

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TWO CYCLE-RELATED PROBLEMS

OF REGULAR DATA FLOW GRAPHS:

COMPLEXITY AND HEURISTICS

by

Praveen K. Murthy and Edward A. Lee

Memorandum No. UCB/ERL M97/76

31 October 1997

TWO CYCLE-RELATED PROBLEMS

OF REGULAR DATA FLOW GRAPHS:

COMPLEXITY AND HEURISTICS

by

Praveen K. Murthy and Edward A. Lee

Memorandum No. UCB/ERL M97/76

31 October 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

October 31,1997

Two Cycle-Related Problems of Regular Data
Flow Graphs: Complexity and Heuristics

Praveen K. Murthy

Department of Electrical Edward A. Lee
Engineering and Computer Science

(inuithy,eal)@eecs.beikeley.edu
University of California

Berkeley, Caiifbmia 94720

1 Abstract^

A regular data flow graph (RDFG) is a graph with a highly regular structure that enables its

description to beexponentially smaller than the description size for anordinary graph. Such graphs arise

when certain regular iterative algorithms (like matrix multiplication or convolution) are modeled using

dependence graphs. These graphs can beimplemented either onsystolic arrays, orwavefront arrays (WA).

Systolic arrays have a global time clock; operations arescheduled statically and executed according to this

schedule. The global clocking however, presents problems due to clock skewing in large circuits; hence,

wavefront arrays are an attractive alternative. Wavefront arrays use a dataflow method of execution, and

hence, do not require global synchronization. Array elements start computing whenever they have all of

their inputs.

Ina systolic implementation, thedependence graph cannot have any cycles since theexistence ofa

schedule depends ontheexistence of a schedule vector that hasnon-negative dotproduct with each depen

dency edge. However, a graph implemented on a WA may have cycles provided that the cycles do not

deadlock. Thereare a coupleof computational problems that arise in this context: the first is the detection

of deadlock; that is, to determine whether the graphto be implemented has a delay-free cycle. The second

is to determine the maximum cycle mean; this represents the iteration rate with which the graph can be

executed. While both of these problems are well knownand well studiedfor ordinarystatic, homogeneous

dataflow graphs, and can be solved with polynomial time algorithms, they have not been studied in the

context of RDFGs. Since RDFGs have an exponentially more compact representation, we determine the

complexity of thesetwoproblems in terms of this lowerrepresentation size.Weshow that theproblems are

1. Thisresearch is partof thePtolemy project, which is supported bytheDefense Advanced Research Projects Agency (DARPA),
the Stateof California MICRO program, andthe following companies; The AltaGroup of Cadence DesignSystems, Hewlett
Packard, Hitachi, Hughes Space and Communications,NEC, Philips, and Rockwell.

1 of 17

Introduction

NP-complete, and hence, no advantage can be theoretically gained from the smaller input size. We develop

some heuristics thatshould work well even if nottechnically in polynomial time with respect to the speci

fication size, especially for large RDFGs.

2 Introduction

Adata flow graph (DFG) isa directed graph where the nodes represent computations, and the arcs

communication channels and precedence constraints. Each node produces (consumes) one token onto

(from) each ofits output (input) arcs. An arc can have anumber ofinitial tokens (also called delays). Each

node has an associated computation time, that represents the number ofcycles it takes tofinish itscompu

tation. This dataflow model of computation is not the most general form ofdataflow; more powerful ver

sions include models where nodes can produce and consume a constant number oftokens ofdata perfiring

(i.e, not necessarily one), and models where nodes can produce and consume variable numbers of tokens

per firing.

Apath inthe DFG is some connected sequence ofedges inthe graph. The beginning ofthe path is

thenode from which the first edge is taken, and the end ofthe path is the node that atwhich the lastedge in

the path ends. Acycle isa path whose beginning and end are the same. The total delay count ofa path is

the sum ofdelays on each of the edges in the path. The total computation time of the path is sum of the

computation times ofeach ofthe nodes along the path. ADFG issaid tobein a deadlocked state if there is

at least one node in the graph that cannot be executed no matter how many times the other executable

nodes are executed. A node cannot execute if it does not have at least one token on each of its input arcs. A

DFG is said to bestronglyconnected if there is a directed path between any two nodes in thegraph.

The following property about dataflow graphs is easily seen to be true:

Property 1: A DFG deadlocks if andonly if there is some cycle whose delay count is 0.

Given a DFG,we are interested in the rate at which nodes can be executed. For acyclic DFGs, this

rate is infinity since every execution ofa node can proceed inparallel. If there are cycles inthe graph, there

is a well known lower bound on the achievable iteration period defined as

where the maximum is taken overall cycles c in thegraph, T{c) is thecomputation time of cycle c and

D{c) itsdelay count. This quantity isknown as the maximum cycle mean(MCM). The throughput ofthe

graph; that is, the rate at which nodes can beexecuted, is given by the inverse ofthe MCM. Even though

the number of cycles in a DFGcan be an exponential function of the size of the DFG, theMCM can be

2 of 17 Two Cycle-Related Problems of Regular Data FlowGraphs: Complexityand Heuristics

Regular Data Row Graphs

computed inpolynomial time using a binaiy search and theBellman-Ford shortest paths algorithm [9]. In

other words, it is not actually necessary to enumerate cycles as the definition suggests.

3 Regular Data Flow Graphs

AnRDFG [7]is a directed graph thatcanbe characterized by embedding it in a finite dimensional

index space such thateach node of thegraph resides at an index point. Foran n-dimensional index space,

we define the index vector asan n-tuple i = {i|, where each isan integer. Anode can now be

described by its location in the index space.

An RDFG has the following properties:

(1) It is defined over a contiguous, finite region of the index space.

(2) It hasfunctionally identical nodes, with identical execution times at every index point in this

region.

(3) Forevery node, each arc in thesetofarcs forwhich thenode is a terminal endpoint, hasitsini

tial point at thesame relative offsets. This means that if there is an arc from a to by then there is an arc

from every point a + jc to every point b + Xy where the addition for index points is the usual vector addi

tion.

(4) Forevery node, thecorresponding arcs have corresponding properties (namely, thenumber of

initial tokens).

Figure 1 shows an example of an RDFG. The big dots on the arcs denote initial tokens. For "boundary"

nodes, nodes thatarenearorat theedges of the region where thegraph exists, notall incoming or outgoing

arcshave a terminal node. In sucha case,it is conceptually useful to thinkof these"hanging" arcsas input/

output arcs from the graph; these are shown as gray arcs in the figure. An external device feeds in data

Fig1.An example RDFG. The dots on the arcs represent initial tokens, or delays.

TWO Cycle-Related Problemsof RegularDataFlow Graphs: Complexity and Heuristics 3 of 17

Regular Data Flow Graphs

along the input arcs, and collects data from the outputarcs. For the purposes of analysis, therefore, these

boundary nodes with their input/output arcs will not matter, and will not be shown in the other graphs

shown in this paper. Hence, the following property of an RDFG is obvious:

Property 2: Each node has the same number of incoming arcs as outgoing arcs.

An RDFG can be fully specified usingan n x m arc matrix A for an n -dimensional index space

where eachnodehas m incoming arcs, andan m-dimensional vector D thatspecifies thenumber of initial

tokens on each of the m arcs. In an n -dimensional index space, each arc is specified as an n -dimensional

vector. Hence, the RDFG in Figure 1 is specified by

A =
1 -1 0

0-1 1
, and D = [0,1,0]

In addition, weneed to specify the region R of the space where the graph exists. For a rectangular region

like below, it can be easily specified as two intervals whose cross product is the region where the graph

resides. More complicated polygons canbe specified by their vertices. In any case, it iseasily seen thatthis

description is very compact and highly scalable. Inparticular, if thenumber of arcs is constant, then theA

and D matrices are constant eventhough the number of nodesmaybe arbitrarily big. In fact,as longas the

numberof arcs m is given by m = O(logN), where N is thenumberof nodes, an RDFG has an exponen

tially smaller description size than an ordinary dataflow graph. Fortheexample inFigure 1, thecomplete

specification would be given as:

A,D,and/? = [0, Nj] x [0, ^3].

The size ofthis description isclearly G(logm) + log(A^ j) + log(A^2) •^ graph were described using an

adjacency list, the size would be 0{N2m) since there are nodes and each connects to m others

(in this example m = 3). Clearly, log(mNj exponentially smaller than mN^N2 -

A setof paths in the graph canbe represented by non-negative integer vector = [pj,..,

where p^ is the number oftimes an instance ofarc a- is traversed. If the path starts ata point x, then it

endsat point y = x + Ap. For a cycle that endsat x, we have y = x and hence, Ap = 0. So any vector

in the null space of A is a potential candidate for a cycle. The sums of the node computation times in a

path p can be computed as p^t, where r is a vector whose entries are all the same; recall that allnodes

have the same computation time in an RDFG. Since thecomputation times are thesame, wecan take it to

be one without loss ofgenerality. Similarly, the delay count ofa path p is given by p^D.

4 of 17 TWO Cycle-RelatedProblems of Regular Data FlowGraphs: Complexity and Heuristics

Cycle existence problems on RDFGs

Cycle existence problems on RDFGs

In [7], Kung setsup the MCM problem as oneof computing

cn (EQl)

where I is a vector ofones. This problem is stated tobean instance ofnonlinear integer piogranuning.

Kung claims that since the size ofthe problem formulation isindependent ofthe size ofthe graph, itcan be
solved more efficiently. However, Kung erroneously assumes inhis comparison that the complexity ofthe

MCM problem for DFGs is proportional to the number ofcycles in the DFG. As already mentioned, this is
untrue, and the MCM can be solved much more efficiently than enumerating cycles. Also, integer linear

programming is an NP-complete problem, and integer non-linear programming is even worse. We can, of-
course, represent an RDFG as a DFG and use a polynomial time algorithm (in the size of the DFG of-

course) tocompute the MC^. But we do not really know how this compares to the exponential complexity

(in the size of theRDFG) of thenon-linear integer programming formulation inequation 1.

Moreover, Kung apparently overlooks an important detail in his formulation given in equation 1:

given acycle vector c in the null space ofarc matrix A, how do we know for sure that this cycle actually

exists inthe graph? Recall that the graph only exists ina finite region ofthe index space. Hence, itcould be

possible that there is no way to actually form the cycle suggested by c since the graph may not be big

enough. Or, inthe MCM computation, the c that maximizes the quantity inequation 1may not exist in the

graph atall. In the following, we show that the problem ofdetermining whether anull vector c isa physi

cal cycle isNP-complete. However, this does not mean that we have to resort toa DFG representation: as

long as m issmall enough, anexponential time algorithm in m might bebetter than apolynomial time one

the DFG. However, the result establishes that there is theoretically little hope of making full use of the

smaller description size of the RDFG.

To motivate the problem, consider the graph inFigure 2.The figure shows anRDFG specified as

»̂ = [o 0o] »̂ = [0,2] X[0,2].

Fig2. Example that showsthe non-existence ofa cycle In the region ofthe graph.

Two Cycle-Related Problems ofRegular Data Flow Graphs: Complexity and Heuristics 5 of17

Cycle existence problems on RDFGs

So the graph occupies the 3x3 square cornered at the origin. The vector = [4 j ^ is in the null space
of A, and hence is a potential cycle. However, this cycle does not actually exist in the graph because the

graph is not big enough to enable traversing four instances of the arc [Lj and three instances of
^ ^. So given anull space vector, we would like to efficiently determine whether the cycle physically
exists in theregion where the graph exists. For simplicity, we assume that the graph existsin a rectangular

region. Formally,

Definition 1: The n-dimensional CYCLE EXISTENCE problem is thefollowing. Given an n x m matrix

A, and an integer vector c in the null space of A, and a rectangular region R given by

[0, /ij]X...X[0, n^], determine whether there is a point x in R and a path consisting of as many
instances of each arc as specified by c so that the path neverleavesthe region R.

Definition 2: The PARTITION problem is the following. Given a setA of m positive integers, determine

whether there is asubset 5 ofA such that 51 ^ ~ X ^*
ae S aeA-S

Theorem 1: The PARTmON problem is NP-complete [6].

Lemma1: In the 1-dimensional CYCLE EXISTENCE problem, a cycle starting from somepointx in the

region R = [0, r] exists in R iff it exists startingfrom 0.

Proof: Clearly, if the cycle exists and goes through 0 (that is, the 0 node is in the cycle), then the cycle

exists starting from 0. If the cycle does not gothrough 0, then the smallest index through which it goes is

some number in R; let this be y. Clearly, we cansubtract y from each index that is in the cycle andget

one that goes through 0; inother words, we can translate any cycle back to the origin.

Note that the above lemma does not hold in higher dimensions because the numbers in each

dimension cannot be treated independently.

The CYCLE EXISTENCE problem asdefined may noteven beinNPsince given anarbitrary null

vector, it is notclear whether the path (the precise order in which nodes are visited) can be written down

succinctly. Inother words, suppose that there arethree arcs, a^b^c. Suppose the null vector happens tobe

[2,3,3]^. However, the only way in which a cycle can be constructed in the region R might be via the

sequence abcbacbc. It is not clear whether this string can be written down more compactly. In general,

there might exist instances where the sequence of arcs traversed in theregion has length given by thesum

of the entries in the null vector; clearly, this is exponential in the size of the representation. However, we

can still look at the complexity of this problem if werestrict ourattention to null vectors whose entries are

all bounded in some manner.

6 of 17 TwoCycle-Related Problemsof RegularDataFlow Graphs: Complexity and Heuristics

Cyde existence problems on RDFGs

Definition 3: The 0-1-2 CYCLE EXISTENCE problem is the CYCLE EXISTENCE problem with the

restriction thateach entry in thenull vector c hasvalue drawn from theset {0,1,2}. Thatis,weonly con

siderthesetof cycles (i.e, a subset of thenullspace) where no arcoccurs more than twice ina cycle.

Theorem 2: The 0-1-2 CYCLE EXISTENCE problem is NP-complete.

Proof: The problem is in NP since given a sequence of arcs in the path, and the point x, we have to just

sumfrom x andensure that we nevergo out of the region. This can be done in polynomial timesince the

total length of thepath cannot be more than 2m. Toshow completeness, wereduce from PARTITION. Let

the m integers in an instance ofPARTITION be Cj, Define b = (^a^)/2. Clearly, ifapartition
S exists, then each sum in

1"= I "
ae S aeA~S

sums to b. Let the arc matrix in the instance of CYCLE EXISTENCE be defined as A=|aj
Hence, in this instance, n= 1. Clearly, ^ 1^^is in the null space of A; hence, this is the null vec
tor in our instance of 0-1-2 CYCLE EXISTENCE. Finally, let the region R be [0, b]. Thus, the RDFG in

this specification has nodes at each integerpoint in [0, b]. The arc specifiesthat there is an arc between

node 0 and , between 1 and 1 + and so on (see Figure 3). Clearly, a cycle that uses each arc a-

once, -b twice, and still stays in R must have the property that there is a subset of the a- that sum to b.

Similarly, if such a subset exists, then we can find a cycle that never leaves R. QED.

Another problem is that of finding a "minimal" vector in the null space of A:

Definition 4: The MINIMAL CYCLE VECTOR is the following. Given an n x m matrix A, and an inte

ger K, find a null space vector c such that the maximumelement in c is less than K. Note that there is no

requirement that the cycle represented by this vector actually exist; hence, no region is specified.

Corollary 1: The MINIMAL CYCLE VECTOR problem is NP-complete.

Proof: Membership in NP is trivial since it is just matrix-vectormultiplicationto verify that the result is the

0 vector. We use the same reduction from PARlll lON; that is, the matrix A is as in the proof of Theorem

§) @ @ ®

Fig 3. Graph used in the proof of Theorem 2.

Two Cycle-Related Problems of Regular Data Row Graphs: Complexity and Heuristics 7 of 17

Cycle existence problems on RDFGs

2. We let AT = 2. A cycle vector whose maximum entry is less than 2 for this A has to be a vector of 0-1

entries, and this would then solve the partition problem. Conversely, if the PARTITION problem has a

solution, then such a vector would exist. QED.

In the discussion on membership of the general CYCLE EXISTENCE problem in NP, we men

tioned that the presenceof arbitrary integers in the null vectorpresents problems since there does not seem

to be a way, in general, of representing such paths succinctly. In general, in combinatorial problems that

haveintegers in their input instances, there are two sources of complexity: the numberof discreteelements

(the number of integers, the number of edges or nodes etc.), and the values the integers can take in the

input instance. Hence, there are three "dimensions" to the complexity of the 1-d CYCLEEXISTENCE

problem: thenumber of entries in the arcmatrix m, the arbitrary values theytake, andthe potentially arbi

trary values in c.

Suppose that m is fixed. Then, the PARTITION problem can be solved in polynomial time: we

simply lookat all possible subsets, andsincem is not increasing, thenumber of subsets is constant. Hence,

the arbitrariness of the does not affect the complexity of PARTi riGN; only the number of them, m,

does.

We know that with the entries in c restricted to be 0-1-2 valued, the CYCLE EXISTENCE prob

lemis NP-compIete, meaning thatas m is increased, it is unlikely thatanalgorithm whose miming time is

a polynomial function of log(flj), log(i) and m exists. If m isalso fixed, then the 0-1-2 CYCLE EXIST

ENCE problem canbe solved in polynomial time also; simply look at allpossible ways of constmcting the

path. Since there area fixed number of arcs, and each occurs at most two times, we can find outwhether

there is a sequence thatnever leaves theregion. Hence, thevalues of theentries of A donotaffect thecom

plexity of0-1-2 CYCLE EXISTENCE. Soinreality, there are two "dimensions" tothe complexity: m, and

thearbitrariness of c. Hence, welookat thecomplexity ofCYCLE EXISTENCE when m is fixed but c is

allowed to have arbitrary entries.

Theorem 3: The 1-dimensional CYCLE EXISTENCE problem, with m = 2, is solvable in polynomial

time.

Proof: Since m = 2, the arc matrix has two entries. One of the entries must be positive and one must be

negative in order for there to be anon-negative null v^tor. Let the ap matrix A = [a, —b]. Let the region
bk ak

R = [0, r]. Any null vector c is of the form c =
Aa,b) {ayb}

and y. Suppose that Jk = 1. Consider any path that fraverses each of the two arcs as many times as given

by c. In orderfor the path to stay in R, it can never visita negative index, sincethe graph is only defined

8 of 17 Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics

, where (x, y) denotes the gcd of x

Heuristic approaches

over R = [0, r]. From the set ofpaths that obey this constraint, we can choose the path where the maxi
mum state visited is minimized. For example, let A= [2, -3], and c = [s ^^•O**® possible path that
does not visit any negative state is (2)(2)(-3)(2)(-3) ; all partial sums in this path are non-negative:
2,2+2 = 4,2 +2-3 = 1,2+2-3 +2 = 3,2+2-3 +2-3 = 0. Another possible path is

(2)(2)(2)(-3)(-3). The path (2)(-3)(2)(2)(-3) visits a negative index (-1). Of the two possible paths
that only visit non-negative indices, the maximum state visited by the first one is 4 while the maximum
state visited by the second path is6. Clearly, ifwe can compute the minimum maximum state visited over

all such paths (where the minimum state visited is 0), we can answer yes or no to the existence question
simply by comparing that value against r. It tums out that this problem is identical to the minimum buffer
scheduling problem for a 2-node SDF gr^h [1]; there it is shown that the minimum maximum reached is
given by a +b- (a, b). Hence, acycle with cycle vector c exists iff r>a +b-{a,b). If k> I ythen we
just repeat the path k times; this cannot increase the maximum state visited. Hence, the result holds for any

cycle vector c. QED.

This result can beeasily extended to 2 dimensions if the 2 x 2 arc matrix A has rank 1 (if it has

rank 2, then the null space has dimension 0 and the 0 vector is the only cycle vector). In the 1-d case, if

m = 3, the complexity of CYCLE EXISTENCE is open since the technique used above cannot be

extended easily anymore. Hence, it does not seem possible to get a closed form expression for the mini

mum maximum state visited over all paths.

5 Heuristic approaches

Although we cannot apparently get polynomial-time algorithms for cycle detection/existence

problems, we can adopt heuristic approaches that will definitely be much better in practice than resorting

to a full-flown graph description. In particular, suppose that the graph is big enough, say 1000 by 1000

nodes. We investigate some ways ofdetecting deadlock efficiently (even if not in time polynomial in the

size of the matrixdescriptions), and computing the MCM.

Basically, we are interested in solving the following problem:

find a non-negative, integer vector x such that Ajc = 0 (EQ2)

This will give us a vector that represents a cycle in a large enough graph. In the following, we study and

review some fundamental properties of the above equation. We will use thenotation x = (xj,..., x^) to

denote an m -dimensional column vector.

Two Cycle-Related Problems ofRegular Data Flow Graphs: Complexity and Heuristics 9 oil7

Heuristic approaches

5.1 Homogenous Linear Diophantine Equations

Equation 2 represents a system of linear equations whose coefficients areintegers; these arecalled

linear Diophantine equations. They are homogenous because the constant termis 0. Let

3 = {x:Ax = 0}

be the set of solutions of Ax = 0. A solution x is called irreducible if it cannot be represented as a sum

of other solutions in 3. In the natural partial ordering of tuples {x<y<^x^< y '̂Vi), a solution y is irre

ducible iff thereis no solution x suchthat jc < y. Hence, irreducible solutions are alsocalledmimmal; we

willuse the termminimal solution as it is easierto type. Clearly, 3 is closed underaddition and contains

0 as the zero element; hence, 3 is an additive sub-monoid.

The following characterization is fundamental:

Theorem4: The set 3 has a finite basis; that is, there are a finite numberof elements h- € 3 such that any

a: 6 3 can be represented as where areall non-negative integers.

Proof: Thetheorem canbe seen asa consequence ofHilbert*s famous finite basis theorem; hence, thebasis

is sometimes called the Hilbert basis for 3 [13]. There is also a direct way of determining its finite-

ness; we outline a method due to Grace and Young [4]. Considerjust one equation

"1*1+"2*2+= ^l)'l+V2+"+Vi.

where the Oj-, b- are all positive integers, and we desire a non-negative solution (x, y), where
X= (jCj,..., x^) etc. Clearly, the following mn solutions are all minimal (the rest of the variables in each
solution are 0):

Xr = y^ = g^g = gcd{a^yb^) V(1 <r<m, 1 (EQ4)

We can bound the values of x- in any minimal solution by

x-<b^ + ...+b^ (EQ5)

(the y case issynunetric). Indeed, suppose Xi> b^ + ... +b^ for some /. Then the right hand side ofequa

tion 3is greater than a^ib^ +... +b^), or hj (yj - fl,) +... +^„(y„ -«,) >0>meaning that at least one of
the yj >flj-. Hence, this solution cannot be minimal since one of the solutions in equation 4 is smaller.
Because of thebound, there areonly a finite number of tuples thatareminimal, and these will be thebasis

elements.

10 of 17 TwoCycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics

Heuristic approaches

Suppose that there isanother equation that also has tobesatisfied. The minimal solutions ofequa

tion 3 can be written as X= a^ y = Pi

' = ttp y = Pp
So any solutionto equation 3 can be written as

j: = r,ai + ... + /^a^

y = »,Pi +...+»pPp

where t- are arbitrary non-negative integers. We substitute the above values for x,y is the second equa

tion, and get a new equation relating the t-. This in turn has a finite basis, that can be determined by

exhaustive search, togive the set ofminimal solutions t = Yj, / = Y2» ~ Yo* solution can berep

resented as t = TjYi + ... +7'j,Ya» where the are arbitrary non-negative integers. We substitute this
back into the first equation to get

X —KjTj + ... +

y = + ... + X^T^

The minimal solutions are now just x = K^, y=Xj. Ifthere is athird equation, we can substitute the com
bination of these in andrepeat the process. Since thereare a finite number of equations in the system, the

basis is finite, and can be determined in this fashion. QED

determine the minimal solutions of Ax = 0, orExample 1: Suppose A=y ^ ^ .We need to detei
U JCj +*2 = JC3 +

2xj + X4 = 2x3 + X3

The boundestablishes that for the firstequation, x-< 2 for each i in any minimalsolution. By search, it is

easily seen that (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1) are the only minimal solutions. So any

solution Xcan be written as x = (fj + f2, + ^4, + ^3, ^2 + ^4). Substituting this into the second equa

tion yields rj +3^2 = U• minimal solutions to this equation are

(1,0,0,1), (0,1,1,0), (0,1,0,3), (3,0,1,0). So r = (Tj + T, + 3T^). Substi

tuting back, we get x = (Tj + 72+ ^3+ ^74,7j + T2 +3T^ +74,7j + 72+474,7j +72+473). So

the minimal solutions to the system are (1,1,1,1), (1,1,1,1), (1,3,0,4), (3,1,4,0), obtained by set

ting each of the 7^- = 1, Tj = 0,7 /, i = 1,2,3,4. Eliminating redundant solutions gives the final set
as (1,1,1,1),(1,3,0,4),(3,1,4,0).

The bound givenby equation 5 (for one equation)was strengthened by Huet [5]:

Xj- <max{bj)y yj<max{a-) (EQ 6)

Lambert [8] gives an even sharper bound:

Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics 11 of17

Heuristic approaches

jcj + ... + <max{b^), y, + ... + <max{a-) (EQ 7)

It is easily seen that this bound is tight as there are minimal solutions that meet it with equality (for

instance, the minimal solutions given for one equation in example 1).

Even with the sharpest bound, there canbe an exponential number of minimal solutions even for

one equation. The situation quickly gets worse in the procedure given in the proof above when multiple

equations are involved. However, the number of minimal solutions to the whole system will be less than

the number for any subset of the equations; so these bounds are ultimately notenough to tellus anything

about the entire system.

Pettier [12] gives the following bound for systems of equations using geometric arguments. Let

||ML = max^ g3IUIL. where \\x\\^ = max{\xj^). Let be the largest absolute value of the minors of
order r of A (a minorof order r of matrix A is thedeterminant of an r x r submatrix of A). Then,

|MLS(/i-r)D^ (EQ8)

where n is the number of columns of A.

For the matrix in example 1, we get £> j = 2, D2 = 4. So ||Ml|„ <3x2 = 6 and ||M||̂ <2x4 = 8. So
6 is the smallest bound in this case, and is not tight.

5.2 Deadlock detection

The graph deadlocks ifthere is acycle c such that cs 3 and c^d = 0 where d is the delay vec
tor. Since both c,d are non-negative, c^d = 0 iff = 0 whenever d^ >0 and d^ = 0 whenever c,- > 0.

Setting Cj- = 0 for an i where d- >0 eliminates column i from A; hence, the deadlock detection problem
becomes one of solving a smaller system A'c* = 0, where A' is thesubmatrix A with thesetof columns

{a^:d^ 0} removed. Deadlock occurs iff this system has a non-negative integral solution and the graph
is big enough that thecycle exists in it.Techniques fordetermining a solution aregiven in5.4.

S3 Maxmium cycle mean

The following lemma shows that minimal solutions are sufficient todetermine themaximum cycle

mean in the RDFG.

Lemma 2:Suppose that Cj, C2 e 3, a, p>0, and c = acj + Pc2. Then

12 of 17 Two Cycle-Related Problemsof Regular DataFlow Graphs: Complexity and Heuristics

Heuristic approaches

yd^"""'\ci^ cjd]'
Proof: Recall that I = (1,1,1). Letting Oj = cfLoj = = cjd,b2 = c^dylet

=

aai +pflj . 1
, A,i = — - Aj -Oti^j + Cj'i/ ^2

We assume that bYyb2>0 since otherwise the cycle is deadlocked. Then
ab^X^ +Pb2X^ = afli +Pfl2 = afeiX.,+p>.2^2- + ®implying that
one of the terms is positive and one negative since a, p, hj, b2>0. QED.

Hence, we do not need to consider non-minimal solutions since there will always be a minimal

cycle that has larger MCM. One heuristic strategy for determining the MCM ina large enough graph isto

use the bound on minimal solutions given in equation 8, and constmct a "minimal" RDFG that provably

contains allof the minimal cycles. On thisgr£q)h, wecanusestandard graph techniques based on theBell

man-Ford shortest paths algorithm [9] for determining the MCM. However, constructing this minimal

RDFG appears to be non-trivial; in the following we give onemethod that is notoptimal in general. We

then givea conjecturethat, if correct, couldgivemuch morecompactgraphs.

Recall that we were restricting our attention to RDFGs specified over rectan

gular regions. One technique for constmcting an RDFG that contains all of the mini

mal cycles is to simply map out a tour where each segment of the tour consists of

(n- r)Dj. instances ofeach arc. The vectors are separated into four groups: group /

contains thevectors thatpointin the /th quadrant in the plane. Thequadrants areshown in the figure to the

right. Thevectors aresorted bytheir gradients, with steepest first. We then constmct a walk bytaking allof

the vectors in group (1), in the sorted order. We continue the walk by choosing vectors in group (2) in

reverse sorted order, then group (3) vectors in sorted order, and finally group (4) vectors in reverse sorted

Older. We call this the maximal tour. The RDFG is then created over the smallest rectangle that contains

this tour. This procedure can be easily generalized to higherdimensional RDFGs.

Suppose now that c is some minimal cycle. Clearly, the maximum horizontal distance that this

cycle covers has to less than thehorizontal distance spanned by themaximal tour given above. Similarly,

the maximum vertical distancespannedby anyminimalcycle is also less thanthat spannedby the maximal

tour. Hence, the minimalcycle is containedin a rectanglethat is smaller than the rectangularregion over

which thegraph exists in thesense thattherectangle containing theminimal cycle is contained in thegraph

region. Hence, the constmctedgraph regioncontains all of the minimalcycles.

Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics 13 of17

(4) (1)

(3) (2)

Heuristic approaches

Thebound given in equation 8 is not tight, as mentioned, andcan thusleadto graphs much bigger

than necessary. Even if the bound were tight, the graph constructed might still be bigger than necessary

since wedo notneed to traverse each type of edge in series as is done in theconstruction above. Thefol

lowing example elucidates this.

Example 2: Suppose A = 1 1 -1 -ll
2-2-1 ij

The minimal solutions that we determined in example 1 were:
2

(1,1,1,1), (1,3,0,4), (3,1,4,0). Thecomputed bound is ||Ml|^<3x2 = 6, whereas the tight bound,

byexamining theminimal solutions, is 4. Using thetight bound of 4, weconstruct thegraph byconstruct

ing the tour, starting fr^om an arbitrary point, of four instances of ^^, then four of ^and so on.

The maximum horizontal distance spanned is 8 and the maximum vertical distance is 12. Hence, the

"minimal" graph constructed in this case exists over an 8 x 12 rectangle and contains 96 nodes.

However, consider the 3x4 graph shown in figme 4. This graph contains both of the cycles

(1,3,0,4), (3,1,4,0):

(0,1) (1.3) (2,1) -> (1,2) ^ (0, 3) -»(1,1) ^ (0,2) (1,0) (0,1), and

(0,1) (1,3) (2,1) ^ (1,0) (2,2) (1,1) (0,0) (1,2) ^ (0,1). Of course, it contains

(1,1,1,1): (0,0) (1,2) -> (2,0) (1,1) -^ (0,0). So, this 3 X4 graph is the smallest graph that

contains allof theminimal cycles for this example, and the 8x12 graph constructed above is larger than

necessary.

One reason why the graph that results from our construction issobig isourinsistence on spanning

the maximum possible distance horizontally and vertically. This is done to make theproof of correctness

simple, but we conjecturethat the following is also trae:

Fig 4. Minimal graph for example 2.

14 of 17 Two Cycie-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics

Heuristic approaches

Conjecture 1: A minimal cycle c exists in the graph if it is possible to find a path in the graph that

traverses eacharc lM|l^ times, without repeating any arc.

If the conjecture is true, then we can construct a "minimal" tour where we attempt tostay asclose

tothe starting point aspossible, without repeating any arcs. The smallest rectangle that contains the result

ing tour is then the "nainimal" graph. For example 2, the graph constructed using this type of heuristic

(with the tight bound of 4) results inan 3x 5 graph, which isquite close tothe optimal solution.

Note that the final qualifier in the conjecture above, "without repeating any arc", is necessary as

otherwise, the minimal tourfor the above example would resultin an 3 x 2 graph thatdoesnotcontain all

of the minimal cycles.

Another heuristic is to simply enumerate the cycles. This is done by enumerating the minimal

solutions in 3 ; algorithms aregiven in [2][3][12]. It isnot clear which approach will bemore beneficial in

practice.

5.4 Integer programming techniques

Since equation 2 is an instance of integer linear programming (ILP), we review some techniques

thatcanalsobe usedto solveit; in particular, thesetechniques are needed to solve the deadlock problem as

defined in section 5.2.

A matrix U is called unimodular if it is integral and has a determinant of ±1. A matrix of full

row rank is said to be in Hermite normal form (HNF) if it has the form [5 q], where 5 is anon-singu
lar, lower triangular matrix, in which >0 Vi , b^j ^ 0 and for i>j.

Theorem5: If A is an m x n integermatrix, with rank{A) = m, then there existsan n x n unimodular

matrix Csuch that AC = [5 where Bis in HNF, and H~^A is an integer matrix.

Proof: See [11] for a proof.

The HNF can be determined in polynomial time.

The basic integer linear programming optimization problem is the following:

max{cx:Ax < b} (EQ9)

where A^b,c are integral matrices andvectors, thesolution vector x is required to be integral. Theassoci

ated feasibility problem is to find an integer vector x such thatthefollowing holds, where again thematri

ces and vectors are all integral:

Two Cycle-Related Problems of Regular Data Row Graphs: Complexity and Heuristics 15 of17

Heuristic approaches

{x:Ax<b} (EQIO)

It can be easily shown that if the feasibility problem can be solved, than the optimization problem can be

solved using a polynomial number of calls of the feasibility solving algorithm. The feasibility problem is,

however,NP-complete. So is the following feasibility problem:

{x:Ax = I?, j:>0} (EQll)

where we desire a non-negative vector x.

5^ Determining the null vector efficiently using Lenstra's algorithm

Interestingly enough, if the number ofcolumns of the matrix A is fixed, then allof the above prob

lems can besolved inpolynomial time byLenstra's algorithm [10]. Inother words, thecomplexity of these

problems does not arise because of the arbitrary integers that are allowed in the problem instance; rather,

they arise due tothe combinatorial aspect: the number ofcolumns. The precise statement ofLenstra's the

orem is:

Theorem 6: [Lenstra] For each fixed natural number n, there exists a polynomial time algorithm which

solves the ILP problem inequation 9,where A has rank atmost n, and where input data are all rational.

Hence, if either the number of columns or the number of rows is fixed, then the ILP problem in

equation 9can besolved inpolynomial time. From the above, we can prove the following:

Corollary 2: For fixed natural numbers n and m, there exists a polynomial time algorithm which solves

the DLP problem inequation 11, where A is « x m, and where input data are all rational.

Proof: Suppose that A has full row rank n, and has m columns. Then we can find an mx m unimodular

matrix U such that AU = [fi (^ •For any integer vector x, there is an integer vector y such that
X=C/y. Hence, Ax =biff AUy =b= (^^-Let U=[t/j J/j], where (/j is mx/i,and I/j is
mx(m-n), and y= jyj where yj has n rows and y2 has m-n rows. We can solve for
yj = B~^b. We need to determine y2 such that Uy = x^ 0, or problem is an
ILPproblem in m- n variables, and canbe solved using Lenstra's algorithm. QED.

Practically, the conditions of the corollary will usually hold since the number of rows in the arc

matrix is some small fixed number (like 2 or 3 for 2 or 3 dimensionalRDFGs), and the number of columns

is also likely to be small in practice (since each node will have small degree). Hence, we can find a non-

negative nullvector, representing a potential cycle, efficiently in suchcases.

16 of 17 TwoCycle-Related Problemsof Regular DataFlow Graphs: Complexity and Heuristics

Conclusion

6 Conclusion

We have studied twoproblems concerning cycles in RDFGs in thispaper: deadlock detection and

computing the maximum cycle mean. Since RDFGs can berepresented very compactly, ourintention was

to smdy thecomplexity of these two problems in terms ofthecompact representation. We have shown that

these problems are NP-complete. We have then given some heuristic techniques for determining these

quantities; these techniques should bebetter than those currently known in theliterature, although wehave

made no attempt to quantify the improvement, if any, in this p2q)er.

7 References

[1] S. S. Bhattacharyya, R K.Murthy, E. A.Lee,Software SynthesisfromDataflow Graphs, Kluwer Academic Pub
lishers, 1996.

[2] E. Contejean, H. Devie, "AnEfhcient Incremental Algorithm for Solving Systems of LinearDiophantine Equa
tions," Information and Computation, Vol. 113, No. 1, August 1994.

[3] E. Domenjoud, "Solving Systems of Linear Diophantine Equations: AnAlgebraic Approach," Mathematical
Foundations ofComputer Science, 16th Intl. Symposium, I^inierz, Dolny, Poland, September 1991.

[4] J. H. Grace, A. Young, The Algebra ofInvariants, Cambridge University Press, 1903.

[5] 0. Huet, "AnAlgorithmto Generatethe Basisof Solutionsto Homogenous LinearDiophantineEquations,"
Information Processing Letters, Vol.7, No. 3, April, 1978.

[6] R. M. Karp,"Reducibility Among Combinatorial Problems," Complexity of Computer Computations, Miller
and Thatcher Eds, Plenum Press, NY, 1972

[7] S. Y. Kung, VLSIArray Processors, Prentice Hall, 1988.

[8] J. L. Lambert, "Un Probleme d'accessibilite dans les reseaux de Petri," Ph.D thesis. University of Paris-Sud,
Orsay, France, 1987.

[9] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart,and Winston, 1976.

[10] H. W.Lenstra, "Integer Programmingwith a Fixed Numberof Variables," Mathematicsof OperationsResearch,
Vol. 8, 1983.

[11] G. Nemhauser, L. Wolsey, Integer and Combinatorial Optimization, Mley, 1988.

[12] L. Pottier, "Minimal Solutions ofLinear Diophantine Systems: Bounds and Algorithms", Rewriting Techniques
and Applications, 4th International Conference, RTA-91 Proceedings, Como,Italy, 10-12April 1991.

[13] A.Schn}vcT,Theory ofLinearand Integer Programming, Wiley, 1986.

TwoCycle-Related Problems of RegularDataFlowGraphs: Complexity and Heuristics 17 ofl7

	Copyright notice 1997
	ERL-97-76

