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1. INTRODUCTION

The vast majority of the mathematically oriented literature in the areas of ro
botics and control has been heavily influenced by a differential geometric point of
view. For nonlinear systems in particular, most of the research has concentrated
on the analysis of the Lie algebras associated with controllability, reachability and
observability. In recent years, however, a small but influential trend has begun in
the literature on the use of other methods, such as differential algebra [9, 8, 10]
and exterior difierential systems [13, 11] for the analysis of nonlinear control sys
tems and nonlinear implicit systems. In this paper we survey some key results
from the theory of exterior differential systemsand their application to current and
challenging problems in robotics and control.

The area of exterior differential systems has a long history. The early the
ory in this area sprung from the work of Darboux, Lie, Engel, Pfaff, Carnot and
Caratheodory on the structure of systems with non-integrablelinear constraints on
the velocities of their configuration variables, the so-called nonholonomic control
systems (for a good development of this see [3]). This was followed by the work
of Goursat and Cartan, which is considered to contain some of the flnest achieve
ments of the mid-part of this century on exterior diflerential systems. In psu'allel
has been an effort to develop connections between exterior diflferential systems and
the calculus of variations (see [13]).

Our attention was first attracted to exterior difierential systems through their
applications in path planning for nonholonomic control systems. Our initial results
werefor the problem of steering a car with trailers [34], [22], the so-called "parallel
parking a car with N trailers problem." This involved the transformation of the
system of nonholonomic rolling without slipping constraints on each pair of wheels
into a canonical form, the so-called Goursat normal form. This program continued
with another example, the parallel parking of a fire truck [5], which in turn was
genersilized to a multi-steering N trailer system. In [36] we showed how the multi-
steering N trailer system could be converted into a generalized Goursat normal
form, which was easy to steer. The full analysis of the system from the exterior
difierential systems point of view was made in [35].

In parallel with this activity in nonholonomic motion planning there has been
considerable activity in the nonlinear control community on the problem of exactly
linearizing a nonlinear control system using (possibly dynamic) state feedback and
change of coordinates. The first results in this direction were necessary and suf
ficient conditions for exact linearization of a nonlinear control system using static
state feedback. The conditions were obtained using techniques from difierential
geometry (for a full discussionof this see [17, 23]). It was shown that a system that
satisfies these conditions can be transformed into a special canonical form, the so
called Brunovsky normal form. As pointed out by Gardner and Shadwick in [11],
this normal form is very close to the Goursat normal form for exterior difierential
systems. The problem of dynamic state feedback linearization, on the other hand,
remained largely open, despite some early results by [6]. In his dissertation work
Sluis [26] attempted to extend the exterior difierential approach in this direction.

This tutorial paper is divided into three parts. Section 2 contains the necessary
mathematical background on algebra and geometry for defining exterior difierential
systems. Section 3 describes some of the important normal forms for exterior
difierential systems: the Engel, Pfaff, Caratheodory, Goursat and extended Goursat
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normal forms. It is shown how certain important robotic systems can be converted
to these normal forms. Section 4 discusses some of the connections between the

exterior differential systems formalism, specialized to the case of control systems,
and the vector field approach currently popular in nonlinear control. Finally, in
Section 5 we highlight directions for future research and open problems.

2, Introduction to Exterior Differential Systems

In this section we will introduce the concept of an exterior differential system.
To this end, we first introduce multilinear algebra, including the tensor and wedge
products, and exterior algebra. Then wereview someresults fromdifferential geom
etry including tangent spaces and vector fields. Once we have defined the exterior
derivative, we will study many of its important properties. We then review the
Frobenius theorem, for both vector fields and forms, and finally define an exterior
differential system. Some tools which will be used to analyze these systems in the
following sections will also be presented.

2.1. Multilinear Algebra.

2.1.1. The Dual Space of a Vector Space. Many of the ideasunderlying the theory
of multilinear algebra involve duality and the notion of the dual space to a vector
space.

Definition 1. Let (V^M) denote a finite dimensional vector space over R. The
dual space associated with (V^R) is defined as the space of all linear mappings
/ : V —• R. The dualspace ofV is denoted as V* and the elements ofV* are called
covectors. V* is a vector space overR with dim{V*) = dim{V) for the operations
of addition and scalar multiplication defined by:

{a + 0){v) = a(v) + fi{v)

(ca)(v) = c •q:(v)

Furthermore, if {vi,... ,Vn} is a set of basis vectors for V, then the set of linear
functions l<i<n, defined by:

form a basis of V* called the dual basis.

Example. Let V = R" with the standard basis ei,... ,c„ and let 0^,... ,0" be
the dual basis. If

n

X € R" =

i=i

then evaluating each function in the dual basis at x gives

0»(x) = =^Xj<f>\ej) =Xi
j=l 3=1

Since the functions ..., form a basis for V*, a general covector in (R")* is
ofthe form f ai<f>^ + ... + ocn<t>^. Evaluating this covector at the point x gives
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f{x) = aixi + ...+anXn• If we think of a vector as a column matrix and a covector
as a row matrix, then

Xi

/(x) = [ai ...Q„]

Definition 2. Given a subspace W CV its annihilator is the subspace W-^ C V*
defined by

W-^ := {aeV*\ a(v) = 0Vv € IT}
Given a subspace X C V*, its annihilator is the subspaceX-^ C V defined by

:= {u € y Iaiv) = 0 Va € A"}

A linear mapping between any two vector spaces F :Vi —* V2 induces a linear
mapping between their dual spaces.

Definition 3. Given a linear mapping F : V\ V2, its dual map is the linear
mapping F" -.V^ -* V* defined by

{F*(a))iv) = a{F{v)), VaeV^^ve Vi

2.1.2, Tensors. Let Vi,... ,V/b be a collection of real vector spaces. A function
/ : Vi X ... X Vk —* M is said to be linear in the ith variable if the function
T : Vi —♦ R defined for fixed vj, j ^ i as r(v,) = /(vi,... ... ^Vk)
is linear. The function / is called multilinear if it is linear in each variable. A
multilinear function T : V* —» R is called a covariant tensor of order k or simply a
A-tensor. The set of all A;-tensors on V is denoted C^iy). Note that C^iy) =
the dual space of V. Therefore, we can think of covariant tensors as generalized
covectors.

Example. The inner product of two vectors is an example of a 2-tensor. Another
important example of a multilinear function is the determinant. If xi,X2,... ,x„
are n column vectors in R" then

/(xi, X2,..., Xn) = de<[xi X2 ... Xn]

is multilinear by the properties of the determinant. •

As in the case of V*, each £*(V) can be made into a vector space.

Theorem 1. If for S,T e £*(1^) and c € R we define addition and scalar multi
plication by:

(S + r)(i;i,... ,vk) = S{vu... ,Vk) + T{vi,... ,Vk)

(cr)(vi,... ,Vk) = c-T{vi,... ,Vk)

then the set of all k-tensors on V, £*(1^), is a real vectorspace.

Proof. See Munkres [20, page 220]. •

Because of their multilinear structure, two tensors are equal if they agree on any
set of basis elements.
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Theorem 2. Let ai,... ,a„ he a basis for V. Let f,g : —* be k-tensors
on V. ///(oi,,... ,aij = ,0,-^) for every k-tuple I = (ti,... €
{1,2,... ,n}*, then f = g.

Proof. See Munkres [20, page 221]. •

Theorem 2 allows us to construct a basis for the space £*(V).

Theorem 3. Letai,... ,a„ be a basis forV. Letl = (ii,... ,tfc) 6 {1,2,... ,n}*.
Then there is a unique tensor (j>^ onV such thatfor every k-tuple J = ,jik) €

J.I1 0 ifI^J<f> (aj,,... , 1 1
ifl^J

The collection of all such <f>^ forms a basis for jC*(V).

Proof. Uniqueness follows from Theorem 2. To construct the functions we start
with a basis for V*, (f>* : V R, defined by <f>*{aj) - Sij We then define each
by:

= <f>'̂ {vi) • (V2) 0*'(va) (1)

and claim that these <f>^ form a basis for £*(V). To show this, we select anarbitrary
A-tensor / € £*(V), and define the scalars a/ := /(a<,,... ,afJ. Next, we define a
fc-tensor

g= ^aj<f>'' (2)
J

where J € {1,... ,71}*^. Then by Theorem 2, / = ^. •

Since there are 71*= distinct A:-tuples from the set {1,..., n} the space £*(y) has
dimension n^.

Example. Let V = R" with the standard basis ei,... ,en, and let be
the dual basis. For every

n

i=i

evaluating eachfunction in the dual basisat x gives

<ji\x) = = '̂ X3<t>\ej) = Xi
i=i j=i

Similarly, if/ = («i,... ,tfc) then evaluating the basis vectors for £*(V) at (a:^... ,a;*)
gives

ii>'{x\... ,a:*) =<t>'̂ {x'). <f,^{x^)(x*) =x}, ..... x^
Since the tensors form a basis for V*, evaluating a general 1-tensor
f ^ V* at X£ V gives /(x) = aixi + ... + anXn- Likewise, evaluating a general
2-tensorat (a:^,x^) € gives

g{x^,x^) = 53 = {x^VDx'̂
»,j=i
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and evaluatinga general A;-tensor at (a;^,... ,x*) e V" gives

,x*) = ^ ...a:f^
«i.••••**=1

where Oti,...— p(®ti> •••>^ik)•
•

2.1.3. Tensor Products.

Definition 4. Let f G£*(V") and y € C^{V). The tensor product f 0g of f and
g is a tensor in £*+'(1^) defined by

(/®p)(vi,... ,Vk+e) := /(vi,... ,Vife) -pCvfc+i,... ,v*+/)

Theorem 4. /, y, h be tensors on V and c € Qt The following properties hold:

1. Associativity / ® (5 ® h) = (/ ® ® h
2. Homogeneity cf ®g —c{f ® p) = / ® cp
3. Distributivity (/ + p)®h = /®/i + p®/i
4. Given a basis ai,... ,a„ /or V, the corresponding basis tensors satisfy =

®^*2®,... ,®0**

Prno/. See Munkres [20, page 224]. •

We can also define the tensor product of two subspaces U^W CV* by:

17 ®W := span{x € C^iy) \x = u®w^ «€l7, «;€ W}

fVom Theorem 3 we can conclude that V* ®V* = More generally:

k

y*®...®y* = (g) = d'iv)
k—times

2.1.4. Alternating Tensors. Before introducing alternating tensors, we present some
facts about permutations.

Definition 5. A permutation of the set of integers {1,2,...,h} is an infective
function a mapping this set into itself. The set of all permutations a is a group
under function composition ccdled the sjrmmetric group on {1,..., h} and is denoted
by Sk- Given 1 < i < k, a permutation ei is called elementary if given some
i € {1,2,..., h} we have

ei{j)=j for /#i,i + l

Ci(i) = i + 1

e<(i + 1) = i

An elementary permutation leaves the set intact except for consecutive elements
i and i + 1 which are switched. The space Sk is of cardinality h!; its elements can
be written as the composition of elementary permutations.

Definition 6. Let o* € 5ii;. Consider the set of aJl pairs of integers i^j from the set
{1,..., h} for which i < j and ar{i) > a{j). Each such pair is called an inversion
in a. The sign of a is defined to be the number —1 if the number of inv&rsions is
odd and +1 if it is even. We call <t an odd or even permutation respectively. The
sign of a is denoted by sgn{a).
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The following theorem helps us calculate the sign of permutations.

Theorem 5. Let (7,r € 5&. Then

1. jy<7 is the composition ofm elementary permutations then sgn{a) = (—1)*"
2. sgn(a or) = sgn{a) •sgnij)
3. sgn{a~^) = sgn{(T)
4. If p ^ q, and if t is the permutation that exchanges p and q and leaves all

other integers fixed, then sgn{T) = —1

Proof. SeeMunkres [20, page 228]. •

We are now ready to define alternating tensors.

Definition 7. Let f be an arbitrary k-tensor on V. If a is a permutation of
we define by the equation

f''(vi,...,Vfc) = /(Ver(l), ••., t;^(A))
Since f is linear in each of its variables, so is f°. The tensor f is said to be sym
metric if f = f^ for each elementary permutatione, and it is said to be alternating
if f = —f for every elementary permutation e.

We will denote the set of all alternating A:-tensors on F by A*^(V'*). The reason
for this notation will be apparent when we introduce the wedge product in the
next section. One can verify that the sum of two alternating tensors is alternating
and a scalarmultiple of an alternating tensor is alternating. Therefore, A*(F*) is
a linear subspace of the space £*(F) of all A;-tensors on F In the special case of
£^(F), elementary permutations cannot be performed and therefore every 1-tensor
is vacuously alternating, i.e. A^F*) = £^(F) = V*. For completeness, we define
AO(F*) = R

Example. Elementary tensors are not alternating but the linear combination:

/ = ® ^ 0

is alternating. To see this, let F = M" and let be the usual dual basis. Then

f{x,y) = Xipj - XjPi = det Xi Pi

Vj

and it is easily seen that f(x,y) = -f{y,x). Similarly, the function
"1i J

g{x,y,z) = det
Xi Pi Zi

Xj Pj Zj

Xk Pk Zk

is an alternating 3-tensor. •

We are interested in obtaining a basis for the linear space A*(F*). We start with
the following lemma.

Lemma 6. Let f be a k-tensor on V and (t,t € Sk be permutations. Then
1. The transformation f —> is a linear transformation from £*(F*) to

£*(F*). It has theproperty that for all <r, r € 5*.

(/T = /"'
2. The tensor f w alternating if and only if = sgn{a) •/ for all a GSk-
3. If f is alternating and if Vp = v, with p^q then /(ui,..., v*) = 0.
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Proof. The linearity property is obvious since {af + bg)" = af + bg*^. Now

WYiVu. ..,Vk)= /'̂ (Vt(1)» •••>"f^Tik))

~ /(^T(a(l))> •••j^T(<r(/b)))

Let or be an arbitrary permutation, a = <ti o <r2 o ••• o <7^, where each 0*1 is an
elementary permutation. Then:

jO _ ja\oa%Q—oam

= ((... (r"»)...rr

= (-ir-/
= sffa{a) • /

Now suppose Vp = Vg and q. Let r be a permutation that exchanges p and q.
Since Vp = Vg, /''(vi,..., vjt) = /(t/j,..., v*). Since / is an alternating tensor and
sgn{T) = -1, /'•(vi,..., Vife) = -/(ui,...,Vk). Therefore f{vi,..., vjt) = 0. •

Lemma6 implies that if A; > n, the space A*(V^*') is trivial sinceone of the basis
elements must appear in the A;-tuple morethan once. Hence for k> n, A*(V*) = 0.
We have also seen that for A: = 1 we have A^(V*) = £^(V) = V* and therefore one
can usethe dual basisas a basisforA^ (V^*). In order to specify an alternating tensor
for 1 < A; < n we simply need to defineit on an ascending A:-tuple of basis elements
since, from Lemma 6, every other combination can be obtained by permuting the
A:-tuple.

Theorem 7, Let 01,02,..., a„ be a basis for V. If f^g are alternating k-tensors
on V and if

f (®ti j®i2 >•••») —5(®ii > j ••*> )

for every ascending k-tuple of integers (t'l,... ,iib) € {1,2,... ,n}* then f = g-

Proof. SeeMunkres [20, page 231]. •

Theorem 8. Let oi,... ,o„ 6e o basis for V. Let / = (ii,... ,ifc) € {1,2,... ,n}*
be an ascending k-tuple. There is a unique alternating k-tensor ijf^ on V such that
for every ascending k-tuple J = (ji,... ,jt) 6 (1,2,... ,n}*

,j( N / 0V* (®ii >•••>fljfc if J =I
The tensors if)^ form a basis for A*(V'*) and satisfy theformula:

39n{(T){4>^y
<r€Sk

Proof. In Munkres [20, pages 232-233). •

The tensors ijj^ are called elementary alternating A;-tensors on V corresponding to
the basis oi,...,On of V. Every alternating k-tensor / may be uniquely expressed
as / = ^jdjtJ)'^ where J indicates that summation extends over all ascending
A;-tuples. The dimension of A^(F'*) is simply n; its basis is the standard basis for
V*. If A: > 1, then we need to find the number of possible ascending A;-tuples from
the set {1,2,... ,n}. Since if we choose k elements from a set of n elements there
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is only one way to put them in ascending order, the number of ascending A;-tuples,
and therefore the dimension of A''(V'), is:

<iim(A»(V)) =( fc )= n!

k\{n - k)\

2.1.5. The Wedge Product. Just as we defined the tensor product operation in the
set of all tensors on a vector space F, wecan definean analogous product operation,
the wedge product, in the space of alternating tensors. The tensor product alone
will not sufiice, since even if / € A*(V'*) and g € A'(V'*) are alternating, their
tensor product f ®g Q. need not be alternating. We therefore construct
an alternating operator taking ^-tensors to alternating A;-tensors.

Theorem 9. For any tensor f € £*(V), define Alt: £*(F) —» A^(V*) by:

(3)
<re5h

Then Alt{f) € A*(r*) and if f £ A*=(K^) then Alt{f) = /.

Proof. The fact that Alt{f) € A*(y) is a consequence ofLemma 6, parts (1) and
(2). Simply expanding the summation for / e A*(l^*) yields that Alt{f) —f. •

Example. Let f{x,y) be any 2-tensor. By using the alternating operator we ob
tain,

=\{f{x,y) - f{y,x))
which is clearly alternating. Similarly for any 3-tensorp(x,y, z) we have:

(̂p(®, 2/, z) +g{y, z, x) +g{z, x, y) - g{y, x, z) - g(z, y, x) - g{x, z, y))
which can be easily checked to be alternating. •

Definition 8. Given f € A^(V'*) andg GA'(F*), we define the wedge product or
exterior product, f Ag GA*"*"'(V'*) by

The somewhat complicated normalization constant is required as we would like
the wedge product to be associative and Alt{f) = / if / is already alternating.
Since alternating tensors of order zero are elements of E, we define the wedge
productofan alternating0-tensor and any alternating A-tensor by the usualscalar
multiplication. Thefollowing theorem lists some important properties ofthe wedge
product.

Theorem 10. Let f GA*(V'*), g GA'(V*) and h GA"»(V*). Then:
1. Associativity / A(p AA) = (/ A5) Aft
2. Homogeneity cf Ag = c{f Ag) = f Acg
3. Distributivity {f + g)Ah = fAh + gAh

hA{f + g) = hAf + hAg
4. Skew-commutativit^, gAf = (—1)*'/ Ag

^alsocalled anti-commutativity
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Dating operatorand definitions of tie aiter-
more manipulations (see Spivak [30, pag». 8(Ml])" W, requires afew
Example. Let f(x) 6A'd^-) and g(y,z) gA»(v.). Then- ^

rA„_(2 + l)!l,
2!1! ®3(y^ + f{y) ®9{z, x) +

tA (1+ 1)! 1 .
111! 2! ®-^(^^ ~ /(^) ®/(^)) = 0which can also been seen from the skew commntativity of exterior multiplication.

An elegant basis for A^l^.) can be formed using of the dual basis for K

/=(.•..- .is) is ly e/rtr:r
^n>o/. May be deduced from the constnirtinn ♦!. i
in Theorem 8. elementary alternating tensors

By Theorem 11, any alternating ifc-tensor f ^ A''(V*\ u
of the dual basis .•., as* / €A(K )may be expressed in terms

~ ,jk A0^*2 A... A

tte Merdente"to*te stew^^ "we require
' ^ *- 1} we can extend this summai'lon o,;er"all h-tupi«''̂ "'' ''

1 "

~M S .«•*A A... A (4)
is hW^toSent''""''®'" of 1-tonsors
Theorem 12. Ifo^i me 1-tensors overV then

Ao;^ A... Aw* = 0if and only ifu ,... ^(jk linearly dependent.

SeteTb^'V'" ••••o- tobasis element for A'(V-). Th^foffr l.st T - Au,' is a
dependent, then at least one of the thpm ra 'lonzero. Ifu; ,..., w* are linearly
the others. Without loss of generality, assume t\I""™ ^ ® combination of

A-l

w* = au*
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From this we get that:
fc-i

A A... Aa;* = A A... A A Cjo;*) = 0
«=i

by the skew-commutativity of the wedge product. •

Theorem 12 allows us to give a geometric interpretation to a nonzero A:-tensor

A A... Aw* ^ 0
by associating it with the subspace

W := span{u)^^... C V*.
An obvious question that arises is what happens if we select a different basis for
W.

Theorem 13. Given a subspace W C V* and two sets of linearly-independent
1-tensors which span W, there exists a nonzero scalar c € K such that

c • A A... Aa;* = AQr^ A... A ^ 0
Proof. Each a* can be written as a linear combination of the w*

k

a* =

3=1

Therefore, the product
k k

A A... Aa* = aijuP) A... A akjuP)
3=1 3=1

Multiplying this out gives
n

Att^ A...Aa* = ^ Aw*^ A... At*;*''.

The claim follows by Theorem 12, and the skew commutativity of the wedge prod
uct. •

Definition 9. Ak-tensor ^ € A*(V^*) isdecomposable if there exist ... ,x* €
A^{V*) such that ^ = a:^ A A... Ax*.

Note that, if ^ is decomposable, then we must have ^ A^ = 0. The reason is that
we should be able to express ^ as ^ = ot^ A A ... A a* for some basis vectors
{a^a^,... ,a"} and therefore ^ A^ A A... Ao* A Aa^ A...Aa* =0.
Not all ^ € A*(V*) are decomposable, as demonstrated in thefollowing example.
Example. Let ^ = <f>^A<fP+<f>^A<f>* 6 A2((Ii^)*). Then, ^A^ = 2(l>^ A<f>^ A<t>^A(fA ^ 0
Therefore ^ is not decomposable. Note that ^ A^ = 0 is a necessary but not a
sufficient condition for ^ to bedecomposable. Forexample if^ isan oddalternating
tensors (say of dimension 2k + 1):

•

If an alternating A:-tensor ^ is not decomposable, it maystill be possible to factor
out a 1-tensor from every term in the summation which defines it.
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Example. Let ^ = 0^ A A0® + 0® A A € A®((IR®)*). Prom the previous
example, we know that this tensor is not decomposable, but the 1-tensor <j)^ can
clearly be factored from every term

•

Definition 10. Let^ GA*(V'*). The subspace C V* defined by:

:= {w 6 V* I^ ^Acj for some i € A*~^ (V*)}
is called the divisor space of Any u) £ is called a divisor of

Theorem 14. A l-tensorcj € V* ts o divisor of^ GA*(V*) if and only ifuA^ = 0.

Proof. Pick a basis ... for V* such that a; = With respect to this
basis, ^ can be written as

« = A^'A...A^' (5)
J

for all ascending k-tuples J = (ii,... ,7*) and some scalars, If a; is a
divisor of then it must be contained in each nonzero term of this summation.

Therefore u;A^ = 0. On the other hand, if a; A^ = 0, then every nonzero term of ^
must contain (jj. Otherwise, we would have w A A... A A A... A(^*
for ii,... ijk 7^ 1 which is a basis element of A*+^(V*) and thereforenonzero. •

If we select a basis ,0" for V* such that spon{0^, 0^,..., 0'} = L^, then,
^ can be written as^ = ^A0^A...A0', where | GA*~'(V*') is not decomposable
and involves only 0''*'^,... ,0".

2.1.6. The Interior Product

Definition 11. Theinteriorproduct is a linear mapping J: Vx£*(V') —* (V)
which operates on a a vectorv GV" and a tensor T G£*(V) and produces a tensor
(u JT) G defined by

{vJT){vi,... yVk-i) := r(v,i;i,... ,Vk-i)

Theorem 15. Let a, 6,c, d G IR be real numbers; u, lo G V be vectors; <?, h G
be k-tensors; and r G A'(V"*), / G A"*(V*) be alternating tensors. Then we have
the following identities.

1 BiUnearitv ('"'+M-I9 = a{vJg) +b(wJg)1. aumeanty + ^ c(i,jj) + <i(»Jft)
2. VJ(/Ar) = (v J/) + (-1)"*/A (v Jp)

Proof. See Abraham et al. [1, page 429]. •

Theorem 16. Let ai,... ,an be a basis for V. Then the value of an alternating
k'tensoruje A*(y*) is independent of a basis element Oj if and only t/a, Jo; = 0.

Proof. Let 0^,... ,0" be the dual basis to ai,... , a„. Then u can be written with
respect to the dual basis as

to = ^ "dj<jP^ A A... A0^* = ^ ]djif)^
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where the sum is taken oven all ascending A;-tuples J. If a basis element "4)^ does
not contain then clearly ai J = 0. If a basis element contains then
Oj J A A... A ^ 0 because tti can always be matched with 4>i through a
permutation which only affects the sign. Consequently, (aj Ju;) = 0 if and only if
the coefficients dj of all the terms containing 0* are zero. •

Definition 12. Letu € A*(V"*) be an oltemating k-tensor. The apace consisting
of all vectors of which the value of u is independent is called the associated space
of u:

:= {v € V\vAu = 0}

The dual associated space of u is defined as CV*.

Recall that the divisor space of an alternating A;-tensor u) contains all the 1-
tensors which can be factored from every term ofu. The dual associated space A^;
contains all the 1-tensors which are contained in at least one term of a;. Therefore,

C Ai.

Theorem 17. The following statements are equivalent:
1. An alternating k-tensor u € A*(V*) is decomposable.
2. The divisor space has dimension k.
3. The dual associated space A^ has dimension k.
4. = Ai.

Proof. (1) (2) If (J is decomposable, then there exists a set of basis vectors
,(^"fory*suchthatu; = ^^A...A0''. Thereforeiu, = span{4>^,4>'̂ ,...

which has dimension k. Conversely, if has dimension k, then k terms r-an be
factored from a;. Since a; is a A;-tensor, it must be decomposable.

(1) (3) Let oi,...,a„ be the basis of V which is dual to 0^,... ,<fp. Since
a; = A... A a; is not a function of oa+i, ...,a„. Therefore,

A^ = span{aib+i,...,a„}.

This implies that A^ has dimension k. Conversely, if A^; has dimension ib, then
A^ has dimension n- k which means that a; is an alternating Ar-tensor whi(ffi is a
function of k variables. Therefore, it must have the form a; = A... A for some
linearly independent 0^,0^,... , 0* in V*.

(2)&(3) (4) It is always true that CA^. Therefore ifdim{Lu) = dim{Ai;)
then Lu, = It isalso always true that 0 < dim{L^) < k and k < dim{A^) < n.
Therefore, implies that dim{Lu) = dm(Ai) = •

2.1.7. The Pull Back of a Linear Transformation. Let T be a linear map from a
vector space F to a vector space W. Assume that there exists a multilinear function
f on W. Using the above, we can define a multilinear function on F as follows:

Definition 13. LetT :V —*W be a linear transformation. The dual or pull back
transformation

T*: d'iW) - /:*(F)
is defined for all f € C^{W) by

(T*f){v,,...,vk) :=/(r(ui),... .T{vk))

Note that T*f is multilinear since T is a linear transformation.
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Theorem 18. Let T :V —*W he a linear transformation, and let

T*: d'iW) -* d'iV)
he the dual transformation. Then

1. T* is linear.

2. T*U®9) = T*f®T*g.
3. If S :W -* X is linear, then {SoT)*f = T*{S*f).

Proof. SeeMunkres [20, page 225]. •

Theorem 19. LetT : V —* W he a linear transformation. If f is an alternating
tensor on W then T*f is an alternating tensor on V, and

T%f^g) = T*f^T*g

Proof. SeeAbraham et. al. [1, page 420]. •

2.1.8. Algebras and Ideals. In Sections 2.1.5 and 2.1.6, we introduced the wedge
product and interior product and demonstrated some of their properties. We now
lookmoreclosely at the algebraic structure these operations impart to the space of
alternating tensors. We begin by introducing some algebraic structures which will
be used in the development of the exterior algebra.

Definition 14. An algebra, (V,©), is a vectorspaceV together with a multiplica
tion operation Q) :V xV —^V which for every scalar a € R and a, 6 € V satisfies
q(o © 6) = (aa) © 6 = a © (ah). If there exists an elemente € V such that for all
xeV,xXDe = eOx = x then e is unique and is colled the identity element.

Definition 15. Given an algehra (V,©), a suhspace W C V is called an algebraic
ideal^ i/« € W, y € V implies that x©y,j/©a;GW

Recall that if W is an ideal and x,y £W then x + y EW since W is a subspace.

Example. The set of all polynomials with real-valued coefficients, R{s], is a vector
space over R with vector addition and scalar multiplication defined by

{Pl+P2)(s)=Pl{s)+P2is)

(or •P){s) = a •P{s)

If we define multiplication by

(Pl-P2)(3) = Pl(s).P2(s)

then R[s] is alsoan algebra. In R[s], the set ofall pol3momials with a zeroat s = —2
is an algebraic ideal. This is true because for all Pi(s),P2(s) € R[s] which satisfy
Pi(—2) = P2(—2) = 0 we have that:

Pi(-2) + P2(-2) = 0, o.Pi(-2) = 0, Pi(-2).P2(-2)=0

Furthermore for all P(s),i2(s) € R[s] with P(—2) = 0 we have that

P(-2).R(-2) = 0

•

^For readers who are familiar with algebra, the algebraic ideal is the ideal of the algebra
considered as a ring. Furthermore, since this ring has an identity, any ideal must be a subspace
of the algebra considered as a vector space.
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It can be easily verified that the intersection of ideals is also an ideal. Using this
fact we have the following definition.

Definition 16. Let (V, 0) he an algebra. Let the set A := {oj € U, 1 < t < K} be
any finite collection of linearly independent elements in V. Let S be the set of all
ideals containing A

5 := {/ C U]/ is an ideal and Ac I}.

The ideal I a generated by A is defined as

Ia=C[I
/65

and ts the minimal ideal in S containing A.

If (V,0) has an identity element, then the ideal generated by a finite set of
elements can be represented in a simple form.

Theorem 20. Let{V, 0) be an algebra with an identity element, A ;= {aj € V, 1 <
i<K) a finite collection of elements in V, and Ia the ideal generated by A. Then
for each x C Ia, there exist vectors v\,...,vk such that

a; = Vi 0 ai + V2 0 <12 + • • • + vk 0 ok

Proof. SeeHungerford [16, pages 123-124]. •

Definition 17. Let {V, 0) be an algebra, and I CV an ideal. Two vectors x,y CV
are said to be equivalent mod / if and onlyif x —y € I. This equivalence is denoted

x = y mod I

If {V, 0) has an identity element the above definition implies that x = y mod I
if and only if:

K

x-y = ^&ieai
»=1

for some 8k € V. It is customary to denote this as x = y modqi, ...,. where
the mod operation is implicitly performed over the ideal generated by oi,...,ojf.

2.1.9. The Exterior Algebra of a Vector Space. Although the space A*(V*) is a
vector space with a multiplication operation, the wedge product of two alternating
A-tensors is not a A;-tensor, Therefore A*(V*) is not an algebra under the wedge
product. If we consider, however, the direct sum of the space of all alternating
tensors we obtain,

A(V) = A®(U*) ©A^(F") ©A2(U») ©... ©A"(U-)
Any i e A(U*) may be written as ^ = Co + 6 + •••+ where each Cp € A''(V).
A(V"*) is clearly a vector space, and is also closed under exterior multiplication. It
is therefore an algebra.

Definition 18. (A(V'*), A) »s an algebra, called the exterior algebra overV*.

Since (A(V'*), A) has the identity element 1 € A®(V'), Theorem 20implies that
the ideal generated by a finite set S := {a* 6 A(V'*), 1 < t < if} can bewritten as:

K

/£ = {*€ A(V)1 TT = Ao', 9' e A(V)}
i=l
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Given an arbitraryset E oflinearly independent generators, it may also be possible
to generate /s with a smaller set of generators E'.

2.1.10. Systems ofExteriorEquations. In the preceding sections wehavedeveloped
an algebra of alternating multilinear functions over a vector space. We will now
apply these ideas to solve a system of equations in the form

= 0,..., = 0

where each a* G A(V*) is an alternating tensor. First we need to clarify what
constitutes a "solution" to these equations.

Definition 19. A system of exterior equations on V is o finite set of linearly
independent equations

= 0,..., = 0

where each a' G A*(V*) for some 1 < fc < n. A solution to a system of exterior
equations is any subspace W CV such that

= 0,... ,a^\w = 0
where a\w stands for a(vi,... ,1;*) for allvi,... , va eW

A system of exterior equations generally does not have a unique solution since
any subspace Wi CW will satisfy a|ivi = 0 if a\w = 0. A central fact concerning
systems of exterior equations is given by the following theorem:

Theorem 21. Given a system of exterior equations = 0,... = 0 and
the corresponding ideal /£ generated by the collection of alternating tensors E :=
{a^,... a subspace W solves the system of exterior equations if and only if
it also satisfies 7r\w = 0 for every tt G /e-

Proof. Clearly, 7r|w = 0 for every tt G/e implies q*|w = 0 as o* G/e- Conversely,
if TT G /e» then n = 0* Aa* for some 6* G A(V*). Therefore, = 0 implies
that Tr\w = 0. •

This result allows us to treat the system of exterior equations, the set of genera
tors for the ideal, and the algebraic ideal as essentially equivalent objects. We may
sometimes abuse notation and confuse a system of equations with its corresponding
generator set and a generator set with its corresponding ideal. When it is important
to distinguish them, we will explicitly write out the system of exterior equations,
denote the set of generators by E and the ideal which they generate by /e.

Recall that an algebraic ideal was defined in a coordinate-free way as a subspace
of the algebra satisfying certain closure properties. Thus the ideal has an intrinsic
geometric meaning, and we can think of two sets of generators as representing the
same system of exterior equations if they generate the same algebraic ideal.

Definition 20. Two sets of generators, Ei and E2 which generate the same ideal,
i.e. Izi = 1^21 algebraically equivalent.

We will exploit this notion of equivalence to represent a system of exterior equa
tions in a simplified form. In order to do this, we need a few preliminary definitions.

Definition 21. Let E a system of exterior equations and /e the ideal which it
generates. The associated space of the ideal /s is defined by:

A(/e) := {v G V\vla ae /e}
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that 15, foT all V in the associated space and a in the ideal, vJa = 0 mod 1^. The
dual associated space or retracting space of the ideal is defined by: and
denoted by C{Iz) C V*.

Oncewehavedetermined the retracting space wecan findan algebraically
equivalent system E' which is a subset of A(C(/e)), the exterior algebra over the
retracting space.

Theorem 22. Let H be a system of exterior equations and its corresponding
algebraic ideal. Then there exists an algebraically equivalent system E' such that
E' C A(C(/e)).

Proof. Let vi,,.. ,Vn be a basis for V, and <f>^j... ,0" be the dual basis, selected
such that Ur+ij• •• »Vn span A{J^). Consequently ,4^ must span C(/e).

The proofis by induction. First, let a be any one-tensor in /e. With respect to
the chosen basis, a can be written as

n

ot -

»=1

Since vJa = 0 mod /e for all v 6 A(/e) by the definition of the associated space,
we must have Oj = 0 for t = r -I-1,... ,n. Therefore,

T

a = Y]ai4>\
i=l

So all the 1-tensors in E are contained in A^(C(/e)).
Now suppose that all tensors ofdegree < A; in /e are contained in A(C(/e)). Let

a be any A: -I-1 tensor in /e. Consider the tensor

a' = a- A(vr+iJa)
Theterm Ur+i Ja isa A;-tensor in /e bythe definition ofassociated space, andthus,
by the induction hypothesis, it must be in A(C(/e)). The wedge product of this
term with 0'"+^ is also clearly in A(C(/e)). Furthermore,

Vr+i Ja' = Ur+i Ja - (Ur+I J '̂"'"^) A(Vr+i Ja) -|- A(Vr+i J(t;r+1 Ja)) = 0
By Theorem 16, a' has no terms involving

If we now replace a with a' the ideal generated will be unchanged since

6Aa = dAa' + 9A A(vr+i Jo;)
and Vr+i Ja € /e-

We can continue this process for Vr+2i •••, Un to produce an d which is a gener
ator of /e and is an element of A(C{/e)). •

Example. Let vi,... ,ve be a basis for IR®, and let ^^... be the dual basis.
Consider the system of exterior equations

A9^ = 0,

a^=9^ A9* = 0,

=i9^ A9^ -9^ A9* = 0,

a* 9^ A9^ a9^ -9^ A9^ A0^ = 0
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Let /e be the ideal generated by S = and j4(/e) the associated
space of /e. Because /e contains no 1-tensors, we can infer that for all v €
VJo^ = 0, uJo^ = 0, and vJo® = 0. Expanding the first equation, we get
VJo^ =vJ{e^ A9^) = (v Ad® + A(uJd®) = dHv)d® - d®(u)d^ = 0

which implies that 9^{v) = 0 and d®(v) = 0. Similarly,

vJo® = d^(i;)d^-d^(v)d^ =0
uJo® = dHv)d® - d®(v)d^ - d®(v)d^ + d^(v)d® = 0

implying that d®(u) = 0 and 9*{v) = 0. Therefore, wecan conclude that

A(/e) C span{t;6,W6}.

Evaluating the expression v Jo^ C /e gives

t;Jo'* = (vJ(d^ Ad®)) Ad® + (-l)®(d^ Ad®) A(vJd®)
- (uJ(d® A9*)) Ad® - (-l)®(d® Ad^) A(vJd®)

= d®(v)d* Ad®-d®(v)d®Ad^

= a(d* Ad®) + 6(d* Ad^) + c(d* Ad® - d® Ad^)
Equating coefficients, we find that

«»(t;) = 9»(»)=c, V»€A(/e).
Now Vmust be of the form v = xvs + yve, so we get

d®(a:i;5 + yve) = a; = c

d®(a;i;5 + yve) = y = c.

Therefore, j4(/e) = 8'pan{{v^ + ue)}- If weselect as a new basis for K® the vectors

Wi = Vi, t = 1,... , 4, lUj = V5 - VQy Wq=Vs+ V6

then the new dual basis becomes

v-#,!-.

With respect to this new basis, the retracting space C7(/e) is given by

C{h) = 3pan{'y^,... ,7®}
In these coordinates, the generator set becomes

E' = {7* A7®, 7* A7^, 7^ A7® - 7® A7^, 7* A7® A7®} C A(C7(/e))
•

We conclude this section on exterior algebra with a theorem which will allows us
to find the dimension of the retracting space in the special case where the generators
of the ideal are a collection of 1-tensors together a single alternating 2-tensor.

Theorem 23. Let /e be an ideal generated by the set

E —{w*,..•jw', ft}
where u* € V* and ft GA®(V*). Let r be the smallest integer such that

(ft)*"""^ Aw* A•••Aa;' = 0
Then the retracting space C(/e) is of dimension 2r + s.
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Proof. See Bryant et aJ. (3, pages 11-12]. •

2.2. Differential Geometry and Forms. Since the tangent space to a differen-
tiable manifold at each point is a vector space, we can apply to it the multilinear
algebra presented in the previoussection. Beforedoing this, weneed to review some
basic facts from differential geometry. The reader may wish to consult numerous
books on the subject such as [1, 20, 31].

2.2.1. Differentiable Manifolds.

Definition 22. A manifold M of dimension n is a metric spaced which is locally
homeomorphic to IR".

A simple example of a manifold is K" itself. Other examples are the circle
and the sphere S^. The circle is a one dimensional manifold while the sphere is
a two dimensional manifold. Other examples of manifolds are the n-torus, IT" =

X'-'XS^ and 50(n), the space of unitarynxn matrices ofdeterminant 1.
A subset N of manifold M which is itself a manifold is called a submanifold of M.
Any open subset AT ofa manifold M is clearly a submanifold since if M is locally
homeomorphic to E" then so is N.

In order to perform calculus on manifolds, a differentiable structure is needed. A
coordinatechart on a manifold M is a pair (17, x) where17 is an open set of M and
a: is a homeomorphism of U onto an open set of E". The function x is also called
a coordinate function and can be written as ... ja;*^) where x* : M —» E. If
p £ U then x(j)) = (x^(p),... ,x"(p)) is called the set of local coordinates in the
chart (t7, x). When doing operationson a manifold, wemust ensure that our results
are consistent regardless of the particularchart we use. We must therefore impose
some compatibility conditions. Two charts (17, x) and (F,y) with C7 n V 5^ 0, are
called C°° compatible if the map

yox~^ : x(U n K) CE" —• y{U DV) CE" (6)
is a function. A C°° atlas on a manifold Af is a collection of C°° compatible
charts {Ua,Xa) indexed by a € A such that the open sets Ua cover the manifold
M. An atlas is called maximal if it is not contained in any other atlas.
Definition 23. Adifferentiable orsmooth manifold is a manifold with a maximal,
C7®® atlas.

With this differential structure we can perform calculus on the manifold M. In
particular let f : M —• E be a function. If (C7, x) is a chart on M then the function

/ = / o :x{U) CE" —• E (7)
is called the local representative of / in the chart (17, x). We define the map / to
be C°° or smooth if its local representative / is C°°. Note that if / is C°° in one
chart, then it must be C°° in every chart since the chartsare C°° compatible and
the atlas is maximal. Therefore these results are intrinsic to the manifold and do
not depend on the particular homeomorphism chosen. Similarly, if we have a map
/ : M —> N, where M,N are differentiable manifolds, the local representation of
/ given charts (C7,x) of M and {y,y) of A7 is

f = yofox-\ (8)

^Readers familiar with topology may replace metric space with Hausdorff, second countable
topological space.
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defined onlyif /(C/")nV ^ 0. Again / is a map if / is a C®® map. Let / : M —•
iV be a map between two manifolds. The map / is called a dififeomorphism if both
/ and /~^ are smooth. In this case, manifolds M and N are called diffeomorphic.

Example. Wehaveseenthat IR'* is an exampleof a trivial but important manifold.
The differentiable structure on K" consists of the chart (R", t) wherei is the identity
functionon R" as well as all other charts that are C®° compatiblewith it. Wedenote
the standard coordinates on R" as {r^,... ,r"}.

The sphere, 5^ can be given a dififerentiable structure as follows. Consider the
charts (t/jV)Piv) and {Us,ps) where Un is the sphere minus the North pole. Us is
the sphere minus the South pole and pifiPs are the stereographic projections of
the sphere to the plane from the North and South poles respectively. One can show
that these charts are compatible. We can then extend our atlas to a maximal one
by considering all other charts that are compatible with (J/jVjPjv), (Us,ps)- •

2.2.2. Tangent Spaces. Let p be a point on a manifold M, Let C®®(p) denote the
set of all smooth functions defined on a neighborhood of p. The set C®®(p) is a
vector space over R since the sum of two smooth functions and the scalar multiple
of a smooth function are themselves smooth functions.

Definition 24. A tangent vector Xp at p ^ M is an operator from C®®(p) to R
which satisfies the following properties, for f,g £ C°°{p) and a, be R:

1. Linearity Xp{a•/ + 6•p) = a •Xp{f) + b•Xp{g)
2. Derivation Xp{f •g) = /(p) •Xp(p) + Xp{f) -g(p)

The set of all tangent vectors atpeM is called the tangent space of M at p and
is denote by TpM.

The tangent space TpM becomes a vector space over R if for tangent vectors
Xp,Yp and real numbers ci,C2 we define addition and scalar multiplication as

(Ci •Xp + C2 . Yp){f) = Ci. Xpif) + C2 •Ypif) (9)

for any smooth function / in the neighborhood of p. The collection of all tangent
spaces of the manifold,

is called the tangent bundle.

TM = U TpM (10)
p€M

Example. Given the standard differentiable structure on R", the standard tangent
vectors to R" at any point p are

(11)dr^ dr" ^ ^

Thus given any smooth function /(r^,..., r"): U —» R where U is a neighborhood
of p, we have

for i = 1,... ,n. •
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Now let M be a manifold and let (17, x) be a cbaurt containing the point p. In
this chart we can associate the following tangent vectors

fl3)ax^''"'dx" * '
defined by

dx* dr* ^ ^
for any smooth function / € C°°{p)-

Theorem 24. Let M be an n-dimensional manifold and let TpM be the tangent
space atp £ M. ThenTpM is an n-dimensional vector space and if {U, x) is a local
chart around p then the tangent vectors

d d

dx^'"''dx^
form a basisfor TpM.

Proof. See Spivak [31, page 107]. •

Prom this Theorem we can see that if Xp is a tangent vector at p then

(16)
i=l

where oi,...,a„ are real numbers. The above formula indicates that a tangent
vector is-an operator which simply takes the directional derivative of function in
the direction of [oi,...,o„].

Now let M and N be smooth manifolds and / : M —* N be a smooth map.
Let p £ M and let q = f{p) £ N. We wish to transport tangent vectors from
TpM to TqN using the map /. The natural way to do this is by defining a map
A : TpM —^ TqN by

if.{Xp)){g) = Xp{gof) (17)

for smooth functions g in the neighborhood of q. One can easily check [1] that
f*iXp) is a linear operator and a derivation and thus a tangent vector. The map
fm : TpM —> Tf(p)N is called the push forward map of /.

Proposition 25. Let f : M —* N and g:N —^ K. Then

(go/). =g*of^ (18)
Proof. See Spivak [31, page 101). •

We now arrive at the important concept of a vector field on a manifold.

Defimtion 25. LetM be a manifold. A vector field onM is a continuous function
F which associates a tangent vectorfrom TpM to each point p ofM. Such functions
are called sections of the tangent bundle TM, If F is of class C°°, it is called a
smooth section ofTM or a smooth vector field. An integral curve ofa vector field
F is a curve c : (-e,e) —> M such that

c{t) = Fic{t))£Tcit)M
for all t£{-e,£).
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A local expression for a vectorfield F in the chart x) is

J'(p) =E<''(P)Si (19)
The vector field F is C°° if and only if the scalar functions Oj: M —• IK are C°°.

2.2.3. Tensor Fields. Since the tangent space to a manifold at a point is a vector
space, we can apply all the multilinear algebra that we presented in the previous
section to it. The dual space of TpM at each p GM is called the cotangent space
to the manifold M ai p and is denoted by T^M. The collection of all cotangent
spaces,

T'M := U r;M (20)
p6Af

is called the cotangent bundle. Similarly, we can form the bundles

£»(M) := U CHT^M) (21)
p^M

A*(Jl/) := U A*(r;M) (22)
peM

Tensor fields are constructed on a manifold M by assigning to each point p of
the manifold a tensor. A A;-tensor field on M is a section of i.e. a func
tion w assigning to every p S M a, A;-tensor uf{p) € C''{TpM). At some point
p € My uj{p) is a function mapping Aj-tuples of tangent vectors of TpM to K,
that is u{p){Xi,X2y... ,Xk) € E is a multi-linear function of tangent vectors
Xiy... yXk € TpM. In particular, if a; is a section of A*(M) then u is called
a differential form of order I; or a /;-form on M. In this case, a;(p) is an alternating
A;-tensor at each point p € M. The space of all A;-forms on a manifold M will be
denoted by r2^(M) and the space ofall forms on M is simply

n(M) := e •••© (23)

At each point p € M, let

be the basis for TpM. Let the I-forms be the dual basis to these basis tangent
vectors, i.e.

«'(p)(j7) =«ii (25)
Recall that the forms ® ®... ®0*'' for multi-index / = (t'l,...,{*) form
a basis for C^{TpM). Similarly, given an ascending multi-index I = (I'l,... ,»*),
the A;-forms A A... A form a basis for K''{TpM). If a; is a ib-tensor
on My it can be uniquely written as

^(P) = ^ biip)<f>'{p) (26)
I
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for multi-indices I and scalar functions bj{p). The A;-form a can be written uniquely
as

(^(p) = Ylciip) '̂ip) (27)
/

for ascending multi-indices / and scalar functions cj. The A;-tensor u and A;-form a
are of class C°® if and only if the functions 6/ and cj are of class C°° respectively.
Given two forms uj € Q''{M),9 € n'(M), wehave,

a; = 5!^ 6/V'̂ (28)
/

e= ^cj7/f'' (29)
j

(jA0 = ^^bjcji/)^ A•0*' (30)
/ J

Recall that we have defined A^{TpM) = R. As a result, the space of differential
forms of order 0 on ilf is simply the space of all functions / : M —> E and the
wedge product of/ e fl°(M) and u 6 il*(M), is defined as

{w Af){p) = (/ Aw){p) = f{p). w(j)) (31)

2.2.4. The Exterior Derivative. Recall that a 0-form on a manifold AT is a function
/ : M E. The differential df of a 0-form / is defined pointwise as the 1-form,

<V(pXXp) = XM) (32)
It acts on a vector field Xp to give the directional derivative of / in the direction
of Xp at p. As Xp is a linear operator, the operator d is also linear, that is if a, 6
are real numbers,

d{af + bg) = a-df + b-dg (33)

The operator d provides a new way of expressing the elementary 1-forms ^*(p)
on TpM. Let x : M —* E" be the coordinate function in a neighborhood of p.
Consider the differentials of the coordinate functions

dx'(jp){Xp)=^Xp{x') (34)

If we evaluate the differentials dx* at the basis tangent vectors ofTpM we obtain,

(35)

and therefore the dx*{p) are the dual basis of TpM. Since the 0*(p) are also the
dual basis, dx*{p) = <l}*(p). Thus the differentials dx*{p) span C^{TpM) and from
our previous results, any /:-tensor u can be uniquely written as

biip)dx^(p) = (8) •••(8> dx*^ (36)
/ /

for multi-indices / = Similarly, any A;-form can be uniquely written
as

^(P) = 53c/(p)da:'(p) = ^ c/(p)dx*' A•••Adx*'' (37)
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for ascending multi-indices I = {ii,i2>••• »Using this basis now we have that
for a 0-form,

= (38)
»=1

More generally, we can define an operator d : n*(M) —* which takes
A:-forms to {k -I- l)-forms

Definition 26. Let u) be a k-form on a manifold M whose representation in a
chart {U,x) is given by

(jj = ^ cjjdx^ (39)
I

for ascending multi-indices I. The exterior derivative or differential operator, d, is
a linear map taking the k-form u to the (k-f-l)-form du by

dw = ^ duJi Adx^ (40)
/

Notice that the ui are smooth functions (0-forms) whose differential duji has
already been defined as

= («)
i=i

Therefore, for any fc-form a;,

dx^
diO ='^^^dx^ Adx^ (42)

/ j=i

From the definition, this operator is certainly linear. We now prove that this
differential operator is a true generalization of the operator taking 0-forms to 1-
forms, satisfies some important properties, and is the unique operator with those
properties.

Theorem 26. Let M be a manifold and let p e M. Then the exterior derivative is
the unique linear operator

d: ft*=(M)-♦ n*+HM) (43)

for k>0, that satisfies,

1. If f is a 0-form, then df is the 1-form

df{p){Xj,)^X^U) (44)

2. Ifuj^ € n*(M),a;2 e n'(M) then

d{u}^ A = duj^ A -I- (—l)*a;^ Adw^ (45)

3. For every form lo, d{duf) = 0
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Proof. Property (1) can be easily checked from the definition of the exterior deriv
ative. For property (2), it suffices to consider the case = fdx^ and = gdx-^
in some chart {U^x), because of linearity of the exterior derivative.

A = d{fg) Adx^ Acte*'

= gdfAdx^ Adx"^ + fdg Adx^ Adx"^

= dw^ + (—l)*/da:^ AdgAdx^

= dxj^ AuP + A dJ^

Forproperty (3), it again suffices to consider the case u = fdx^ because oflinearity.
Since / is a 0-form,

3=1 »=1 j=l

t<3

We therefore have d{df) = 0 by the equality of mixed partial derivatives and the
fact that dx* Acte* = 0. If a; = fdx^ isa A:-form, then duj = dfAdx^ + / Ad{dx')
by property (2), and since

d{dx^) = d(l Adx^) = d(l) A = 0 (48)
we get

d{duj) = d{df) Adx^ -df Ad{dx^) = 0 (49)
To show that d is the unique such operator, we assume that d' is another linear

operator with the same properties and then show that d = d'. Consider again a
A:-form u = fdx^. Since d' satisfies property (2) we have

d'ifdx^) = d7 Adi' + / Ad'(dx') (50)

FVom the above formula we see that if we can show that d'{dx') = 0 then we will
get

d'(/dx') = d'/ Adx^ = d/Adx' = d{fdx^) (51)
because d'f = df by property (1), and that will complete the proof. We therefore
want to show that

d'(dx** A... Adx**) = 0 (52)

But since both d and d' satisfy property (1) we have

dx' = dx*' A•••Adx** = d'x*» A•••Ad'x** = d'x^ (53)

since the coordinate functions x* are 0-forms. Then

d'(dx** A•••Adx**) = d'(d'x*' A•••Ad'x** ) = 0 (54)

since d' satisfies property (3). •
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Now let / : M —> AT be a smooth map between two manifolds. We have seen
that the push forw2u:d map, /», is a linear transformation from TpM to TmN-
Therefore given tensors or forms on Tf^p-^N we can use the pull back transforma
tion^, /*, in order to define tensors or forms on TpM. The next theorem shows
that the exterior derivative and the pull back transformation commute.

Theorem 27. Let f : M —* N be a smooth map between manifolds. If u is a
k-form on N then

f*idu) = d{f*uj) (55)

Proof. SeeSpivak [31, pages 295-296]. •

The d-operator may be used to define two classes of forms of particular interest.

Definition 27. A k-form u € is said to be closed if dw = 0.

Definition 28. A k-form u € Cl''{M) with k> 0 is exact if there exists a {k —1)-
form 6 such that u) —dB. A 0-form is exact on any open set if it is constant on
that set.

Clearly, since every exact form is closed. However, not all closed forms are exact.

2.2.5. The Interior Product. We can define the interior product of a tensor field and
a vector field pointwise as the interiorproduct of a tensorand a tangent vector.

Defimtion 29. Given a k-form u) € and a vectorfield X the interior
product or anti-derivation of uj with X is o (A: —1) form defined pointwise by

{X{p)Ju^{p)){vij...,Vk-i)=u>{p){X{p),vi,...,Vk-i) (56)
Definition 30. Given a function h : M —• R, the Lie derivative of h along the
vector field X is denoted as Lxh and is defined by

Lxh = X{h) = XJdh (57)

The Lie derivative is simply the directional derivative of the function h along
the vector field X.

Definition 31. Given two vector fields X and Y, their Lie bracket is defined to be
the vectorfield such that for each h € C®®(p) we have

[X,Y]{h) = X{Y{h)) - Y{X{h)) = XJdiYJdh) -YJd{XJdh) (58)

In particular, if we choose the coordinate functions x*, weget

[x,y](«')=ix,Y]i=y:
Qxi ' "4^ dxi

3 3

(59)

and we therefore obtain

\X, y](i) =^X(x) - Hy(x) (60)
The Lie bracket is skew symmetric

[A',y] = -[y,xi (61)

^to beconsistent with our previous notation, we should write (/.)• to denote thepull back of
fm. Notation is abused, however, and we simply denote it by /*.
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and satisfies the Jacobi identity

(A-.[y;zi] + [i',(z.A'ii + [z.(A-,y]] = o (62)
The following lemma establishes a relation between the exterior derivative and Lie
brackets.

Lemma 28. (Carton's Magic Formula), Let u) € and X^Y smooth vector
fields. Then

du{X,Y) = X{u;{Y)) - Y{uix)) - u{[X,Y])

Proof. Because of linearity, it is adequate to consider u = fdg where /,p are
functions. The left hand side of the above formula is

dw{X,Y) = df Adg{X,Y)

= df{X)'dg(X)-df{Y)'dg{X)
= Xif)'Y{g)-Y{f)^Xig)

while the right hand side is

X{u,(Y)) - Y{u{X)) - ...((X, yj) = Xims)) - Y{fX{g)) - f(XY(s) - YX(g))

= XU)-Y(g)-Yif)-X(s)

which completes the proof. •

2.2.6. Distributions and Codistributions. Recall that a vectorfield is a map which
assigns a tangent vector to each point on the manifold. In the case of multiple
vectorfields, one mayassign a numberof tangent vectorsat a point and lookat the
subspace of the tangent spacespanned by these vectors. This assignment, which
places at each point of the manifold a subspace of the tangent space at that point,
is called a distribution and is denoted by A(p) = 8pan{/i(p), •••»/</(p)} or, if we
drop the dependence on the point p,

A = spon{/i,...,/d} (63)
Since distributions are subspaces one can define the sum or intersection of two dis
tributionsas the sumor intersection of the respective subspaces. If the vectorfields
are smooth, we call A(p) a smooth distribution. The dimension of the distribution
at a point is defined to be the dimension of the subspace A(p). A distribution is
said to regular if its dimension does not vary with p. A vector field / belongs to a
distribution A if f{p) 6 A(p) for all p.

A distibution is involutive if given any two vector fields /i and f^ belonging to
the distribution, their Lie bracket also belongs to the distribution, i.e.

/i >/2 € A => [/i, /z] € A (64)

or more compactly, [A, A] C A. A distribution A is called integrable if thereexists
a submanifold N of M such that the tangent space of AT at a; equals A(x). The
submanifold N is called the integral manifold of the distribution A. Thefollowing
theorem provides us with a condition under which a distribution is integrable.

Theorem 29. (Probenius Theorem for distributions) A regular distribution A(x)
is integrable if and only if it is involutive.

Proof. See Spivak [31, page 261]. •
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Similaxly, one may also assign to each point of the manifold a set of 1-forms.
The span of these 1-forms at each point will be a subspace of the cotangent
space T*M. This assignment is called a codistribution and is denoted by 0(p) =
span{ui{jp)^.. .^(jJdip)) or, dropping the dependence on the point p,

© = span{ui,..., Ud} (65)

where uJu...^Ud are the 1-forms which generate this codistribution.
There is a notion of duality between distributions and codistributions which

allows us to construct codistributions from distributions and vice versa. Given a
distribution A, for each p in a neighborhood consider all the 1-forms which
pointwise annihilate all vectors in A(p),

A-'-(p) = span{u{p) € T^M : u}{p){f) = 0V/€ A(p)} (66)
Clearly, A-'-(p) is a subspace of T*M and is therefore a codistribution. We call A-*-
the annihilator or dual of A. Conversely, given a codistribution 0, we construct
the annihilating or dual distribution pointwise as

0-^(p) = 8pan{v € TpM ; u{jp){v) —0 Va;(p) € ^(p)} (67)
If iVis an integral manifold of a distribution A and v is a vector in the distribution A
at a point p (and consequently in TpN)^ then for any a € A-*-, a(p)(u) = 0. Notice
that this must also be true for any integral curve of the distribution. Therefore given
a codistribution 0 = span{u\y... ,a;5}, an integral curve of the codistribution is a
curve c(t) whose tangent c'(t) at each point satisfies, for t = 1,... ,s,

a;i(c(t))(c'(t)) = 0 (68)

Example. Consider the following kinematic model of a unicycle

X = uicos9

y = ui sin 9

9 — U2

which can be written as

" X ' " cos^ '

y = sin^ Ui +

, 9 _ 0

U2 = /iWl + /2«2

The corresponding control distribution is

A(a;) = span{
' cos^ " • 0 •

sin^ 0

0 1
}

(69)

(70)

while the dual codistribution is

A"*" = 8pan{(jj} (71)
where uj = sin^dx —cos9dy + 0d9, the nonholonomic constraint of rolling without
slipping. •
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2.3. Exterior Differential Systems.

2.3.1. The Exterior Algebra On a Manifold. The space of all forms on a manifold
M,

n(M) = 17®(M) ©. •. e

together with the wedge product is called the exterior algebra on M. An algebraic
ideal of this algebra is defined as in Section 2.1.8 as a subspace I such that if a € /
then a A^ € / for any /? € fl(M).

Definition 32. An ideal I C Q{M) is said to be closed with respect to exterior
differentiation if and only if

or € / ==> da e I

or more compactly dl C. I. A algebraic ideal which is closed with respect to exterior
differentiation is called a differential ideal.

A finite collection of forms, E := ... ,a^} generates an algebraic ideal
K

/e :={u; € n(M) | w= ^ 0* Aa* for some 0* e n(M)}.
»=i

We can also talk about the differential ideal generated by E.

Definition 33. Let Sd denote the collection of all differential ideals containingE.
The differential ideal generated by E is defined as the smallest differential ideal
containing E

Ir:=
/€5d

Theorem 30. Let E 6e o finite collection of forms, and let Ze denote the differ
ential ideal generated by E. Define the collection

E' = EUdE

and denote the algebraic ideal which it generates by /e' . Then

Ze = /e'

Proof. By definition, Ze is closed with respect to exterior differentiation, so E' C
Ze. Consequently, /e' C Ze. The ideal /e' is a closed with respect to exterior
differentiation and contains E by construction. Therefore, from the definition of Ze
we have that Ze C /e'. •

The associatedspaceand retracting spaceofan ideal in tl{M) are defined point-
wise as in section 2.1.10. The associated space of Ze is called the Cauchy charac
teristic distribution and is denoted A(Ze).

2.3.2. Exterior DifferentialSystems. In Section2.1.10weintroduced systems of ex
terior equations on a vector space V and characterized their solutions as subspaces
of V. We are now ready to define a similar notion for a collection of differential
forms defined on a manifold M. The basicproblem will be to study the integralsub-
manifoldsof M whichsatisfy the constraints represented by the exterior differential
system.
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Definition 34. An exterior differential system is a finite collection of ^nations

a^=0,...,a' = 0

where each a* € 12*^(M) is a smooth k-form. A solution to an exterior differential
system is any submanifold N of M which satisfies a*(a;) jr.at = 0. for all x e N
and all i E {!,•.. ,r}.

An exterior differential S3rstem can be viewed pointwise as a system of exterior
equations on TpM. In view of this, one might expect that a solution would be
defined as a distribution on the manifold. The trouble with this approach is that
most distributions are not integrable, and we want our solution set to be a collection
of integral submanifolds. Therefore, we will restrict our solution set to integrable
distributions.

Theorem 31. Given an exterior differential system

=0,... ,a'^ = 0 (72)
and the corresponding differential ideal X-s generated by the collection of forms

s := {a' a"} (73)
An integral submanifold N of M solves the system of exterior equations if and only
if it also solves the equation it = 0 for every tt € Je .

Proof If an integral submanifold iV of M is a solution to S, then for all a; 6 iV and
all 2 e 1,... , /(T

O!* (a?) It. AT = 0.

Taking the exterior derivative gives

<ia*(a?)ir.Ar = 0.

Therefore, the submanifold also satisfies the exterior differential system

= 0,..., = 0,da^ = 0,... ,da^ = 0
From Theorem 30 we know that the differential ideal generated by E is equal to
the algebraic ideal generated by the above system. Therefore, Theorem 21 tells us
that every solution iV to E is also a solution for every element of Je. Conversely,
if N solves the equation tt = 0 for every 2r € Je then in particular it must solve
E. •

This theorem allows us to either work with the generators of an ideal or with the
ideal itself. In fact some authors define exterior differential systems as differential
ideals of Q{M). Because a set of generators E generates both a differential ideal
7e and a algebraic ideal Je, we can define two different notions of equivalence for
exterior differential systems.

Definition 35. Two exterior differential systems, Si and E2, are said to be alge
braically equivalent if they generate the same algebraic ideal, i.e. Jej = /ej'

Definition 36. Two exterior differential systems, Ei and E2, are said to be equiv
alent if they generate the same differential ideal, i.e. Jei =X^^.

Intuitively, we want to think of two exterior differential systems as equivalent if
they have the same solution set. Therefore, we will usually discuss equivalence in
terms of this second definition.
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2.3.3. Pfaffian Systems. Pfsiffian systems are of particular interest because they
can be used to represent a set of first-order ordinary difierential equations.

Definition 37. An exterior differential system of the form

= •'. = a' = 0

where the a* are independent 1-forms on an n-dimensional manifold is called a
Pfaffian system of codimension n —s. If ...,a"} is a basis for then
the set ...,a"} is called a complement to the Pfaffian system.

An independence condition is a one-form r which is required to be nonzero
along integral curves of the Pfaffian system. That is, if a*(c(t))({/(*)) = 0, then
r(c(f))(c'(<)) ^ 0 The l-forms q^,... ,a', generate the algebraic ideal

/ = {(T € f)(M) : <r A A•••Aq' = 0}
The algebraic ideal generated by the 1-forms a* is also a differential ideal if the
following conditions are satisfied.

Definition 38. A set of linearly independent 1-forms in the neighbor
hood of a point is said to satisfy the Frobenius condition if one of the following
equivalent conditions hold:

1. da* is a linear combination ofa^,...,a'.
2. da* A A ••• Aq' = 0 for 1 <i < s.
3. da* = 6^ A a^

When da* is a linear combination of ,..., or' the following expression is fre
quently used

da* = 0 mod ...,a* 1 < t < s

where the mod operation is implicitly performed over the algebraic ideal generated
by the a*.

Example. We will illustrate the above concepts for the unicycle. Recall that the
unciycle can be described by the following codistribution

I = {u}

where

u = sin ddx —cos 9dy + Od^

The exterior derivative of lj is

dw = COS0 d0 Adx + sinO dO Ady

and therefore

duAuj = —cos^ dd Adx Ady + sin^ d9 Ady Adx = —dx AdyAd9:^0
Since the second condition of Definition 38 is not satisfied, I is not a differential
ideal. •

Theorem 32. (Frobenius Theorem for codistributions) Let I be an algebraic ideal
generated by the independent 1-forms ...,a' which satisfies the Frobenius con
dition. Then in a neighborhood of x there exist functions h* with I < i < s such
that

I={a\...,a') = {dh} dh')
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Proof. See Bryant et al. [3, pages 27-29]. •

For more general exterior differential systems we have the following integrability
results.

Theorem 33. If the Cauchy characteristic distribution A(Js) ofX^ has constant
dimension r in a neighborhood, then the distribution A{X^) is integrable.

Proof. SeeBryant et al. [3, page 31). •

Theorem 34. Let X be a differential ideal whose retracting space C{X) has a con
stant dimension n —r. There is a neighborhood in which there are coordinates
y^,...,y^ such that X haa a set ofgenerators which areforms in y^,..., y^~^.

Proof. See Bryant et al. [3, pages 31-33]. •

2.3.4. Derived flags. If the algebraic ideal generated by a Pfaffian system does not
satisfy the Frobenius condition, then it is not a differential ideal. However, there
may exist a differential ideal which is a subset of the algebraic ideal. This subideal
will can be found by taking the derived flag of the Pfaffian system. Let 7^°^ =
{aj^,...,u'} be the algebraic ideal generated by independent 1-forms
We define 7^^^ as

7(^> = {Xe 7<®>: dA = 0 mod 7^®)} C 7<°>

The ideal 7^^^ is called the first derived system. The analog of the first derived
system from the distribution point of view is given by the following theorem.

Theorem 35. 7/7^ = A-^ then 7(i) = (A+ [A, A])-^.

Proof. Let 7^®^ be spanned by 1-forms and let A be its annihilating
distribution. By definition we have that

7<i> = {w € 7^®> : da; = 0mod 7(®>}
Let T) € 7^^1. Therefore drj —Omod7^®^ which means that

s

drj = 6^ Aup
i=i

for some forms OK Now let X,Y be vector fields in A. Since A is the annihilating
distribution of 7^®\ uP{X) = uP{Y) = 0. Also, rj € 7^*^ C 7^®^, and therefore
f}{X) = 7i{Y) —0- Now, using the expression for dr},

d7,(X,Y) ='f2eiA<J(X,Y)
J=1

=j2^{x)ui(y) - ei(Y)ui(X)
i=i

= 0

Cartan's magic formula gives

dv{X, Y) = XviY) - YviX) - nilX, Y]) = 0

and therefore

77([x,y]) = o
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which means that 77 annihilates any vectorfields belonging in [A,A] in addition to
any vector fields in A. Therefore 77 e (A + [A,A])-*- and thus

/<"c(A + (A,A])-^
To show the other inclusion, let 77 € (A + [A,A])-'- and let be vectorfields in
A. Cartan's magic formula gives

d77(X, Y) = X7j{Y) - YriiX) - 77([X, Y]) = 0

and therefore dq = Qmod 7^®^ which means that77 € 7^^^ Thus (A+[A, A])-'- C7^^^
and therefore (A + [A, A])-*- = 7^^^ •

One may inductively continue this procedureof obtaining derived systems and
define

7^^^ = {A G7^^^ : dA = 0mod 7^^^} C7^^^
or in general

7(fc+i) = {A € : dA = 0mod 7<*>} C7^*^

This procedure results in a nested sequence of codistibutions

/(*) Q c •••c 7^^^ C7^®^ (74)

We can also generalize Theorem 35. K we define Aq = (7(®^)-'-, Ai = (7^^1)-^,
and in general Afc = (7 '̂''̂ )-^, then it is not hard to show that if 7^*^ = Ajj- then
/(*+!) = (A^. 4- [A/fc, Ajt])-^. The proofofthis fact issimilar to the proofofTheorem
35 but uses a more general form of Cartan's magic formula. The sequence of
decreasing codistributions (74), called the derived fiag of 7^®), is associated with a
sequence of increasingdistributions, called the filtration of Aq,

At 3 Ajb_i D ••• D Ai D Ao

If the dimension ofeach codistribution is constant then there will be an integer N
such that 7^^) = 7^^+^). This integer N is called the derived length of7. A basis
for a codistribution 7 is simply a set of generators for 7. A basis of 1-forms for
7 is said to be adapted to the derived flag if a basis for each derived system 7^^^
can be chosen to be some subset of the a^'s. The codistribution 7^^^ is always
integrable by definition since

^7(^1 = 0 mod

Codistribution 7^^^ is the largest integrable subsystem in 7. Therefore, if ^
{0} then there exist functions hS..., h'' such that {dh},..., dh*"} c 7. As a result,
if a PfaflSan system contains an integrable subsystem 7^^) ^ 0 which isspanned by
the 1-forms dh} ^..., dh*", then the integral curves of the system are constrained to
satisfy the followingequations for some constants ibj.

dh* = 0 h* = ki foil <i <r

or equivalently, trajectories of the system must lie on the manifold,

M = {x : h*{x) = ki for1 < i < r}
In particular, this implies that if 7^^^ 7^ 0, it is not possible to find an integral
curve of the Pfaffian system which connects a configuration a:(0) = xq to another
configuration a:(l) = x\ unless the initial and final configurations satisfy

^^*(3:0) = h*{x\) for 1 < t < r
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Example. Consider the rolling penny system. In addition to the three configura
tion variablesof the unicycle, we also have an angle <f) describingthe orientation of
Lincoln's head. The model in this case, assuming for simplicity that the penny has
unit radius, is given by

x = ui cosO

y = ui sind

0 = U2

^ = -ui

which can be written in vector field notation as

X " " cos^ " ' 0 *
y sin^

Ul +
0

0
—

0 1

A. -1 0

U2 = flUi+ /2U2

The annihilating codistribution to the distribution Ao = {/it/2} can be easily
determined to be

I = A"*" =

where

= cos 6dx + sin Ody + OdB + ld(f>

= sin 0dx —cos Ody+ OdO -I- Od0

To compute the derived systems, we must first take the exterior derivatives of the
constraints.

dx3? = cosOdB Adx + sinOdB Ady

doc^ = —sin^d^ Adx + cosOdB Ady

do?A A = dO AdxAdyAd<f>
dx3? Aa^ = sm0co30{d0 AdxAdy •¥ dB Ady Adx) = 0

do}- Ao? A o? =

From these wedge products, we can see that

do? = 0 mod a^^o?

do? ^ 0 mod ,o?

and thus the first derived system is spanned by or^,

= {a^}

It can be easily checked that

and thus

do? Ao?

7^2) = {0}
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The derived flag of the system is given by the decreasing sequenceof codistributions

/<») = {o'.o^}

/<» = {«'}
= {0}

Note that the basis is adapted to the derived flag. Because = {0}, an inte-
grable subsystem does not exist. The system is not constrained to move on some
submanifold of . •

3. Normal Forms

Now that we have defined an exterior differential system, and introduced some
analysis tools, we are ready to study some important normal forms for exterior
differential systems. We will restrict ourselves to Pfaffian systems. The first normal
form which we introduce, the PfafiSan form, is restricted to systems of only one
equation. The Engel form applies to two equations on a four-dimensional space,
and the Goursat formis for n—2 equations on an n-dimensionalspace. The extended
Goursat normalformis defined forsystemswith codimension greater than two. The
Goursat normal forms can be thought of as the generalization of linear systems.
Their study will lead us to the study of linearization of control systems in Section
4.

3.1. The Goursat Normal Form.

3.1.1. Systems of one equation. Wewill first study Pfaffian systems of codimension
n —1, or systems consisting of a single equation

a = 0

where o is a 1-form on a manifold M. In some chart (t/, a;) of a point p € Af the
equation can be expressed as

ai{x)dx^ -I- a2{x)dx^ + 1- o„(a;)cte" = 0

In order to understand the integral manifolds of this equation we will attempt to
express a in a normal form by performing a coordinate transformation.

Definition 39. Let a € n^(M). The integerr defined by

{day Ao 0

{daY"^^ Aot = 0

is called the rank of a.

The following theorem allows us, under a rank condition, to write a in a normal
form.

Theorem 36. (Pfaff) Let a € have constant rank r in a neighborhood
of p. Then there exists a coordinate chart {U,z) such that in these coordinates,
a = dz^ + z^dz^ + ... + z^^dz^^"^^.

Proof. Let I be the differential ideal generated by a. Prom Theorem 23 the retract
ing space of 2 is of dimension 2r -I-1. By Theorem 34 there exist local coordinates
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y^t-" such that I has a set ofgenerators in .. ,3/^*"''"^. Then, by dimension
count, any fimction fi of those 2r + l coordinates results in

{day AaAdfi =0

Now let Ii be the ideal generated by {dfi,Q,da}. If r = 0 then the result follows
from the Frobenius Theorem. If r > 0, the forms dfi and a must be linearly
independent since o: is not integrable. Applying Theorem 23 to Ji, let ri be the
smallest integer such that

A a A d/i =0

Clearly, ri + 1 < r. Furthermore, the equalitysignmust hold because (da)''A a ^ 0.
Applying Theorem 34 to Ii there exists a function /z such that

(da)''"^ Aa Ad/i Ad/2 = 0
Repeating this process, we find r functions /i,/2,.. • ,/r satisfying

da Aa Ad/i A df2 A ... Ad/r = 0

a A dfI A df2 A ... Adfr ^ 0

Finally, let Xr be the ideal {dfi,... ,dfr,a,da}. Its retraction space C{Xr) is of
dimension r + 1. There is a function fr+i such that

a A dfi Adf2 A ... Adfr+i = 0

dfi Adf2 A ... A dfr+i ^ 0

By modifying a by a factor, we can write

a = dfr+i + gidfi +... + Qrdfr-

Because {day Aa ^ 0, the functions /i,... ,/r+i,Pi, ••• ,pr are independent. The
result then follows by setting

= /r+i = 9i - fi

for 1 < t < r. •

Example. Consider the unicycle exampledescribed by the codistributionI = {a}
where a = sin ddx —cosOdy. We can immediately see that

da = cosBdB A dx + sin Odd Ady

and that

da A a = dffA dy A dx ^0

{day Aa = 0
Therefore a has rank 1 and by Pfaflf's Theorem there exist coordinates
such that

a = dz^ + z^dz^

In this example we trivially obtain,

a = dy + {— tand)dx

The following theorem is similar to Pfaflf's theorem and simply expresses the
result in a more symmetric form.
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Theorem 37. Given any a € Q}{M) with constant rankr in a neighborhood U of
p, there exist coordinates z, ,..., y*", ,..., a;** such that

1 »•
a = dz+ - ^{y*dx* - x*dy*)

»=i

Proof. The following coordinate transformation

«=i

= y* 1 <i<r

= X* 1 <i <r

reduces the above Theorem to Pfaff's Theorem. •

The Pfaffian system a = 0 on a manifold M is said to have the local accessibility
property if everypoint x € Af has a neighborhood U such that every point in U fian
be joinedto x by an integral curve. The following theorem answers the question of
when does this Pfaffian system have the local accessibility property.

Theorem 38. (Caratheodory) The Pfaffian system,

0 = 0

where o has constant rank, has the local accessibility property if and only if

o Ado 7^ 0

Proof. The above condition simply says that the rank ofo must be greater than or
equal to 1. If o has zerorank then do Ao = 0 and therefore by Frobenius Theorem
we can write

a = dh = 0

for some function h. The integral curves are of the form h = c for any arbitrary
constant c. Since we can only join points p,q e M for which h(j>) = h{q), we do
not have the local accessibility property.

Conversely, let o have rank r > 1. FVom Theorem 37, we can find coordinates
2:,x^... ,x'",2/^... ...,u' in some neighborhood Uwith 2r+5+1 = dimM
such that

and therefore

1 »•
a =dz + - ^(y'dx' - x^dy') =0

da: =i ^(x*dy* - y*dx*)

Given any two points p,q e U we must find integral curves c : [0,1] —> U with
c(0) = p and c(l) = q. Since we are working locally, we can assume that the initial
point p is the origin: z{p) = x*{p) = y^{p) = n*(p) = 0. Let the final point q be
defined by z{q) = zi,x*{q) = x\,y*{q) = yi,u*{q) = u}. Because the expression of
theone-form a does not depend on theu* coordinates, we can choose thecurve tu\
to connect the u* coordinates of p and q.
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In the plane there are many curves (a;*(t),y*(t)) which join the origin
with the desired point {x\,yl). We need to find one which steers the z coordinate
to 2i. In order to satisfy the equation a = 0, we must have that

1 *• . .
dz = - - y*dx*)

<=i

Integrating this equation gives

where Ai is the area enclosed by the curve (x*{t),y*{t)) and the chord joining the
origin with (xj,3/}). To reach the point q, the curve (ir*(t),must satisfy
z(l) = zi. Geometrically, it is clear that a curve (x*(t),j/*(t)) linking the pointsp
and q while enclosing the area prescribed by zi willalways exist. Thus, the integral
curve c(t) given by

{z{t), x^{t),..., x''(t),y^ (t),..., y''{t), tu^ (t),..., tu'{t))
has c(0) = p and c(l) = 9 and satisfiesthe equation a = 0, and the system therefore
has the local accessibility property. •

3.1.2. Codimension two systems. We now consider Pfaffian systems of codimen-
sion two. We are again interested in performing coordinate changes so that the
generators of these Pfaffian systems are in some normal form.

Theorem 39. (Engel) Let I he a two dimensional codistribution

/ = {a',a=}
of four variables. If the derived flag satisfies

diml^^^ = 1

diml^^^ = 0

then there exist coordinates z^,z^,z^,z^ such that

I = {dz^ —z^dz^^dz^ —z^dz^}

Proof. Choose a basis for I which is adapted to the derived fiag; that is = I =
= {a^}, and = {0}. Choose a® and a* to complete the basis.

Since = {0} we have

doi^ A 0

while

{da^)^ A = 0
since it is a 5-form on a 4-dimensional space. Therefore has rank 1. By Pfaff's
Theorem, we know that there exists a coordinate change so that

= dz^ —z^dz^

Taking the exterior derivative, we have that

da^ = —dz® A dz^ = dz^ A dz®

Now, since the definition of the first derived system will imply that

da^ A A = 0
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and thus

dz^ A dz^ A A = 0

Therefore must be a linear combination of dz^,dz^ and a^:

= a{x)dz^ + b{x)dz^ mod
By definition, this means that

+ A(x)a^ = o(x)dz® + 6(ar)d2^
Now if either a{x) = 0 or 6(a;) = 0, then da^ A A = 0 and thus the fiag
assumptions are violated. Thus a{x) ^ 0 and therefore

-j^a^ + =dz' +
o(x) a(a:) a{x)

and if we set z^ = — then

= dz^ —z^dz^
a{x) a{x)

and thus

/={a',a=} ={a', ^a^ +̂ a'}={dz' - z^dz\dz^ -z^dz")
•

It should be noted that the only place the dimension assumption is used in the
proof is to guarantee that {doc^)'̂ A = 0. If has rank 1 this equality holds by
definition.

Corollary 40. LetI = {a^,Q!^} be a two dimensional codistribution. If thederived
flag satisfies diml^^^ = 1 and diml^^^ = 0 and has rank 1, then there
exist coordinates 2^,2^,2^,2^ such that

I = {dz^ —z^dz^jdz^ —z^dz^}

Proof. The corollary follows by the proof of Engel's Theorem. •

Example. Consider again the penny rolling on a plane. The system is described
by the codistribution I = where

= cos Bdx + sin Qdy + d4

o? — sin^dx—cos^dy
In Example 2.3.4, we sawthat the derived flag for this system is given by

= {a\a^}
= {a^}
= {0}

and thus satisfies the conditions of Engel's Theorem. After some calculations we
obtain

da^Aa^ = —dx Aidy Add + sin 0d$ AdxAd<f> +cosOdO Ady A<d<f>
Since (da^)^ Aor^ = 0 the rank of is 1. Following the proof of Pfaff's Theorem
we know that there exists a function fi such that

da^ A Ad/i = 0
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We can easilysee that the function fi =9 is &solution to this equation. Since the
rank of is 1, we must now search for a function /z such that

q} a d/i a c(f2 = 0
Let /2 = f2{x,y,9,<f>). Then it may be verified that a solution to this system of
equations is

f2{x,yj6,(f>) = xcos9 + ysin9 + 4>

Therefore, following again the proof of Pfaff's Theorem we may nowchoose = fi
and = /2 so that

= dz* —z^dz^

wherez^ can be found from the above equation to be

z^ = —a;sin0 + ycosd
We will now try to transform into the normal form. Following the proof of
Engel's Theorem, we have that

= [a(a;, y,By <t>)dz^ + &(x,y, 6y mod

We must now determine the functions a and h. Simple calculations show that the
following choices

a{x,y,0,^) = -1

h{XyyyBy4) = "X COS ^ sm ^

will satisfy the equation. Therefore by Engel's Theorem, if we set

b(x,y,0yi^)z^ = —XCOS0 —ysin^ = —
a(xyyy9,(^)

we may express ,a^ in the following normal form

a — dz^ —z^dz^

= dz^ —z^dz^

If we look at the differential equation expressed in these new coordinates we obtain

— Z^Z^

and z^y z^ are free. The annihilating distribution is given by

Til pll
^2 . J =̂{Pl»52}
z3 0

\ L J L J /

If we set z^ = uiyZ^ = U2 the distribution has the form
i4 _ —3„
Z = Z Ui

i3 _ -2-,
Z — Z Ui

Z^ = U2
Z^ — U\

or i = giu\ + ^2^2. The advantage of performing this coordinate transformation
is that our system can be expressed in this simple form. In particular if we set
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tti = 1 then the system has been transformed to a linear system in Brunovsky
canonical form. This allows us to use the powerful analysis tools that exist for linear
systems. Engel's Theorem therefore gives the conditions under which a system of
four configuration variables with two constraints can be "linearized". •

Engel's Theorem can be generalized to a system with n configuration variables and
n —2 constraints. This powerful theorem was proved by Goursat.

Theorem 41. (Goursat Normal Form) Let J be a Pfaffian system spanned by s
1-forms,

a'}

on a space of dimension n = s + 2. Suppose that there exists an integrable form tt
with TT ^ 0 mod I satisfying the Goursat congruences,

da* = —A TT mod a^,...,a* l<i<s —1
da' ^ 0 mod I

Then there exists a coordinate system in which the Pfaffian system is
in Goursat normal form:

I = {dz^ —z^dz^,dz^ —z^dz^,. ..,dz** —z^~^dz^)

Proof. The Goursat congruences can be expressed as

da^ = —o? A TT mod a)

da^ = —a^ ATT moda^, a^

da' ^ = —a'A7rmoda^,a^,...,a'
da' = —A tt moda^,a^,...,a'

where a'"^^ ^ I. It can be shown that must form a complement to I.
This basis satisfies the Goursat congruences and is adapted to the derived flag of
/:

= {<»' a'"'}

/(-I) = {«'}
/<•) = {0}

From the Goursat congruences,

da^ ——a^ A tt mod

which means that

da^ = —o? ATT + Ajy
for some one-form 7}. But then we have that

da^ A ATT A 5^ 0
{da}')^ A =0
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which means that has rank 1. We can therefore apply PfafF's Theorem and
express as

= dz^ —z^~^dz^

for some choice of2^,z^. Furthermore, by Corollary 40 wecan express as

q2 = dz""-^ - z '̂-^dz^ (76)
In these new coordinates we have

da^ A A dz^ A dz^

Now we have that

da^ A ATT = TT A{—dz^~^ Adz^ Adz") = tt A(—A tt Aa^) = 0
and therefore tt is a linear combination of dz^^dz^~^,dz^. Noting that dz"~^ =
z^~^dz^ mod a^,a^,

TT =adz^ + bdz^~^ + cdz^

=adz^ + hz^~^dz^ + cz"~^dz^ mod a^,a^

=i/fdz^ mod

where ^ = a + bz^~^ + cz^~^ is nonzero since we have assumed that tt ^ 0 modI.
From the Goursat congruences we have that

da^ = —a^ A tt mod

while from equation (76) we have

da^ = —dz^~^ A dz^

and thus

—dz^~^ A dz^ = —a^ A ir mod

which means that

= A(a:)d2"~^ moddz^
for nonzero function A(2:). Therefore we can rewrite this as

= dz""^ — fnoda^,Q^
A(a;)

and if we set z"~® = we have

= dz^~^ —z"~^dz^ mod

and we can therefore let

= dz"~^ —z"~^dz^

If weinductively continue this procedureusing the Goursat congruences weobtain

= dz^~^ —z^~^dz^

a' = dz^ —z^dz^

Now from the Goursat congruences we have that

da' 0 mod I
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and therefore

Aot^ A•••Aa' A da' 7^ 0
If we substitute the a* in the above expression we obtain

dz^ Adz"^ A•••Adz^ 5^ 0
and therefore the functions , z" can serve as a local coordinate system. •

The followingexample illustrates the power of the Goursat's Theorem by apply
ing it in order to linearize a nonlinear system. A more systematic approach to the
feedback linearization problem can be found in the paper by Gardner and Shad-
wick [11]. Note that the integral curves of a system in Goursat normal form are
completely determined by two arbitrary functions in one variable and their deriva
tives. For example, once z^{t) and z'{t) are known, all of the other coordinates
are determined from

= filial)
ii(r)

where the dot indicated the standard derivative with respect to the independent
variable r. Because of this property, these two coordinates are sometimes referred
to as linearizing outputs for the Pfaffian system.

Example. Consider the following nonlinear system with s configuration variables
and a single input,

Xi = /i(xi,..., , u)

^2 = iXa,u)

Xg — , . . . , X3, u)

Equivalently we can look at following Pfaffian system,

I = {cb* —fi(x^,...,x',u)dt} I <i< s
The system is of codimension 2 since we have s constraints and 5 + 2 variables,
namely x^,...,x','u,t. Assume that the form tt = dt satisfies the Goursat con
gruences. Then by Goursat's Theorem there exists a coordinate transformation
z = $(x,u,t) such that I is generated by

I = {dz^ —z^dz^^dz^ —z^dz^^..., dz'"*"^ - z''̂ ^dz^}
The annihilating distribution of the above codistribution is

z^ = Vi
z^ = V2

= z'̂ Vi

i«+2 =

which, if we set vi = 1, is clearly a linear system. If it turned out that the z^
coordinate corresponds to time in the original coordinates, that is, z^ = t, then
the connection becomes even more clear. Goursat's Theorem can thus be used
to linearize single-input nonlinear systems which satisfy the Goursat congruences.
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Figure 1. The mobile robot Hilaxe with n trailers.

These and other issues related to control systems will be explored more fully in
Section 4. •

3.2. The iV-trailer Pfaffian system. In this section, we will show how the system
of a mobile robot towing n trailers can be represented as a PfafBan system. As we
saw in the unicycle example, the constraint that a wheel rolls without slipping can
be represented as a one-form on the configuration manifold. The velocity of the N-
trailer system is constrained in n directions corresponding to the n axles of wheels.
A basis for this constraint codistribution (or equivalently, the PfafiSan system) is
found by writing down the rolling without slipping conditions for all n axles.

3.2.1. The system of Tolling constraints and its derived flag. Consider a single-axle
mobilerobot such as Hilare^ with n trailers attached, as sketchedin Figure 1. Each
trailer is attached to the body in front of it by a rigid beu',and the rear set of wheels
of each body is constrsdned to roll without slipping. The trailers are assumed to
be identical, with possibly different link lengths Li. The x^y coordinates of the
midpoint between the two wheels on the axle are referred to as (arSj/O
hitch angles (all measured with respect to the horizontal) are given by 6*. The
connections between the bodies give rise to the following relations:

= X* Li cos 9*
. , . i = l,2,...,n. (77)

y'-^ =y* + LiSm0*

Obviously, the space parameterized by the coordinates (x®, €
K^n+2 X is not reachable. Taldng into account the connection relations (77),
any one of the Cartesian positions x*, y* together with all the hitch angles 9®,... ,0"
will completely represent the configuration of the system. The configuration space
is thus M = X (5^)""'"^ and has dimension n + 3. In any neighborhood, the
configuration space can be parameterized by R"'*'̂ .

The velocity constraints on the system arise from constraining the wheels of
the robot and trailers to roll without slipping; the velocity of each body in the
direction perpendicular to its wheels must be zero. Each pair of wheels is modeled
as a single wheel at the midpoint of the axle. Each velocity constraint can be
written as a one-form,

a* = sin 0*dx* —cos 9*dy* i = 0,..., n (78)

The one-forms Q!®,a^,... ,q" represent the constraints that the wheels of the ze-
roth trailer (i.e. the cab), the first trailer, ... , the trailer, respectively roll

^TbeHilare family of mobile robots resides at LAAS in Tbulouse, seeforexample [7,12).
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without slipping. The PfafiSan system corresponding to this mobile robot system
is generated by the codistribution spanned by all of the rolling without slipping
constraints:

(79)

and has dimension n + 1 on a manifold of dimension n + 3.
Before finding the derived flag associated with /, it is useful to investigate some

properties of the constraints and their exterior derivatives. Notice that equation
(78) can be rearranged (after a division by a cosine) to give the congruence:

dy* = taji0*dx* mod a* (80)

This division by a cosine introduces a singularity; the resulting coordinate trans
formation will not be valid at points where 0* = ±ir/2. See Remark 3.2.2 for a brief
discussion of singularities.

All of the {x*,y*) are related by the hitch relationships. The exterior derivatives
of these relationships can be taken,

=x* + Li cos0* dx*~^ =dx* —Li sin 0*d0*

y*~^ —y*-\-Li sin0^ dy*~^ = dy* -I- Li cos 0*d0*

and these expressions can then be substituted into the formula for from (78),
allowingthe constraint for the {i —1)'* axle to be rewritten as:

a*~^ =sm0*~^dx*~^ —cos0*~^dy*~^ (81)
= sin 0*~^dx* —cos 0*~^dy* —Licos(0*~^ —0')d0* (82)
= (sin0*~^ —tan0*cos^*~^)da;* —Licos(0*~^ —0*)d0* mod a* (83)
= seed'sin(d'~^ - 0*)dx* —Licos(d'~^ - d')dd* mod a* (84)

after an application of the congruence (80). A rearrangement of terms and a division
by cosine in equation (81) will give the congruence

dd' =-^ sec d' tan(d'~^ —d')da:* mod (85)
Li

= feidx* moda*,a*~^ (86)

The exact form of the function fgi is unimportant; what will be needed is the
relationship between dd* and dx*.

The first lemma relates the exterior derivatives of the x coordinates.

Lemma 42. The exterior derivatives of any of the x variables are congruent mod
ulo the Pfaffian system, that is: dx* = fxi.idx^ mod I.

Proof. For two adjacent axles, the relationship between the x coordinates is given
by the hitching,

x*~^ = X* + cosd* (87)
dx'~^ =dx* —Lisin d'dd* (88)

= (1 - Li sin0*fgi )dx* mod ,a' (89)

= fxi-i,idx* moda*~^,Q!' (90)

The congruence (85) was applied. •
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A complement to the Pfaffian system I = {a®,... , q"} is given by

(91)

for any a;*, since by Lemma42 their exterior derivatives are congruent modulo the
system, and the complement is only defined modulo the system. These two one-
forms, together with the codistribution /, form a basis for the space of all one-forms
on the configuration manifold, or

Now consider the exterior derivative of the constraint corresponding to the
axle,

a* = sin^*dx* —cm6*dy* (92)

da* = d0* A{co30*dx* + sm0*dy*) (93)

= d0* Adx*(cos 0* + sin 0* tan 0*) mod a* (94)

= d0* Adx*(sec0*) mod o* (95)

= 0 moda*,Q!*~^ (96)

using (85). Thus, the exterior derivative of the constraint corresponding to the
axle is congruent to zero modulo itself and the constraint corresponding to the axle
directly in front of it. The congruences (80) and (85) were useful in deriving this
result.

This is all the information that is needed to find the derived flag for the system.

Theorem 43 (Derived flag for the JV-trailer Pfaffian system). Consider the Pfaf
fian system of the N-trailer system (79) with the one forms a* defined by equations
(78). The one-forms a* are adapted to the derivedflag in the following sense:

/(®^ = {a®,aS...,a"} (97)

= (98)

: (99)

= {a"} (ICQ)
/(n+i) 33 {0} (101)

Proof. The proof is merely a repeated application of equation (92). Noting that
the exterior derivative of the constraint is equal to zero modulo itself and the
constraint corresponding to the axle directly in front of it, it is simple to check that
the derived flag has the form given in equation (97). •

Note that 7^"+^) = {0} implies that there is no integrable subsystem contained
in the constraints which define iV-trailer Pfaffian system.

3.2.2. Conversion to Goursat normal form. In the preceding subsection, it was
shown that basis {a®,... ,«**} defined in equation (78) is adapted to its derived
flag in the sense of (97). It remains to be checked whether the a* satisfy the
Goursat congruences and if they do, to find a transformation that puts them into
the Goursat canonical form. The following theorem guarantees the existence of
such a transformation.
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Theorem 44 (Goursat congruences for the iV-trailer system). Consider the Pfaf-
fian system I = {a®,... ,o"} associated with the N-trailer system (79) with the
one-forms a* defined by equation (78). There exists a change of basis of the one-
forms a* to a* which preserves the adapted structure, and a one-form n which
satisfies the Goursat congruences for this new basis:

da* = —Air mod a*,...,a** i = 1,...,n

da® 9^ 0 naod I.
A one-form which satisfies these congruences is given by

IT = dx** (102)

Proof. First of all, consider the original basis of constraints. The expression for a*
can be written in the configuration space coordinates from equation (78) together
with the connection relations (77) and some bookkeeping as:

n

a* = sin d*dx** - cos 0*dy** - ^ Lk cos{9* - (103)
*=»+!

Beforebeginningthe main part of the proof, it willbe helpful to define a newbasis
ofconstraints a*, which is also adapted to the derived flag, but is somewhat simpler
to work with. Each d* will have only two terms. Although the last constraint
already has only two terms, it will be scaled by a factor,

d" = sec^^a" = tan^"dx" —dy" (104)
Note that a rearrangement of terms will give the congruence

dy" = tan^"da;" mod d" (105)

Now consider the next to lastconstraint, a"~^, andapply the preceding congruence:
a"~^ = sin^"~^da:" —cos0'*~^dy** —£„ cos(^" —0"~^)d0"

= sec0** sin(0"-^ - 0")dx" - L„cos(0"-^ - 0'*)d0" mod d"
Dividing once again by a cosine, the new basis element d"~^ is defined as

d"~^ = sec0" tan(^""^ - 0**)dx** - (107)
Thus, d"~^ = fan-ia**~^ mod a". Also, the exterior derivative d0** is related to
dx** by the congruence

d0**=-^ sec0** tan(^"~^ - 0**)dx** mod d""^ (108)
J-'n

This procedureof eliminating the terms dy", d0", ...,dJ0* from a*+^ can be contin
ued.

Lemma 45. A new basis of constraints d* of the form
d" = tan 0**dx** —dy**

d* = sec0** sec(0**~^ -0**)...sec(0*'*'̂ - 0*+^) tan(0* - 0*'*'̂ )dx** - Li+id0*'*'̂
i = 0,..., n - 1

(109)

is related to the original basis of constraints a* through the following congruences:

d* = faiot* mod a*"*"^,..., a" (110)
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and thus the basis a* is also adapted to the derivedflag.

Note that by the definition of d*, the exterior derivative is related to dx"
by the congruence

d0*+^ = sec^" sec(0"-^ - d")...sec(^*+^ - 9*+^) tan(0* - mod a'
tii+i

(111)

The lemma is proved by induction. It has already been shown that d" = /a-a"
and d"~^ = mod d". Assume that d* = /a<a* mod ,..., a" for
t = i +1,... ,n. Consider d^ as defined by equation (109),

d^" = sec^"sec(^"-^ - 6>")...sec(^^+^ - ^+2)tan(^J - ^•+^)dx" - Lj+idd^-^^
(112)

Recall from equation (103) that has the form
n

= sin^^dx" —cosO'dy^ ~ X) cos(0^ - 6'')d9'' (113)
*=i+i

Now, applying the congruences

dy" = tan^^dx" mod d"

d9* =^seed" sec(d"-i - d")...sec(d* - d*+i) tan(d*-^ - d^dx" mod
hi

to the expression for and expanding the summation, yields

oP = sind^dx" —cosd^ tand"dx" —Lj+i cos(d^ —

- cos(d '̂ - dJ+2) seed"sec(d"-^ - d")...sec(d^+2 - d^+3) tan(dJ+i - d^+2)rfx"

-cos(dJ -d"-^)secd"sec(d"-^ -d")tan(d"-2 -d"-^)dx"
- cos(dJ' - d")sec d"tan(d"-^ - d")dx"

mod dr'^^,..., d"~^, d""^, d"
(114)

To simplify the above expression, the trigonometric identity

sin a —cosa tan 6 = sec&sin(a —6) (115)

is repeatedly applied. After all the terms are collected, it can be seen that the
equation will read:

o '̂ =sin(d '̂ -dJ+i)secd"sec(d"-^ -d")...sec(d^+^ -d^+2)dx"
- Lj+i cos(d '̂ - dJ+^)dd^+^ mod ... ,d"-^d"-^d" (116)

= cos(d^ —d"'"^^ )d^ mod d'"'"^,..., d"~^, d"~^, d"

and the lemma is proved.
The basis d* will now be scaled to find the basis d* which will satisfy the con

gruences (75). Once again, the procedure will start with the last congruence, d".
The exterior derivative of d" is given by

dd" = sec^ d"dd" Adx" (117)
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Looking at the expression for given in equation (107), it can be seen that
TT should be chosen to be some multiple of dx" or dJd^. In fact, either tt = dx"
or TT = dtf" will work, although the computations are diiferent for each case. The
calculations here are for choosing ir = dx". Choosing the new basis element d"~^
as

d"-^ =-j?-sec2d'»d"-^ (118)
Ln

will result in the desired congruence,

dd" = —d"~^ ATT mod a" (119)

Now consider the exterior derivative of d"~^,

dd"-^ sec® tan(^"-^ - 0")dx" - L„sec® ^"d^")

1 " , (120)
= •=— sec sec®(^" ^ -• 0")d^" ^Adx" mod d"~^

Ln

since any terms eW" Adx" are congruent to 0 mod d"~^. Thus, in order to achieve
the next Goursat congruencedd"~^ = d""®Att, the new basis element d"~® should
be chosen as

d"~® = -rr-j— sec® 6^ sec®(^"~^ —̂")d"~® (121)
Ln-Ln—1

In general, the new basis is defined by

d* = -—-——-— sec""*"^^ sec"~*(d"~^ —9^)...
Lni/n-i... Li+i

sec® (0*+® - 0*+®) sec®(0*+^ - 0*+^ )d* (122)
It has already been shown that the congruences hold for i = n and i = n —1,
Assume that the congruences

dd* = -d*~^A7r mod Q:\...,a". (123)
hold for i = j + 1,..., n. Consider the exteriorderivative of d^,

doP =d[{r^ ^— sec"~-'+^ sec"-''(^"-^ - ^")...
•LnL„_i... I/j+i

sec®(^J+® - ^+®)sec®(^+^ - ^•+®))d'
Before calculating all of the terms, recall that the following congruences hold:

dJ9* A dx" = 0 mod d*~^

d»' Ad^* = 0 mod d*-^,d*-^

and thus the only term in doP mod d^,..., d" wiU be a multiple of dB^ Adx",

dcP = — sec""^"*"® sec"~ '̂''̂ (tf"~^ —0")...
Ln-Ln—1 ... Lj+i

sec^(0^+® - ^•'•®) sec®(0^+^ - ^^+®) sec®(^j - ) ^^25)
mod d^,...,d"

= dP~^ ATT mod dP,,.,,6c^

This completes the proof that the Goursat congruences are satisfied. •
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Sincethe one-forms a* do satisfythe Goursat congruences, a coordinatetransfor
mation into Goursat normal form can be found. As seen in the proof of Goursat's
Theorem, the one-forma" in the last nonzero derived system has rank 1. We can
thereforeusePfaff's Theorem to find functions /i and /2 which satisfythe following
equations

da" Aa" Adfi = 0 a" Adfi ^0

a"Ad/iAd/2 = 0 dfiAdfi^O.

The constraint corresponding to the last axle is once again given by^

a" = sin^^dx" —cos0"dy" (128)

and its exterior derivative has the form

da" = —cos0"dx" AdB" - sin 9"dy" A (129)

It follows that the exterior product of these two quantities is given by

da" Aa" = —dx" Ady" AdB". (130)

By the first equation of (126), /i may be chosen to be any function of x"iy"^6"
exclusively.

Two different solutions of the equations (126) are explained here.

Tk'ansformation 1. Coordinates of the trailer. Motivated by S0rdalen [29],
fi can be chosen to bex". The second equation of (126) then becomes

sin 0"dx" A dy" Adf2 = 0 (131)

vjith the proviso that dfi Ad/2 # 0. A non-unique choice of /z is

/2 = 3/". (132)

The change of coordinates is defined by:

zi=fi{x)=x" (133)

Zn+3 = f2{x) = y". (134)

The one form a" may be written by dividing through by sin 6" as

a" = dy" —taji0"dx" (135)

—dZn+3 Zfi^.2dzi, (136)

giving Zn+i = tan 9". The remaining coordinates are found by solving the equations

a* = dzi+2 —Zi+2dzi mod ,... ,0" (137)

^The basis that satisfies the Goursat congruences was a scaled version of the original basis,
fi" = /o"®"- However, it can be checked that

dfi" A fi" = (dfo" Aq" + /an da") A /an o"

= (/an)^da" Aq"

and thus a function /i will satisfy da" Aa" A 4fi = 0 if and only if dfi" A fi" A dfi =0.
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for i = n —1,... , 1. In fact, because dzi = it as chosen in the proof of Theorem
44t one-forms d* already satisfy these equations,

d* = — sec"-*+^ .sec^{e'+^ - 0'+^)
Lfi... Lti^i

(secfl"sec(e"-' -9")...sec(9'+' -9'+')tan(9' - 9'+')dx" - Li+id0'+^)
(138)

and so the coordinates Zi are given by the coefficients of dx" in the expression for
the a*.

Transformation 2. Coordinates of the origin seen from the last trailer. Yet an
other choice for fi corresponds to writing the coordinates of the origin as seenfrom
the last trailer. This is reminiscent of a transformation used by Samson [24] in a
different context, and is given by

zi := /i (x) = x" cos 0" + y" sin0^. (139)
This has the physical interpretation of being the origin of the reference frame when
viewed from a coordinate frame attached to the trailer. It satisfies the first
of the equations of (126) simply by virtue of thefact that it is only a function of
x^,y^,0^. It may be verified that a choice of f2 given by

Zn+3 := /2 = a:" sin - y" cos 0^ - 0^zi (140)
satisfies the Pfaff equation,

Adfi Ad/2 = 0. (141)
The remaining coordinates Z2,...,Zn^2 corresponding to this transformation

may be obtained by solving the equations

o* = dzi.^2 - Zi+2dzi mod ,q" (142)
for i = n —1,... ,1. The details are tedious and are omitted.

Remark (Singularities). There are two types of singularities associated with the
transformation into Goursat form. At 0^ = 7r/2, for example, the transformation
will be singular, but thissingularity canbe avoided bychoosing another coordinate
chart at the singular point (such as by interchanging x and y, using the 5£7(2)
symmetry of the system). A singularity also occurs when the angle between two
adjacent axles is equal to 7r/2; at this point, some of the codistributions in the
derived flag will lose rank. The derived flag is not defined at these points; nor is
the transformation. There are no singularities of the second type for the unicycle
(n = 0) or for the front-wheel drive car (n = 1).

Once the constraints are in the Goursat normal form, paths can be found which
connect any two desired configurations. See Tilbury, Murray, and Sastry [34] for
details.

3.3. The Extended Goursat Normal Form. While the Goursat normal form
is powerful, it is restricted to Pfaffian systems of codimension two. In order to
study Pfaffian systems of higher codimension, we present the extended Goursat
normal form. Whereas the Goursat normal form can be thought ofasa single chain
of integrators, the extended Goursat form consists of many chains of integrators.
Consider the following definition.
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Definition 40 (Extended Goursat Normal Form). A Pfaffian system I on
of codimension m + 1 is in extended Goursat normal form if it is generated by n
constraints of the form:

I = {dz{ - zf^^dz^ : t = 1,... ,Sj; j = 1,... ,m}, (143)
This is a direct extension of the Goursat normal form, and all integral curves

of (143) are determined by the m + 1 functions z^{t)^z\{t)j... ^z^it) and their
derivativeswith respect to the parameter t. The notation has been changedslightly;
the canonical constraints aure now —z^^-^dz^ whereas before they were dz* —
z*~^dzi. For the Goursat form, the constraint in the last nontrivial derived system
was dz" —z"~^dz^; in the extended Goursat normal form, it will be dz{ —z^dz^.
We refer to the set of constraints with superscript j as the tower (the reason
for this name will become clear after we compute the derived flag).

Conditions for converting a Pfaffian system to extended Goursat normal form
are given by the following theorem:

Theorem 46 (Extended Goursat Normal Form). Let I he a Pfaffian system of codi
mension m+1. If (andonly if) there exists a set ofgenerators {ocl: t = 1,... iSj;j =
1,... ,m} for I and an integrable one-form ir such that for all j,

docl = ATT mod t = 1,..., Sj - 1 (144)
doi. ^ 0 mod I (145)

then there exists a set of coordinates z such that I is in extended Goursat normal
form,

I = {dz} - zf+idz° : i = 1,...,sj'J = 1,... ,m}.

Proof. If the Pfaffian system is already in extended Goursat normal form, the con
gruences are satisfied with tt = dz^ (which is integrable) and the basisofconstraints
oj = dzi —zf^jdz®.

Now assume that a basis of constraints for I has been found which satisfies the
congruences (144). It is easilychecked that this basisis adapted to the derived flag,
that is:

7^*^ = {oij : t = 1,... ,8j-k]j = 1,... ,m}
The coordinates z which comprise the Goursat normal form can now be constructed.

Since tt is integrable, any first integral of w can be used for the coordinate z^.
If necessary, the constraints Oj can be scaled so that the congruences (144) are
satisfied with dz^:

dcxl = -oi+i Adz® mod «= 1,..., Sj- - 1
and the constraints can be renumbered so that si > S2> "• > Sm.

Consider the last nontrivial derived system, Theone-forms o},... ,aj'
form a basis for this codistribution, where si = S2 = •••= Sr,. PYom the fact that

dai = —o^ Adz® mod
it follows that the one-forms o:},... satisfy the FVobenius condition:

dotj Aa} A•••Aap Adz® = 0
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can be found suchand thus, by the Frobenius Theorem, coordinates zl,
that

• a\

1

= A : -HBdz®

1

•

The matrix A must be nonsingular, since the aj's are a basis for and they
areindependent ofdz^. Therefore, a new basis a{ can bedefined as:

'

1

0 1

1

1

jl

11

."i'. —1

•Q
1

and the coordinates z^ := —{A ^B)j are defined so that the one-forms dj have the
form

= dz( —z^dz^

for j = 1,... ,ri. In thesecoordinates, the exterior derivative of dj is equal to

ddc{ = —dzl Adz®
If there were some coordinate Z2 which could be expressed as a function of the
other 2 '̂s and zj's, then there would be some linear combination ofthe dj's whose
exterior derivative would be zero modulo which is a contradiction. Thus,
this is a valid choice of coordinates.

By the proof of the standard Goursat Theorem, all of the coordinates in the
towercan be found from z{ and 2®. By the above procedure, all the coordinates in
the first Ti towers can be found.

To find the coordinatesfor the other towers, the lowest derivedsystems in which
they appear must be considered. The coordinatesfor the longest towers werefound
first, next those for the next-longest tower(s) will be found.

Consider the smallest integer k such that dim > ifcri; more towers will
appear at this level. A basis for is

{"1, I 1 >,a ^ri+l
' "ik >"1 )

where oj = dz{ —z{^idz^ for j = 1,... ,ri, as found in the first step, and oj for
j = ri -H 1,... ,r2 are the one-forms which satisfy the congruences (144) and are
adapted to the derived fiag. The lengths of these towers are Sr,+i = ••-Sn+ra =
Si - A; +1. For notational convenience, define := (z{,..., zj) for j = 1,...,n.

By the Goursat congruences, doj = —oj Adz® mod for j = ti +
1,... ,ri + r2, thus the Frobenius condition

do} A A•••A Adzj A•••Adzj A•••Adz[* A•••Adzj' Adz® = 0
is satisfiedfor j = ri -Hi,..., ri-Hr2. Using the FVobenius Theorem, newcoordinates

.. •, zpcan be found such that

"dzj"»+^"
1 = A + Bdz° + C

dzr»+'"\
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Since the congruences axe only defined up to mod the last group of terms
(those multiplied by the matrix C) can be eliminated by adding in the appropriate
multiples ofoj = dz{ — for j = 1,... ,ri and t = 1,... ,A:. This will change
the B matrix, leaving the equation

I = A + Bdz''
^ri+ra^

Again, note that A must be nonsingular because the Of '̂s are linearly independent
mod and also independent of dz®. Define

-n+1-

I

1

jl

: =

^ri+r.
+ (A-^B)dz'

and then define the coordinates z^ := —{A ^B)j for j = ri +1,... ,ri + r2 so that
a{ = dz{ —z^dz°. Again, by the standard Goursat Theorem, all of the coordinates
in the towers xi + 1,... , n + r2 are now defined.

The coordinates for the rest of the towers are defined in a manner exactly anal
ogous to that of the second-longest tower. •

K the one-form tt which satisfies the congruences (144) is not integrable, then
the FVobenius Theorem cannot be used to find the coordinates. In the special case
where sz, that is, there is one tower which is strictly longer than the others, it
can be shown that if there exists any ir which satisfies the congruences, then there
also exists an integrable n' which also satisfies the congruences (with a rescaling of
the basis forms), see [4, 21]. However, if Si =52, or there are at least two towers
which are longest, this is no longer true. Thus, the assumption that ir is integrable
is necessary for the general case.

If I can be converted to extended Goursat normal form, then the derived fiag of
/ has the structure;

/ = {a}, •••, •••,
/(1) = {q}, •••,

J'C'm™!) — W. •••»

j(ai-2) _ {a}, Oil}
_ W)

j(«l) = {0}

1
a

a"

a
Om

1 »

«r}

where the forms in each level have been arranged to show the different towers. The
superscripts j indicate the tower to which each form belongs, and the subscripts i
index the position of the form within the tower. There are sj forms in the
tower.

Another version of the extended Goursat normal form Theorem is given here,
which is easier to check, since it does not require finding a basis which satisfies the
congruences but only one which is adapted to the derived fiag. One special case of
this theorem is proven in [25].
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Theorem 47 (Extended Goursat Normal Form). A PfaffiansystemI of codimen-
sion m + 1 on con be converted to extended Goursat normal form if and
only if = {0} for some N and there exists a one-form it such that is
integrable for k = 0,... —1.

Proof. The only if part is easily shown by taking tt = dz^ and noting that

7^*^ = {dzi -zi+idz°: i = 1,... ,s, - A; j = 1,... ,m}
tt} = {dz{,dz° : i = k+ 1,... ,Sj\j = 1,... ,m}

which is integrable for every k.
Now assume that such a w exists. After the derived flag of the system, I =:

/(o) ^ /(I) 3 ... 3 ji'i) = |o}, has been found, a basis which is adapted to the
derived flag and which satisfies the Goursat congruences (144) can be iteratively
constructed.

The lengths ofeachtower are determined from the dimensions ofthe derived flag.
Indeed, the longest towerof forms has length si. If the dimension of is n,
thenthereareri towers which each have length si; andwe have si = S2 = •••= Sr,.
Now, if the dimension of is 2ri + r2, then there are r2 towers with length
5i —1, and Sr,+i = •••= Sr,+ra = Si —1. Each Sj is found similarly.

A TT whichsatisfies the conditionsmust be in the complement of 7, for if ir were
in 7, then {7,7r} integrable means that 7 is integrable, and this contradicts the
assumption that 7^^1 = {0} for some N.

Consider thelastnontrivial derived system, 7 '̂*"^^. Let {aj,... ,ap} bea basis
for The definition of the derived flag, specifically 7 '̂*^ = {0}, implies that

da{ ^ 0 mod 7 '̂̂ "^^ j = 1,... ,ri (146)

Also, the assumption that is integrable gives the congruence

doj = 0 mod {7 '̂*"^\7r} 7= 1,... ,ri (147)

combining equations (146) and (147), the congruence

doj = TT A mod 7 '̂̂ "^^ 7= 1? •••>n (148)

must be satisfiedfor some /P ^0 mod
Now,from the definition of the derived flag,

dot} = 0 mod 7 = 1»• •• j''!

which combined with (148) implies that /J' is in
Claim. are linearly independent mod 7^'^"^).
Proof of Claim. The proof is by contradiction. Suppose there exists some combi
nation of the say

P = + ... + = 0 mod

with not all of the 6j's equal to zero. Consider a = 6iq:} H hb^al^. This
one-form a^O because the oij are a basis for The exterior derivative of a
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can be found by the product rule,
n ri

da = ^ hjdoP^ +^ dbj A0[{
3=1 3=1
ri

= ^ bj(ir A mod
3=1

ri

= IT A bj/^) mod
i=i

= 0 mod/^'»-^>

which implies that a is in However, this contradicts the assumption that
/(«i) = {0}. Thus the /3 '̂s must be linearly independent mod

Define := ^ lox j = 1,... ,ri. Note that these basiselements satisfy the first
level of Goursat congruences, that is:

dai = —o^Att mod y = l,...,ri

K the dimension of jg greater than 2ri, then one-forms
are chosen such that

jOj ,a2)"> jUg ,0!i ,... ,ai /

is a basis for

For the induction step, assume that a basis for 7^*^ has been found,

{Qi ,... , ,... ,Q!j(.2,... ,Oj,... ,0£j|.^ }

which satisfies the Goursat congruences up to this level:

doPf^ = —Qijt+i A7r mod 7 '̂'"'̂ ^ A: = 1,... ,Atj —1; y= 1,...,c

Note c towers of forms have appeared in I^*\ Consider only the last form in each
tower that appears in 7^*\ that is = 1,... ,c. By the construction of this
basis (or from the Goursat congruences), is in 7^*^ but is not in 7^*+^^ thus

0 mod 7^*^ j = 1,..., c

The assumption that {7^*\7r} is integrable assures

doPf^. = 0 mod {7^*\tt} j = 1,...,c

thus do!^^. must be a multiple of ir mod 7^*^

do:^^ =ir mod 7^*^ j = 1,...,c

for some ^ ^ 0 mod 7^*^ From the fact that is in 7^*^ and the definition of
the derived flag,

dotj. = 0 mod j = 1,..., c

which implies that By a similar argument to the claim above, it can
be shown that the axe independent mod 7^*\ Define oPf^.+i := P^i and thus

{a},... ,o:i,+i,Q!i,...
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forms part of a basis of If the dimension of is greater than ki +
k2 + h fcc + c, then complete the basis of with any linearly independent
one-forms ,05+''' such that

is a basis for

Repeated application of this procedure will construct a basis for I which is not
only adapted to the derived flag, but also satisfles the Goursat congruences.

By assumption, tt is integrable mod the last nontrivial derived system,
Looking at the congruences (144), any integrable one-form tt' whi(^ is congruent
to TT up to a scaling factor /,

tt'= dz® =/tt mod

will satisfy the same set of congruences up to a rescaJing of the constraint basis by
multiples of this factor /. •

3.4. Prolongations ofPfaffian Systems. If a Pfaffian system I of codimensionk
satisfles the necessary and sufficient conditions for conversion into extended Goursat
form, then its integral curves are determined by k arbitrary functions. However,
even if a system cannot be transformed into Goursat form, its integral curves may
still have this property. If so, then I is said to be absolutelyequivalent in the sense
of Caxtan to the trivial system (the system with no constraints) on .

Defimtion 41. Two Pfaffian systems I and J are said to be absolutely equiva
lent (in the sense of Carton) if there is a one-to-one correspondence between their
solution trajectories.

Although the concept of absolute equivalence will not be examined here in its full
generality, some sufficient conditions will be given for a Pfaffian system to have a
prolongation which can be converted to Goursat form, and thus the integral curves
of I are determined by k independent functions. Consider a Pfaffian system I in
extended Goursat normal form:

7 = {dz/ - zj+idz® : i = 1,... = 1,... ,m},
with independence condition d2°. Let the Pfaffian system J be defined by:

J = {dz{ - z{+idz° :« = 1,... ,si 4-1 and i = 1,... ,sj;j = 2,... ,m}.
The coordinate -zij+2 has been added, but the new system is also in extended
Goursat normal form. It is clear that there is a one-to-one correspondence of
integral curves between I and J although they are defined on manifolds of different
dimensions. J is said to he&prolongation by differentiation (oforderone) of7 with
respect to the independence condition dz®.

Prolongations by differentiation can also be defined for systemswhich are not a
priori in extended Goursat normal form. Let 7 be a Pfaffian system on a manifold
M with independence condition dt, and let drj be a one-form in the complement of
7. Define the system J on M x K given by

J = {7,dri - ydt]

to be a prolongation by differentiation of 7, where the new coordinate y is the
fiber coordinate on K. In effect, this adds the derivative of ij (with respect to the
independence condition) as a state variable. As longas all solution trajectories are
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"smooth enough" (C°®), there will be a one-to-one correspondence between solution
trajectories of the original and the prolonged system.

In general, many of these partial prolongations by differentiation may be taken.

Definition 42 (Prolongation by differentiation). Let I bea Pfaffian system of codi-
mension m+1 on with coordinates {zyV,t) for whichdt is an independence
condition and {dvi,... forms a complement. Let 61,... ,&m be nonnega-
tive integers and let b denote their sum. The system I augments by the b one-forms

dvi—vldt, ..., dvi^~^ —Vi^dt,
dv2 —v^dt, ... , dv^~^ —v^dt

... , ... , - vi^dt,
is a prolongation by differentiation of I. The augmented system is defined on
jjpi+ni+6+1

If a Pfaffian system / does not satisfy the necessary and sufficient conditions of
Theorems 46 and 47, then I cannot be converted into extended Goursat normal
form. It is possible, however, that there exists a prolongation by differentiation J of
I which does satisfy the extended Goursat conditions. In this case, the prolonged
system J can be put into Goursat normal form, paths can be found for the trans
formed system using one of the methods described in [36, 32], and these paths can
be projected down onto the original Pfaffian system / to give integral curves.

Although the general problem of determining which Pfaffian systems can be
converted into extended Goursat normal form after prolongation is still an open
one, the following theorem gives some sufficient conditions under which such a
transformation exists.

Theorem 48 (Conversion to Goursat form with prolongation by differentiation).
Consider a Pfaffian system I = {a^,... ,a"} on with independence con
dition dz^ and complement {dvi,... If there exists a list of integers
hi'" ybm such that the prolonged system

J ={ aS...,a",
dvi —Vj dz°,... ,dvj* dz®.

dvm - v)ndz^,... - v^^dz^ }
satisfies the condition that is integrable for all k, then I can be trans
formed to extended Goursat normal form using a prolongation by differentiation.

Proof. The proof is by application of Theorem 47 to the prolonged system J. •

3.5. The multi-steering trailer problem. Previously, we discussed the sjrstem
of a car-like mobile robot towing n trailers. A similar system consisting of a chain
of wheeled trailers, several of which are steerable, will be considered as the main
exeunple in this section.

First, consider a system of n (passive) trailers and m (steerable) cars linked
together by rigid bars, as sketched in Figure 2. It is assumed that each body
(trailer or car) has onlyone axle, sincea two-axle car is equivalent (under coordinate
transformation and state feedback) to a one-axle car towing one trailer.
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e'

first steering train

second steering train

n-1

mth steering train

Figure 2. A multi-trailer system with n (passive) trailers and m
(active) steering wheels.

3.5.1. Configuration space. The active or steering axles are numbered from front
to back, starting with 1 and going up to m, and the passive axles are numbered
similarly from 1 to n. There are a total of n -H m axles in the system. The angle
of each passive axle with respect to the horizontal will be represented by 9* where
i € {1,... ,n} is the axle number. Each steerable axle together with the passive
axles directly behind it will be called a steering train.

The steerable axles may be interspersed among the passiveaxles in any fashion.
The indices of the passive axles which are directly in front of the steerable axles will
be denoted by ni,... ,71^-1. The first axle is alwaysassumed to be steerable, and
thus no = 0. The angle of the first axle with respect to the horizontal is denoted
by If there are ni passive trailers in the first steering train, their angles are
denoted 0^,... ,0"*. The axle directly behind the first steering train is steerable,
and its anglewith respect to the horizontal will be <f>^. The (passive) axles behind
the second steering wheel are thus the angle of the third steering
wheel will be and so forth. For convenience of notation, let Um = n, although
in general the last axle will not be steerable. K the last axle is steerable, then
Tint—1 — 'Im*

Let denote the absolute angle (with respect to the horizontal) of the bar
connecting the steered axle to the last axle of the {j -1)'* steering train (which
may be either steered or passive). This can be considered to be the angle of the
bar connecting the steering train to the (j —1)" steering train. The Cartesian
position (x,y) of any oneof the axles, along with all of the angles described above,
will determine the state of the system. The choice of which (x, y) will be deferred
for the time being, but it is noted that only one pair is needed.

The configuration of a trailer system consisting of ti trailers and m steerable cars
is thus completely given by

« = .9",^'.... e _
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3.5.2. Pfaffian system. The nonholonomic constraints on the velocities, represent
ing the fact that each axle of wheels rolls without slipping,form a codistribution of
one-forms in the cotangent bundle to the configuration manifold and thus generate
a Pfaffian system.

If the variables {x*,y*) are used to represent the Cartesian position of the
passive axle, then the constraint that the passive axle roll without slipping can
be written in these coordinates as:

a;* = sin $*dx* —cos6*dy* (149)

Similarly, let {xi^yi) represent the Cartesian position of the steerable axle
(where the subscript s stands for steerable). The constraint that the steerable
axle roll without slipping may be written as:

oP = sin —cos (ft'dyi (150)

Of course, as noted before, only one pair of (x,2/), along with all of the angles, is
needed to specify the state of the system.

The Pfaffian system generated by this mobile robot system is the collection of
all the nonholonomic (rolling without slipping) constraints:

,a;",QS... ,0"*}

Thus I has dimension n + m in a space of dimension n -H 2m -f-1; the codimension
of 7 is m + 1, or one more than the number of steering angles.

Notice that from equations (149) and (150) it can be seen that:

dy* = taji0*dx* mod cj* (151)

dyi = tan <^dxi mod cP (152)

Allof the (x*, y*ys and ix\,yiys are related by the hitch relationships. The exterior
derivatives of these relationships can be taken, yielding

x*~^ = X* + Lj cos6* dx*~^ = dx* —Li sin 0*d9*

y*~^ =y* + Lisin9* dy*~^ = dy* + Licos9*d9*

and substituting these quantities into the expression for from (149), the con
straint for the (t —1)*' passive axle can be rewritten as:

= sm6*~^dx*~^ —cos9*~^dy*~^ (153)
= sin —cos9*~^dy* —Licos{0* —9*~^)d9* (154)

= (sin —tan 9* cos 9*~^ )dx* —Licos{9* - 9*~^)(W* mod u*

= sec sm{9*-^ - 9*)dx* - Li cos{9* - 9'-^ )dB* mod tu*

where the congruence (151) has been used. Once again, a rearrangement of terms
and a division by cosine in (153) will give the congruence

d9* s •^sec^*tan(5*~^ —̂*)dx* mod (155)
Li

dB* = fgidx* moda;*,a;*~^ (156)

The exact form of the function f^i is unimportant; what will be needed is the
relationship between dB* and dx*.

The first lemma can now be proved.
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Lemma 49. The exterior derivatives of any of the x variables are congruent mod
ulo the Pfaffian system, that is: dx* = fxi>jdx^ = f^^udx*^ mod I

Proof. For two passive axles, the relationship between the x coordinates is given
by the hitching relationship,

x*~^ =x* + LiCOS0* (157)
dx*~^ =dx* —Lisin 0*d0* (158)

= (1 - sin$*f0i )dx* mod ,u* (159)

= fxi-idx* moda;*~^,a;* (160)

where the congruence (155) was used.
The computations are similar when there is a steerable axle involved instead of

two passiveaxles. If the passiveaxle is located in front of the steerable axle,
then the hitch relationship and its exterior derivative are given by:

X* = xi-i-Ijcosi/P (161)
dx* = dxl —Ij sin (162)

In this case, the constraint corresponding to the passive axle has the form

u* = sin0*dx* —cos 0*dy* (163)

= sin 0*dxl —cos 0*dyi —Ijcos{0* —'̂ )dtlP (164)
= (sin 0* —cos0* tan <iP)dxl —Ij cos{0* —7jP)dilP mod oP (165)
= sec<fp sm{0* - (jP)daPg —Ij cos{0* - i/P)d'flP mod cP(166)

Again, the standard trick of dividing through by a cosine and rearranging terms
will result in the congruence

dtlP =isec^ sin(^* - ^)sec(0' - rlP)dxi mod oP,u* (167)
d"^ = fxi)idaPa mod oP,u* (168)

Now, combining (167) with (161), it can be seen that

dx* = fxi^dsPa mod oP,(J

Thecase where thereare two adjacent steerable axles is done exactly the same way,
with different notation, and will not be written out in detail here. •

A complement to the PfafiSan system I = {a;^,... ,a;",oP,... ,a"*} is given by

{ddP,... ,d<^^,dx)

for any a; e ,..., x", arj,... , since by Lemma 49 their exterior derivatives
are congruent modulo the system, and the complement is only defined modulo the
system. Since the derivatives d^ do not appear in any ofthe constraints, they are
in the complement to I.
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FVom the exterior derivative of the constraint corresponding to the passive
axle, it can be seen that

u* = sin^*dx* —cos6*dy* (169)

duj* = d0* A{cosO*dx* + sin^^dj/*) (170)

= cW* A (cos$* + sin 0* tan 0*)dx* mod <v* (171)

= secd*dB* Adx* mod u* (172)

= 0 moda7*,a;*~^ (173)

where the congruences (151) and (155) have been used. That is, the exterior deriv
ative of the constraint corresponding to the passive axle is equal to zero modulo
itself and the constraint which corresponds to the axle most directly in front. With
out redoing the calculations, which are identical except for the notation, it can be
seen that if the passive axle is behind a steerable axle with angle instead of
a passive axlewith angle 0*"^, that is, t = rik-i +1, then the following congruence
will result:

da;* = 0 mod a;*, a* (174)
Proceeding similarly, the exterior derivatives of the constraints associated with

the steerable axles can be found,

oP = sin <(Pdxl - cos (jPdyi (175)
doP = d4P A(cos^dx^ + sin^dy^) (176)

= d<jP A(cos(jp -I- sin4Ptan<iP)dbPg mod oP (177)
= soc<fPd(jP Adarj mod oP (178)

^ 0 mod I (179)
and it can be seen that their exterior derivatives are nonzero modulo the PfafiSan
system I.

Recalling the definition of the derivedflag from Chapter 2, it is now easy to see
that all of the constraints correspondingto the passiveaxles are in the first derived
system, and none of those corresponding to the steerable axles are. That is, the
first derived system is given by:

/<^J = {a;\...,a;"}
In fact, the entire derived flag can be found just from the threecongruences, (169),
(174), and (175),

Lemma 50 (Derived Flag). The derived flag associated with the m-steering, n-
trailer system has the form:

= {a;*:nj—\ -H A; < f < tij^j = 1,... ,*ii}
for h = 1,... , n. In addition,

J(n+1) ^ ^0}.

Proof. The proof is just a one-timeapplication of (175), to show that none of the
constraints oP corresponding to the steering axles are in and then a repeated
application of (169) to show at which level each constraint falls out of the derived
flag. •
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If ni is the greatest of the indices n,*, the derived flag has the structure:

I ={ ^ a*",... ,a;"}
/(I) ={ ^ 0;""*-*+^,... ,a;"}
/(2) ={

/«» ={ a;"»}
/m+i 0}

In the general case, the Pfaffian system I consists ofthe constraints corresponding to
all the axles, the first derived system lacks the steerable axles, the second derived
system lacks those passive axles that are directly behind steerable axles, and at
everysubsequent level, the constraintwhich is most toward the frontofeachsteering
train will drop off. Since the longest possible chain of contiguous passive axles is
equal to n, the total number of passive axles that are in the chain, the (n + 1)'*
derived system must be equal to {0}.

3.5.3. Conversion to extended Goursat normal form. In this section, it will be
shown how the general multi-steering trailer system can be converted into extended
Goursat normal form after prolongation. The configurations of this system which
satisfy the conditions for conversion without prolongationwillalso be detailed. The
first lemma gives a candidate choice for tt, since for a system in extended Goursat
normal form it must always be true that {/, tt} is integrable.

Lemma 51. {/,dx} is integrable for any x G

Proof. Each constraint in I satisfies the congruence

du* = dO* A dx* mod oj*

= 0 mod{/,dx*}
dof = d<IP AdxP^ mod oP

= 0 mod {I^dxP^}

(by equations (169) and (175)). Also, all of the dx*,dxi are congruent by Lemma
49. Thus, the exterior derivative of any constraint in {/, dx} is congruent to zero
mod {/,dx^}, which is the condition for integrability. •

It can be shown that for the general case, there doesnot exist a dx (or any other
one-form) which will satisfy the condition that {I^*\dx] is integrable for every i.
However, the general multi-steering system can be transformed into Goursat normal
form after prolongation.

The concept of 'Virtual trailers" was first introduced in [36] as a type ofdynamic
state feedback for the multi-steering trailer system. A chainof these virtual trailers,
each analogous to a physical trailer, was added in front of each actual steering
wheel, and a virtual steering wheel was added at the front of each virtual chain.
The sketch of this augmented system in Figure 3 helps make the concept more
clear. Each virtual trailer adds one state to the system, as well as one constraint.
Thus the codimension of the extended system is the same as that of the original
system, m +1.

Theorem 52 (Convertingthe multi-steeringsystem to Goursat form). The multi-
steering system with n trailers and m steering wheels can be put into extend^
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Goursat normal form, for any n, m and for any configuration of steerable cars and
passive trailers, using a prolongation of degree less than or equal to ni H Hrim-i-

Proof. Consider the n-trailer, m-steering system with virtual extension as shown
in Figure 3. That is, in front of each steerable axle, imagine that there are nj-i
virtual axles, and that only the front axle in each virtual chain is steerable. Note
that with this virtual axle formulation, the actual steerable axles within the multi-
trailer chain are no longer assumed to be directly steerable, but rather are controlled
through the virtual steering axles and the the chains of virtual trailers.

Let ^ represent the angle of the virtual steering axle, where the subscript
Vstands for virtual. The angles of the passiveaxles that are added are denoted by
6j, where the subscript j stands for the index of the virtual chain that they are in,
and the superscript i indexes their position from the front of the virtual train.

A total of ni H 1- rim-i states have been added to the system, corresponding
to the angles of the virtual axles. The same number of constraints have also been
added. The first axle is always assumed to be steerable, and no virtual axles are
added in front of the front steering wheel.

Because the constraints that were added have the same form as those in the
system already, it is easy to see that they can be written in coordinates as

Uj = - co&0)dy)

for the passive virtual axles and

q{ = sin-coseldyi
for the steerable virtual axles at the front of each chain. Although these constraints
do not immediately appear to be of the same form as a prolongation by differenti
ation, it can be shown that

j/jHflWj+^-tan^jda;" mod
for i < nj-i —2 and

- tan^"'-»"^da;" mod

where i" is the :c-position of the last passive axle. This particular form of a pro
longation by differentiation was chosen so that the constraints which were added
to the system wouldhave the same expression (in coordinates) as the physicalcon
straints; the computations are somewhat simplified by this choice. Because of the
equivalence, a standard prolongation by differentiation could have been used; it
would be difficult to interpret the meaning of the added states.

The prolonged Pfaffian system is given by the collection of actual and virtual
constraints,

J = {Q!^... ,a"*,Q!5,... '-j = 2,... ,m;i = 1,... ,nj_i - 1}
The derived flag corresponding to the extended Pfaffian system can now be

found. First, performing a similar calculation to that in equation (169), it can be
seen that

duj = 0 mod

Then, similar to equation (175),

do^ ^ 0 mod J
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It is also not difficult to show that

doP = 0 mod o^, ^

FVom these three congruences, the structure of the derived flag is seen to be

: j = 2,... ,7n;i = l,... ,nj_i-1}
j(2) _ = 2,... ,m;i= 2,... ,nj_i-1}

,a-,a;*,... ,a;", i/j : i = 2,... ,m; i = Ar,... ,n,_i - 1}

j(n+m-i) ^ {a;"}or{a"»}
j(n+m) ^ |0}

where jk is defined to be the number of steerable axles that are in front of the
passive axle in the actual chain of trailers, and j(»»+»n-i) = jf the last

axle in the chain is passive, and i) = {a"*} if the last axle in the chain is
steerable. In words, the (extended) Pfaffian system J consists of all the constraints
corresponding to both the actual and the virtuail axles. The first derived system
consists of all constraints except the ones at the front of each (virtual) chain. At
the second level, the constraints corresponding to the axles directly behind each
virtual steering wheel fall off, and at the A;^^ level, the constraints corresponding
to the axles which are k behind each virtual steering wheelfall off, until at the last
level, thereis only the constraint corresponding to the last axle in the chain (u;" if
it is passive, a*" if it is steerable). The (n + m)*'' derived system is trivial, which
implies that the augmented system is controllable.

At each level of the derived flag, exactly one of the constraints which falls out
of the flag corresponds to a real axle, and all the rest which fall out correspond to
virtual axles.

The one-form tt which satisfies the Goursat conditions of Theorem 47 is equal
to the exterior derivative of the x coordinate of the last body in the actual multi-
steering chain; dx" (if the last axle in the chain is passive) or dx^ (if the last axle
in the chain is steerable). The rest of the details are straightforward, although the
notation is cumbersome. •

Now that it has been shown that the system with virtual trailers can always
be converted into extended Goursat normal form, somespecial casesof the multi-
steering trailer system which can be converted into extended Goursat normal form
without any prolongation will be examined.

Theorem 53. If there is only one steering train which has passive axles in it,
that is, all the passive axles are contiguous, then the system can he converted into
extended Goursat normal form without prolongation.

Proof. The Pfaffian system has the form,

I = {aS... ,a*,a;S... ,0"*}
where the constraints have been arranged in the order in which the axles appear in
the chain. Choose ir = dx", and note that by Lemma 51, {/,dx"} is integrable.
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mth virtual extension e.

first steering train

second steering train

,n-l

mth steering train

Figure 3. A multi-trailer system with n (passive) trailers and m
(active) steering wheels, with a virtual extension of nj-i virtual
trailers in front of each steering wheel.

The derived flag associated to this case is simply found using either Lemma 50
or equation (169). It has the form:

/(2) =

= {w"}
j(n+i) ^ 10}

which is reminiscent of the iV-trailers case from Section 3.2.
Equation (169),

dcj* = d9* A sec 0*dx* mod u*
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combined with equation (157),

dx*~^ = fxi-idx* mod

gives the congruence

(iw* = fuidO* Ada;" mod a;*,,...,w"

whichimpliesthat da;"} is integrable for i = 1,..., n+1, and thus by Theorem
47, the system can be converted into extended Goursat normal form. •

The Goursat coordinates are defined by (a;",2/"), the Cartesian position of the last
passive axle, along with ... , the angles of the hitches.

Corollary 54 (Special cases). As special cases of the general case described in
Theorem 53, Hie following systems can be converted into Goursat form without
prolongation:

• There is only one steering wheel, m = 1, which by convention is located at the
front of the chain. This is the n-trailer problem of Section 3.2.

• There is one steering wheel at the front of the chain and another at the end
of the chain, as in the firetruck example [5, 33].

• All the steering wheels are at the front, that isui = n2 = ••• = Um-i = 0.
• All the steering wheels are either at the front or the back of the chain, in a

generalized firetruck situation.
• All the axles are steerable, n = 0.
• There is only one passive trailer, n = 1.

The other special case which does not require prolongation to achieve Goursat
normal form is slightly more complicated. The following can be shown.

Proposition 55. If thereare two sets ofpassive axles, separated byonly one steer-
able axle, and the set towards the back has only one axle, then the system can be
converted to extended Goursat normal form withoutprolongation.

All configurations which do not satisfy either Theorem 53 or Proposition 55
require prolongation to be converted into extended Goursat normal form. The
minimum dimension of the prolongation can be computed as follows. Recall that
there are a total of n passive trailers and m steerable axles, and let k equal the
index of the first steerable axle which has no passive trailers behind it. That is,

= ••• = tito = n and Uk-i < n. There are two possible cases:
1. If Tiib-i = n-1, then the minimum dimension ofprolongation isni H \-nk-2'
2. Otherwise, a prolongation of dimension ni H f- Uk-i is needed to convert

the system into extended Goursat normal form.

Now some specific multi-steering mobile robot systems will be considered and it
will be shown how their associated Pfaffian systems satisfy the extended.Goursat
conditions.

Example. [Two, Three, or Four Axles] It is a simple exercise in combinatorics to
check that all of the possible configurations with two or three axles and one, two
or three steering wheels satisfy the conditions of Theorem 53. Note particularly
that the firetruck example [5], sketched in Figure 4, satisfies these conditions with
n = 1.

In addition, it can be shown that all except one configuration of a system with
four axles will satisfy the conditions of Theorem 53. The exception is m = 2, two
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Figure 4. A sketch of the firetruck, with steering wheels on the
front and back axles.

69

steerable axles, two passive axles, alternating. That is, the first and third axles
are steerable, and the second and fourth axles are passive. This situation would
arise if a car were towing another car and both of the csirs had drivers at the
steering wheels. This example satisfies Proposition 55, and thus can be converted
into Goursat form without prolongation. •

The 5-axle system with two steering wheels is the lowest-dimensional case where
interesting things begin to happen.

Example. [5-axle, 1-4steering] First consider the 5-axle system with the first and
fourth axles steerable, as sketched in Figure 5.

Figure 5. A 5-axle trailer system with the first and fourth axles steerable.

The constraints are that each axle rolls without slipping:

w* = sin9*dx^ —cos9*dy* t = 1,2,3 or* = sin —cos<fPdy{ y = 1,2

The Pfaffian system is thus I = and a complement to this
system is {d0^,d0^,da;^}. This basis is adapted to the the derived fiag,

/= {a^, a;^, a^, w®}
a;3}

/<2) = {a;2}
= {0}



70 G. PAPPAS, J. LYGEROS, D. TILBURY, AND S. SASTRY

and it can be checked that each is integrable. The coordinates which
put the system into Goursat form are the following:

z' =

z? =

- tan ^ ^3 = '2

Note the dependence on the relative lengths of the hitches in the system. The
remaining coordinates are defined by the relationships

4 = fc = 2,...,4
4 = 4-1fc = 2,3

Of course, by Theorem 48, this system can also be converted into an extended
Goursat normal form using a prolongation of dimension two, and the coordinates
in this case are given by:

fO=X» (l=y^ Cf = ^2

together with the relations

Cl = Ci-i/C° A: = 2,...,5

4 = 4-i/4 A: = 2,...,4
The two sets of coordinates (z°,z},zj) and (C°,Ci»Ci) parameterize all integral
curves for the system, in the sense that all the states and inputs to the system can
be found by taking derivatives of these quantities. More differentiations will be
required for the C coordinates.

Both coordinate transformations have two types of singulauities. Because of
the division by the derivative of 2° (or C°), whenever this coordinate is constant
(corresponding to cos0^ or cos0^ respectively being zero), the transformations will
be undefined. This type of singularity can be avoided by choosing a different
coordinate chart at the singular point (interchanging x and y for example). A
singularity alsooccurs when the angle between two adjacent aides is equal to 7r/2;
at this point, some of the codistributions in the derived flag will lose rank. The
derived flag is not defined at these points; nor is the transformation. The methods
described herein will not work forcontrolling the multi-steering trailer systemwhen
the trailers must go through such a jack-knifed configuration. •

Example. [5-axle, 1-3steering] The onlyinstance of the 5-axle trailer system with
two steering wheels which satisfies neither Theorem 53 or Proposition 55 has the
first and third axles steerable, as shown in Figure 6.

The constraints are that each axle roll without slipping:

uj* = sin 9*dx* —cos B^dy* i = 1,2,3 oP = sin —cos 4Pdy{ y = 1,2

The Pfaffian system is / = and a complement to the system is
given by {d(f>^, , da:^ }.
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Figure 6. A 5-axle trailer system with the first and third axles
steerable. This is the only configuration of the 5-axle system with
two steering wheels which does not satisfy the conditions for con
verting to extended Goursat normal form without prolongation.

By Lemma 50, the derived fiag has the form

/= o;^,
/(I) = u)^}
/(2) = {a;3}

= {0}

In order to have integrable, tt must be dx^ (mod a;®). This will also give
integrable by Lemma 51, but a simple check will show that is

not integrable. Thus, as predicted by the theorems, this system does not satisfy the
conditions for conversion to extended Goursat normal form without prolongation.

The system I can be prolonged by differentiation, adding the additional form
u = d<f>^ —Vdx^. The new coordinate v can be thought of as the tangent of the
angle of the virtual axle that is added to the system in Theorem 48. The derived
fiag of the augmented system is:

J = {a^, I/, a^, a;^, a;®}
j(l) = CJ^}
J(2) = {a;2, U)^}

= {0,3}
= {0}

and the systems{areintegrable for all k. Thus, the prolonged system J
can be converted into extended Goursat normal form. •

For the case of a 5-axle system with three steering wheels (two passive trailers), if
the two passive trailers are connected we know from Theorem 53 that the system can
be converted into extended Goursat normal form without prolongation. If the two
passive trailers are separated by only one steerable axle, then we apply Proposition
55. The only configuration which does not satisfy one of these two conditions has
the passive axles in the second and fifth positions, and this configuration will again
require prolongation to convert it to extended Goursat normal form.

4. Control Systems

The examples considered in Section 3, multi-body mobile robots towing trailers,
required purely kinematic models. There were no drift terms considered, and no
variable representing time which needed special consideration. Because of this,
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and the fact the velocity constraints could be represented as one-forms, exterior
diiferential systems are particularly appropriate for their analysis.

Nonlinearcontrol systems have traditionally been defined by distributions ofvec
tor fields on manifolds. Because of the duality betweenvector fields and one-forms,
as seenin Section 2.1.1, a controlsystem can also be defined as a PfafHan systemon
a manifold and analyzed using techniques fi:om exterior differential systems. In this
section, we will present some results on linearization for nonlinear control systems
and also examine the connections between the two different formalisms of vector
fields and one-forms.

We will consider the nonlinear dynamical system:

x = f{x,u) (180)

where a: € K", u € K"* and / is a smooth map

f xlST —^ TR"

{x,u) —» f(x, u) €

A very important special case of system (180) is the one where the input enters
affinely in the dynamics:

x = f(x)+ff(x)u (181)

where g(x) = [ffi(a?)...5m(a?)] and ffi(x) are smooth vector fields. Most of the
results presented here will be concerned with systems belonging to this class, even
though some can be extended to the the more general case (180).

We would like toestablish conditions under which thedynamics of (180) and(181)
are adequately described by those of a linear system:

X= Ax + Bu (182)

where x € R", € R"*, A € R"^" and B € R"^*" with n > n.

4.1. Static Feedback Linearization. One of the best-studied problems in non
linear control is that ofexact linearization using static state feedback and change
of coordinates. First we will present the well-known results on static feedback lin
earization, and then we will show how these results can be restated in terms of the
Goursat normal form. In the next section, we will consider the problem ofdynamic
feedback linearization.

4.1.1. Problem Statement. Following the notation of Isidori [17], the problem of
exact linearization by static state feedback and coordinate transformation ran be
stated as follows:

Problem 1. (State Space Exact Linearization Problem)
Given a control system of the form (180) and an initialstate x®, find, if possible,
a neighborhood U of x°, a feedback function c : Cf x R"* -♦ R*", o coordinate

^Most ofthe techniques presented here can be generalized to the case where the state evolves
on a manifold. R** will be used to simplify the calculations
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transformation z = ^(x), all defined on U, and matrices A G
such that:

\d^
(183)

(184)

I.e.

A =

Ai =

^(/(x,e(x.O)))] =Az

d{f{x^c{x^v))
= B

Ai
0

dx

0

A2

0

1

0 0

0 0

dv Ix=<>-*(z)

rank{B AB ... A^~^B) = n (185)

In the special case of systems affine in the inputs, the problem simplifies to:

Problem 2. Given a control system of the form (181) and an initial state x°, find,
if possible, a neighborhood U of x°, a pair of feedback functions a{x) and 6(x), a
coordinate transformation z = ^{x), alldefined on U, and matrices A6 and
B e R"''"*, such that:

Az (186)^(/(a^) +P(a;)a(a:))]

^(9(x)l>(^:))1 =Jx=«-»(z)
B (187)

Ix=*~*(z)

rank{B AB ... A^~^B) = n (188)

The last condition of both problem statements allows us to assume that without
loss of generality, the resulting linear system will be in Brunovsky canonical form.

0 •
0

B =

' h
0

0 •
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•• 0

•• 0

Am 0 0 • •• bm

0 0 • • 0 •

0 1
bi =

0

0 0 . _ 1 _

The dimensions of Ai correspond to the Kronecker indices of the pair (^4, B).

4.1.2. The VectorField Approach. The standard results on linearization by static
state feedback and coordinate transformation concern systems which are affine in
the input (181). The relevant theorems can be found in [17, 23]; we will use the
notation and definitions of Isidori [17].

Theorem 56. For the control system (181) define the filtration:

Go = span{gi,... ,gm}

Gi+i = Gi+ span{[f, Gf]} = span{adfgj : 0 < k < i + 1,1 < j < m}
Suppose the distribution ^0(3;) has dimension m at x°. Then, the state space exact
linearization problem is solvable if and only if:

1. for each 0 < t < n —1 the distribution Gi has (instant dimension near x°
2. The distribution Gn-\ has dimension n
3. for each 0 <i <n —2 the distribution Gi is involutive
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Proof. In [17, 23]. •

If the system has only one input {m = 1), the involutivity of G„-2 will imply the
involutivity of the other C?». Thus, the conditions for static feedback linearization
can be restated in the single-input case as follows:

Corollary 57. The state space exact linearization problem for a control system
(181) with a single input is solvable if and only if:

1. the distribution [^(a;) adfg{x) ... has dimension n at x^.
2. the distribution Gn-2 = span{g^ odfg^ ... , is involutive nearx**.

Proof. Special case of Theorem 56 when m = 1. •

It should be noted that even for the multi-input case, the involutivity of certain
distributions (namely those corresponding to the Kronecker indices of the resulting
linear system) implies the involutivity of others. However, an equivalent statement
of Theorem 56 that takes this fact into account is notationally complicated.

4.1.3. The Pfaffian System Approach. The problem of linearization can also be
approached from the point of view of exterior differential systems. Note that any
control system of the form (180) can also be thought of as a Pfaffian system of
co-dimension m + 1 in . The corresponding ideal is generated by the co-
distribution:

I = {dxi - fi{x,u)dt: t = 1,... ,n} (189)

The n-Hm-f 1 variablesfor the Pfaffiansystem correspond to the n states, m inputs
and time, t. For the special case of the affine system (181) the co-distribution
becomes:

m

I = {dxi - ifiix) -I- 539i3{x)uj)dt: I= 1,... ,n} (190)
i=i

In this light the extended Goursat normal form looks remarkably similar to the
Brunovsky normal form with Kronecker indices Sj,j = 1,... ,m. Indeed if we
identify coordinates = 1,... ,m in the Goursat Normal Form with
t, Uj,j = 1,... ,m, the Pfaffiansystem becomes equivalent (in vector field notation)
to a collection of m chains of integrators, each one of length Sj and terminating
with an input in the right hand side. With this in mind. Theorems 46and 47, which
provide conditions under which a Pfaffian system can be transformed to extended
Goursat normal form, can be viewed as linearization theorems with the additional
restriction that tt = dt.

An equivalent formulation of the conditions of Theorem 41 involving the anni
hilating distributions is given by Murray [22]. The result is restricted to Pfaffian
systems of co-dimension two.

Theorem 58. Given a 2'dimensional distribution A construct twofiltrations:

Eo = A Fo = A

Ei+i = Ei + [Ei,Ei[ Fi+i = Fi + [Fi, Fo]
If all the distributions are of constant rank and:

dim Ei = dim F< = i -H 2 i = 0,... , n —2
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there exists a local basis ,a'} and a one-form ir such that the Goursat
congruences are satisfied for the differential system I = A-*-.

Proof. In [22]. •

In [22] this Theorem is shown to be equivalent to Theorem 41. However, there is no
known analog of Theorem 58 to the extended Goursat case covered by Theorems
46 and 47.

4.1.4. The connection between the two approaches. We explicitly work through the
connection between the classical static feedback linearization theorem (Theorem
56) and the extended Goursat normal form theorem (Theorem 47).

Proposition 59. The control system (181) satisfies the conditions of Theorem 56
if and only if the corresponding Pfaffian system (190) satisfies the conditions of
Theorem 4"^ for n = dt.

Proof. Considercontrol system (181)and the equivalent Pfaffiansystem (190). For
simplicity, we will consider the case m = 2. The Pfaffian system and its
annihilating distribution Ao are given by:

/(O) = {dxi - {fi{x) + fti(a:)iti + gi2{x)u2)dt: t = 1,... ,n}
1

0

0
Ao = (/(o^)-L =

f

" 0 '
1

' 0 •
0

V

0 1 J

0 0

Ao = (7<®))-L = <

f

• 0 ' ' 0 •
1 0

c

0
)

1 >

0 0

= {vuV2,V3}

/ + 91^1 +52^2

As the notation suggests, the top three entries in each vector field in the dis
tribution Aq are scaiars (corresponding to the coordinates t, ui and U2) while
the bottom entry is a column vector of dimension n. We will construct the de
rived flag 7^®) D 7^^^ D ... D 7^^^ and the corresponding orthogonal filtration
Ac CAi C... CA;v. We will denote by 7^*^ = {I^*\dt} and Ai = (Z^*^)-*". We
will go through the conditions of Theorem 47 step by step, assuming ir = dt:

Step 0: As above:

7^°^ = {dxi - {fi{x) + gii{x)ui + gi2ix)u2)dt: 1= 1,... ,n}
1

0

0

/ + gitti + 52^2

The condition of Theorem 47 requires that 7^®1 = {7^®\dt} be integrable. Its an-
nihilator is Aq = {vi,V2} which is indeed involutive since [t>i,t;2] = 0 are constant
vector fields.

Step 1: It is easy to show that:

• 0 • ' 0 •

[Vl,V2]==0 [Ul,V3] = 0

0

. 61.

[V2,V3] =
0

0

. ^2 .



76 G. PAPPAS, J. LYGEROS, D. TILBURY, AND S. SASTRY

Therefore:

= {ot € : da = 0 mod

Ai = = i

• 0 '
1

• 0 "
0

i

0
5

1
J

0 0

' 0 • ' 0 "
0 0

0 ) 0

J . . . 92 . J

= {Vl,U2,t>3,V4,U6}

Thecondition ofTheorem 47requires that = {/^^J,d<} be integrable. Tocheck
this, consider its annihilator Ai = {ui,V2,U4, vs} being involutive. Now:

[vi,V2] = [vi,n4] = [vi.vs] = {i;2,V4] = [v2iV5] = 0 and [7/4,^5] =

0

0

0

. \9u92].

Therefore Ai is involutive if and only if [<71,52] is in the span of {51,52}- The
condition of Theorem 47 holds for the first iterationof the derived fiag if and only
if distribution Go of Theorem 56 is involutive.

Step 2: We compute the bracket of the vector fields V3 and U4.

[V3,U4] =

adfgi - [5i,52]u2 .

The computation of [u3,t;5] is similar. Therefore, assuming that the conditions of
Step 1 hold and in particular that [51,52] € span{5i,52}:

/(2) = {a € : da = 0 mod

(/<2))-J-=Ai-f <Ao =

f

1 " 1

J
0 0

<

0 0

_adfQi ad/52
4

= {v<:i = l,...7}

The^ condition of Theorem 47 requires that be integrable. This is equivalent
to A2 = {vi,U2,V4,V5,V6,V7} being involutive. As before the only pairs whose
involutivity needs to be verified are the ones not involving Vi and V2, i.e. the con
dition is equivalent to {51,52) fld/51, ad/52} beinginvolutive. Overall the condition
of Theorem 47 holds for the the second iteration of the derived fiag if and only if
distribution Gi of Theorem 56 is involutive.

Step i: Assume that:

Aj-i = i

f

0 0

1 0
i

0 >
1 J

0 0 . / + 5l7*l +52^2

" 1 ' 1
0 0

> 0 0
•

ad}jgi

1

•

4
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for 0 ^ Ar < »—2. Also assume that 0<k< t—1 areintegrable, or,equivalently,
that Ajfe for 0 < A; < i—1 (which isthe sameas Ak without the third vector field) are
involutive, or, equivalently, thatGk = {ad'̂ gj :0< / < A:,j = 1,2} for 0 < A: < f-2
are involutive. Construct A, = Aj_i + [A,_i, Aj-i]. By involutivity of A<_i and
the construction of the filtration the only terms not already in Aj-i are ones of the
form:

1

0

0

. / + + 92^-2

0 '

0
> 0

atTf Pi + [pi,ody gi]ui + [p2,ad/ Pi]w2

and similarly for ody~^p2- By the assumed involutivity of A<_i the last two terms
are already in Ai_i. Therefore we can write:

Ai = Ai_i + *

f

0 0

0 0

0 > 0
•

The condition of Theorem 47 requires that be integrable, or equivalently that
Ai be involutive. As before the only pairs that can cause trouble are the ones not
involving vi and V2. Hence the condition isequivalent to Gi-i = {od^gj :0 <k <
i —l,j = 1,2} being involutive.

By induction, the condition of Theorem 47 holds for the iteration of the
derived fiag if and only if distribution Gi-i is involutive, i.e. if and only if condition
(3)ofTheorem 56holds. In addition, note that the dimension ofGi keeps increasing
by at least one until, for some M, Gm-i = Gm. The involutivity assumption on
Gm-1 prevents any further increase in dimension after this stage is reached. Since
the dimension of Gi is necessarily bounded above by n, the number of steps until
saturation is bounded by the maximum final dimension, M <n. By construction,
the dimension of A^ is three greater than the dimension of Gj-i. Moreover Am =
Am+1 and therefore i.e. the derived fiag stops shrinking after M
steps. The remaining condition of Theorem 47, namely that there exists N such
that = {0} is equivalent to the existence of M such that = {0}, or
that Am has dimension n + 3. As noted above, this is equivalent Gm-\ having
dimension n. Since M < n, this can also be stated as Gn-i having dimension n,
i.e. condition (2) of Theorem 56. The remaining condition of Theorem 56, nsunely
that the dimension of Gi is constant for allO<t<n —1, is taken care of by
the implicit assumption that all co-distributions in the derived fiag have constant
dimension. •

Note that a coordinate transformation in the exterior difiierential systems context
corresponds to a coordinate transformation together with a state feedback in the
vector field notation. Because the state space in the forms context does
not discriminate between states, inputs and time, a coordinate transformation on
this larger space can make the inputs in the original coordinates functions of the
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State in the original coordinates and possibly time. It can be shown (see [11])
that time need not enter into the transformation at all; that is, if the conditions
of Theorem 46 are satisfied, a time-invariant state feedback and coordinate change
can always be found. In addition the coordinate transformation can also be chosen
to be independent of both time and input.

Theorems46 and 47 in their generalform are not equivalent to Theorem 56. The
extended Goursat Theorems allow tt to be any integrable one-form and not just dt.
Therefore we expect more systems to match the conditions of Theorems 46 and 47
than those ofTheorem 56. However, a choice oftt other than dt implies a rescaling of
time as a function of the state. Even though this efiect is very useful for the case of
driftless systems (where the role of timeis efiectively played by an input), solutions
for TT ^ dt are probably not very useful for linearizing control systems with drift.
Because oftheir generality. Theorems 46and 47are capable ofdealing with the more
general caseof control systemsof the form (189) (or equivalently (180)), as well as
drift-free systems which were investigated in Section 3. Equivalent conditions for
the vector field case have not been thoroughly investigated.

Finally, Theorem 58 is a very interesting alternative to Theorems 46 and 47 since
it provides a way of determining if a Pfaffian system can be converted to Goursat
normal form just by looking at the annihilating distributions, without having to
determine a one-form tt or an appropriate basis. Unfortunately a generalization
to multi-input systems (or more precisely to the extended Goursat normal form)
is not easy to formulate. It should be noted that the conditions on the filtrations
are very much like involutivity conditions. It is interesting to try to relate these
conditions to the conditions of Theorem 47 (the connection to the conditions of
Theorem 46is provided in [22]) and see if a formulation for the extended problem
can be constructed in this way.

4.2. Dynamic Feedback Linearization. We now consider the more general prob
lem of linearization by dynamic state feedback. The feedback compensator is al
lowed to have its own dynamics, and we search for a transformation on the extended
space, including the states of the originalsystems and the controller, into a linear
form.

4.2.1. Problem Statement. Following thenotation ofCharlet, L4vine, and Marino [6],
the problem of exact linearization by dynamic state feedback and coordinate trans
formation can be stated as follows:

Problem 3. (Dynamic Feedback Linearization Problem)^
Given a control system of the form (180), find, if possible, a dynamic feedback
compensator:

w = a{x,w) + B{x,w)v
u = a{x,w)^{x,w)v

where in € E', v € R"* and an extend^state space diffeomorphism z = ^{x,w), z €
E"+' such that the resulting system is linear and controllable (without loss ofgen
erality in Brunovsky form).

®A8 in the case of Problem 1, all conditions may be restricted to a neighborhood of an
equilibrium point z**.
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It should be noted here that the problem statement requires that both the system
and the controller dynamics be rendered linear and controllable. An interesting
special case of the general dynamic feedback linearization problem restricts the
controller dynamics to consist of derivatives of the inputs:

Problem 4. feedback Linearization by Dynamic Extension^
Given a control system of the form (180), find, if possible, a dynamic feedback
compensator of the form:

w) = 0<i<fjij-l,fij>0 (191)

= aj{x, u;) +53 (^) 1<J <"I. >0 (192)
t=i

Uj = Wj l<j<m,fjLj>0 (193)
m

Uj = aj{x, w) +53 «')v/(t) l<j<m,fij = 0 (194)
(=1

for some integers //j > 0 and P{x,w) has full rank m in a neighborhood an equilib
rium point in fij.

For dynamic extension, chains of integrators are added in front of some of the
input channels, and the new inputs are defined to be linear combinations of the
resulting derivatives of the original inputs:

^ \ / fi
= a{x, w) + 0{x, w) ^ (195)

V Vr

4.2.2. The Vector Field Approach. The results for dynamic feedback linearization
using the vector field approach are again restricted to systems of the form (181).
The problem of linearization by general dynamic state feedback and coordinate
transformation is still mostly open. Even for the special case of dynamic extension
no necessary and su£Scient conditions exist. The following results are proven by
Charlet, L^vine, and Marino [6]:

Theorem 60. If system (181) is locally dynamic feedback linearizable, then its
Jacobian linearization at the origin is completely controllable.

Proof. In (6]. •

T^orem 61. Iffor a set of integers {tii,... ,Mm}, 0 < < ... < /i,„, ^ =
Nf distributions, up to input reordering,

Ao = spon{pifc: /A/fc = 0}
Ai+i = Ai+ adfAi + span{gk : Hk = i + 1} i > 0

ore such that in a neighborhood of the origin in R" :
1. Ai is of constant rank for 0 < t < n + fim —1
2. Ai is involutivefor 0 < t < n + fim —1
3. rojiAAn+^n,—1 = n
4- [pi»A,] C Af+i for all j,l < j < m such that fij > 1 and all «,0 < t <
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then the system is locally dynamic feedback linearizable by dynamic extension and
a local diffeomorphism on a neighborhood of the extended state space .

Proof. In [6]. •

In [6], the necessary condition of Theorem 60 is shown not to be suflBcient and
the sufficient condition of Theorem 61 is shown to not be necessary by means of
counterexamples. Although the conditions of Theorem 61 are not necessary, they
depend only on the original vector fields of the control system.

4.2.3. TheProlongationApproach. Problem 4 can also be approachedin the frame
workof Pfaffian systems by means of prolongations by differentiation, as described
in Section 3.4. The following theorem can be stated:

Theorem 62. Consider the Pfaffian system I = {a^,... ,q"} on with
independence condition dt and (implement {dt,dui,. •• If there exists a list
ofnon-negative integers {fii,... N that theprolonged system:

J ={ a^...,a"
dui - injdt,..., dwfl^ dt,
du2 - wldt,... , - w^^dt,

dui ~ wlndt,... ,dw^-^ - dt}
satisfies the condition that is integrable for all k, then I can be trans
formed to extended Goursat NormalForm using prolongation by differentiation.

Proof. The result follows from Theorem 48. •

This theorem has the advantageoverTheorem 61 that if the system is linearizable
by a dynamic extension of order p, - {pi,... ,pm}, then the conditions of the
Theorem will be satisfied. Of course, the derived fiag must be recomputed for
every choice of p.

4.2.4. The Infinitesimal Brunovsky Form. An altogetherdifferent approach to dy
namic feedback linearization is presented in [2]. It revolves around an alternative
fiag construction that can be used to derivea special normalform, the Infinitesimal
Brunovsky Form. An interesting fact about this construction is that anyaccessible
nonlinear system can be brought into this form.

Consider the system (181) and let K denote the field of meromorphic functions
of x, u, u,..., where the dot stands for the usual time differentiation. Let £ denote
the )C vector space of one forms, spanned by:

'{dxi,... ,dXfi,dui,... ,duffi, dui,... ,dUffi,... ^ —{dx, du,du,•..}
Define the time derivativeof u = ocjdvj e£ hy

(jj = ^^{dijdvj -f ajdvj)
J

j>0

w n » m n m

k=l * i=l k=l
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The relative degree of a one form u) is defined as the smallest integer r such that
^ spanx:{da;}. If such an integer does not exist define r = oo. Consider a flag

defined iteratively by:

Ho — span;(;{da:,du} (196)
Hft = {w € Hk—i ' Cj € /Tik—i} A; > 0 (197)

Clearly,£d Ho D H\= spanj^^fdx} D H2 D — Moreover, because the dimension
of Hi is finite (n), the flag will stop decreasing after a finite number of steps, i.e.

there exists A:* > 0 such that Hk'+i = Hk*+2 = ... ^^ Hqo- The importance of
this flag is highlighted by the following theorems:

Proposition 63. The following statements are equivalent:
1. The system (181) satisfies the strong accessibility rank condition
2. Any non-zero form has finite relative degree
3. Hoo = {0}

Proof. In [2]. •

Theorem 64. Suppose Hqo = {0}. There exist a list of integers {ri,... ,rm}f
invariant under regular static state feedback, and m one forms ui,... ,Um with
relative degrees ri,... , rm such that:

1. spanj(^{(Jf\ 1< I < m,0 < j < —1} = spanfc,{dx}
2. 1 < « < "i) 0 < j < r^} = spanf^{dx, du)
3. The forms {a.>P\l < i < m,,j > 0} one linearly independent. In particular,

Proof. In [2]. •

An equivalent form of the Theorem 64 is the following:

Corollary 65. Suppose Hqo = {0}. Then the basis {u'i.ijO < j < r,-, 1 < t < m}
of spanf^{dx} defined byUij = yields:

n m

0,i,jdXj + bijdUj
j=l j=l

where aij,bij € /C and the matrix [bt,i] has an inverse in the ring ofmxm matrices
with entries in K.

Proof. In [2]. •

The last representation, called the Infinitesimal Brunovsky form, highlights the
similarity of this construction with the regular Brunovsky form: the two forms are
identical, with scalar quantities replaced by one forms. Using this normal form the
following theorems can be proved:

Theorem 66. The system (181) is linearizable by static state feedback if and only
if Hoo = {0} and for all k = 1,... ,k*, Hk is integrable.
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Proof. In [2]. •

Theorem 67. Suppose Hqo = {0} and let 11 = (wi,... There exists a
system of linearizing outputs y = /i(x,at,€ E"* if and only if there exist
an invertihle polynomial operator P G [^] such that d(Pn) = 0.

Proof. In [2]. •

4.2.5. Connection between the approaches. We now consider some results where
dynamic feedback linearization is successful as opposed to static feedback lineariza
tion. A simple calculation reveals the following:

Proposition 68. Consider system (180). An extended system obtained by adding
the same number of integrators in front of each input is linearizable by static state
feedback if and only if the original system is linearizable by static state feedback.

Proof. The proof is easy to understand in the exterior differential systems frame
work. If k integrators are added to each input, then the derived system of the
extended system is equal to the original system. For details see [27]. •

Therefore, dynamic extension is only useful for feedback linearization if a different
number of integrators are added to each input channel, and there is at least one
input channel to which no integrators are added.

Corollary 69. A single input system of theform (181) is feedback linearizable by
dynamic extension if and only if it ts static feedback linearizable.

Proof. The result follows from the above proposition. •

In fact Corollary 69 also holds for general dynamic feedback.

Theorem 70. The following statements are equivalent:
1. System (181) with m = 1 is static feedback linearizable
2. System (181) with m = 1 is dynamic feedback linearizable

Proof. See [6, 2]. •

In other words, dynamic state feedback is only helpful in the case of multi-input
systems or Pfaffian systems with codimension greater than two. The proof for
Theorem 70 can be found in [6] for the vector field formalism and in [2] for the
infinitesimal Brunovsky form formalism. It should be noted here that the second
proofis extremely simple whereas the vector field proofis rather complicated.

The relation between the dynamic extension results in the vector field approach
(Theorem 61) and the exterior differential systems approach (Theorem 62) can be
seen from the following statement:

Proposition 71. If there exist integers satisfying the conditions of Theorem 61,
then those same integers satisfy the conditions of Theorem 62for ir = dt.

Proof. The prooffollows ifweassume the system is in Brunovsky canonical form. If
the conditions ofTheorem 61 aresatisfied thiscanbedone without loss ofgenerality,
as the result is intrinsic and therefore independent of the chosen coordinate frame.

•

The converse is not true, as illustrated by the following example:
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Example. Consider the followingcontrol system, proposed by Chaxlet, Levine and
Marino as a counterexample to the sufficiency of Theorem 61:

Xi = a:2 + X3U2

X2 = X3 + X1U2

X3 = Ui + X2U2

X4 = U2

This control system can be written in vector field notation as:

X = f(x) + + g2(x)u2

with the drift and input vector fields given by

fix) =

X2" 0* xs"
X3

0 , 9i(a;) =
0

1
, 92(2:) =

Xi

X2

0 0 1

(198)

The distribution Go = {<71,^2} is not involutive, and thus, by Theorem 56 the
system is not feedback linearizable.

Of course, we could also represent the control system (198) as a Pfaffism system,

/ = {a^,Qr^,a^,Q!^}
with the one-forms given by

= dxi —(x2 + X3U2)dt
O? = dX2 —(X3 + XiU2)dt
a® = dx3 —(«i + X2U2)dt

= dx4 —U2dt

A complement to this Pfaffian system is {dui,du2,dt}. The first derived system
can be shown to be

- —a*}
X3 xz *

and since {I^^\dt} is not integrable, the system is not feedback line2urizable.
We now consider a dynamic extension of order 3 on U2. We can represent this

extended system by J = where the one-forms that are
added correspond to the dynamic extension, and the new states that are added are
the first three derivatives of U2:

= du2 —wldt
(J^ = dw\ —

= dw2 —W2dt

Acomplement to J is{dui, ,dt} (note that I and J have the same codimension).
Computing the derived flag of the extended system, we find that

o;!}

= {a}
J<^> = {0}



84 G. PAPPAS, J. LYGEROS, D. TILBURY, AND S. SASTRY

where a = —U20c^. Each {dt} is integrable, as canbeseen from the following
equations:

dot = {u2)^a Adt + ((^2)^ + —1)Q!^ Adt + a^ + {u2X\ —0:3)0;^ Adt
do? = —U201 Adt —(u2)^a^ Adt —o? Adt —X\u^ Adt
da^ = —U20t'̂ Adt —du\ Adt —X2(jJ^ Adt
da^ = —u? A dt
du? = —u)^ A dt

du? = —u^ A dt

duj^ = —dw2 Adt

and thus, by Theorem 62 the extended system is feedback linearizable.
As noted by Charlet, L^vine, and Marino [6], this system does not satisfy the

conditions of Theorem 61. We have seen that the system is linearizable after a
dynamic extension of order 3 on W2. Following the notation of Theorem 61, we see
that

Ao = {<?i} = <

f

"0'

4
0

V

1

0
d

= {pijod/pi} = i

f

"o" "0*
0 -1

N

1
>

0

0 0
d

Checking condition 3 of Theorem 61, we see that for i = 0 and j = 2,

[92,91] =

-1

0

0

0

(199)

(200)

The relation between the standard Pfaffian system approach and the infinitesimal
Brunovsky form is more involved. The following can be shown:

Proposition 72. If the system is linearizable bystatic state feedback (eqaivalently
the conditions of Theorems 46 and 47 hold for dz^ = dt) then the two flag construc
tions are the same, modulo dt, i.e.:

Hk = mod dt

Proof. Asboth flagconstructions are intrinsicwecan assume, without lossofgener
ality, that the system is already in the canonical coordinates of the Goursat normal
form. Then:

= {dz{-z{+^dz° :i = l,... ,3j;j = 1,... ,m}
Hi = {dz{ :i Sj;j = 1,... ,m}

Recall that, in the context of system (180) (equivalently (189)), plays the role of
time (hence dz® = dt) and z^.^i plays the role of uj, j = 1,... ,m. Observe that
the above co-distributionsare identical if the terms in dz° are dropped from 7^®^.



EXTERIOR DIFFERENTIAL SYSTEMS IN CONTROL AND ROBOTICS 85

The next iteration of the two flags yields:

= {a € 7^®^ :da~0 mod 7^°^}
= {dzf - zi^^dz^ :«= 1,... ,Sj- - 1; j = 1,... ,m}

H2 — {w € H\ : Cj € H\}
= {dz/:i = l,...,s^-l;j = l,...,m}

Note that d{dzi. — Adz® which is not equal to 0 mod 7^®1.
Similarly dzi. = dz,^+i = duj ^ Hi. Again the two constructions are the same if
the terms in dz® are dropped from 7^^^
In general, for the k*'* step assume that:

/(*-!) = {dzJ-zJ^idz®:i = l,...,Sj-A: + l;i = l,...,m}
Hk = {dz{ :i = 1,... ,Sj-k + l'J = 1,... ,m}

Then:

7^*) = {q € /(*-!) :da = 0 mod 7^*"^^}
= {dzf - zf^jdz® : i = 1,... ,5j - A:; j = 1,... ,m}

Tfib+i = {a; € Hk : uf € Hk}

= {dz{ : i = 1,... ,Sj - fe; j = 1,... ,m}

Note again that d(dzf.=~^^aj-k+2 ^ which will not be
zero when wedged with all the one forms spanning 7^*"^^ Similarly, dzf^_;j.^i =
dZa^-k+2 ^ Hk. Yet again the two co-distributions are identical if the terms in dz®
are dropped from •

In view of Theorem 66 we make the following conjecture:

Co]]Jecture 1. The twoflag constructions are related by:

Hk = mod dt

only if the system is linearizable by static state feedback.

Some examples illustrate this conjecture.

Example (Modified Ball and Beam). This example is inspired by the well-
known system of a ball rolling on a beam [14]; the small-angle approximation has
been used to eliminate the sine term which appears in the dynamic equations,
and all the constants have been normalized to unity. This is a single input sys
tem which is not linearizable by static (and hence dynamic) state feedba^. The
simplified equations are:

iri = a?2
2

X2 — X1X4 — X3

±3 = X4

±4 = u
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The flag associated with the inflnitesimal Brunovsky form is:

Hi = {dxi,dx2idx3fdx4}

H2 = {dxijdxajdis}
Hz = {dxi^dx2 —2xiXAdxz}
H4 = {(1 + 2x2X4 + 2xiu)dxi + 2x1X4(^X2 - 2xiX4dx3)}
Hs = {0}

Note that, if we let u = (1+ 2x2X4 + 2xiM)dxi +2x1X4(^x2 -2x1X4^x3), dwAuj^O
(as it will contain, among other things, the term XiX4du Adxi Adx2), therefore
H4 = {a;} is not integrable. Hence, according to Theorem 66 and Theorem 70,
the system will not be linearizable by any of the techniques considered here, as
expected.

The derived flag construction for the same system leads to:

= {dxi - xzdt, dx2 - (X1X4 - X3)dt, dx3 - X4dt, dx4 - udt)
= {dxi - X2dt, dx2 - (X1X4 - X3)dt, dxz - X4dt}
= {dxi - xzdt, dx2 - 2x1x4^x3 + (xixj + X3)dt}

/(3) = {0}

Note that the two flags are identical (neglecting the dt terms) until the fourth step
where the dimension of the derived flag drops by two. According to Theorem 47,
the system is not linearizable by static state feedback. •

example (VTOL [15]). This example is inspired by the dynamic equations for a
planar vertical take-oif and landing aircraft; parasitic effects have been eliminated
to simplify the analysis. This is an example of a two input system that is not
linearizable by static state feedback, but is linearizable by dynamic extension. The
dynamics of the system are given by the following equations:

Xi = X2

X2 = —sin X5U1

X3 = X4

X4 = COSX5U1 — 1

X5 = Xq

xe = U2

It is easy to show that the system is not feedback linearizable by static state feed
back. However, if two integrators are added in front of input ui the resulting
eight-state, two-input system is feedback linearizable.
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The flag associated with the infinitesimal Brunovsky form of the original system
is:

Hi = {dxi^dx2,dx3ydx4,dxsjdxe}

H2 = {dxijdxzydx5yCosxsdx2+siaxsdx4]
Hz = {cosajsdii+sina:6dx3,

(sinx5)x6da:i - (cosa;5)a:6d!C3 + (cos0:5^x2 + sinx5da;4)}
H4 = {0}

Letting ui = cosxsdxi + sinx5dx3 and 102 = (sinx5)x6dxi —(cosx5)x6dx3 +
(cosx5da;2+sinx5dx4) it is easyto show that du)i AljiAu)2 ^ 0 (as it contains terms
in dxi Ada:3 Adx4 Adxz among other things). Therefore, Hz = spanx:{a;i,a;2} is
not integrable and hence, according to Theorem 66 the system is not linearizable
by static state feedback. Even though it is known that the system ts linearizable
by dynamic extension, there seems to be no easy way of determining the form of
the invertible operator P of Theorem 67.

The derived flag for this system has the form:

= {dxi —xzdt,dx2 + sinx&uidt, dxz —X4dt, da;4 —(cos x^ui —l)dt,

dxz x^dty (Hxq Uzdt^
= {dxi —xzdty dxz —X4dt, dxz —xzdt,cosx^dxz + sinX5dx4 + sinx^di)

The calculation involved in the next step of the derived flag are rather complicated.
However, the pair of one forms we would expect to find in because of the
structure of H3, namely cosx5(dxi —X2dt)-\rsmxz{dxz—X4dt) and sinx6X6(da:i -
xzdt) —cosxzxzidxz~-X4dt) + (cosx5dx2 + sinx5di4 + sinx6dt), do not satisfy the
necessary conditions. Therefore the two flags diverge at this point. An interesting
observation is that, if we define outputs yi = xi and yz = xz (the position of the
plane), and attempt to input-output linearize the system this is exactly the step
where input ui shows up (without U2) and we can conclude that the linearization
will fail. It would be interesting to try to relate this observation with the maximal
linearizablesubsystem [19] and add more substance to this observation. •

To summarize, in this section we have approached the problem of feedback lin
earization of control systems using techniques such as vector fields, exterior differ
ential systems, and the infinitesimal Brunovskyform. All giveequivalent conditions
for the static feedback Unearizationproblem. A sufficientcondition for linearization
using dynamic extension was given using vector fields; a necessary and sufficient
one was given using exterior differential systems. Of the three techniques, only the
infinitesimal Brunovsky form is formulated to approach the more general problem
of djmamicfeedback linearization, as stated in Problem 3; however, the conditions
do not appear to be easy to verify.

5. Concluding Remarks & Topics of Interest

Exterior differential systems offer a different perspective on systems of differ
ential equations. This approach is more algebraic than the standard vector field
approach which is very geometric. The main advantage of looking at systems us
ing differential forms instead of tangent vectors is precisely this algebraic power
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afforded by exterior systems. In this paper, we presented a number of different ap
proaches which can be used to linearize a nonlinear system by state feedback and
coordinate transformation. It was shown that they all produce comparable results
in most cases, even though some are better suited to tackle certain problems than
others. These techniques represent significant progress for all the problems posed
here. Much work remains to be done. For example, an extension of the vector
field conditions for converting the system to extended Goursat normal form may
be very useful and may provide insight into many hard problems in the area of
exterior differential systems.

Another direction that deserves further attention is linearization by dynamic
state feedback. It should be noted that, even for the case of dynamic extension,
none of the results are constructive. In particular, all the theorem statements start
with an assumption of the form "if there exist ..." ("integers such that ..." or
"invertible operator ..."), but provide no insight on whether those integers or op
erators exist or how to determine them. Only recently have upper bounds been
determined on the number of dynamic extension steps required to feedback lin
earize a system [27]. No bound is known on the necessary dimension of a general
dynamic state feedback. All of these are properties depend only on the system
dynamics, it should therefore be possible to answer the above questions given only
the system equations. It should also be noted that most of the literature is con
cerned with dynamic extension and non-singular input transformations. Of the
theorems presented here only Theorem 67 claims to address the general dynamic
state feedback case. Singular input transformations arebriefiy discussed in [32] and
compared with the corresponding results using the extended Goursat normal form
and prolongations. Both of these topics merit further attention.

Finally it should be noted that the conditions for feedback linearization are
"closed", i.e. they essentially hold for a set of "measure zero" in the "space" of
dynamical systems. It is therefore useful to know what, if anything, can be done
about systems which do not satisfy these conditions, as most systems encountered
in practice fall into this category. This problem was first addressed in [14] and
later, more formally, in [28]. A different approach, related more to input-output
linearization is taken in [18] and [6]. It would be interesting to compare the two
approaches, and hopefully determine classes of systems that are better suited for
one or the other.
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