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Using Combinational Verification for Sequential Circuits

Rajeev K. Ranjan* Vigyan Singhal^ Fabio Somenzi^ Robert K. Brayton'*

Abstract

Retiming combined with combinational optimization is a powerful sequential synthesis method.
However, this methodology hasnot found wide application because formal verification of sequential
synthesis is not practical and current simiilation technology requires the correspondence of latches
for ease in the detection of errors. We present a practical verification technique which permits such
sequentied synthesis for a class of circuits. In particular, we require certain constraints to be met
on the feedback paths of the latches involved in the retiming process. For a general circuit, we can
satisfy these constraunts by fixing the location ofsome latches, e.g., by making them observable. We
show that implementation verification afterperforming repeated retiming and synthesis on this class
of circuit reduces to a combinational verification problem. We also demonstrate that our methodology
covers a large class of circuits by applying it to a set of benchmarks and industrial designs.

1 Introduction

In combinational synthesis [1, 2], the positions of the latches are fixed and the logic is optimized. In
retiming [3,4], the latches are moved across fixed combinational gates. The effects ofretiming are - changes
in the number oflatches (thereby leading to increase/decrease in area) and increase/decrease in the cycle
time (leading to slower/faster clock rate). Aside effect ofretiming is that it enables interaction between
different combinational logic blocks. Hence retiming followed by combinational synthesis enables logic
optimization which would not have been possible by combinational optimization alone. Combinational
synthesis generates new possibilities for the latch locations perhaps leading to further optimization. A
sequence ofretiming and combinational resynthesis steps can provide powerful optimization ofasequential
circuit. After the initial algorithm proposed in [4] for a simple circuit containing single clock edge-triggered
latches, many advancements were made in terms ofefficient implementation and applicability ofretiming
with more complex memory elements. In particular, techniques given in [5, 6] can be applied to large
sequential circuits. Retiming level-sensitive latches was addressed in [7, 8]. Recently, Legl et al. proposed
retiming techniques for edge-triggered circuits with multiple clocks and load enables [9]. They introduced
the notion of a latch class d = {CLK,LE), which is all latches connected to clock signal CLK and
load signal LE. The retiming problem for multiple-class sequential circuits was reduced to anequivalent
retiming for single class sequential circuits, thereby exploiting performance enhancements made in that
domain. Since mostofthe industrial designs contain latches withdifferent loadsignals andmultiple clocks,
their technique further improves the applicability of retiming to such designs.

Retiming and resynthesis, though less powerful in theory than full sequential optimization (based
on unreachable states, input/output don't care sequences), covers a wide part of the optimization space.
However, thistechnique hasnothad much success inobtaining a plax:e intraditional synthesis methodology.
One of the main bottlenecks has been the lack of efficient verification tools to verify the functionality of
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the optimized design. The verification complexity of a retimed and resynthesized design is not formally
known. It is conjectured to be harder than the NP-hard class of problems. On the other hamd, the
verification problem for combinational logicoptimization is a relatively easier problem in practice. Much
work has gone into combining structural 2uid functional techniques to obtain verification algorithms that
can deal with reasonably large industrial circuits [10, 11, 12].

We propose a methodology which reduces a sequential verification problem into an equivalent combi
national verification problem for a class of circuits. This allowsexploitation of the advancements made in
the field of combinational verification and use its powerful techniques to perform verification. Our method
requires that for each latch with a feedback path, its next state function should be positive unate in the
latch vauriable. Later we will show that the scope of this methodology allows i) the presence of self-loops
on latches, ii) pipelined circuits where the latchescannot be retimed to periphery, iii) presence of latches
trapped inside a combinational block iv) circuits with load-enabled latches and v) circuits where latches
conditionally update their contents. Typically the industrial designs consists of two kinds of latches. The
first kind constitute small finite state machines. Each such state machines are strongly connected. These
machines interact with each other via the acyclic network of latches of second kind. In general, designers
want to preserve the locations of the latches that hold the states of FSM (the first kind), since they want
to monitor simulation results. Fixing some latch locations breaks the feedback paths and as a result, the
circuit might satisfy our constradnt. In case the givencircuit still fails our constraint, weexpose a minimum
number of latches making their locations fixed. Then we perform retiming and resynthesis optimizations
on the modified circuit. In practice, our approach does not incur significant optimization penalty due to
this modification.

The outline of the paper is as follows. In Section 2 we present previous research in the area of
sequential verification. We establish the notation, terminology, and our notion of equivalence in Section 3.
In Section 4 we describe the basic idea behind our work and give appropriate definitions. In Section 5
we discuss our technique for a circuit with no feedback latches. In Section 6 we present the extension to
include circuits containing feedback latches. The details of the experimental setup smd results are given
in Sections 7 and 8 respectively.

2 Previous Work

Many researchers have investigated the problem of sequential equivalence checking and in particular ver
ification of retimed circuits. A popular approaw:h is to compose the machines together and traverse the
state space of the product machine. Explicit state enumeration techniques perform an explicit traversal
of the state space. Due to the explicit nature of this technique, it is limited to only a small number of
state elements. Symbolic techniques [13, 14] perform the state space traversal of the product machine.
In these approaches the circuit is modeled as a finite state machine and the outputs are evaluated as
functions of present state and primary inputs. Equivalence between two circuits implies identical values of
corresponding outputs in all reachable states. In this technique, the size of the underlying data structure
(some form of decision diagram) does not depend on the number of states or the state elements in the
circuit. These techniques have been able to dead with up to a few hundred latches. However, the capability
of the state-of-the-art symbolic methods falls below the smallest size designs being optimized in industry.

In [15], a technique is described where sequential optimization is performed on a modified circuit
(where each pair of states can be distinguished by applyingjust one primary input). The modified circuit
is obtained by making some latches observable which in turn restricts the amount of optimization that can
be performed. The theoretical complexity of their verification problem remains PSPACE-complete (the
complexity of an arbitrary sequential equivalence check). However, on a practical note, their technique
requires state space traversal of individual machines as opposed to the product msu:hine. They produced
results on relatively small MCNC and ISCAS benchmarks because it was not possible to perform single



machine state space traversal for large ones.
In [16], a combination ofBDD-based and ATPG-based approaches is presented. This technique relies

on hnding equivalent points in the two circuits and thesymbolic justification requires thecomputation of
the transition relation forthe productmachine. Theygave results on circuits optimized by "script.rugged"
inside SIS. Thisoptimization ismostly combinational and only redundancy identification andremoval leads
to minor sequential changes.

In [17], a structural technique for sequential verification ispresented. The equivalence is performed by
expanding thecircuit into an iterative array and by proving equivalence ofeach time frame by well-known
combinational verification techniques. Their technique relies on finding the logic transformations at each
time frame. They show results on ISCAS benchmarks, where an optimized circuit isobtained byjust one
step ofcombinational optimization (using fx in SIS) followed by retiming. Application oftheir approach
to optimized circuits obtained by a sequence ofretiming and resynthesis operations seems difficult.

These solutionscan be broadly divided into two categories. The solutions in the first category attempt
to solve the general sequential equivalence problem [13, 14, 16, 17]. However, due to complexity of the
problem, the proposed solutions are either limited to relatively small size circuits or tocircuits which have
undergone relatively fewer optimization transformations.

The second approach is to trade the optimization capability with the verification complexity. In
this approach, the sequential optimization is constrained in order to reduce the verification complexity.
In particular, by making all the latches observable, the sequential synthesis reduces to combinational
optimization leading to combinational verification problem. Solution proposed in [15] falls in this category.
Our methodology can also be viewed as offering another point in the tradeoff curve between constraints-
on-synthesis versus complexity of verification [15].

We propose a technique which reduces the sequential equivalence problem to an instance of combi
national equivalence; hence it can be applied in practical verification environments. For each latch, we
impose certain constraints on the feedback path (if one exists). If the constraints are not met in the
original circuit, we expose a minimum number of latches in order to satisfy the constraints. We allow
arbitrary sequences of retiming and synthesis operations for logic optimization. Also, unlike structural
based approaches [16, 17], our technique does not rely on the structural similarity between the circuits, we
can deal with circuits which have gone through a sequence of retiming and synthesis optimizations. The
techniques proposed apply to circuits containing edge-triggered latches (both regular and load-enabled).

In industrial design environment, combinational verification is applied to sequential circuits. However,
this requires that little or no retiming is performed. These constraints limit the scope of retiming and
synthesis transformations drastically. By contrast, our approach allows an arbitrary number ofretiming
and combinational synthesis transformations since it does not rely on structural similarity or matching
state-bits.

3 Preliminaries

3.1 Circuits and Finite State Machines

A sequential circuit is an interconnection of combinational gates (no combinational cycles) and memory
elements along with input and output ports. Typically various notions of sequential circuits differ in the
definition of memory elements. We focus on sequential circuits where all the memory elements are edge-
triggered latches driven by the same clock (single phase). However, these latches can have load-enable
signals, sequential circuit is given as C = [1,0,0,L), where I,0,G, and L are sets of inputs, outputs,
gates, and latches respectively. Each latch / GL is a pair I = (x,e), where x is the output signal of the
latch and e is the load-enable signal. Fora latch without anyload-enable signal (also referred to as regular
latch in this paper), we assume e = 1. Similar to the notion in [9], we define a latch class cl= (e), which



is all latches that have the the same load-enable signal e. This classification is important during retiming
transformations, since latches can merge as the result of a move only if they belong to the same class.

3.2 Notion of Equivalence

Several notions of sequential equivalence are proposed in the literature. For circuits with a unique initial
state, the "reset" equivalence is checked for all the states reachable from the respective initial states. For
multiple initial states, the followingnotion of equivalence is used: two circuits Ci and C2 with initial states
set and S/j respectively are equivalent if and only if for each state s G5/^, there exists a state t € Sj^
such that Ci and C2 are reset equivalent for these initial states smd vice versa. For circuits with unknown
initial state, several notions of equivalence have been proposed: post-synchronization equivalence [18],
sede-replaceability [19], circuit-covering [20], and 3-valued equivalence to name a few.

Similar to 3-valued equivalence, we do not assume a power-up initial state for the latches. Instead,
we assume that at power-up each latch has a non-deterministic Boolean value. Note that, this does not
prevent the design from having a reset state for some latches which is activated when the reset line is
pulled or a reset sequence is applied.

Since the power-up state is non-deterministic, the circuit behavior may not be deterministic for some
input sequence. Given a circuit C with L latches, and an input sequence tt, the output function Oc('r) = o
if the circuit produces output 0 on input sequence it from every power-up state (in 2'̂ '); if the circuit
produces two different outputs o\ and 02 on input sequence tt from two different power-up states, we say
that Oc(?r) = J-, where ± denotes an undefined value.

Definition 1 (Exact 3-Valued Equivalence) Two circuits Ci and C2 are exact S-valued equivalent if
and only if for any input sequence it: Oci{^) = Oca(''').

Notice that ± is somewhat similar to the value 'X' used in conservative 3-values logic simulation.
However, ± gets rid of the conservative effects of 3-valued simulation: a 3-valued simulator may incorrectly
say that a signal is *X' because it does not have the ability to correlate the various instances of X values
as illustrated in Figure 1. Circuits 1(a) and 1(b) are not 3-valued equivalent, but are equivalent by our
definition.

(a) (b)

Figure 1: Example of circuits which are not 3-valued equivalent but are equivalent in our notion.

In the next section we present our technique to derive a combinational representation of the sequential
circuits. In Sections 5 and 6 we apply it to sequential circuits without and with feedback respectively.



4 From Sequential to Combinational

We reduce the problem of sequential verification to an extension of combinational verification. The goal
of our technique is to obtain a canonical acyclic combinational circuit from a given sequential circuit.
Towards that we give the following extensions to regular Boolean functions.

t / 6 Z Represents current time

T : {r GZ; r < <}

4.1 Clocked Boolean Function

Definition 2 (Clocked Booleeui Function) A clocked Boolean function (CBF) is defined for circuits
containing combinational gates and regular latches. Given a circuit C, the CBFfor the circuit represents
the functionality ofthe outputs. This functionality is given in terms ofinput values in multiple (but finite)
clock cycles. Formally, a CBF for the output of a circuit, with n inputs and latch depth d is a Boolean
function F : W*'' M. For a signal s in the circuit, the CBF of the signal s(<) at time i is defined
inductively as follows:

• If s is the output of a gate C, the corresponding CBF is the functional composition of the CBFs of
its fanins at the same time instant, i.e., s{t) = fg{yi{t),y2{l)i ••• jyn(t))> where yi,y2i -- iVn
the fanin signals of G, and fg represents its functionality.

• If s is the output of a latch, then the CBF is the value of its fanin after one clock cycle, i.e.,
s{t) = y{t —1), where y is the input of the latch.

• Ifs is the primary input of the circuit, its CBF is an independent input variable s{t). Note that s(<)
and s(<') for t :^t' are different independent variables.

We illustrate this concept using the followingexamples:

W Y-

Z-

(a) (b) (c)

Figure 2: Functionality of AND gate and a latch.

w

The function fx for the output of the AND gate is nothing but the logical AND of the functions at
the input, i.e., i(<) = 3/(<)z(<). The function for the latch is interpreted as the function of the latch input
signal at the previous clock cycle, i.e., = x{t —1). If we put the latch and the AND gate together as
shown in Figure 2(c), the functionality of the latch output in terms of the primary inputs is given by.

{t) = x{t - 1) = y{t - l)z{t - 1)w



Figure 3: Example of a sequential circuit: latch trapped within a combinational block.

Consider the circuit given in Figure 3. The output function is given as:

o(t) = c(<)d(<)
d{t) = c(/ —1)
c{t) = 6(<)a(<)

b{t) = a{t —1)
o(<) = [a(< - 1)e a{t)] A[a(< - 2) 0 a(< - 1)]

Essentially, the output function depends on the value of input a in three different clock cycles and we
have obtained the CBF for the output.

Unlike the regular Booleanfunctions which give the valueof a signal based on the assignmentof input
values for one time instant only, the CBF gives the value of a signal for input vsdues delayed by finite
number of clock cycles. This notion is very similar to the notion of Timed Boolean Function given in [21].
In [21], similarexpressions are obtainedfor the signals which integrateboth timingand logical functionality
and generalize the conventional Boolean functions to the temporal domain. These expressions were used
in timing analysis, analysis and optimization of wave-pipelined circuits, and performance validation of
circuits and systems.

4.2 Event Driven Boolean Function

First we define some notation.

p,(r) : T
P =

Boolean predicates over time
Set of Boolean predicates

: E E P''} Set of events

where elements ofP* are denotedby [pi,p2>••• >Pfc] sid eventP € E is an ordered set of timed Boolean
predicates.

Next we establish the time instant defined by an event. We define the function t; : E T as follows:

7/([]) = i empty event denotes the current time

wr« « - / -<»if^([Pi.P2,... ,Pn]) = ^»?llPi>P2, •••tPn\) y maxr{r €>l([pi,P2i •••»Pn])} otherwise
where

A{\PuP2,-.. ,Pn]) = {r< I?([P2,P3,... ,Pn]) :pi(r)}

Intuitively, for an event P € E, consistingof Boolean predicates over time, t){E) gives the most recent
time instant after which all the Boolean predicates in E have been active in the order in which they are
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listed. If the Boolean predicates in an event cannot be active in the order they are listed, r}{E) = -co,
indicating an undefined value.

Using the rj notation, we now define the next extension to regular Boolean function.

Definition 3 (Event Driven Boolean Function) An event driven Boolean function (EDBF) is de
fined for circuits containing combinational gates and enabled latches. The EDBF for the output of a
circuit C, with n inputs and k distinct events, is a Boolean function f : W*'̂ B. For a signal s in C,
and an event E, the functionality of $ at time ri{E) is defined inductively as follows:

• If s is the output ofa gateG, the corresponding EDBF is thefunctionalcomposition of theEDBFs of
itsfanins values associated with the same event, i.e., s{r){E)) = fg{yi (?7(jE^)), y2{'n{E)),... ,yn{r}{E))),
where yi,j/2)••• i^n Ihefanin signals of 0, and fg represents its functionality.

9 If s is the output of a latch with the fanin signal y and the enable signal e, then it takes the most
recent value of y at which e was active. This is given as s{r}{E)) = y{r){[e, E])).

• If s is the primary input of the circuit, it represents an independent input variable.

Intuitively, for a signal s and the associated event jE^ € E, the EDBF s{r}{E)) gives the value of s at
the most recent time instant after which all the Boolean predicates in E were active in the time order
consistent with the listed order.

The following examples illustratethe concept. In Figure 4, the value ofsignal y, can be represented as

e

I y
Figure 4: Combinational functionality in the presence ofenabled latches (illustration I).

y(Ty([e])), since the value of y is equal to the value ofx at the timeat which e was last active. In Figure 5,
the functionality of signal z associated with an event E can be obtained as follows:

2{t}{E)) = y{r){E)) •x{r}{E))

y{v{E)) = w{r){[e2, E]))
w{Tj{[e2, E])) = u{r]{[ei,e2,E]))

x{v{E)) = t,(T/([e3.^))
z{r}{E)) = u(»?([ei,e2,E])) •t;(i7([e3,E])) (1)

(2)

Eqn. 1 indicates that value of z is equal to AND of value of u which has been propagated through
both latches L\ and L2 and of v which has got propagated through L3.

In the next section we show how we malce use of CBF and EDBF to obtain combinational function of
sequential circuits.



Figure 5: Combinational functionality in the presence of enabled latches (illustration II).

5 Sequential Circuits without Feedback

We consider sequential circuits without feedback paths (also known as "acyclic sequential circuits"). The
typical circuits in this category include: pipelined circuits (Figure 6); and acyclic circuits with latches

INi OUTi IN2 OUT2 INk oun

o o

Figure 6: An example of acyclic sequential circuit: pipelined circuit.

trapped within a combinational block (Figure 3). We first explain our technique for circuits with regular
latches (no load-enable signal) and then describe the case with load-enabled latches.

5.1 Circuits with Regular Latches

In this class of circuits the latches update their contents at each clock cycle. The functionality of the
circuit depends on the input values possibly at multiple time instants.

We give the method to obtain the CBF for a general circuit. Given an acyclic sequential circuit C, in
general, the value of a signal can be required for multiple time instants corresponding to different delays
(depending on the number of latches along different paths between the signal and the primary outputs).
Starting from primary outputs, we recursively obtain the CBF for each signal as shown in the Figure 7.
The result of the CBF computation routine is a Boolean formula for each of the outputs in terms of
values of inputs in multiple cycles. By treating the input values at different time instants as independent
variables, we obtain a combinational function representation for the outputs of the circuit.



Compute_CBF(C){
foreach primary output x {

Compute.CBF-Recursively (x.O);

}
}
Compute_CBF_Recursively(x,d){

if X is a primary input, return x(t —d);
if /(x,d) is already computed, return /(x,d);
if X is output of a latch {

y = corresponding latch input;
/(x,d) = Compute_CBF_Recursively(y,d +1);

}
else{

Gx = Gate corresponding to signal x;
foreach fanin y of G® {

Compute.CBF J?ecursively(y, d);

}
/(x,d) = Compose the fan-in functions appropriately;

}
Cache the result of /(x,d);
return /(x,d);

}

Figure 7: Computing CBF for outputs of a feedback free circuit.



Definition 4 (Sequential Depth) For an acyclic sequential circuit C, the sequential depth is equal to
the largest delay for which an input affects the output. Note that d can be lower than the topological latch
depth (maximum number of latches along a path between an input-output pair) due tofalse dependencies.

Lemma 5.1 Given an acyclic circuit C with sequential depth d, suppose C is sequentially equivalent to
C. Then the sequential depth of C is d.

Proof: Suppose the depth of C is d > d. Then there are sequences /i and I2 of length d and identical
in the last d —1 vectors such that some output of C differs on Ii and I2 after applying the last vector.
However, the output of C will be the same. Hence C is not equivalent to C, which leads to contradiction.
The case when d > d is similar. •

5.1.1 Canonicity of the Formula

Theorem 5.1 Suppose Ci and C2 ore two circuits and Fi and F2 their CBFs. Then Fi = F2 ^ Ci = C2,
where equivalence between the circuits is exact 3-valued as defined in Section 3.2, and equivalence between
the CBFs is combinational.

Proof: (sketch)
<=

Assume that Fi ^ F2. Then there exists a CBF minterm m on the input values up to d clock cycles such
that Fi{m) ^ F2(m). Since the circuit has finite depth, using this minterm m we can generate an input
sequence of length d such that when applied to the two circuits, will produce different simulation results.
This implies Ci ^ C2.

Assume that Ci ^ C2. Then there exists an input sequence tt such that Ci(7r) ^ C2(7r). Sincethe circuits
are acyclic auid have finite memory, tt need not be longer than d. Using this sequence we can generate a
CBF minterm such that when applied to the two formulae, will produce different results implying Fi^ F2.
Hence contradiction. •

Note that the above result are stated for any two sequential equivalent circuits not just those obtained
by retiming and combinational optimization.

5.2 Circuits with Load-enabled Latches

In the case where the latch output is controlled by an enable signal as well, the functionality is as follows:
if the enable signal is high, the latch propagates the data value to the output, else the latch retains its
old value. In [9], a retiming technique was proposed to handle latches with different enable signals and
different clocks. In this work, we propose a verification methodology where all the latches are driven
by the same clock but can have different enable signals. Extension to circuits with multiple clocks is
straightforward.

Weobtain a Booleanfunction along the linesof the previouscase (regular latches). However, in this case
we make use of event driven Boolean functions (EDBF) as defined in Section 4.2. By instantiating separate
Boolean variables for each unique combination of primary input and event, we create a combinational
representation of the circuit.

Starting from primary outputs, werecursively obtain the EDBF for each signalas shownin the Figure 8.
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Compute_EDBF(C){
foreach primary output x

Compute_EDBFJ^ecursively (ar, 0)

}
Ccmpute_EDBF_Recursively(x, £?){

if X is a primary input, return (x, £).
if F{x,E) is already computed, return F(x, E).
if X is a latch output {

y = latch input
e = enable signal
F{x,E) = Compute_EDBFJRecursively(y,[e,F]).

}
else{

Gx = Gate corresponding to signal x.
foreach fanin y of {

Compute_EDBF_Recursively(y, E)

}
F(x, E) = Compose the fan-in functions appropriately.

}
return F(x, F).

}

Figure 8: Computing EDBF for the outputs of a circuit

11



5.2.1 Canonicity of the Formula

Lemma 5.2 Given an acyclic sequential circuit with load-enabled latches, an input/output pair a path
between the pair, the number of latches and the event associated with the sequence of enabling signlas of
the latches along the path is invariant during retiming (ala [9]) and synthesis optimization steps.

Proof: Let us first consider the retiming tramsformation.
Suppose {Gi,G2, —> G'fe} is a path ofgates between an input I and output O. Assume that the latches

cannot be retimed across input and output ports. Suppose, during a retiming move, x latches move across
gate Gi. If the latches are moved in the forward direction, then x latches are moved from each fanin of
Gi (including G,_i) to each fanout of Gi (including Gf+i). Hence the number of latches between G,_i
and G,+i along the path remains the same. Suppose ci,C2,... ,6* is the sequence of enable signals of
the latches along a path between input I and output O. For the forward or backward movement of load-
enabled latches, the latches being moved must belong to the same enable class. Also, since the circuit is
acyclic, a latch cannot cross over to another latch during retiming thereby changing the order of enable
signals. It implies that the sequence of the enable signals is preserved.

Since combinational synthesis keeps the latch positions fixed, the latch count and the sequence of
enable signals along smy path in the circuit does not change. To establish that a path pertaining to the
true dependency is preserved during the transformation, we make use of illustration in the Figure 9. Since

Figure 9: Topological arrangement of latches (black boxes) and combinational blocks (ovals).

the circuit is acyclic, we can arrange the combinational logic and the latches as shown (for simplicity, only
two layers of latches are shown in the figure). Now the path I xi —¥ x^ xs -¥ X4 O, from input
/ to output O as shown in the figure. For combinational optimization xi.xa and X2)®4 are treated as
primary outputs and primary inputs respectively. Hence to preserve the functionality of combinational
blocks, paths from / to xi, from X2 to X3, and from X4 to O, must be preserved. This implies that the
number of latches and the sequence of enable signals along the path is also preserved. •

Theorem 5.2 Given two acyclic sequential circuits Ci and C2 with load-enabled latches, such that Ci
has been obtained from C2 by retiming and combinational synthesis transformations. Suppose Fi and Fi
are their EDBFs as computed by the algorithm of Figure 8. Then Fi = F2 ^ Ci = C2*

Proof: (sketch)
=>

Assume Ci ^ C2. Then there exists an input sequence tt, such that Ci(?r) ^ C2(7r). Without loss of
generality, we assume that for some output k, Ci,,{Tr) ^ ± and Cifc(7r) ^ C2k{'̂ )- Now, since Ci,,{ir) ^ X,
it impliesthat for input sequence tt, all the enable signalsfor the output must be active in the sequence
they appear in the circuit. Since the number of latches and the enable sequence must be same in Ci and
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C2 (from Lemma 5.2), C2fc(7r) ^ X. Hence using tt, we can create an EDBF minterm m, such that
Fi(m) F2(m).

Assume Fi ^ F2. Since the number oflatches and sequence ofenable signals issame for Ci and C2 (from
Lemma 5.2), thesupport variable set is identical for Fi andF2. Consider an EDBF minterm m such that
Fi(m) ^ F2(m). The minterm mcan be used togenerate a sequence ofevents and input values such that
when applied to the circuits, Ci and C2 will result in different outputs. •

Unlike the regular latch case, the result does not hold for any two sequentially equivalent circuits. This
is illustrated by following two examples.

In Figure 10, two sequentially equivalent circuits are presented. However, their EDBFs would be

I
L3

L1 L2

(a) (b)

Figure 10: EDBF can lead to false negatives: illustration I.

02

different since the enable signal of latch L\ is different in the two circuits. The EDBF for the outputs Oi
and O2 can be given as following:

01 = c(»?[a(r),a(r-l)6(r-1)]) (3)
02 = c(77[l,a(r-l)6(r-1)])

= c(77[a(r-l)6(r-1)]) (4)

Our technique will result in a false negative since the events defining the time instant for the value of
c are syntactically different even though the definition is the same. We can work around this problem by
rewriting our events. For example, it can be proven that,

p(r) > 9(r) T}\p{T),q{T - 1)] = T)[q{T - 1)] (5)

Applying (5), on (3) (with p(r) = a(r) and g(r) = a(r)6(r)), we get,

Oi = c(77[a(r —l)b{T —1)]) From (5)

= O2

This rewriting rule extends the applicability of our technique. However, this rule is not complete, as
shown by the next example. In Figure 11, (a) and (b) are two sequentially equivalent circuits. In this
case, the enable signals to both the latches are the same. However, the data inputs to the latches are
different. The EDBF representation for these two circuits are following:

01 = b{i]{a + 6))

02 = a{r}{a + b)) + b{q{a + b))

13



(a) (b)

Figure 11: EDBF can lead to false negatives: illustration 11.

This results in a false negative. Essentially, in this example there is some interaction between the enable
and the data signals of the latch, resulting in equivalent sequential functionality even though the EDBFs
are different. To handle these cases, we need to establish equivalence not only between different forms
of events, but also between different forms of event/data interaction. Until then, our methodology for
circuits with load enabled latches provides conservative check.

6 Sequential Circuits with Feedback

In these circuits there exists a feedback path for some latches. Our strategy is to model a latch with
feedback in the form of an enabled latch with appropriate enable and data signals as shown in Figure 12.
Next we derive the conditions under which this modeling is feasible.

C2

hL.

hi C2

Figure 12: Modeling feedback path for a latch with enable and data signals

Lemma 6.1 (Decomposition Condition) Suppose the next-state function of a latch x given as F{x).
Then F{x) = e -dex Fg C Fx, i.e., F{x) can be decomposed in the form of Figure 12 if and only if
i^(x) ts positive unate in x.

Proof;

14



Fx = ed-\-e Ded = Fg.
•<=

Let e = Fx + Fs and d = Fg- Then,

ed-\- ex = {Fx + Fg)Fg + xFxFg

= xFx 4- xFg + xFg

= F (for a positive unate function)

•

As a matter of fact, any d, which satisfies,

Fg < d<Fx

i.e., S < d<A + B (6)

can be used as the data signal. The value ofe, on the other hand, is unique (the derivation isstraightfor
ward).

Thus for latches whose next state function is positive unate in the latch variable, the feedback can
be modeled via a multiplexer. The advantage of the model shown in Figure 12, is that a latch fed by
a multiplexer can be thought of as an enabled latch as shown in the Figure 13. This gets rid of the

e

out out

Figure 13: Modeling an enabled latch with extra logic

feedback path and for ourpurposes the circuit becomes acyclic. Now we can apply the analysis techniques
developed inSection 5.2 for acyclic circuit with enabled latches. However, we need to beaware offollowing
issues:

1. The data-input and the enable signal both need to be independent of the latch signal, else it will
create a cycle.

2. The data value d obtained from the function F = ed-\-ex is not unique as shown in (6) since d has
a don't care as e. Hence for two circuits Ci and C2 we can come up with different decompositions
leading to false negatives. This is the basis behind the counterexample in Figure 11, where the
decomposition ofthe next state function ax+ 6is different for the two circuits. Thiscanbe handled
in following ways:

(a) By fixing the latch modeling in the circuit, i.e., once we model the feedback path ofa latch
by an enabled latch, we restrict the logic optimization of the feedback logic by not using e as
don't care and also, we move the latch in tandem with the logic for the enablesignal. This will
guarantee the event correspondence in two circuits. However, by preserving the multiplexor
logic we incur some optimization penalty.
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(b) By using the lower limitof the possible data signal, i.e., d = This guarantees the matching
of the enable signals, but an optimization penalty may be incurred.

(c) Perform canonical decomposition of the enable and data signals. Below we give a sufficient
condition for such decomposition.

Lemma 6.2 Given a function F = Ax + B, suppose (e, d) and (e, d) are two decompositions
such that e and d have disjoint Boolean supports. Then d = d, i.e., there is a unique decompo
sition of F such that d and e have different supports (if such decomposition exists).

Proof: We have.

ed + e'x

=> edx

=> ed

ed + e'x

edx

ed (7)

Eqn. 7 follows from the fact that ed is independent of x. Since e and d have different supports
(and so have e and d), from (7) d and d must have the same support. Suppose X and Y are
the support sets for e and d, d respectively.
Assume d ^ d. Then there existsa mintermy on the Y variables such that d(y) ^ d(y). Choose
an arbitrary minterm x on variables of X such that e(x) = 1. Suppose (x Uy) is the minterm
on X and Y variables.

d(y) = d(x Uy)

d(y) = d(x Uy)

c(x) = e(x U y) = 1

(8)

Since d(y) ^ d(y), thus e(x Uy)d(x Uy) ^ e(x Uy)d(x Uy). This contradicts (7).

The feedback modeling as derived in Figures 12 and 13 is best suited for the class of circuits where
latches update their values when a set of conditions is met, else they keep their previous values. This is
illustrated in Figure 14. The latches with feedback paths, for which we cannot derive the enabled latch

el

(£r-

e3

J

r^c5>-r <£>~

en

Figure 14: Conditional updating of the latch content.

out

model, are handled in the following way. We find minimum number of latches that need to be exposed,
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(a) (b)

Figure 15: Making some latches observable to meet the feedback criterion.

i.e., need to be madeobservable, in order to remove the feedback path for these latches. This is illustrated
in Figure 15. Byexposing latches, we treat their outputsasprimary inputs and hence the feedback paths
are broken.

After finding the minimal set of latches to be exposed, we impose constraints on the synthesis step
such that these latches cannot be moved during retiming.

7 Experimental Setup

7.1 Circuit Modification

Given a sequential circuit C, we create a directed graph G = {V,E) in the following manner. For each
combinational gate, latch, primary input and primary outputs we create a node. An edge from node Vi
to Vj is created if there isa fanout from gate/latch/primary-input i to gate/latch/primary-output j. The
graph in general hascycles due to feedback paths to latches. Once we identify the latches with feedback
paths that do not satisfy the criterion mentioned in the previous section, we obtain a minimal set of
latches to expose. This is the "minimum feedback vertex set problem" which is NP-complete. We used a
modified version of the heuristics given in [22].

7.2 Retiming

Retiming was done using Minaret [6]. This tool only supports the constant delay model (we could not
find any efficient public domain retiming tools, which supported better delay models). Retiming was
performed in two modes. First, the minimumfeasible period wasobtained and the area of the circuit was
optimized for this period. In the second mode, the delay obtained through combinational optimization
was used as the timing constraint and then constrained minimum area retiming was performed.

We could not find a public domain retiming tool which could handle latches with enable signals as
proposed in [9] and shown in Figure 16.
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Retiming
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Figure 16: Retiming enabled latch across gates

7.3 Combinational Optimization

We perform combinationaloptimization to obtain a minimum delay circuit. SIS [2] was used for synthesis
purposes. A modified version of "script.delay" was used as shown in Figure 17. The modifications were

sweep

decomp -q
tech_decomp -o 2
resub -a -d

sweep

reduce.depth -b -r
eliminate -1 100 -1

simplify -1
sweep

decomp -q
fx -1

tech^decomp -o 2
rlib mylib2.genlib
rlib -a lib2_latch.genlib
map -s -n 1 -AFG -p -B -b 1000
print.delay -pi -a -m unit

Figure 17: Script for synthesizing minimum delay circuit

made because the original script was not able to handle large designs (or took very long to complete).
As mentioned earlier, the unit delay model was used during retiming. Hence for consistency we used

the unit delay model during synthesis steps as well. To keep the size of gates small, we created a library
consisting of inverter, 2-input nand and 2-input nor gates only. Also, for reasonable optimization results
we limited the number of fanouts for each gate to four. The delay models and the fanout limitation
changes were achieved by appropriately modifying the library.

7.4 Generating Equivalent Combinational Equivalence Problems

In order to leverage from the existing combinational equivalence tools, we mapped the equivalence prob
lem of CBF/EDBFs into combinational equivalence problems. This was done by creating a combinational
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circuit with appropriate variables which represents the CBF or EDBF. An illustration is shown in Fig-

Dh_i
T!ir>H>—•—

01

02

a

b

b1

a1
b2 Z)—^

(a) (b)

Figure 18: Generating equivalent combinational equivalence problems

o2

ure 18. Thecombinational circuit Figure 18(b) represents the CBF for the sequential circuit Figure 18(a).
Essentially, if the circuit outputs depend on the value of a signal at k different time instants (for a circuit
with regular latches) orwith k different enable signal paths (for a circuit with enabled latches), the cone of
logic for the signal is replicated k times. The size ofthese circuits could become large due to replications.
Note, however, that this step is performed only for convenience (to treat the combinational equivalence
checker as a black box). In practice, a modified combinational equivalence checker could be used which
would not require generation of such circuits and hence no blow-up would occur.

The combinational verification was performed by an in-house toolsimilar to the ones presented in [10,
12].

8 Experimental Results

Our experiment consisted of following steps (see also Figure 19).

1. Given the sequential circuit (A), modify it appropriately to satisfy constraint on all feedback paths
to obtain a new circuit (B). This is done by creating a circuit graph and finding a minimal feedback
vertex set. Due to lack ofa retiming tool which could handle load-enabled latches, we did not model
any latches with feedback path as load-enabled latches (as shown in Figure 12). In general, this
leads to fewer latches that need to be exposed.

2. Perform synthesis for delay optimization and min-period retiming on the modified circuit (B) to
obtain a new circuit (C).

3. To illustrate the advantage of combining retiming with combinational synthesis, we also performed
pure combinational optimization (using thesame script) onoriginal circuit (A) to obtain circuit (D).

4. We also compared the saving in area by performing constrained minimum area retiming. This was
doneon circuit (B) with the delay value of circuit (D) to obtain a new circuit (E).
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5. To measure the loss in optimization due to modification in step 1, retiming and synthesis optimization
on originalcircuit (A) was performed to obtain an optimizedcircuit (F).

6. Step 5 was repeated to measure the lossof optimization in circuit (E). This wasdone by performing
constrained minimum aurea retimingon (A) with the delay valueof circuit (D) to obtain a newcircuit
(G).

7. Combinational circuits (H and J) were created (as described in Section 7.4) to obtain circuits (B)
and (C) respectively.

8. Perform combinational verification between (H) and (J). Verifying equivalence of circuits (B) and
(E) would be similar and is not done in the experiment.

The active area and delay numbers are obtained by the "map" command. The verification was performed
on an UltraSparc-1 with 256MB of memory.

In Table 1, we have given results comparing the optimization potential of our strategy and also the
corresponding verification times.

All the industrial circuits we investigated contained load-enabled latches. Since we did not have access
to a retiming tool for circuits with load-enabled latches, we could not perform retiming on these circuits
and hence could not get optimization and verification results. However, we did extensive analysis on
them to understand the nature of feedback paths to latches. After analyzing a set of circuits we observed
that most of the feedback path exists due to interaction with memory and communication layer as shown
in Figure 20. Typically, designers want to keep the boundary between the design and communication
layer/memory preserved and they do not synthesize them together. We can take advantage of this fact
and can assume for our purposes that these feedback paths do not exist. In Table 2, we have given the
number of latches exposed in order to satisfy the feedbackpath constraint. Currently wedo only structural
analysis which can detect the kind of circuits as shown in Figure 14. A more detailed functional analysis
(based on the next state function of the latches as explained in Section 6) would lead to reduced number
of exposed latches.

8.1 Analysis

By analyzing the data given in Tables 1 and 2 we make following observations:

1. Comparing S values in columns C and D, for most of the circuits the delay valuesobtained through
our approach is better than that by purely combinational optimization. In some cases delay values
reduces by as much as 50%. The area penalty incurred in the process is negligible.

2. Comparing area numbers in columns D and E, for the same delay, retiming allows us to reduce the
area.

3. The verification times were quite reasonable. Most of the examples took less than a minute to
verify. The maximum time taken is fifteen minutes. Note that, for only few of these sequential
circuits the state-space can be traversed, and for fewer yet the state-space of the product machine
can be traversed. This makes the proposed technique quite attractive.

4. Comparing the area numbers in columns D and E, we observe that the penalty paid in terms of
reduced optimization capability was not significant in most of the cases.

5. Looking at the data for industrial circuits from Table 2, we observe that even though these circuits
are highly control intensive implying a relatively tight interaction among latches, we did not need
to expose more than 50% latches and sometimes as few as 2% latches were exposed. As mentioned,
these numbers will decrease when positive unateness is used.
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Figure 19: Flow chart indicating experimental set up.
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Circuit A F C D G E Time

# L # L Area S % #L Area S Area s Area #L Area H vb J

uiuuuaxlU 3U 30 0.87 50 66 30 0.74 50 1.00 56 30 0.87 30 0.74 2

tuiuuiaxl2 36 36 0.87 54 66 36 0.75 54 1.00 57 36 0.87 36 0.75 2

uiiiiiuiix2() 60 60 0.83 55 66 60 0.80 64 1.00 94 60 0.83 60 0.80 3

iiuiiiuax32 96 96 0.81 88 66 96 0.72 96 1.00 145 96 0.81 96 0.72 5

prolog 65 85 1.06 15 43 65 0.97 17 1.00 18 65 1.00 65 0.97 7

bll9G 18 18 1.00 21 0 18 1.00 21 1.00 21 18 1.00 18 1.00 5

18 18 1.00 19 0 18 0.99 19 1.00 19 18 1.00 18 0.99 7

bl2G9 37 69 1.12 24 75 37 0.98 32 1.00 33 37 1.00 37 0.98 6

bl423 74 78 1.01 40 95 74 1.00 44 1.00 45 74 1.00 74 1.00 6

b3271 116 221 1.18 16 94 116 0.99 25 1.00 26 116 1.00 116 0.99 7

b3384 183 174 0.97 30 39 154 0.95 56 1.00 57 154 0.95 154 0.95 34

b4UU 21 32 1.17 11 71 21 0.98 13 1.00 14 18 0.95 21 0.98 1

b444 21 32 1.17 10 71 21 0.99 13 1.00 14 18 0.95 21 0.99 1

b48G3 88 146 1.05 32 18 142 1.04 32 1.00 58 78 0.99 83 0.99 4:25

b641 19 19 1.00 24 78 19 1.00 24 1.00 24 19 1.00 19 1.00 1

bGGGG 231 272 1.02 32 17 234 1.00 55 1.00 85 193 0.97 214 0.98 1:54

b713 19 19 1.00 25 78 19 0.96 24 1.00 25 19 1.00 19 0.96 1

b»234 135 169 1.05 21 66 144 1.00 27 1.00 30 128 0.98 135 0.98 22

b953 29 22 0.95 16 20 29 1.00 14 1.00 16 22 0.95 29 1.00 3

b9G7 29 22 0.95 15 20 29 1.00 14 1.00 15 22 0.95 29 1.00 3

b3330 65 78 1.04 15 43 65 0.96 17 1.00 19 65 1.00 65 0.96 7

blGGGG 515 537 1.01 34 72 515 1.00 46 1.00 46 495 0.99 515 1.00 11:24

b33417 1464 1285 0.96 33 70 1463 1.03 36 1.00 37 1248 0.95 1463 1.03 15:32

Table 1: Results on sequential optimization and verification.

A: Original circuit
B: Modified circuit (not shown in the table)
C: Obtained from B after retiming (for minimum period) and synthesis
D: Obtained from A after Combinational optimization only
E: Obtained from B after retiming (for delay in D) and resynthesis
F: Obteuned from A after retiming (for minimum period) and synthesis
G: Obtained from A after retiming (for delay in D) and resynthesis
H: Combinational circuit for the CBF for circuit B

J: Combinational circuit for the CBF for circuit C

L: Latches

%: Percentage of latches exposed in B
S: Delay of the circuit
Area: Normalized against the area of D.
H vs J: CPU time (in minutes:seconds) for combinational verification between H and J
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Figure 20: Feedback paths due to interaction with memory andcommunication layer

Example # Latches # Exposed

exl 2157 934

ex2 ICQ 16

ex3 146 56

ex4 1437 835

ex5 672 305

ex6 412 250

ex7 453 81

ex8 968 470

ex9 783 15

exlO 634 174

exll 792 369

exl2 2206 691

Table 2: Number of latches exposed for some industrial circuits
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9 Conclusions and Future Directions

We proposed a practical verification technique for circuits which have undergone retiming and combina
tional synthesis transformations. In particular, we show that the corresponding sequential verification can
be reduced to an extension of combinational verification. The proposed technique can deal with circuits
with and without feedback paths, and with regular and load-enabled latches. We impose a constraint on
the feedback path (if one exists) of latches. If these constraints are not met by the original circuit, we fix
the position of some of the latches to cut the feedback paths. Experimental results indicate that imposing
constraints does not result in significant optimization penalty. Our strategy can be used to obtain faster
circuits by allowing the retiming transformations while performing fast verification as indicated by our
experimental results.

To make our approach exact for arbitrary sequential optimization, we need to develop a complete
technique to distinguish events and combination of events and signals. Also, a better technique could be
used to find the latches to be exposed. The strategy of finding the minimum latches may not always be
optimum for area/delay optimizations. The need would be to identify latches, such that the least amount
of area/delay penalty is paid by exposing them.
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