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Abstract

Machine vision often analyzes in detail only a subset of the picture that may be arranged into a

sequences of loci called, regions-of-interest, ROIs; preprocessing algorithms for spatial frequency,

texture conformation etc. may be used to selected these loci. In human perception an internal

representation directs top-down, context-dependent, sequences of eye movements to fixate on a

similar sequences of ROIs. We compare these two sequences of ROIs as a criteria for evaluating

and studying bottom-up, context-free, algorithms.

1 Introduction

Image processing, IP, algorithms are usually intended to detect and localize specific features

in a digital image in a bottom-up fashion, analyzing for example, spatial frequency, texture

conformation or other informative values of loci of the visual stimulus. Many algorithms have

been proposed in the literature and they might be classified into three principal approaches; for a

survey, see Haralick [6] and Reed and Hans Du Buf [9]. Firstly, structural approaches based on

an assumptions that images have detectable and recognizable primitives distributed according

to some placement rules; examples are matched filters. Secondly, statistical approaches based

on statistical characteristics of the texture of the picture; examples are co-occurrence matrices



Figure 1: Image Processing and Clustering Algorithms. IP algorithms such as X here, lead to
a large number of candidate high valued loci (upper left). An iterative clustering algorithm then
reduced the candidate loci (circa 100, upper left) through intermediate stages (upper right) to a few
ROIs (less than 15, lower left) ordered by value. Note similcirity to sequential fixations generated by
eye movements, EMs, (lower right).



and entropy functions. Thirdly, model approaches that hypothesize underlying processes for

generation of local regions. These are analyzed on the basis of specific parameters governing

these generators: examples are fractal descriptors.

For the purpose of our present study, we have selected elements from this taxonomy in an

attempt to simulate certain aspects of human perception. Consequently, our IP algorithms are

set a definite task.

From a human perspective, the scanpath theory, Noton and Stark [8], suggests that a top-

down internal cognitive model of what we see controls perception and active looking eye move

ments, EMs. These EMs are an essential part of vision because they must carry the fovea to

each part of an image to be processed with high resolution. Thus, the internal cognitive model

drives our EMs in a repetitive sequential set of sziccades and fixations, or glances, over features,

or regions of interest, ROIs, of a scene or picture so as to check out and confirm the model;

supporting evidence is reviewed by Stark and Choi [12].

Thus our aim is explicit and our measures quantitative. The over-riding question is whether

IP algorithms can treat a picture in a fashion similar to human sequential glimpses.

2 Stimulus presentation and eye movement measurement

Computer controlled experiments present pictures and carefully measure EMs using video cam

eras [12, 3]. EMs data are then classifiedinto sequences of alternating rapid jiunps or saccades

and fixations generally lasting about 0.3 second: this enables the high resolution fovea to abstract

information from the fixated ROIs (Figiure 1, lower right panel).

Two different pictmes. After the Shower^ (Figure 1) and Madame (Figure 2) were used;

picture modification yielded fom different types (Figure 2) and these eight stimulus, two pictures

times four types, were not only presented to the four human subject with several repetitions

each, but were also processed by all the IP algorithms described below.



Figure 2: Picture Modification Yielding four Difierent Types. Original (upper left); line drawing
(upper right); embossing modification (lower left); binary modification (lower right).



3 ROI detecting algorithms

The information content of a generic picture can be identified by different image parameters

which in turn can be identified by relevant image processing algorithms. In this sense, applying

algorithms to a picture means to map that image into different domains, where for each domain,

a specific set of parameters is extracted. After the image has been processed, only the loci of

the local maxima from each domain are retained; these maxima are then clustered in order to

yield a limited number of ROIs. The algorithms we were studied are:

1 — A', an a:-like mask, positive along two diagonal and negative ekewhere, were convolved

with the image. We have also used different high-curvature masks convolution as for example

the ^ -like mask whose the definition is intuitive: these were rotationally invariant.

2 —<S, symmetry, a structural approadi, appears to be a very prominent spatial relation. For

each pixel a;,y of the image, we define a local symmetry magnitude <5(a;,y) as follows:

S{x,y)= ^ s{{iuji),ii2j2)) (1)
(*i Ji )i(»2J2 )€r(x,y)

where T{x^y) is the neighborhood of radius 7 of point x, y defined along the horizontal and verti

cal axis (r(x,y) = (x - r,y),..., (x,y), ...(x -I- r,y), (x,y - r),..., (x,y + r)) and s((ti,ii), fe,32))

is defined by the following equation:

s{{iiJi), fei2)) = Gff (d((ii,ii), (22,i2))) |cos(^i - 02)1 (2)

The first factor Ga is a gaussian of fixed variance, <7 = 3 pixels and d(') represents the distance

function. The second factor represents a simplified notion of sjrmmetry: 9i and 62 correspond

to the angles of the gray level intensity gradient of the two pixels (ti,ii) and (22,i2)' The

factor achieves the maximum value when the gradients of the two points are oriented in the same

direction. The gaussian represents a distance weight function which introduces localization in

the symmetry evaluation [10] (see also [5]).

3 — W, discrete wavelet transform is based on a pyramidal algorithm which split the image

spectrum into four spatial frequency bands contedning horizontal lows/vertical lows (//), hori-



zontal lows/vertical highs (/h), horizontal highs/vertical lows (11) and horizontal highs/vertical

highs {hh). The procedure is repeatedly applied to each resulting low frequency band result

ing in a m\iltiresolution decomposition into octave bands. The process of the image wavelet

decomposition is achieved using pair of conjugate quadrature filters (CQFs) [14] which acts as a

smoothing filter (i.e. a moving average) and a detailing filter respectively (see for example [11]

for details). We have used different orders from the Daubechies family basis, [4], to the define

CQF filters. For each resolution z, only the wavelet coefficients of the highs/highs hhi matrix

were retained and finally relocated into an final matrix HH (with the same dimension as the

original image) by the following combination:

HH = '£C{hhi) (3)
i=l

where n is the maximum depth of the pyramidal algorithm (n = 3 in our case) and where C(') is

a matrix operation which returns a copy of the input matrix hh by inserting alternatively rows

and colmnns of zeros.

4 — .F, a center-surround on/off quasi-receptive field mask, positive in the center and

negative in the periphery, is convolved with the image.

5 — 0, difference in the gray-level orientation, a statistical-type kernel, is analyzed in early

visual cortices. Center-surround difference is determined first convolving the image with foiu:

gabor masks of angles 0°,45®,90® and 135® respectively (see also [7]). For each pixels x^y, the

scalar result of the four convolutions are then associated with four unit vectors corresponding

to the fomr different orientations. The orientation vector o(a;,y) is represented by the vectorial

sum of these four weighted unit vectors. We define the center-surround difference transform

as follows:

0{x, y) = (1 - o{x,y) •m{x, y)) || o{x,y) |||1 m{x, y) || (4)

where rh{x^y) is the average orientation vector evaluated within the neighborhood of 7 x 7

pixels. The first factor of the equation achieves high values for big differences in orientation

between the center pixel and the surroundings. The second factor acts as a low-pass filter for



the orientation feature.

6 — 5, concentration of edges per unit area is determined by detecting edges in an image,

using the canny operator [2] and then congregating the edges detected with a gaussianof <7 = 3

pixeb.

7 —Mi entropy iscalculated as SSo P* ^^9 P* where p,- is theprobability ofthe gray level

%within the 7x7 surrounding of the center pixel.

8 — C, Michaebon contrast, is most useful in identifying high contrast elements, generally

considered to be an important choice feature for human vision. Michaebon contrast is calculated

as IK^m —LM)/{Lm + i'A/)!!? where Lm is the mean liuninance within a 7 x 7 surrounding of

the center pixel and La/ is the overall mean luminance of the image.

9 — , discrete cosine transform, DCT, introduced by [1], is used in several coding standards

as, for example, in the JPEG-DCT compression algorithm. The image is first subdivided into

square blocks (i.e. 8x8); each block is then transformed into a new set of coefficients using the

DCT; finally, only the the high frequency coefficients, the ones that are instead discarded in the

JPEG algorithm, are retained to quantify the corresponding block.

4 Clustering and sequencing

The algorithmic procedures above result in the defining of local maxima. Usually these algo

rithms operate at pixel resolution levels, so that it is important to cluster their selected image

element to provide regional ROb — each region consisting of a neighborhood collection of mul

tiple local maxima (Figure 1). The initial set of local maxima is clustered connecting local

maxima by gradually increasing the acceptance radius for their joining. Approximately 100

initial local maxima are thus reduced to about nine regions or clusters by setting the termination

decision to end the clustering process at this number of domains.

The ROI domains cm be assigned values depending upon the value of the highest local

maxima incorporated into that domain, or alternatively the nmnber of local maxima included.
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Figure 3: ROIs Sequence Comparisons. Picture transformations are a result of and provide
descriptions of actions of each algorithm (left column); two examples, S (upper), and S (lower).
After transformation, ten final ROIs are ordered by value and the constructed ordered sequences
(central column) were connected by vectors (see arrows) in analogy to EM sequences of fixations.
Two set of ROIs are finally combined (right panel) into a selected number of joined-ROIs, used to
define distance measures between the two sets.
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algorithms shown in Figure 3.



or using other criteria. Each of our IP algorithms, of course, contributes the intensity of

its selected parameter to finding the local maxima and the values of resulting clustered ROI

domains. The clustering algorithm is actually an eccentricity weighting algorithm, where even

lower local maxima that are eccentrically located can be selected to form a domain. Thus, the

resulting string of IP ROIs (in Figure 1, left-bottom panel, 15 final ROI domains are shown)

were similar in number to human EM fixation glances looking at similar pictures (Figme 1,

right-bottom panel).

5 Comparisons and sorting procedure

The ROI loci selected by our different IP algorithms and those defined by human EM fixations

can be compared. Comparison of final clusters of ROIs begins with taking two sets of ROIs

(Figure 3, middle, upper and lower panels) and clustering these two sets using a distance mea

sure derived from a k-means pre-evaluation. This evaluation determined a region for calling

coincident any ROIs that were closer than this distance and non-coincident for ROIs that were

further apart than this distance; the distance was about two degrees and similar in size to hu

man foveal spans. The final selection of joined-ROIs (Figme 3, right panel) then enabled a

similarity metric, 5p, to determine how close were the ROIs identified by two algorithms (as in

the example shown in Figure 3), or by two humans, or by an algorithm and a human. The

individual sources of the elements, that is the original ROIs, used in these final interactive steps

were preserved as circles and squares (Figure 3, right panel) to illustrate the procedure.

As mentioned above, ROIs are ordered by the value assigned by the image processing algo

rithm or by the temporal ordering of human eye fixations in a scanpath. Then, the joined-ROIs

can finally be ordered into strings of ordered points. Here, (Figure 3), we have for example:

strings = abcfeffgdc and string= afbffdcdf. The string editing similarity index Ss

was defined by an optimization algorithm [12] with unit cost assigned to the three different

operations deletion^ insertion and substitution.
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Figure 5: Triple Parsing Diagram. Three panels show comparisons of similarity indices, 5p, 5^,
for scanpaths produced by human EMs (h), by IP algorithms (a), and especially for comparisons

between IP algorithms and human scanpaths (a * h). Each of the panels is sub-divided into boxes
representing different combinations of comparisons between pictures, types of picture and algorithms.
Random correlations, i^a, are shown in lower middle box of each panel.

Sp A C H T X S W F

A 1 0.23 0.54 0.64 i 0.60 0.67 0.72 0J4 i

C 1 0.69 0.86 j 0.78 0.78 0.73 0.40 1

H 1 0.42 1 0.52 0.60 0.40 0.51 i

T 1 1 0A2. 0.42 0.47 0.281

X 1 0.83 0.87 0.66

s 1 0.78 0.85

w 1 0.51

F 1

Figure 6: Correlation Coefficients in Y-matrix Format. Four human subjects, (A, C, H, T)
and four algorithms «S, W, T)) have intra-grup correlation coefficients indicated in triangular
semi-matrices; for humans (upper left) and for IP algorithms (lower right). Inter-group comparisons
between subjects and algorithms in rectangle (upper right). Prom the data of this kind we have
computed average correlation coefl^cients or similarity indices for the parsing diagrams (Figure 5).
The a*h values (rectangle, average foreachcolumn) are 0.58,0.62,0.60,0.45, for the four algorithms:
an overall average of 0.56.



We can also create, based on the above mentioned joined-ROIs, markov transition matrices,

[Ml]s (Figure 4, S left matrix and T right matrix). The transition similarity index, St, is

based upon cross-correlation between the coefficientsof the [Ml]s.

Thus all of our comparisons yielded three different indices of similarity which tells us how

closely two set of ROIs resemble each other in locus, Sp, in sequence, Ss, and in transition from

one ROI to the next, St. For the example illustrated above (Figure 3) we have: Sp = 1,

Ss = 0.34 and St = 0.09.

5.1 Parsing diagram

The parsing diagram, (Figure 5) represents averages of sorting coefficients for the three measures,

Sp, Ss and St we have used: (a) for repetitive scanpaths {Rep), same subject looking at the

same pictme and same type at different times; (b) different subjects or different algorithms, same

picture and same type (Local = L); (c) same subject or same algorithm, different types and

different pictures (Idiosyncratic = /); (d) different subjects and different algorithms, different

types and different pictures (Global = G). For different types, but the same picture, we have:

(e), same subject or same algorithm {Rep{t)) and (f), different subjects or different algorithms,

(L(t)). In Figures 5 human EM values are labelled h; IP algorithms values are labelled a and

the comparison of IP algorithms and human is labelled a*h.

The most important distinction is that between Repetitive similarity. Rep, upper left box,

and Globalsimilarity, G, lower box: the Rep valuefor human with the Spmeasure, (Figure 5 left

diagram), equals 0.66. This means that the string for repetitive viewing of the same stimulus

for the same subject have loci that were 66% within fixational or foveal range — continuing

support for the scanpath theory.

For Global, all different subjects looking all differentstimuli had an Sp value ofonly 0.23. This

number was somewhat different from the expected Sp value of 0.15 based up random model,

Ra, considerations (bottom box of Figure 5). Comparisons among different algorithms are



generally similar, but perhaps lower than the Sp similarity indices among humans (see also [13]

for a previous preliminary result).

We also selected four of the algorithms that seem to cohere with the human subjects after

an overall viewing of the data (Figure 5), but further segregated to show each algorithm and

each subject separately (Figure 6); this coherence strengthens our overall result by documenting

stronger similarity indices among these four selected algorithms; note the high correlations

(average equals 0.75) among algorithms (lower triangle). We might further improve EM loci

prediction by choosing other sets of structurally different algorithms and combine them and the

ones used here in some optimal fashion.

The relationship between human fixation strings and IP algorithms ROI strings for different

subjects and different algorithms viewing or processing the same stimulus, that is the same

pictinre and the same type, tests the ability of BU algorithms to predict loci of human fixations

(third column, box L, Figure 5, Sp parsing diagram). The diagram shows the value for all

the four different types; the average value of 0.47 is very close to the similarity value of hiiman,

0.56, for local, L. Again we found support for this result from an earlier study, [13] and even

more support from our study of foiu- selected algorithms (Figure 6, rectangle) where the average

values was 0.55.

These quantitative data provide major support for our main result that IP algorithms, even

broadly selected, could predict human EM string fixation loci about as well as two different

human EM strings could predict each others loci.

An important finding in earlier studies, [12] was that human scanpaths were closelymatched

for string similarities and for markov transition probabilities. Our studies confirm these earlier

results; high repetitive similarities {Rep) were found for the same subject looking at the same

stimulus. The repetitive value for Sa and St were 0.59 and 0.29, approximately three to four

times as great as the Global value, which in turn was approximately four time the random value

(Figure 5, Ss and St).



5.2 Results with individual algorithms

When we studied the effects of the individual algorithms in generating clusters plus ROIs, they

varied greatly as expected, confirming our view that we had assembled a wide set of algorithms.

The aj-like mask was a poor predictor for two of the types and good with one; it appears to

be opposite in its effect on embossed and cartoon. The " < " -like mask was a good predictor

for all four types: it is not symmetrical so that we plan in the future to try different orientations

and perhaps different support-resolutions as in a wavelet fashion.

The symmetry transform, <S, was a good predictor for the original pictmre. The wavelet

transforms, W, seemed to be very good predictors for all types and without any poor predic

tions. This is probably due to the rescaling process of their basis function. 7i was poorly

related to the modified types, but worked well for the original picture. T was a very good

predictor for three of the types but was poor for the embossed figure, perhaps because it was

already spatially differentiated and the second differentiation, due to the Laplacian, introduced

some noise.

6 Discussion

In this paper, we have validated that a constellation of BU algorithms, suitably but widely

selected can predict the loci of human fixations, for the same picture and type modification;

this prediction is termed the a * h, local, L, relationship in our 5p parsing diagrams. Further,

this prediction is as good as the ability of one human to predict the fixation locations of another

subject; the h, local, L, relationship in our Sp parsing diagrams. Our residts indicate, however,

that the algorithms can not predict the sequential ordering of the subfeatmes used by a person,

S3 and St.

Our method provides a precise task for the image processing algorithms we have studied — to

predict human scanpaths, both loci and sequences of eye movement fixations or foveations. The

method also provides for quantitative measurements nf the accuracy of those predictions.



The wide selection of algorithms gave us an opportunity to study the differences and sim

ilarities in terms of the precise task we studied. These algorithm characteristics are of great

interest to us as indicating the general nature of an image and how it is processed either by

algorithms or by hmnans. However, we are concerned that we might need to provide weighting

coefficients for the different algorithms in order to optimize the predicting capabilities of the

ensemble.

Our scale of similarity indices is anchored at the bottom both by the random, Ra^ values

and by the global, G, values, that is for all subjects and algorithms and pictures and modifica

tions. The top of the scale is anchored for human studies by the repetitive, i2ep, value, the

closeness of fit of a single subject's scanpaths to her scanpaths with the same picture at another

time with the same task instructions. Can we similarly use trivial modifications of the pictures

to obtain Repetitive indices for the algorithm studies?

The clustering procedures we used followed a good deal of thought and some preliminary

studies. However, as we indicated above, the clustering procedure really acts to choose the string

of ROIs to be more eccentrically located than if we did not use the clustering algorithm. Thus

it might be termed a non-clustering clustering algorithm ! Our preliminary studies with fuzzy

clustering (impublished work in oiu: lab by Dr. UUi Oechsner of Hamburg University) has led

to a number of conjectures that might be tested in further experiments.

As I. I. Rabi said, esich scientific problem gives rise to several new problems, like the heads

of the Medusa when cut off. So we have found. How to collect and classify and relate even a

wider variety of image processing algorithms? What modifications of a picture leaves the picture

information relatively constant and what modifications strongly deforms the pictiure informa

tion? Finally, we intend to apply our methodology to a much richer collection of pictures,

scenes and works of art. These might range widely from natural and constructed landscapes

and city-scapes to groups of persons and animals and objects to single portraits and still lives.
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