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Report 7: Equivalent congruence transforms

Qingjian Yu

1 Introduction

In Report 6, we show that when a congruence transformation is applied to the
MNA and output equations of an RLC network, the transformed network will
be passive. However, in the case when the admittance or hybrid matrix of the
network is of interest, if the MNA equations is written in the form of Eq(11) in
Report 6 with H = sA + b, then the MNA equations are in the following form:

(sA+ B)z = bu (1)

where x contains all node voltages, inductor currents and source currents, and
matrix A will have several zero rows and columns and be singular. This is
not good for using the Anordi or Lanczos algorithm to find the congruence
transformation, and we need to compact the equations to the form

(sA' + B')z' = bu )

so that z' contains only the unknown node voltages and inductor currents and

there will be no zero rows and columns in A. For simplicity, we call the system

described by Eq(1) and its associated output equations the original system, and

the system described by Eq(2) and its associated output equations the compact

gystem. We have shown that when a congruence transformation is applied to

the original system, the reduced order system is passive. In this report, we will

show that when a congruence transformation is applied to the compact system,

the reduced order system is passive, too. In order to do that, we will show that

when there is a congruence transform applied to the compact system, there is
another corresponding congruence transform applied to the original matrix both

of which result in the same admittance (or hybrid) matrix of the reduced order

network. We call such a pair of congruence transforms equivalent.

In this report, we only consider that case when an admittance matrix is of
interest. For the case when hybrid matrix is of concern, the derivation is similar
and the conclusion is the same. In Sec.2, we will consider the typical case that

all voltage sources are grounded at their negative terminals, and in Sec.3, we

will talk about the case with floating voltage sources.



2 Grounded voltage sources

2.1 Compact form of MNA equations

When the admittance matrix of an RLC multiport is of interest, the network
is excited by voltage sources and the response is the currents flowing out of the
sources. By using the same symbols as in Report 6, the MNA equations are

Hz=bu 3)
where
Va
z=| I (4)
I,
G+sC Ap -A,
H=| -A] sL (5)
A7
0
b=] 0 (6)
I
u=V, )]
and the output equations are
. y=t' (®)
where
y= I, (9)

Now assume that the voltage sources applied to the network are grounded at
their negative terminals. Then, the node voltage vector can be decomposed into

V,.=[¥;]_ I ¢ )

where V, is the vector of unknown node vollages, where all the nodes are internal
nodes of the network. Correspondingly, matrices G, C, AL and A, can be
decomposed as follows:

_[ G Giz]
G= [ G.. G.. | (11)
with G,; = GZ,, G,, and G:: symmetric and nonnegative-definite;
— C‘l cn: T
C= [ C.. C.. | (12)




with C,; = CT,, C,, and C;,, symmetric and nonnegative-definite;
AL
AL = :
g [Ats]

and
Let

Then the compact MNA equations are in the form of
H'z' = bu
where
H = Gz +8C;: ALz
-AT, sL
b= [ —(Gzh‘; 3Cz:) ]
Ls

Now the output vector I, can be expressed as

I, = (Gu + SC::)Vo + [(Gu' + scnz) AL:]’"' =cTz' + dTu

where
c= [ Gzs + 8C2y ]
AL,

and
d=G,, +5C;,

Note that ¢ # ¥ in the general case.

(13)

(14)

(15)

(16)
(17)
(18)
(19)
(20)

(21)

From Eqs(3) and (8), the admittance matrix of the network can be expressed

as
Y(s) =bTH %

and from Eqs(16) and (19), we have
Y(s)=d¥ + 7)Y

Gz +8Cer ALz ]_1 [ -‘(G:

= Gaa+3Cc:+[(G::+sccz) ALJ] [ —A{: sL

(22)

s + 3Cza)

(23)



2.2 Congruence transformation

Let the dimension of vector V, and I, be m, and the dimension of vector z’ be
n. Now suppose that a congruence transform matrix V € R"*P has been found
and applied to the compact form of the network representation, then we have
the equations for the transformed network as follows:

2’ =Vi (24)
A'%' = bu (25)
where G c A
! — vy — vT zz + 8Czz Lz
H=VTRH'V=V [ " AT, SL]V (26)
and
b=vTy=vT [ ~(Gee 4 6Cer) ] (27)
Ls
The output equations now become
y=& # +du (28)
where T
d = Ty = [Gaz +Ciz ALa]V (29)

and the admittance matrix of the transformed system will be
V=d+d B
—4 G‘. + SC” + [G.z + 8C,z AL.]Vﬁl—lVT [ _(GQ.A-%-'BCz.) ] (30)

Now for the original system, we form a congruence transform W as follows:

Inxm
W= 14 (31)
Imxm

and we will show that W and V are a pair of equivalent congruence transforms.
When W is applied to the original system, the transformed system becomes

Hz=bu (32)
where )
v,
¢=| & (33)
I,



and

Imxm Ve Ve
z=W5:=[ | 4 :I[i']:[z'] (34)
Imxm I, 1,

0
b=wTb=b=| 0 (35)
I
Rewrite matrix H in the following form:
G.s +8C,, [ G +8C,z AL, ] -1
Gz, + 8C;, ] [ Gzz +8Crz Als ]

H= — AL, -Al, &L (36)
I
Note that the central submatrix is H'.
Now,
G,s + 8C,, [ Giz+8Coz AL, |V -1
[ Gz + 5C;, ] HYV
AE=wTEW =WT -A],
I
G,, + sC,, [ G,z +8C,: AL, ] vV -1
G;, + sC.
VT [ s zs ] VT H'V
= _A{c (37)
I
The output equations becomes
| y=0z=1, (38)
From Eqs(33)-(35) and Eq(36) and note that VTH'V = ', we have
g = gty | ~(Ge 25Ca) |y, (39)
ALJ
and
I, = (Gu + BC“)V. + [G:z + 5C,; AL:]Vi' (40)

Then, the admittance matrix ¥ of the transformed system is
Y =Guu+5Cos +[Goz +5Cox ALJVE VT [ ‘(G‘:&’ #Cz1) ] (41)
1 ]

Compared with Eq(30), it can be seen that Y =¥, 80 W and V are a pair of
equivalent transforms. As Y is positive real, so is Y.



3 Floating voltage sources

3.1 Compact form of MNA equations

In this section, we will talk about the case when an RLC network is driven by
floating voltage sources without common terminals, and the case when floating
voltage sources with common terminals will be discussed in Sec.3.3. Under
this assumption, the ungrounded node set can be divided into three subsects:
N = {N, N3, N3}, where N; contains all positive terminals of the sources, N3
contains all negative terminals of the sources, and N3 contains other nodes. Let
ny; and no; be a pair of terminals of the i-th voltage source. Then, V,, Ay, AL,
G and C can be decomposed as follows:

an W
Vn = Vn2 (42)
Va3 J
[ 1]
A, =] -1 (43)
[ o0 ] '
where I is an m x m identity matrix.
[ AL
AL =| AL (44)
| ALs

Ga1 G2z Gas (45)

G Gz Gis |
G=
Gs1 Ga2 Gas |

and

Cy Ci Ca3 (46)

Ca C3 Cas . '
Note that in this case, V,; — Va2 = V,. We do variable transformation as
follows. Let Vi = Va1 — Va2 andVyp = Va1 + Vag, s0 that Vo; = $[Vaa + Vi
and V2 = %[-—Vm, + V”b]. Let

Cu Ci2 Cis ]
C=

Vna
an
zZ= Vn3 (47)
I
1,

Then the vector z in Eq(1) can be expressed as
z=Kz (48)



where

YA Y |
b3
a1 &
I
I
Now, we use K as a congruence transformation on Eq(3) and obtain
KTHKz = KTbu (50)
or
H,z=b,u (51)
where
0
0
b,=b=]0 (52)
0
I
H.=KTHK (83)
Now,
G +8Cn Giz+s8C12 Giz+sCis Ay -1 31 %I
G21+38C G2 +8C; Gaz+8Cys ALz I -3 3l
HK = | G31+8C3 Gaz+5C3; Gaz+8Cas Ars I
-Af, ~AL, —Als sL I
I -I I

%(Gu — G2+ 8(C11 - C12))

vf(Gzl — G323 + 8(C21 — C22))

= | 3(Ga1 — G3z +5(C31 — C32))
%(-AI} +47,)

and

H,=KTHK =

%(Gu +G12+8(Cu1+Cr3)) Gia+sCia AL
Y(Gn + Gaz + 8(C21 + C22)). Gaz+6Coz ALz
5(G31+ Gaz + 5(C31+ Cs2)) Gas+5Cas ALz

~-3(AL, + AL) —-AZs sL

i -3
I 3
I HK
1
I

-I



i(Gn + Gz — Gia — Ga1 + 8(C1y + C23 — C12 — Cn1))
1(G11 = G124+ G231 — G2+ 8(C11 — C12 + Cy1 — C2))
3(G3a1 — Gaz2 + 8(031 - Cs2))
7(-AL1[ + AT,)

}»(Gu + G13 — Ga21 — G2 + 8(C11 + C13 — Ca1 — C3))
£(G11 4+ G12 + Ga1 + G22 + 8(C11 + C12 + C1 + C3))
$(Ga1+Gan + 8(031 + Cs3))
~-3(AL, +4L,)

%(G'ls —Ga3+8(Cis —C23)) +(AL1—AL2) -1
5(G1a+ Ga3 + 8(C13 + C33)) 3(AL1+ AL2)

Ga3 + 5Ca3 ALs (54)
—AT, sL
Let
L= [ " ] (55)
and
z'= },: ] (56)

Then, the compact MNA equations still take the form of Eq(16) with H’ and
b’ expressed in Eq(17) and (18), respectively, where u =V},

Gop+ 5Cop = H(G11+ Giz + G21 + Gaz + 8(C1 + C12 + Ca1 + Ci2))
£ = 3(G31 + Gaz + 8(Ca1 + C33))
(Gls + G23 + 8(Cy3 + Ca3)) : : (57)
33 + 8Ca3
3(ALy + ArLa) ,
P (59)
_ I #Gu-Gn +Gn -Gt 8(Cn1 — C12 + C21 — C23))
Ges + 8Cz [ 3(G31 — Gaz + 8(Cs1 — C32))
(59)
and )

Avs = 5(An — AL) (60)



The output equations still take the form of Eq(19), where

1
F= [Z(Gn + G2 — Ga1 — Gaz2 + 8(C11 + C12 — C31 — C23))

%(Gla — Ga3 + 8(C13 — C13)) %(ALI - AL3)) (61)

and
1 .
dT = Z(Gn + G2z — G132 — G21 + 8(C11 + C32 — C12 — C31)) (62)

and Eq(23) is valid for the admittance matrix.

3.2 Congruence transformation

Note that the compact form of the MNA equations and the output equations
are the same as in Sec2.1, so when a congruence matrix V' is applied to matrix
H', Eqs(24) - (29) are still valid. Now, for the original system, the equivalent
congruence matrix takes the following form

P=KW (63)

where W has the same form of Eq(31).
In order to show that P is equivalent to V, Let

z=W2 (64)
where
v,
i=| & (65)
I,
From Eq(50), we have
WTKTHKWz=WTKTbu " (66)
or
PTHP: = PTbu (67)

From the same derivation as in Sec2.2, it can be proved that the admittance
matrix resulted from Eq(67) is the same from the transformed system from the
compact system.

3.3 Floating sources with common terminals

In this case, in some rows of matrix A,, there are several nonzero elements, and
correspondingly, there are several source currents in each of the node equations.



We use a decoupling transformation to let each of the node equations have only
one source current. For example, suppose

Ay = [ Ao ]
wherg .

Au. = -1 1

When Ay, is premultiplied by the decoupling transformation matrix

1
DZ' =111
b 1 -
then -
1
Al,=DTA, = 1
| -1
and 3
(A4L,)T = AL,D, = ' 1 -1 ]

Note that the first column in A/, has only one nonzero element, which corre-
sponds to a grounded source, and the second column has a pair of +1 and -1
elements, which corresponds to a floating source. In the general case, we let
N = {N,, N.}, where N, contains all s terminal nodes of the voltage sources,
and N, contains the other nodes. Correspondingly,

v,
Vo= V: ] ' (68)
and
vz [ Aas ] (69)
Now we form a congruence transform
=| Do
K= [ I ] (70)

where D, € R,x, and can be formed by using the following algorithm.

Algorithm 1: Formulation of DT

{
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Initially set DT =1I.
for each row i in A,, with two or more nonzero elements do
{If 3 j such that A,,(s, j) is a column singleton
then let jj = j;
else
select any jj s.t. Ay,(i,57) # 0;
for each k # jj with A,,(¢, k) # 0 and A,,(j,k) # 0 do
{set DT(i,j) = 1; '
set Ay, (i, k) = 0;}

}

Proposition 2

When there is no voltage source loop in the circuit, Algorithm 1 will terminate
in finite steps with A,, having one nonzero element (+1 or -1) in each row.
Proof.

The graph of the voltage source branches forms a forest in the general case, and
row i in Algorithm 1 corresponds a node in a tree of the forest which connects
two or more branches. Then, Ay, (i, k) # 0 and A,,(j, k) # 0 corresponds to the.
k-th branch connecting nodes i and j, and letting A,(i, k) = 0 corresponds to
setting the branch terminal at node i to the ground node. The algorithm would
not result in an A, having only one nonzero element in each row if during its
implementation there were two column singletons in one row. But this means
that the original graph had loops, which violates the assumption. O

After the decoupling transformation, A, will have m; columns having only
one nonzero elements, and my columns with a pair of nonzero elements. The
first set corresponds to m; grounded sources and the second set to m; floating
sources without common terminals, and the techniques described in the previous
sections can be used to form the compact system.

4 Summary

In this report, we provide the compact MNA equations of an RLC network for
the generation of the admittance or hybrid matrix of its reduced order model.
By introduction of the concept of equivalent congruence transform, we show
that the matrix generated via congruence transform on the compact system is
positive real, and the passivity of the reduced order model is preserved.
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