllTlTll

ji'iVi'i'i 1,1.1,1 i.iVi rrM'rrrri'iYi'rrrrri'i'rrri'i'i'iYi'i'iYiyri':i,i^,i,i,i.i,i,i.i,n,i.i.i,i,i.m,!.i,M*i,ri.i,i.i,i.i,i';.i.i.i.i.i.i.ffi.i.t,i,i\!

60 ilMiliiiMOIOH
pYpiOYipYiYsXijil'QIlYiYfniY^

70^I'l'i's'i'^Li'ijjYrs'iYi'iYs'ijiYriYiViYiYrri'i'iYiYijYiYi'iYJ'^ni i III n 111 rt i M 111II111III i I It 1111MI M I r: III M il

40 so

Iterations

Figure 8.9: Simulation results with random initial condition and different linguistic local
rules. Here. S, M and L are encoded by white, grey and black, respectively, (a) The local
rules in Table 3 is used, (b) The local rules in Table 4 is used.

gray value of a pixel as a qualitative relation between the pixel and some datum character
istics. The type-III FDTCNN structure presented in this chapter shows this difference very
clear because each cell in a type-III FDTCNN can process linguistic variables.

In this chapter, we presented some theoretical results of equilibrium points and stability
of type-III FDTCNN's. We study these problems under three different mathematical frame
works. i.e.. fuzzy mathematics. Markov chain and graph theory. An efficient algorithm for
checking the global stability of type-III FDTCNN is presented. Some examples are given
to show how to use the theoretic results. As applications, we used type-III FDTCNN to
model the dynamics of the traffic flow in a highway.



Chapter 9

Applications of Discrete-Time
FCNN

9.1 Implementing Nonlinear Fuzzy Operators for Image Pro
cessing

We present the structures of fuzzy discrete-time cellular neural networks(FDTCNN) by com
bining fuzzy neural network and conventional cellular neural network, and then FDTCNN
are used to embed the nonlinear fuzzy operators for image processing. The fuzzy oper
ators we discussed in this chapter are based on fuzzy IF-THEN-ELSE rule bases. The
parallel computation mechanics of FDTCNN are possibly used to offset the computational
complexity of fuzzy image processing problems.

The discrete-time dynamics in some cases may be superior to the continuous one as indi
cated in the first paper of discrete-time cellular neural networks(DTCNN)[120]. Therefore,
we present applications of FDTCNN to image processing problems in this chapter. Since
not all the people in the fuzzy field know the advantage of FCNN structures over the serial
and conventional fuzzy image processing platform{e.g.. some DSP chip or a serial fuzzy
chip), we have to remind them that the future FCNN is supposed to be a parallel fuzzy
processing chip. We try to persuade the people from fuzzy field who may be not familiar
with the VLSI implementation that the purpose of the invention of FCNN is to speed up
the existed fuzzy algorithms and give those fuzzy algorithms used in signal processing, in
particular, in image processing a computational platform with parallel structures.

9.1.1 The structure of FDTCNN

Here we show how an FDTCNN structure can be derived from the framework of FNN[35].
A typical FNN structure consists of three layers. The first layer called fuzzifier layer is used
to give the crisp inputs some fuzzy measurements. The nonlinearities in the neurons of this
layer are some membership functions. The second layer called fuzzy inference engine layer
is used to calculate the relationship between different fuzzy variables and (fuzzy/non-fuzzy)
weights. The fuzzy computations are embedded into the nonlinearities of this layer. The
third layer called defuzzifier layer is used to give some crisp forms of outputs.

Since the consideration of easy VLSI implementation and the local connectedness of
CNN, a typical structure of a conventional CNN[47, 46] consists of three sub-layers: an
input function sub-layer, a cell dynamics sub-layer and an output function sub-layer. In

153
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a conventional CNN. the input function sublayer is usually used to normalize the sensed
signal into a suitable range for VLSI based calculation. The cell dynamics sub-layer can be
used to calculate operations defined by inputs, weights and outputs within a neighborhood
system. The output function can be used to define the range of output and the dynamics
of cell, etc.

Then it is very easy to find the FCNN structure by combining those of FNN and CNN.
We embed the fuzzifier layer of FNN into the input function sub-layer of FCNN such that
we use different membership functions as the input functions. We embed the fuzzy inference
engine layer of FNN into the cell dynamics of FCNN. Finally, we embed the nonlinearities
of the defuzzifier layer of FNN into the output function sub-layer of FCNN.

We then focus on FDTCNN. To give this kind of combination a quantitative description,
we list all the equations of FNN and FDTCNN. By comparing these equations, one can
easily see that FDTCNN is a kind of locally connected FNN with a planar structure. The
corresponding equations describing an FNN are given by:

1. Fuzzifier layer (Layer 1)

y} =fXi{ui)N = 1,2,...,/:. (9.1)

where u,- and yj are the i-th input and its corresponding fuzzifier value, respectively, ju-(•)
is a membership function of the fuzzy variable represented by the i-th neuron in this layer.

2. Fuzzy inference engine layer (Layer 2)

Vi = (yf. yl)^ ?• = F 2,..., /. (9.2)

where F)(-) may be a fuzzy inference process, e.g., a set of fuzzy IF-THEN rules. It can also
be some simple fuzzy operations, e.g., fuzzy logical operations, yf is the output of the i-th
neuron in Layer 2. Here, we use over a character to denote something related to fuzzy
variable, e.g., BIG and SMALL.

3. Defuzzifier layer (Layer 3)

yf = Di{yl,...,yi),i = l,2,...,m. (9.3)

where yf is the output ofthe i-th neuron in layer 3. Di{-) may beany defuzzifying operations,
e.g., center of gravity and mean of maximum.

The corresponding FDTCNN can be given by the following equations:
1. Input function sub-layer (=fuzzifier layer)

~ Cki^Nriij) (9-4)

where Eki{t) is the detected signal, e.g., the output of a camera, t denotes discrete-time

iteration. Cki€Nriij) (') membership function of the fuzzy variable embedded in cell
Cij, it is used by feed-forward synaptic law. {} denotes a set.

2. Cell dynamics sub-layer (= fuzzy inference engine layer)

=CkieNriij) {l4iiyki{t))}) (9.5)
p.

where CkieNriij) (*) denotes a fuzzy inference process in Nr{ij). /^^/(•) is the membership
function of the fuzzy variable embedded in cell Cij, it's used by feedback synaptic law.
yki{t) is output which is given by:
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3. Output function sub-layer {=defuzzifier layer)

Di

Vijii) = CuiSNAH) - 1)}) (9-6)
D

where CkieNriij) (*) <^enotes a defuzzifier function defined in Nr{ij).

9.1.2 Embedded fuzzy IF-THEN-ELSE rules into FDTCNN

Fuzzy local image operations had been developed in these years as a new branch of image
processing[276. 277, 275, 279. 278] because there exist different kinds of uncertainties in
image processing and image understanding. Some simple local fuzzy operators such as fuzzy
shrinking and fuzzy expanding maj"^ be considered as a kind of mathematical morphological
operations and can be readily implemented by type-II FCNN's[350, 351, 352, 355]. Here,
we give the fuzzy IF-THEN rule based image operator a type-II FDTCNN implementation.

We then in the situation to show how a fuzzy IF-THEN-ELSE rule can be embedded
into an FDTCN.N structure. One simple fuzzy operator is given by the following fuzzy rule:

Rule One

IF ({Et/}i is .4^) AND ({Ew}^ is A^} ... and {{Eki}^^ is
.4'^), THEN {yij is Ei(a:: ci, lUi)),
ELSE {yij is Eo(x; cq, u?o))
Cki € Nr{ij)

where Bo(x: cq, tt'o) and Bi {x:ci, tci) are two triangular-shaped fuzzy sets, which are defined
by[30]

D/ \ / , c—w<x<c-\-w fn -\

A^,p = 1,2, ...,M are M fuzzy variables, yki is a crisp output of Rule One. Then we can
use the following FDTCNN to implement Rule One.

1. Input sub-layer for implementing {{Eki}^ is .4^), p = 1,2, ...M:

(0 = C„%Nrm ({£«}"), P=1,2, ...M (9.8)
2. Cell dynamics sub-layer for implementing IF parts:

(9.9)

By adopting correlation-product inference[166], we get the third sub-layer:
3. Output sub-layer for implementing THEN-ELSE part:

Then for purpose of comparison, the above FDTCNN structure can be summarized into a
form which is similar to that of a conventional CNN as:

1. State-equation

Xij(t) = mm {pAi{{Eki{t)y),PA^{{Eki{t)y)-,fJ'A^({Eki{t)}^^)} (9.11)
Ckle^r(^J)
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2. Output-equation

(1 - Xij{t - l))coit;o -hXij{t ~ l)ciivi
(1 - Xij{t - 1))U70 + Xij{t -l)wi

(9.12)

Of course, a simple set of fuzzy IF-THEN rules may be too simple to solve a practical
problem. We usually need more that one set of IF-THEN rules in fuzzy image operator.
For example, in [279] the authors use a fuzzy rule set which contains 32 IF-THEN rules and
one ELSE rule. Usually we have to consider the following rule:

Rule Two

IF is .411) AND ({Ew}12 is ^12) ... and
is .41-'* '̂), then {yij is ci,u;i)),

IF {{EkiY^ is /I'l) AND {{EkiY^ is A'̂ ) ... and is
THEN {yij is Bi{x: Ci.Wi)).

IF {{Eki} '̂ is .4-^^i) AND ({Ejfc/}-'̂ '2 is .4''̂ '2) ...
{{Eki} '̂̂ ^ is .4-^^!^^), THEN {y^j is BatI-t; c,v, u'aO),
ELSE {yij is Bo(x; co,luo)),
Cki € N^ij)

and

where Bp{x: Cp, Wp),p= 1,2,..., N are N triangular-shaped fuzzy sets as defined in Eq.(9.7).
{EkiY'^.p = 1,2, ...,A'*, q = 1,2, ...,Mp are fuzzy variables. This rule base consists of N
IF-THEN rules and one ELSE rule. Similar to the implementation of Rule One, the IF part
of the p-th IF-THEN rule can be implemented by the following FDTCNN:

^ T^ip,.AFAP^{{Eki{t)v^),PApA{Eki{t)y^),...,Pj^pMp{{Eki{t)y^ '̂')},
Ckl€Nr{ij)

p = 1,2,.... N (9.13)

Therefore, we need p layers of FDTCNN to implement p IF-parts. The ELSE-rule is imple
mented by a special layer

Then the whole rule base is finished by a common output function sub-layer

(9.14)

l)Cpm,
yy(t) = (9.1.5)

In conclusion, to implement Rule Two, we need (A'̂ -b 1) layer FDTCNN and a common
output function laj^er.
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Figure 9.1: The rule-base for fuzzy sharpener presented in[278].

9.1.3 An example

We then show how a fuzzy IF-THEN-ELSE rule base for image processing can be embedded
into an FDTCNN structure. Consider a basic fuzzy sharpener presented in [278]. The rule
is shown in Fig.9.1 which is applied to a 256-greylevel digital image. It should be noted that
all the inputs in the rules are gray-value difference between each pixel in the neighborhood
system and the center pixel. This is the so called "relative in the antecedents" approach[278].

The rule base in Fig.9.1 consists of two IF-THEN rules and one ELSE rule. We can
express the rule base by the following equivalent statements

IF {Ei-ij-i is P) AND {Ei-i^j is P) AND {Ei-ij+i is P)
AND {Eij-i is P) AND (F'i.j+i is P) AND (Ei+ij-i is P)
AND {Ei+ij is P) AND (^i+ij+i is F) THEN {yij is iV),
IF (Fi_i.j_i is N) AND {Ei-ij is N) AND (Fi_ij+i is N)
AND {Eij.i is N) AND {Eij+i is N) AND is N)
AND {Ei+ij is N) AND {Ei+ij+i is N) THEN (y-j is F),
ELSE (y,j is Z)

To implement this fuzzy sharpener, we let Eij denote the grey-value of pixel (L^), then
we have the following multi-layer FDTCNN structure. The State equation of FDTCNN #1
which is used to implement the 1st rule in Fig.9.1 is given by:

4(0 = „ fp{Eu-Eij) (9.16)

where is the membership function of fuzzy set F as shown in Fig.9.1.
The State equation of FDTCNN #2 which is used to implement the 2nd rule in Fig.9.1

is given by:

xl ^ f^NiEkl - Eij) (9.17)
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where is the membership function of fuzzy set N as shown in Fig.9.1.
The State equation of FDTCNN #0 which is used to implement the ELSE rule in Fig.9.1

is given by:

x^j{t) = min(l - - 1), 1- - 1)) (9.18)

The above three layers share a single output layer as

-1)) = (9.19)
l^p=0^ijV

where Cp and Wp,p= 0,1,2, are centers and widths of triangular-shaped fuzzy variables Z.
N and P as shown in Fig.9.1, respectively.

Since in this section we only want to show how can we map the nonlinear fuzzy oper
ators into FDTCNN, we do not want to discuss the advantages and the disadvantages of
these kinds of image processing techniques, the interested reader are referred to [276, 277,
275, 279, 278] and references therein. All the disadvantages and the advantages of these
kinds of methods are due to themselves but not FDTCNN (or general FCNN). The only
thing FDTCNN can do here is to provide a computational platform to offset the possible
computational complexity.

We presented the connections between the concepts of FCNN, FNN and CNN. In par
ticular, we demonstrated by using FDTCNN structures that fuzzy properties were really-
embedded in FCNN structures. To demonstrate the potential applications of FCNN as com
putational array to image processing problems, we embedded a nonlinear fuzzy operator
into a multi-layer FDTCNN structure.

9.2 Embedding Local Fuzzy Relation Equations

In this section we embed local fuzzy relation equations into fuzzy discrete-time cellular
neural networks(FDTCNN). First, we introduce the FDTCNN from the VLSI implementa
tion point of view. Then the multi-layer FDTCNN structure is used to embed local fuzzy
relation equations which are defined in the neighborhood systems. An example is given to
show how our method works. Computer simulation results are also given.

9.2.1 Introduction

It had been found that FCNN was the only existed high level CNN structure in the CN.N uni
verse. Here, the word "high level" means the ability of processing conceptual variables, e.g.,
linguistic variables. We have shown in different papers[351, 355] that FCNN can embedded
the local fuzzy IF-THEN-ELSE rules in their structures. On the other hand, a subclass of
type-II FCNN is found to be a universal and error free mathematical morphology paradigm
for implementing grey scale morphological operation[351, 352, 355] while the conventional
CNN based grey-scale morphological operation[395] always gives error results[360].

Here, we present a new fuzzy discrete-time CNN (FDTCNN) structure to embed lo
cal fuzzy relation equations. Fuzzy relation equations were first recognized and studied by
Sanchez[282]. Fuzzy relation equations play an important role in areas such as fuzzy system
analysis, design of fuzzy controller, decision-making processes, and fuzzy pattern recogni
tion. Fuzzy relation equations are associated with the concept of composition of binary
fuzzy relations, which includes both the set-relation composition and the relation-relation
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composition. We only use the max-min composition because it has been studied extensively
and has been utilized in numerous applications.

Embedding fuzzy relation equations in artificial neural networks(ANN) is not a new-
work, there exist lots of references[27, 131, 29, 196, 224]. Thanks to all these references, we
can combine the concepts of FDTCNN and fuzzy relational neurocomputations in a very
easy way.

9.2.2 Local fuzzy relation equation and its implementation

Let Aij be a fuzzy set in Nr{ij), where Nr{ij) denotes the r-neighborhood system of cell
C'ij. and Rij{Nr{ij), {<2>tj}) be a binary fuzzy relation in Nr{ij) X{6ij} where set {oij} =
{qL, ...,q^}. The set-relation composition of Aij and i2,j, Aij o jR,j, results in a fuzzy set
in {t/ij}. Let us denote the resulting fuzzy set as Bij. Then we have:

Aij o Rij = Bij (9.20)

The above equation is as a fuzzy relation equation. The membership function of Bij is
given by:

IJ'Bi, (<?>o) = (®fj) = ^ max {Eki)^ liniEki, o%)]
p = 1,..., m. (9.21)

If we view Rij as a local fuzzy system, Aij as a local fuzzy input, and Bij as a fuzzy
output, then we can consider Eq.(9.20) as describing the characteristics of a fuzzy system
via. its fuzzy input-output relation.

From Eq.(9.21) one can see that we can use an m-layer FDTCNN to implement the
fuzzy relation equation as shown in Eq.(9.20). The p-th layer FDTCNN is given by:

1. Input equation:

'̂ ki = jJ'Aij {Eki),Cki GNr{ij) (9.22)

2. Cell dynamics:

= max min[wA-KOi '̂'(^^ii ^-0] (9.23)
•' Ckl^Nriij)

where

is synaptic weight.
3. Output equation

One can see that

B'Ci, j; fc, I) = ^R(Eku (9.24)

3/t(0 = 4((-l) (9.25)

(9-26)
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Figure 9.2: The fuzzy set B and the numbering order of cells in Ni{ij).

9.2.3 An example

To show how the fuzzy relation equations can be embedded into a multi-layer FDTCNN we
define the following fuzzy relation equation:

UoR = C (9.27)

where U = {ui,U2, ...,us,uq} is numbered as that shown in Fig.(9.2)(lower part labeled
"numbering order"), i.e., the following pattern

C = {ci, C2}. R is given by:

i-1 j 7 + 1
f-1 f Ui W5 U2 ^

= ^ 1 U6 Uq U7

f-hl '\ US US U4 /

Ci C2

Ul /0.5 0.75

U2 0.5 0.75

Us 0.5 0.75

U4 0.5 0.75

R = W5 1 0.5

ue 1 0.5

U7 1 0.5

Us 1 0.5

Uq

t—1

0

(9.28)

(9.29)

The first layer FDTCNN is used to implement the first column of R in Eq.(lO.l), which
is given by:

1. Input equation

Ukl = fJ'B{Eki),Cki G Ni{ij) (9.30)
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2. Cell dynamics

= max min[Mjt/, /:./)]
CkieNiitj)

where I) is given by the following fuzzy set defined in Z^{Ni{ij)) grid:

j-1 j i +1

i- 1 / 0..: 0.5

1 0.2 1

y 0.5 1 0.5i+l

which corresponds to the first column of R in Eq.(lO.l).
.3. Output equation:

,(i)m _ Ji)<y}y(t) = x\u{t-i)

161

(9.31)

(9.32)

(9.33)

bv:

The second layer is used to implement the second column in Eq.(lO.l), which is given

1. Input equation

2. Cell dvnamics

Uki = ^B{Eki),Cki € Ni[ij)

.r-^^(t) = max mm[ukhB^^\i.j:kJ)]
^ CkieNiiij)

where k, I) is given by the following fuzzy set defined in Z^{Ni{ij)) grid:

3. Output equation:

j-I j j+1

- 1 / 0.75 0.5 0.75 \
0.5 1 0.5

+ 1 \ 0.75 0.5 0.75 )

(9.34)

(9.35)

(9.36)

1) (9.37)

Fig.9.3 shows the simulation results. Fig.9.3(a) shows a grej'-scale image of a Chinese
girl of size 63 x 63 with 256 grey levels. In this simulation, we choose the fuzzy set B in
Fig.9.2 as:

0, X < 50

/is(.T) = < .50 < x < 200 (9.38)

1, else

Fig.9.3(b) shows the output result of the first layer. The grey value of every pixel corre
sponds to a membership value. Fig.9.3(c) shows the output result of the second layer. .A.lso,
the grey value of every pixel corresponds to a membership value.

9.2.4 Conclusion

Since fuzzy relation equations can be viewed as a description of fuzzy systems which have
fuzzy input and fuzzy output, we find that FDTCNN functions as a parallel implementation
of this kind of fuzzy system. The immediate applications of this kind of fuzzy relational
FDTCNN structure are image processing and pattern recognition.
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Figure 9.3: The simulation results, (a) The original image, (b) The output of the first
FDTCNN layer, (b) The output of the second FDTCNK layer.



Chapter 10

Complexity in Discrete-Time
FCNN—Fuzzy Spatial Dilemmas

We present a fuzzy discrete-time cellular neural network(FDTONN) to implement fuzzy
spatial Dilemmas. First, fuzzy spatial Dilemmas is presented. Then an FDTCNN structure
is proposed to embed the fuzzy spatial Dilemmas using local fuzzy synaptic laws and fuzzy
inputs. Some computer simulation results are given.

10.1 Introduction

Since the invention of cellular neural networks(CNN)[47, 46], the CNN concept has been
widened for twice. The first one is the invention of discrete-time CNN(DTCNN)[120] which
introduced the discrete-time dynamics into the conventional CNN framework. The second
one is the invention of fuzzy CNN(FCNN)[350, 374] which introduced the fuzzy set theory
into the CNN universe and split the history into two stages: the conventional stage and the
systematic stage.

By embedded the max and min operations into the conventional CNN structure we can
get the simplest FCNN structure(which is a kind of type-II FCNN[350, 351, 352, 356, 355]).
It is very interested that the boundary between the conventional CNN and the FCNN is a
fuzzy boundary. Sometimes we can lump some type-II FCNN which only using min/max
operations into the conventional CNN framework because the image itself can be viewed
either as 2D real signals or as a set of fuzzy singletons. Anyhow, it seems that the tendency
of clearly defining the boundaries between conventional CNN and FCNN is a very trivial
thing. On the other hand, since type-I, -II and -IV FCNN are totally different from type-II
FCNN, they have very clear boundaries to conventional CNN. We should remind the reader
that the type-II FCNN—although it is well known as FCNN—is only a very small part of
FCNN and min/max operations are only the simplest fuzzy operations which can be used
in FCNN. Someone may argue that only min/max is not enough to be fuzzy but no one
can deny the existence of FCNN.

Here, we present a fuzzy DTCNN(FDTCNN) structure to implement fuzzy spatial
Dilemmas. By the way, the fuzzy spatial Dilemma is also a new concept we generated
from the conventional spatial Dilemma[200].

163
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10.2 Fuzzy spatial Dilemmas

The conventional spatial Dilemma[200] is defined by a game played between tw'o types of
players: the defector(denoted by D) and the cooperator(denoted by C). The interaction
between a cooperator and a defector is described by the following payoff matrix:

C D

(10.1)

In above matrix, we only show the payoff of a player. If two cooperators interact both
receive 1 point. If a defector meet a cooperator, the defector receives the payoff 2 points
and the cooperator 0. If two cooperators interact both receive 0 point.

The fuzzy generalization of the spatial Dilemmas are along two directions. One is
fuzzifies the payoff. Since there may existed uncertainties in the payoff that a player may
gain, we may describe the payoff as "higlf' or "low". The other fuzzifies the property of a
player. Since a player may be a very complex system such as an animal or even a human
individual, we cannot absolutely define which one is a defector or cooperator. A better way
to describe the property of a player may assign a degree of being defector(or cooperator).
By using fuzzy property of a player, we can say a play is low defection, meddle defection or
high defection.

Here, we use two fuzzy descriptions for describing the uncertainties in both the payoff
and the property of a player. We use the membership function fioi') to denote the degree
of the plaj'er x to be a defector. We use a fuzzy set P to denote the payoff that a player
obtained. Here, only the triangular-shaped fuzzy sets are used. We denote a triangular
shaped fuzzy set by A[x: c, w) which is given by:

1- C-W<X<C-\-W

0, else "
Then the mathematical operations between two triangular-shaped fuzzy set A{x\Ca.'Wa)
and B{x',Cb,Wf)) are defined by[.30]:

A{x; Ca, Wa) + B{x; Cfc, Wb) = H{x: Ca + C6, Wa + ti/'6) (10.3)

Q'A(x; Ca, Wa) = H{x: aca, awa) (10.4)

where a > 0 is a scalar.

In this case, the payoff map T{x,y) for player x when it plays with another player y is
a 2D fuzzy set T : i? x [0,1] defined by:

y) = - O.bfiDiy) + 0.5 (10.5)

We use nxix.y) to measure the degree of player x to obtain a "high" payoff. However,
since the payoflf is also described by a fuzzy set, the payoff when player x play with player
y should be a fuzzy set in respect with the fuzzy properties of x and y and the fuzzy
representation of the payoff. There exist different fuzzy functions to combine the above two
kinds of fuzziness, here we use following fuzzy function to denote the payoff, P(x, y), for x
when it plays wdth y:

P{x,y) = }j,T{3:,y)S{x;Cs,Ws) (10.6)

where 5(a:; C5, i^s) is the standard fuzzy set which corresponds to the payoff for a defector
when it meets a cooperator.
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10.3 FDTCNN for implementing fuzzy spatial dilemmas

Then an FDTCNN is used to model the spatial fuzzy dilemmas. The dynamics of this
FDTCNN is given by

1. Fuzzy state equation:

f^T{yij{t),ykl{t))S{x:Cs,Ws) (10.7)

Notice that the state-variable of the FDTCNN is a fuzzy set(usually a fuzzy number) instead
of a signal (real number).

2. Output equation:

yij{t) = fd{xij{t-i)) (10.8)

where fd{-) is a defuzzified function. Here, we choose fd{-) as[282]:

<"•"

If i is a triangular-shaped fuzzy set, then

fd{x{x;c,w)) =c+^w (10.10)
At every iteration f, a center cell C'ij will be replaced by a cell Cki 6 Nr{ij) whose output
is the maximum in Nriij).

In the following simulations, the wrap-up boundary condition is used. The gray-scale
images with 256 gray levels are used to denote the evolving of spatial patterns. The degree
of whiteness denote the membership value of a cell being a cooperator.

In Fig.10.1 we show the case when 5(a;; Cs, Wg) = S{x; 5,4). Fig.lO.l(a) shows the initial
conditions which is of size 63 x 63 cells. Fig.lO.l(b) shows the snapshot of the 20 iterations.
Fig.10.1(c) shows the snapshot of the 150 iterations. Finally, the pattern goes to a periodic 3
solution as shown in Figs.lO.l(d), (e) and (f) of the 316, 317 and 318 iterations, respectively.

In Fig.10.2 we show the case when SixiCs^Wg) = S(a:;10,10). The initial condition
is the same as that in Fig.lO.l(a). Figs.l0.2(a), (b), (c) and (d) show the snapshots the
455, 630, 845 and 1000 iterations, respectively. In this case, the evolution becomes chaotic.
In this case since the payoff of cooperation becomes higher, the cells of high degree of
cooperation increase. One very interested phenomenon is that a large collective of defector
can not exist for a long time because the high payoflF of cooperation will turn some of them
into cooperator soon. This can not observe in Fig.10.1 where the payoff of cooperation is
relatively low.

10.4 Conclusion

The FDTCNN we presented here functions as a kind of fuzzy cellular automata[l]. Al
though at present, conventional cellular automata (CA) are widely used in the simulation
of such natural phenomena as fluid dynamic, diffusion, reaction-diffusion systems, popula
tions, epidemics, etc., the applications of fuzzy cellular neural automata are very few. The
lack of proper platform for studying FCA is a main reason for the silence of applications of
FCA. FDTCNN is a very natural platform for FCA. Here we also present a new application
of FC-A. to model of fuzzy spatial dilemmas.
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Figure 10.1: The evolving process o
(a) Initial condition, (b) Output at
(e) Output at t = .317. (f) Output a
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Figure 10.2: The evolving process of fuzzy spatial dilemmas with S(.t; c^, = S{x: 10,10).
(a) Output at f = 455. (b) Output at ^ = 630. (c) Output at t = 845. (d) Output at
t = 1000.
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Chapter 11

Conclusions and the Future Work

Little or more, the invention of FCNN comes from AL The idea of embedding fuzzy set
theory into CNN framework is partially motivated by the inner connection of mathematical
morphology and fuzzy logic. Since the substantial basis of FCNN is FCA, which is a model
for modeling and coping with complexity, the invention of FCNN can also used to model
the complexity from high-level local activity. .A.nother motivative comes from the demand
of employing the huge body of the knowledge from human experts. Encounter with the
complexity of the outer and inner world, a human individual uses a systematic but general
description to model and handle its behavior for the purpose of survival. If we only model
the complexity itself, it is not very helpful to survive it. What fuzzy theory contributes to
the science is to model the survival strategy of human individual directly. In FCNN, we
model the systematic behavior of handling the complexity due to local activity but not the
complexity itself.

However, FCNN is only a new branch in the CNN universe. When we encountered the
excellent idea of CNN in early 1990's, its elegant structure attracted us immediately not
only because it can be easily implemented by using VLSI but also because it denotes a high-
level idea which is coincident with the development of modern AI, i.e., the decentralization.
This field will grow up together with the growing up of the modern AI. From the stand
point of AI, the existed CNN universe is something like that shown in Fig. 11.1. In this
figure, we do not included the concept of CNNLl^M because it is not a CNN class, it is a
platform of CNN. The CNNL^M emphasizes the implementation and integration of different
CNN structures. Although there have accumulated over 400 papers in this field since 1988,
CNN is far from mature because we only find the tip of an iceberg of the CNN universe.

The implementation of CNN using different techniques deserves a further investigation
because the simple structure of CNN provides us with lots of possibility of implementing
it. Applications of CNN to signal processing, in particular, image processing need also
further study because it seems that CNN is a very promising candidate for next generation
of parallel image processing engine. On the other hand, the CNN paradigm can be used to
animate lots of biologic, chemical and physical processes where the dynamics are governed
by local coupling of simple units.

However, from Fig.11.1 one can see that the most parts of high-level CNN are unknown.
In fact, the only high-level CNN we know so far is FCN.N. We can image that the high-level
CNN should include some paradigm which can be used to model the dynamics of human
society when the non-physical factors such as: emotions, feelings and intuitions are used
as the local couplings besides the physical factors such as: food, money, house, and work
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Figure 11.1: The map of the CNN universe.



171

opportunity. Although today we can not imagine how to embed the non-physical things
into the structure of CNN, we know our human society uses them efficiently to organize
itself for thousands of years. We believe that the future CNN model should be something
like those we have predicted in Sec.2.1.

Of cause, we are always very carefully to avoid to give our readers the impression that
we try to say CNN can do everything. On the contrary, we restrict the range of CNN in
a class of problems which can be decomposed into local components. Since the top-down
process, i.e., decomposing a global problem into local components, sometimes are very
difficult, the bottom-up processes, i.e., by using relatively simple elements and local rules
to generate some global behaviors, are also employed. So far, almost all the applications
of CNN to signal processing and biological modeling employ top-down method. And some
applications of CNN to pattern formation and spatio-temporal process modeling employ
bottom-up method. However, when the bottom-up method is used, the emergent behavior
of CNN may be very difficult to be interpreted. In general, it is not the problem of CNN
itself, but the elementary problem of emergent computation.

Then, we should come back to FCNN. From this book one can see that the type-II
FCNN is most studied and well-understood. In particular, we have presented a whole set
of methods to exploit the world of some type-II FCNN which are used as computational
low-level CNN. The overlap of this kind of FCNN to NCNN is not important, we do not
want to address this trivial problem any more.

However, when fuzzy numbers flow though the type-II FCNN structure, the problem
becomes very complicated. And this makes the FCNN totally different to conventional CNN.
The research of this field is just opened. The potential applications are very attractive. One
possible application may introduce the CNN into the high-level of AI, i.e., modeling and
organizing the knowledge of human experts.

Type-I and -III FCNN give us more possibility and flexibility of modeling local coupling
processes. Sometimes, type-I FCNN is more complicated than type-II FCNN because its
fuzzy structure may introduce more complexity. On the other hand, from the examples in
Sec.4.5.4 one can see that the potential application of type-I FCNN is out the range of linear
signal processing. It is most possible to provide new methods to nonlinear signal processing.
So far, we know very few of type-Ill FCNN because it is too complicated to analyze. The
results in Chap. 8 shows that type-Ill FCNN can be used to model very complex systems
where linguistic flows are used as state variables. The whole world of type-Ill and even
type-IV FCNN is still waiting for being explored.
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