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ABSTRACT

The heating of electrons by time-varying fields is fundamental to the operation of radio frequency (rf) and

microwave discharges. Ohmic heating, in which the phsise of the electron oscillation motion in the field is

randomized locally by interparticle collisions, can dominateat high pressures. Phase randomization can also

occur due to electron thermal motion in spatially inhomogeneous rf fields, even in the absence of collisions,

leading to coUisionless or stochastic heating, which can dominate at low pressures. Generally, electrons are

heated collisionlessly by repeated interaction with fields that are localized within a sheath, skin depth layer,

or resonance layer inside the discharge. This suggests the simple heatingmodel of a ball bouncing elastically

back and forth between a fixed and an oscillating wall. Such a model was proposed originally by Fermi to

explain the origin of cosmic rays.

In this review, Fermi acceleration is used as a paradigm to describe coUisionless heating and phase

randomization in capacitive, inductive, and electron cyclotron resonance (ECR) discharges. Mapping mod

els for Fermi acceleration are introduced, and the Fokker-Planck description of the heating and the effects

of phase correlations are described. The coUisionless heating rates are determined in capacitive and in

ductive discharges and compared with self-consistent (kinetic) calculations where available. Experimental

measurements and computer simulations are reviewed and compared to theoretical calculations. Recent

measurements and calculations of nonlocal heating effects, such as negative electron power absorption, are

described. Incomplete phase randomization and adiabatic barriers are shown to reduce the heating in low

pressure ECR discharges.



. M dispersive medium is also an absorbing medium." (Landau and Lifshitz, 1960)

I. INTRODUCTION

The heating of electrons by time-varying fields is fundamental to the operation of radio frequency (rf) and

microwave plasma discharges. In a uniform oscillating electric field E(t) = ReEoe'^S a single electron

has a coherent velocity of motion that lags the phase of the electric field force —eE by 90®. Hence the

time-average power transfered from the field to the electron is zero. Electron collisions with other particles

destroy the phase coherence of the motion, leading to a net transfer of power. For an ensemble of n electrons

per unit volume, it is usual to introduce the macroscopic current density J = enu, with u the macroscopic

electron velocity, and to relate the amplitudes of J and E through a local conductivity: Jo = o^pEo, where

(Tp = e^nlm{i/m +iw) is the plasma conductivity and Um is the electron collision frequency for momentum

transfer. In this "fiuid" approach, the average electron velocity u still oscillates coherently but lags the

electric field by less than 90®, leading to an ohmic power transfer per unit volume:

Pohm =jReJo E; =i|Eo|-Re((r,) = Re(<7;').
Although the average velocity is coherent with the field, the fundamental mechanism that converts electric

field energy to thermal energy is the breaking of the phase-coherent motion of individual electrons by colli

sions: the total force (electric field force plus that due to collisions) acting on an individual electron becomes

spatially non-uniform and non-periodic in time.

These observations suggest that a spatially non-uniform electric field by itself might lead to electron

heating, even in the absence of interparticle collisions, provided that the electrons have thermal velocities

sufficient to sample the field inhomogeneity. This phenomenon of collisionless or stochastic heating has been

well-known in plasma physics since Landau (1946) demonstrated the collisionless damping of an electrostatic

wave in a warm plasma. Since that time, collisionless dissipation has been studied extensively in fusion

and space plasma physics. However, within the last decade and with the increased emphasis on industrial

applications of low pressure gas discharges, it has become evident that collisionless dissipation phenomena

are fundamental to rf and microwave discharges.

As will be seen in the following review, stochastic collisionless interactions leading to electron heating

can be a basic feature of warm plasmas having space dispersion. The electron response (J) at some point in

the plasma is defined not only by the field (E) at that point, but by an integrated effect over the neighboring

space. Due to the spatial variation, the time-varying field seen by an individual "thermal" electron is

non-periodic. The electron can lose phase coherence with the field (which is strictly periodic), resulting in

stochastic interaction with the field and collisionless heating. Two fundamental issues arise: (1) what is the



rate of energy transfer to electrons assuming that phase coherence is lost; and (2) what are the conditions

for loss of phase coherence? These issues form the principal topic of our review.

In almost all discharges, the spatial variation of the time-varying field is strongly non-uniform, with

a low field in the bulk of the plasma and one or more highly localized field regions (rf sheath, skin depth

layer, etc), usually near the plasma boundaries. An electron, being confined for hundreds to thousands of

bounce times by the dc ambipolar and boundary sheath potential in the discharge, interacts repeatedly with

the high field regions, but interacts only weakly during its drift through the plasma bulk. This suggests a

dynamical model to investigate the energy transfer and loss of phase coherence: a ball bounces elastically

back and forth between a fixed and an oscillating wall. This model was first introduced by Fermi (1949)

to explain the origin of cosmic rays. The process in which the ball repeatedly interacts with the oscillating

wall, resulting in phase randomization and stochastic heating, is known as Fermi acceleration. This process

has been studied extensively as a paradigm in dynamics. In this review, we adapt the Fermi acceleration

model as our fundamental approach for understanding collisionless heating in weakly ionized gas discharges.

In the usual model of Fermi acceleration, the wall oscillation motion is specified and the motion of the

ball is then determined. From the structure of the motion in the velocity-position phase space of the ball, the

conditions for phase randomization and the heating rates can be determined. However, the corresponding

problem of collisionless electron heating in discharges has additional complexity, because the spatially non-

uniform rf or microwave heating fields must be determined self-consistently with the electron motions. This

self-consistent problem has been treated within conventional (warm plasma) kinetic theory for rf inductive

discharges assuming that all electron phases are randomized. The issue of partial phase randomization and

fully self-consistent treatments of other types of discharges is an active area of research.

In Section 11 we describe the model of Fermi acceleration. We motivate its introduction to explain the

origin of cosmic rays, and introduce mapping models to describe the dynamics. We introduce a Fokker-

Planck formalism to describe the collisionless heating in the presence of complete phase randomization, and

we describe the effects of partial phase randomization. In Section 111, we review collisionless heating in

capacitive rf discharges. We describe the early studies and introduce a simple Fermi acceleration modelfor

a homogeneous sheath to determine the collisionless heating rate. We describe modifications to the heating

rate due to self-consistent sheath models and make comparisons to experiments and to fluid and particle-in-

cell (PIC) simulations. We also describe other collisionless heating models, such as for magnetizedcapacitive

discharges, and we introducesome other approaches to determine the collisionless heating. In Section IV we

review collisionless heating in inductive rf discharges. We introduce the classical and anomalous skin effects

and a Fermi acceleration model of the collisionless (anomalous) heating. We compare this to a self-consistent

kinetic model and describe recent experiments that identify effects due to collisionless heating, such as the

existence of regions of negative electron power absorption within the discharge bulk due to space dispersion

caused by electron thermal motion. In Section V, we review briefly some features of collisionless heating

in electron cyclotron resonance (ECR) discharges. We introduce a Fermi acceleration heating model and



show some comparisons to experiments. Both the model and the experiments suggest that incomplete phase

randomization can reduce the heating rate emd lead to an adiabatic barrier to the heating. In Section VI we

summarize our conclusions and suggest some further issues that need to be resolved.

II. FERMI ACCELERATION

A. Cosmic Rays: Discovery and Properties

In the morning of August 7, 1912, Austrian physicist Viktor Hess ascended to over five kilometers in

a balloon gondola as "an observer for atmospheric electricity" (Harwit, 1984; Friedlander, 1989). During

the journey, he made careful measurements of the rate of discharging of three electroscopes, and he noted

a several-fold increase in the rate of discharging as the balloon rose in adtitude. In his publication in

Physikalische Zeitschrift in November 1912, Hess suggested that the results of his observations were best

explained "by a radiation of great penetrating power entering our atmosphere from above." Further flights

confirmed these findings, and the American physicist Robert Millikan, although initially skeptical of the

extraterrestrial origin, introduced the name cosmic rays.

It is now generally agreed that the majority of cosmic rays have a galactic origin. The cosmic ray

flux is isotropic and of order 1 cm~^s"^ the energy density is approximately 1 eV/cm^, and the lifetime is

approximately 10^ years. Cosmic rays are mostly protons, but are rich in heavy nuclei compared to solar

abundences. The particle energy ranges from W '̂ 10®-10^° eV, with a power law distribution M{W) a
^-(2-2.5)

Cosmic rays are believed to originate from supernovas such as the well-studied Crab nebula, which is

the remnant of a supernova in 1054 A.D. With one galactic supernova every fifty years within a galaotic disk

volume of 10®^ cm® creating 10^® J of fast particles, the energy balance is

10^® J ^ e X1 eV/cm® x 10®^ cm®
50 yrs 10^ yrs

Measurements of radiation from supernova remnants clearly show the presence of synchrotron radiation,

demonstrating the existence of high-energy (> 10^^ eV) electrons. Exactly how the fast particles are formed

and accelerated is not well understood. Early theories emphasized acceleration across high voltages or by

means of shock waves.

B. Fermi's Proposal

In 1949, Fermi put forth the idea that "cosmic rays are originated and accelerated primarily in the

interstellar space of the galaxy by collisions against moving magnetic fields". He went on to assert the basic

acceleration mechanism as follows:

It may happen that a region of high field intensity moves toward the cosmic-ray particle which

collides against it. In this case, the 'particle will gain energy in the collision. Conversely, it may

happen that the region of high field intensity moves away from the particle. Since the particle is

much faster, it will overtake the irregularity of the field and be reflected backwards, in this case with



loss of energy. The net result will be average gain, primarily for the reason that head-on collisions

are morefrequent than overtaking collisions because the relative velocity is larger in the former case.

Fermi noted that this idea naturally leads to a power law energy distribution, but that it fails to explain in

a straightforward way the heavy nuclei observed in the primary cosmic radiation.

C. Fermi Maps and Dynamical Chaos

The Fermi problem of a particle bouncing between a fixed and an oscillating wadl is illustrated in

Fig. 1. This model of energy gain by repeated collisions of a particle with an oscillating wall was examined

numerically by Ulam and associates (Ulam, 1961), who found that the particle motion appeared to be

stochastic, but did not increase its energy on the average. Ulam's result wasexplained using a combination

of analytical and numerical work by subsequent authors. The Fermi problem was treated using an exact

area-preserving dynamical mappingfor a sawtooth wall velocity by Zaslavskii and Chirikov (1965). Similar

studies were performed by Brahic (1971). A "simplified" mapping, in which the oscillating wall imparts

momentum to the particle but occupies a fixed position, was introduced by Lieberman and Lichtenberg

(1972) and studiedfor arbitrary wall velocities (Lichtenberg et al, 1980; see also Lichtenberg and Lieberman,

1992, Sec. 3.4).

To find the exact mapping dynamics for this system, we introduce a fixed surface of section as some x

= const. Defining u„ = Vn/^sjoa to be the normalized velocity, 6n = to be the phase of the moving wall at

the nth collision with the fixed surface at x = 0, then a difference equation for the motion of the particle can

be determined in terms of a wall motion Xxv{t) = ciF{rp), where F is an even periodic function of the phase

^ = wf, with period 2it and with Fmax = —.^min = 1- ^6 obtain, in implicit form the equations of motion

Wn+i = Wn + F'{i)c), (2.1a)

2 Un

Here Vc is the phase at the next collision with the movingwall, after the nth collision with the fixed surface

X = 0, M = //27ra, with I the distance between the walls, and F' —dF/dtp is the velocity impulse given

to the ball. In this form it is easy to see that measuring the distance from the fixed wall as x, conjugate

to v, then the phase ^ is a time-like variable conjugate to the energy-like variable w —u"^. That is, in the

extended phase space (v,x,—iy,<), the choice of a surface x = 0 gives an area-preserving mapping for the

remaining pair (—it),t). As we show in Sec. IID, this implies that a stochastic orbit has a uniform invariant

distribution over the accessible (it;, 9) phase space. Hence, assuming all phases are accessible, the energy w

has a uniform invariant distribution.



Because of its implicit form, (2.1) is not convenient for numerical or analytical study. Substituting

w = assuming a sinusoidal wall motion in (2.1), and expanding to first order in F' (and F), we obtain

t^n+i = Wn + sin (2.2a)

27rM cos On X
^n+l = + -== + -=^. (2.2b)

Vt5n+T -x/ton+T

A still simpler form can be constructed if the sinusoidally oscillating wall imparts momentum to the ball,

according to the wall velocity, without the wall changing its position in space. The problem defined in this

manner has many of the features of the more physical problem. In this simplified form the mapping is

Un+i = |«n + sin ipn \, (2.3a)
2jrM

V'n+I = V'n + (mod 27r). (2.3b)
«n+l

The mapping in (2.3) serves as an approximation (with suitably defined variables) to many physical systems

in which the transit time between kicks is inversely proportional to a velocity. The absolute-value signs

in (2.3) correspond to the velocity reversal, at low velocities u < 1, which appears in the exact equations

(2.1). The absolute value has no effect on the region u > 1, which is the primary region of interest. For the

simplified problem, a proper canonical set of variables are the ball velocity and phase just before the nth

impact with the moving wall. The normalized velocity u then has a uniform invariant distribution, as will

be seen in Sec. IID.

Transformations of the type (2.1)-(2.3) can be examined numerically for many thousands of iterations,

thus allowing both detailed knowledge of the structural behavior and statistical properties of the dynamical

system to be determined. Figure 2 shows the u-^} surface for the simplified Fermi map (2.3) with M = 100

for 623,000 wall collisions of a single trajectory, with an initial condition at low velocity uq ^1. The surface

has been divided into 200 x 200 cells, with a blank indicating no occupation of that cell. We find that the

phase plane consists of three regions:

(1) a region for large u,u > Ub = in which invsuriant adiabatic curves predominate and isolate narrow

layers of stochasticity near the separatrices of the various resonances;

(2) an interconnected stochastic region for intermediate values of tx, u, « < tx < Ub, in which adiabatic

islands near linearly stable periodic solutions are embedded in a stochastic sea; and

(3) a predominantly stochastic region for small tx, u < u,, in which all primary periodic solutions appear to

be unstable.

Both regions (2) and (3) exhibit strong or global stochasticity of the motion. In the latter region, although

some correlation exists between successive iterations, over most of the region it is possible to approximate

the dynamics by assuming a random phase approximation for the phase coordinate, thus describing the

momentum coordinate by a diffusion equation. We explore this question more fully in the next subsection.

D. The Fokker-Planck Equation

6



In regions of the phase space that are stochastic or mostly stochastic with small isolated adiabatic

islands, it may be possible to describe the evolution of the distribution function in action space (or velocity

space) alone. This is, in fact, the problem of most practical interest. In the Fermi acceleration problem,

for example, the motivationwas to find a possible mechanism for heating of cosmic rays. The variations in

the phases of the particles with respect to their accelerating fields are of little interest except as they are

required for determining the heating rates and the final energy distribution.

Let us consider in what sense the evolution of the distribution function /(«, n) can be described by a

stochastic process in the action it alone. Clearlywemust confine our attention to a globallystochastic region

of the phasespace in which adiabatic islands do not exist or occupy negligible phasespace volume. In such

a region, it may be possible to express the evolution of f(u,n), the distribution in u alone, in terms of a

Markov process in u (Wang and Uhlenbeck, 1945):

/(u,n +An) =J f{u —Au^n)Wt{u —Au,n,Au,An) d{Au), (2.4)
where Wt(u, n, Au, An), the transition probability, is the probability that an ensemble ofphase pointshaving

an action u at a "time" n suffers an increment in action Au after a "time" An. If we make the additional

assumption that there exists an intermediate time scale An 1such that Au "C ldu)~^, then we can

expand the first argument of the integrand fWt in (2.4) to second order in Au to obtain the Fokker-Planck

equation

(2.5)

For Hamiltonian systems, the friction coefficient B and the diffusion coefficient D are related (Landau, 1937)

as

allowing (2.5) to be written in the form of a diffusion equation

(2 7)dn ~ ^u\2^u)^ ' ' '

Assuming that phase randomization occurs on the time scale An, then we can average Au over a uniform

distribution of phases to obtain the so-called quasilinear diffusion coefficient

D{u) = J d^[Au(V')]^. (2.8)
B{u) is then obtained directly from (2.6).

For the simplified Fermi map (2.3) with sinusoidal velocity, for which Au = sin we obtain D = ^ and

J5 = 0. Hence the Fokker-Planck equation for the velocity distribution is

^ ='JX (2.9)
dn 4 du^ ^ '



Similarly, for the Fermi map (2.2), we obtain

1D= — I 4w cos^ 6d6 = 2w (210)
27r Jq

and the Fokker-Planck equation for the energy distribution g is, from (2.7)

'i-£{-&)• <"•>
To obtain a steauiy-state solution to the Fokker-Planck equation, we assume perfectly reflecting barriers

at u = 0 and u = U(,. Setting d/dn = 0 in (2.9) and taking the net flux to be zero, we obtain a uniform

invariant distribution in velocity f{u) = const for the simplified map. For the map (2.2), we obtain similarly

a uniform invariant distribution in energy g{w) = const. Introducing the velocity distribution f{u) for (2.2)

through

f{u)du = g{w)dw (2-12)

and using dw = udu, we see that f{u) = const x u for (2.2). In Fig. 3 we compare the numerically

calculated distributions for M = 100 and 5 x 10® interactions with these predictions. In the region below

Ug = (7rM/2)^/^ « 12.5, the predictions are verified. Above u,, the distributions both fall offdue to the

presence of islands and higher-order correlations in the phase space, with the dips near the island centers.

We can also solve the transient Fokker-Planck equation. For the simplified Fermi mapping (2.3), with

initial conditions of a J-function at u = 0+, we can solve (2.9) to obtain

which yields the distribution function for the transient heating of he particles. This time development only

holds, of course, until the particles begin to penetrate into the region with islands, u> Ug.

E. The Effects of Correlations

The complete dynamics, including the transition region with adiabatic islands embedded in a stochastic

sea, is very complicated and can only be solved numerically. To gain some understanding of the diffusion in

the phase space region where correlations are important, it is convenient to first transform the Fermi map

to a local map near a resonance. Taking the simplified Fermi map of (2.3), we obtain the so-called standard

mapping by linearization in action space near a given period-1 fixed point. These fixed points are located at

= 27rm, m integer. (214)
Ui

Putting u„ = ui -f Aun and shifting the angle

dn='^n- T, -IT <9„ < TT,



then the mapping equations take the standard form

/n+i = In Ksin^n, (2.15a)

^n+l = + Ifi+h (2.15b)

where

/„ = (2.16)

is the new aotion and

K=^ (2.17)
uf

is the stochasticity parameter. We have thus related K to the old action u\. The conversion from Fermi to

standard mapping is illustrated in Fig. 4 for two different values of ui, leading to two different valuesof K.

The dynamics of the standard mapping (2.15) can be considered to evolve on a two-torus, with both 6

and I taken modulo 27r. The periodicity of the mapping in I gives rise to a special type of periodic orbit

(period-1 fixed point) in which I advances by ±27r every iteration ofthe mapping. Thecondition for these so-

called accelerator modes is that In = 27rm and K sin On = 27r/, m and / integers, with / ^ 0. The accelerator

modes are stable provided |2 ± K cos0i/| < 2, which implies that stability windows for period-1 fixed points

exist for successively higher values of K as I increases (cos0i/ decreases). Remnants of these accelerator

modes, called quasi-accelerator modes, can exist in the Fermi mapping, leading to enhanced diffusion.

The quasilinear transport coefficients for the standard mapping (2.15) are Dj = K^/2 and Bj = 0.

Since this mapping locally approximates the Fermi mapping,we can relate Dj to D for the Fermi mapping.

Using AI = —KAu, we find that the diffusion coefficients are related by

DM = (2-18)

The island structure embedded in the Fermi stochastic sea is exceeding complex, and, in fact, has

fractal properties. We might expect this structure to leeid to long time correlation of stochastic orbits in the

neighborhood of adiabatic orbits, and this is in fact what happens. The quasilinear transport coefficients are

determined using the random phase assumption applied to a single step jump in the eu:tion Aui = ui —uo-

However, as pointed out in Sec. IID, the Fokker-Planck description of the motion is valid only in the limit

n ^ Tic, where ric is the number of steps for phase randomization to occur. We should therefore consider the

jump Aun = u„ —uo, where n > ric- This was first done using Fourier techniques for the standard mapping

in the limit of large K by Rechester and White (1980) and for any K by Rochester et al (1981). To order

the result is (Lichtenberg and Lieberman, 1992, Sec. 5.5a):

D„ = Dql[\ - UiiK) - 23HK) + 23l{K) + 2J|(/<-)], (2.19)

where Dql = Di/2 = K'̂ /A and the J's are Bessel functions. A numerical calculation of D50 using 3000

particles is compared with (2.19) in Fig. 5 (Rechester and White, 1980). There is good agreement, except



near the first few peaks of D, which are due to the presence of accelerator modes. For K near but greater

than the critical value Kc « 0.9716, one finds numerically that

Doo « 0.1{K - Kc)^. (2.20)

For K < Kc, an adiabatic (invariant) barrier exists and there is no long-time diffusion.

For the Fermi map in which the phase is randomized within a region of the velocity space for which

the local approximation gives a near-constant stochasticity parameter iiT, it is possible to derive a local (in

velocity) diffusion coefficient (Murray et al, 1985). In this regime, for which {1/f){df/du) K{u)/27r, the

diffusion coefficient becomes, using (2.18),

• (2-21)

Let us note that if we are interested in using the Fermi map to model a heating mechanism, then

particles will generally start at low velocities, where the stable islands have negligibly small area. As the

particles are heated they enter regions of phase space within which large islands exist. Without extrinsic

stochasticity, the particles will not penetrate these islands. Hence, although the equilibrium distribution is

uniform in the ergodic phase space surrounding the islands, the phase-averaged distribution /(u,n) will not

be uniform, as is seen in Fig. 3. To correct for this effect, one must divide Doo(w) by the fraction of phase

space occupied by stochastic orbits. The details of the calculation are described in Murray et al (1985); see

also Lichtenberg and Lieberman (1992). The enhanced diffusion due to quasi-accelerator modes is treated

in Lichtenberg et al (1987).

Deterministic Fermi acceleration mappings are useful tools for understanding the purely dynamical

aspects of the phase randomization and heating of particles by periodic fields. However, let us note that for

the heating of electrons in weakly ionized gas discharges, the extrinsic stochasticity associated with electron-

electron, electron-ion, and electron-neutral collisionscan play a critical, and in many cases dominating role.

The interplay between the intrinsic dynamical chaos and the extrinsic chaos due to collisions has received

much attention both in the dynamics community (see Lichtenberg and Lieberman, 1992, Sec. 5.6) and in

the discharge heating community (Lieberman and Lichtenberg, 1994; Kaganovich et al, 1996; Kaganovich,

1997).

III. CAPACITIVE RF DISCHARGES

We begin with the application of Fermi acceleration to electron heating in capacitive discharges where

collisionless dissipation of rf power has been intensively studied over the last few decades, due to the wide

application of these discharges in plasma processing (Lieberman and Lichtenberg, 1994). A sandwich-like

(sheath-plasma-sheath) structure of the capacitive rf discharge, first proposed by Schneider (1954) and now

widely accepted in analyzing the basic properties, is shown in Fig. 6. A typical discharge consists of a

vacuum chamber containing two planar electrodes separated by a spacing of order 2-10 cm and driven by an

10



rf power source. The substrates are placed on one electrode, feedstock gases are admitted to flow through

the discharge, 2uid effluent gases are removed by the vacuum pump. The typical rf driving voltage is Vrf

= 100-1000 V, and for etching of thin Alms pressures are in the range 10-100 mTorr, power densities are

0.1-1 W/cm^, and the driving frequency is usually 13.56 MHz. Plasma densities axe relatively low, 10®-

10^° cm"®, and electron temperatures are of order 3 V. For deposition of films, pressures tend to be higher,

and frequencies can be lower than 13.56 MHz.

The operation of capacitively driven discharges is reasonably well understood. The mobile plasma

electrons, responding to the instantaneous electric fields produced by the rf driving voltage, oscillate back-

and-forth within the positive space charge cloud of the ions. The massive ions respond only to the time-

averaged electric fields. Electron thermal motion and oscillation of the electron cloud create sheath regions

near each electrode that contain net positive charge when averaged over an oscillation period; i.e., the positive

charge exceeds the negative charge in the system, with the excess appearing within the sheaths. This excess

produces a strong time-averaged electric field within each sheath directed from the plasma to the electrode.

Ions flowing out of the bulk plasma near the center of the discharge can be accelerated by the sheath fields

to energies of order of Vrf as they flow to the substrate, leading to energetic-ion enhanced processes. The

positive ions continuously bombard the electrode over an rf cycle, whereas electrons are lost to the electrode

only when the oscillating cloud closely approaches the electrode. During that time, the instantaneous sheath

potential collapses to near-zero, allowing sufficient electrons to escape to balance the ion charge delivered

to the electrode. Except for such brief moments, the instantaneous potential of the discharge must always

be positive with respect to any large electrode or wall surface; otherwise the mobile electrons would quickly

leak out. The sheath impedance is generally much larger than that of the plasma and plays the essential

role in limiting the rf discharge current.

A. Early Work

Because the sheath width oscillates, electrons reflecting from the sheath are velocity dispersed. This idea

was proposed by Gabor et al (1955) in their attempt to resolve the "Langmuir paradox" of a Maxwellian elec

tron distribution in the positive column of a dc glow discharge having negligible electron-electron Coulomb

collisions. They believed that the electron interawrtion with rf fluctuations (oscillations) in the sheath was

without energy exchange and was maintained solely by the energy flux of low energy electrons, thus, gener

ating a high energy tail of the distribution.

Later Pavkovich and Kino (1963) and Gould (1964), analyzing the sheath impedance at high frequency,

showed that electron reflection in the oscillating sheath is accompanied by rf energy absorption, due to a

type of transit time heating.

An explicit application of Fermi acceleration to electron heating in rf discharges was by Godyak (1971):

In an oscillating double sheath, the potential distribution, and thus the coordinate of the electron-

reflection point depend on the time, and the electron reflection is analogous to that of solid particles

11



from a vibrating wall. On the average particles acquire energy in this case (the Fermi acceleration

mechanism).

Godyak went on to determine the electron power deposition for a do sheath with a small sinusoidally vibrating

fluctuation, and put forward the idea that Fermi acceleration might be a major mechanism to sustain a

capacitive discharge at low gas pressures. These ideas were further developed by Godyak (1976a,b) and by

Akhiezer and Bakai (1976). The latter authors used a simplified Fermi model (2.3) to determine the heating

rate, and noted that if there was a velocity barrier for heating, then the steady state distribution in velocity

was uniform for velocities below the barrier, in agreement with the calculation in Section IID. Goedde et al

(1988) later considered the case in which electrons are continuously injected into a capacitive discharge at

low velocity and are lost by inelastic collisions or escape to the walls at higher velocity, and determined the

steady state distribution, finding a power law electron energy distribution.

B. Homogeneous Discharge Model

Let us consider the collisionless power absorption in the simplest model of a capacitive discharge with

a homogeneous ion background in the electrode gap and with a high rf sheath voltage. Such a simplified

discharge model qualitatively describes the main features of capacitive discharges in practice.

Electrons reflecting from the large decelerating fields of a moving high voltage sheath can be approxi

mated by assuming the refiected velocity is that which occurs in an elastic collision (in the moving reference

frame) of a ball with a moving wall

Wr = -u + 2ue, (3.1)

where u and Ur are the incident and refiected electron velocities parallel to the time varying electron sheath

velocity u^s- If the parallelelectron velocity distribution at the sheath edgeis /es(w,<), then in a time interval

dt and for a speed interval du, the number of electrons per unit area that collide with the sheath is given by

(u —Ues)fes{u,t)dudt. This results in a power transfer per unit area,

dSstoc =^m(uj - u^)(u - Ues)fes{Uyt) du. (3.2)
Using Ur = —u + 2ues and integrating over all incident velocities, we obtain

5stoc = -2m / Ues{u-Ues)^fes{u,t)du. (3.3)
due.

In the physical problem fes varies with time, as the sheath oscillates, and the problem becomes quite

complicated. For the uniform density model we note that

/: fes{u,t) du = nc4(<) = n, a constant. (3.4)

Furthermore, for the purpose of understanding the heating mechanism we make the simplifying approxi

mations that /ea(u,t) can be approximated by a Maxwellian, ignoring the plasma drift, and that Uea ^

Ve = (8eTe/7rm) '̂'̂ , the mean electron speed. These approximations simplify the calculation. Consistent
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with our approximation, we can set the lower limit in (3.3) to zero. Before performing the average over the

distribution function, we substitute

Uea = UoCOSWt, (3.5)

in (3.3) and average over time. Only the term in sin^ujt survives giving

r°°
5stoc = 2mtz§ / ufea{u)du. (3.6)

^0

Now, consistent with our approximation that /e, is Maxwellian, we note that the integral gives the usual

random flux Fe = \nve, and (3.6) becomes

5stoc =^mulnv^. (3.7)
Inside the plasma the rf current I\ is almost entirely conduction current, such that

Ii —JiA = —enuoA, (3.8)

where A is the cross-sectional area. Substituting (3.8) into (3.7) yields the stochastic electron power in terms

of the (assumed) known current. Sinceweare calculating the power per unit area, weuse the current density,

to obtain, for a single sheath,

= (3.9)

Within the homogeneous model, the time-average electron heating per unit area due to ohmic heating

in the discharge bulk is

Sohm = 5./f'Re(<7;'), (3.10)

where / is the length of the bulk region containing electrons and <Tp = e^n/m(z/-t-jw) is the plasmaconduc

tivity. Substituting <Tp into (3.10), we find

(3.11)

where Um is the electron-neutral momentum transfer frequency.

Adding (3.9) (for two sheaths) and (3.11), the total time average electron power per unit area is

Se =|̂ (<'m( +2S.)7f. (3.12)

A useful interpretation of this result is to introduce an effective collision frequency

= + (3.13)

Then we can consider that the stochastic heating introduces an additional, gas pressure-independent collision

frequency, the electron bounce frequency 2ve/l, into the expression for ohmic heating of the discharge.

C. Self-Consistent Sheath

13



We describe now the stochastic heating for a collisionless high voltage rf sheath (Lieberman, 1988). The

structure of the rf sheath is shown in Fig. 7. Ions crossing the ion sheath boundary at x = 0 accelerate

within the sheath and strike the electrode at x = Sm with high energies. The ion motion is collisionless.

Since the ion flux is conserved and u,- increases as ions transit the sheath, n,- drops. This is sketched as

the heavy solid line in the figure. The electron sheath edge oscillates from x = 0 to x = Smi as shown, where

s{t) is the distance from the ion sheath boundary at x = 0 to the electron sheath edge. Time averaging this

motion over an rf cycle, we obtain ne(®), the time-average electron density within the sheath, sketched as

the dashed line in Fig. 7. The time-average electron space charge leads to a modified Child law for the dc

ion current density,

Ji - eusUB =Ki€o j -p— (3.14)

where V is the dc (time-average) sheath potential and Ki = 200/243 « 0.82. This has the same scaling with

V and dc sheath thickness as the normal Child law without electron shielding, which has Ki = 4/9 ^ 0.44.

For a fixed current density and sheath voltage, the self-consistent rf ion sheath thickness Sm is larger than

the Child law sheath thickness by the factor ^50/27 « 1.36. This increase is produced by the reduction in

space charge within the sheath due to the nonzero, time-average electron density.

The solution for the electron sheath motion is sketched in Fig. 8 (Lieberman and Lichtenberg, 1994,

Section 11.2). The electron sheath motion is periodic but not sinusoidal. The sheath moves faster when it

is near the electrode than when it is near the plasma because the ion density is smaller near the electrode.

This, along with the increase in the sheath length over that for the homogeneous model, leads to an increase

in the stochastic heating over that found for the homogeneous model. The power transferred to the electrons

by the sheath is found from (3.3), but now /e, is not a fixed Maxwellian, but is a time varying function with

a time varying density nes{t) at the electron sheath edge s{i). To determine fes, we first note that the sheath

is oscillating because the electrons in the bulk pljisma are oscillating in response to a time-varying electric

field. If the velocity distribution function within the plasma at the ion sheath edge x = 0 in the absence of

the electric field is a Maxwellian /m(w) having density n,, then the distribution within the plasma at the

ion sheath edge is /s(«,<) = /m(« - ««), where u,(t) = -uosinui is the time-varying oscillation velocity

of the plasma electrons. At the moving electron sheath edge, because Ues < rij,, not all electrons having

u > 0 at X = 0 collide with the sheath at s. Many electrons are reflected within the region 0 < x < s where

the ion density drops from n, to Ties- This reflection is produced by an ambipolar electric field whose value

maintains quasineutrality ng n,- at all times. The transformation of /, across this region to obtain fcs is

complicated. However, the essential features to determine the stochastic heating are seen if we approximate

fes = —fm{u-Us), U>0. (3.15)
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Inserting (3.15) into (3.3) and transforming to a new variable u' = « —wq, we obtain

Ss.oc(<) =-— r Ue.n„lu"'-2u'(u„-u.) +(u„-u.f]U(u')du'. (3.16)

Averagingover an oscillation period and integrating over fm yields 5stoc-

If the assumption is made that the sheath motion is much slower than the electron thermal velocity, as

for the homogeneous model calculation, then one obtains (Lieberman and Lichtenberg, 1994, Section 11.2)

for V ^ Ti that

^stoc =^HmrisVeUQ, (3.17)
where

,T-/\ 1/2
H = ..4-my. .«.!7r€o'I '̂*;2

Using (3.18), we can compare (3.9) and (3.17) at the same driving voltage. Substituting the first equality in

(3.18) into (3.9) and (3.17) yields

5stoc(homogeneous model) (3.19a)

5stoc(self-consistent model) (3.19b)

Wesee that, at a fixed driving voltage, both models yield a stochastic heating proportional to however,

the stochastic heating for the self-consistent model is a factor of ZttH/IS larger than for the homogeneous

model. As an example, for V = 600 V, Tc = 3 V, we find SirH/lQ 8.5. Results similar to this were also

obtained for a collisional sheath (Lieberman, 1989).

D. Experimental Results

Early experiments to investigate stochastic heating are described in Godyak (1976a), Godyak et al

(1976b), Godyak and Popov (1979), and Popov and Godyak (1985), and are summarized in Godyak's 1986

review. In these workselectrical and plasma parameters were studied in a parallel-platecapacitive rf discharge

symmetrically driven at 40-110 MHz in mercury vapor. The current-voltage characteristic, the rf power, the

plasma density and the electron temperature were simultaneously measured in the mercury pressure range

between 2 x 10"'' and 1 x 10"' Torr.

The effective collision frequency i/gfr versus pressure was evaluated from the shape of the measured

discharge current-voltage characteristic (Godyak et al, 1976b; Godyak and Popov, 1979) and directly by

measuring the rf power absorbed by the discharge (Popov and Godyak, 1985). In the last case i^eff was

obtained from the relationship for the power absorbed per unit area

5abs = (3.20)
2 e-^n

where 1Jrf| is the cross-section averaged discharge current density. The measurements were done at relatively

lowrf voltages, and the powerabsorption due to ion acceleration in the rf sheaths was neglected. The effective
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collision frequency found from experiment as a function of mercury pressure is shown in Fig. 9. Both the

asymptotic leveling off of u^n at low pressure p, characteristic of stochastic heating which is independent of

p, and the linear increase of i/efr with p at high p, characteristic of ohmic heating, are clearly visible. The

good agreement of the measurements with i/ef[ calculated from the stochastic heating formula is somewhat

fortuitous, however, as a uniform sheath rather than a self-consistent sheath was used in the calculation, and

the ion power loss 5,- was neglected in determining Uefr from the measurements.

In these early studies, it was shown that the presence of stochastic heating at the plasma boundaries

reduces the rf electric field and electron oscillatory velocity in the plasma bulk (Godystk, 1976a; Popov and

Godyak, 1986). This happens due to non-local electron energy balance in a low pressure rf discharge when

rf power absorbed in the rf sheaths compensates the electron energy losses over the entire plasma volume,

so that there is no need for a large bulk rf field to maintain the discharge.

A comprehensive experimental study of symmetric rf discharge characteristics in argon at 13.56 MHz

has been performed by Godyak and Piejak (1990) and Godyak et al (1991, 1992). The discharge length

and diameter were 6.7 cm and 14.3 cm, respectively, approximating a uniform plane parallel configuration.

Measurements were made of rf voltage, rf current, total power absorbed, the central plasma density no, mean

electron energy {£e)^ and electron energy distribution function (EEDF) fe. The rf power was determined by

averaging Vrf(<)/rf(<) over an rf cycle, and no, {£e) and fe were determined using Langmuir probes. Also,

the ion current to the rf electrodes and dc bias voltage in the rf sheath were measured to determine the

ion power loss. Measurements were performed over a wide range of pressures from 3 mTorr to 3 Torr and

for powers up to 100 W. The corresponding rf voltage amplitudes were up to 1500 V, and the rf current

amplitudes were up to 2 A.

Having measured the discharge rf power, the discharge current, and the EEDF, the plasma density was

found by integration over the EEDF, and the collisional power absorption Pohm was then estimated using

the plasma conductivity formula. This was compared to the total rf power Pe transferred to the plasma

electrons. The latter was found as the difference between the total measured discharge power and that

corresponding to the ion loss. The result is shown in Fig. 10. As is seen, at relatively high gas pressure

(p > 0.1 Torr), the power absorption is entirely due to collisional dissipation, Pe/Pohm « 1- At low pressure

Pe > Pohin) and the ratio Pel Pohm reaches three orders of magnitude at the lowest pressure of 3 mTorr.

Such an enormous difference between Pe and Pohm is due to the stochastic heating in the rf sheaths and

a simultaneous sharp drop in collisional electron heating in the plasma because of electron cooling in the

collisionless heating regime.

The electron cooling occurs during the heating mode transition when the discharge switches from a

collisionally to a stochastically dominated mode (Godyak and Piejak, 1990). The heating mode transition
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is shown in Fig. 11 in the evolution with gas pressure of the electron energy probability function (EEPF)

QpiS). The EEPF is defined as

= (3.21)/
Jo'0

where S = jl is the electron kinetic energy; the EEPF is defined such that a plot of In^rp versus £

is a straight line for a Maxwellian distribution. In Fig. 11 we see a transition from a Druyvesteyn-like

distribution, gp a exp(—const x £^), which is typical for collisional electron heating at at high

argon pressure to a bi-Maxwellian distribution at low argon pressure when stochastic heating dominates.

This transition is accompanied by a corresponding sharp change in plasma density and mean electron energy

(Godyak and Piejak, 1990). In the stochastic heating regime the majority of electrons have a very low energy,

and being trapped by the ambipolar dc field they are not able to reach the rf sheaths where stochastic heating

takes place. Having their energy close to the Ramsauer minimum of the argon cross section, the low energy

electrons have a very low electron-atom collision frequency and thus, they collisionlessly oscillate in a weak

rf field unable to gain energy.

On the other hand, the high energy electrons easily overcome the ambipolar potential and effectively

interact with the oscillating rf sheaths, bouncing between them. Phase randomization must occur for these

electrons to be heated. The randomization can arise directly from the dynamics or can be induced by external

stochastic forces. The condition for dynamical stochasticity is (see Section IIC)

u < Us = (3.22)

Unnormalizing (3.22) using u = u/2wa and M = l/2ira yields for the electron velocity v< ujy/Ia. For typical
experimental parameters I = 6.7 cm, a w 0.5 cm, and u = 85.2 x 10® s~^, we obtain u < 1.6 x 10® cm/s,

corresponding to a longitudinal energy of £e < 7.3 V. Since the flux-averaged longitudinal electron energy

is 21^ ^ 6 V, the condition for dynamical phase randomization is marginally satisfied for the majority of

electrons. However, at lower driving frequencies and/or short electrode gaps, the condition for dynamical

phase randomization is not met. In this case, high frequency plasma or sheath fluctuations can effectively

randomize the electron phase even when the electron mean free path is larger than the plasma width I.

This randomization mechanism may be responsible for the effective collisionless (Ae > /) electron heating

by rf sheaths in experiments where the condition of dynamical phase randomization is not satisfied. Phase

randomization due to rare (Ag > /) collisions of fast electrons with atoms can also introduce phase random

ization, since the average lifetime of electrons (« 1/ub) is always much larger than the bounce time (« //ve)-

Here ub = {eTg/M)^^^ is the Bohm (ion sound) velocity. Thus, over their lifetime, the bouncing electrons

have enough chance to be randomized via electron-atom collisions. As was shown recently by Kaganovich

et al (1996), there are many scenarios for electron phase randomization which depend on the relationship

between the bounce frequency, the driving frequency, and the electron-neutral collision frequency. However,

let us note in the low pressure regime where Ag ;3> /, that the fraction of electrons whose phase is randomized
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in one transit due to collisions with gas atoms is of order ng<Tml^ where (Tm is the electron-neutral momentum

transfer frequency and ng is the neutral atom density. Hence expression (3.9) must be multiplied by this

factor, yielding 5stoc « ^ohm. with a pressure scaling 5stoc « P- Hence this phase randomization mechanism

does not lead to an effective collision frequency independent of pressure.

Another kind of EEDF transition due to change in rf power was obtained by Godyak (1990) and

was studied by Buddemeier et aJ (1995) through experiment and numerical simulation. In Fig. 12, we

see evolution of the measured electron probability function with discharge current (and voltage) at a fixed

low argon pressure, from a Druyvesteyn-like distribution at low discharge voltage to a two-temperature

distribution at higher voltage. This transition is associated with the nonlinear nature of electron heating in

the rf sheath. At small discharge voltage, the sheath heating is small or comparable to the bulk collisional

electron heating. With increasing rf current, the stochastic heatingbegins to dominatewith a corresponding

restructuring ofthe electron energy distribution. These results areconsistent with the scaling laws for sheath

and bulk heating (e.g., see Lieberman and Lichtenberg, 1994, Sec. 11.2).

E. Fluid and Particle Simulations

Monte Carlo and particle-in-cell (PIC) simulations of capacitively coupled discharges at low pressure

performed in the last decade have confirmed the existence of collisionless electron heating produced by

oscillating electrode sheaths (Kushner, 1986; Surendra et al, 1990; Surendra and Graves, 1991; Vender and

Boswell, 1992; Wendt and Hitchon (1992); Surendraand Vender, 1994; Buddemeier et al, 1995). Stochastic

heating due to reflection from oscillating sheaths was observed by Kushner (1986) using a Monte Carlo

calculation, and the subsequent PIC calculations also found EEPF's with high energy tails attributed to

stochastic heating. Electron energy loss across the oscillating sheath was investigated in several of these

works, and a number of authors also show the transition from weak to strong sheath heating.

Nitschke and Graves (1994) performed fluid simulations at low pressure using a helium-like model gas

and compared these to particle-in-cell (PIC) simulations of the same system. The fluid simulations do not

incorporate the physics of stochastic heating, while the PIC simulationsdo. Below 100 mTorr, disagreement

in the electron heating predicted byeachsimulation leadsto significant differences in the discharge properties.

At the same applied frequency (12 MHz) and voltage (500 V), the PIC simulationsat 50 mTorr and 120mm

gap spacing yield roughly twice the electron power deposition as the fluid simulations. From power balance,

this yields twice the density for the PIC simulationcompared with the fluid simulations. By adding into the

fluid model the appropriate analytic expression for stochastic heating as an "additional" power source, the

fluid and PIC simulations were brought into closer correspondence.

Comparisons were also made between the measurements of Godyak and Piejak (1990) and PIC simula

tions by Vahedi et al (1994). The comparisons are in argonfor an electrode diameter of 14.3cm, a discharge

length of 2 cm, and an external current source of 2.56 mA/cm^ at 13.56 MHz. The gas pressure was varied

between 70 and 500 mTorr to observe the transition from stochastically to ohmically dominated electron
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heating. Except for the normalization, the /e's obtained from the simulations agree well with the mea

sured /e's, showing the transition from a two temperature distribution at 70 mTorr to a single temperature

distribution at 500 mTorr.

Another simulation of discharge behavior (Wood, 1991; Wood et al, 1995; see also Lieberman and

Lichtenberg, 1994, Section 11.4), was performed at p = 3 mTorr (argon) with a spacing of 10 cm between

parallel plates, and over a range of rf voltages between 100 and 1000 volts. A two temperature distribution

was found, as in the experiments, and the distribution varied in both space and time. It is clear that a deeper

understanding of the discharge behavior involves the space and time variations of /e. Figure 13 shows the

one dimensional electron distribution function /e(x,Ux.O versus Vx at 15 positions near the sheath region

(x = 0-3 cm) and at eight different times during the rf cycle. Each plot covers 1/32 of a cycle temporally,

and each line in a plot covers a 2 mm thick region spatially. The units on the vertical axis are proportional

to /g. At time 0/32, the sheath is fully expanded, and the two-temperature nature of the discharge near

the sheath can be seen as the wide "base" and narrow "peak" of the distribution. As the rf cycle progresses

to time 8/32, the distributions in the sheath region at each position display a drift toward the electrode

(negative Velocity) that is approximately equal to the sheath velocity. By time 12/32, fast electrons have

arrived from the opposite electrode, moving at a velocity of about 4 x 10® m/s (small peak at extreme left

of figure). At time 16/32, the sheath is fully collapsed, the drift in the sheath has disappeared, and the

fast electron group moving toward the electrode shows a lower velocity as slower electrons arrive from the

opposite electrode. As the sheath begins to expand, as shown here at times 18/32 and 20/32, the electrons in

the sheath region are strongly heated, and the beginning of an electron beam produced by this expansion can

be seen moving away at a positive velocity. As the sheath continues to expand, the drift of the distribution

in the sheath away from the electrode can be seen to initially match the sheath velocity (time 22/32) but

then decays (time 24/32) to a velocity much slower than when the sheath was collapsing. One consequence

of the complicated /e near the sheath edge is that the average electron velocity at the moving sheath edge

does not correspond to the sheath velocity during the entire rf cycle, as predicted from the model equations.

The existence of more energetic electrons near the plasma edge due to stochastic heating increases

the ionization there at higher pressures (Ag < I), tending to flatten the plasma profile. Furthermore, the

ionization is not constant, but follows the density variations in space and time of the more energetic electrons.

This is shown for a PIC simulation by Vender and Boswell (1990) in the plot of Fig. 14, in which the darkness

of each square is proportional to the number of ionizing collisions within that square of position and time

intervals. Most of the ionization is seen to occur along a path of fastest electrons that are reflected off of the

sheath at the phase at which it is most rapidly expanding. There is also somewhat more ionization near the

sheaths, an effect that becomes more pronounced at higher pressures where the ionization mean-free-path is

shorter, which has been observed in various experiments.

The spatial distribution of the electron power absorption has been examined in several PIC simulations.

While the absorption is large and positive near and within the rf sheaths, it can become negative within
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certain regions in the discharge bulk under conditions of strong stochastic heating (Vender, 1990; Surendra

and Graves, 1991). This is particularly apparent in simulations at low pressures in a Ramsauer gas, where

the ohmic dissipation (which is always positive) is small. Negative power absorption occurs where the phase

of the electron current (transfered from the stochastic heating at the rf sheath edge by the electron thermal

motion) differs from the phase of the local electric field by more than 90®. There have been no experimental

measurements confirming the existence of negative power absorption in capacitive rf discharges, although

some experimental results have hinted at the existence of this effect (e.g., see Sato and Lieberman, 1990,

Fig. 7). Negative power absorption in inductive discharges is treated extensively in Section IV.

F. Other Collisionless Heating Models

The effect of a weak dc magnetic field on the stochastic electron heating by oscillating rf sheaths has

been studied by Lieberman et al (1991), Okuno et al (1994), Hutchinson et al (1995), Turner et al (1996), and

Park and Kang (1997). It was shown in the first work that there can be stochastic heating enhancement due

to multiple correlated collisions of electrons with the moving sheath. A gyrating electron that collides once

with the moving sheath collides again in a time interval of approximately half a gyroperiod. The electron

trajectory can be coherent over many such sheath collisions, leading to large energy gains. An estimate of

the time-average power per unit area delivered to the electrons by the oscillating sheath for a homogeneous

sheath model is

^stoc =\mnVe\uo\^ , ~) •
Okuno et al (1994) reported measurements of such an effect of electron acceleration resonant with the

sheath motion in a cylindrical, magnetized rf-driven discharge. However, the cross-field resistivity of the bulk

plasma also increases due to the magnetic field, leading to an increased bulk ohmic heating. Hutchinson et al

(1995) studied the competition between sheath and bulk heating experimentally and with PIC simulations,

and Turner et al (1996) compared these results to a fluid (pressure heating) model. The PIC simulations

did not show an enhanced heating due to resonant electrons, although an increase in average electron energy

was observed within the sheaths. Kang et al (1997) showed a reasonable agreement between measurements

and a Child law sheath model incorporating stochastic heating as in (3.23).

Another kind of non-stochastic but collisionless electron heating associated with rf sheath oscillations

in capacitive rf discharges has been discussed by Surendra and Dalvie (1993) and by Turner (1995). They

showed that there is a powerful heating mechanism due to pressure effects that arises during the expansion

and contraction of the sheath in a non-homogeneous plasma model. The pressure effect is caused by the

difference in plasma density and electron energy between the bulk plasma and the near-sheath plasma. When

the sheath expands, electrons flow into the adjaw:ent bulk plasma and are compressed. At the same time,

electrons are rarefied as they flow into the opposite, collapsing sheath. Turner showed that due to finite

electron thermal conductivity, these simultaneous rarefactions and compressions of the electron gas produce

nonequilibrium thermal disturbances, and the net work done is not zero. Solving the fluid equations with the
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electron energy balance equation, Turner was able to demonstrate the pressure heating effect, which agreed

well with a PIC simulation. Turner et al (1996) showed experimentally and using kinetic simulations that a

weak transverse dc magnetic field can induce a transition between pressure heating and ohmic heating.

Collisionless, as well as collisional electron heating can be effectively treated on the kinetic level in the

framework of the nonlocal approach to the solution of the Boltzmann equation (Bernstein and Holstein, 1954;

Tsendin, 1974, 1995; Kolobov smd Godyak, 1995; Kortshagen et al, 1996). In this approach a complicated

time-space variable and multi-dimensional problem is reduced to a zero-dimensional Boltzmann equation for

the symmetric pau-t of the EEDF:

where € is the total electron energy (kinetic plus potential), D{£) is the time-space averaged energy diffusion

coefficient, and C*f{S) is the inelastic collision integral. The space variation of f{S) and its integrals are

defined by the space variation of £^(r); i.e., by the ambipolar potential distribution, and the electron heating

and the shape of the EEDF are defined by D{£). The electron heating power density is:

P.h.at = f{£)-^lV£D{£)] d£. (3.25)
Thus, D{S) contains all information about the electron heating process. The particular shape of the EEDF

f{S) and the power deposition depend on the specific mechanism of electron interaction with the rf field

and with the electron phase randomization mechanism (Goedde et al, 1988; Kaganovich et al, 1996). For

stochastically heated electrons, D{S) is the product of the square of the random walk step in energy speice

and the frequency Ur of such an event:
1-D{£) = ^{A£yur. (3.26)

This approach has been used for low pressure capacitively coupled rf discharges in the stochasticadly heated

regime by Kaganovich and Tsendin (1992).

Recently Aliev et al (1996) presented an analysis of collisionless electron heating in rf discharges based

on the quasilinear theory of waves in warm plasma given for example, in Ichimaru (1973) and Alexandrov et

al (1984). A similar approach was described by Eldridge (1972) for energy deposition in electron cyclotron

resonance (ECR) discharges. In application to rf discharges excited by an external rf power source with

frequency much lower than the cutoff frequency, the interaction of the electromagnetic field with a bounded

plasma is considered as a superposition of decaying (evanescent) waves having a wide spectrum of wavenum-

bers k = w/vph, where Vph is the wave phase velocity. When the scale of the electromagnetic field (sheath

width or skin depth) becomes smaller than the electron mean free path Ag, then collisionless electron heating

occurs as a result of the resonant interaction (acceleration or deceleration) of electrons with waves having

their phase velocity close to the electron velocity. This process is very similar to Landau damping but occurs

at frequencies much lower than the plasma frequency (a; -CWpe). Separating the space and time scales of the
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electromagnetic fields and linearizingthe kinetic equation, one can divide the EEDF into a large part fo{S)y

averaged over the length scale Ae, and a small part fi{S) fo{£)) accounting for small deviations from fo{S)

on a length scale smaller than Ag. Using Fourier methods, the structure of the electromagnetic fields and

the diffusion coefficient D{6) are found for different kinds of rf discharges (capaeitive, inductive, and surface

wave). It was shown (Aliev et al, 1996) that the diffusion coefficient that governs the EEDF shape and the

electron heating power density is mainly defined by resonance electrons with velocities Vn = u/k = TrwZ/n,

with n = 1,2,3,.. •

Let us note that this approach is essentially linear; i.e., it involves integration over the unperturbed

motions of the electrons. Hence, successive kicks are assumed to be independent with random phases.

Therefore, purely nonlinear aspects, such as the existence of phase correlations between successive interac

tions of electrons with the localized fields, or the existence of an adiabatic barrier to heating, are absent in

this model.

Wang et al (1997), Lichtenberg (1997), and Kaganovich (1997) have recently considered the nonlinear

effects of the dynamics on the determination of the energy diffusion coefficient D{€) and the resultant

discharge equilibrium. Depending on the pressure, driving frequency, discharge length, and other discharge

parameters, the existence of strong phase correlations and adiabatic limitations to the chaotic dynamics

can play important roles in the theoretical description of the heating. Unfortunately, for many capacitive

discharges ofcommercial interest, interparticle collisions play an equally important role, making the overall

analysis difficult. The general approach is to obtain and solve a space- and time-averaged kinetic equation

(Wang et al, 1997). The various regimes describing the interplay between collisional and dynamical effects

have been classified by Kaganovich et al (1996).

IV. INDUCTIVE RF DISCHARGES

Plasma in an inductive discharge is maintained by application of rf power to an inductive coil, resulting in

electron energy absorption due to the induced rf electric field near the coil. The driving frequency is usually

13.56 MHz, although lower (and higher) frequencies are sometimes used. As shown in Fig. 15ab, planar

or cylindrical coils in a low aspect ratio (length/diameter) discharge are generally used for low pressure

materials processing. The planar coil is a flat helix wound from near the axis to near the outer radius at one

end of the discharge chamber ("electric stovetop" coil shape). For a typical 30cm chamber diameter, the rf

power is typically 100-1000 W.

Another kind of inductivedischarge is an rf lamp with an internal coil, as shownin Fig. 15c. The internal

coil, usually with a ferrite core, is inserted into a re-entrant cavity inside a glass bulb coated inside with

fluorescent powder (phosphor). The bulb is filled with a mixture of inert gases such as argon or krypton at a

pressure of hundreds of millitorr, and mercury vaporat a few millitorr. The inductive plasmaexcited inside

the bulb has a very high rf power conversion to the mercury resonance uv radiation (60-70%, mainly at
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253 nm), and the uv radiation excites the phosphor to emit visible light. The absence ofelectrodes provides
a highly efficient (4-5 times more than an incandescent bulb) and durable (up to 100,000 hours) light source.

Because the voltage across the exciting coil ofan inductive discharge can be aslarge asseveral kilovolts,

a discharge can also be capacitively driven by the coil. There is generally a capacitively driven discharge

at low plasma densities, with a transition to an inductive discharge at high densities. An electrostatic

shield placed between the coil and the plasma can reduce the capacitive coupling if desired, while allowing

the inductive field to couple unhindered to the plasma. Inductive discharges for materials processing are

sometimes referred to as ICP's (inductively coupled plasmas), TCP's (transformer coupled plasmas), or

RFI's (rf inductive plasmas).

The inductive electric field is non-propagating (w <^pe) and typically penetrates into the discharge a

distance on the order of a plasma skin depth, which is typically 1-3 cm. Hence plasma heating occurs near

the dielectric window surface. The dc plasma potential in these discharges is typically of order 30-40 volts

with respect to the walls, and the plasma density is typically in the range 10^^-10^^ cm"^. Hence the sheath
thickness is of order 0.1-1 mm (a few Debye lengths).

A. Classical and Anomalous Skin Effect

In an inductively coupled plasma, power is transferred from the electric fields to the plasma electrons

within a skin depth layer of thickness S near the plasmasurface by collisional (ohmic) dissipation and by a

collisionless heating process in which bulk plasma electrons "collide" with the oscillating inductive electric

fields within the skin layer. In the latter situation, electrons are accelerated and subsequently thermalized

much like stochastic heating in capacitive rf sheaths, which we treated in Sec. III.

Wefirst consider the so-called classical or normal skin effect accompanied by ohmic (collisional) electron

heating in a semi-infinite spatially uniform plasma. The normal skin effect occurs when theelectron thermal

motion is negligible and there is a local coupling between the rf current density J and the rf electric field E

within the skin layer given by J = <TpE, where

(T„ =
^ m(i/m+jw)

is the complex conductivity of a cold plasma. We consider the case when w Wpe, which is always true for

inductively coupled plasmas. Wealso assume a Maxwellian EEDF and an energy-independent electron-atom

collision frequency fmi^) = const. Otherwise, Um and cj in (4.1) must be replaced by some effective Umeft

and cjeff, both being integrals over the energy S of the particular EEDF and the u; and Um{S) dependence

(Lister et al, 1996).

According to Maxwell's equations, the penetration of the transverse electric field into the plasma is

described by the complex wave equation

= ju}fio<TpEy, (4.2)

(4.1)
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having solution

where

is the inverse skin depth and

Ey = cos(a;< — (4.3)

= Re(ja>//oO'p)^^^ (4.4)

j3 = lm{jufioapy^^ (4.5)

is the propagation constant. Substituting (4.1) into (4.4), one obtains the general expression for the classical

(normal) skin depth (see for example Weibel, 1967),

where
/ 2 \ 1/4

<5o = — (l + %) and c- tan"^(i/m/w)- (4-7)
^pc \

In the collisional limit {i/m ^ w), typical for non-superconducting metals and high pressure plasmas,

€ = 7r/2 and

S=Sc =—(—) =Sp((4.8)
(jJpe\uJ \ UJ J

and the rf energy collisionally dissipates within the skin layer.

In the high frequency limit {um "C w), called the non-dissipative or high frequency skin effect, e = 0 and

i = <S„ = —. (4.9)
Wpe

In this case the electrons collisionlessly oscillate within the skin layer with no net energy gain. For an

electromagnetic wave incident on the plasma boundary this case corresponds to the total reflection of the

wave from the plasma. For discharge maintenance in this case, the wavereflection is not perfect, and a small

fraction of the incident wave power is locally deposited within the skin layer.

There is a third situation for which electrons incident on a skin layer of thickness 8a satisfy the condition

Ve/8a ^ where Sa is determined below. In this case the interaction time of the electrons with the

skin layer is short compared to the rf period or the collision time. The rf field penetration in this regime

was first estimated by Pippard (1949) with application to the high frequency skin effect in metals at low

temperatures, and was determined self-consistently by Renter and Sondheimer (1949) for metals and by

Weibel (1967) for a homogeneous plasma half-space with a Maxwellian EEDF. To see the essentisd scalings,

following Pippard, we consider the ordering i/n, ^ w and divide the electrons into two groups, those moving

at small angles to the surface which spend most of their time between collisions within the skin layer,

and the rest, whose chance of collision is small. We ignore the latter group of ineffective electrons. The

velocities of the effective electrons form angles less than 8a/Xe and their relative number is of order <5a/Ae,
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where Ae is the electron-neutral mean free path for momentum transfer. This results in an effective plasma

density neff = K^f^nSa/K and an effective plasma frequency Wpceff = Wpe(/'feff<5o/Ac)^^^ within the skin layer,
where K^ft is a constant of order unity. Substituting these effective quantities into (4.1) and (4.8) yields an

expression for the effective collision frequency Ueft, analogous to that introduced in (3.13) for capacitive rf

discharges, and for the anomalous skin depth Sa'.

/Ceffia ^ ° •

A more careful averaging based on the kinetic theory of the anomalous skin effect (Weibel, 1967; Ichimaru,

1973; Alexandrov et al, 1984) gives K^ff = 4 and

'pe J

According to (4.10), for a strong anomalous skin effect where VeWpe cut and w ^ i/m, the penetration of

the rf electric field into the plasma is deeper than for the non-dissipative skin effect in the high frequency

=(^) = (^)' •

limit: Sa > Sp.

A general nonlocality parameter for the non-local interaction ofelectrons with the electromagnetic field

has been given by Fried and Conte (1961) and used in the analysis of the anomalous skin effect by Weibel

(1967) and Sayasov (1979):

A=(^)\ (4.11)
Formulae for the classical skin effect are applicable when A 1; for A > 1, the anomalous skin effect

takes place. Note that A is small for both very low and very high frequency and reaches it maximum at

oj = i/m/y/^ where A^ax « (wpe^c/wc)-, which isclose to its high frequency (w > t/m) limit. In the opposite

case [um > w), A « [<^ptVc/ijoc)'{u}/um)^ -C 1, and the normal (collisional) skin effect occurs. Figure 16

shows the boundary dividing the classical and the anomalous skin effect (A = 1) in the space of Xb/Sq and

u)/vtn, and thus the boundary between collisional and collisionless electron heating.

Let us describe some essential features of the anomalous skin effect which are the result of the nonlocal

interaction of electrons with the electromagnetic field due to their thermal motion:

(1) The spatial decay of the electromagnetic field into a plasma for the anomalous skin effect is not

exponential, as it is in the classical skin effect. Moreover, the decay may be nonmonotonic and may exhibit

local maxima and minima in the plasma, as shown by Weibel (1967) in his kinetic analysis (see Fig. 17), and

in the experiments of Demirkhanov et al (1964) and Joye and Schneider (1979) (see Fig. 18).

(2) Ashas been shown by Kondratenko (1979), for a strong anomalous skin effect (A ^ 1) the penetra

tion length of the rf electric field Se and that of the rf magnetic field Sb are essentially different, Se < Sb,

while for the normal skin effect Se = Sb- The less rapid spatial decay of the rf magnetic field (and ac

companyingrf current density) is due to the ballistic transport of rf current caused by the electron thermal
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motion. Different formulae for S can be seen in the literature (which differ by fzictors of order unity) due

to different definitions of the electron thermal velocity [(KTe/m)^/^, {2KTe/my^^, or (S/cTe/Trm)^/^], and,

more importantly, due to different definitions of Sa by different authors. The Sa value can be defined as

Sa = \d\nEy/dx\~^Q, or as Sa = Eydx, or as a distance where the rf electric or magnetic field

(or rf power) decays by one (or two) e-foldings. Different values can be obtained for Se ot Sb using these

definitions, while for the normal skin effect all these definitions give the same formula (4.6).

(3) In the regime of the strong anomalous skin effect neither the skin depth Sa nor the energy dissipation

in the skin layer depend on the collision frequency Um- In this case the rf energy dissipation process occurs

even in the limit i/m —> 0. The non-collisional dissipation has a simple explanation. For a relatively thin skin

layer when S < Ve/w and < Ac, the electrons reflecting from the space charge sheath at the plasma-wall

boundary cross the skin layer in a time less than the rf field period. Hence the electrons gain energy within

the skin layer as in a dc field. This differs from collisionless electron motion in a homogeneous rf field when

S ^ Ve/u}, corresponding to the high frequency limit of the normal skin effect in which electrons gain energy

from the field during one quarter cycle and return the energy back to the field during the next quarter cycle.

For both the normal and the anomalous skin effect, there is no electron heating unless some phase

mixing (randomization) mechanism breaks the regularity of the electron motion. For collisional heating

corresponding to the normal skin effect, randomization occurs locally within the skin layer due to electron-

atom (and/or electron-ion) collisions. For the anomalous skin effect the randomization is provided by the

electron thermal motion which moves electrons out of the skin layer into the neighboring plasma having no

rf field, thus preventing the electrons from returning the energy acquired in the skin layer back to the rf

field. For a bounded plasma such as an inductivedischarge where electrons can repeatedly interact with the

rf field in the skin layer, some randomization mechanism must be present in the bulk plasma to provide an

effective electron heating in the skin layer.

Let us note that the kinetic treatment of the anomalous skin effect (e.g., Weibel, 1967) is a linear theory

in which the dissipation is determined by integration over the unperturbed motion (orbits) of the electrons.

Low velocity electrons can have strongly perturbed orbits, leading to wave trapping and ponderomotive

force effects. But if the average energy gain is much less than the thermal energy, then this class of electrons

contribute little to the overall energy absorption. The repeated interaction of high energy electrons with

the skin layer in a bounded system can lead to strong phase correlations and adiabatic interactions of

electrons with the skin layer in the absence of external stochastic forces such as electron-neutral collisions.

These mechanisms are similar for inductive and capacitive discharges (see Sec. Ill) and have recently been

analyzed by Kaganovich et al (1996).

B. Fermi Acceleration Model of Collisionless Heating

To determine the heating at low pressures using a Fermi acceleration model, we consider an electron

from the bulk plasma incident on the rf electric field within a skin depth layer in slab geometry. We assume
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a simple model in which the transverse electric field within the slab decays exponentially with distance x

from the edge into the slab,

Ey{x,t) = j&oe~'̂ '''"^cos(w< + <j>). (4-12)

We also assume that the force due to the rf magnetic field is negligible and that the collisionality is weak,

^ Ve/2^; hence there are noelectron collisions within the skinlayer. A similair model was first introduced

by Holstein (1952) to describe the low temperature optical and infrared reflectivity of metals. Because there

are no x-directed forces, we can write

x(<) = —Vxi, < < 0,
(4.13)

= Vx<, < > 0,

where the electron reflects from the surface at < = 0. Substituting (4.13) into (4.12) yields the transverse

electric field seen by the electron,

Ey{t) = Re t < 0,

= t > 0.

The transverse velocity impulse,

Avy =- r diiSiW, (4.15)
7-00 ^

is calculated by substituting (4.14) into (4.15) and integrating to obtain

A 2e.^o^ , //I 1Avy = r——^cos(f>. (4.16)

The energy change AS, averaged over a uniform distribution of initial electron phases <i>, is then

A£ =im((Av,)^)#
l.V2e£o5y vl
A \ m ) (v2+u;2<y2)2

(4.14)

(4.17)

which can be integrated over the particle flux to obtain the stochastic heating power

5stoc = f dvy f dvg f dvx feVxAS{vx). (4.18)
J —oo J —cxi Jo

For a Maxwellian electron distribution /e, the integrals over Vy and Vz are easily done, and the Vx integral

can be evaluated in terms of the exponential integral Ei. For the regime of large stochastic heating,

(4.19)
7rv|

we obtain (Lieberman and Lichtenberg, 1994, Appendix C)

'stoc

mris (eEoSX^ 1
Ve \ m J n

27

In (4.20)



We can introduce an effective collision frequency z/eff by equating the stochastic heating (4.20) to an

effective collisional heating power flux,

"'eff

:El (4.21)

For uz t'effi we have

2 Jo \ I m

le^UaS Z/eff
4 m

_ l£n^ 2
•Johm — A •C'Oi

4 mz/eff

and equating this to (4.20), we determine

(4.22)

With C 1, we find z/gfr ~ in agreement with the simple estimate (4.10).

Although Fermi acceleration models of the velocity impulse lead to simple estimates of the effective

collision frequency due to stochastic heating, they are not self-consistent because the form of the spatial

variation of the electric field has been assumed. The heating power and effective collision frequency have

been determined over the entire range of collisionality from a Fermiacceleration model with an exponentially

decaying electric field profile by Vahedi et al (1995). We summarize their results and compare them to a

self-consistent model in the next subsection.

C. Self-Consistent Collisionless Heating

The self-consistent analysis of Renter and Sondheimer (1949), using a Fermi-Dirac electron distribution

to determine the anomalous skin resistance of a low temperature metal, was first applied by Weibel (1967)

to a classical plasma having a Maxwellian electron distribution. The rf power absorption due to the skin

effect can be characterized by a complex surface impedance

+= Ey{{^)/HM- (4-23)

The time-average power absorbed by the plasma per unit area can be written in terms of Zs as:

S.b. =Re (jEy(0)H:{0)J =Tte . (4.24)
For the classical (normal) skin effect, we find

=jWp [v/Ml +t)/2 +jV4(l-6)/2]"', (4.25)

where 6= (l-fz/^/w^)"^''-. For Um oj, corresponding to the normal skin effect dominated by collisional

heating, we find

z. =^(l+i), (4.26)
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with Sc given by (4.8). For the anomalous skin effect (see Weibel, 1967; Turner, 1993; and Shaing, 1996), we

obtain

— ::

with 6a given by (4.10).

The self-consistent analysis of the anomalous skin effect of Weibel (1967) and Blevin et al (1970) was

applied to heating in inductive discharges of finite extent by Turner (1993), who also compared the results

to a kinetic simulation. Following the Blevin et al (1970) analysis, Kolobov and Economou (1997) calculated

analytically the surface impedance for a plasma slab model over a wide range of collisionality, 10"^ <

fm/w < 10^. The results, which closely coincide to the simulations of Turner (1993), are shown in Fig. 19.

In the collisional regime where i/m/w > 3, the results of kinetic (warm plasma) theory practically coincide

with hydrodynamic (cold plasma) theory, corresponding to the classical skin effect. In the collisionless limit

when i^m/w —> 0, the real part of the surface impedance disappears in the classical (cold plasma) skin effect

theory (there is no heating in the high frequency limit), but remains a constant, independent of the collision

frequency, in the kinetic theory of the skin effect acounting for the electron thermal motion.

Typical behaviors for the anomalous skin depth, the surface impedance, the effective stochasticcollision

frequency and the normalized rf power dissipation in the skin layer are shown in Figs. 20, 21, 22, and 23

respectively, as calculated by Vahedi et al (1995). In these figures the calculated parameters are given as

functions of the normalized rf frequency w = cw/ueWpe for where w — (A is the nonlocality

parameterfor ^ '̂m)- The comparisons with self-consistent results for the normalized rf power absorption

(Fig. 23) and with the formula for the anomalous skin depth (Fig. 22 for ly < 1 show good agreement and

justify the simplificationsassumed by Vahedi et al (1995) for calculating the absorbed power.

Both collisional and collisionless results are modified when the system length I becomes comparable to

the skindepth rf. This was first noted byKondratenko (1979) and confirmed byTurner (1993), who obtained

from his finite length simulation a reduced collisionless heating, as compared to the semi-infinite slab result

(4.27). This effect has been treated analytically by Kondratenko (1979), Shaing and Aydemir (1996), and

Kolobov and Economou (1997). With rare electron collisions in the plasma slab, the surface impedance and

electron heating can be affected by the bounce resonance electrons for which w« where Qt w Ua./2L and

Vx is the electron velocity component along x.

One might think that the stochastically heated electrons absorb energy along the direction of the wave

electricfield; i.e., alongthe y-direction in the slab model. That this is not the casecan be seen by considering

the canonical angular momentum Py = mvy —eAy{x,t), where Ey{x,t) is obtained from the vector potential

as Ey = —dAy/dt. Because the Hamiltonian for the motion is independent of y, Py is conserved. Since Ay

vanishes a few skin depths into the plasma, it follows that Vy within the plasmais a constantof the motion.

Hence, the transverse acceleration of the electron along y within the skin layer is converted by the wave

magnetic field into a longitudinal acceleration along x as the electron exits the layer (Cohen and Rognlien,
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1996). Therefore the stochastic heating is along the direction of motion, a classical Fermi acceleration model.

Because the magnetic field does no work on the electron, the kick in energy is the same; only the direction

of the kick is altered.

The wave magnetic field can have other important effects, especially at low frequency and pressure when

the electron gyration frequency Wce can exceed the driving and collision frequencies. In this case one observes

enhanced penetration of the wave into the plasma (Tuszewski, 1996). This effect has been modeled in terms

of an effective conductivity in the presence of the rf magnetic field that is time-averaged over an rf period.

This leads to an effective collision frequency i/eff ^ l^cel which, when inserted into (4.8), yields an effective

magnetic skin depth

(4.28)
Wpe V W J

Other works that treat modifications of the skin depth and the field profiles in terms of ponderomotive forces

have been given by Helmer and Feinstein (1994), DiPesoet al (1995), and Cohen and Rognlien (1996). The

role of this effect becomes important for low frequency inductive discharges where maintaining the discharge

rf field Ee requires a large value of Brf because Es ~ u^SBrt ~ const.

Recently, extensive modeling of low pressure inductive discharges (Gibbons and Hewett, 1995; Turner,

1996; Yoon et al, 1996; Kolobov and Economou, 1997; Kolobov et al, 1997) has demonstrated the importance

of non-local electron heating effects. Turner (1996) has showed that the introduction of an appropriate

viscosity into fluid equations can adequately account for some kinetic effects including the anomalous skin

effect and electron stochastic heating. An analytical solution for a one-dimensional planar coil inductive

rf discharge with finite length and at arbitrary collisionality has been obtained by Shaing and Aydemir

(1996) and by Yoon et al (1996). As shown in Fig. 24, the real part of the surface impedance exhibits

a slight maximum at a certain chamber length. This maximum is a result of the finite size coupled with

the resonance condition for bouncing electrons within the plasma slab {2lMfvx w 1,2,3,...). As is shown

by Kolobov (1997), these resonance conditions do not result in a pronounced resonance behavior for the

discharge characteristics due to the wide ranges of electron velocity angles and magnitudes that are present

in a warm (Maxwellian) distribution. The finite plasma dimension is also important for electron heating

when Xe> L (Kaganovich et al, 1996). In the absence of collisions there is no heating if the rf magnetic field

influence on the electron motion is neglected. This situation corresponds to a constant bounce frequency,

for which there is no intrinsically dynamical phase randomization during the motion. Thus there is no

randomization without electron-atom collisions. On the other hand, resonance electrons cam effectively gaun

energy due to rare collisions during multiple bouncing, since the average electron lifetime is much greater

than the bounce time: r « L/ub » = 2L/ux- However, the effective collision frequency in this limit

scales with the electron-atom collisionfrequency, corresponding to phase randomization only on the timescale

of the rare collisions; i.e., the electron power deposition is proportional to the pressure.
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Kolobov et al (1997) have modeled a one-dimensional rf discharge excited by an azimuthal induction

electric field produced by an infinitely long cylindrical coil. The electron heating was treated in terms of

the energy diffusion coefficient D{S), as in (3.25). Sharp peaks of D{€) were found for resonance electrons

in a weakly collisional regime, but averaging D{S) over angles in velocity space diminishes the resonance

behavior. A similar effect may be expected for an inductive discharge excited by a planar coil. The EEDF

in this work was found from the linearized Boltzmann equation and from a Monte Carlo simulation taking

into account the rf magnetic field and finite size effects over a large range of gas pressure and rf frequency.

Yoon et al (1997) have recently developed a two-dimensional nonlocal heating theory for planar inductively

coupled discharges and obtained the effective plasma resistance and the ponderomotive force potential.

D. Experiments

Demirkhanov et al (1964) were the first to observe the anomalous skin effect in a plasma. Measuring

the rf magnetic field distribution in a toroidal inductive rf discharge with a magnetic probe, they found

an anomalous penetration of the rf field into the plasma at some combination of the external discharge

parameters (rf power, gas pressure, and frequency), typical for the anomalous skineffect. They also found a

minimum in the rf magnetic field between the discharge axis and the wall, similar to that shown in Fig. 18,

which they explained as resulting from rfcurrent dispersion due to electron thermalmotion. According to the

classical skin effect, the minimumshould be at the discharge axis. This experimental work inspired extensive

theoretical studies of the anomalous skin effect using kinetic models during the following deceude. Although

the anomalous rf field penetration and non-collisional electron heating are coupled, early experimental works

focused on the field penetration rather than power absorption.

Recently, the wide application of inductively coupled plasmas (ICP's, TCP's) in plasmaprocessing and

in lighting technology have revitalized interest in ICP physics and, particularly, in the anomalous skin effect

and non-collisional electron heating. Non-collisional heating is now recognized as being essential to ICP

operationin the milliTorr pressure range, but quantitativeexperimental evidence that this process exists has

not been easy to obtain. The main problemis to distinguish (separate) the collisional and collisionless parts

of the measured rf power absorbed by the plasma, which are parametrized by the corresponding collision

frequencies Vm and i/stoc- To identify collisionless effects by comparing skindepths measured in experiments

with those calculated for the classical collisional or high frequency skin effect, or the anomalousskin effect, is

practicallyimpossible since all theseskindepths are nearlythe samefor the usualexperimental regimes. Also,

plasma and rf field inhomogeneities, together with a non-Maxwellian EEDF, make it difilicult to compare

the experimental observations with the theories, which assumea homogeneous plasma having a Maxwellian

EEDF and a non-variable Moreover, all theories describe a one-dimensional (flat) skin effect, whereas

in experiments the plasma and the configuration of the rf fields are at least two-dimensional.

In a typical ICP experiment in a short metal cylindrical chamber with a dielectric window and a plemar

coil, the axial distribution of the rf field even without plasma is very inhomogeneous. Therefore, the rf field

decay during its propagation into the plasma is a combined effect of the chamber geometry and the plasma
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screening due to the skin effect. As was mentioned in Godyak et al (1994), collisionless heating in ICP's

might occur even without the skin effect originated by the plasma conductivity, due to the vacuum rf field

inhomogeneity alone, which always exists in an inductive discharge. This situation corresponds to stn ICP

with a low plasma density (power) where the skin depth Sp is greater than the characteristic length St, of the

vacuum field inhomogeneity.

For the classical skin effect in a uniform plasma excited by a planar coil in a metallic cylindrical chamber

of radius R, for the lowest-order reudial mode, the electric field profile next to the window has the form

Eg{r,z) = F?tfoJi(3.83r//2) exp(—2/<y), where Ji is the first-order Bessel function and the plasma skin depth

is (see, for example, Vahedi et al, 1995):

^ \a[l +

where

.=l+|(l +̂ ) (4.30)
and Sv w /?/3.83. For the anomalous skin effect, Um can approximately be replaced by an effective collision

frequency feff as in (4.10). It follows from (4.29) that for Sp St, (low plasma density), J and for

Sp -C Sv (high plasmadensity), S is the classical skin depth given by (4.6).

A method has been developed to evaluate experimentally the effective electron collision frequency i/eff,

accounting for both collisional and stochastic heating, by considering the primary induction coil as a trans

former with the plasma being the secondary winding(Piejak et al, 1992). This method is based on calculation

of the plasma Q-factor Qp = from the measured changes in the primary induction coil impedance

induced by the plasma load (Godyak et al, 1994):

- = (4.31)I/eff P RpXop

where ^ and p are respectively the change in the coil reactance and resistance, Xq —ioLq is the unlozuJed

coil reactance, and Kp < 1 is the coupling coefficient between the coil and the plasma. There are a number

of ways to measure Kp. However, in experiments the second term in (4.30) is usually small compared to

the first. In this way, Godyak et al (1994) obtained j/eff = 4 x 10"^ s"^ in an argon rf discharge operating

at 10 mTorr and 13.56 MHz in the rf power range between 20-150 W. This value of Ueft was found to be

much larger than Um calculated as = ngam{ve)ve- Consequently, Godyak et al (1994) stated that in

their experiment a collisionless mechanism was dominating the electron heating. Later, a more accurate

calculation of Um for conditions close to this experiment based on integration of the measured EEDF showed

that the measured i/eff was actually very close to Um (Godyak, 1997). Also, Kortshagen (1996) modeled this

experiment 2u:counting only for collisional heating, and his results were in reasonable agreement with the

experiment.
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An experimental study ofa low pressure inductive discharge over a wide range of argon gas pressure, rf

power and frequency has been recently performed at OSRAM SYLVANIA and reported by Godyak (1997).

The EEDF and rf field and current density distributionwere measured in a near-collisionless regime in a metal

chamber with a planar ICP excitation coil using Langmuir and magnetic probes. The chamber diameter

was 20cm and the length was 10.5 cm. From the magnitudes and phases of the measured components of rf

magnetic field Br and Bz within the skin layer and the plasma, the rf electric field E$ and current density

J$ were determined from Maxwell's equations. The absolute values of the power density absorbed and the

effective electron collision frequency were then directly found according to the relations

e^niEecostlf
Pabs = J0E0 COS 1p and .

where is the measured phase shift between J$ and Ee, and n\ is the local plasma density measured with

a Langmuir probe. In Table 1 are shown results ofcalculations for 6.78 MHz based on measurements within

the skin layer at the maximum of the rf current density distribution (approximately 1 cm from the glass

window) at a radial position of 4 cm, corresponding to maximum of the rf electric field radial distribution.

As is seen in Table 1, at p = 1 mTorr, i/eff ^ t'm. such that collisionless electron heating dominates. At

p = 10mTorr, i/eff ^ and power absorption in the skin layer is predominantly collisional. It is interesting

to compare values of i^efr found experimentally at 1 mTorr where i/gfr !)§> with a theoretical expression

for the collisionless (stochastic) frequency fstoc = given by Vahedi et al (1995) for a one-dimensional

model with an exponential rf profile. The values 8 were determined as the distance from the glass window

where the measured rf electric field decays by one e-folding. The calculated values of i^stoc given in Table 1

appear to be close to the measured values of i/eff — •

The rf power absorption density integrated along the direction of electromagnetic field propagation,

5(z) = Jq EeJe cos dz', is shown in Fig. 25 as a function of the distance from the window. Here the
measured total absorbed power fiux S is compared with that calculated from the measured Ee and Je

distributions assuming collisional power absorption:

SuE= f E0Rc{(rp)dz' and SuJ = f Re(o-p ^)dz',
Jo Jo

with Cp given in (4.1). The comparison shows that the collisionless process dominates the rfpower absorption

in these particular cases.

The spatial distribution of the absorbed rf power density is shown in Fig. 26. The power density was

calculated as EeJe costj). As expected, practically all power is dissipated within the skin layer near the

window. However, far from the window the power absorption for p = 1 mTorr oscillates with distance and

becomes negative in certain regions. The negative power absorption occurs where the phase of the electron

current (transfered from the skin layer due to electron thermal motion) differs from the local rf field phase
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by more than 90®. Here, the electrons arriving from the skin layer transfer the energy they acquired from

within the skin layer back to the rf field.

For the normal skin effect, the rf current is defined by the product of the rf electric field and the local

value of the cold plasma conductivity, such that J$E$ cos if; is always positive. For the anomalous skin effect

the current far away from the skin layer is that which is translated from the skin layer by the electron thermal

motion, and its phase is defined by the transit time tj « ar/ve, while the electric field phase is defined by a

delay due to the phase velocity, which depends on frequency and plasma density, te w -^/vph- The different

mechanisms of phase delay for current and electric field can result in vaurious phase combinations including

those corresponding to a negative power absorption. Apparently, the negative power absorption can exist

only in the collisionlessregime (Ac < L)] otherwise, electron-atom collisionsdestroy the translationaJ motion

of the current, yielding a local coupling between rf current and electric field, as shown in the high pressure

cases in Fig. 26b. The rf power absorption along the plasma is shown in Fig. 27 at various frequencies for

p = 10 mXorr (where Ac « L), and a discharge power of ICQ W. A transit time effect is clearly seen for the

appearance of the first negative power absorption region. The distance d between the middle of the skin

layer and the first zero crossing of the power correspond well with the relation d = Ve/2/, where / = w/27r

is the rf frequency. Note that apparently there is no negative power absorption at the lowest frequency of

3.39 MHz, where the anomalous skin effect (large A) and the electron ballistic phenomena are expected to

be greatest. This has a simpleexplanation: for 3.39 MHz, the electron transit time L/ve is smaller than half

of an rf period (2/)"^.

An analytical calculation of rf power absorption for parameters of the Godyak (1997) experiment has

been performed by Kolobov (1997) within the framework of the existing theory of the anomalous skin effect

for a homogeneous plasma (Kondratenko, 1979), modified to account for the inhomogeneity of the vacuum

rf field, as in (4.29). The result shown in Fig. 27b demonstrates a good agreement with the experiment in

Fig. 27a.

V. ELECTRON CYCLOTRON RESONANCE DISCHARGES

Waves generated near a plasma surface can propagate into the plasma or along the surface where

they can be subsequently absorbed, leading to heating of plasma electrons and excitation of a discharge

(Lieberman and Lichtenberg, 1994, Chapter 13). The classical example is an electron cyclotron resonance

(ECR) discharge, in which a right circularly polarized electromagnetic wave propagates along dc magnetic

field lines to a resonance zone, where the wave energy is absorbed by collisionless heating. This is a type of

stochastic heating in which electrons receive "kicks" in energy at each passage through the resonance zone;

i.e., it is a type of Fermi acceleration.

ECR discharges are generally excited at microwavefrequencies (e.g., 2450 MHz), and the wave absorption

requires application of a strong dc magnetic field (875 G at resonance). The power is usually coupled through

a dielectric end-window into a cylindrical metal source chamber. One or several concentric magnetic field
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coils are used to generate a nonuniform, axial magnetic field B{z) within the chamber to achieve the ECR

condition, Wce(^res) « w, where Zres is the axial resonance position. When a low pressure gas is introduced,

the gas bre2dcs down and the discharge forms inside the chamber. For materials processing applications, the

plasma difiiises along the magnetic field lines into a process chamber toward a wafer holder. The source

diameter is 15-30 cm, and the microwave power is 1-5 kW.

Two separated magnet coils generate a so-called magnetic mirror field configuration having a high

field underneath the two coils and a weaker field in the midplane between the coils. Electrons can be

axially trapped between the high field regions by the axial magnetic field gradients and repeatedly bounce

between the mirror coils (e.g., see Lieberman and Lichtenberg, 1994, Sec. 4.3). By proper choice of the field

strength and profile, there can be two resonance zones symmetrically located with respect to the midplane.

Thisconfiguration can yield high ionization efficiencies, due to enhanced confinement ofhot (superthermal)

electrons that are magnetically trapped between the two mirror (high-field) positions.

Because the gas pressure in these discharges can be as low as 0.1-0.01 mTorr and the field strengths

can be large (large kicks), phase randomization due to nonlinear dynamical effects can be very important.

Dynamical effects such as the influence of phase correlations in slowing the quasilinear heating rate, and the

existance of adiabatic barriers to heating, have been observed experimentally in these discharges.

To determine the collisionless heating power from a Fermi acceleration model, the nonuniformity in the

magnetic field profile 8(2) must be considered. For Wce w, an electron does not continuously gain energy,

but rather its energy oscillates at the difference frequency Wce —w. As an electron moving along z passes

through resonance, its energy oscillates as shown in Fig. 28, leading to a transverse energy gained (or lost)

in one pass. For low power absorption, where the electric field at the resonance zone is known, the heating

can be determined as follows. We expand the magnetic field near resonance as

Wce(''') —̂ (1 4"'̂ • '̂)> (^'l)

where z' = z —Zres is the distance from exact resonance, o = duce/dz' is proportional to the gradient in

B[z) near the resonant zone, and we approximate z'{t) w where Ures is the parallelspeed at resonance.

The complex force equation for the right hand component of the transverse velocity, Vr =Vx-\- jvy, can

be written in the form

^-ju„U)Vr =--Ere'"', (5.2)
at m

where Er is the amplitude of the RHP wave with

E = Re [(i-iy)Bre''"'] (5.3)

and x and y unit vectors along the x and y directions. Using (5.1) and substituting Vr = i}rexp(jw<) into

(5.2), we obtain

^ - jiJaVrestVr =- —Er- (5.4)
at m
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Multiplying by the integrating factor and integrating (5.4) from t = —T to t = T, we obtain

Vr(T)e->''<^^ = - — 1 (5.5)
m j_'j'

where

^(<) = WQrt;re8<^/2. (5.6)

In the limit T S> (27r/w|Qr|t;re8)^^^i the integral in (5.5) is the integral ofa Gaussian ofcomplex argument,
which has the standard form /T / \1/2

di' e-J'*'') = (1 - J) ("Tl—) • (5.7)
Vw|Q:|Vre8/

Substituting (5.7) into (5.5), multiplying (5.5) by its complex conjugate, and averaging over the initial

"random" phase 6(—T), we obtain

|5.(r)|̂ =|̂ .(-r)l=+(^)'(;;;i|̂ ). • (5.8)
The average energy gain per pass is thus

(5.9)
mu;|o|Vres

This can also be written as

=

2
Wecr= im(At))', (5.10)

where Av = {eEr/m)Atrcs, and

(5.11)
\i0\Q\VrtsJ

is the effective time in resonance. The effective resonance zone width (see Fig. 28) is

1/2

A.Sres = lire8^fres

which, for typical ECR parameters, gives Azres 0.5 cm.

The absorbed power per unit area is found by integrating (5.9) over the flux nures of electrons incident

on the zone, yielding

(5.13)
mu>|a|

We can understand the form of A<res as follows: an electron passing through the zone coherently gains energy

for a time A<re8 such that

[u7 —̂ ce(^res^fres)] ^"^res ^ 2ir. (5.14)

Inserting (5.1) into (5.14) and solvingfor A<res, weobtain (5.11). A more careful derivation of the absorbed

power, including the effect of non-constant Vres during passage through resonance, is presented by Jaeger et

al (1972), giving similar results.
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At high power absorption, the electric field is not known but must be determined self-consistently with

the energy absorption, in the same manner as for inductive discharges. The propagation and absorption

of microwave power in ECR sources is an active area of research and is not fully understood. However,

the essence of the wave coupling, and transformation and absorption at the resonance zone, can be seen

by considering the one dimensional problem of a righ-hand polarized wave propagating strictly along the

magnetic field in a plasma that varies only along the axial direction z. Thisproblem was originally studied in

connection with wave propagation in the ionosphere, and the solution was obtained analytically by Budden

(1966) for the approximation ofconstant density and linear magnetic field variation. For a wave travelling

into a decreasing magnetic field, he obtained the solution

5ab8/5inc = 1- e"'"', (5.15)

Strans/Sinc = e-''^ (5.16)

5refl/5inc = 0, (5.17)

where t} = a;pg/(u;c|o|). Hence some of the incident wave power is absorbed at the resonance while some
tunnels through to the other side, but no power is reflected. Taking a typical case for which a = 0.1 cm~^

and ko = 0.5 cm-\ we find that rj > 1 corresponds to > 0.2. Thus at 2450 MHz we expect most of

the incident power will be absorbed for a density no > 1.5 x 10^° cm~^.

For high electric field strengths and low pressures, the energy gain per passage through resonance is

large, and the nonlinear dynamical aspects of the problem come into play. For electrons heated to high

energies by repeated interaction with the resonance zones, strong phase correlations can reduce the heating

rate below that obtainedfroma randomphaseinteraction, and an adiabatic barrier to heatingcan exist. Such

phenomena were observed experimentally in a high field (50 kG) magnetic mirror compression experiment

(Wyeth et al, 1975), in which a short pulse (0.25 fis) of high power (maximum 250 kW) microwaves was

used to heat plasma electrons early during the compression, which were subsequently further heated by the

increasing magnetic field. With increasing microwave power (field strength), a transition from a high to

a lower heating rate was found that agreed well with analytical and numerical mapping estimates of the

expected transition from a regime of random phase inter2w:tion to a regime of high phase correlations.

Another experiment was performed by Shoyamaet al (1996) in a magnetic mirror field configuration,

ECR discharge at low pressures (3-8 xlO~® Torr) using up to 4 kWof 2.45 GHz continuous wave power. A

steady state plasma having a typical electron temperature of6 V and density of7 x 10^^ cm~® was formed,

having a high energy electron tail of order 10 kV as determined by x-ray bremsstrahlung measurements.

From the theory of Fermi acceleration and as confirmed by numerical iteration of the appropriate Fermi

mappingfor this system, the maximum possible energy £^max of the heated electrons wasfound to scalewith

the input microwave power P\n as ^max cx due to the existance of an adiabatic barrier to heating.

The experimental data confirmed this scaling.
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VI. CONCLUDING DISCUSSION

Collisionless (stochastic) heating of electrons by time-varying fields has been shown to be fundamental to

the operation of radio frequency (rf) and microwave discharges. Such heating is due to spatial variation

of the fields, which lead to randomization of the electron phase during its thermal motion, even in the

absence of collisions. Generally, electrons are heated collisionlessly by repeated interaction with fields that

are localized within a sheath or skin depth layer inside the discharge. Consequently, the Fermi acceleration

model of a ball bouncing elastically back and forth between a fixed and an oscillating wall is a paradigm

to describe collisionless heating and phase randomization in capacitive, inductive, and ECR discharges.

We introduced several mapping models for Fermi acceleration and showed how to use the Fokker-Planck

formalism to determine the heating rate and the effects of phase correlations. We reviewed the role of

collisionless heating in capacitive and inductive discharges, using simple Fermi models to determine the

heating rates and comparing these with self-consistent (kinetic) calculations where available. We reviewed

experimental measurements and computer simulations and compared these to theoretical calculations of the

heating. We described recent measurements and calculations of nonlocal heating effects, such as negative

electron power absorption. The effects of partial phase randomization in reducing the heating rates were most

clearly seen in low pressure ECR discharges. We described the use of Fermi acceleration models to determine

the collisionless heating rates for these discharges, and showed that incomplete phase randomization could

reduce the heating rate and lead to the existence of adiabatic barriers to heating.

A number of outstanding issues remain that either are not well understood theoretically or lack experi

mental validation. Let us first mention that there is little understanding of the role of the rf (or microwave)

magnetic field in collisionless heating phenomena. The magnetic field can alter the skin depth for the field

decay and also the electron dynamics that leads to phase randomization. In a cylindrical inductive discharge

excited by a planar coil at one end, for example, the kick in velocity within the skin layer is in the 9 direction,

but this is converted by the rf magnetic field into a kick along the z direction within the bulk plasma. This

suggests the existence of r and z components of the electron current density J within the bulk plasma, and

these may in turn induce electric fields with these same components. Hence the usual assumption that only

azimuthal rf electric fields and currents exist in cylindrical inductive discharges may not be valid. Both

theoretical models and experimental results obtained using rf magnetic probes may need to be modified to

account for these effects.

In rf capacitive discharges, PIC simulations suggest the existence of a small negative electron power

absorption in the bulk of the discharge. There is no definitive experimental confirmation of this effect. On

the other hand, both theory and experimental observations of rf inductive discharges show that such negative

power absorption regions exist within the discharge bulk, but there are no PIC simulations demonstrating

this effect.

There is scanty experimental or PIC simulation evidence that incomplete randomization of the electron

phase plays a significant role in determining the collisionless heating rates in capacitive or inductive rf
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discharges. There is considerable evidence that these effects can be important in very low pressure ECR

discharges.

The Fermi acceleration model has been shown to be an effective tool for describing collisionlessheating in

gas discharge plasmas having strong rf fields on the boundary, for which the trsiditional quasilinear approach

in plasma electrodynamics may some times bequestionable. Ameizingly, collisionless electron heating, which

is usually associated with high temperature space and fusion plasmas, appears to be a fundamental process

in the warm plasmas of low pressure discharges that are used in today's technology.
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p Pplasma ni i'eff ^'stoc

(mTorr) (W) (10^° cm-3) (10^ s-i) (10^ s-1)

1—«
o

cn
1

(10^ S~^)

1 25 1.1 0.71 3.0 1.8 2.3

1 100 4.1 0.55 3.9 2.4 3.3

10 50 4.8 4.5 5.3 1.8 0.8

10 150 16 3.0 5.7 2.3 2.7

Table 1. Comparison of collisional and collisionless heating frequencies
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Figure 1. Fermi acceleration in which a particle bounces between a fixed and an oscillating wall.
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Figure2. Surface ofsectionfor the Fermi problem, showing occupation ofphasespacecells for623,000 iterationsof

a single initial condition. Dashedcurves are calculated from secularperturbation theory (after Lieberman

and Lichtenberg, 1972).
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Figure 3. Comparison ofvelocity distribution /(u) (here P(ii)] for the simplified Fermi map (2.3) [solid line] and
the exact Fermi map (2.1) [dashed line] (after Lichtenberg and Lieberman, 1992).
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Figure 4. Local approximation of the Fermi mapping by the standard mapping, (a) Linearization about uio leading

to K small and local stochasticity; (b) linearization about ui^ leading to K large and global stochasticity

(after Lichtenbcrg and Lieberman, 1992).
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Figure 5. Plot of DjDqL versus stochasticity parameter K. The dots are the numerically computed values and

the solid line is the theoretical result in the large K limit (after Rechester and White, 1980).
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Figure 6. Sheath-plasma-sheath sandwich structure of a capacitive rf discharge.
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Figure 7. Schematic plot of the densities in a high voltage capacitive rf sheath.
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Figure 8. Sketch of the electron sheath thickness s versus ut.
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Figure 9. Effectivecollisionfrequency versus pressure p for a mercury discharge driven at 40.8 MHz. The solid

lineshows the collision frequency due to ohmic dissipation alone (after Godyak et al, 1976b).
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Figure 10. The ratio between total and collisional rf power transferred to the plasma electrons versus argon pressure;

I = 6.7 cm and J = 1 mA/cm^ (after Godyak et al, 1992).
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Figure 11. Evolution of the electron energy probability function (EEPF) 9p{£) with pressure in argon; I = 6.7 cm

and J s= 1 mA/cm^ (after Godyak et al, 1992).
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Figure 12. Electron energy distribution functions in the midplane of a capacitive rf discharge (6 cm gap, 15 cm

electrode diameter) in argon for constantpressure and varying rf current densities given in mA/cm^ (rf

discharge voltages in volts); (after Buddemeier et al, 1995).
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Figure 13. One-dimensional electron velocity distribution function /c(x,u»,t) for a 10 cm electrode spacing in a

3 mTbrr argon dischaurge; each plot covers a time window of 1/32 of an rf cycle. Each line on a plot

represents a spatial window of 2 mm (after Wood, 1991).
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Figure 14. Spatiotemporal distribution of ionizing collisions collected over 20 rf cycles, for a 10 MHz, 20 mTorr

hydrogen discharge (Vender and Boswell, 1990).
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Figure 15. Schematic of inductively driven discharge in (a) cylindrical, (b) planar, and (c) re-entrant geometries;

(a) and (b) are used for materials processing and (c) is used for lighting.
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Figure 16. Plot of ln(Ae/^o) versus showing the regimes of collisional, high frequency, and anomalous

skin effect in a semi-infinite plasma; the solid line, corresponding to nonlocality parameter A = 1, is the

boundary of the anomalous skin effect (after Kolobov and Economou, 1997).
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Figure 17. Normalized electric field amplitude versus normalized distance along the propagation direction for

''m/w = 1 and for various nonlocality parameters A (after Weibel, 1967).
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Figure 18. The radial distributions of the amplitude and phase of the rf magnetic field in a cylindricalargon plasma.

Dotted linesshowexperimentaldata forp = 10 mTorr, averageplasma density n = 4.2x 10^^ cm~^,and

% —2.1 V. Solid linesare calculations according to the theory of Sayasov (1979) forn = 3 x 10^^ cm"®

and = 4 X10'' s~' (after Joye and Schneider, 1978).
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Figure 19. The real and imaginary parts of the surface impedance Z, for a plasma slab, shown as functions of

i/m/w. The plasma parameters are = 10" cm~®, Ti = 5 V, and L = 4 cm. The dashed lines are the

cold plasma results (after Kolobov and Bconomou, 1997).
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Figure 20. The real (solid line) and imaginary (dashed line) parts of the normalized surface impedance Za/Zo

versus the normalizedfrequency w = iujc)/{ve(jpe) w for a near-collisionless case of i/m/w = 0.008;

= (v«'/?rc)(/ioAo)'̂ '̂ (after Vah<ull ot al, 1995).
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Figure 21. The normalized stochastic frequency u^ioc/^ versus the normalized frequency w = (a;c)/(ueu;pc) for a
near-collisionless case of UmfuJ —0.008 (after Vahedi et al, 1995).
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Figure 22. The normalized effective skin depth 6/bp versus the normalized frequency w = (a;c)/(uea;pe) for a

near-collisionless case of Vm/u = 0.008. The dashed line shows 5a/5p obtained from kinetic theory for

comparison (after Vahedi et al, 1995).
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Figure 23. Normalized input power versus normalized frequencyw = (ufc)/{vtCJpe). The dashed line showsthe result

obtained from the (non self-consistent) Fermi model for a near-coUisionless case of = 0.008,

and the solid line .shows the result of the nonlocal theory of Weibel (1967) [Reuther and Sondheimer

(1949) theory using a Maxwelllan electron di.stribution] (after Vahedi et al, 1995).
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Figure 24. Real (a) and imaginary (b) parts of the surface impedance Z, versus gap size L for various electron

densities, for a colli.sionless plasma {um = 0) with = 5 V (after Yoon et al, 1996).

70



E 0.8
o

§ 0.6
vz

0

§ 0.4
Q.

"S
1 0.2

CO
.Q
(0

I T—T—p-r-n • 1 T • • i • I I 1 • . 1 1

total J

0.3 mT

100 W

6.78 MHz :

coilisional

. • 1 • . . 1 • • • 1 . . . ,

2 4 6 8

distance (cm)
10

6 0.4

1 mT

100 W

6.78 MHz

collisional

2 4 6 8 10

distance (cm)

Figure 25. Absorbed rf power flux versus distance for (a) p = 0.3 mTorr and (b) p = 1 mTorr (after Godyak, 1997).
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Figure 26. Spatial distributionofabsorbed rf power densityfor an argondischarge driv^ at 6.78 MHz; (a) 1 mTorr

pressure, with absorbed plasma power varying from 25-200 W, and (b) 50 W absorbed plasma power,

with pressure varying from 0.3-100 mTorr (after Godyak, 1997).
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Figure 27. Effect of frequency variation on the spatial distribution ofthe rf power density absorbed by the plasma;

(a) measured distribution for 10 mTorr and ICQ W absorbed plasma power, and (b) distribution calcu

lated from a one-dimensional model by Kolobov (after Godyak, 1997).
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Figure 28. Energy change in one pass through an ECR resonance zone (after Lieberman and Lichtenberg, 1994).
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