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Report 7; Equivalent congruence transforms

Qingjian Yu

1 Introduction

In Report 6, we show that when a congruence transformation is applied to the
MNA and output equations of an RLC network, the transformed network will
be passive. However, in the case when the admittance or hybrid matrix of the
networkis of interest, if the MNA equations is written in the formof Eq(ll) in
Report 6 with IT = sA + 6, then the MNA equations are in the following form:

{sA + B)x —bu (1)

where x contains all node volti^es, inductor currents and source currents, and
matrix A will have several zero rows and columns and be singular. This is
not good for using the Anordi or Lanczos algorithm to find the congruence
transformation, and we need to compact the equations to the form

(sA'+ B')x' = 6'u (2)

so that X* contmns only the unknown node voltages and inductor currents and
there will be no zero rows and columns in A. For simplicity, we call the system
described by Eq(l) and its associated output equations the original system, and
the system described by Eq(2) and its associated output equations the compact
system. We have shown that when a congruence transformation is applied to
the original system, the reduced ordersystem is passive. In this report, we will
show that when a congruence transformation is applied to the compact system,
the reduced order system is passive, too. In order to do that, we willshow that
when there is a congruence transform applied to the compact system, there is
another correspondingcongruence transformapplied to the originalmatrix both
of which result in the same admittance (or hybrid) matrix of the reduced order
network. We call such a pair of congruence transforms equivalent.
In this report, we only consider that case when an admittance matrix is of
interest. For the case when hybrid matrix is of concern, the derivation is similar
and the conclusion is the same. In Sec.2, we will consider the typical case that
all voltage sources are grounded at their negative terminals, and in Sec.3, we
will talk about the case with floating voltage sources.



2 Grounded voltage sources

2.1 Compact form of MNA equations

When the admittance matrix of an RLC multiport is of interest, the network
is excited by voltage sources and the response is the currents flowing out of the
sources. By using the same symbols as in Report 6, the MNA equations are

Hz — bu (3)

where

X —

Vn

h
I,

(4)
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(«)

u = v. (7)

and the output equations are
y =-.l^x (8)

where

y = 1. (9)

Now assume that the voltage sources applied to the network are grounded at
their negative terminals. Then, thenode voltage vector can be decomposed into

'-[£] (10)

where is the vectorofunknown nodevoltages, where all the nodesare internal
nodes of the network. Correspondingly, matrices G, C, Al and Av can be
decomposed as follows: J

g„

with G,x = and G^x symmetric and nonnegative-definite;

\ 1
Cxx J

(11)

(12)



with Cgx = Cg, and Cgx symmetric and nonnegative-definite;

"•[t]
and

Let

-ir:]
Then the compact MNA equations are in the form of

H'x' = b'u

where
sCxx Aiaj

sL
jy' = [ ^

6' =^
Now the output vector I, can be expressed as

I. = (G.. + «C..)K + ((G„ + SC..) Al.]x' = c^x' + iFu

where

c = Al. \
and

d = G,, + sCg

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

Note that V in the general case.
From Eqs(3) and (8), the admittance matrix of the network can be expr^ed
as

Y(s) = (22)

and from Eq8(16) and (19), we have

Yis) = <f+<F(H')-^l/

=G..+sC..+[{a..+sC..) A,..] [ li* 1'[ ]
(23)



2.2 Congruence transformation

Let the dimension of vector Vt and Is be and the dimension of vector x' be
n. Now suppose that a congruence transform matrix V € has been found
and appli^ to the compact form ofthe network representation, then we have
the equations for the transformed networkas follows:

where

and

z' = Vx'

ff'z' = 9u

H' =V^H'V =V'' [ j

p=V'̂ b' =K'" f j
The output equations now become

^ J

y = d x' + du

where
i- =e^V = [G„ + C„ Al.]V

and the admittance matrix of the transformed system will be

Y' = d+ cf^

,]VH' V''!^= G..+sC,. + [G$r + sCgx -^L
—{Ggt + sC«t)

Al.

(24)

(25)

(26)

(27)

(28)

(29)

] (30)
Now for the original system, we form a congruence transform W ^ follows:

Imxm
w = (31)

and we will show that W and V are a pair of equivalent congruence transforms.
When W is applied to the original system, the transformed system becomes

where

Hz = bu

X =

V,
z'

I.

(32)

(33)



and
Imxm \ 1 ' Vg '

x = Wz = V x' = x'

ImXm . . , I. .

b = W^i = b =

Rewrite matrix H in the following form:

Ggt + sCgg [ Ggjg + sCgx -A-i^g ] —I
Gxg "f* sCxg 1

. JH =

Cfxx ^^Lx
sL-AL

(34)

(35)

(36)

Note that the central submatrix is H'.
Now,

Ggg + sCgg

Gxg + sCxg
-ALH = W^HW =

[G„ + sC„ Au]V -/

H'V

VT

Ggg + sCgg

Gxg + sCxg
-Alg

[Ggx-^sCgx Al,]V -I
VTh'V

The output equations becomes

y = Vx = Ig

From Eqs(33)-(35) and Eq(36) and note that H'V ^ H'^ we have

,' = 6'

and

-(G„ + <.C„)
Al.

V.

I. = (G,. + sC..)V. + [G„ + «C„ Al,]VSc'
Then, the admittance matrix Y of the transformed system is

-(G,. + sC„)
'L

^ =Ggt +eCgg +[Gfx +sCfx Ai,g]VH' V''f

(37)

(38)

(39)

(40)

(41)

Compared with Eq(30), it can be seen that Y = so W and V are a pair of
equivalent transforms. As iP" is positive real, so is



3 Floating voltage sources

3.1 Compact form of MNA equations

In this section, we will talk about the case when an RLC network is driven by
floating voltage sources without common terminals, and the case when floating
voltage sources with common terminals will be discussed in Sec.3.3. Under
this assumption, the ungrounded node set can be divided into three subsects:
N = {Nii N2i iVa}, where Ni contains all positive terminals of the sources, N2
containsall negative terminals of the sources, and N3 containsother nodes. Let
tin and n2i be a piBur of terminals of the i-th voltage source. Then, V„, ^4^)
G and C can be decomposed as follows:

Vn =

A^ =

where J is an m X m identity matrix.

Al =

Vnl

Vn2
Vn3

I

-I

0

Ali
Al2
Al3

G =

Gil Gi2 Gi3
G21 G22 G23
G31 Gz2 G?33

(42)

(43)

(44)

(45)

and
Cii C12 Ciz

C= C21 C22 C23 (46)
C31 C32 C33

Note that in this case, V„i - V„2 = V,, We do variable transformation as
follows. Let Vna = K»i —Vn2 and^n = + Vn2y so that V„i = 5(^,0 +
and Vn2 = Let

'na

Vnl,
Z=: Vn3

II
I.

Then the vector x in Eq(l) can be expressed as

X = Kz
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where

K =

It If
V 1

—*/ */
(49)

Now, we use K as &congruence transformation on Eq(3) and obtain

K'^HKz = K'^hu (50)

or

where

Now,

HK =

and

G\\ + sC\\

C?2l + sC2\
Gz\ + sCzx

-^L
I

HzZ = hgU

bz=b =

Hz = K'^HK

Gi2 + sCi2
G22 "F8C22
G32 + 5^*32

Gia + sCia

C?23 + 8C23
G33 + sCaa

Hz = K'^HK =

__ 1 r

V

-I

J
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(51)

(52)

(53)
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Let

and

iCG'll + G22 —Gi2 —G2\+ «(Cii + C22 —C\2 —̂ 721))
7(^11 —Gi2 + G2\ —G22 + «(Cii —C12 + C21 —C32))

^(Gai—G32 + «(C3i —C32))
+ ^£.2)

I

t(Gii + Gi2 —G21 —G22 + «(Gii + C12 —C21 —022))
7(^*11 + Gi2 + G21 + G22 + fl(Gii + C12 + C21 + G22))

*(G31+ G32 + «(C31 + C32))
+ ^12)

4(Gi3 —G23 + fi(Gi3 —C23)) —•Al2)
^(C?13 + ^^23 + s(Cl3 + C^23)) (-^Ll + •^L2)

G33 + SG33 ^L3
sL

'-[SI

'-[SI

-I

(54)

(55)

(56)

Then, the compact MNA equations still take the form of Eq(16) with H' and
b' expressed in Eq(17) and (18), respectively, where u-V,^

^ ^ _ r ^(Gii+ Gi2 + G21 + G22 + «(Gii + Gi2 + G21 + G22))- [ 1(G31 +G32 +fi(G3i +C32))

7(^13 + G23 + s(C'l3 + C23)) ] /cyN
G33 + SG33 J

(58)

^ r 4(Gii —Gi2+ G21 —G22 +s(Gii —C12+ G21 —G22)) 1G„ +$C.. - ^ ^ J
(59)

(60)
and

Al, = 5(-4ti —Aij)



The output equations still take the form of £q(19), where

iF = [^(Crii + Gi2 —G21 —G22 + s{Cii + C12 —C21 —C22))
4

i(C7i3 —G23 +s(Ci3 —C23))
and

^ —7(^^11 + G22 —Gi2 —G21 + s(Cii + C22 —Gi2 —C21)) (62)
4

and Eki(23) is valid for the admittance matrix.

3.2 Congruence transformation

Note that the compact form of the MNA equations and the output equations
are the same as in Sec2.1, so when a congruence matrix V is applied to matrix
F', Eqs(24) - (29) are still valid. Now, for the original system, the equivalent
congruence matrix takes the following form

P = KW (63)

where W has the same form of Eq(31).
In order to show that P is equivalent to V, Let

where

z = Wx (64)

(65)X =

V,
x'

I.

From Eq(50), we have

or

W^K'^HKWx = W^K'^bu (66)

P'^HPx = P'^bu (67)

From the same derivation as in Sec2.2, it can be proved that the admittance
matrix resulted from Eq(67) is the samefrom the transformed system from the
compact system.

3.3 Floating sources with common terminals
In this case, in somerowsof matrix At,, there are severalnonzero elements, and
correspondingly, there are several sourcecurrents in each of the nodeequations.



We use a decoupling transformationto let eachof the node equationshaveonly
one source current. For example, suppose

where

1

A.v» —

1

-1 1

-1

When Av, is premultiplied by the decoupling transformation matrix

then

and

1

1 1

Ai, = =

(A'„.f = AlD. =

1

-1

.1
Note that the first column in has only one nonzero element, which corre
sponds to a grounded source, and the second column has a pair of +1 and -1
elements, which corresponds to a floating source. In the general case, we let
TV = {TV«,TVx}, where iV, contains all 8 terminal nodes of the voltage sources,
and TVf contains the other nodes. Correspondingly,

and

V„ = . ".J

=[''o" ]
Now we form a congruence transform

(68)

(69)

K=^ '̂ j] (70)
where Dv e Rgxs and can be formed by using the following algorithm.

Algorithm J: Formulation of

{
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Initially set = I.
for each row i in Ay, with two or more nonzero elements do

{If 3 j such that Av,{i,j) is a column singleton
then let jj = j;
else

select any Sat* jj) 0;
for each k ^ jj with 0 and ^ 0 do

{set £>?(<,;) = 1;
set a4v«(i,ib) = 0;}

)
)

Proposition 2
When there is no voltage source loop in the circuit, Algorithm 1 will terminate
in finite steps with Ay, having one nonzero element (+1 or -1) in each row.
Proof.

The graph of the voltagesource branches formsa forest in the general case, and
row t in Algorithm 1 corresponds a node in a tree of the forest which connects
two or more branches. Then, A«,(i, k) ^0 and A„t{ji 0 corresponds to the.
ib-th branch connecting nodes i and j, and letting = 0 corresponds to
setting the branch terminalat node i to the groundnode. The algorithmwould
not result in an Ay having only one nonzero element in each row if during its
implementation there were two column singletons in one row. But this means
that the original graph had loops, which violates the assumption. •
After the decoupling transformation. Ay will have mi columns having only
one nonzero elements, and m2 columns with a paur of nonzero elements. The
first set corresponds to mi grounded sources and the second set to ms floating
sources without common terminals, and the techniques described in the previous
sections can be used to form the compact system.

4 Summary

In this report, we provide the compact MNA equations of an RLC network for
the generation of the admittance or hybrid matrix of its reduced order model.
By introduction of the concept of equivalent congruence transform, we show
that the matrix generated via congruence transform on the compact system is
positive real, and the passivity of the reduced order model is preserved.
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