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1. INTRODUCTION

The vast majority of the mathematically oriented literature in the areas of ro-
botics and control has been heavily influenced by a differential geometric point of
view. For nonlinear systems in particular, most of the research has concentrated
on the analysis of the Lie algebras associated with controllability, reachability and
observability. In recent years, however, a small but influential trend has begun in
the literature on the use of other methods, such as differential algebra [9, 8, 10]
and exterior differential systems [13, 11] for the analysis of nonlinear control sys-
tems and nonlinear implicit systems. In this paper we survey some key results
from the theory of exterior differential systems and their application to current and
challenging problems in robotics and control.

The area of exterior differential systems has a long history. The early the-
ory in this area sprung from the work of Darboux, Lie, Engel, Pfaff, Carnot and
Caratheodory on the structure of systems with non-integrable linear constraints on
the velocities of their configuration variables, the so-called nonholonomic control
systems (for a good development of this see [3]). This was followed by the work
of Goursat and Cartan, which is considered to contain some of the finest achieve-
ments of the mid-part of this century on exterior differential systems. In parallel
has been an effort to develop connections between exterior differential systems and
the calculus of variations (see [13]).

Our attention was first attracted to exterior differential systems through their
applications in path planning for nonholonomic control systems. Our initial results
were for the problem of steering a car with trailers [34], [22], the so-called “parallel
parking a car with N trailers problem.” This involved the transformation of the
system of nonholonomic rolling without slipping constraints on each pair of wheels
into a canonical form, the so-called Goursat normal form. This program continued
with another example, the parallel parking of a fire truck [5], which in turn was
generalized to a multi-steering N trailer system. In [36] we showed how the multi-
steering N trailer system could be converted into a generalized Goursat normal
form, which was easy to steer. The full analysis of the system from the exterior
differential systems point of view was made in [35)].

In parallel with this activity in nonholonomic motion planning there has been
considerable activity in the nonlinear control community on the problem of exactly
linearizing a nonlinear control system using (possibly dynamic) state feedback and
change of coordinates. The first results in this direction were necessary and suf-
ficient conditions for exact linearization of a nonlinear control system using static
state feedback. The conditions were obtained using techniques from differential
geometry (for a full discussion of this see [17, 23]). It was shown that a system that
satisfies these conditions can be transformed into a special canonical form, the so
called Brunovsky normal form. As pointed out by Gardner and Shadwick in [11),
this normal form is very close to the Goursat normal form for exterior differential
systems. The problem of dynamic state feedback linearization, on the other hand,
remained largely open, despite some early results by [6]. In his dissertation work
Sluis [26] attempted to extend the exterior differential approach in this direction.

This tutorial paper is divided into three parts. Section 2 contains the necessary
mathematical background on algebra and geometry for defining exterior differential
systems. Section 3 describes some of the important normal forms for exterior
differential systems: the Engel, Pfaff, Caratheodory, Goursat and extended Goursat
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normal forms. It is shown how certain important robotic systems can be converted
to these normal forms. Section 4 discusses some of the connections between the
exterior differential systems formalism, specialized to the case of control systems,
and the vector field approach currently popular in nonlinear control. Finally, in
Section 5 we highlight directions for future research and open problems.

2. INTRODUCTION TO EXTERIOR DIFFERENTIAL SYSTEMS

In this section we will introduce the concept of an exterior differential system.
To this end, we first introduce multilinear algebra, including the tensor and wedge
products, and exterior algebra. Then we review some results from differential geom-
etry including tangent spaces and vector fields. Once we have defined the exterior
derivative, we will study many of its important properties. We then review the
Frobenius theorem, for both vector fields and forms, and finally define an exterior
differential system. Some tools which will be used to analyze these systems in the
following sections will also be presented.

2.1. Multilinear Algebra.

2.1.1. The Dual Space of a Vector Space. Many of the ideas underlying the theory
of multilinear algebra involve duality and the notion of the dual space to a vector
space.

Definition 1. Let (V,R) denote a finite dimensional vector space over R. The
dual space associated with (V,R) is defined as the space of all linear mappings
f:V — R The dual space of V is denoted as V* and the elements of V* are called
covectors. V* is a vector space over R with dim(V*) = dim(V) for the operations
of addition and scalar multiplication defined by:

(a +B)(v) = a(v) + B(v)
(ca)(v) =c- a(v)

F’urthemwrg, if {v1,... ,vn} is a set of basis vectors for V, then the set of linear
Junctions ¢* : V = R, 1< i< n, defined by:

. 0 ifidi
¢(”J')={ 1 If:ij
form a basis of V* called the dual basis.

Example. Let V = R" with the standard basis ey, ... ,e, and let ¢!,...,¢" be
the dual basis. If

n
zeR* = E zje;
Jj=1
then evaluating each function in the dual basis at z gives
n n
#'(z) = 6'(Q_zse5) = Y_zi'(ej) = i
j=1 i=1

Since the functions ¢',...,¢" form a basis for V*, a general covector in (R")* is
of the form f = a;¢! +... + a,¢". Evaluating this covector at the point  gives
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f(z) = a1z1+...+apz,. If we think of a vector as a column matrix and a covector
as a row matrix, then

T
f(@)=|[ar...aq)
Tn
O
Definition 2. Given a subspace W C V its annihilator is the subspace W+ C V*
defined by
Wh:={aeV*|a(w)=0VveW}
Given a subspace X C V*, its annihilator is the subspace X+ C V defined by
Xt:={veV]a(w)=0Vae X}

A linear mapping between any two vector spaces F : V; — V; induces a linear
mapping between their dual spaces.

Definition 3. Given a linear mapping F : V), — V2, its dual map is the linear
mapping F* : V' — V{* defined by
(F (a))(v) =a(F(v)), Va €V, veV

2.1.2. Tensors. Let Vi,...,V; be a collection of real vector spaces. A function
f:Vix...xV: — R is said to be linear in the ith variable if the function
T :V; — R defined for fixed vj, j # ¢ as T(v;) = f(v1,.-. ,%i-1,%,%ig1,- -+ , Vi)
is linear. The function f is called multilinear if it is linear in each variable. A
multilinear function T : V¥ — R is called a covariant tensor of order k or simply a
k-tensor. The set of all k-tensors on V is denoted £¥(V'). Note that £L}(V) = V*,
the dual space of V. Therefore, we can think of covariant tensors as generalized
covectors.

Example. The inner product of two vectors is an example of a 2-tensor. Another
important example of a multilinear function is the determinant. If z;,z3,...,2,
are n column vectors in R" then

f(:cl,zg,...,zn) = det[:cl x2 ... :L'n]
is multilinear by the properties of the determinant. a
As in the case of V*, each £¥(V) can be made into a vector space.

Theorem 1. If for S,T € L¥(V) and c € R we define addition and scalar multi-
plication by:

(S+T)(v1,...,9)=8S(1,...,0%)+T(v1,... ,0)
(cT)(v1,... ,v) =c- T(vy,... ,0)
then the set of all k-tensors on V, L¥(V), is a real vector space.
Proof. See Munkres [20, page 220). O

Because of their multilinear structure, two tensors are equal if they agree on any
set of basis elements.
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Theorem 2. Let a,,... ,a, be a basis for V. Let f,g : V¥ — R be k-tensors
on'V. If f(ai,...,a:) = g(ai,,-.. ,a:,) for every k-tuple I = (i1,...,4) €
{1,2,... ,n}", then f =g.

Proof. See Munkres [20, page 221]. (]
Theorem 2 allows us to construct a basis for the space £¥(V).

Theorem 3. Letay, ... ,a, be a basis for V. Let I = (i, ... ,ix) € {1,2,...,n}~.
Then there is a unique tensor ¢’ on V such that for every k-tuple J = (jy,... ,j1) €
{1,2,... ,n}*
0 sfI#J
' ¢I(a.‘in---’ajk)={ 1 i;[i.]
The collection of all such ¢’ forms a basis for LX(V).

Proof. Uniqueness follows from Theorem 2. To construct the functions &1, we start
with a basis for V*, ¢' : V — R, defined by ¢(a;) = 6;; We then define each ¢’
by:

¢’ = ¢"(v1) - % (v2) -+ - - ™ (h) (1)
and claim that these ¢’ form a basis for £*(V). To show this, we select an arbitrary

k-tensor f € L*(V'), and define the scalars a; := f (@iys... ya;, ). Next, we define a
k-tensor

9=Y a4’ (2)
7

where J € {1,...,n}*. Then by Theorem 2, f = g. ]
Since there are n* distinct k-tuples from the set {1,...,n} the space £¥(V) has
dimension n*.

Example. Let V = R* with the standard basis ey, ... ,e,, and let ¢',...,¢" be
the dual basis. For every

n
z= szej ER*
i=1
evaluating each function in the dual basis at z gives
n n
0'(@) = 6'Q_zse;) =) zi6'(e;) = s

i=1 J=1
Similarly, if I = (41, ... , ;) then evaluating the basis vectors for LEV)at (z',...,25)
gives

#(z!,... ,z¥) = ¢ (2?) - ¢‘2(:c2) e (2F) = z}‘ .. -th

Since the tensors ¢!,...,¢" form a basis for V*, evaluating a general 1-tensor

f€V*atz €V gives f(z) = a1z) + ... + anzp. Likewise, evaluating a general
2-tensor at (z',22) € V2 gives

n
g(z!,2%) = z aijzizl = (z1)T Dz?
i,j=1
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and evaluating a general k-tensor at (z*,...,z*) € V" gives

n
1.2 ky 1 k
g(z*,z%,...,2%) = E Qiy,...inTi; - - T,
£1 4000 =1
where a;, ... i, = g(€i;,...,€5,).
O

2.1.3. Tensor Products.

Definition 4. Let f € L¥(V) and g € L4(V). The tensor product f ® g of f and
g is a tensor in L¥H4(V) defined by
(f®9)(v1,- - yVkte) := f(vr,. - ,0k) - 9(Vkt1,- -+ s Vkte)

Theorem 4. Let f,g,h be tensors on V and ¢ € R. The following properties hold:

1. Associativity f@ (9®h)=(f®9)®h

2. Homogeneity cf@g=c(f®g)=f®cg

3. Distributivity (f +g)®h=Ff@h+g®h

4. Given @ basis ay,... ,ap for V, the corresponding basis tensors satisfy ¢! =

" @ P12®,...,R¢*

Proof. See Munkres [20, page 224]. O
We can also define the tensor product of two subspaces U, W C V* by:

UQW :=span{r € L2(V) |z=u®w, ue U, we W}
From Theorem 3 we can conclude that V* ® V* = £2(V'). More generally:

k
- - __ s _ rk
V'®...eV' =@V =LKV)
k—times

2.1.4. Alternating Tensors. Before introducing alternating tensors, we present some
facts about permutations.

Definition 5. A permutation of the set of integers {1,2,...,k} is an injective
function o mapping this set into itself. The set of all permutations o is a group
under function composition called the symmetric group on {1,...,k} and is denoted
by Si. Given 1 < i < k, a permutation e; is called elementary if given some
i € {1,2,...,k} we have

e(j)=j for j#ii+1
ei(t) =i+1
e(i+1)=i
An elementary permutation leaves the set intact except for consecutive elements

1 and i + 1 which are switched. The space Si is of cardinality k!; its elements can
be written as the composition of elementary permutations.

Definition 6. Let o € Si.. Consider the set of all pairs of integers i,j from the set
{1,...,k} for which i < j and a(i) > o(j). Each such pair is called an inversion
in 0. The sign of o is defined to be the number —1 if the number of inversions is
odd and +1 if it is even. We call 0 an odd or even permutation respectively. The
sign of o is denoted by sgn(o).
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The following theorem helps us calculate the sign of permutations.

Theorem 5. Let o, 7 € S.. Then

. If o is the composition of m elementary permutations then sgn(o) = (-1)™
. sgn(o o 1) = sgn(o) - sgn(7)

. sgn(o=?') = sgn(o)

If p # q, and if T is the permutation that ezchanges p and q and leaves all
other integers fized, then sgn(r) = -1

Proof. See Munkres [20, page 228]. O
We are now ready to define alternating tensors.

Definition 7. Let f be an arbitrary k-tensor on V. If o is a permutation of
{1,...,k}, we define f° by the equation

fa('vl’ oo ,'Uk) = f(vo‘(l)v X !vo(k))
Since f is linear in each of its variables, so is f°. The tensor f is said to be sym-
metric if f = f¢ for each elementary permutation e, and it is said to be alternating
if f = —f¢ for every elementary permutation e.

BN =

We will denote the set of all alternating k-tensors on V by A*(V*). The reason
for this notation will be apparent when we introduce the wedge product in the
next section. One can verify that the sum of two alternating tensors is alternating
and a scalar multiple of an alternating tensor is alternating. Therefore, A¥(V*) is
a linear subspace of the space L*(V) of all k-tensors on V In the special case of
LY(V), elementary permutations cannot be performed and therefore every 1-tensor
is vacuously alternating, i.e. A}(V*) = L}(V) = V*. For completeness, we define
AV ) =R
Example. Elementary tensors are not alternating but the linear combination:

f=ded-sag
is alternating. To see this, let V = R" and let ¢* be the usual dual basis. Then
f(z,9) = ziy; — z59i = det [ :; Z; ]
and it is easily seen that f(z,y) = — f(y, ). Similarly, the function

Ti Yi 2
9(33-, Y, z) = det i Y; zj
T Yr 2k
is an alternating 3-tensor. 0O
We are interested in obtaining a basis for the linear space A¥(V*). We start with
the following lemma.
Lemma 8. Let f be a k-tensor on V and 0,7 € S be permutations. Then
1. The transformation f — f° is a linear transformation from L¥(V*) to
LE¥(V*). It has the property that for all 0,7 € S;,
( fd )1‘ = f‘roﬂ'
2. The tensor f is alternating if and only if f° = sgn(c) - f for all o € Si.
3. If f is alternating and if vp = v, with p # q then f(vy,...,v) = 0.
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Proof. The linearity property is obvious since (af + bg)° = af° + bg®. Now

(fa)r('vls e a”k) = fv('vr(l)’ vee :'”'r(k))
= f(¥r(o(1))r- - - » Vr(o(k)))
= "% v1,...,0)
Let o be an arbitrary permutation, 0 = 0, 0 g3 0 -+ 0 0,,, Where each o; is an
elementary permutation. Then:

fc = fa, 0020--:00'm

=((...(f™)...)2)

=(-)"-f

=sgn(o) - f
Now suppose v, = v, and p # ¢. Let 7 be a permutation that exchanges p and q.
Since vp = vy, f7(v1,...,%) = f(v1,...,v). Since f is an alternating tensor and
sgn(r) = =1, f7(v1,...,%) = —f(v,...,v). Therefore f(v1,...,v;) =0. I}

Lemma 6 implies that if k¥ > n, the space A¥(V*) is trivial since one of the basis
elements must appear in the k-tuple more than once. Hence for k > n, A¥(V*) = 0.
We have also seen that for k = 1 we have A}(V*) = £1(V) = V* and therefore one
can use the dual basis as a basis for A}(V*). In order to specify an alternating tensor
for 1 < k < n we simply need to define it on an ascending k-tuple of basis elements
since, from Lemma 6, every other combination can be obtained by permuting the
k-tuple.

Theorem 7. Let ay,02,...,a, be a basis for V. If f,g are alternating k-tensors
onV and if

f(aiy iy, .y 04,) = g(aiy, a4, - - ., 04,)
for every ascending k-tuple of integers (i1,... ,ix) € {1,2,...,n}* then f = g.
Proof. See Munkres (20, page 231). O

Theorem 8. Let ay,... ,a, be a basis for V. Let I = (,,... ,ix) € {1,2,... ,n}'c
be an ascending k-tuple. There is a unique alternating k-tensor ¥/ on V such that

Jor every ascending k-tuple J = (j1,... ,ji) € {1,2,... ,n}k
0 ifJ#I
1/”(“.1'11--‘ aa'.ih) = { 1 '-;J z I
The tensors ' form a basis for A¥(V*) and satisfy the formula:

¥ =) sgn(o)(¢')°

oESK
Proof. In Munkres [20, pages 232-233]. O

The tensors 3’ are called elementary alternating k-tensors on V corresponding to
the basis a,,...,a, of V. Every alternating k-tensor f may be uniquely expressed
as f =3, djy’ where J indicates that summation extends over all ascending
k-tuples. The dimension of A}(V*) is simply n; its basis is the standard basis for
V*. If k > 1, then we need to find the number of possible ascending k-tuples from
the set {1,2,...,n}. Since if we choose k elements from a set of n elements there
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is only one way to put them in ascending order, the number of ascending k-tuples,
and therefore the dimension of A*¥(V*), is:

n!

dim(AK(V*)) = ( % ) = =R}l

2.1.5. The Wedge Product. Just as we defined the tensor product operation in the
set of all tensors on a vector space V, we can define an analogous product operation,
the wedge product, in the space of alternating tensors. The tensor product alone
will not suffice, since even if f € A*(V*) and g € AY(V*) are alternating, their
tensor product f ® g € L¥+!(V) need not be alternating. We therefore construct
an alternating operator taking k-tensors to alternating k-tensors.

Theorem 9. For any tensor f € L*(V), define Alt : L¥(V) = A¥(V*) by:
1
Alt(f)= 55 X sgn(0)f° (3

oES,
Then Alt(f) € A¥(V*) and if f € A¥(V*) then Alt(f) = f.

Proof. The fact that Alt(f) € A¥(V*) is a consequence of Lemma 6, parts (1) and
(2). Simply expanding the summation for f € A¥(V*) yields that Alt(f)=f. O

Example. Let f(z,y) be any 2-tensor. By using the alternating operator we ob-
tain,

Al(f) = 3(5(@9) - £3,2))

which is clearly alternating. Similarly for any 3-tensor g(z,y, z) we have:

1
Alt(9) = £(9(z,9,2) + 9(3, 2,2) + 9(2,%,9) - 9(v, 2, 2) - 9(2,9,2) - 9(z, 2,3))
which can be easily checked to be alternating. O

Definition 8. Given f € A*¥(V*) and g € A'(V*), we define the wedge product or
exterior product, f A g € A¥H(V*) by
(k+ 1)
fAag= T!)Alt(f ®9).

The somewhat complicated normalization constant is required as we would like
the wedge product to be associative and Alt(f) = f if f is already alternating.
Since alternating tensors of order zero are elements of R, we define the wedge
product of an alternating 0-tensor and any alternating k-tensor by the usual scalar
multiplication. The following theorem lists some important properties of the wedge
product.

Theorem 10. Let f € A¥(V*), g € A(V*) and h € A™(V*). Then:
1. Associativity fA(QAR)=(fAg) AR
2. Homogeneity cfAg=c(fAg)=fAcg
3. Distributivity (f+g)Ah=fAh+gAh
AA(f+g9)=hAf+hAg
4. Skew-commutativity’, gA f = (—l)k'f Ag

lalso called anti-commutativity
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Proof. Properties (2), (3) and (4) follow directly from the definitions of the alter-
nating operator and the tensor product. Associativity, property (1), requires a few
Inore manipulations (see Spivak [30, pages 80-81)). O
Example. Let f(z) ¢ AY(V*) and g(y, z) € A%(V*). Then:
(2+1)1
fAg = 51 (@) @9y, 2) + f(y) ®9(z,z) +
+(2) @ 9(z,y) ~ f(y) ® 9(z, z) — f(2)® 9(v,2) - f(z) ® g(z,3))

We can also check that:

1+1)1
7= )6 1) - 1000 sy =0
which can also been seen from the skew commutativity of exterior multiplication.

O
An elegant basis for A¥(V*) can be formed using of the dual basis for V.

Theorem 11. Given q basis a,,... ,a, Jor vector space V, let ¢',...,¢" denote
its dual basis and ! the corresponding elementary alternating tensors. Then if
I'=(i,...,4) is any ascending k-tuple of integers,

P! = g AG2A ... A G,

Proof. May be deduced from the construction of the elementary alternating tensors
in Theorem 8. 0O

By Theorem 11, any alternating k-tensor f € A¥(v*) may be expressed in terms
of the dual basis ¢!, ., @" as:

F=3 dy, 4" Ao A... A ¢
J

for all ascending k-tuples J = (41-.. ,Jx) and some scalars, dj,, . ... If we require
the coefficients to be skew-symmetric, d;, etbigein = =iy g a o for all
le{l,... k-~ 1} we can extend this Summation over all k-tuples.
1 r . ) .
F=5 2 duab®AgaA.. Agh @)
i11eesip=1
The wedge product provides a convenient way to check whether a set of 1-tensors
is linearly independent.

Theorem 12. Iful,... wf are 1-tensors over V then
WVAGA. A =0
if and only if !, . .. ywk are linearly dependent.

Proof. Suppose that wl...,w* are linearly independent, and picka*+1 om0
complete a basis for V*. From Theorem 11 we know that w! A 2 A AWkt isa
basis element for A* (V*). Therefore, it must be nonzero. fw!,... ,w* are linearly
dependent, then at least one of the them can be written as a linear combination of
the others. Without loss of generality, assume that:

k=1
w* = Z ciw'

i=1
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From this we get that:
k—1
WA A L AF = AP AL AKRTIA Y ') =0
i=1
by the skew-commutativity of the wedge product. O
Theorem 12 allows us to give a geometric interpretation to a nonzero k-tensor
VARALASFA£D
by associating it with the subspace
W := span{w!,... ,w*} c V*.
An obvious question that arises is what happens if we select a different basis for
w. :

Theorem 13. Given a subspace W C V* and two sets of linearly-independent
1-tensors which span W, there ezists a nonzero scalar c € R such that

W APA AW =a AP A AGF#£D
Proof. Each o' can be written as a linear combination of the w?
k
a‘ = Z a;_.,-wj .
vt

Therefore, the product

k k
A A Anet = Qe )AL A (Y aged)

j=1 j=1
Multiplying this out gives

n
AN A= D by Wt AW AL AW
11,000 48R =1
The claim follows by Theorem 12, and the skew commutativity of the wedge prod-
uct. (]

Definition 9. A k-tensor £ € A¥(V*) is decomposable if there ezist 21, 22,... ,z* €
AYV*) such that § =z Az? A ... A Z*.

Note that, if £ is decomposable, then we must have £ A § = 0. The reason is that

we should be able to express £ as £ = a' Aa® A... A of for some basis vectors

{a',a?,...,a"} and therefore A =a' A2 A...Aa* Aa' Aa®? A...Aa* =0.

Not all £ € A¥(V*) are decomposable, as demonstrated in the following example.

Example. Let £ = ¢' A +¢°Ad* € A%((R*)*). Then, £AE = 201 AG2AG AP #0
Therefore £ is not decomposable. Note that £ A £ = 0 is a necessary but not a
sufficient condition for £ to be decomposable. For example if £ is an odd alternating
tensors (say of dimension 2k + 1):
ENE= (-1 eng=0
]

If an alternating k-tensor ¢ is not decomposable, it may still be possible to factor
out a 1-tensor from every term in the summation which defines it.
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Example. Let £ = ¢! A ¢ A ¢° + ¢® A ¢% A ¢° € A3((R®)*). From the previous
example, we know that this tensor is not decomposable, but the 1-tensor ¢° can
clearly be factored from every term

E=(B' AP+ NG )AP° =ENg°

Definition 10. Let £ € A¥(V*). The subspace L¢ C V* defined by:
Le:={weV* | ¢ =€ Aw for some € € A¥~1(V*)}

is called the divisor space of {. Anyw € L is called a divisor of £.

Theorem 14. A I-tensorw € V" is a divisor of £ € A¥(V*) if and only if wA¢ = 0.

Proof. Pick a basis ¢!,¢?,... ,¢" for V* such that w = ¢'. With respect to this
basis, £ can be written as

£=) djy,.. 0" ASPTALLAP (5)
J

for all ascending k-tuples J = (j1,...,Jx) and some scalars, d;,,... ;.. Hwisa
divisor of &, then it must be contained in each nonzero term of this summation.
Therefore w A £ = 0. On the other hand, if wA £ = 0, then every nonzero term of £
must contain w. Otherwise, we would have wA ¢ A...A¢i* = gL A A ... AP
for j1,...,jk # 1 which is a basis element of A¥*!(V*) and therefore nonzero. O

I we select a basis ¢',¢?,... ,¢" for V* such that span{¢',¢?,... ,¢'} = Lg, then,
€ can be written as £ = £ A @' A... A ¢!, where £ € A¥~!(V*) is not decomposable
and involves only ¢*1,... ,¢".

2.1.6. The Interior Product.

Definition 11. The interior product is a linear mapping J: V x LF(V) — LE-1(V)
which operates on a a vector v € V and a tensor T € L¥(V) and produces a tensor
(vaAT) € L*Y(V) defined by

(©dT) (w1, ... ,v-1) :=T(v,v1,... ,Vk-1)

Theorem 15. Let a,b,c,d € R be real numbers; v,w € V be vectors; g,h € L¥(V)
be k-tensors; and r € A°(V*), f € A™(V*) be alternating tensors. Then we have
the following identities.

(av+bw)dg = a(vldg)+bwlig)

1. Bilinearity (00 t'dh) = c(vig)+d(vih)

2 v1(fAT)=(Af)+ (-1)™fA(vdg)
Proof. See Abraham et al. [1, page 429). O
Theorem 16. Let a,,... ,a, be a basis for V. Then the value of an alternating

k-tensor w € A¥(V*) is independent of a basis element a; if and only if a; Jw = 0.

Proof. Let ¢',...,¢" be the dual basis to a;,... ,a,. Then w can be written with
respect to the dual basis as

w=;d.,¢i’ NG A ... A =;dnb’
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where the sum is taken oven all ascending k-tuples J. If a basis element 1’ does
not contain ¢;, then clearly a; J1/ = 0. If a basis element contains ¢i, then
aid ¢' A¢72 A...A ¢ # 0 because a; can always be matched with ¢; through a
permutation which only affects the sign. Consequently, (a; Jw) = 0 if and only if
the coefficients d; of all the terms containing ¢* are zero. 0

Definition 12. Let w € A¥(V*) be an alternating k-tensor. The space consisting
of all vectors of which the velue of w is independent is called the associated space
of w:

A, ={veVjlw=0}
The dual associated space of w is defined as AL C V*.

Recall that the divisor space L, of an alternating k-tensor w contains all the 1-
tensors which can be factored from every term of w. The dual associated space A2
contains all the 1-tensors which are contained in at least one term of w. Therefore,
L, Cc At

Theorem 17. The following statements are equivalent:
1. An alternating k-tensor w € A¥(V*) is decomposable.
2. The divisor space L, has dimension k.
3. The dual associated space AL has dimension k.
4. L,=AL.

Proof. (1) ¢ (2) If w is decomposable, then there exists a set of basis vectors
¢',¢%,... ,¢" for V* such that w = ¢'A.. .Ag*. Therefore L,, = span{¢®,¢?,... 9}
which has dimension k. Conversely, if L, has dimension k, then k terms can be
factored from w. Since w is a k-tensor, it must be decomposable.

(1) & (3) Let a1,..., e, be the basis of V which is dual to ¢!,¢?,...,¢". Since
w=¢'A...A¢*, w is not a function of ax41,...,a,. Therefore,

A, = span{ai41,...,a,).

This implies that AL has dimension k. Conversely, if Al has dimension k, then
A, has dimension n — k which means that w is an alternating k-tensor which is a
function of k variables. Therefore, it must have the form w = ¢! A...A¢*, for some
linearly independent ¢!, ¢?,... ,¢* in V*.

(2)&(3) ¢ (4) It is always true that L,, C AL. Therefore if dim(L,,) = dim(AL)
then L, = Az. It is also always true that 0 < dim(L,,) < k and k < dim(AZL) < n.
Therefore, L,, = AL implies that dim(L,) = dim(A}) = k. (]

2.1.7. The Pull Back of a Linear Transformation. Let T be a linear map from a
vector space V' to a vector space W. Assume that there exists a multilinear function
f on W. Using the above, we can define a multilinear function on V as follows:

Definition 13. Let T:V — W be a linear transformation. The dual or pull back
transformation

T : LKW) - £*(V)
is defined for all f € LX(W) by
(T*F)(v1,... ,0%) := f(T(w1),-.. ,T(v))
Note that T* f is multilinear since T is a linear transformation.
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Theorem 18. Let T :V — W be a linear transformation, and let
T*: Lk(W) — LR (V)
be the dual transformation. Then

1. T* is linear.
2.T(feg)=T"feT"g.
3. IfS: W — X is linear, then (SoT)*f =T*(S*f).

Proof. See Munkres [20, page 225]. O

Theorem 19. Let T : V — W be a linear transformation. If f is an alternating
tensor on W then T*f is an alternating tensor on V, and

T(fAg)=T"fATg
Proof. See Abraham et. al. [1, page 420]. ]
2.1.8. Algebras and Ideals. In Sections 2.1.5 and 2.1.6, we introduced the wedge
product and interior product and demonstrated some of their properties. We now
look more closely at the algebraic structure these operations impart to the space of

alternating tensors. We begin by introducing some algebraic structures which will
be used in the development of the exterior algebra.

Definition 14. An algebra, (V,®), is a vector space V together with a multiplica-
tion operation © : V x V — V which for every scalar a € R and a,b € V satisfies
a(a®b) = (ae) ©b = a ® (abd). If there erists an element e € V such that for all
z€V,z0e=eQ®z =z then e is unique and is called the identity element.

Definition 15. Given an algebra (V,®), a subspace W C V is called an algebraic
ideal® if z € W,y € V implies that z @y, y Oz € W

Recall that if W is an ideal and z,y € W then z+y € W since W is a subspace.
Example. The set of all polynomials with real-valued coefficients, R[s], is a vector
space over R with vector addition and scalar multiplication defined by

(Pl + Pz)(s) =P (8) + Pz(s)
(a- P)(8)=a-P(s)
If we define multiplication by
(P - Py)(s) = Py(s) - Pa(s)

then R(s] is also an algebra. In R[s], the set of all polynomials with a zero at s = —2
is an algebraic ideal. This is true because for all P;(s), P;(s) € R(s] which satisfy
P, (-2) = P,(—2) = 0 we have that:

P (-2)+ P(-2)=0, a-P(-2)=0, P(-2)-P(-2)=0
Furthermore for all P(s), R(s) € R[s] with P(—2) = 0 we have that
P(-2)-R(-2)=0
(]
2For readers who are familiar with algebra, the algebraic ideal is the ideal of the algebra

considered as a ring. Furthermore, since this ring has an identity, any ideal must be a subspace
of the algebra considered as a vector space.
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It can be easily verified that the intersection of ideals is also an ideal. Using this
fact we have the following definition.
Definition 16. Let (V,®) be an algebra. Let the set A:= {a; € V,1 <i < K} be
any finite collection of linearly independent elements in V. Let S be the set of all
tdeals containing A

S:={I CV|Iis an ideal and A C I}.
The ideal T4 generated by A is defined as

In=1
Ies
and is the minimal ideal in S containing A.

If (V,0) has an identity element, then the ideal generated by a finite set of
elements can be represented in a simple form.

Theorem 20. Let (V,®) be an algebra with an identity element, A := {a; € V,1<

i < K} a finite collection of elements in V, and I4 the ideal generated by A. Then

for each = € I, there exist vectors vy,...,vx such that
z=110a1+120a+...+vg Qag

Proof. See Hungerford [16, pages 123-124]. O

Definition 17. Let (V,®) be an algebre, and I C V an ideal. Two vectorsz,y € V
are said to be equivalent mod I if and only if t—y € I. This equivalence is denoted

z=ymodl

If (V,®) has an identity element the above definition implies that £ = y mod I
if and only if:

K
z-—y= Z 6ioa;
i=1
for some fx € V. It is customary to denote this as z = y mod a1, ...,ax. where
the mod operation is implicitly performed over the ideal generated by a,...,ax.

2.1.9. The Esterior Algebra of a Vector Space. Although the space A¥(V*) is a
vector space with a multiplication operation, the wedge product of two alternating
k-tensors is not a k-tensor. Therefore A*(V*) is not an algebra under the wedge
product. If we consider, however, the direct sum of the space of all alternating
tensors we obtain,

AV =A" (V) A (V)@ A2 (V) ®...0 AM(V?)
Any £ € A(V*) may be written as £ = & + £ + ... + &n where each £, € AP(V*).
A(V*) is clearly a vector space, and is also closed under exterior multiplication. It
is therefore an algebra.

Definition 18. (A(V*),A) is an algebru, called the exterior algebra over V*.

Since (A(V*), A) has the identity element 1 € A°(V*), Theorem 20 implies that
the ideal generated by a finite set T := {a' € A(V*),1 < i < K} can be written as:

K
Is={re AV*)|m=) 6 Ad' 6 € A(V*)}

i=1



EXTERIOR DIFFERENTIAL SYSTEMS IN CONTROL AND ROBOTICS 17

Given an arbitrary set I of linearly independent generators, it may also be possible
to generate Iz with a smaller set of generators ',

2.1.10. Systems of Exterior Equations. In the preceding sections we have developed
an algebra of alternating multilinear functions over a vector space. We will now
apply these ideas to solve a system of equations in the form

al=0,...,aK =0

where each o* € A(V*) is an alternating tensor. First we need to clarify what
constitutes a “solution” to these equations.

Definition 19. A system of exterior equations on V is a finite set of linearly
independent equations

a'=0,...,a5K=0

where each o' € A¥(V*) for some 1 < k < n. A solution to a system of exterior
equations is any subspace W C V such that

alw=0,...,a5|lw =0
where alw stands for a(v,... ,v) forallvy,... , v €W

A system of exterior equations generally does not have a unique solution since
any subspace W) C W will satisfy a|lw, = 0 if alw = 0. A central fact concerning
systems of exterior equations is given by the following theorem:

Theorem 21. Given a system of exterior eguations o = 0,...,aX = 0 and
the corresponding ideal Is. generated by the collection of alternating tensors ¥ :=
{a!,...,a¥}, a subspace W solves the system of exterior equations if and only if
it also satisfies m|lw = 0 for every 7 € Ig.

Proof. Clearly, n|w = 0 for every 7 € Iy implies af|w = 0 as o’ € Iy. Conversely,
if 7 € Iy, then 7 = T | §* Ao for some 8% € A(V*). Therefore, of|w = 0 implies
that rjlw = 0. a

This result allows us to treat the system of exterior equations, the set of genera-
tors for the ideal, and the algebraic ideal as essentially equivalent objects. We may
sometimes abuse notation and confuse a system of equations with its corresponding
generator set and a generator set with its corresponding ideal. When it is important
to distinguish them, we will explicitly write out the system of exterior equations,
denote the set of generators by ¥ and the ideal which they generate by Is.

Recall that an algebraic ideal was defined in a coordinate-free way as a subspace
of the algebra satisfying certain closure properties. Thus the ideal has an intrinsic
geometric meaning, and we can think of two sets of generators as representing the
same system of exterior equations if they generate the same algebraic ideal.

Definition 20. Two sets of generators, £, and T, which generate the same ideal,
i.e. Iy, = Iy,, are said to be algebraically equivalent.

We will exploit this notion of equivalence to represent a system of exterior equa-
tions in a simplified form. In order to do this, we need a few preliminary definitions.

Definition 21. Let X be a system of exterior equations and Is the ideal which it
generates. The associated space of the ideal Is, is defined by:

A(Ig):={veVljvdaeIgVa€ Iz}
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that is, for all v in the associated space and o in the ideal, vJda =0 mod Is. The
dual associated space or retracting space of the ideal is defined by: A(Ig)t and
denoted by C(Ig) C V*.

Once we have determined the retracting space C(Is ), we can find an algebraically
equivalent system X’ which is a subset of A(C(Ig)), the exterior algebra over the
retracting space.

Theorem 22. Let X be a system of ezterior equations and Is its corresponding
algebraic ideal. Then there ezists an algebraically equivalent system T' such that
¥ C A(C(Ig)).

Proof. Let vy,...,vs be a basis for V, and ¢!,... ,¢" be the dual basis, selected
such that v41,... ,v, span A(Ig). Consequently ¢!,...,¢" must span C(Jg).

The proof is by induction. First, let a be any one-tensor in Is. With respect to
the chosen basis, o can be written as

n
a=) ad
i=1

Since vJa =0 mod Iy for all v € A(Jz) by the definition of the associated space,
we must have a; =0 for i =7+ 1,... ,n. Therefore,

a= ia,’q&‘.
i=1

So all the 1-tensors in T are contained in A!(C(Ig)).
Now suppose that all tensors of degree < k in I5 are contained in A(C(Ig)). Let
a be any &k + 1 tensor in Ix. Consider the tensor

o =a-¢" A (vr41da)

The term v,41 Ja is a k-tensor in Ix by the definition of associated space, and thus,
by the induction hypothesis, it must be in A(C(Ig)). The wedge product of this
term with ¢™+! is also clearly in A(C(Iz)). Furthermore,

Ur414Q' = vpp1 da = (Up41 16™) A (vp41 Ja) + ™ A (41 J(Ur41 J@)) =0

By Theorem 16, o’ has no terms involving ¢"+1,
If we now replace a with o' the ideal generated will be unchanged since

OAa=0Aa"+0A¢ A (vp4; )

and vp41 Ja € I.
We can continue this process for v,42,... ,v, to produce an & which is a gener-
ator of Iy and is an element of A(C(Is)). O

Example. Let v;,...,vg be a basis for R®, and let !,...,6% be the dual basis.
Consider the system of exterior equations

al=0'A0% =0,
e?=60'A6 =0,
=072 -6*N0=0,

A =0"APANP - NGNGB =0
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Let Iy be the ideal generated by £ = {a’,a?,a%,a'} and A(Ig) the associated
space of Ix. Because Iz contains no 1-tensors, we can infer that for all v € A(Iz)
vda! =0, vda? =0, and vla® = 0. Expanding the first equation, we get

vldal =vd(6' A6%) = (vIO) A G + (~1)6 A (v16°) = 0 (v)6° — 3(v)6* =0
which implies that 8*(v) = 0 and 3(v) = 0. Similarly,
vJa® =0'(v)0* - 0*(v)8* =0
vda® =6 (v)8? — *(v)8' - 63(v)6* + 6*(v)68® =0
implying that 6?(v) = 0 and 6*(v) = 0. Therefore, we can conclude that
A(Ig) C span{vs,vs}.
Evaluating the expression v la? C I gives
vdat = (vJ(8 A6?)) AG° + (—1)%(' AO%) A (vd6°)
—(vI(@PAE))AE® - (—1)%(8° A O*) A (v16°)
=60%(v)8* A 6> — 0% (v)8® A 6*
=a(6* A63) +b(6' AG*)+c(8' AO* — 6 A 6*)
Equating coefficients, we find that
65(v) =6%(v) = ¢, Vv € A(Ig).
Now v must be of the form v = zvs + yvs, so we get
F(zvs +yve) =z =c

96(1:1)5 +yv)=y=c
Therefore, A(Iz) = span{(vs + vs)}. If we select as a new basis for R® the vectors
w;=v;, t=1,...,4, ws = vs — Vg, Wg = Vs + Vs
then the new dual basis becomes
65 —6° o _6°+6°
2 T =72
With respect to this new basis, the retracting space C(Is) is given by
C(Ig) = span{v',... ,7°}
In these coordinates, the generator set becomes
= {1 A P A P A =AY, A AR AP} C A(C(TR))

Y=60i=1,...,4, 9=

O

We conclude this section on exterior algebra with a theorem which will allows us
to find the dimension of the retracting space in the special case where the generators
of the ideal are a collection of 1-tensors together a single alternating 2-tensor.

Theorem 23. Let Iy, be an ideal generated by the set
T = {u,...,0" 0}
where w* € V* and Q € A%2(V*). Let r be the smallest integer such that
(AW A AL =0
Then the retracting space C(Ig) is of dimension 2r + s.
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Proof. See Bryant et al. [3, pages 11-12]. (]

2.2. Differential Geometry and Forms. Since the tangent space to a differen-
tiable manifold at each point is a vector space, we can apply to it the multilinear
algebra presented in the previous section. Before doing this, we need to review some
basic facts from differential geometry. The reader may wish to consult numerous
books on the subject such as [1, 20, 31].

2.2.1. Differentiable Manifolds.

Definition 22. A manifold M of dimension n is a metric space® which is locally
homeomorphic to R".

A simple example of a manifold is K" itself. Other examples are the circle S?
and the sphere S2. The circle is a one dimensional manifold while the sphere is
a two dimensional manifold. Other examples of manifolds are the n-torus, T" =
5! x 8 x---x S! and SO(n), the space of unitary n x n matrices of determinant 1.
A subset N of manifold M which is itself a manifold is called a submanifold of M.
Any open subset N of a manifold M is clearly a submanifold since if M is locally
homeomorphic to R” then so is N.

In order to perform calculus on manifolds, a differentiable structure is needed. A
coordinate chart on a manifold M is a pair (U, z) where U is an open set of M and
z is a homeomorphism of U onto an open set of R®. The function z is also called
a coordinate function and can be written as (z*,...,z") where z : M — R If
p € U then z(p) = (2'(p),...,z"(p)) is called the set of local coordinates in the
chart (U, z). When doing operations on a manifold, we must ensure that our results
are consistent regardless of the particular chart we use. We must therefore impose
some compatibility conditions. Two charts (U,z) and (V,y) with UNV # 0, are
called C*™ compatible if the map

yoz l:z(UNV)CR* —y(UNV)CR" (6)
is a C* function. A C™ atlas on a manifold M is a collection of C® compatible

charts (Ua,Zo) indexed by a € A such that the open sets U, cover the manifold
M. An atlas is called maximal if it is not contained in any other atlas.

Definition 23. A differentiable or smooth manifold is @ manifold with a mazimal,
C® atlas.

With this differential structure we can perform calculus on the manifold M. In
particular let f : M — R be a function. If (U, z) is a chart on M then the function

f=foz l:2(U)cR* —R (7

is called the local representative of f in the chart (U, z). We define the map f to
be C™ or smooth if its local representative f is C*°. Note that if fis C® in one
chart, then it must be C* in every chart since the charts are C* compatible and
the atlas is maximal. Therefore these results are intrinsic to the manifold and do
not depend on the particular homeomorphism chosen. Similarly, if we have a map
f: M — N, where M,N are differentiable manifolds, the local representation of
f given charts (U,z) of M and (V,y) of N is

f=yofoz, ®)

3Readers familiar with topology may replace metric space with Hausdorff, second countable
topological space.
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defined only if f(U)NV # 0. Again fisa C® mapif fisa C® map. Let f : M —»
N be a map between two manifolds. The map f is called a diffeomorphism if both
f and f~! are smooth. In this case, manifolds M and N are called diffeomorphic.

Example. We have seen that R is an example of a trivial but important manifold.
The differentiable structure on R™ consists of the chart (R, {) where i is the identity
function on R" as well as all other charts that are C* compatible with it. We denote
the standard coordinates on R® as {r!,...,r"}.

The sphere, S2 can be given a differentiable structure as follows. Consider the
charts (Uy,pn) and (Us,ps) where Uy is the sphere minus the North pole, Us is
the sphere minus the South pole and py,ps are the stereographic projections of
the sphere to the plane from the North and South poles respectively. One can show
that these charts are compatible. We can then extend our atlas to a maximal one
by considering all other charts that are compatible with (Un,pn), (Us, ps). O

2.2.2. Tangent Spaces. Let p be a point on a manifold M. Let C*™(p) denote the
set of all smooth functions defined on a neighborhood of p. The set C*®(p) is a
vector space over R since the sum of two smooth functions and the scalar multiple
of a smooth function are themselves smooth functions.

Definition 24. A tangent vector X, at p € M is an operator from C®(p) to R
which satisfies the following properties, for f,g € C*(p) and a,b € R:

1. Linearity Xp(a-f+b-9) =a- Xp(f) +b- X,(9)
2. Derivation Xp(f - 9) = f(p) - Xp(9) + Xp(f) - 9(p)

The set of all tangent vectors at p € M is called the tangent space of M at p and
is denoted by T,M.

The tangent space T,M becomes a vector space over R if for tangent vectors
Xp,Y, and real numbers ¢;,c; we define addition and scalar multiplication as

(c1-Xp + 2 - Y)(f) =1 - Xp(f) + c2 - Yp(f) (9)

for any smooth function f in the neighborhood of p. The collection of all tangent
spaces of the manifold,

T™ = | T,M (10)
pEM

is called the tangent bundle.

Example. Given the standard differentiable structure on R", the standard tangent
vectors to R™ at any point p are

0 (7}
5T B (11)

Thus given any smooth function f(r!,...,7™) : U — R where U is a neighborhood
of p, we have

d . _ Of
,‘9‘,.7(f) =3 (12)

fori=1,...,n. O
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Now let M be a manifold and let (U,z) be a chart containing the point p. In
this chart we can associate the following tangent vectors

0 /]

‘a—;, seny a.’t_" (13)
defined by
a _O(foz?)
(=2 (14)

for any smooth function f € C>=(p).

Theorem 24. Let M be an n-dimensional manifold and let T,M be the tangent
space at p € M. Then TM is an n-dimensional vector space and if (U, z) is a local
chart around p then the tangent vectors

0 d

'a_a':-f, veey ’é?" (15)

form a basis for T,M.
Proof. See Spivak [31, page 107). O

From this Theorem we can see that if X}, is a tangent vector at p then
n
(i}

Xp= ,; Giz— (16)

where ay,...,a, are real numbers. The above formula indicates that a tangent
vector is-an operator which simply takes the directional derivative of function in
the direction of [ay, ..., a,)].

Now let M and N be smooth manifolds and f : M — N be a smooth map.
Let p € M and let ¢ = f(p) € N. We wish to transport tangent vectors from
TpM to TgN using the map f. The natural way to do this is by defining a map
fo : ToM — TyN by

(fo(Xp))(9) = X,(g © f) (17)

for smooth functions g in the neighborhood of g. One can easily check (1] that
J+(X,) is a linear operator and a derivation and thus a tangent vector. The map
Je : TpM — Ty, N is called the push forward map of f.

Proposition 25. Let f: M — N andg: N — K. Then
(gofla=g.0f. (18)
Proof. See Spivak (31, page 101). a
We now arrive at the important concept of a vector field on a manifold.

Definition 25. Let M be a manifold. A vector field on M is a continuous function
F’ which associates a tangent vector from T,M to each point p of M. Such functions
are called sections of the tangent bundle TM. If F is of class C™, it is called a
smooth section of TM or a smooth vector field. An integral curve of a vector field
F is a curve ¢ : (—e,e) — M such that

&(t) = F(c(t)) € Ty M
Jor all t € (—¢,¢).
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A local expression for a vector field F in the chart (U, z) is
= 0
Fip) =3 ai(p)5— (19)
i=1
The vector field F is C™ if and only if the scalar functions a; : M — R are C*.

2.2.3. Tensor Fields. Since the tangent space to a manifold at a point is a vector
space, we can apply all the multilinear algebra that we presented in the previous
section to it. The dual space of T,M at each p € M is called the cotangent space
to the manifold M at p and is denoted by T;M. The collection of all cotangent
spaces,

T°M:= | ;M (20)
pEM

is called the cotangent bundle. Similarly, we can form the bundles

kM) = | LiTM) (21)
pEM

A¥M) = | AMT; M) (22)
PEM

Tensor fields are constructed on a manifold M by assigning to each point p of
the manifold a tensor. A k-tensor field on M is a section of L¥(M), i.e. a func-
tion w assigning to every p € M a k-tensor w(p) € L*(T,M). At some point
P € M, w(p) is a function mapping k-tuples of tangent vectors of T,M to R,
that is w(p)(X1,Xa,...,Xx) € R is a multi-linear function of tangent vectors
X1,..., Xy € T,M. In particular, if w is a section of A¥(M) then w is called
a differential form of order k or a k-form on M. In this case, w(p) is an alternating
k-tensor at each point p € M. The space of all k-forms on a manifold M will be
denoted by 2*(M) and the space of all forms on M is simply

QUM) :=Q(M)®---® Q" (M) (23)
At each point p € M, let
4 8

dzi’ "’ zn

be the basis for T, M. Let the 1-forms ¢* be the dual basis to these basis tangent
vectors, i.e.

(24)

#0) ) = b1 (25)

Recall that the forms ¢/ = ¢* ® ¢ ®...® ¢** for multi-index I = (4;,...,4:) form
a basis for £¥(Tp,M). Similarly, given an ascending multi-index I = (iy,... ,ix),
the k-forms %' = ¢ A ¢ A ... A ¢* form a basis for A*(T,M). If w is a k-tensor
on M, it can be uniquely written as

w(p) = bi(p)¢ (p) (26)
1
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for multi-indices I and scalar functions b7(p). The k-form a can be written uniquely
as

a(p) = c(p)y’ (p) @7
I

for ascending multi-indices I and scalar functions ¢;. The k-tensor w and k-form a
are of class C* if and only if the functions b; and ¢; are of class C*® respectively.
Given two forms w € Q*(M),0 € (M), we have,

w=Y by (28)
I
0=3 cry’ (29)
J
wAO=) " bresy! Ay’ (30)
1 J

Recall that we have defined A°(T,M) = R As a result, the space of differential
forms of order 0 on M is simply the space of all functions f : M — R and the
wedge product of f € Q°(M) and w € Q¥(M), is defined as

(w A f)(p) = (f Aw)(p) = £(p) - w(p) (31)

2.2.4. The Ezterior Derivative. Recall that a 0-form on a manifold M is a function
f: M — R The differential df of a O-form f is defined pointwise as the 1-form,

df (p)(Xp) = Xp(f) (32)

It acts on a vector field X, to give the directional derivative of f in the direction
of X, at p. As X, is a linear operator, the operator d is also linear, that is if a, b
are real numbers,

d(af +bg)=a-df +b-dg (33)

The operator d provides a new way of expressing the elementary 1-forms ¢*(p)
on T,M. Let z : M — R”™ be the coordinate function in a neighborhood of p.
Consider the differentials of the coordinate functions

dz' (p)(X5) = X,(a') (34)

If we evaluate the differentials dz’ at the basis tangent vectors of T, M we obtain,
[/}

dz‘(P)(g;) = &;; (35)

and therefore the dz’(p) are the dual basis of T, M. Since the ¢*(p) are also the
dual basis, dz(p) = ¢*(p). Thus the differentials dz*(p) span £1(Tp,M) and from
our previous results, any k-tensor w can be uniquely written as

w(p) =Y bi(p)dz'(p) = ) br(p)dz*t @ --- ® dz** (36)
I I

for multi-indices I = {4,,42,... ,4}. Similarly, any k-form can be uniquely written
as

w(p) =Y _er(p)dz’ () = Y cr(p)dz™ A--- A dz™ (37)
I I
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for ascending multi-indices I = {iy,is,... ,ix}. Using this basis now we have that
for a 0-form,
o
df = Z 3 j, dz’ (38)

=1

More generally, we can define an operator d : Q¥(M) — Q*+1(M) which takes
k-forms to (k + 1)-forms

Definition 26. Let w be a k-form on a manifold M whose representation in a
chart (U, z) is given by

w= Zw;dz’ (39)
1

for ascending multi-indices I. The exterior derivative or differential operator, d, is
a linear map taking the k-form w to the (k+1)-form dw by
dw =" dwy Adz’ (40)
I

Notice that the w; are smooth functions (0-forms) whose differential dw; has
already been defined as

2 Qwy
= 1
dwy = 2 52 +—rdz’ (41)
Therefore, for any k-form w,
dw = Zzawldz’ Adz! (42)
I j=1

From the definition, this operator is certainly linear. We now prove that this
differential operator is a true generalization of the operator taking O-forms to 1-
forms, satisfies some important properties, and is the unique operator with those
properties.

Theorem 26. Let M be a manifold and let p € M. Then the exterior derivative is
the unique linear operator

d: Q¥(M) - QM) (43)

for k > 0, that satisfies,
1. If f is a O-form, then df is the 1-form

df (p)(Xp) = Xp(f) (44)
2. Ifw' € Q¥ (M),w? € QM) then
d(w! Aw?) = dw! Aw? + (-1)Fw! A du? (45)

3. For every form w, d(dw) =
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Proof. Property (1) can be easily checked from the definition of the exterior deriv-
ative. For property (2), it suffices to consider the case w! = fdz! and w? = gdz’
in some chart (U, z), because of linearity of the exterior derivative.

d(w' Aw?) = d(fg) Adz! Ada’
= gdf Adz' Adz’ + fdg A dz’ Adz’
=dw' Aw? + (-1)*fdz! A dg A dz”’
= dw! Aw? + (-1)kw? A du?

For property (3), it again suffices to consider the case w = fdz! because of linearity.
Since f is a O-form,

d(df) = d(> %)dzj =% %%dx‘ A dz (46)
j=1 i=1 j=1
0 0f 8 8f.. . ..
i<j

We thereforg have d(df) = 0 by the equality of mixed partial derivatives and the
fact that dz* Adz’ = 0. If w = fdz’ is a k-form, then dw = df A dz! + f A d(dz’)
by property (2), and since

d(dz’) = d(1Adz’) =d(1) Adz’ =0 (48)
we get
d(dw) = d(df) Adz! — df Ad(dz’) =0 (49)

To show that d is the unique such operator, we assume that d’ is another linear
operator with the same properties and then show that d = d’. Consider again a
k-form w = fdz’. Since d' satisfies property (2) we have

d'(fdz') =d'f Adz! + f Ad'(dz]) (50)

From the above formula we see that if we can show that d’(dz’) = 0 then we will
get

d'(fdz") = d'f Ada! = df Adz! = d(fdz!) (51)

because d'f = df by property (1), and that will complete the proof. We therefore
want to show that

d'(dz" A...Adz™) =0 (52)
But since both d and d’ satisfy property (1) we have
dz! =dz' A Ada™ =d'z A-. Ad'z™ = '] (53)
since the coordinate functions z* are 0-forms. Then
d'(dz" A---Adz*) =d'(dz" A Ad'T*) =0 (54)

since d’ satisfies property (3). O
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Now let f : M — N be a smooth map between two manifolds. We have seen
that the push forward map, f., is a linear transformation from T, M to Ty N.
Therefore given tensors or forms on TN we can use the pull back transforma-
tion4, f*, in order to define tensors or forms on T,M. The next theorem shows
that the exterior derivative and the pull back transformation commute.

Theorem 27. Let f : M — N be a smooth map between manifolds. If w is o
k-form on N then

fH(dw) = d(f*w) (85)

Proof. See Spivak [31, pages 295-296). ]

The d-operator may be used to define two classes of forms of particular interest.
Definition 27. A k-form w € Q*(M) is said to be closed if dw = 0.

Definition 28. A k-form w € QF(M) with k > 0 is exact if there ezists a (k — 1)-
Jorm 6 such that w = df. A O-form is ezact on any open set if it is constant on
that set.

Clearly, since every exact form is closed. However, not all closed forms are exact.

2.2.5. The Interior Product. We can define the interior product of a tensor field and
a vector field pointwise as the interior product of a tensor and a tangent vector.

Definition 29. Given a k-form w € Q*(M) and a vector field X the interior
product or anti-derivation of w with X is a (k — 1) form defined pointwise by

(X(p) (@)W1, .-, ve-1) = w(P)(X (D), v1,.. ., 0k-1) (56)

Definition 30. Given a function h : M — R, the Lie derivative of h along the
vector field X is denoted as Lxh and is defined by

Lxh=X(h)= X 1dh (57)
The Lie derivative is simply the directional derivative of the function k along
the vector field X. :

Definition 31. Given two vector fields X and Y, their Lie bracket is defined to be
the vector field such that for each h € C*®(p) we have

[X,Y)(h) = X(Y (k) - Y(X(R)) = X 2d(Y Jdh) - Y 1d(X 1dh)  (58)

In particular, if we choose the coordinate functions z*, we get

§ 6Yi an'
[X,Y](z') = [X,Y]); = 3 ity E b7 Vi (59)
j
and we therefore obtain
oYy 8X
X, Y]() = 5 X(2) - 5 Y () (60)
The Lie bracket is skew symmetric
[X,Y]=-[¥,X] (61)

4to be consistent with our previous notation, we should write (f.)* to denote the pull back of
f+. Notation is abused, however, and we simply denote it by f*.
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and satisfies the Jacobi identity
(X, Y, 2]} + [V, (2, X])] + [2,[X,Y]] =0 (62)

The following lemma establishes a relation between the exterior derivative and Lie
brackets.

Lemma 28. (Cartan’s Magic Formula). Let w € Q'(M) and X,Y smooth vector
fields. Then

dw(X,Y) = X (w(Y)) - Y(w(2)) - w([X,Y])

Proof. Because of linearity, it is adequate to consider w = fdg where f,g are
functions. The left hand side of the above formula is

dw(X,Y) =df Adg(X,Y)
= df(X) - dg(Y) - df(Y) - dg(X)
=X(f)-Y(9)-Y(f)-X(g)
while the right hand side is
X(w(Y)) - Y(w(X)) —w([X,Y]) = X(fY(9)) - Y(fX(9)) — F(XY(g) - Y X(g))
=X(f)-Y(9) -Y(f)- X(g)

which completes the proof. O

2.2.6. Distributions and Codistributions. Recall that a vector field is a map which
assigns a tangent vector to each point on the manifold. In the case of multiple
vector fields, one may assign a number of tangent vectors at a point and look at the
subspace of the tangent space spanned by these vectors. This assignment, which
places at each point of the manifold a subspace of the tangent space at that point,
is called a distribution and is denoted by A(p) = span{fi(p),..., fa(p)} or, if we
drop the dependence on the point p,

A = span{fi,..., fa} (63)

Since distributions are subspaces one can define the sum or intersection of two dis-
tributions as the sum or intersection of the respective subspaces. If the vector fields
are smooth, we call A(p) a smooth distribution. The dimension of the distribution
at a point is defined to be the dimension of the subspace A(p). A distribution is
said to regular if its dimension does not vary with p. A vector field f belongs to a
distribution A if f(p) € A(p) for all p.

A distibution is involutive if given any two vector fields f; and f, belonging to
the distribution, their Lie bracket also belongs to the distribution, i.e.

f,heA=[fi,f;]eA (64)

or more compactly, [A, A] C A. A distribution A is called integrable if there exists
a submanifold NV of M such that the tangent space of N at r equals A(z). The
submanifold NV is called the integral manifold of the distribution A. The following
theorem provides us with a condition under which a distribution is integrable.

Theorem 29. (Frobenius Theorem for distributions) A regular distribution A(z)
is integrable if and only if it is involutive.

Proof. See Spivak [31, page 261]. O
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Similarly, one may also assign to each point of the manifold a set of 1-forms.
The span of these 1-forms at each point will be a subspace of the cotangent
space T, M. This assignment is called a codistribution and is denoted by ©(p) =
span{wi(p),...,wd(p)} or, dropping the dependence on the point p,

© = span{wy,...,wqd} (65)
where wy,...,wq are the 1-forms which generate this codistribution.

There is a notion of duality between distributions and codistributions which
allows us to construct codistributions from distributions and vice versa. Given a
distribution A, for each p in a neighborhood U, consider all the 1-forms which
pointwise annihilate all vectors in A(p),

A*(p) = span{w(p) € T;M : w(p)(f) = 0Vf € A(p)} (66)

Clearly, AL(p) is a subspace of T;M and is therefore a codistribution. We call A+
the annihilator or dual of A. Conversely, given a codistribution ©, we construct
the annihilating or dual distribution pointwise as

©1(p) = span{v € T,M : w(p)(v) = 0 Yw(p) € N(p)} (67)
If N is an integral manifold of a distribution A and v is a vector in the distribution A
at a point p (and consequently in T,N), then for any a € A+, a(p)(v) = 0. Notice

that this must also be true for any integral curve of the distribution. Therefore given
a codistribution © = span{w,...,w,}, an integral curve of the codistribution is a

curve c(t) whose tangent c’(t) at each point satisfies, fori=1,...,s,
wie(t))(c'(t)) =0 (68)
Example. Consider the following kinematic model of a unicycle
% = u; cosf
Y =u; sinf
é = U2
which can be written as
z cosf 0]
[Q}:[Sina]u1+[0 uz = fiug + fouo (69)
(] 0 1 |

The corresponding control distribution is

cosf |
Az) = 3pan{[ sinf |, [
0 |

0
0 ] } (70)
1

while the dual codistribution is

At = span{w} (71)
where w = sin 8dz — cos6dy + 0df, the nonholonomic constraint of rolling without
slipping. O



30 G. PAPPAS, J. LYGEROS, D. TILBURY, AND S. SASTRY

2.3. Exterior Differential Systems.

2.3.1. The Exterior Algebra On a Manifold. The space of all forms on a manifold
M,
QM) = QM) ®---® (M)

together with the wedge product is called the exterior algebra on M. An algebraic
ideal of this algebra is defined as in Section 2.1.8 as a subspace I such that ifa € I

then a A B € I for any B € Q(M).
Definition 32. An ideal I C (M) is said to be closed with respect to ezterior
differentiation if and only if

a€l=dael

or more compactly dI C I. A algebraic ideal which is closed with respect to exterior
differentiation is called a differential ideal.

A finite collection of forms, ¥ := {o?,... ,aX} generates an algebraic ideal

K
I :={weQM)|w=>) 6 Aa’ for some 6 € Q(M)}.

i=1

We can also talk about the differential ideal generated by X.

Definition 33. Let Sq denote the collection of all differential ideals containing X.
The differential ideal generated by X $s defined as the smallest differential ideal

containing X
Is := n I
1€Sq

Theorem 30. Let T be a finite collection of forms, and let Iy denote the differ-
ential ideal generated by X. Define the collection

T =3Zuds
and denote the algebraic ideal which it generates by Is:. Then
Iy =I5

Proof. By definition, Ty is closed with respect to exterior differentiation, so ' C
Iy. Consequently, Is: C Zgz. The ideal Iy is a closed with respect to exterior
differentiation and contains X by construction. Therefore, from the definition of Zs
we have that Iy C Iyr. (]

The associated space and retracting space of an ideal in (M) are defined point-
wise as in section 2.1.10. The associated space of Iy is called the Cauchy charac-
teristic distribution and is denoted A(Zx).

2.3.2. Egterior Differential Systems. In Section 2.1.10 we introduced systems of ex-
terior equations on a vector space V and characterized their solutions as subspaces
of V. We are now ready to define a similar notion for a collection of differential
forms defined on a manifold M. The basic problem will be to study the integral sub-
manifolds of M which satisfy the constraints represented by the exterior differential
system.
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Definition 34. An exterior differential system is a finite collection of equations
’ 1 r
a=0...,a=0

where each of € (M) is a smooth k-form. A solution to an exterior differential
system is any submanifold N of M which satisfies o*(z)|r.ny = 0. forallz € N
andallie {1,...,r}.

An exterior differential system can be viewed pointwise as a system of exterior
equations on T,M. In view of this, one might expect that a solution would be
defined as a distribution on the manifold. The trouble with this approach is that
most distributions are not integrable, and we want our solution set to be a collection
of integral submanifolds. Therefore, we will restrict our solution set to integrable
distributions.

Theorem 31. Given an exterior differential system

al=0,...,aK=0 (72)
and the corresponding differential ideel Iy, generated by the collection of forms
L= {a},...,a¥} (73)

An integral submanifold N of M solves the system of exterior equations if and only
if it also solves the equation m = 0 for every 7 € Iy.

Proof. If an integral submanifold IV of M is a solution to X, then for all z € N and
aliel,... ,K

a‘(z)]T,N =0.
Taking the exterior derivative gives
do’(z)|r,n = 0.
Therefore, the submanifold also satisfies the exterior differential system
al=0,...,aK =0,da! =0,...,da¥ =0

From Theorem 30 we know that the differential ideal generated by T is equal to
the algebraic ideal generated by the above system. Therefore, Theorem 21 tells us
that every solution N to ¥ is also a solution for every element of Zy. Conversely,

if N solves the equation = = 0 for every # € Zy then in particular it must solve
. ]

This theorem allows us to either work with the generators of an ideal or with the
ideal itself. In fact some authors define exterior differential systems as differential
ideals of 2(M). Because a set of generators I generates both a differential ideal
Iy and a algebraic ideal Iy, we can define two different notions of equivalence for
exterior differential systems.

Definition 35. Two exterior differential systems, £, and X,, are said to be alge-
braically equivalent if they generate the same algebraic ideal. i.e. Ig, = Iy,.

Definition 36. Two ezterior differential systems, T, and I, are said to be equiv-
alent if they generate the same differential ideal. i.e. Iy, =TI5,.

Intuitively, we want to think of two exterior differential systems as equivalent if
they have the same solution set. Therefore, we will usually discuss equivalence in
terms of this second definition.
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2.3.3. Pfaffian Systems. Pfaffian systems are of particular interest because they
can be used to represent a set of first-order ordinary differential equations.

Definition 37. An ezterior differential system of the form

al=a’=---=a°=0

where the o are independent I-forms on an n-dimensional manifold is called a
Pfaffian system of codimension n — s. If {a!,...,a™} is a basis for Q1 (M), then
the set {a°*1,...,a"} is called a complement to the Pfaffian system.

An independence condition is a one-form 7 which is required to be nonzero
along integral curves of the Pfaffian system. That is, if a*(c(t))(c'(t)) = 0, then
7(c(2))(c'(t)) # O The 1-forms a!,...,a’, generate the algebraic ideal

I={c€eQM):0Aa'A---Aa* =0}
The algebraic ideal generated by the 1-forms o' is also a differential ideal if the
following conditions are satisfied.
Definition 38. A set of linearly independent 1-forms o,...,a* in the neighbor-
hood of a point is said to satisfy the Frobenius condition if one of the following
equivalent conditions hold:

1. da' is a linear combination of &,...,a".

2.de'Aa'A---ANa®=0for1 <i<s.

3. dai = ;=1 63 Aod

When da’ is a linear combination of a',...,a* the following expression is fre-
quently used

do'=0modal,...,a’1<i<s
where the mod operation is implicitly performed over the algebraic ideal generated
by the o'.
Example. We will illustrate the above concepts for the unicycle. Recall that the
unciycle can be described by the following codistribution

I={w}
where
w = sin 8dz — cosfdy + 0d0
The exterior derivative of w is
dw = cosf df A dz + sinf df A dy
and therefore
doAw=—cos®dd Adz Ady +sin®dd Ady Adz = —dz AdyAdd #0
Sdin:le the second condition of Definition 38 is not satisfied, I is not a differential
ideal. O

Theorem 32. (Frobenius Theorem for codistributions) Let I be an algebraic ideal
generated by the independent 1-forms a!,...,a* which satisfies the Frobenius con-
dition. Then in a neighborhood of = there ezist functions h' with 1 < i < s such
that

I={ad,...,a’} = {dh',...,dn*}
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Proof. See Bryant et al. [3, pages 27-29]. O

For more general exterior differential systems we have the following integrability
results.

Theorem 33. If the Cauchy characteristic distribution A(Zs) of Is has constant
dimension r in & neighborhood, then the distribution A(Tx) is integrable.

Proof. See Bryant et al. [3, page 31). [m]

Theorem 34. Let I be a differential ideal whose retracting space C(Z) has a con-
stant dimension n — r. There is a neighborhood in which there are coordinates
yl,...,y" such that I has a set of generators which are forms in y1,...,y""".

Proof. See Bryant et al. [3, pages 31-33]. (m}

2.3.4. Derived flags. If the algebraic ideal generated by a Pfaffian system does not
satisfy the Frobenius condition, then it is not a differential ideal. However, there
may exist a differential ideal which is a subset of the algebraic ideal. This subideal
will can be found by taking the derived flag of the Pfaffian system. Let I(®) =
{w!,...,w*} be the algebraic ideal generated by independent 1-forms w',...,w".
We define I(1) as

IM={x€eI®:dx=0mod IV} C IV

The ideal IV) is called the first derived system. The analog of the first derived
system from the distribution point of view is given by the following theorem.

Theorem 35. If IO = AL then IV) = (A +[A, A))*.
Proof. Let I®) be spanned by 1-forms w?,...,w’ and let A be its annihilating
distribution. By definition we have that

IV = {y € IV : dw = 0 mod IV}
Let n € I)). Therefore dn = 0 mod I® which means that

8
dn= Z oA
j=1

for some forms 67. Now let X,Y be vector fields in A. Since A is the annihilating

distribution of 19, wi(X) = wi(Y) = 0. Also, n € I®) c I, and therefore
7(X) =9(Y) = 0. Now, using the expression for dy,

dn(X,Y) = i ¢ A (X,Y)
i=1
=) HF X)W (Y) -6/ (Y)w (X)
=1
-0
Cartan’s magic formula gives
dn(X,Y) = Xq(Y) - Yn(X) - n([X,Y]) =0
and therefore
ﬂ([X ’ Y]) =0
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which means that 7 annihilates any vector fields belonging in [A, A] in addition to
any vector fields in A. Therefore 7 € (A + [A, A])L and thus

IW c (A +[A,AN*
To show the other inclusion, let n € (A + [A, A])* and let X,Y be vector fields in
A. Cartan’s magic formula gives
dn(X,Y) = Xn(Y) - Yn(X) - 9([X,Y]) =0
and therefore dn) = 0 mod I{®) which means that € I(!). Thus (A+[A, A])L c I
and therefore (A + [A, AL = 1), (m]
One may inductively continue this procedure of obtaining derived systems and
define
I® = {xeI® :dx=0mod IM} c IV
or in general
15+ = {3 € I®) - d) = 0 mod IV} C I*)
This procedure results in a nested sequence of codistibutions
M cr* M c...c1®c 1 (74)

We can also generalize Theorem 35. If we define A = (I(0)L, A; = (TW)L,
and in general Ay = (I*))L, then it is not hard to show that if I*) = Al then
I(:+1) = (Ap+[Ag, Ag])L. The proof of this fact is similar to the proof of Theorem
35 but uses a more general form of Cartan’s magic formula. The sequence of
decreasing codistributions (74), called the derived flag of I(?), is associated with a
sequence of increasing distributions, called the filtration of Ay,

ArDAr1D---D4A; DAy

If the dimension of each codistribution is constant then there will be an integer N
such that I'¥) = J(V+1), This integer N is called the derived length of I. A basis
for a codistribution I is simply a set of generators for I. A basis of 1-forms of for
I is said to be adapted to the derived flag if a basis for each derived system I(%)
can be chosen to be some subset of the ad’s. The codistribution (V) is always
integrable by definition since

dI'™) = 0 mod I'V)
Codistribution I'¥) js the largest integrable subsystem in I. Therefore, if I(V) 3
{0} then there exist functions h!,...,A" such that {dh,...,dh"} C I. As a result,
if a Pfaffian system contains an integrable subsystem J{¥) 3 0 which is spanned by
the 1-forms dh?,...,dh", then the integral curves of the system are constrained to
satisfy the following equations for some constants ;.
dh =0=>hi=kifor1<i<r

or equivalently, trajectories of the system must lie on the manifold,

M={z:h(z)=kfor1<i<r}
In particular, this implies that if I(V) # 0, it is not possible to find an integral
curve of the Pfaffian system which connects a configuration z(0) = z, to another
configuration z(1) = z, unless the initial and final configurations satisfy

hi(zo) = hi(z;) for1 <i<r
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Example. Consider the rolling penny system. In addition to the three configura-
tion variables of the unicycle, we also have an angle ¢ describing the orientation of
Lincoln’s head. The model in this case, assuming for simplicity that the penny has
unit radius, is given by

& = u; cosf
¥ =1u; 8inf
0=uy
‘;’ =
which can be written in vector field notation as
n:: cosé 0
g = 5180 u + (1) u2 = fiug + fouz
¢ -1 0

The annihilating codistribution to the distribution A¢ = {f1, f2} can be easily
determined to be

I=A' = {a},a?}
where
a' = cosfdz + sin dy + 0d6 + 1d¢

a? = sin 8dz — cos 0dy + 0d0 + 0d¢

To compute the derived systems, we must first take the exterior derivatives of the
constraints.

do? = cos6dl A dz + sin 8d9 A dy
do! = —sin8df A dz + cos6dd A dy
da’ Aa' Aa® =df Adz Ady Ado
do' Aa® =sinfcosf(dd Adx Ady +di Ady Adz) =0
do' Aa' Aa? =0
From these wedge products, we can see that
da'! = 0 mod o', a?
do? # 0 mod o',
and thus the first derived system is spanned by ao?,
I = {a'}
It can be easily checked that
do' Ao #£0
and thus
1® = {0}
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The derived flag of the system is given by the decreasing sequence of codistributions
IO = {o,0%)
IM = {a'}
1% = {0}

Note that the basis is adapted to the derived flag. Because I(?) = {0}, an inte-

grable subsystem does not exist. The system is not constrained to move on some
submanifold of R?. [m]

3. NOoRMAL FoRMS

Now that we have defined an exterior differential system, and introduced some
analysis tools, we are ready to study some important normal forms for exterior
differential systems. We will restrict ourselves to Pfaffian systems. The first normal
form which we introduce, the Pfaffian form, is restricted to systems of only one
equation. The Engel form applies to two equations on a four-dimensional space,
and the Goursat form is for n—2 equations on an n-dimensional space. The extended
Goursat normal form is defined for systems with codimension greater than two. The
Goursat normal forms can be thought of as the generalization of linear systems.
Their study will lead us to the study of linearization of control systems in Section
4.

3.1. The Goursat Normal Form.
3.1.1. Systems of one equation. We will first study Pfaffian systems of codimension
n — 1, or systems consisting of a single equation
a=0
where o is a 1-form on a manifold M. In some chart (U,z) of a point p € M the
equation can be expressed as
a1(z)dz! + az(z)dz? + - - + an(z)dz" = 0

In order to understand the integral manifolds of this equation we will attempt to
express « in a normal form by performing a coordinate transformation.

Definition 39. Let o € Q1(M). The integer r defined by
(da)"Aa # 0
(do)"*'Aa = 0
is called the rank of a.

The following theorem allows us, under a rank condition, to write a in a normal
form.

Theorem 36. (Pfaff) Let a € Q'(M) have constant rank r in a neighborhood
of p. Then there ezists a coordinate chart (U,2) such that in these coordinates,
a=dz' + 22dz% + ... + 227 d22T !,

Proof. Let T be the differential ideal generated by a. From Theorem 23 the retract-
ing space of 7 is of dimension 2r + 1. By Theorem 34 there exist local coordinates
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¥',...,y" such that 7 has a set of generators in y!,...,y2"*+1. Then, by dimension
count, any function f; of those 2r + 1 coordinates results in

(da)" AaAdfy =0
Now let Z; be the ideal generated by {df,a,da}. If r = 0 then the result follows
from the Frobenius Theorem. If + > 0, the forms df; and a must be linearly

independent since a is not integrable. Applying Theorem 23 to I, let r; be the
smallest integer such that

(da)" P AaAdf, =0

Clearly, 11 +1 < r. Furthermore, the equality sign must hold because (da)” Aa # 0.
Applying Theorem 34 to 7, there exists a function f> such that

(da)'AaAdfi Adf2 =0
Repeating this process, we find r functions fi, f2,... , f» satisfying
dahaAdfyANdfaA...ANdf, =0

aAdfi Adfa A...Adfr #0

Finally, let Z, be the ideal {dfi,...,df,,a,da}. Its retraction space C(Z,) is of
dimension 7 + 1. There is a function f,+; such that

aAdfindfaA...Adfrys1 =0

dfi Adfa A...Adfry1 #0
By modifying a by a factor, we can write
a =dfry1 + qidh +... + grdf;.

Because (da)” A a # 0, the functions fy,..., fr+1,901,-.. ,9r are independent. The
result then follows by setting
1

2 = fin =g A=

forl<i<mr. 0
Example. Consider the unicycle example described by the codistribution I = {a}
where a = sin @dz — cosdy. We can immediately see that

da = cos8df A dx + sin 0d8 A dy

and that

daAa ddANdyAdz #0
(da)®’Aa = 0
Therefore a has rank 1 and by Pfaff’s Theorem there exist coordinates 2!, z2, 23
such that
a=dz! + 2%d28
In this example we trivially obtain,
a =dy + (- tanf)dx

O

The following theorem is similar to Pfaff’s theorem and simply expresses the
result in a more symmetric form.
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Theorem 37. Given any a € Q' (M) with constant rank r in a neighborhood U of
P, there exist coordinates z,y},...,y",z',...,2" such that

I, ivi iai
a=dz+-2-Z(y'd-’B - z'dy*)

=1

Proof. The following coordinate transformation

1 .
1 = -——
Z = z-3 Z z'y
22i+1 = zt' 1 S i S r
reduces fhe above Theorem to Pfaff’s Theorem. a

The Pfaffian system o = 0 on a manifold M is said to have the local accessibility
property if every point z € M has a neighborhood U such that every point in U can
be joined to x by an integral curve. The following theorem answers the question of
when does this Pfaffian system have the local accessibility property.

Theorem 38. (Caratheodory) The Pfaffian system,
a=0
where a has constant rank, has the local accessibility property if and only if
aAda#0

Proof. The above condition simply says that the rank of & must be greater than or
equal to 1. If o has zero rank then da Aa = 0 and therefore by Frobenius Theorem
we can write

a=dh=0

for some function h. The integral curves are of the form A = ¢ for any arbitrary
constant c. Since we can only join points p,q € M for which h(p) = h(g), we do
not have the local accessibility property.

Conversely, let o have rank r > 1. From Theorem 37, we can find coordinates
z,z',...,2",9',...,¥",u},...,u® in some neighborhood U with 2r+s+1 = dim M
such that

r
a=dz+ % Y (¥'dz’ - zidy’) =0
i=1

and therefore

1 o
dz = 3 g(z‘dy' - y'dz?)
Given any two points p,g € U we must find integral curves c : [0,1] — U with
¢(0) = p and ¢(1) = g. Since we are working locally, we can assume that the initial
point p is the origin: z(p) = z*(p) = ¥*(p) = v¥(p) = 0. Let the final point ¢ be
defined by z(g) = 21,2%(q) = z{,4'(g) = ¥},v%(g) = ui. Because the expression of
the one-form o does not depend on the u* coordinates, we can choose the curve tui
to connect the u* coordinates of p and gq.
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In the (z%,’) plane there are many curves (z*(t),y(t)) which join the origin
with the desired point (z},y}). We need to find one which steers the z coordinate
to 2. In order to satisfy the equation a = 0, we must have that

r
dz = %Z(z‘dg" - yldz?)
=1
Integrating this equation gives
1 ', dyt do 1
o{t) = 5/0 g(z & i = §§Ai

where A; is the area enclosed by the curve (z*(¢), 5*(f)) and the chord joining the
origin with (zi,y{). To reach the point g, the curve (z(t),(t)) must satisfy
2(1) = z. Geometrically, it is clear that a curve (z*(t),(¢)) linking the points p
and g while enclosing the area prescribed by z, will always exist. Thus, the integral
curve c(t) given by

(2(2), 2 (2),- .., 2" (), 41 (8), -, 9" (2), t (2), .. ., ts?(2))
has ¢(0) = p and ¢(1) = ¢ and satisfies the equation & = 0, and the system therefore
has the local accessibility property. |

3.1.2. Codimension two systems. We now consider Pfaffian systems of codimen-
sion two. We are again interested in performing coordinate changes so that the
generators of these Pfaffian systems are in some normal form.

Theorem 39. (Engel) Let I be a two dimensional codistribution
I ={d',a?}

of four variables. If the derived flag satisfies
dimI®) =1

dimI® =0
then there exist coordinates 2!, 22,23, 2% such that
I = {dz* - 2%d2?,d?® — 22dz')
Proof. Choose a basis for I which is adapted to the derived flag; that is I(® = J =
{a!,a?}, IV = {a'}, and I® = {0}. Choose a® and a* to complete the basis.
Since I = {0} we have
da' Aol #0
while
(do?) A =0
since it is a 5-form on a 4-dimensional space. Therefore a' has rank 1. By Pfaff’s
Theorem, we know that there exists a coordinate change so that
1= do? - 23d2!
Taking the exterior derivative, we have that
do! = —dz3 Adz' = d2! A d2B
Now, since a® € I(!), the definition of the first derived system will imply that
da' Aat Ae® =0
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and thus
dz' Ad2*Ae* Aa®? =0
Therefore a? must be a linear combination of dz?,d2? and a!:
a® = a(z)dz® + b(z)dz! mod o*
By definition, this means that
a® + A(z)a! = a(z)dz® + b(z)dz

Now if either a(z) = 0 or b(z) = 0, then da? A a* A a®> = 0 and thus the flag
assumptions are violated. Thus a(z) # 0 and therefore

1 2 A=) o b(x)
+==tal =d® + ==
a@)” " @) a(z) )
and if we set 22 = —: 231 then
1 . ,\(z) al = 1
a.(z)a + — a(z ) dz® — 22d:
and thus
I={a',a?} ={al,;-(1m-)a2 ’\(“’) o'} = {d2* - 2d2t,d2 - 2da")

O

It should be noted that the only place the dimension assumption is used in the
proof is to guarantee that (da')? Aa! = 0. If o has rank 1 this equality holds by
definition.

Corollary 40. LetI = {a!,0?} be a two dsmenswnal codistribution. If the derived
flag satisfies dimIM) = 1 and dimI® = 0 and o' € IM) has rank 1, then there
ezist coordinates z!,22, 23, 24 such that

I ={dz* - 2°dz',d2® — 2%dz2"}
Proof. The corollary follows by the proof of Engel’s Theorem. O

Example. Consider again the penny rolling on a plane. The system is described
by the codistribution I = {a!,a?} where

a! = cosfdz + sinOdy + d¢
o® = sinfdr — cosfdy
In Example 2.3.4, we saw that the derived flag for this system is given by
I® = {a',a?)
M = fa'}
% = {0}
and thus satisfies the conditions of Engel’s Theorem. After some calculations we
obtain
da' Aa' = —dzAdyAdd+sinbdf Adz Adp+ cosOdf Ady A dp

Since (da')? A @' = 0 the rank of ! is 1. Following the proof of Pfaff’s Theorem
we know that there exists a function f; such that

do* Aot Adfy =
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We can easily see that the function f; = @ is a solution to this equation. Since the
rank of o' is 1, we must now search for a function f> such that

a' Adfy Adf; =0
Let f; = fa(z,9,0,¢). Then it may be verified that a solution to this system of
equations is

fo(z,9,6,0) = xcosb + ysinf + ¢

Therefore, following again the proof of Pfaff’s Theorem we may now choose 2! = f;
and z* = f, so that

a! =dz* - 234!
where 23 can be found from the above equation to be

23 = —zsinf + ycosd
We will now try to transform a? into the normal form. Following the proof of
Engel’s Theorem, we have that
o’ = [a(z,y,6, $)dz® + b(z,y,0, $)dz'] mod o’

We must now determine the functions a and b. Simple calculations show that the
following choices

a(z,y,9,¢) = -1

b(z,y,0,¢) = -—xcosf—ysind
will satisfy the equation. Therefore by Engel’s Theorem, if we set
2 . b(xv Y, 01 ¢)
2= —zcosf — ysm0 = —W
we may express a',a? in the following normal form
a! = dzf -23d!
a? = dzf -2%d!
If we look at the differential equation expressed in these new coordinates we obtain
34 = 5331
33 = 5231

and 2!, 22 are free. The annihilating distribution is given by

1 0
a=3121 o] = tore2)
28] |0
If we set 2! = u,, 22 = u, the distribution has the form

i‘ = zsul

3 = 2%y

2?2 = U2

21 = m

or z = g1u; + gous. The advantage of performing this coordinate transformation
is that our system can be expressed in this simple form. In particular if we set
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u; = 1 then the system has been transformed to a linear system in Brunovsky
canonical form. This allows us to use the powerful analysis tools that exist for linear
systems. Engel’s Theorem therefore gives the conditions under which a system of
four configuration variables with two constraints can be “linearized”. O

Engel’s Theorem can be generalized to a system with » configuration variables and
n — 2 constraints. This powerful theorem was proved by Goursat.

Theorem 41. (Goursat Normal Form) Let I be a Pfaffian system spanned by s
1-forms,
I={d,...,a%}

on a space of dimension n = s + 2. Suppose that there erists an integrable form «
with m # 0 mod I satisfying the Goursat congruences,

doi = —at' Armedal,...,a' 1<i<s—-1

da’ # 0mod I
Then there exists a coordinate system 2,22,...,2" in which the Pfaffian system is
in Goursat normal form:

I={d2® - z%dz',dz* — 22d2!, ... dz" — 2" 1d2')

(75)

Proof. The Goursat congruences can be expressed as

do'? = —o? A7 moda
do? = -o® A7 modal,a?

doa®"! = -—-a’Ammodal,d?,...,0°
de* = -a**'Anrmodat,d?,...,a°

where a®+! ¢ I. It can be shown that {a’t!,7} must form a complement to I.
This basis satisfies the Goursat congruences and is adapted to the derived flag of
I

10 = {a'0?...,0%)
M = {d!,...,a* 1}

I(a—l) __: {al }
I = {0}
From the Goursat congruences,
do' = —a? A mod o
which means that
do! =—c?Am+alAg
for some one-form 7. But then we have that
do' Aa' =—a? AT A #£0
(da?)® Aa® =0
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which means that o' has rank 1. We can therefore apply Pfaff’s Theorem and
express a! as

al =dz" - ;" ld7?

for some choice of z!,2"~1, 2. Furthermore, by Corollary 40 we can express a? as

a? =dz™! - 2" 24! (76)
In these new coordinates we have

do! Aa! = —dz""? Ad2t A d2"
Now we have that
d' Aa* Ar =7 A(—=dz" P Ad2' Adz") =7 A(-a? AT Aal) =0
and therefore 7 is a linear combination of dz!,dz"!,dz". Noting that dz"~! =
z"2dz! mod o!,a?,
7 =adz' + bdz""? + cdz”
=adz! + bz""2dz! + cz""1dz! mod a!,0?
=ydz! mod a!,a?

where ¢ = a + bz"~2 + cz"~! is nonzero since we have assumed that 7 # 0 mod I.
From the Goursat congruences we have that

do® = —~a® Am mod &, a?
while from equation (76) we have

do?® = —dz""2 A dZ?
and thus
—dz""2 Ad2! = —a® A 7 mod at, o?
which means that
a® = Mz)dz""% mod dz2',a*,0?

for nonzero function A(z). Therefore we can rewrite this as

1
3 _ g.n-2 _ 1 1,2
a® =dz _A(z)dz mod o,

and if we set 273 = X5y We have
a® =dz"? - 2" 3d2! mod o}, a?
and we can therefore let
a® =dz""% - "3t
If we inductively continue this procedure using the Goursat congruences we obtain

ol = d"3 - gt

= d2% - 2%d2!
Now from the Goursat congruences we have that
do’® #0mod I

al
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1

and therefore
a'Aa®A---Aa® A da’ # 0
If we substitute the of in the above expression we obtain
dz AdZ2 A Ad2" #£0
and therefore the functions z?,..., 2" can serve as a local coordinate system. [J

The following example illustrates the power of the Goursat’s Theorem by apply-
ing it in order to linearize a nonlinear system. A more systematic approach to the
feedback linearization problem can be found in the paper by Gardner and Shad-
wick [11]. Note that the integral curves of a system in Goursat normal form are
completely determined by two arbitrary functions in one variable and their deriva-
tives. For example, once z!(7) and 2°(7) are known, all of the other coordinates
are determined from

i i+l (T)
#(r)
where the dot indicated the standard derivative with respect to the independent
variable 7. Because of this property, these two coordinates are sometimes referred
to as linearizing outputs for the Pfaffian system.

Example. Consider the following nonlinear system with s configuration variables
and a single input,

:i)l = f;(.’l:l,. .o ,x,,u)

:Ez = fz(zl, cee ,:v,,u)

s = fo(®1,...,Zs,u)
Equivalently we can look at following Pfaffian system,
I={dz* - fi(z},...,2°,u)dt} 1<i<s
The system is of codimension 2 since we have s constraints and s + 2 variables,
namely z!,...,2°% u,t. Assume that the form = = dt satisfies the Goursat con-

gruences. Then by Goursat’s Theorem there exists a coordinate transformation
z = ®(z,u,t) such that I is generated by

I={d® - 22d2',d2* — 28d2!,. .. d2"*2 - 2*+1d2")

The annihilating distribution of the above codistribution is

z = "N
22 = vV
23 = 22'01

é’+2 - z'“v;

which, if we set v; = 1, is clearly a linear system. If it turned out that the z!
coordinate corresponds to time in the original coordinates, that is, 2! = t, then
the connection becomes even more clear. Goursat’s Theorem can thus be used
to linearize single-input nonlinear systems which satisfy the Goursat congruences.
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FIGURE 1. The mobile robot Hilare with n trailers.

These and other issues related to control systems will be explored more fully in
Section 4. (]

3.2. The N-trailer Pfaffian system. In this section, we will show how the system
of a mobile robot towing n trailers can be represented as a Pfaffian system. As we
saw in the unicycle example, the constraint that a wheel rolls without slipping can
be represented as a one-form on the configuration manifold. The velocity of the N-
trailer system is constrained in n directions corresponding to the n axles of wheels.
A basis for this constraint codistribution (or equivalently, the Pfaffian system) is
found by writing down the rolling without slipping conditions for all n axles.

3.2.1. The system of rolling constraints and its derived flag. Consider a single-axle
mobile robot such as Hilare® with n trailers attached, as sketched in Figure 1. Each
trailer is attached to the body in front of it by a rigid bar, and the rear set of wheels
of each body is constrained to roll without slipping. The trailers are assumed to
be identical, with possibly different link lengths L;. The z,y coordinates of the
midpoint between the two wheels on the itB axle are referred to as (z*,y') and the
hitch angles (all measured with respect to the horizontal) are given by 6. The
connections between the bodies give rise to the following relations:

zt! = 2 + L; cos 6

) ) . i=1,2,...,n (77)
¥ =9y '+ L;sinét

Obviously, the space parameterized by the coordinates (z°,°,6°,...,2",y*,0"%) €
R27+2 x (S1)"+1 js not reachable. Taking into account the connection relations (77),
any one of the Cartesian positions z¢,3* together with all the hitch angles §%,... ,6"
will completely represent the configuration of the system. The configuration space
is thus M = R2 x (§')"*! and has dimension n + 3. In any neighborhood, the
configuration space can be parameterized by R*+3,

The velocity constraints on the system arise from constraining the wheels of
the robot and trailers to roll without slipping; the velocity of each body in the
direction perpendicular to its wheels must be zero. Each pair of wheels is modeled
as a single wheel at the midpoint of the axle. Each velocity constraint can be
written as a one-form,

o' =sinf'ds’ — cosfidy’ i=0,...,n (78)
The one-forms a®,al,... ,a™ represent the constraints that the wheels of the ze-
roth trailer (i.e. the cab), the first trailer, ..., the nth trailer, respectively roll

5The Hilare family of mobile robots resides at LAAS in Toulouse, see for example [7, 12].
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without slipping. The Pfaffian system corresponding to this mobile robot system
is generated by the codistribution spanned by all of the rolling without slipping
constraints:

I={a...,a"} (79)

and has dimension n + 1 on a manifold of dimension n + 3.

Before finding the derived flag associated with I, it is useful to investigate some
properties of the constraints and their exterior derivatives. Notice that equation
(78) can be rearranged (after a division by a cosine) to give the congruence:

dy' = tan@'dz* mod o (80)

This division by a cosine introduces a singularity; the resulting coordinate trans-
formation will not be valid at points where 8* = +7/2. See Remark 3.2.2 for a brief

discussion of singularities.
All of the (z%,y’) are related by the hitch relationships. The exterior derivatives

of these relationships can be taken,
' =z' + L;cosé’ dz*~! = dz* ~ L;sin §'d6’
y:—l = yt + L;siné* dyt-l = dyi + L; cos#'dé’

and these expressions can then be substituted into the formula for o*~! from (78),
allowing the constraint for the (¢ — 1)** axle to be rewritten as:

o1 =5sin6"1dzri? — cos @' 1dy*? (81)
=sin6*~'dz’ — cos6*~'dy* — L; cos(*~? - 6%)df’ (82)
= (sinf*! — tan 6 cos§~)dz' — L; cos(6*"* — 6)ds* mod o' (83)
= sec'sin(6*~! — 6*)dz* — L; cos(8'~* - 6')dp’ mod of (84)

after an application of the congruence (80). A rearrangement of terms and a division
by cosine in equation (81) will give the congruence

dot = Li secfitan(6* ! — 6')dz' mod of,a’? (85)
]
= foids' mod of,a*"! (86)

The exact form of the function fpi is unimportant; what will be needed is the
relationship between df* and dz*.
The first lemma relates the exterior derivatives of the z coordinates,

Lemma 42. The egterior derivatives of any of the = variables are congruent mod-
ulo the Pfaffian system, that is: dz* = f,i.;dz’ mod I.

Proof. For two adjacent axles, the relationship between the z coordinates is given
by the hitching,

' =2 + L;cosé’ (87)
dz*~! = dz’ — L;sin6'df’ (88)
= (1 — L;sin 0° f5:)dz® mod o'}, o (89)

= fpi-1:dz’ mod o1, af (90)

The congruence (85) was applied. m]



EXTERIOR DIFFERENTIAL SYSTEMS IN CONTROL AND ROBOTICS 47

A complement to the Pfaffian system I = {a¥,... ,a"} is given by
{dé°, d=*} (91)

for any 7', since by Lemma 42 their exterior derivatives are congruent modulo the
system, and the complement is only defined modulo the system. These two one-
forms, together with the codistribution I, form a basis for the space of all one-forms
on the configuration manifold, or Q! (M).

Now consider the exterior derivative of the constraint corresponding to the ith
axle,

a' = sin#'dz’ — cosb'dy’ (92)
da’ = df A (cos6'dz’ + sin 6'dy’) (93)
= db* A dri(cos @ +sin 6 tan6’) mod of (94)

= df* A dz’(sec ') mod o' (95)
=0 mod af,a’™? (96)

using (85). Thus, the exterior derivative of the constraint corresponding to the ith
axle is congruent to zero modulo itself and the constraint corresponding to the axle
directly in front of it. The congruences (80) and (85) were useful in deriving this
result.

This is all the information that is needed to find the derived flag for the system.

Theorem 43 (Derived flag for the N-trailer Pfaffian system). Consider the Pfaf-
fian system of the N-trailer system (79) with the one forms o' defined by equations
(78). The one-forms a® are adapted to the derived flag in the following sense:

IO = {a® d,... ,a"} (97)
IV = {al,... 0"} (98)

: (99)

I™ = {a"} (100)
In+1) = {0} (101)

Proof. The proof is merely a repeated application of equation (92). Noting that
the exterior derivative of the i*2 constraint is equal to zero modulo itself and the
constraint corresponding to the axle directly in front of it, it is simple to check that
the derived flag has the form given in equation (97). O

Note that I("+!) = {0} implies that there is no integrable subsystem contained
in the constraints which define N-trailer Pfaffian system.

3.2.2. Conversion to Goursat normal form. In the preceding subsection, it was
shown that basis {a?,...,a"} defined in equation (78) is adapted to its derived
flag in the sense of (97). It remains to be checked whether the of satisfy the
Goursat congruences and if they do, to find a transformation that puts them into
the Goursat canonical form. The following theorem guarantees the existence of
such a transformation.
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Theorem 44 (Goursat congruences for the N-trailer system). Consider the Pfaf-
fian system I = {a°,... ,a™} associated with the N-trailer system (79) with the
one-forms o defined by eguation (78). There ezists a change of basis of the one-
forms o' to & which preserves the adapted structure, and @ one-form m which
satisfies the Goursat congruences for this new basis:

dai=-a""'Ar modéd’,...,a" i=1...,n
da’ #£0 mod 1.
A one-form which satisfies these congruences is given by
7 = dz" (102)

Proof. First of all, consider the original basis of constraints. The expression for o
can be written in the configuration space coordinates from equation (78) together
with the connection relations (77) and some bookkeeping as:

n
o =sin@'dz™ — cosO'dy™ - Z Ly cos(8® — 6%)do* (103)
k=i+1
Before beginning the main part of the proof, it will be helpful to define a new basis
of constraints &', which is also adapted to the derived flag, but is somewhat simpler
to work with. Each & will have only two terms. Although the last constraint
already has only two terms, it will be scaled by a factor,

a"” =secf”a” = tanf"dz" — dy™ (104)
Note that a rearrangement of terms will give the congruence
dy” = tan 0"d2™ mod & (105)

Now consider the next to last constraint, a®~1, and apply the preceding congruence:
a"! =5in 6" 'dz" — cos§™~'dy™ — L, cos(8" — g"~1)dg"
= secd™sin(6"! — 9")dz" — L, cos(§™~! — 6")dé" mod 6"
Dividing once again by a cosine, the new basis element &"~! is defined as
a1 =secf” tan(6""! - §")dz" — L,dg" (107)
Thus, @"~! = f,n-10""! mod a". Also, the exterior derivative d" is related to
dz™ by the congruence

n = Li secd” tan(6""! — 0")dz" mod ™! (108)
n

This procedure of eliminating the terms dy™,dé",...,dd" from a*+! can be contin-
ued.

Lemma 45. A new basis of constraints & of the form
&" = tan@"dz" - dy"
&' = secd™ sec(d"! - 6")...sec(6+! — git2) tan(§® — §°+1)dz" — L;,,do*H?
i=0,...,n-1

(106)

(109)
is related to the original basis of constraints o through the following congruences:
& = fuad modot,... o (110)
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and thus the basis &' is also adapted to the derived flag.
Note that by the definition of &*, the exterior derivative d§**! is related to dz™
by the congruence
dgitl = -Ll— secd” sec(d”! — 0")...sec(6**! — 6+%) tan(#' — 6°t')dz” mod &
i+1
(111)

The lemma is proved by induction. It has already been shown that @" = fona™
and "1 = fin-10®! mod G". Assume that & = f,:a' mod a'*l,...,a" for
i=j+1,...,n. Consider 47 as defined by equation (109),

& =secO"sec(§""! —@")...sec(¢/+! — 69+2) tan(¢’ — 67! )dz" — L;,1de7+!

(112)
Recall from equation (103) that o’ has the form
n
o =sin@dz™ — cosPdy™ — E Ly cos(¢’ — 6*%)do* (113)
k=j+1
Now, applying the congruences
dy”™ = tan"dz" mod &"
doi = L secon sec(6™ ! — 0™)...sec(8' — 6'+!) tan(6'"! — 6')dz”  mod &*!

L;
to the expression for o/, and expanding the summation, yields
o’ =sin6/dz" — cos@’ tan §"dz"™ — L4, cos(§? — 67+ )dgi+?
— cos(§7 — 07+2) sec ™ sec(6™ ! — O™)...sec(6¢7+? — 67+3) tan(67t? — §912)dz"
— cos(§ — 6" ') secd” sec(d”! — 6™) tan(9"~2 — 91 )dz™
~ cos(¢? — 6™)sec 0™ tan(9™"! — 6")dz™

mod &*1,...,a"2,&a"1,a"
(114)

To simplify the above expression, the trigonometric identity
sina — cosatan b = secbsin(a — d) (115)

is repeatedly applied. After all the terms are collected, it can be seen that the
equation will read:
o =sin(§ — §7+!) sec 0" sec(9™ ' — 67)...sec(¢! — §3+2)dz"
— Lj4; cos(6? — g7+1)dgi+! mod &*1,...,a""2,6"1,a"  (116)
= cos(¢’ — #9t)a? mod &H1,...,a" 2,67, a7
and the lemma is proved. _
The basis & will now be scaled to find the basis & which will satisfy the con-

gruences (75). Once again, the procedure will start with the last congruence, &".
The exterior derivative of &" is given by

da™ = sec? 9"dO™ A dz™ (117)
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Looking at the expression for G"~! given in equation (107), it can be seen that
« should be chosen to be some multiple of dz™ or df". In fact, either # = dz™
or 7 = df"™ will work, although the computations are different for each case. The
calculations here are for choosing 7 = dz®. Choosing the new basis element a"~!
as
a1 = L sec?gnan-! (118)
L,

will result in the desired congruence,
da" = -a""'A7 mod o" (119)
Now consider the exterior derivative of a"~1,

da"! = d(-l- sec® 0" tan(6" ! — 9")dz™ — L, sec? 6"do")
L,
. (120)
=i secd 0" sec?(0™~! — 0")d6" ! Adz™ mod a"!
n

since any terms df" A dz™ are congruent to 0 mod G™~!. Thus, in order to achieve
the next Goursat congruence da™~! = a"~2 A, the new basis element @"—2 should
be chosen as

An—2 _ 3 gn 2(an—1 _ gny=n—2
a" ¢ = I sec” 0" sec*(6 Ma (121)
In general, the new basis is defined by
. 1 . )
@ = —————sec" " gngecni(g"1 - 9")...
Tlos. Lin il )
sec®(0*+? — 6°+3) sec’(6*! — '+ )&’ (122)

It has already been shown that the congruences hold for i = n and i = n — 1.
Assume that the congruences

dd' =-a""'A7 modd,...,a". (123)
hold for i = j + 1,...,n. Consider the exterior derivative of a7,
dad = d[(m sec™I+1 gn gecn—i(gn-1 _ gn) .
sec?(672 — 67*3) sec?(67+! - ¢7+2))&
Before calculating all of the terms, recall that the following congruences hold:
d9*Adz® =0 mod &*!
dé* Adf* =0 mod &*!,a*?

and thus the only term in d&’ mod &J,...,&" will be a multiple of d7 A dz",

(124)

. 1 ; ;
A = —— 1 gechi+2gngecn—iti(gn-1 _gny .
IoIna. Lin sec™™ )
sec!(7+2 — 67+3) sec® (694! — 67+2) sec?(§7 — 97+1) (125)

mod &,...,a"
=& 'A7 modéd,...,a"

This completes the proof that the Goursat congruences are satisfied. (]
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Since the one-forms &* do satisfy the Goursat congruences, a coordinate transfor-
mation into Goursat normal form can be found. As seen in the proof of Goursat’s
Theorem, the one-form a™ in the last nonzero derived system has rank 1. We can
therefore use Pfaff’s Theorem to find functions f; and f. which satisfy the following
equations

da"Aa" Adfy =0 a” Adfy #0
aAdiAdh=0 ™ dfadn o (126)
The constraint corresponding to the last axle is once again given by®
o" = gin6"dz" — cos§"dy™ (128)
and its exterior derivative has the form
da" = —cos@"dz™ A d0™ — sin 0"dy" A dO™, (129)
It follows that the exterior product of these two quantities is given by
da®™ A a” = —dz™ Ady"™ A dO™. (130)

By the first equation of (126), f; may be chosen to be any function of z”,y",6"
ezclusively.
Two different solutions of the equations (126) are explained here.

Transformation 1. Coordinates of the N th trailer. Motivated by Serdalen [29),
f1 can be chosen to be z™. The second egquation of (126) then becomes

sin@"dz™ Ady™ Adf =0 (131)

with the proviso that df; Adfs # 0. A non-unique choice of f; is
fo=y" (132)

The change of coordinates is defined by:

zn = fi(z) =2" (133)
Znys = fa(z) = 9" (134)

The one form a™ may be written by dividing through by sin 4™ as
a” =dy" — tan0"dz" (135)
=dzp+3 — Zn42d2z1, (136)

giving 2n41 = tan 6". The remaining coordinates are found by solving the eguations

o' =dziy3 — zig2dzy mod a't),... 0" (137)

SThe basis that satisfies the Goursat congruences was a scaled version of the original basis,

&" = fona™. However, it can be checked that
da@" A &" = (dfan A Q" + fanda™) A fona®
2 azn
= (fan)*da™ A "

and thus a function f) will satisfy da™ A a™ A df1 = 0 if and only if d&™ A &™ A df; = 0.
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Jori=n-1,...,1. In fact, because dz; = 7 as chosen in the proof of Theorem
44, the one-forms &' already satisfy these equations,

&i = 1 secn—i+l o secn-i(on—l - an) .. sec3(€i+2 _ 9i+3) sec2(9i+l - 0i+l)
Ln e L,‘+1
(sec 6" sec(6™~! — @")...sec(8*! — 6°*%) tan(6* — 6°+)dz" - L,-+1d,9‘+1)
(138)

and so the coordinates z; are given by the coefficients of dz™ in the expression for
the &',

Transformation 2. Coordinates of the origin seen from the last trailer. Yet an-
other choice for fi corresponds to writing the coordinates of the origin as seen from
the last trailer. This is reminiscent of a transformation used by Samson [24] in a
different contezt, and is given by

2] = fl(.‘c) =z" cosd" + yn sing”. (139)

This has the physical interpretation of being the origin of the reference frame when
viewed from a coordinate frame attached to the nth trailer. It satisfies the first
of the equations of (126) simply by virtue of the fact that it is only a function of
z",y",0". It may be verified that a choice of fo given by

Znys = fo = z"sin0" - y" cos " — 6™ 2; (140)
satisfies the Pfaff equation,
a' Adfy Adfy =0. (141)

The remaining coordinates z,...,2n42 corresponding to this transformation
may be obtained by solving the equations

o =dziy3 — zig2dzi mod oftl,... " (142)
fori=n-—1,...,1. The details are tedious and are omitted.

Remark (Singularities). There are two types of singularities associated with the
transformation into Goursat form. At 8 = 7 /2, for example, the transformation
will be singular, but this singularity can be avoided by choosing another coordinate
chart at the singular point (such as by interchanging z and y, using the SE(2)
symmetry of the system). A singularity also occurs when the angle between two
adjacent axles is equal to 7/2; at this point, some of the codistributions in the
derived flag will lose rank. The derived flag is not defined at these points; nor is
the transformation. There are no singularities of the second type for the unicycle
(n = 0) or for the front-wheel drive car (n = 1).

Once the constraints are in the Goursat normal form, paths can be found which
connect any two desired configurations. See Tilbury, Murray, and Sastry [34] for
details.

3.3. The Extended Goursat Normal Form. While the Goursat normal form
is powerful, it is restricted to Pfaffian systems of codimension two. In order to
study Pfaffian systems of higher codimension, we present the extended Goursat
normal form. Whereas the Goursat normal form can be thought of as a single chain
of integrators, the extended Goursat form consists of many chains of integrators.
Consider the following definition,
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Definition 40 (Extended Goursat Normal Form). A Pfaffian system I on R*+™+1
of codimension m + 1 is in extended Goursat normal form if it is generated by n
constrasnts of the form:

I= {dzJ ,_Hdz =1,...,8;355=1,...,m}, (143)

This is a direct extension of the Goursat normal form, and all integral curves
of (143) are determined by the m + 1 functions 2°(t), z}(2),... ,2*(f) and their
derivatives with respect to the parameter ¢. The notation has been changed shghtly,
the canonical constraints are now dz} — z},,dz% whereas before they were dz* —

z'~1dz,. For the Goursat form, the constraint in the last nontrivial derived system
was dz" — 2"~ 1dz!; in the extended Goursat normal form, it will be dzj zj dz0.
We refer to the set of constraints with superscript j as the jth tower (the reason
for this name will become clear after we compute the derived flag).

Conditions for converting a Pfaffian system to extended Goursat normal form
are given by the following theorem:

Theorem 46 (Extended Goursat Normal Form). LetI be a Pfaffian system of codi-

mension m+1. If (and only if) there exists a set of generators {af :i=1,...,8;;5 =
1,...,m} for I and an integrable one-form m such that for all j,

dof = —od, A mod I*~9 §=1,...,5;-1 (144)

desj #0 mod (145)

then there exists a set of coordinates z such that I is in extended Goursat normal
form,

I= {dz ,Hdz 1i=1,...,8;j5=1,...,m}.

Proof. If the Pfaffian system is already in extended Goursat normal form, the con-
gruences are satisfied with 7 = dz® (which is integrable) and the basis of constraints

of =dz} — 21, d2".

Now assume that a basis of constraints for I has been found which satisfies the
congruences (144). It is easily checked that this basis is adapted to the derived flag,
that is:

M ={ad: i=1,...,8-kj=1,...,m}

The coordinates z which comprise the Goursat normal form can now be constructed.

Since = is integrable, any first integral of 7 can be used for the coordinate 2°.
If necessary, the constraints or' can be scaled so that the congruences (144) are
satisfied with dz°:

dof = —of,, Adz® mod I¢—) §=1,...,8—1

and the constraints can be renumbered so that 8y > 85 > -+ > 8.
Consider the last nontrivial derived system, I(*:=1), The one-forms ol,... ,a}!
form a basis for this codistribution, where 8; = s, = --- = s,,. From the fact that

dof = —af Adz® mod 1D,
it follows that the one-forms o}, ... ,a]* satisfy the Frobenius condition:

dodAalA---Aa Ad2® =0
SAN%) 1
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and thus, by the Frobenius Theorem, coordinates z},...,2{* can be found such
that
al dz]
: =A : + Bdz°
ay’ dzp

The matrix A must be nonsingular, since the a{’g are a basis for I(*»=1) and they
are independent of dz°. Therefore, a new basis @] can be defined as:

al o} dz]
=AY | = : +(A™1B)d2°
&{‘ af? dz
and the coordinates 2} := —(A~!B); are defined so that the one-forms or’ have the

form
& = dz] - 2d2°

for j =1,...,r;. In these coordinates, the exterior derivative of &{ is equal to
d&] = —dz} A d2°

If there were some coordinate z§ which could be expressed as a function of the
other zJ's and z]’s, then there would be some linear combination of the &)’s whose
exterior derivative would be zero modulo I{(®1=1) which is a contradxctlon Thus,
this is a valid choice of coordinates.

By the proof of the standard Goursat Theorem, all of the coordinates in the 3th
tower can be found from z-’ and z°. By the above procedure, all the coordinates in
the first r; towers can be found

To find the coordinates for the other towers, the lowest derived systems in which
they appear must be considered . The coordinates for the longest towers were found
first, next those for the next-longest tower(s) will be found.

Consider the smallest integer k such that dim I(®*—%) > kr,; more towers will
appear at this level. A basis for I{(41~%) jg

{al,...,a},...,ap,... yat,aptt L i)
where & = dzJ - z;?+1dz° for j = 1,...,7, as found in the first step, and of for
J =rm+1,...,r2 are the one-forms which satisfy the congruences (144) and are
adapted to the derived flag. The lengths of these towers are Spi41 =+t 8pypry =
81 — k+ 1. For notational convenience, define z’ k= (#,..., zi)forj=1,.

By the Goursat congruences, da} = —aj A dz° mod I(**=¥ for j = r, +
1,...,71 + r2, thus the Frobenius condxtlon

dof APt A NPT AdZ} A AdZE A ADZ A AdZ] AdZ® =0

is satisfied for j = r1+1,... ,71+72. Using the Frobenius Theorem, new coordinates
Z7VF ., 2]¥72 can be found such that

Q?'H dzf‘ +1 dz(lk)
: | =4 : [+BdL"+C
a;‘x +r2 dzf‘ +r2 dz{,t)
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Since the congruences are only defined up to mod I{(®*—*), the last group of terms
(those multiplied by the matrix C) can be eliminated by adding in the appropriate
multiples of &} = dz] —2],,dz% for j =1,... ,r and i =1,... , k. This will change

the B matrix, leaving the equation

=ri+l ri+1
& dz;

: |=A| : |+Bd®
&;'1 +r2 dz{‘ +r2

Again, note that A must be nonsingular because the a{’s are linearly independent
mod I{*1=%) and also independent of dz°. Define

&;’1 +1 &;‘x +1 dzi-x +1
(=4t o = | +(A7'B)L°
&;': +r2 &;: +r2 dzf’ +r2

and theq deﬁpe the coordinates z.‘,' = —(A"lﬁ),- forj=7r1+1,...,m + 72 s0 that
c'ir{ = dz] — z}dz®. Again, by the standard Goursat Theorem, all of the coordinates
in the towers 7y + 1,... ,7; 4+ r2 are now defined.

The coordinates for the rest of the towers are defined in a manner exactly anal-
ogous to that of the second-longest tower. O

If the one-form 7 which satisfies the congruences (144) is not integrable, then
the Frobenius Theorem cannot be used to find the coordinates. In the special case
where si{%> 33, that is, there is one tower which is strictly longer than the others, it
can be shown that if there exists any 7 which satisfies the congruences, then there
also exists an integrable =’ which also satisfies the congruences (with a rescaling of
the basis forms), see [4, 21]. However, if 8; = s3, or there are at least two towers
which are longest, this is no longer true. Thus, the assumption that 7 is integrable
is necessary for the general case. _

If I can be converted to extended Goursat normal form, then the derived flag of
I has the structure:

—_ 1 1 1
lI_ {al’ TN ceey, aa‘_l, aal’ ceey a;n’ N a;':..—l’
-— 1
I()_ {a%’ N ceey, a61—11 cee, ai"’ TN a:’:‘_l}
Sm—1) 1 1 m
I( m=1) — {al’ cer a31—3m+1’ erey of }
-2) _
I=2) = {a}, o}
T = o]
I = {0}

where the forms in each level have been arranged to show the different towers. The
superscripts j indicate the tower to which each form belongs, and the subscripts i
index the position of the form within the j"h tower. There are s; forms in the jth
tower.

Another version of the extended Goursat normal form Theorem is given here,
which is easier to check, since it does not require finding a basis which satisfies the
congruences but only one which is adapted to the derived flag. One special case of
this theorem is proven in [25].

m
a, .
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Theorem 47 (Extended Goursat Normal Form). ‘A Pfaffian system I of codimen-
sion m + 1 on R™*™*1 can be converted to extended Goursat normal form if and
only if IN) = {0} for some N and there ezists a one-form © such that {I®),x} is
integrable for k=0,... ,N - 1.

Proof. The only if part is easily shown by taking 7 = dz° and noting that

I®) = {dzf - 21, | d2°: i=1,...,8-kj=1,...,m}
{I(k),w}z{dzg,dzoz i=k+1,...,8555=1,...,m}

which is integrable for every k.

Now assume that such a 7 exists. After the derived flag of the system, I =:
I 5 1) 5 ... 5 1(#) = {0}, has been found, a basis which is adapted to the
derived flag and which satisfies the Goursat congruences (144) can be iteratively
constructed.

The lengths of each tower are determined from the dimensions of the derived flag.
Indeed, the longest tower of forms has length s,. If the dimension of J(#1=1) js ry,
then there are 7, towers which each have length s,; and we have s; =83 =+« = Sy
Now, if the dimension of I{*1=2) is 2r; + 5, then there are 7, towers with length
81 —1, and sy 41 = --* = 8¢, 4y, = 81 — 1. Each s; is found similarly.

A 7 which satisfies the conditions must be in the complement of I, for if 7 were
in I, then {I,7} integrable means that I is integrable, and this contradicts the
assumption that (V) = {0} for some N.

Consider the last nontrivial derived system, I(*1=1). Let {al,...,a}'} be a basis
for I{®1=1), The definition of the derived flag, specifically I{*1) = {0}, implies that

dod #0 mod I®-Y j=1,...,n (146)
Also, the assumption that {I(*), 7} is integrable gives the congruence
dod =0 mod {I*-V,7} j=1,...,n (147)
combining equations (146) and (147), the congruence
dof =xAfF mod I~V j=1,..,n (148)

must be satisfied for some 47 # 0 mod I(#1-1),
Now, from the definition of the derived flag,

dd =0 modI®-2 j=1_.. 5

which combined with (148) implies that 47 is in J(#1~2),

Claim. 8,...,B" are linearly independent mod I(*1-1),

Proof of Claim. The proof is by contradiction. Suppose there exists some combi-
nation of the 37’s, say

B=bB"+-+b,f" =0 mod I»-D)

with not all of the b;’s equal to zero. Consider a = bja} + --- + by, a*. This
one-form a # 0 because the o] are a basis for I{#1=1), The exterior derivative of o
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can be found by the product rule,
T1 1
da =Y bjda] + ) dbjAo]
j=1 j=1
™ .
= ij('/r AB) mod It-1
Jj=1

1

=7TA (z b;#’) mod I~V
j=1

=0 mod I(#-V

which implies that a is in I(*1). However, this contradicts the assumption that
I(*1) = {0}. Thus the #7’s must be linearly independent mod I(*:~1).

Define o3, := 7 for j = 1,... ,71. Note that these basis elements satisfy the first
level of Goursat congruences, that is:

dof = - A mod IV j=1,...,n
r1+1 antn

If the dimension of I(*1=?) is greater than 2r;, then one-forms oj'*!,... ,a}

are chosen such that
1 r 1 r r1+1 r1+7r
{q,...,a,03,... ,03",a*™",... ,a]' 7"}

is a basis for J(®1—2), .
For the induction step, assume that a basis for J(*) has been found,

{al,...,a},,0l,...,0f,,...,0f,... ,af }
which satisfies the Goursat congruences up to this level:
dof, = —-od  Am mod I ®) k=1,...,k~1 j=1,..,c

Note c towers of forms have appeared in I (. Consider only the last form in each
tower that appears in J(), that is of ;»J = 1,...,c. By the construction of this

basis (or from the Goursat congruences), aj, is in I but is not in I¢+), thus
dof #0 mod IV j=1,....c
The assumption that {I(), 7} is integrable assures
dof, =0 mod {IV,7} j=1,..,c
thus do] , must be a multiple of 7 mod I¥,
dor,’;, =xAf modI® j=1,...,¢c

for some B/ # 0 mod I®). From the fact that af, is in I*) and the definition of
the derived flag,

doz{’, =0 mod IV j=1,...,¢c

which implies that 87 € I(~1). By a similar argument to the claim above, it can
be shown that the 57’s are independent mod I{¥). Define ai’, +1 =/, and thus

1 1 2 2 c 4
{al,... ,akl“,al,... ,akz+1,... s Xyyeen ’ak¢+l}
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forms part of a basis of I¢-1). If the dimension of Ii~1) is greater than k; +
k2 + --- + k. + c, then complete the basis of I(i-1) with any linearly independent
one-forms aft!,... ,a{*™ such that
{al, - 1@y 41103,e e 01,0 s0f, o 0f Ly, 05t aft )

is a basis for 7(i-1),

Repeated application of this procedure will construct a basis for I which is not
only adapted to the derived flag, but also satisfies the Goursat congruences.

By assumption, 7 is integrable mod the last nontrivial derived system, I{e1=1),
Looking at the congruences (144), any integrable one-form ' which is congruent
to 7 up to a scaling factor f,

7 =d2®= fr mod I(#-1)

will satisfy the same set of congruences up to a rescaling of the constraint basis by
multiples of this factor f. O

3.4. Prolongations of Pfaffian Systems. If a Pfaffian system I of codimension k&
satisfies the necessary and sufficient conditions for conversion into extended Goursat
form, then its integral curves are determined by k arbitrary functions. However,
even if a system cannot be transformed into Goursat form, its integral curves may
still have this property. If so, then I is said to be absolutely equivalent in the sense
of Cartan to the trivial system (the system with no constraints) on R¥.

Definition 41. Two Pfaffian systems I and J are said to be absolutely equiva-
lent (in the sense of Cartan) if there is a one-to-one correspondence between their
solution trajectories.

Although the concept of absolute equivalence will not be examined here in its full
generality, some sufficient conditions will be given for a Pfafian system to have a
prolongation which can be converted to Goursat form, and thus the integral curves
of I are determined by & independent functions. Consider a Pfaffian system I in
extended Goursat normal form:

I={dz{—zf+1dz°:i=1,...,s,-;j=1,...,m},

with independence condition dz°. Let the Pfaffian system J be defined by:
J={dz} -2},,dz°:i=1,...,;1 +1landi=1,...,8;;5=2,... ,m},

The coordinate z} ,, has been added, but the new system is also in extended
Goursat normal form. It is clear that there is a one-to-one correspondence of
integral curves between I and J although they are defined on manifolds of different
dimensions. J is said to be a prolongation by differentiation (of order one) of I with
respect to the independence condition dz°.

Prolongations by differentiation can also be defined for systems which are not a
priori in extended Goursat normal form. Let I be a Pfaffian system on a manifold
M with independence condition dt, and let dy be a one-form in the complement of
I. Define the system J on M x R given by

J = {I,dn - ydt}
to be a prolongation by differentiation of I, where the new coordinate y is the

fiber coordinate on R In effect, this adds the derivative of  (with respect to the
independence condition) as a state variable. As long as all solution trajectories are
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“smooth enough” (C'*°), there will be a one-to-one correspondence between solution
trajectories of the original and the prolonged system.
In general, many of these partial prolongations by differentiation may be taken.

Definition 42 (Prolongation by differentiation). Let I be a Pfaffian system of codi-
mension m+1 on R"™+1 with coordinates (z,v,t) for which dt is an independence
condition and {dv,,... ,dvy,,dt} forms a complement. Let by,... ,b, be nonnega-
tive integers and let b denote their sum. The system I augmented by the b one-forms

dvy —vidt, ..., dob~!—obrdt,
dv, —vidt, ..., dvdr= — b2t

dvp — vl dt, ..., ey dvbpr =1 — vbmdt,

is e prolongation by differentiation of I. The augmented system is defined on
Rntm+b+1

If a Pfaffian system I does not satisfy the necessary and sufficient conditions of
Theorems 46 and 47, then I cannot be converted into extended Goursat normal
form. It is possible, however, that there exists a prolongation by differentiation J of
I which does satisfy the extended Goursat conditions. In this case, the prolonged
system J can be put into Goursat normal form, paths can be found for the trans-
formed system using one of the methods described in [36, 32], and these paths can
be projected down onto the original Pfaffian system I to give integral curves.

Although the general problem of determining which Pfaffian systems can be
converted into extended Goursat normal form after prolongation is still an open
one, the following theorem gives some sufficient conditions under which such a
transformation exists.

Theorem 48 (Conversion to Goursat form with prolongation by differentiation).
Consider a Pfaffian system I = {a!,... ,a™} on R"+™+! with independence con-
dition dz° and complement {dv;,... ,dvm,dz°}. If there exists a list of integers
b1,... ,b;m such that the prolonged system

J ={ od,...,a",

dv; —v}d2°,... ,dvl ! —ohr 20,

dvy —v8,d20, ... ,dvbrt —lmd0 }

satisfies the condition that {J(¥) dz°} is integrable for all k, then I can be trans-
Jormed to extended Goursat normal form using a prolongation by differentiation.

Proof. The proof is by application of Theorem 47 to the prolonged system J. O

3.5. The multi-steering trailer problem. Previously, we discussed the system
of a car-like mobile robot towing n trailers. A similar system consisting of a chain
of wheeled trailers, several of which are steerable, will be considered as the main
example in this section.

First, consider a system of n (passive) trailers and m (steerable) cars linked
together by rigid bars, as sketched in Figure 2. It is assumed that each body
(trailer or car) has only one axle, since a two-axle car is equivalent (under coordinate
transformation and state feedback) to a one-axle car towing one trailer.
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" second steering train

en
— mth steering train

FIGURE 2. A multi-trailer system with n (passive) trailers and m
(active) steering wheels.

3.5.1. Configuration space. The active or steering axles are numbered from front
to back, starting with 1 and going up to m, and the passive axles are numbered
similarly from 1 to n. There are a total of n + m axles in the system. The angle
of each passive axle with respect to the horizontal will be represented by * where
i € {1,...,n} is the axle number. Each steerable axle together with the passive
axles directly behind it will be called a steering train.

The steerable axles may be interspersed among the passive axles in any fashion.
The indices of the passive axles which are directly in front of the steerable axles will
be denoted by n;,... ,nm_1. The first axle is always assumed to be steerable, and
thus ng = 0. The angle of the first axle with respect to the horizontal is denoted
by ¢'. If there are n, passive trailers in the first steering train, their angles are
denoted 6*,...,6™. The axle directly behind the first steering train is steerable,
and its angle with respect to the horizontal will be ¢?. The (passive) axles behind
the second steering wheel are thus ™+1,... ,6"2; the angle of the third steering
wheel will be ¢, and so forth. For convenience of notation, let n,, = n, although
in general the last axle will not be steerable. If the last axle is steerable, then
Np—1 = N,

Let 47 denote the absolute angle (with respect to the horizontal) of the bar
connecting the jth steered axle to the last axle of the (§ — 1)** steering train (which
may be either steered or passive). This can be considered to be the angle of the
bar connecting the jtb steering train to the (j — 1)** steering train. The Cartesian
position (z,y) of any one of the axles, along with all of the angles described above,
will determine the state of the system. The choice of which (z,y) will be deferred
for the time being, but it is noted that only one pair is needed.

The configuration of a trailer system consisting of n trailers and m steerable cars
is thus completely given by

£= [01)-“ 10na¢11--° ’¢m’,¢2,“. ,1/«"",:1:,31]T € (Sl)n+2m—l x R? .
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3.5.2. Pfaffian system. The nonholonomic constraints on the velocities, represent-
ing the fact that each axle of wheels rolls without slipping, form a codistribution of
one-forms in the cotangent bundle to the configuration manifold and thus generate
a Pfaffian system.

I the variables (z%,3%) are used to represent the Cartesian position of the ith
passive axle, then the constraint that the itk passive axle roll without slipping can
be written in these coordinates as:

W' = sin #'dz’ — cosBdy’ (149)
Similarly, let (z7,yJ) represent the Cartesian position of the j*B steerable axle

(where the subscript s stands for steerable). The constraint that the jt2 steerable
axle roll without slipping may be written as:

o = sin¢’dzd — cos ¢/ dy? (150)
Of course, as noted before, only one pair of (z,y), along with all of the angles, is
needed to specify the state of the system.

The Pfaffian system generated by this mobile robot system is the collection of
all the nonholonomic (rolling without slipping) constraints:

I={J,...,0"al,...,a™}

Thus I has dimension n + m in a space of dimension n 4+ 2m + 1; the codimension
of I is m + 1, or one more than the number of steering angles.
Notice that from equations (149) and (150) it can be seen that:

dy* =tanf'dz* mod W (151)
dy! =tang¢’dz! mod o’ (152)
All of the (z%,3)’s and (z%,y})’s are related by the hitch relationships. The exterior
derivatives of these relationships can be taken, yielding
! =z + L;cos§’ dz'~! = dz’ — L;sin 6'df’
¥yl =y + L;siné’ dy'~! = dy* + L;cos0*df’
and substituting these quantities into the expression for wi~? from (149), the con-
straint for the (i — 1)** passive axle can be rewritten as:

w1 = sin §*"1dz*"! — cos§~1dy ! (153)
= sin 8*"1dz* — cos '~ 'dy’ — L; cos(6® — 6*~!)dp* (154)
= (sin6*"! — tan 6’ cos§'~)dz’ — L; cos(¢® — 6°~')d6* mod v’
= sec@'sin(0'~! — 6°)dz’ — L; cos(6® — 6°~1)db" mod w'

where the congruence (151) has been used. Once again, a rearrangement of terms
and a division by cosine in (153) will give the congruence

d¢t = Lisec 6% tan(6°! — 6°)dz? mod w',w™! (155)
i
df* = fpida' mod wf,w"! (156)

The exact form of the function fp: is unimportant; what will be needed is the
relationship between df* and dz’.
The first lemma can now be proved,
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Lemma 49. The esterior derivatives of any of the x variables are congruent mod-
ulo the Pfaffian system, that is: dz* = f,i;dz? = fzi.a.dzf mod J

Proof. For two passive axles, the relationship between the z coordinates is given
by the hitching relationship,

¥ = 2 + L; cos 6 (157)
dz*~! = dz* — L;sin#'df’ (158)
= (1 - L;sin 6 fp: )dz’ mod w*?, (159)

= fpiardz? mod w*~!,wt (160)

where the congruence (155) was used.
The computations are similar when there is a steerable axle involved instead of

two passive axles. If the ith passive axle is located in front of the jtB steerable axle,
then the hitch relationship and its exterior derivative are given by:

z* = zJ + 1 cos ¢ (161)
dz' = dzd — 1 sin i dvp (162)

In this case, the constraint corresponding to the ith passive axle has the form

W' = sin@'dz’ — cos Ody’ (163)
= sin§'dzd ~ cos6*dy’ — I; cos(6* — ¥ )dy’ (164)
= (sin ' — cos6' tan ¢*)dzd — I; cos(6® — ¢ )dy mod o’ (165)
= sec ¢’ sin(6* — ¢7)dx — I; cos(8* — 7 )dy? mod o (166)

Again, the standard trick of dividing through by a cosine and rearranging terms
will result in the congruence

dy = ll'secq?' sin(6* — ¢7) sec(6' — 37 )dz] mod o/ ,w’ (167)
dyl = fyide? mod o’ ,w’ (168)

Now, combining (167) with (161), it can be seen that
dz’ = fsdz} mod of,w

The case where there are two adjacent steerable axles is done exactly the same way,
with different notation, and will not be written out in detail here. O

A complement to the Pfaffian system I = {w!,... ,w",a!,... ,a™} is given by
{d¢',... ,d¢™, dz}

for any z € {z,...,2",z!,... ,2™}, since by Lemma 49 their exterior derivatives
are congruent modulo the system, and the complement is only defined modulo the
system. Since the derivatives d¢’ do not appear in any of the constraints, they are
in the complement to I.
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From the exterior derivative of the constraint corresponding to the ith passive
axle, it can be seen that

w' = sin#'dz* — cos f'dy’ (169)
dw' = dé* A (cos6dz’ + sin 6'dy’) (170)
= df* A (cos@' + sin 6 tan 6)dz’ mod w* (171)

= sec0'dd’ A do' mod w* (172)
=0 mod w',w*!  (173)

where the congruences (151) and (155) have been used. That is, the exterior deriv-
ative of the constraint corresponding to the ith passive axle is equal to zero modulo
itself and the constraint which corresponds to the axle most directly in front. With-
out redoing the calculations, which are identical except for the notation, it can be
seen that if the i*! passive axle is behind a steerable axle with angle ¢* instead of
a passive axle with angle 6°~1, that is, i = ng_; + 1, then the following congruence
will result:

dw'=0 modui,a* (174)

Proceeding similarly, the exterior derivatives of the constraints associated with
the steerable axles can be found,

o = sin¢/dz? — cos ' dy} (175)
do’ = d¢’ A (cos ¢ dz3 + sin ¢’ dyl) (176)
= d¢’ A (cos¢’ + sin ¢’ tan ¢’ )dz? mod o’ (177)
= sec¢'d¢’ A dzd mod o’ (178)
#0 mod I (179)
and it can be seen that their exterior derivatives are nonzero modulo the Pfaffian

system I.

Recalling the definition of the derived flag from Chapter 2, it is now easy to see
that all of the constraints corresponding to the passive axles are in the first derived
system, and none of those corresponding to the steerable axles are. That is, the
first derived system is given by:

I = (', ,u"}
In fact, the entire derived flag can be found just from the three congruences, (169),
(174), and (175),

Lemma 50 (Derived Flag). The derived flag associated with the m-steering, n-
trailer system has the form:
%) = {ofinjo1 + k< <n;,j=1,...,m}
Jork=1,... ,n. In addition,
I(n+l) - {0}
Proof. The proof is just a one-time application of (175), to show that none of the
constraints o’ corresponding to the steering axles are in I(!), and then a repeated

application of (169) to show at which level each constraint falls out of the derived
flag. O
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If n; is the greatest of the indices n;, the derived flag has the structure:

={ al,whu? ..., W™, of,wmtlwmt? | gm imertl | n)
I(l) ={ whw?, ... ,w™m, whtl ym+2 whm-rtl L wn)
? ={ w3, WM, wmt? ceeyw™}
Im P wn;}
m+l ={ 0}

In the general case, the Pfaffian system I consists of the constraints corresponding to
all the axles, the first derived system lacks the steerable axles, the second derived
system lacks those passive axles that are directly behind steerable axles, and at
every subsequent level, the constraint which is most toward the front of each steering
train will drop off. Since the longest possible chain of contiguous passive axles is
equal to n, the total number of passive axles that are in the chain, the (n + 1)*
derived system must be equal to {0}.

3.5.3. Conversion to extended Goursat normal form. In this section, it will be
shown how the general multi-steering trailer system can be converted into extended
Goursat normal form after prolongation. The configurations of this system which
satisfy the conditions for conversion without prolongation will also be detailed. The
first lemma gives a candidate choice for , since for a system in extended Goursat
normal form it must always be true that {I, =} is integrable.

Lemma 51. {I,dz} is integrable for any z € {z',... ,z%,z},... ,2™}.

Proof. Each constraint in I satisfies the congruence

do' = déf Adz* mod ot
= 0 mod {I,dz'}
d’ = d¢ Adzi mod o

0 mod {I,dz}}

(by equations (169) and (175)). Also, all of the dz*,dzJ are congruent by Lemma
49. Thus, the exterior derivative of any constraint in {I dz} is congruent to zero
mod {I,dzJ}, which is the condition for integrability. O

It can be shown that for the general case, there does not exist a dz (or any other
one-form) which will satisfy the condition that {I("),dz} is integrable for every i.
However, the general multi-steering system can be transformed into Goursat normal
form after prolongation.

The concept of “virtual trailers” was first introduced in [36] as a type of dynamic
state feedback for the multi-steering trailer system. A chain of these virtual trailers,
each analogous to a physical trailer, was added in front of each actual steering
wheel, and a virtual steering wheel was added at the front of each virtual chain.
The sketch of this augmented system in Figure 3 helps make the concept more
clear. Each virtual trailer adds one state to the system, as well as one constraint.
Thus the codimension of the extended system is the same as that of the original
system, m + 1.

Theorem 52 (Converting the multi-steering system to Goursat form). The multi-
steering system with n trailers and m steering wheels can be put into extended
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Goursat normal form, for any n,m and for any configuration of steerable cars and
passive trailers, using a prolongation of degree less than or equal to ny ++ - -+ 7y .

Proof. Consider the n-trailer, m-steering system with virtual extension as shown
in Figure 3. That is, in front of each steerable axle, imagine that there are n;_,
virtual axles, and that only the front axle in each virtual chain is steerable. Note
that with this virtual axle formulation, the actual steerable axles within the multi-
trailer chain are no longer assumed to be directly steerable, but rather are controlled
through the virtual steering axles and the the chains of virtual trailers.

Let ¢J represent the angle of the jtb virtual steering axle, where the subscript
v stands for virtual. The angles of the passive axles that are added are denoted by
0}, where the subscript j stands for the index of the virtual chain that they are in,
and the superscript i indexes their position from the front of the virtual train.

A total of n) +- -+ +n,_) states have been added to the system, corresponding
to the angles of the virtual axles. The same number of constraints have also been
added. The first axle is always assumed to be steerable, and no virtual axles are
added in front of the front steering wheel.

Because the constraints that were added have the same form as those in the
system already, it is easy to see that they can be written in coordinates as

v} = sin 6}dz} — cosfidy}
for the passive virtual axles and
o = sin ¢! dzd — cos 8 dy]

for the steerable virtual axles at the front of each chain. Although these constraints
do not immediately appear to be of the same form as a prolongation by differenti-
ation, it can be shown that
v; = d6;*! — tanfidz" mod JU
fori<mj_; —2and
u;-""‘_l =d¢l — tane;""‘-ld:c" mod J("i-1—1)

where z" is the z-position of the last passive axle. This particular form of a pro-
longation by differentiation was chosen so that the constraints which were added
to the system would have the same expression (in coordinates) as the physical con-
straints; the computations are somewhat simplified by this choice. Because of the
equivalence, a standard prolongation by differentiation could have been used; it
would be difficult to interpret the meaning of the added states.

The prolonged Pfaffian system is given by the collection of actual and virtual
constraints,

_— 1 m 2 m 1  JPIR S S e d = ,
J={a,...,a™aj,... a0t WY i =2, mii= 1,0 ni — 1)

The derived flag corresponding to the extended Pfaffian system can now be
found. First, performing a similar calculation to that in equation (169), it can be
seen that

dv; =0 mod v},vj™!
Then, similar to equation (175),

dod #0 mod J
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It is also not difficult to show that
do’ =0 mod a",u;""‘—l

From these three congruences, the structure of the derived flag is seen to be

JO = {az,...,a"‘,wl,...,w",u;:j=2,...,m;i=1,...,nj_l-l}
J? = {0:2,...,a"‘,wz,...,w”,u}:j=2,...,m;i=2,...,n,-..;-l}
i ) . o )
Jiktin=1) = {a?*t, ... . a™w oo W Vii =2, ,mii=k,...,nj_ — 1}

Jn+m=1) = ("} or {a™}
Jntm) = {0}

where ji is defined to be the number of steerable axles that are in front of the
kth passive axle in the actual chain of trailers, and Jn+m=1) = {w™} if the last
axle in the chain is passive, and J("*™=1) = {a™} if the last axle in the chain is
steerable. In words, the (extended) Pfaffian system J consists of all the constraints
corresponding to both the actual and the virtual axles. The first derived system
consists of all constraints except the ones at the front of each (virtual) chain. At
the second level, the constraints corresponding to the axles directly behind each
virtual steering wheel fall off, and at the kth level, the constraints corresponding
to the axles which are k behind each virtual steering wheel fall off, until at the last
level, there is only the constraint corresponding to the last axle in the chain (w” if
it is passive, o™ if it is steerable). The (n + m)** derived system is trivial, which
implies that the augmented system is controllable.

At each level of the derived flag, exactly one of the constraints which falls out
of the flag corresponds to a real axle, and all the rest which fall out correspond to
virtual axles.

The one-form 7 which satisfies the Goursat conditions of Theorem 47 is equal
to the exterior derivative of the z coordinate of the last body in the actual multi-
steering chain; dz™ (if the last axle in the chain is passive) or dz™ (if the last axle
in the chain is steerable). The rest of the details are straightforward, although the
notation is cumbersome. o

Now that it has been shown that the system with virtual trailers can always
be converted into extended Goursat normal form, some special cases of the multi-
steering trailer system which can be converted into extended Goursat normal form
without any prolongation will be examined.

Theorem 53. If there is only one steering train which has passive azles in it,
that is, all the passive azles are contiguous, then the system can be converted into
extended Goursat normal form without prolongation.

Proof. The Pfaffian system has the form,
I={a,...,o5uw',...,u"a*!, ..  a™)

where the constraints have been arranged in the order in which the axles appear in
the chain. Choose 7 = dz™, and note that by Lemma 51, {I,dz"} is integrable.
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FIGURE 3. A multi-trailer system with n (passive) trailers and m
(active) steering wheels, with a virtual extension of n;_; virtual
trailers in front of each steering wheel.
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The derived flag associated to this case is simply found using either Lemma 50

or equation (169). It has the form:

IV = {u'?...,0"})
I? = {v?,...,w"}

m = {w™}
Intl) — {0}

which is reminiscent of the N-trailers case from Section 3.2.
Equation (169),

dw' = db* Asec#idz* mod w'
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combined with equation (157),
dz'~! = fri-1dz' mod W'l wf
gives the congruence
dw' = f,:d0' Adz” mod o' wt,... ,W"
which implies that {I(), dz"} is integrablefori = 1,... ,n+1, and thus by Theorem
47, the system can be converted into extended Goursat normal form. (]}

The Goursat coordinates are defined by (z™,y"), the Cartesian position of the last
passive axle, along with ¢,... ,¢™"!, the angles of the hitches.

Corollary 54 (Special cases). As special cases of the general case described in
Theorem 53, the following systems can be converted into Goursat form without
prolongation:

o There is only one steering wheel, m = 1, which by convention is located at the

front of the chain. This is the n-trailer problem of Section 3.2.

o There is one steering wheel at the front of the chain and another at the end
of the chain, as in the firetruck ezample [5, 33].
All the steering wheels are at the front, that isny =ng =--- =np_y =0.
All the steering wheels are either at the front or the back of the chain, in a
generalized firetruck situation.
o All the azles are steerable, n = 0.
o There i3 only one passive trailer, n = 1.

The other special case which does not require prolongation to achieve Goursat
normal form is slightly more complicated. The following can be shown.

Proposition 55. If there are two sets of passive azles, separated by only one steer-
able azle, and the set towards the back has only one azle, then the system can be
converted to extended Goursat normal form without prolongation.

All configurations which do not satisfy either Theorem 53 or Proposition 55
require prolongation to be converted into extended Goursat normal form. The
minimum dimension of the prolongation can be computed as follows. Recall that
there are a total of n passive trailers and m steerable axles, and let k equal the
index of the first steerable axle which has no passive trailers behind it. That is,
Nk = Ng41 = -+ =Ny = n and -1 < n. There are two possible cases:

1. If ny—; = n—1, then the minimum dimension of prolongation is 73 +- - *+7k—3.

2. Otherwise, a prolongation of dimension n; + --- + nx_; is needed to convert

the system into extended Goursat normal form.

Now some specific multi-steering mobile robot systems will be considered and it
will be shown how their associated Pfaffian systems satisfy the extended .Goursat
conditions.

Example. [Two, Three, or Four Axles] It is a simple exercise in combinatorics to
check that all of the possible configurations with two or three axles and one, two
or three steering wheels satisfy the conditions of Theorem 53. Note particularly
that the firetruck example [5), sketched in Figure 4, satisfies these conditions with
n=1.

In addition, it can be shown that all except one configuration of a system with
four axles will satisfy the conditions of Theorem 53. The exception is m = 2, two
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FIGURE 4. A sketch of the firetruck, with steering wheels on the
front and back axles.

steerable axles, two passive axles, alternating. That is, the first and third axles
are steerable, and the second and fourth axles are passive. This situation would
arise if a car were towing another car and both of the cars had drivers at the
steering wheels. This example satisfies Proposition 55, and thus can be converted
into Goursat form without prolongation. a

The 5-axle system with two steering wheels is the lowest-dimensional case where
interesting things begin to happen.

Example. [5-axle, 1-4 steering] First consider the 5-axle system with the first and
fourth axles steerable, as sketched in Figure 5.

FIGURE 5. A 5-axle trailer system with the first and fourth axles steerable.

The constraints are that each axle rolls without slipping:

w' =sinfidz’ — cosb'dy’ i=1,2,3 o =sin¢’dz] —cos¢idyl j=1,2
The Pfaffian system is thus I = {a!,w!,w? a?,w?} and a complement to this
system is {d¢',d¢?,dz?}. This basis is adapted to the the derived flag,

I= {a!, o', w?, a? W}
Im = {w!, w?, W’}
I® = {wz}

I6) = {0}
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and it can be checked that each {I(¥,dz?} is integrable. The coordinates which
put the system into Goursat form are the following:
0 2

2z = T
n =9
2
¥? - tan £ La=1,
2Ls /I V(E2)?“1ran(2352)
2 = ¥+ (é)ﬁ"’_larctan( Ty L3> 1,
2

V1-(72) tan( 22592 )1 Lo /1y

Note the dependence on the relative lengths of the hitches in the system. The
remaining coordinates are defined by the relationships

7 = #5_,/%° k=2,...,4
22 = 2.,/ k=23

Of course, by Theorem 48, this system can also be converted into an extended
Goursat normal form using a prolongation of dimension two, and the coordinates
in this case are given by:

= d=y @=¢
together with the relations

G = G/ k=2,....5

G = G/ k=2,... .4

The two sets of coordinates (z%,2},2%) and (¢° ¢},¢?) parameterize all integral
curves for the system, in the sense that all the states and inputs to the system can
be found by taking derivatives of these quantities. More differentiations will be
required for the ¢ coordinates.

Both coordinate transformations have two types of singularities. Because of
the division by the derivative of z° (or ¢°), whenever this coordinate is constant
(corresponding to cosé? or cos@® respectively being zero), the transformations will
be undefined. This type of singularity can be avoided by choosing a different
coordinate chart at the singular point (interchanging r and y for example). A
singularity also occurs when the angle between two adjacent axles is equal to 7/2;
at this point, some of the codistributions in the derived flag will lose rank. The
derived flag is not defined at these points; nor is the transformation. The methods
described herein will not work for controlling the multi-steering trailer system when
the trailers must go through such a jack-knifed configuration. a

V1=(B) tan(£259% 414 Lot
¢2+713-_’(4f}710g( ar ”’) Ly<l

Example. [5-axle, 1-3 steering] The only instance of the 5-axle trailer system with
two steering wheels which satisfies neither Theorem 53 or Proposition 55 has the
first and third axles steerable, as shown in Figure 6.

The constraints are that each axle roll without slipping:

w' =sinf'dz’ - cosfidy’ i=1,2,3 o =sing'dri —cos¢'dyl j=1,2
The Pfaffian system is I = {o!,w!,0?,w?,w%}, and a complement to the system is
given by {d¢',d¢?,dz%}.
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FIGURE 6. A 5-axle trailer system with the first and third axles
steerable. This is the only configuration of the 5-axle system with
two steering wheels which does not satisfy the conditions for con-
verting to extended Goursat normal form without prolongation.

By Lemma 50, the derived flag has the form
I= {a!, v, a?, u? w3}

I = {wl, w?, w3}
I? = {w?}
I3 = {0}

In order to have {I?), 7} integrable, 7 must be dz3 (mod w?). This will also give
{1°,d23} integrable by Lemma 51, but a simple check will show that {I(1),dz%} is
not integrable. Thus, as predicted by the theorems, this system does not satisfy the
conditions for conversion to extended Goursat normal form without prolongation.

The system I can be prolonged by differentiation, adding the additional form
v = d¢? — v dz3. The new coordinate v can be thought of as the tangent of the
angle of the virtual axle that is added to the system in Theorem 48. The derived
flag of the augmented system is:

J= {a}, v, v, a?, W? W3}

J) = {w?, a?, uw?, Wi}
J2) = {wz’ ws}
JO = {w?}
J@ = {0}

and the systems {J(*),dz3} are integrable for all k. Thus, the prolonged system J
can be converted into extended Goursat normal form. a

For the case of a 5-axle system with three steering wheels (two passive trailers), if
the two passive trailers are connected we know from Theorem 53 that the system can
be converted into extended Goursat normal form without prolongation. If the two
passive trailers are separated by only one steerable axle, then we apply Proposition
55. The only configuration which does not satisfy one of these two conditions has
the passive axles in the second and fifth positions, and this configuration will again
require prolongation to convert it to extended Goursat normal form.

4. CONTROL SYSTEMS

The examples considered in Section 3, multi-body mobile robots towing trailers,
required purely kinematic models. There were no drift terms considered, and no
variable representing time which needed special consideration. Because of this,
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and the fact the velocity constraints could be répresented as one-forms, exterior
differential systems are particularly appropriate for their analysis.

Nonlinear control systems have traditionally been defined by distributions of vec-
tor fields on manifolds. Because of the duality between vector fields and one-forms,
as seen in Section 2.1.1, a control system can also be defined as a Pfaffian system on
a manifold and analyzed using techniques from exterior differential systems. In this
section, we will present some results on linearization for nonlinear control systems
and also examine the connections between the two different formalisms of vector
fields and one-forms.

We will consider the nonlinear dynamical system:

z = f(z,u) (180)
where z € R®, u € R™ and f is a smooth map 7:

f:R*xR* — TR"
(z,u) — f(z,u) € TR

A very important special case of system (180) is the one where the input enters
affinely in the dynamics:

& = f(z) + g(z)u (181)

where g(z) = [g1(z)...gm(z)] and gi(z) are smooth vector fields. Most of the
results presented here will be concerned with systems belonging to this class, even
though some can be extended to the the more general case (180).

We would like to establish conditions under which the dynamics of (180) and (181)
are adequately described by those of a linear system:

z = A%+ Bi (182)

where £ € R?, & € R™, A € R**? and B € R**™ with 4 > n.

4.1. Static Feedback Linearization. One of the best-studied problems in non-
linear control is that of exact linearization using static state feedback and change
of coordinates. First we will present the well-known results on static feedback lin-
earization, and then we will show how these results can be restated in terms of the
Goursat normal form. In the next section, we will consider the problem of dynamic
feedback linearization.

4.1.1. Problem Statement. Following the notation of Isidori [17], the problem of
exact linearization by static state feedback and coordinate transformation can be
stated as follows:

Problem 1. (State Space Exact Linearization Problem)
Given a control system of the form (180) and an initial state z°, find, if possible,
& neighborhood U of z°, a feedback function ¢ : U x R® — R™, a coordinate

"Most of the techniques presented here can be generalized to the case where the state evolves
on a manifold. R™ will be used to simplify the calculations
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transformation z = ®(z), all defined on U, and matrices A € R**" and B € R**™,
such that:

[EuEmm]| | =4 (18)
oBoann))

[az ]z—é"(z) B (184)
rank(B AB ... A""'B)=n (185)

In the special case of systems affine in the inputs, the problem simplifies to:

Problem 2. Given a control system of the form (181) and an initial state z°, find,
if possible, a neighborhood U of z°, a pair of feedback functions a(z) and b(z), a
coordinate transformation z = ®(z), all defined on U, and matrices A € R**™ and
B € R**™  such that:

[GU@ o] | =as (156)
ELEIC S (187)
rank(B AB ... A" 'B)=n (188)

The last condition of both problem statements allows us to assume that without
loss of generality, the resulting linear system will be in Brunovsky canonical form,
ie.:

A 0 - 0 b 0 e 0
0 A, --. 0
A=| . T B=| % 2 0
6 6 .:. A;nJ | 0 0 . bm
01 -.- 0 0] [ 0
ST 0
Ai= . . . 3 3 b‘= .
00 - 01 :
00 -- 0 0] | 1

The dimensions of A; correspond to the Kronecker indices of the pair (4, B).

4.1.2. The Vector Field Approach. The standard results on linearization by static
state feedback and coordinate transformation concern systems which are affine in
the input (181). The relevant theorems can be found in [17, 23]; we will use the
notation and definitions of Isidori [17].

Theorem 56. For the control system (181) define the filtration:

Go = span{g1,...,9m}

Gitn = Gi+ spen{[f,Gi]} = span{adjg; :0<k<i+1,1<j<m}
Suppose the distribution Go(z) has dimension m at z°. Then, the state space ezact
linearization problem is solvable if and only if:

1. for each 0 < i < n — 1 the distribution G; has constant dimension near x°

2. The distribution G,—1 has dimension n
3. for each 0 < i < n — 2 the distribution G; is involutive
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Proof. In (17, 23]. O

If the system has only one input (m = 1), the involutivity of G,—2 will imply the
involutivity of the other G;. Thus, the conditions for static feedback linearization
can be restated in the single-input case as follows:

Corollary 57. The state space exact linearization problem for a control system
(181) with a single input is solvable if and only if:

1. the distribution [g(z) adsg(z) ... ad}“1 g(z)] has dimension n at z°.

2. the distribution G2 = span{g, adyg, ..., ad}"zg} is involutive near z°.

Proof. Special case of Theorem 56 when m = 1. O

It should be noted that even for the multi-input case, the involutivity of certain
distributions (namely those corresponding to the Kronecker indices of the resulting
linear system) implies the involutivity of others. However, an equivalent statement
of Theorem 56 that takes this fact into account is notationally complicated.

4.1.3. The Pfaffian System Approach. The problem of linearization can also be
approached from the point of view of exterior differential systems. Note that any
control system of the form (180) can also be thought of as a Pfaffian system of
co-dimension m + 1 in R**™+1, The corresponding ideal is generated by the co-
distribution:

I= {dz,- - f,-(z,u)dt t= 1, N ,n} (189)
The n+m+1 variables for the Pfaffian system correspond to the n states, m inputs

and time, ¢t. For the special case of the affine system (181) the co-distribution
becomes:

m
I={dz; - (filz) + )_ gij(z)us)dt :i = 1,... ,n} (190)
J=1

In this light the extended Goursat normal form looks remarkably similar to the
Brunovsky normal form with Kronecker indices s;,j = 1,...,m. Indeed if we
identify coordinates z°,z£’,+1, J = 1,...,m in the Goursat Normal Form with
t,uj,j = 1,...,m, the Pfaffian system becomes equivalent (in vector field notation)
to a collection of m chains of integrators, each one of length s; and terminating
with an input in the right hand side. With this in mind, Theorems 46 and 47, which
provide conditions under which a Pfaffian system can be transformed to extended
Goursat normal form, can be viewed as linearization theorems with the additional

restriction that = = dt.
An equivalent formulation of the conditions of Theorem 41 involving the anni-
hilating distributions is given by Murray [22]. The result is restricted to Pfaffian

systems of co-dimension two.
Theorem 58. Given a 2-dimensional distribution A construct two filtrations:

Eg=A Fap=A
Eiy1 = E;+ [Ei, Ej] Fiyy = F; + [F;, Fy)

If all the distributions are of constant rank and:
dmE;=dimF;=i+2 i=0,...,n-2
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there erists a local basis {a!,...,a’} and a one-form m such that the Goursat
congruences are satisfied for the differential system I = A+.
Proof. In [22]. O

In [22] this Theorem is shown to be equivalent to Theorem 41. However, there is no
known analog of Theorem 58 to the extended Goursat case covered by Theorems
46 and 47.

4.1.4. The connection between the two approaches. We explicitly work through the
connection between the classical static feedback linearization theorem (Theorem
56) and the extended Goursat normal form theorem (Theorem 47).

Proposition 59. The control system (181) satisfies the conditions of Theorem 56
if and only if the corresponding Pfaﬂ‘ian system (190) satisfies the conditions of
Theorem 47 for = = dt.

Proof. Consider control system (181) and the equivalent Pfaffian system (190). For
simplicity, we will consider the case m = 2. The Pfaffian system I(® and its
annihilating distribution Ag are given by:

IO = {dzi - (fi(z) + gu(@)w1 + go(z)ur)dt : i = 1,... ,n}

0 0 1

_ (OL _ 1 0 0

AO - (I ) - 0 ] 1 ’ 0
0 0 f+au + gou

As the notation suggests, the top three entries in each vector field in the dis-
tribution Ag are scalars (corresponding to the coordinates ¢, u; and up) while
the bottom entry is a column vector of dimension n. We will construct the de-
rived flag I(® 5 1) 5 ... 5 I™) and the corresponding orthogonal filtration
Ao C A C...C Ay We will denote by I = {11, dt} and A; = (F))L. We
will go through the conditions of Theorem 47 step by step, assuming 7 = dt:

Step 0: As above:
IO = {dz; - (fi(z) + 9a (D) + ge(z)u2)dt :i =1,... ,n}

0 0 1
_ oL _ 1 0 0
A0 - (I ) - 0 ) 1 ’ 0
0 0 f+ g1y + goup
= {v,v2,v3}

The condition of Theorem 47 requires that /(9 = {I(®), dt} be integrable. Its an-
nihilator is Ag = {v;,;} which is indeed involutive since [v1,v2] = O are constant
vector fields.

Step 1: It is easy to show that:

[vi,v2) =0 [v),v3] = [v2,v3] =

(== ]
(== = ]
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Therefore:
IV = {aeI®:da=0mod I}
0 0 1 0 0
A= @I =qlo |1 | 0 1o ]"] o
0 0 f+q1u1 + gouz [ g2

= {v1,v2,v3,4,05}
The condition of Theorem 47 requires that [(!) = {I(), dt} be integrable. To check
this, consider its annihilator A, = {v1,v2,v4,v5} being involutive. Now:

0

[v1,v2] = [v1,v4] = [v1,v5] = [v2,v4] = [v2;v5) = 0 and [vg,v5] = g

[91, 9]

Therefore A, is involutive if and only if [91,92) is in the span of {g;,92}. The
condition of Theorem 47 holds for the first iteration of the derived flag if and only
if distribution Gy of Theorem 56 is involutive.

Step 2: We compute the bracket of the vector fields v3 and v;.

0

['033 ‘04] = 8

adyg1 — [91,92]us

The computation of [v3,vs] is similar. Therefore, assuming that the conditions of
Step 1 hold and in particular that [g1,g2] € span{g;,g.}:

I® = {aeIW:da=0mod IV}

1 1

AN 0 0
A, It =A; + 0 , 0
adrgy adsgy

= {v:i=1,...7}

The condition of Theorem 47 requires that /(?) be integrable. This is equivalent
to A, = {v1,v2,v4,v5,v6,v7} being involutive. As before the only pairs whose
involutivity needs to be verified are the ones not involving v; and v,, i.e. the con-
dition is equivalent to {g1,92,ads91,adsg2} being involutive. Overall the condition
of Theorem 47 holds for the the second iteration of the derived flag if and only if
distribution G, of Theorem 56 is involutive.

Step i: Assume that:

0 0 1 1 1

1 0 0 0 0
At—l - 0 ) 1 ] 0 ’ 0 ) 0

0 0 f+g1u + goup ad}g, ad} g,
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for 0 < k < i—2. Also assume that I(¥) , 0 £ k £ i—1 are integrable, or, equivalently,
that A, for 0 < k < i—1 (which is the same as A without the third vector ﬁeld) are
involutive, or, equivalently, that G = {ad}g; : 0<I1<k,j=1,2} for0 <k <i-2
are involutive. Construct A; = A;_; + [A;-;,A;—;). By involutivity of A;_; and
the construction of the filtration the only terms not already in A;_; are ones of the
form:

1 0
0 0 _
0 | o =
f +g1u1 + goug ad; gy
0
0
0

| adi g1 + lg1,0d > gi]us + [92, adi 2g1Juz

and similarly for ad}‘1 g2. By the assumed involutivity of A;_; the last two terms
are already in A;_;. Therefore we can write:

0 0

0 0

Ai=Ai + 0 ’ 0
adi ' adj g,

The condition of Theorem 47 requires that J () be integrable, or equivalently that
A; be involutive. As before the only pairs that can cause trouble are the ones not
involving v) and vs. Hence the condition is equivalent to G;_; = {ad’,‘g, 0<k<
i—1,j = 1,2} being involutive.

By induction, the condition of Theorem 47 holds for the i** iteration of the
derived flag if and only if distribution G;_, is involutive, i.e. if and only if condition
(3) of Theorem 56 holds. In addition, note that the dimension of G; keeps increasing
by at least one until, for some M, Gp—; = Gp. The involutivity assumption on
G -1 prevents any further increase in dimension after this stage is reached. Since
the dimension of G; is necessarily bounded above by n, the number of steps until
saturation is bounded by the maximum final dimension, M < n. By construction,
the dimension of A; is three greater than the dimension of G;—;. Moreover Ay =
Apr41 and therefore I(M) = J(M+1) je. the derived flag stops shrinking after M
steps. The remaining condition of Theorem 47, namely that there exists N such
that I(™) = {0} is equivalent to the existence of M such that I(*) = {0}, or
that Ajs has dimension n + 3. As noted above, this is equivalent Gas—; having
dimension n. Since M < n, this can also be stated as Gy—; having dimension n,
i.e. condition (2) of Theorem 56. The remaining condition of Theorem 56, namely
that the dimension of G; is constant for all 0 < i < n — 1, is taken care of by
the implicit assumption that all co-distributions in the derived flag have constant
dimension. O

Note that a coordinate transformation in the exterior differential systems context
corresponds to a coordinate transformation together with a state feedback in the
vector field notation. Because the state space R*+™+! jn the forms context does
not discriminate between states, inputs and time, a coordinate transformation on
this larger space can make the inputs in the original coordinates functions of the
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state in the original coordinates and possibly time. It can be shown (see [11])
" that time need not enter into the transformation at all; that is, if the conditions
of Theorem 46 are satisfied, a time-invariant state feedback and coordinate change
can always be found. In addition the coordinate transformation can also be chosen
to be independent of both time and input. .

Theorems 46 and 47 in their general form are not equivalent to Theorem 56. The
extended Goursat Theorems allow 7 to be any integrable one-form and not just dt.
Therefore we expect more systems to match the conditions of Theorems 46 and 47
than those of Theorem 56. However, a choice of 7 other than dt implies a rescaling of
time as a function of the state. Even though this effect is very useful for the case of
driftless systems (where the role of time is effectively played by an input), solutions
for m # dt are probably not very useful for linearizing control systems with drift.
Because of their generality, Theorems 46 and 47 are capable of dealing with the more
general case of control systems of the form (189) (or equivalently (180)), as well as
drift-free systems which were investigated in Section 3. Equivalent conditions for
the vector field case have not been thoroughly investigated.

Finally, Theorem 58 is a very interesting alternative to Theorems 46 and 47 since
it provides a way of determining if a Pfafian system can be converted to Goursat
normal form just by looking at the annihilating distributions, without having to
determine a one-form 7 or an appropriate basis. Unfortunately a generalization
to multi-input systems (or more precisely to the extended Goursat normal form)
is not easy to formulate. It should be noted that the conditions on the filtrations
are very much like involutivity conditions. It is interesting to try to relate these
conditions to the conditions of Theorem 47 (the connection to the conditions of
Theorem 46 is provided in [22]) and see if a formulation for the extended problem
can be constructed in this way.

4.2. Dynamic Feedback Linearization. We now consider the more general prob-
lem of linearization by dynamic state feedback. The feedback compensator is al-
lowed to have its own dynamics, and we search for a transformation on the extended
space, including the states of the original systems and the controller, into a linear
form.

4.2.1. Problem Statement. Following the notation of Charlet, Lévine, and Marino (6],
the problem of exact linearization by dynamic state feedback and coordinate trans-
formation can be stated as follows:

Problem 3. (Dynamic Feedback Linearization Problem)®
Given o control system of the form (180), find, if possible, ¢ dynamic feedback
compensator:

w a(z, w) + B(z,w)v
v = ofz,w)+ B(z,w)v
where w € R?,v € R™ and an exstended state space diffeomorphism z = &(z,w),z €

R"*+9 such that the resulting system is linear and controllable (without loss of gen-
erality in Brunouvsky form).

8As in the case of Problem 1, all conditions may be restricted to a neighborhood U of an
equilibrium point z°.
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It should be noted here that the problem statement requires that both the system
and the controller dynamics be rendered linear and controllable. An interesting
special case of the general dynamic feedback linearization problem restricts the
controller dynamics to consist of derivatives of the inputs:

Problem 4. (Feedback Linearization by Dynamic Extension)
Given o control system of the form (180), find, if possible, a dynamic feedback
compensator of the form:

wi o= Wi 0<i<pi-1,p>0 (191)
m

wf = ai(z,w)+ Y Bz, whve(t) 1<j<mp;>0  (192)
=1

uj = wf,-’ 1<j<m,pu; >0 (193)

m
u;j = aj(z,w)+ Zﬂj,g(z, wre(t) 1<j<m,pu;j=0 (194)
=1
Jor some integers p; > 0 and B(z,w) has full rank m in a neighborhood an equilib-
rium point in R*HH, p=Y"0 ui.
For dynamic extension, chains of integrators are added in front of some of the
input channels, and the new inputs are defined to be linear combinations of the
resulting derivatives of the original inputs:

,ugm) un
= a(z,w) + B(z,w) : (195)
us,‘.'"‘) Um

4.2.2. The Vector Field Approach. The results for dynamic feedback linearization
using the vector field approach are again restricted to systems of the form (181).
The problem of linearization by general dynamic state feedback and coordinate
transformation is still mostly open. Even for the special case of dynamic extension
no necessary and sufficient conditions exist. The following results are proven by
Charlet, Lévine, and Marino [6]:

Theorem 60. If system (181) is locally dynamic feedback linearizable, then its
Jacobian linearization at the origin is completely controllable.

Proof. In [6). (]

Theorem 61. If for a set of integers {p1,... ,ptm}, 0 S 1 < ... < fim, p =
doim1 i, the distributions, up to input reordering,

Ao = span{gy: pr =0}
A1 = A +adsA; + span{gr : pr =1+ 1} i>0

are such that in a neighborhood of the origin in R":

1. A; is of constant rank for 0 < i <m+pp — 1

2. A; is involutive for 0 <i < n+ pm — 1

3. mnkA,,+,,m-1 =n

4. [g;,Ai] C Aiyq for all §j,1 < j < m such that #; 2 lend alli,0 < i<

n+pym—1
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then the system is locally dynamic feedback linearizable by dynemic extension and
a local diffeomorphism on a neighborhood of the extended state space R*+4.

Proof. In [6). O

In [6], the necessary condition of Theorem 60 is shown not to be sufficient and
the sufficient condition of Theorem 61 is shown to not be necessary by means of
counterexamples. Although the conditions of Theorem 61 are not necessary, they
depend only on the original vector fields of the control system.

4.2.3. The Prolongation Approach. Problem 4 can also be approached in the frame-
work of Pfaffian systems by means of prolongations by differentiation, as described
in Section 3.4. The following theorem can be stated:

Theorem 62. Consider the Pfaffian system I = {a',...,a"} on R*+™+1 yjith

independence condition dt and complement {dt,du,,... ,du,,}. If there ezists a list
of non-negative integers {p1,... ,tm}, #t = 32, pj such that the prolonged system:
= { O! gooe ,C!n
duy — widt,... ,dwt* ™! — wi'dt,
duy — widt,... ,d'wz"l — wh?dt,
duy — whdt, ... ,dwimt — whndt)

satisfies the condition that {J(*),dt} is integrable for all k, then I can be trans-
Jormed to extended Goursat Normal Form using prolongation by differentiation.

Proof. The result follows from Theorem 48. O

This theorem has the advantage over Theorem 61 that if the system is linearizable
by a dynamic extension of order = {y1,...,1m}, then the conditions of the
Theorem will be satisfied. Of course, the derived flag must be recomputed for

every choice of u.

4.24. The Infinitesimal Brunovsky Form. An altogether different approach to dy-
namic feedback linearization is presented in [2]. It revolves around an alternative
flag construction that can be used to derive a special normal form, the Infinitesimal
Brunovsky Form. An interesting fact about this construction is that any accessible
nonlinear system can be brought into this form.

Consider the system (181) and let X denote the field of meromorphic functions
of z,u,u,..., where the dot stands for the usual time differentiation. Let £ denote
the K vector space of one forms, spanned by:

{dz,... ,dZp,duy,... ,dum,dis,... ,dipn,...} = {dz,du,dq,.. .}
Define the time derivative of w = }°; a;dv; € € by

w o= Z(djd‘!lj-i-ajd'bj)

""“’ B (5(a) + 9ahu) + Y b+
j>o

. aft 69:
dz.- = Z( axk P ’u,)dxk + Zg,,duj

&
I

=1
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The relative degree of a one form w is defined as the smallest integer r such that
w(") ¢ spany{dz}. If such an integer does not exist define r = 0o. Consider a flag
defined iteratively by:
Ho = spany{dz,du} (196)
H, = {wer_l :(DGH).-_l} k>0 (197)
Clearly, £ D Hyp D H, = spany{dz} D H; D .... Moreover, because the dimension

of H, is finite (n), the flag will stop decreasing after a finite number of steps, i.e.
there exists k* > 0 such that Hyeq4y) = Hpeyo = ... def Hy,. The importance of

this flag is highlighted by the following theorems:

Proposition 63. The following statements are equivalent:
1. The system (181) satisfies the strong accessibility rank condition
2. Any non-zero form has finite relative degree
3. Hy, = {0}
Proof. In [2]. ]

Theorem 64. Suppose Ho, = {0}. There exist a list of integers {r1,... ,mm},
invarient under regular static state feedback, and m one forms wy,... ,wy, with
relative degrees ry,... ,Tym such that:
1. 3?“"5{“’:(]:): 1<i<m,0<j<ri—1} = spanc{dzs}
2. span,c{w,(’),l <i<m,0<j<r} = spany{dz,du}
3. The forms {w,(’),l < i< m,j 2> 0} are linearly independent. In particular,
=1 Ti = N.
Proof. In [2]. O
An equivalent form of the Theorem 64 is the following:

Corollary 65. Suppose Hy, = {0}. Then the basis {w; ;,0 < j < 7,1 <i<m}
of spany{dz} defined by w;; = W™ yields:

Wil = W42
d’i,".‘—l = wi.r;
n m
Dige =Y @izdzi+ Y bijdu;
=1 =1

where a; j,b; ; € K and the matriz [b; j] has an inverse in the ring of m x m matrices
with entries in K.

Proof. In [2]. u]

The last representation, called the Infinitesimal Brunovsky form, highlights the
similarity of this construction with the regular Brunovsky form: the two forms are
identical, with scalar quantities replaced by one forms. Using this normal form the
following theorems can be proved:

Theorem 66. The system (181) is linearizable by static state feedback if and only
if Ho = {0} and for allk =1,... ,k*, H; is integrable.
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Proof. In [2]. O

Theorem 67. Suppose Hoo, = {0} and let @ = (w1,... ,wm)T. There ezists a
system of linearizing outputs y = h(z,u,... ,ul*~1) € R™ if and only if there ezist
an invertible polynomial operator P € K™*™ [£] such that d(PQ) =

Proof. In [2]. O

4.2.5. Connection between the approaches. We now consider some results where
dynamic feedback linearization is successful as opposed to static feedback lineariza-
tion. A simple calculation reveals the following:

Proposition 68. Consider system (180). An extended system obtained by adding
the same number of integrators in front of each input is linearizable by static state
feedback if and only if the original system is linearizable by static state feedback.

Proof. The proof is easy to understand in the exterior differential systems frame-
work. If k integrators are added to each input, then the kR derived system of the
extended system is equal to the original system. For details see [27]. 0

Therefore, dynamic extension is only useful for feedback linearization if a different
number of integrators are added to each input channel, and there is at least one
input channel to which no integrators are added.

Corollary 69. A single input system of the form (181) is feedback linearizable by
dynamic exztension if and only if it is static feedback linearizable.

Proof. The result follows from the above proposition. O
In fact Corollary 69 also holds for general dynamic feedback.

Theorem 70. The following statements are equivalent:

1. System (181) with m = 1 is static feedback linearizable
2. System (181) with m = 1 is dynamic feedback linearizable

Proof. See [6, 2]. O

In other words, dynamic state feedback is only helpful in the case of multi-input
systems or Pfaffian systems with codimension greater than two. The proof for
Theorem 70 can be found in [6] for the vector field formalism and in [2] for the
infinitesimal Brunovsky form formalism. It should be noted here that the second
proof is extremely simple whereas the vector field proof is rather complicated.

The relation between the dynamic extension results in the vector field approach
(Theorem 61) and the exterior differential systems approach (Theorem 62) can be
seen from the following statement:

Proposition 71. If there exist integers satisfying the conditions of Theorem 61,
then those same integers satisfy the conditions of Theorem 62 for n = dt.

Proof. The proof follows if we assume the system is in Brunovsky canonical form. If
the conditions of Theorem 61 are satisfied this can be done without loss of generality,
as the result is intrinsic and therefore independent of the chosen coordinate frame.

O

The converse is not true, as illustrated by the following example:
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Example. Consider the following control system, proposed by Charlet, Lévine and
Marino as a counterexample to the sufficiency of Theorem 61:

T = T2 + T3uz
&2 = Z3 + T1U2
T3 = U1 + Toug (198)
T4 = U2
This control system can be written in vector field notation as:
z = f(z) + g1(z)u; + g2(z)ue
with the drift and input vector fields given by

X2 0 z3

_ |Z3 - 0 =
f(x) “loli’ ()1 (.’L’) = 11]> gZ(z) = T
0 0 1

The distribution Go = {g1,92} is not involutive, and thus, by Theorem 56 the
system is not feedback linearizable.
Of course, we could also represent the control system (198) as a Pfaffian system,

I={a},o? a?a'}
with the one-forms given by
1= dz; — (32 + mauz)dt
2 = dz; — (z3 + zyu2)dt
3= dzs — (u; + .'l:z’uz)dt
4= d$4 - ‘uzdt

A complement to this Pfaffian system is {du,,duz,dt}. The first derived system
can be shown to be

I(l) = {a4 - lal 02 - ﬂal}
z3 ' z3
and since {I(}),dt} is not integrable, the system is not feedback linearizable.

We now consider a dynamic extension of order 3 on u;. We can represent this
extended system by J = {a?,a?,a?,a?,w!,w? w?} where the one-forms that are
added correspond to the dynamic extension, and the new states that are added are
the first three derivatives of us:

w! = duy — widt

w? = dw} — widt

w? = dw? — widt
A complement to J is {du;,dw], dt} (note that I and J have the same codimension).
Computing the derived flag of the extended system, we find that

J(l) = {al’az,ad’wl’wz}
J? = {a,a%,w'}

J® = {a}

J® = {0}
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where @ = a' —uza®. Each {J(), dt} is integrable, as can be seen from the following
equations:

da = (u2)?a A dt + ((u2)® +wi — 1)a® Adt + 0® Aw' + (uzz) — z3)w* Adt

do? = —uga Adt — (uz)’a® Adt —a® Adt — 0! Adt
da® = —uza® Adt — du; Adt — 220" Adt

dot = -w' Adt
dw! = —w? Adt
dw? = —wiAdt

dw?® = —dw3 A dt

and thus, by Theorem 62 the extended system is feedback linearizable.

As noted by Charlet, Lévine, and Marino [6], this system does not satisfy the
conditions of Theorem 61. We have seen that the system is linearizable after a
dynamic extension of order 3 on u3. Following the notation of Theorem 61, we see

that

0 0 0
0 0 -1
Ao={a}= 1 Ay = {g1,ad;g1} = 1] o (199)
0 0 0
Checking condition 3 of Theorem 61, we see that for i =0 and j = 2,
-1
0
[92191] = 0 ¢ A (200)
0
O

The relation between the standard Pfaffian system approach and the infinitesimal
Brunovsky form is more involved. The following can be shown:

Proposition 72. If the system is linearizable by static state feedback (equivalently
the conditions of Theorems 46 and 47 hold for d2° = dt) then the two flag construc-
tions are the same, modulo dt, i.e.:

Hi = I*=1 mod dt

Proof. As both flag constructions are intrinsic we can assume, without loss of gener-
ality, that the system is already in the canonical coordinates of the Goursat normal

form. Then:
I {dz —2},,d2°:i=1,...,855=1,...,m}

H = {dz;f:i=l,...35;j=1,... ym}

Recall that, in the context of system (180) (equivalently (189)), z° plays the role of
time (hence dz° = dt) and zﬁ,.+1 plays the role of u;, j = 1,...,m. Observe that

the above co-distributions are identical if the terms in d2° are dropped from I(®),
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The next iteration of the two flags yields:
IV = {aeI®:da=0mod IV}
{de —21,,d2°:i=1,...,8;-1L;5=1,... ,m}
H, = {weH :weH)}
{dzf:i=1,...,8;-1;j=1,...,m}

Note that d(dz]; — z,,,d2°) = —dz} ,; A dz° which is not equal to 0 mod J(®).
Similarly dz’{i = dz,;41 = du; € H,. Again the two constructions are the same if
the terms in dz° are dropped from I(1),
In general, for the k*» step assume that:
%Y = {dzf -z d:%:i=1,...,85-k+1;j=1,...,m}
Hy = {dd:i=1,...,8i—k+1j=1,...,m}

Then:

I®) {a € I*Y) : da = 0 mod I*-1)}
{dzf—z{+1dz°:i=l,... 8j—kij=1,...,m}
Hpyyw = {wer :GJEH[;}

= {dd:i=1,...,8;-kj=1,...,m}

Note again that d(dzf,",._,c -2 —k4202°) = —dz] —k+2 A dz° which will not be
zero when wedged with all the one forms spanning I*~1). Similarly, dzJ ki1 =
dzy; k42 & Hi. Yet again the two co-distributions are identical if the terms in dz°

are dropped from (%), O

In view of Theorem 66 we make the following conjecture:

Conjecture 1. The two flag constructions are related by:
Hy = 1% mod dt

only if the system is linearizable by static state feedback.

Some examples illustrate this conjecture.

Example (Modified Ball and Beam). This example is inspired by the well-
known system of a ball rolling on a beam [14]; the small-angle approximation has
been used to eliminate the sine term which appears in the dynamic equations,
and all the constants have been normalized to unity. This is a single input sys-
tem which is not linearizable by static (and hence dynamic) state feedback. The
simplified equations are:

& = Z2
iz = :L'g - 23
.’i‘3 = T4

:i:4=u
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The flag associated with the infinitesimal Brunovsky form is:

Hy = {dz,,dzs,dz3,dz,,du}

Hy = {d=z,dzs,dz3,dz,}

Hy = {dr,dz;,dz3}

H3 = {da:l, d.'l.‘z - 2z1z4dx3}

Hy = {(1 + 22974 + 2$1u)d.’b‘1 + 22,24 (dz'z - 21114(133)}
H; = {0}

Note that, if we let w = (14 2z2x4 + 2z)u)dz; + 22174 (dz2 — 221 24d73), dwAw £ 0
(as it will contain, among other things, the term z2z4du A dz; A dz), therefore
Hy = {w} is not integrable. Hence, according to Theorem 66 and Theorem 70,
the system will not be linearizable by any of the techniques considered here, as
expected.

The derived flag construction for the same system leads to:

10 = {dz] — 2odt,dzo — (1’1242 - zs)dt, dzg — z4dt,dzy — udt}

I = {dz) - zpdt,dzs — (2123 — 3)dt, dz3 — zadt}
2 = {dz; — zodt,dzs — 22,24dz3 + (zlzf + z3)dt}
1% = {0}

Note that the two flags are identical (neglecting the dt terms) until the fourth step
where the dimension of the derived flag drops by two. According to Theorem 47,
the system is not linearizable by static state feedback. O

Example (VTOL [15]). This example is inspired by the dynamic equations for a
planar vertical take-off and landing aircraft; parasitic effects have been eliminated
to simplify the analysis. This is an example of a two input system that is not
linearizable by static state feedback, but is linearizable by dynamic extension. The
dynamics of the system are given by the following equations:

I = 2

.'i:z = -g8in Zsuy
I3 = x4

4 = coOszsu; —1
s = Zg

Tg = u2

It is easy to show that the system is not feedback linearizable by static state feed-
back. However, if two integrators are added in front of input u; the resulting
eight-state, two-input system is feedback linearizable.
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The flag associated with the infinitesimal Brunovsky form of the original system
is:

HO = {dzla d$2, sz: d$4,d.’l:5, dxﬁ: d‘“l,d‘uz}

H, = {dr,dz;,dzs3,dzs,dzs,dzg)
H, = {dz;,dzs,dxs,cosxsdzz + sin .'B5d$4}
H; = {coszsdzl + sinzgdzs,
(sinzs5)zedz) — (coszs)zedzs + (cos Tzdz2 + sin T5dz4)})
Hy = {0}

Letting wy = coszsdr; + sinzsdzs and we = (sinzs)zedz) — (coszs)zedzs +
(cos z5dz2 +sin z5dzy4) it is easy to show that dwy Aw; Aws # 0 (as it contains terms
in dz; A dz3 A dz4 A dz5s among other things). Therefore, H3 = spany{w;,w} is
not integrable and hence, according to Theorem 66 the system is not linearizable
by static state feedback. Even though it is known that the system is linearizable
by dynamic extension, there seems to be no easy way of determining the form of
the invertible operator P of Theorem 67.
The derived flag for this system has the form:

I® = {dz) — z,dt,dz; + sin zsurdt, dTs — T4dt,dzs — (cO8 T5uy — 1)dt,
drs — z¢dt,dzg — uzdt}
M = {dz, — z2dt,dx3 — z4dt,dzs — z6dt, cOSZ5dT2 + sin T5dz, + sin z5dt}

The calculation involved in the next step of the derived flag are rather complicated.
However, the pair of one forms we would expect to find in I{?) because of the
structure of H3, namely coszs(dz; — z2dt) + sin z5(dz; — z4dt) and sin z5z6(dz) —
Tadt) — cos T5xg(dr3 — T4dt) + (cos T5dz + sin T5dz, + sin zsdt), do not satisfy the
necessary conditions. Therefore the two flags diverge at this point. An interesting
observation is that, if we define outputs y1 = z; and y» = z3 (the position of the
plane), and attempt to input-output linearize the system this is exactly the step
where input u; shows up (without u2) and we can conclude that the linearization
will fail. It would be interesting to try to relate this observation with the maximal
linearizable subsystem [19] and add more substance to this observation. O

To summarize, in this section we have approached the problem of feedback lin-
earization of control systems using techniques such as vector fields, exterior differ-
ential systems, and the infinitesimal Brunovsky form. All give equivalent conditions
for the static feedback linearization problem. A sufficient condition for linearization
using dynamic extension was given using vector fields; a necessary and sufficient
one was given using exterior differential systems. Of the three techniques, only the
infinitesimal Brunovsky form is formulated to approach the more general problem
of dynamic feedback linearization, as stated in Problem 3; however, the conditions
do not appear to be easy to verify.

5. CONCLUDING REMARKS & TOPICS OF INTEREST

Exterior differential systems offer a different perspective on systems of differ-
ential equations. This approach is more algebraic than the standard vector field
approach which is very geometric. The main advantage of looking at systems us-
ing differential forms instead of tangent vectors is precisely this algebraic power
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afforded by exterior systems. In this paper, we presented a number of different ap-
proaches which can be used to linearize a nonlinear system by state feedback and
coordinate transformation. It was shown that they all produce comparable results
in most cases, even though some are better suited to tackle certain problems than
others. These techniques represent significant progress for all the problems posed
here. Much work remains to be done. For example, an extension of the vector
field conditions for converting the system to extended Goursat normal form may
be very useful and may provide insight into many hard problems in the area of
exterior differential systems.

Another direction that deserves further attention is linearization by dynamic
state feedback. It should be noted that, even for the case of dynamic extension,
none of the results are constructive. In particular, all the theorem statements start
with an assumption of the form “if there exist ...” (“integers such that ...” or
“invertible operator ...”), but provide no insight on whether those integers or op-
erators exist or how to determine them. Only recently have upper bounds been
determined on the number of dynamic extension steps required to feedback lin-
earize a system [27]. No bound is known on the necessary dimension of a general
dynamic state feedback. All of these are properties depend only on the system
dynamics, it should therefore be possible to answer the above questions given only
the system equations. It should also be noted that most of the literature is con-
cerned with dynamic extension and non-singular input transformations. Of the
theorems presented here only Theorem 67 claims to address the general dynamic
state feedback case. Singular input transformations are briefly discussed in [32] and
compared with the corresponding results using the extended Goursat normal form
and prolongations. Both of these topics merit further attention.

Finally it should be noted that the conditions for feedback linearization are
“closed”, i.e. they essentially hold for a set of “measure zero” in the “space” of
dynamical systems. It is therefore useful to know what, if anything, can be done
about systems which do not satisfy these conditions, as most systems encountered
in practice fall into this category. This problem was first addressed in [14] and
later, more formally, in [28]. A different approach, related more to input-output
linearization is taken in [18] and [6]. It would be interesting to compare the two
approaches, and hopefully determine classes of systems that are better suited for
one or the other.
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