
 

 

 

 

 

 

 

 

 

Copyright © 1997, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



REAL-TIME SYSTEM =

DISCRETE SYSTEM + CLOCK VARIABLES

by

Rajeev Alur and Thomas A. Henzinger

Memorandum No. UCB/ERL M97/78

20 October 1997



REAL-TIME SYSTEM =

DISCRETE SYSTEM + CLOCK VARIABLES

by

Rajeev Alur and Thomas A. Henzinger

Memorandum No. UCB/ERL M97/78

20 October 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Real-time System =
Discrete System -t- Clock Variables*!

Rajeev Alur* Thomas A. Henzinger^

Programs such as device drivers and embedded controllers mustexplicitly refer
and re£u:t to time. For this purpose, a variety of languageconstructs—^including
delays, timeouts, and watchdogs—have been put forwaird. We advocate an
alternative proposal, namely, to designate certain program variables as clock
variables. The value of a clock variable changes as time advances. Timing con
straints can be expressed, then, by conditions on clock values. A single new
language construct—the guarded wait statement—suffices to enforce the timely
progress ofa prograim. We illustratethe use ofclock variables and guarded wait
statements with real-timeapplicationssuchas round-robin (timeout-driven) and
priority (interrupt-driven) scheduling. Clock variables generalize naturally to
variables that measure environment parameters other than time. This observa
tion leads to a languagefor hybrid (mixeddigital-analog) applications such as
embedded process control.

This paper introduces, gently but rigorously, the clock approach to real
time programming. We present with mathematical precision, assuming no pre
requisites other than familiarity with logical and programming notations, the
concepts that are necessary for understanding, writing, and executing clock
programs. In keeping with an expository style, all references are clustered in
bibliographic remarks at the end of each section. The first appendix presents
proofrules for verifying temporal properties ofclock programs. The second ap
pendix points to selected literature on formal methods and tools for program
ming with clocks. In particular, the timed automaton, which is a finite-state
machine equipped with clocks, has become a stauidard paradigm for real-time
model checking; it underlies the tools HyTech, Kronos, and Uppaal, dis
cussed elsewhere in this volume.

•A preliminary version of this paper appeared in the proceedings of the First AMAST
Workshop on Re2d Time, in Theories and Experiences for Real-time System Development
(T. Rus smdC. Rattray, eds.), AMAST Series in Computing 2, World Scientific,1994,1-29.

^This research was supported in part by the ONR YIP award N00014-95-1-0520, by the
NSF CAREER award CCR^9501708, by the NSF grant CCR-9504469, by the AFOSR contract
F49620-93-1-0056, by the ARC MURI grant DAAH-04-96-1-0341, by the ARPA grant NAG2-
892, and by the SRC contract 95-DC-324.036.

^CIS Department, University of Pennsylvania, and Bell Labs, Lucent Technologies.
SEECS Department, University of California at Berkeley.



program GateControUer:
external train jpresent: bool;
loop

await train4>Tesent\
wait 5;
CloseOate;
await -ttrainpresent]
OpenGate
end.

Figure 1: Railroad-gate controller

1 Introduction

Consider the program shown in Figure 1, which controls the gate at a railroad
crossing. The program continuously watches the value of the external boolean
signal train.present^which indicates whether a train is near the crossing. One
may imagine two sensors on the railroad track, on either side of the crossing,
which keep the signal train .present true exactly when there is a train between
the two sensors. When the signal train.present becomes true—i.e., when a
train is approaching the crossing—the program GateControUer waits 5 time
units before issuing a command to close the gate. Thereafter, as soon as the
signal trainjpresent becomes false—i.e., when the train is leavingthe crossing—
a command to open the gate is issued.

The functionality of the program GateControUer is intuitively obvious, and
its adequ2w:y in a given environment can be judged by inspection: assuming
that the time consumed by the issuing of commands to the gate is negligible,
and assuming that the gate requires S time units for closing, the program is
safe if every train needs at least 5 + <5 time units to reach the crossing from
the point when the signal train.present is triggered; otherwise, the gate may
be open when a train is in the crossing. R.eal-life situations tend to be more
complicated—often allowingfor many different scenarios involvingmany concur
rent 2u:tivities—than this simple model of a railroad crossing, and the adequacy
of embedded controllers usually cannot be asserted confidently by inspection or
simulation. Therefore, for mission-critical and other sensitive applications, soft
ware tools sire being developed for analyzing functional and timing properties
of control programs. These tools view a program as denoting a mathematical
object, and compute properties of the denoted object. In this paper, we define
formally the mathematical objects that are denoted by real-time programs such
as GateControUery and we study some of their properties. Other papers in this
volume discuss several tools that are based on the real-time semantics presented



program TwoTanks:
local pipe: {1,2};
external waterJeveli, waterJevel2: continuous;
initially pipe 1;
loop

await waterJevel2 = 0;
pipe := 2;
await waterJeveli = 0;
pipe := 1
end.

Figure 2: Water-level controller

here.

Real-time programs are reactive, in that they react to certain external ac
tivities, such as signals generated by the environment (await train^present)
or the passage of time (wait 5). We fleetingly mentioned the assumption
that, in the real-time program GateControUer^ the execution of the statements
CloseGate and OpenGate consumes no real time. This, a so-called "synchrony
assumption," allows the program to react to external activities immediately
(synchronously). Synchrony assumptions are abstractions which are valid when
the speed of the external activities is much slower than the speed of program
execution. Synchrony assumptions are useful, because, by making all timing
explicit (through statements such as wait 5), they greatly simplify the math
ematical analysis of real-time behavior. Synchrony assumptions, however, also
open the way for writing programs that cannot be executed at any speed.

To see this, consider the program shown in Figure 2, which controls the in
flow into two water tanks. The program directs a pipe between the two tanks:
initially, water is directed to the first tank, until the second tank becomes empty;
then, water is redirected to the second tank, until the first tank becomes empty;
etc. The position of the pipe is indicated by the boolean-valued variable pipe,
and the water levels of the two tanks aire indicated by the real-valued variables
waterJeveli and waterJevel2- The water levels are updated continuously, and
externally to the program, by the environment. Our synchrony assumption is
that the time consumed by the commands for redirecting the pipe is negligible.
While the program TwoTanks and the corresponding synchrony assumption
look innocuous, there are circumstances under which the progreim cannot be
executed. For exaunple, if the incoming pipe csirries water at the rate of 3 liters
per second, but each tank loses water at the rate of 2 liters per second, the
program will instruct the pipe to switch back and forth between the two tanks
at shorter and shorter time intervals. Clearly, a point must be reached when



these instructions can no longer be followed. It is surprisingly subtle to identify
the real-time programs that can be executed no matter how the environment
behaves, and this gives us another reason for studying the underlying mathe
matical objects.

Rather than presenting the formal semantics of a particular programming
language with particular real-time constructs, we develop a generic framework
for formalizing timed behavior. For this purpose, we begin by reviewing dis
crete state-transition systems, which are the mathematical objects that un-
derly untimed reactive programs. Then we add clock variables to discrete state-
transition systems, and show how the resulting real-time state-transition sys
tems can be used to give a formal meaning to programming constructs that refer
to time, such as the wait and await statements of Figure 1. The framework
of clock systems allows us to rigorously study and unambiguously discuss issues
such as real-time executability, composition, and verification in an abstract,
language-independent setting, which applies, for example, to the concrete lan
guages used by the tools HyTech, Kronos, and Uppaal presented in this
volume.

2 Untimed Systems

2.1 States

At any time, the abstract state of a system can be captured by the values
of a finite set V of variables. The choice of variables, which determines the
amount of detail that is captured about a system, depends on the task at hand.
For example, for the motion analysis of the solar system, its abstract state
can be captured by the masses, positions, and velocities of all bodies; for the
strategic analysis of a chess game, its abstract state can be captured by the
board positions of all pieces and a bit that indicates whether white or black
is to move next; for the functional analysis of a circuit, its abstract state can
be captured by the boolean values of all wires and latches; for the functional
analysis of a while program, its abstract state can be captured by the position
of the program counter and the values of all program variables.^ We assume
that all variables in V are typed and use suggestive names like m and n for
nonnegative integer variables, and x and y for real-valued variables.

A state is a function that maps every variable in V to a value of the corre
sponding type. We describe states using state predicates. A state predicate is
a proposition that is either true or false for each state. For example, the propo
sition "The black king is being attacked by the white queen" is either true or
false for each state of a chess game; the proposition "All output wires are low"

'By contrast, for the physical auialysis of a circuit, the voltages and lengths of all wires are
relevant; for the functional ainalysis of a C program, the values of all registers and memory
locations that contatin the run-time environment of the program are relevant.



is either true or false for each state of a circuit; the proposition "m = n + 2" is
either true or false for each state of a while program. Formally, a state predicate
is a formula of predicate logicwhose free variables are taken from V. The truth
value of the state predicate 4> for the state <t is obtained by interpreting each
free variable v in ^ as o"(v). For instance, the state predicate m = n + 2 is true
for the state <t iff <r(m) = <r(n) -f 2.

2.2 Transitions

The state of a system changes over time. The vsJuesof some variables—like the
positions and velocities of the bodies in the solar system—change as continuous
functions over time, and the values of other variables—like the positions of chess
pieces and the values of program variables—change in discrete steps. We begin
by restricting our attention to discrete systems, all of whose variables change
their values in discrete steps. The state changes of a discrete system are called
transitions. A transition is a pair (u*, tr') of states that consists of a source
state <T and a target state a'. Intuitively, if a system is in the source state <t,
then the transition (<r, a') takes the system into the target state a'. We say
that a transition is enabled in its source state and disabled in all other states.
Two transitions and (o'2,02) are consecutive if the second transition is
enabled in the target state of the first transition—i.e., if (tJ = 0*2.

The transition is a stutter transition if tr = a'. Stutter transitions
arise if a system activity concerns only detail that is not captured by the vari
ables of a system. For example, with our choice of variables for representing
chess games, the activity "Turn the chess board clockwise by 90 degrees" ap
pears as a stutter transition. We are interested in systems—such as embedded
control systems—that operate within a real-world, real-time environment. How
ever, before we discuss systems that interact with the environment, at first we
restrict our attention to closed systems, whose variables capture no information
about the environment. To a closed discrete system, every environment 2u:tivity
appears as a stutter transition.

We describe transitions using transition predicates. A transition predicate
is a proposition that is either true or false for each transition. For example,
the proposition "A black piece is being captured" is either true or false for each
move of a chess game; the proposition "The value of m is being incremented" is
either true or false for each execution step of a while program. When describing
a transition, we use unprimed variables like u G V to refer to the value of v
in the source state of the transition, and primed variables like v' ^ V to refer
to the value of t; in the target state. The transition predicate "The value of
m is being incremented," then, is written as "m' = m + 1"; that is, the new
value of m is one greater than the old value of m. Formally, let V be the set of
primed variables whose unprimed versions occur in V. A transition predicate is
a formula of predicate logic whose free variables are taken from V and V. The
truth value of the transition predicate V* for the transition {a, </) is obtained by



interpreting each free unprimed variable v in iff as 0'(v), and each free primed
variable V in ^ as <^^(1;). For instance, the transition predicate m' = m4-1 is
true for the transition (<r, a') iff (/{m) = <T{m) + 1.

2.3 Behaviors

We make the following three assumptions about a system and its environment.
First, within a finite interval of time, there can be only finitely many discrete
state changes. Therefore, the behavior of a discrete system results in a countable
sequence of transitions. Second, under no circumstance cam a system prevent
an environment activity. Therefore, in every state of a closed system, a stutter
transition is enabled. Third, the environment never terminates. Therefore, the
behavior of a closed discrete system results in an infinite sequence of transi
tions, infinitely many of which are stutter transitions.^ For example, a legal
sequence of moves, interspersed with infinitely many stutter transitions, consti
tutes a behavior of the game of chess; a sequence of consecutive execution steps,
interspersed with infinitely many stutter transitions, constitutes a behavior of
a given while program.

Formally, a behavior is a countably infinite sequence of states. The behavior
a = <To,<Ti,<r2»o"3i • • • can be viewed, alternatively, as the countably infinite
sequence of transitions (<t,-, integer i > 0, with the property that any two
neighboring transitions are consecutive. The behavior a is called environment'
fair if a contains infinitely many stutter transitions. We describe behaviors
using both state predicates and transition predicates. A state predicate is used
to restrict the first state of a behavior: the state predicate 0 is initially true for
the behavior d- if 0 is true for the first state of d-. A transition predicate is used
to restrict the transitions of a behavior, except for the environment treinsitions:
the transition predicate tp is invariantly true for the behavior d" if V* is true for
all transitions of d- that are not stutter transitions. Consider, for instance, the
behavior ao whose odd transitions, starting from 0, increment the value of m,
and whose even transitions are stutter transitions:

d-o(m) = 0,1,1,2,2,3,3,4,4,...

The state predicate m = 0 is initially true for ^0, and the transition predicate
m' = m -f 1 is invariantly true for ^o-

2.4 Systems

In every state, a transition is either possible (enabled) or impossible (disabled).
If several transitions are enabled in a state, the system has several options

^The requirement that every behavior must contmn infinitely many stutter transitions,
while not essential for our treatment of untimed systems, will lead to a pleatsemt parallelism
between untimed and timed systems. This is because for timed systems, a similar requirement
is necessary to ensure the divergence of time.



how to proceed. Multiple options may arise because of nondeterminism (as in
the game of chess), because several system components proceed individually
and independently (asis the case with the environment transitions, which occur
independently of the system transitions), or because the variables do notcapture
sufficient detail to distinguish the sources of distinct activities whose targets can
be distinguished. For all of these reasons, a system may have many different
behaviors. We describe a system by defining the set of its behaviors. For
example, the rules of chess define the set of legal move sequences that start
from the initial board configuration; a while program defines the set ofpossible
execution sequences, one sequence for each combination of input values.

Formally, a {closed discrete) system S = {<l>^ is a pair that consists ofa
state predicate —the initial condition of 5—and a transition predicate —
the next-state condition of S. The behavior a is possible for the system S if
(1) the initial condition <f>^ is initially true fora, (2) the next-state condition
is invariantly true for ff, and (3) d" is environment-fair. Consider, for instance,
the system So that, starting from 0, increments the value of m arbitrarilyoften.
The system So has the initial condition m = 0 and the next-state condition
m' = m -f-1. Here are some possible behaviors of So-

o-o(m) = 0,1,1,2,2,3,3,4,4,...
a-i(m) = 0,0,0,1,2,2,2,3,4,4,4,...
^2(m) = 0,1,2,2,2,2,2,2,2,2,...

Not every set of environment-fair behaviors is the set of possible behaviors
for some system. First, a system can neither force nor prevent environment
activities: if, between any two transitions, we remove or add a stutter transi
tion to a possible behavior of the system «S, then we obtain another possible
behavior of S (this property of systems is called stutter closure). Second, the
future evolution of a system is determined completely by the current state of
the system, and is independent of the past history of the system: if two pos
sible behaviors and d"2 of the system S share a state <t, then by composing
the past of <t according to and the future of <r according to 0*2, we obtain
another possible behaviorof S {fusion closure). Third, the operation of a sys
tem is almost entirely characterized by local conditions on individual states and
transitions; the only global condition on the possible behaviors of a system is
environment-fairness: if all finite prefixes of an environment-fair behavior &can
be extended to possible behaviors of the system S, then a itself is a possible
behavior of S {limit closure).^

The three closure properties of systems have two important ramifications
for the executability of systems. First, the possible behaviors of a system can
be generated transition by transition: start with a state for which the initial

^Conversely, if we admit infinitary formulas as state and transition predicates, then every
set of behaviors that is closed under stuttering, fusion, and limits is the set of possible behaviors
for some system.



program NdUpDown:
initially m := 0; n := I;
loop true —> m := 1

or m = 0 —f n := n -1-1

or m = lAn>0 n := n — 1

end.

Figure 3: Guarded-command program

condition is true, and repeatedly choose either a stutter transition or an enabled
transition for which the next-state condition is true. Every finite state sequence
that is generated in this manner can be extended to a possible behavior of
the system {machine closure). Second, a system need not progress, ever: when
generating a behavior transition by transition, from any point on we may choose
stutter transitions only. This is because every finite prefix of a possible behavior
followed by infinitely many stutter transitions is also a possible behavior.'̂

2.5 Programs

A convenient notation for describing systems is a pseudo-programming language
based on guarded commands. A guarded-command program V consists of a set
of initial assignments followed by a set of guarded assignments. The program
V is executed in a stepwise fashion: first, starting from any state, execute the
initial assignments to obtain an initial state of "P; then continue to select, nonde-
terministically, and execute either a stutter transition or a guarded assignment
whose guard is true. Every countably infinite sequence of states that may result
from this stepwise process is called an execution sequence of V. Consider, for
instance, the guarded-command program NdUpDown of Figure 3. The program
NdUpDown starts from an initial state a with (r(m) = 0 and cr(n) = 1. The
value of n is incremented arbitrarily often before the program may chemge the
value of m to 1. Thereafter, the value of n may be decremented repeatedly as
long as it remains nonnegative. Here are two execution sequences of NdUpDown:

di(m,n) = (0,1), (0,2), (0,3), (1,3), (1,2), (1,1), (1,0), (1,0),...
ff4(m,n) = (0,1),(0,1),(0,2),(0,2),(1,2),(1,1),(1,1),(1,1),...

^The reader will have noticed that the playing field between the system and the environ
ment is not level: while the environment always proceeds infinitely often, the system may not
be able to proceed infinitely often even if this is permitted by the next-state condition. To
ensure that, when given the chance, the system does proceed infinitely often, one typically
imposes system-fairness conditions on the possible behaviors of a system. We shall see that
this is not necessary for real-time systems.



Due to nondeterminism and stuttering, NdUpDown has infinitely many execu
tion sequences.®

Every guarded-command program V describes a system whose possible be
haviors are the environment-fair execution sequences of V. When, out of conve
nience, we refer to the initial condition, the next-state condition, and the pos
sible behaviors of the program V, what we mean are the initial condition, the
next-state condition, and the possible behaviors of the system described by V.
The initial condition of V is determined by the initial assignments of V, and the
next-state condition of V is determined by the guarded assignments of V. For
instance, the initial condition of the guarded-command program NdUpDown is
given by the state predicate and the next-state condition of NdUpDown is
given by the transition predicate :

= (m = 0 A n = 1)
r{,N == (^rn' = 1)„ V

(m = 0 A n' = n -H l)m V
(m = 1 A n > 0 A n' = n —1),

The expression for ^ transition predicate ^ and a list i;o,...,Vic of
variables, is an abbreviation for the transition predicate V* AVq = vqA... A =
Vk] that is, the variables listed in the subscript remain unchanged. Each guarded
assignment contributes a disjunct—called a transition schema—to the next-
state condition. We leave it to the reader to formally define the initial condition
and the next-state condition of an arbitrary guarded-command program.

Bibliographic remarks. The state-transition paradigm originated with state
m2u:hines and has become a standard model for reactive systems (see, for ex
ample, the Kripke-Structure approach of Clarke and Emerson [CE81], the Fair-
TVansition-System approach of Manna and Pnueli [MP92], and the Tla ap
proach of Lamport [Lam94]). Stutter closure has been advocated by Lam
port [Lam83]; limit closure (safety) was formally defined by Alpern, Demers,
and Schneider [ADS86]; the relationship between systems and closure proper
ties was elucidated by Emerson [Eme83]; the executability (machineclosure) of
systems, by Apt, Francez, and Katz [AFK88]. Guarded commands were intro
duced by Dykstra [Dij75]; our guarded-command language is inspired by the
Unity language of Chzindy and Misra [CM88].

^While this is irrelevant for our discussion, the nondeterminism of the program NdUpDown
may be due to two internal, concurrent processes that proceed independently—one repeatedly
incrementing suid decrementing n, and the other updating m once. If no assumptions are
made about the relative speeds of the two processes, then n is incremented arbitrarily often
before m is updated.



3 Timed Systems 1: Safety

3.1 Clocks

A timed system is a discrete system whose state changes occur in real-numbered
time. Our starting assumption about timed systems is the synchrony hypothesis,
which postulates that real time is an environment parameter, or equivalently,
the passage of time is an environment activity. Consequently, the value of time
changes (increases) only with environmentactivities, and all state changes of the
system occur in zero time. The synchrony hypothesis is a useful mathematical
abstraction: any system activity that does consume time can be modeled by
two zero-time state changes that mark the beginning and the end, respectively,
of the activity. Later, we will see how the system can regain some control about
the passage of time, by restricting the amount of time that may pass before the
next system activity.

The state of a timed system is determined by two kinds of variables—discrete
variables and clock variables. The clock variables range over the nonnegative
real numbers. As before, the values of the discrete variables change in discrete
steps. By contrast, the values of the clock variables change as continuous func
tions over time: they increase uniformly, with derivative 1, as time advances.
As before, the discrete variables capture no information about the environment:
their values are changed explicitly according to a next-state condition. By con
trast, the clock variables do capture some information about the environment,
namely, the duration of environment activities: their values increase implicitly
with every environment activity (in addition, the values of the clock variables
may be changed explicitly, in accordance with the next-state condition). For
mally, we partition the finite set V of variables into a set of discrete variables
and a set of clock variables, called clocks. We reserve the letters x, y, and z for
clocks. Given a state <r and a nonnegative real number rf, we write for the
state that maps all discrete variables m to <T(m), and all clocks x to <r{x) -f S.

The behavior of a timed system results from two kinds of transitions—jump
transitions and delay transitions. A jump transition updates the values of both
the discrete variables and the clocks; a delay transition leaves the values of all
discrete variables unchanged and advances the values of all clocks. Formally,
the transition (o-, a') is a delay if there is a nonnegative real S—the duration
of the delay—such that a' = a -\-S. In particular, every stutter transition is a
delay. If the set V of variables contains at least one clock, then every stutter
transition has the duration 0; if V contains no clocks, then all delays are stutter
transitions, and we assign to all of them the duration 1. Every transition that is
not a delay is called a jump, sind is assigned the duration 0. Given a behavior c,
let Si be the duration of the i-th transition of d, integer i > 0. The behavior
d diverges if the infinite sum ^<>0 of durations diverges. In particular, if V
contains no clocks, then d diverges iff d is environment-fair—i.e., if it contains
infinitely many stutter transitions.

10



Let iphe a. transition predicate, possibly containing clocks. The predicate tf;
is a jump-invariant for the behavior d* if ^ is true for all jumps of d. Consider,
for instance, the behavior do whose even transitions increment the valueof the
discrete variable m and restart the clock x, and whose odd transitions are delays
of duration 2:

Ss(m, x) = (0,0), (0,2), (1,0),(1,2),(2,0),(2,2), (3,0),(3,2), (4,0),...

In this behavior, m is incremented at times 2,4,6,8,... The tramsitionpredicate
x>2Am' = m+lAx' = 0is a jump-invariauit for ds. If V contains no clocks,
then ^ is a jump-invariant for the behavior d iff V* is invariantly true for d.

3.2 Clock-constrained systems

A {closed) clock-constrained system S = {<f>^ consists, like a discrete sys
tem, of an initial condition <f>^ and a next-state condition except that both
the state predicate <f>^ and the transition predicate may contain clocks. The
behavior d is possible for the clock-constrained system «S if (1) the initial condi
tion <f>^ is initially true for d, (2) the next-state condition is a jump-invariant
for d, and (3) d diverges. A discrete system, then, is the special case ofa clock-
constrained system for which the set V of variables contains no clocks. Consider,
for instance, the clock-constrained system «Si that, starting from 0, increments
the value of m arbitrarily often such that the time difference between consecu
tive increment operations is at least 1 time unit and at most 2 time units. The
system S\ has the initial condition m = 0 A x = 0 and the next-state condition
l<x<2Am' = m-fl Ax' = 0. Here are some possible behaviors of S\:

d5(m,x) = (0,0), (0,2), (1,0), (1,2), (2,0), (2,2), (3,0),(3,2), (4,0),...
d6(m,x) = (0,0), (0,1), (1,0), (1,1), (2,0), (2,1), (3,0), (3.1), (4,0),...
d7(m,x) = (0,0), (0,0.5), (0,1.2),(1,0), (1,0), (1,1.5),(2,0), (2,1),...
d8(m,x) = (0.0),(0,1),(0,1.5),(0,2),(0,19),(0,19.1),(0,57),...

Not every set of divergent behaviors is the set of possible behaviors for some
clock-constrained system. As for discrete systems, the possible behaviors of a
clock-constrained system are closed under stuttering and under fusion. Third, if
all finite prefixes of a divergent behavior d can be extended to possible behaviors
of the clock-constrained system «S, then d is a possible behavior of S (closure
under divergent limits). Fourth, if wemerge two consecutive delays in a possible
behavior ofS into a single delay, or if wesplit a delay into two consecutive delays,
then we obtain another possible behavior of S (closure under timed stuttering).
Fifth, a clock-constrained system cannot prevent delays: if a finite prefix of a
possible behavior of S is extended by a delay, then we obtain again a prefix
of a possible behavior of S (closure under waiting). Notice that if V contains
no clocks, then closure under divergent limits simplifies to limit closure, and
closure under timed stuttering and closure under waiting are both subsumed by
stutter closure.

11



program CcUpDown:
declare x, y: clock;
initially n := 1; x := 0; y := 0;
loop x<10Al<y<5 n:=n + l;y:=0

or x>12Al<y<5An>0 —^ n;=n —l;y:=0
end.

Figure 4: Clock-constrained program

Consequently, the possible behaviors of a clock-constrained system can be
generated transition by transition: start with a state for which the initial con
dition is true, and repeatedly choose either a delay of arbitrary duration or
an enabled transition for which the next-state condition is true. Every finite
state sequence that is generated in this manner can be extended to a possi
ble behavior. Furthermore, a clock-constraiined system need not progress: when
generating a behavior transition by transition, from any point on we may choose
only delays (of any durations whose sum diverges). This is because every finite
prefix of a possible behavior followed by infinitely many delays of, say, duration
1 is also a possible behavior.

3.3 Clock-constrained programs

The stepwise executability of clock-constrained systems leads us to a guarded-
command notation. The syntax of a clock-constrained program V is the same as
for guarded-command programs, except that both the initial assignments and
the guarded assignments of V may contain clocks. The program V is executed in
a stepwise fashion: first, starting from any state, execute the initial assignments
to obtain an initieJ state of "P; then continue to select, nondeterministically, and
execute either a delay of arbitrary duration, or a guarded command whose guard
is true. Every countably infinite sequence of states that may result from this
stepwise process is called an execution sequence of P. Consider, for instance, the
clock-constrained program CcUpDown of Figure 4. The program CcUpDown
contains a discrete variable, n, and two clocks, x and y. The program starts
from an initial state in which n has the value 1, and both x and y have the
value 0. Within the first 10 time units, the value of n is incremented arbitrarily
often as long as the time difference between consecutive increment operations is
at least 1 time unit and at most 5 time units. Beginning at time 12, the value of
n may be decremented repeatedly, under the same timing constraints, as long
as n remains nonnegative.

Every clock-constrained program V describes a clock-constrained system
whose possible behaviors are the divergent execution sequences of P. The initial

12



condition of V is determined by the initial assignmentsof P, and the next-state
condition of V is determined by the guarded assignments of V. For instance,
the initial condition of CcUpDown is given by the state predicate 0', and the
next-state condition of CcUpDown is given by the transition predicate

= (n = lAx = 0Ay = 0)

= (x<10Al<y<5An' = n + lAy' = 0)a.V
(x>12A l<y<5An>0An' = n- lAj/' = 0)x

Eachguarded assignment contributes a disjunct—called jump schema—to the
next-state condition. We leave it to the reader to formally define the initial con
dition and the next-state condition of an arbitrary clock-constrained program.

Bibliographic remarks. The synchrony hypothesis is due to Berry [BG88]
(for an introduction to synchronous programming languages, see the monograph
by Halbwachs [Hal93]). The resulting dichotomy of jump transitions versus
delay transitions has been advocated also by various proponents of the inter
leaving view of concurrency (see, for example, the Timed-Transition-System
approach [HMP94] and the Tla approach [AL94]). Clock variables—as we
use them—were first introduced in temporal logic [AH94] (in conjunction with
so-called 'freeze quantifiers") and in finite automata [AD94]. More details on
closure under divergent limits (divergence safety) and closure under timed stut
tering can be found in [Hen92, HNSY94].

4 Timed Systems 2: Progress

4.1 Delays

We have imposed progress on the environment of discrete systems, through the
requirementofenvironment-fairness, and on the environmentofclock-constrained
systems, through the requirement of time-divergence. According to our defini
tions, however, a system (as opposed to the environment) need not progress. For
discrete systems, progress can be ensured by requiring fairness also for transi
tions that are not stutter transitions; for example, we could require that no
transition may be enabled forever (or infinitely often) without being executed.
System-fairness requirements are not necessary for clock-constrained systems.
Instead, we ensure the progress of a clock-constrained system by permitting
the system to prevent certain delays; a jump, then, must be executed before
time can advance any further. By constraining delays in this way, the fairness
requirement on delays—that time must awivance beyond any bound—indirectly
imposes fairness on jump transitions also.

We use delay predicates to describe the permissible delays. A delay predicate
is a proposition that is true or false for each delay. Then, for any given state <r,
the delay predicate x limits the amount by which the environment can advance

13



time to those delays with source state <7 for which x is true. For instance,
the proposition Time advances only as long as the value of the clock x is less
than 5'* is either true or false for each delay. We write this proposition as
"x < 5," implicitly quantifying variables like x to refer to the value of x in
all states, including the source state but excluding the target state, that occur
during a delay. Hence, in every state a, the delay predicate x < 5 prevents time
from advancing for more than 5 —<r(x) time units (if (r{x) > 5, then the delay
predicate x < 5 prevents time from advancing at all). This constraint can be
used to enforce a jump within 5 —<t(x) time units.

Formally, we write (<7, tf) for a delay with the source state a and the dura
tion S. A state a' is passed by the delay (c, S) if a' = a--]-€ for some nonnegative
real e < S. Consequently, if the duration 6 is positive, then the source state tr
is passed by the delay (<r, (5), but the target state (T -H ^ is not passed; if (<r, <5) is
a stutter transition—i.e., S = 0—then no state is passed. The syntax of delay
predicates is identical to the syntax of state predicates. A delay predicate x is
true for the delay (a-, tf) if x, viewed as a state predicate, is true for all states
that are passed by the delay (<r,^). For instance, the delay predicate x < 5 is
true for the delay iff <r{x) + ^ < 5 (since, by definition, the target state of
a delay is not passed by the delay, the delay predicates x < 5 and x < 5 are true
for the same delays). The truth of delays is preserved by splitting and merging:
every delay predicate x is true for all stutter transitions, and x is true for two
consecutive delays (<r,<5i) and {a -{• 61,62) iff x is true for the combined delay
(<7, (Ji -f 62).

We have used transition predicates to restrict the jumps of a behavior, and
we now use delay predicates to restrict the delays of a behavior. The delay
predicate x is a delay-invariant for the behavior a- if x is true for all delays of a.
Consider again the behavior ^5 whose even transitions increment the value of
the discrete variable m and restart the clock x, and whose odd transitions are
delays of duration 2:

di{m, i) = (0.0), (0.2), (1,0), (1,2), (2,0), (2,2), (3,0), (3.2), (4,0)....

The delay predicate x < 2 is a delay-invariant for 0-5; the delay predicate x ^ 1
is not. While we used, in Section 3.1, the jump-invariant x > 2 to describe the
lower bound of 2 time units between successive increment operations, here we
use the delay-invariant x < 2 to describe the matching upper bound.

4.2 Real-time systems

A {closed) real-time system S = {<i>^,X^) is a triple that consists of a
clock-constrained system {<i)^,ip^) and a delay predicate x^—the time-progress
condition of S. The states for which is true are called the initial states of S,
the jump transitions for which is true are called the possible jumps of S,
and the delays for which x^ is true are called the permissible delays of S. The

14



behavior d is possible for the real-timesystem S if (1) the initial condition
is initially true for a, (2) the next-state condition is a jump-invariant for
(3) the time-progress condition x'' is a delay-invariant for a, and (4) a diverges.
A clock-constrained system, then, is the specisd case of a real-time system for
which the time-progress condition is the delay predicate true, which is true for
all delays. If the behavior c satisfies clauses (1) to (3), but violates clause (4),
then a is called a convergent behavior of the real-time system S. Convergent
behaviorsare not possible, but will be useful for identifying the executable real
time systems.

The next-state condition of a real-time system asserts necessary conditions
on jumps and the time-progress condition asserts sufficient conditions. For
instance, the following real-time system S2 = tX^) changes the value of
m from 0 to 1 at time 3 at the earliest and at time 5 at the latest:

<f)^ = (m = 0 A X= 0)
= (x > 3 A m' = 1)

= (m = 0 A X< 5) V
(m= 1)

While the requirement x > 3 of the next-state condition ensures the lower time
bound of 3 (the jump that changes the value of m may happen at or after
time 3), the requirement x < 5 of the time-progress condition ensures the upper
time bound 5 (the jump must happen at or before time 5, because time cannot
advance past 5 before the value of m has changed to 1).

Not every set of divergent behaviors is the set of possiblebehaviors for some
real-time system. While the possible behaviors of a real-time system are closed
under stuttering, fusion, divergent limits, and timed stuttering, they are not
necessarily closed under waiting. This is because the time-progress condition
can enforce the progress of a real-time system.

4.3 Nonzenoness

There is a price to be paid, however, for progress: the possible behaviors of
a real-time system may no longer be generated transition by transition. By
starting with a state for which the initial condition is true, and repeatedly
choosing either a delay that does not violate the time-progress condition, or an
enabled transition for which the next-state condition is true, we may end up in a
situation from which time cannot diverge. Consider, for instance, the following
variant Sz of the real-time system S2'

<f>^ = (m = 0 A X= 0)
= (3 < X< 5 A m' = 1)

= (m = 0 A X< 10) V
(m= 1)

15



The re<il-time systems 52 and Sz have the same possible behaviors, namely,
all divergent behaviors in which the value of m changes &om 0 to 1 at time 3
at the e^liest and at time 5 at the latest. The real-time system Sz, however,
cannot be executed in a stepwise fashion. Executing the real-time system Sz
we might start from the initial state by choosing a delay of duration, say, 8,
which does not violate the time-progress condition. But there is no divergent
continuation from the resulting state <r with o"(m) = 0 and o-(x) = 8; we have
painted ourselves into a corner by having chosen an initial delay whose duration
was greater than 5.

Real-time systems that do not exhibit this problem are called nonzeno: a
real-timed system 5 is nonzeno if every finite prefix of a convergent behavior of
5 is also a finite prefixof a possiblebehavior of5. Consequently,the possible )h>e-
haviors of a nonzeno real-time system can be generated transition by transition:
start with a state for which the initial condition is true, and repeatedly choose
either a delay that does not violate the time-progress condition or an enabled
transition for which the next-state condition is true. Every finite state sequence
that is generated in this manner cem be extended to a possible behavior. In
particular, every clock-constrained system is nonzeno. In our example, the real
time system S2 is nonzeno, but the real-time system Sz is not. Nonzenoness,
therefore, is a property of a real-time system (syntax) rather than a property of
a set of behaviors (semantics). Indeed, every set of possible behaviors for some
real-time system is also the set of possible behaviors for some nonzeno real-time
system, which can be constructed by strenghtening the time-progress condition
appropriately. In our example, the real-time system Sz can be transformed
into an equivalent nonzeno real-time system by strengthening the time-progress
condition to (m = 0 A x < 5) V (m = 1).

4.4 Real-time programs

A guarded wait statement is an instruction of the form x wait, where the
guard X is a delay predicate. A guarded wait statement delays the program
by an arbitrary amount of time, but at most until the guard, viewed as a
state predicate, becomes false. The execution of the guau-ded wait statement
X wait, therefore, results in a delay that satisfies the delay predicate x-
In particular, the guarded wait statement false —> wait results in a stutter
transition, and the guarded wait statement true -¥ wait results in a delay of
arbitrary duration. We generally prefer the guard x < 5 over the equivalent
delay predicate x < 5, perhaps because we like to think of the guarded wait
statement x < 5 —wait as waiting as long as the value of x is less than 5, and
terminating as soon as the value of x becomes 5.

A real-time program V is consists of a set of initial assignments, followed
by a set of guarded assignments, followed by a set of guarded wait statements
(all of which may contain clocks). The program V is executed in a stepwise
fashion: first, starting from any state, execute the initial assignments to obtain

16



program RtUpDownl:
declare x,y: clock;
initially n := 1; x := 0; y := 0;
loop X < 10 A y > 1 —^ n := n -1-1; y := 0

or x>12Ay>lAn>0 -)• n := n —1; y := 0
or n>0Ay<5 wait

or n = 0 —y wait

end.

Figure 5: Nonexecutable real-time program

an initial state of V] then continue to select, nondeterministically, and execute
either a guarded wait statement, or a guarded command whose guard is true.
Every countably infinite sequence of states that may result from this stepwise
process is called an execution sequence of V. Consider, for instance, the real
time program RtUpDownl of Figure 5. The program RtUpDownl behaves like
the clock-constrained program CcUpDown, except that the value of n must be
incremented or decremented (depending on how much time has elapsed since
the program was started) at least once every 5 time units, until n reaches the
value 0.

It requires some care to define the possible behaviors of a real-time program.
Consider the two guarded wait statements 1 < a: < 3 and 2 < x < 4. It may
not be possible to merge the consecutive execution of these two guarded wait
statements into a single execution step (delay). Consequently, the execution se
quencesof a real-time program are not necessarily closed under timed stuttering.
Hence we define the set of possible behaviors of a real-time program V to be the
smallest set that contains all divergent execution sequences of V and is closed
under timed stuttering. In this way, every real-time program V describes a real
time system; the initial condition of V is determined by the initial assignments
of V, the next-state condition of V is determined by the guarded assignments
of and the time-progress condition of V is determined by the guarded wait
statements of V. For instance, the initial condition of RtUpDownl is given
by the state predicate , the next-state condition of RtUpDownl is given by
the transition predicate , and the time-progress condition of RtUpDownl is
given by the delay predicate

= (n = lAx = 0Ay = 0)
= (x < 10 A y > 1 A n' = n-f-1 A j/ = 0)x V

(x>12Ay>lAn>0An' = n- lAy' = 0)a:
= (n > 0 A y < 5) V

(n = 0)

17



program RtUpDown2:
declare x, y: clock;
initially n := 1; x := 0; y := 0;
loop X < 10 A y > 1 -¥ n := n-H 1; y := 0

or x>12Ay>lAn>0 -> n := n —1; y := 0
or X < 10 A y < 5 -)• wait

or x>y-|-7Ay<5 -)• wait

or n = 0 wait

end.

Figure 6: Executable real-time program

Each guarded assignment contributes disjunct (a jump schema) to the next-
state condition, and each guarded wait statement contributes a disjunct—called
a delay schema—to the time-progress condition. We leave it to the reader to
formally define the initial condition, the next-state condition, and the time-
progress condition of an arbitrary real-time program. A clock-constrained pro
gram, in particular, is a real-time program with the single guarded wait state
ment true -> wait, which yields the time-progress condition true.

The execution strategy for real-time programs succeeds only if it cannot
lead to a state from which there is no divergent continuation of transitions. A
real-time program V, therefore, is executable if it describes a nonzeno real-time
system. The real-time program RtUpDownl, for example, is not executable. To
see this, observe that the stepwise execution of RtUpDownl may lead to a state
a- with <T(n) = 5, (t(x) = 11, and <T(y) = 5, and there is no divergent sequence of
transitions continuing from <7. Figure 6 shows an executable real-time program
that has the same possible behaviors as RtUpDownl. The time-progress con
dition of the executable program RtUpDown2 is given by the following delay
predicate:

= (x < 10 A y < 5) V
(x>y-f7Ay<5) V
(n = 0)

The real-time program RtUpDownB terminates—i.e., the value of n reaches 0
and execution continues with delays only—within at most 65 time units (to
calculate this upper bound on the termination time of RtUpDownU^ observe
that the value of n can be at most 11 when x = 10).

4.5 Programming constructs

Our choice of guarded commands as programming language was instructionally
motivated. In principle, we may add clocks and guarded wait statements to

18



any programming language. To illustrate this, we now extend a simple Isui-
guage for while programs with clocks and guarded wait statements. Following
the synchrony hypothesis, all tests and assignments of a while program are ex
ecuted instsmtaneously, consuming zero time; all delays are indicated explicitly
by guarded wait statements.

In this context, it is convenient to introduce abbreviations for several com
mon applications of guarded wait statements. First, the instruction wait delays
a whileprogram for an arbitrary amount of time; it stands for the guairded wait
statement true —> wait. Second, the instruction wait watching <f> delays the
program for an arbitrary amount of time, but at most until the state predicate
<f> becomes true; it stands for the guarded wait statement -i^ -> wait. Third,
the instruction await <f> delays the program precisely until the state predicate 0
becomes true; it stands for the while-program segment

repeat wait watching <f> until <f>.

Fourth, the instruction wait [c,d] delays the program for at least c and at most
d time units, for nonnegative constants c and d with c < d; it stands for the
while-program segment

z := 0; repeat wait watching z > d until z > c,

where z is a new clock. We write wait c short for wait [c,c].
Consider the real-time while program RtUpDownS of Figure 7. To con

struct the initial condition, next-state condition, and time-progress condition
of RtUpDownSf we introduce a new discrete variable, the program counter pc,
which ranges over the control locations of the program. Figure 8 shows the
program RtUpDownS without nonatomic abbreviations, and annotated with
control locations (including a final control location, iis, which signals the ter
mination of the program). The initial condition of RtUpDownS is pc = £o,
for the initial control location ^o- An execution step of RtUpDownS is a move
between control locations and corresponds to the execution of either a test, an
assignment, or a guarded wait statement. Each such execution step contributes
a jump schema to the next-state condition of RtUpDownS\ each guarded wait
statement contributes, in addition, a delay schema to the time-progress condi
tion. For example, the first instruction £Q:n:=\ contributes the jump schema

(pc = £o A pc' = A n' = l)x,y,2

to the next-state condition. The third instruction £2: wait [1,5] contributes to
the next-state condition the jump schemata

(pc = £2 A pc' =:£^ A z' = 0)„,x,y V
(pc —£q A pc' —^4)n,r,y,z V
{pc = £4 A Z< I A pc' = £3)n,x.y,z V
(pc = -£4 A 2^ ^ 1 A pc —•^5)n,a;,y,2

19



program RtUpDownS:
declare x, y: clock;
n := 1; x := 0;
wait [1,5];
while X < 10 do

n := n+ 1; y := 0;
repeat

if X < y + 7
then wait watching x > 10 V y > 5
else wait watching y > 5
fi

until y > 1
od;

repeat wait watching y > 5 until x > 12;
while n > 0 do

n ;= n —1;
wait [1,5]
od.

Figure 7: Real-time while program

and contributes to the time-progress condition the delay schema

{pc = £z A z < 5).

We leave it to the reader to construct the complete next-state condition of
RtUpDownS as the disjunction of all jump schemata, and the complete time-
progress condition as the disjunction of all delay schemata. The resulting pos
sible behaviors are essentially the possible behaviors of the real-time guarded-
command program RtUpDown2 from Figure 6.® It follows, in particular, that
the real-time while program RtUpDownS is executable and terminates—i.e., it
reaches the control location fig—within at most 70 time units.^

Bibliographic remarks. Delay-invariants as a means for ensuring the progress
of a timed system were first proposed in [HNSY94]; their expressive power

^The possible behaviors of RtUpDownS would be identical to the possible behaviors of
RtUpDownS if we allow hiding of the program counter, and merging of consecutive tests
and assignments into initial states and into atomic jumps (for instance, the two consecutive
assignments n := n +1; y := 0 of the real-time while program RtUpDownS constitute a single
jump of the real-time guarded-command program RtUpDownS).

^The difference in termination time between RtUpDownS and RtUpDownS is due to the
instruction^16: wait [1,5], which is executed one last timejust before the terminationof the
while program.

20



program RtUpDownS:
declare x,y,z: clock;
lQ\n:=\\ t\:x := 0;
ti'.z'.— 0; repeat Iz: wait watching z > 5 l^ \ until z > 1;
while ^5: X < 10 do

4: n := n+ 1; 4: y := 0;
repeat

if 4: ® < 1/+ 7
then 4: wait watching x > 10 V y > 5
else ^10: wait watching y > 5
fi

ill '• until y > 1
od;

repeat ti2: wait watching y > 5 iiz'. until x > 12;
while £i4 : n > 0 do

45:" - 1;
iiQ: z := 0; repeat in: wait watching z > 5 fis: until z > 1
od;

loop ^19: wait end.

Figure 8: Annotated real-time while program

was studied in [HKWT95]. Nonzenoness (timed machine closure) was defined
independently by several researchers [Hen92, AL94]; Abadi and Lamport coined
the phrase. An algorithm that turns a finitary (cf. Appendix B) real-time system
into a nonzeno real-time system with the same set of possible behaviors can be
found in [HNSY94]. The real-time program RtUpDownl is derived from an
example, due to Pnueli [HMP94], that illustrates that an increase in the lower
bound on the duration of a delay may lead to a decrease in the running time of a
program (to see this, replace the lower bounds of 1 on the clock y by 2; then the
maximal possible value of n is 6, and RtUpDown2 will terminate within 40 time
units). The wait watching macro is inspired by Esterel [BG88]. The use of
control-location labels to define the transitions of a while program is standard
practice in state-transition semantics (see, for example, [MP92]).

5 Timed Systems 3: Reactivity

5.1 Untimed processes

The parallel composition of while programs is called a concurrent program.
Whereas a while program describes a sequential discrete system with a single

21



program ParUp:
initially m := 0; n ;= 0;
cobegin

loop if Cq : et;en(n) then : m := m + 1 fi end
II
loop ko'. n := n-\- m end
coend.

Figure 9: Concurrent program

control flow, a concurrent program describes a discrete system that consists of
multiple concurrent processes, each with its own control flow. The transitions
of the concurrent processes of a discrete system are interleaved nondeterministi-
cally, and interspersed with environment transitions; that is, two transitions of
a process may be separated by any number of transitions of other processes and
by any number of stutter transitions. The interleaving of concurrent transitions
reflects the underlying assumption that the execution speeds of the processes
are unknown, independent, possibly very diiferent and even varying. By ignor
ing the possibility of simultaneous concurrent transitions, the interleaving view
provides a useful abstraction: in every state, the number of enabled transitions
is equal to the sum (rather than the product) of transitions that are enabled for
each process.

Consider, for example, the concurrent program ParUp of Figure 9. The pro
gram ParUp consists of two interacting processes. The "left" process repeatedly
increments the value of m dependent on the value of n; the "right" process re
peatedly increases the value of n by the value of m. The stepwise execution of
ParUp interleaves the transitions of both processes with stutter transitions: any
number of transitions of the left process may occur before a transition of the
right process, and vice versa. The nondeterministic interleaving of concurrent
transitions results in one of many possible behaviors. To track the control flows
of all processes, we introduce a program counter for e£w:h process—in this exam
ple, the two program counters left and right.^ Here are some possible behaviors

^Since the right process has a single control location, there is really no need for the program
counter right in this example.

22



program RtParUp:
initially m := 0; n := 0;
cobegin

loop wait 3; if et;en(n) then wait 1; m := m + 1 fi end
II
loop wait 7; n := n + m end
coend.

Figure 10: Concurrent real-time program

of ParUp (the value of right is always ko):

)),(fi,0,0),(fo,l,0),(^o,l,l),

J),(£o,3,5),(^o,3,8),(fo,3,8),...
)),(fo,l,l),(fo,l,l),(4,l,2),
l),(£o,l,4),(fo,l,4),...
)),(fo, 1,0). (^1,1.0), (4.2,0),
)),(fo.3,0),(fi,3,0),...

Disregarding stutter transitions, the behavior erg alternates transitions from
both processes. A possible behavior of ParUp need not be fair to either or both
processes; for instance, the behavior di2 does not contain any transitions of the
right process.

The concurrent program ParUp describes a discrete system over the four
variables m, n, left, and right. Each execution step of either process contributes
a jump schema to the next-state condition of ParUp. The initial condition of
ParUpis given bythe state predicate 0', and the next-state condition ofParUp
is given by the transition predicate :

dg{left,m,n) = (4,0,0 . (4,0,0 ,(4.0,0
(4.1,1 .(4,1,1 .(4,1,2

a\Q{left,m,n) = (4.0,0 ,(4.0,0 , (4.1.0
(4.2,2 ,(4.2,2 ,(4.3,2

an{left,m,n)

II

o

o
o

.(4.0,0

o

O

(4.1,2 . (4.1.3 . (4,1.3
a\2{left,m,n) = (4.0,0 .(4.0,0 , (4.1.0

(4.2,0 .(4.2,0 . (4.3,0

<!>' =
=

[left = ^0 A right = koAm = 0An = 0)
{left = £o A even{n) A left' = ii)right,m,n V
{left = ^0 A ~iet;en(n) A left = £q) right,m,n V
{left = A left' = £o A m' = m -h l)ris/>f,n V
{n' = n -|- rTl)leJt,right,m

We leave it to the reader to formally define the initial condition and the next-
state condition of an arbitrary concurrent program.

23



program RtParUp:
decl€u>e x,y: clock;
initicdly m := 0; n := 0;
cobegin

loop
£o:x := 0; repeat £i: wait watching x > 3

to

1

H

IV
CO

if ^3: even{n) then
4: ®:= 0; repeat £5: wait watching x > 1 fe: until x > 1;
^7: m := m -1-1
fi

end
II
II
loop

ko:y:= 0; repeat ki: wait watching y>7 k2'- until y > 7;
ks: n := n-\- m
end

coend.

Figure 11: Annotated concurrent real-time program

5.2 Timed processes

The parallel composition of real-time while programs is called a concurrent
real-time program. Whereas a real-time while program describes a sequential
real-time system with a single control flow, a concurrent real-time program
describes a real-time system that consists of multiple processes that proceed in
parallel. If the processes are constrained in time, then the assumption of speed
independence is no longer valid, and some interleaved sequences of concurrent
transitions may no longer be possible. While the delays of concurrent processes
must overlap, it is still convenient to interleave concurrent jumps that occur
simultaneously.® This is made possible by the synchrony assumption: since,
under this assumption, flnite sequences of discrete state changes consume zero
time, the interleaving view can be maintained for concurrent jumps within a
real-time system.

Consider, for example, the concurrent real-time program RtParUp of Fig
ure 10. The timed program RtParUp is obtained from the untimed program
ParUp by adding delays before tests and assignments. During the execution of
RtParUpi a delay of the left process will overlap with one or more delays of the
right process, and vice versa. Also, a jump of the left process may interrupt a

^As in the untimed case, the alternative (combining simultaneous jumps into tuples of
jumps) may lezul, in any state, to an exponential proliferation of enabled transitions.

24



delayof the right process, and viceversa. Figure 11shows the program RtParUp
without nonatomic abbreviations, and annotated with control locations. Here
are two possible behaviors of RtParUp (the valuesof both program counters are
omitted, and all repetitions of quadruples are suppressed):

n, X, y) = (0,0,0,0), (0,0,3,3), (0,0,0,3), (0,0,1,4), (1,0,1,4),
(1,0,0,4),(1,0,3,7),(1,1,3,7),(1,1,3,0),(1,1,0,0),
(1,1,3,3),(1,1,0,3),(1,1,3,6),(1,I,0,6),(1,1,1,7),...

ffi4(m, n,X, y) = (0,0,0,0), (0,0,3,3), (0,0,0,3), (0,0,1,4), (1,0,1,4),
(1,0,0,4), (1,0,3,7),(1,0,0,7),(1,1,0,7), (1,1,0,0),
(1,1,1,1), (2,1,1,1), (2,1,0,1), (2,1,3,4), (2,1,0,4),...

In particular, the timing constraints of RtParUp rule out the strict alternation
ofjumps from the left process and the right process; that is, no possible behavior
of the timed program RtParUp corresponds to the possible behavior ag of the
untimed programParUp. Also, all possible behaviors of RtParUp contain both
infinitely many jumps of the left process and infinitely many jumps of the right
process; that is, the timing constraints ensure the progress of both processes.
On the other hand, if a concurrent real-time program contains no clocks, then it
has the same possible behaviors as the syntactically identical untimed program.

The concurrent real-time program RtParUp describes a real-time system
over the two clocks x and y and the four discrete variables m, n, left, and
right, where left and right are program counters for the left and right process,
respectively. Each execution step of either process contributes a jump schema
to the next-state condition of RtParUp. In addition, each pair of guarded wait
statements—one from the left process and the other one from the right process—
contributes a delay schema to the time-progress condition of RtParUp. The
initial, next-state, and time-progress conditions of RtParUp are shown in Fig
ure 12. As usual, we leave it to the reader to formally define the real-time
system that is described by an arbitrary concurrent real-time program.

5.3 Open systems and open programs

When we consider a single process of a concurrent program in isolation, the
other processes of the program appear as environment to the process under
consideration. We assume that for each variable there is one process that has
exclusive write access to the variable (we say that the process controls the vari
able), and we assume that every process has read access to every variable.In
particular, a process can read variables that are controlled by other processes.
For example, in the concurrent program ParUp, the left processcontrols m, and

"'These assumptions are chosen solely to keep the exposition simple. A write-shared variable
can be modeled, using our definitions, as a separate process (alternatively, the definition of
open systems can be generalized to permit shared write access). Read access can be restricted
by introducing an operator for the hiding of variables.

25



<f>^ = {left = ^0 A right = fcoAm = 0An = 0)

— {left = ^0 A left —£i A ®' = 0)rtyAt,m,n,y V
{left = A left —^2)right,m,n,x,y V
{left = ^2 Aa? < 3 Aleft —̂ l)right,m,n,x,y V
{left = ^2 A ®> 3 A left = £3)right,m,n,x,y V
(/e/t = 4 A ewen(n) A left' = 4)nj7ht.m.n,x,y V
{left —£3 A ~*evefl{Tl^ A left —•^o)riy/it,>n,n,x,y V
(/e/t = 4 A left —£3 t\ x' —0)right,m,n,y V
(/e/t = 4 A left —4)r»yfct,m,n,x,y V
(/e/C = 4 A a? < 1 A left = 4)rtyAt,m,n,x,y V
(/e/t = 4 A a; > 1 A left = £7)right,m,n,x,y V
(/e/f = 4 A left' = 4 A m' = m + l)riy/it,n,x,y V

= /:o A right' = ki A y' = 0)iejt,m,n,x V
= A;i A = k2)left,m,n,x,y V

(ng/i« = ^2 A y < 7 A right' = Ari)/e/t,m.n.x,y V
(riy/tt = ^2 Ay> 7 Aright' = fcaj/e/t.m.n.x.y V
(ny/»< = ks A right' = ko A n' = n-\- m)/e/t,m,x,y

= {left = A ny/»i = fciAx<3Ay<7) V
(/e^ = 4 A ny/»< = A:i Ax<lAy<7)

Figure 12: Real-time system described by the program RtParUp

the right process controls n. The left process, however, updates m dependent
on the value of n, and the right process updates n dependent on the value of m.
In this way, the left process takes into account information about its environ
ment, which includes the right process, and the right process takes into account
information about its environment, which includes the left process. Hence our
formalisms of closed discrete systems (where the variables capture no environ
ment information) and closed real-time systems (where the variables capture
no environment information except for the duration of environment activities)
are inadequate for representing individual processes. We now extend these for
malisms to so-called open systems, whose variables may represent environment
parameters.

An open system has two kinds of variables—controlled variables, which cai>-
ture parameters that are updated by system activities, and uncontrolled vari
ables, which capture parameters that are updated by environment activities.
Accordingly, the behavior of an open system has two kinds of jump transitions—
controlled jumps and uncontrolled jumps. A controlled jump represents a system
activity, which updates the values of the controlled variables according to a next-

26



program ParUpLeft:
local m: nat;
external n: nat;
initially m := 0;
loop if fo: even[n) then ; m ;= m + 1 fi end.

Figure 13: Open program

state condition, and leaves the values of the uncontrolled variables unchanged.
An uncontrolled jump represents an environment activity, which arbitrarily, and
nondeterministically, updates the values of the uncontrolled variables, and leaves
the values of the controlled variables unchanged.

Formally, an open real-time system S = {V^,<f>^,x^) is a quadruple
that consists of a set C V of variables—the variables controlled by S—and
a real-time system {<f>^, ,x^) such that (1) theinitial condition <f>^ contains no
free (uncontrolled) variables from U = V— and (2) the next-state condition

contains no free variables from U'. The closure of S is the closed real-time
system = {<l>^, X̂^) with the modified next-state condition

A f\v = v')y{f\v = v').

The left disjunct of xp^ ensures that the controlledjumps do not update uncon
trolled variables; the right disjunct is a jump schema for uncontrolled jumps: it
permits all possible changes to the values of the uncontrolled variables, while
ensuring that no controlled variables are updated. The behavior a is possible
(or convergent) for the open real-time system if o" is a possible (convergent)
behavior of the closure . Both the set of controlled variables and the
set V — of uncontrolled variables may or may not contain clocks. The open
real-time system S is an open clock-constrained system if the the time-progress
condition x^ is true] S is an open discrete system if, in 2tddition, the set V of
variables contains no clocks.

In programs, we declare controlled variables as local, and uncontrolled vari
ables as external. External variables cannot occur on the left-hand side of
assignments. A program is open if some variables are declared to be external.
Recall, for example, the concurrent program ParUp. The left process by it
self is given by the open program ParUpLeft of Figure 13. The open program
ParUpLeft describes an open discrete system with the controlled variables m
and left, and the uncontrolled variables n and right. The initial condition is
given by the state predicate <pj, and the next-state condition is given by the

27



transition predicate :

= [left = £o A m = 0)
= {left = £o A e«en(n) A left' = £i)m V

{left = £o A '̂ even{n) A left' = £o)m V
{left = A left' = £o A m' = m-\rl)

Here are two possible behaviors of ParUpLeft (the value of right is always ko):

d-9{left,m,n) = (^o, 0,0), (^i,0,0), (€i,0,0), (^i,0,0), (^o, 1,0), (4,1,1),
(4.1,1), (4,1,1), (4,1,2). (4,1,2), (4,1,2), (4,1,3),...

&iB{left, m, n) = (4,0,57), (4,0,18), (4,0,18), (4,1,18), (4,1,0),
(4,1,0), (4,1,1), (4,2,1), (4,2,1), (4,2,18),...

In particular, every possible behavior of ParUp is also a possible behavior of
ParUpLeft.

Symmetrically, the right process of the concurrent program ParUp describes
an open discrete system with the controlled variables n and right, and the un
controlled variables m and left. The initial condition is given by the state pred
icate and the next-state condition is given by the transition predicate tpjf:

<f)[ = {right = ^;o A n = 0)
- (n'= n-|-m)H5/,t

The right process of the concurrent real-time program RtParUp describes an
open real-time system with the controlled variables n, y, and right, and the
following initial, next-state, and time-progress conditions:

<t>i = {right = Ao A n = 0)
= {right = ko A right' = ki A i/ = 0)n V

{right = ki A right' —k2)n,y V
{right = /r2 A y < 7 A right' = ki)n,y V
{right = k2 Ay>7 Aright' = /tajn.y V
{right = ks A right' = fco A n' = n -f m)y

xj = {right = ki Ay' < 7)

Notice that every possible behavior of RtParUp is also a possible behavior of
the right process.

Open systems can be composed. Let Si = {V^,<f>{,'4>^,xT) and ^2 =
{yf, ^2» ^2 >X2) fwo openreal-time systems withdisjoint sets and of
controlled variables. The parallel composition of Si and S2 is the open real-time
system 5i ||«S2 with the set UVf ofcontrolled variables, the initial condition
<f>i A<f)2, the next-state condition

{ipi A /\ V= v') y {rp^ A /\ v= v'),
vevf vevf

28



program Nonreceptive:
local m: nat;
external n: nat;
initially m := 0;
loop

wait 5^;
m := m + 1;
if even{n) then await -^€ven[n) else await et;en(n) fi
end.

Figure 14: Nonexecutable open real-time program

and the time-progress condition xl AxT- Consequently, the initial states of
5i1|«S2 are those states that are initial for both Si and «S2; the possible jumps
of «Si||«S2 are those jumps that are possible for the closures of both Si and 52;
the permissibledelays of 5i||52 are those delays that are permissible for both
Si and S2. IfSf = (</>{, is the closure of5i, and Sf = (^21V*?.X?) is
the closure of S2, then the closure of5i||52 is {<f>{ A^2« V*? AV'f >xTAxT)- It
follows that the possible behaviors of the compound system 5i ||52 are precisely
those behaviors that are possible for both component systems Si and 52- For
example, the possiblebehaviors of ParUp are those behaviors that are possible
for both the left and the right process, and the same is true for RtParUp.

5.4 Receptiveness

While the appropriate condition for the executability of real-time systems is
nonzenoness, the appropriate condition for the executability of open real-time
systems is more complicated. This is because nonzenoness is not preserved
by parallel composition. To see this, consider the open real-time program
Nonreceptive of Figure 14. The local variable m is initialized to 0 and updated
by the program. The external variable n is updated, arbitrarily and nondeter-
ministically, by the environment. The prograun Nonreceptive increments m at
time 1, and whenever the environment changes the value of n from even to odd
or from odd to even, exactly ^ time units after the change of n. For example,
if the environment increments n at times 1, 2, 3, ..., then the program may
increment m at times 1, 1.5, 2.25, 3.125, ...

However, if the environment of Nonreceptive behaves like the program itself,
only with the roles of m and n interchanged, then m may be incremented at
times 1,1.5,2.25,2.625, 2.7875,..., and n may be incremented at times 1, 2, 2.5,
2.75, 2.825, .. .The resulting behavior converges. Indeed, there is no possible
behavior in this case: every stepwise execution of the two symmetric concurrent

29



processes results necessarily in a convergent behavior. Since the progrsim and
the environment are symmetric, both are equally to blame for preventing time
from diverging. This happens despite the fact that the closure of Nonreceptive
is nonzeno: every finite sequence of controlled jumps, uncontrolled jumps, and
delays can be extended to an infinite, divergent behavior. To obtain such a
divergent extension, however, the environment must collaborate with the pro
gram (specifically, the environment must wait long enough between consecutive
updates of n). We define a sufficient condition—called receptiveness—for the
executability of open real-time systems in all "reasonable" environments, where
reasonableness is a much weaker assumption about environments than collabo
ration; roughlyspeaking, an environment is reasonableif it does not unilaterally
prevent time from diverging. In particular, many adversarial environments are
reasonable. This is why the quantification over all reasonable environments is
best understood as a game of the system against the environment.

The game between an open real-time system and the environment may start
at any state that can be reached from an initial state by a finite sequence
of jumps (controlled and uncontrolled) and delays. With each move, the sys
tem proposes either new values for the controlled variables which satisfy the
next-state condition, or a duration for a delay which satisfies the time-progress
condition. The environment, independently and simultaneously, proposes either
new values for the uncontrolled variables or a duration for a delay. The move
leads to a new state in one of three possible ways: (1) the system has proposed
new values for the controlled variables, and the new state results from the cor
responding controlled jump; (2) the environment has proposed new values for
the uncontrolled variables, and the new state results from the corresponding
uncontrolled jump; (3) both the system and the environment have proposed
durations for delays, and the new state results from the delay whose duration
is the minimum of the two proposed durations. If both the system and the en
vironment have proposed new values for variables, then the result of the move
is, nondeterministically, either (1) or (2).

The g2une is playedfor a countably infinite sequenceofmoves,whichgenerate
a countably infinite sequence of states. The outcome of the game is either a
possible behavior of the system, or a convergent behavior. The system wins
the game if either the outcome diverges, or the environment is to blame for
convergence. The latter is the case if, after finitely many moves, either the
system always proposes new values for the controlled variables but its proposal
is never chosen (because (2) is always chosen over (1)), or the system aJways
proposes durations that are strictly larger than the durations that are chosen
(because the environment always proposes either a smaller duration than the
system, or new values for some uncontrolled vauriables when the system proposes
a positive duration). An open real-time system is called receptive if it has a
winning strategy in this game. The existence of a winning strategy ensures that
if time is prevented from diverging, it must be the fault of the environment.

We now formalize the receptiveness game. Let S = {V^,<f>^,x^) be an

30



program RoundRobin:
local i: task;
initially i := FirstTask;
loop

ResumeTask{i)]
wait 10;
SuspendTask (i);
i := NextTask{i)
end.

Figure 15: Round-robin scheduler

open real-time system. A strategy for <S is a function s that maps every finite
state sequence (Tq, •.., <t,- either to a state <t' such that the next-state condition

is true for the transition or to a nonnegative real 8 such that the
time-progress condition ^ is true for the delay A behavior o* is an
outcome of the strategy s if there is a position j > 0 such that for all positions i >
j, either (1) s(o-O)..., Cj) is a state and the transition ((r,-,cr,+i) is a controlled
jump with (Ti+i = s(cro,..., o-,), or (2) the transition (<7i, a,+i) is an uncontrolled
jump—i.e., <Ti (v) = cr,+i (v) for allvariables v € —or (3) s(a'o,..., o"i) isa real
number and the transition ((r,-, is a delay of duration at most s(<to> •••>
Notice that strategiesare appliedonlyeventually, fromsome position j onwards.
The outcome a is fair to the strategy s if there are infinitely many positions
i > 0 such that the transition (aj, (r.+i) is either a controlled jump or a delay of
duration s((To, ..., (t,). By contrast, in an unfair outcome, from some position
onwards the environment determines all moves. The open real-time system S
is receptive if there exists a strategy s for S—the receptiveness strategy—such
that no fair outcome of s is a convergent behavior of S. In particular, every
open clock-constrained system is receptive (consider the strategy that always
proposes a delay of duration 1).

For every open real-time system S, if S is receptive, then the closure
is nonzeno. This is because every finite prefix of a convergent behavior of
can be extended to a possible behavior of by repeated application of the
receptiveness strategy for S. It can be shown that receptiveness is preserved by
parallel composition: foropen real-timesystemsSi and S2^ if both Si and S2 are
receptive, then 5ill52 is also receptive. An open real-time program"P, therefore,
is executable if it describes a receptive real-time system: in composition with any
executable environment, an executable program can be executed step by step.
For example, both processes of the real-time program RtParUp are executable,
but the real-time program Nonreceptive is not.

31



program NrRoundRobin:
local i: task; x: clock;
external done: array of bool;
initially i := FirstTask]
loop

ResumeTa8k{i);
X := 0; await x > 10 V done[i];
if ->done[i] then SuspendTask{i) fi;
repeat i := NextTask{i) until -^done[{\
end.

Figure 16: Nonexecutable round-robin scheduler for terminating tasks

5.5 Embedded programming

At last, we are resuiy to illustrate our approach to real-time programming by
designing typical application programs such as embedded controllers and sched
ulers. Both embedded controllers and schedulers are examples of open real-time
systems: an embedded controller is a real-time process that runs concurrently
with the plant processes that are being controlled; a scheduler is a real-time pro
cess that runs concurrently with the task processes that are being scheduled.
For example, the open real-time program GateControUer of Figure 1 controls
the gate at a railroad crossing. The gate is closed 5 time units after a train
signals its approach by setting the external bit train.present, and the gate is
opened again as soon as the train signals its exit from the crossing by resetting
train jpresent.

Schedulers can operate according to various protocols. The round-robin
scheduler RoundRobin of Figure 15 schedules a task for exactly 10 time units,
and then moves on to the next task. The local scheduler variable i indicates

which task is currently running. If tasks may terminate, a more sophisticated
scheduler is needed. We assume that when task i terminates, the external bit
done[i]is set. The round-robin scheduler NrRoundRobin of Figure 16schedules a
task either for 10 time units or until the task terminates, whatever happens first.
This scheduler, however, is not executable: given a sequence of tasks that termi
nate within 1, 0.5, 0.25, .. .time units, the stepwise execution of NrRoundRobin
produces a convergent behavior. Such a scheduler is not physically realizable,
because it would have to detect the termination of a task, suspend the task, and
resume a new task within an arbitrarily short period of time. An executable
version of a round-robin scheduler for terminating tasks is shown in Figure 17.
This scheduler describes a receptive system, because it needs 1 time unit for
suspending a task and resuming another task.

32



program TtRoundRobin:
local i: task; x: clock;
external done: array of bool;
initially %FirstTask]
loop

ResumeTask{i)',
X := 0; await x > 10 V done[i]\
if ->done[i] then SuspendTask{i) fi;
wait 1;
repeat i := NextTask{i) until -tdone[t\
end.

Figure 17: Executable round-robin scheduler for terminating tasks

Finally, the priority scheduler Priority of Figure 18 schedules a task until it
terminates or until an interrupt arrives from a task with higher priority, what
ever happens first. An interrupt is indicated by the uncontrolled bit interrupt
being toggled. The unit delay of the scheduler ensures executability. The bit
prev-interrupt guarantees that a single interrupt is not lost if it occurs after the
program has computed the task with the highest priority but before the program
goes on to wait for an interrupt. (Of course, an even number of simultaneous
interrupts may be lost; so if interrupts from several tasks can arrive simultane
ously at precisely the same instant in real-numbered time, then a separate bit
interrupt[i\ is needed for each task i.)

Bibliographic remarks. The interleaving view of concurrency was first advo
cated by Dijkstra [Dij65]. Parallel composition as intersection (or conjunction)
is a salient feature if systems are identified with sets of possible behaviors (see,
for example, [AL93]). For untimed systems, receptiveness was first defined by
Dill [Dil89b]; for timed systems, by Gawlick, Segala, Sogaard-Andersen, and
Lynch [GSSAL94]. There, it was also shown that receptiveness is closed under
parallel composition. An "industrial-strength" version of our model for open
discrete systems and open reeil-time systems, complete with capabilities for syn
chronizing concurrent transitions and for restricting read access to variables,
can be found in [AH96, AH97]. The latter reference also contains an algorithm
that checks whether a finitary (cf. Appendix B) open real-time system is recep
tive. Schedulers and railroad-gate controllers pervade the real-time literature as
examples [HJL93, HMP94].

33



program Priority:
local i: task; prev.interrupt: bool;
external interrupt: bool; done: array of bool;
loop

prev.interrupt := interrupt;
i := MaxPriorityTask;
ResumeTask{i);
if prev.interrupt

then await -^interrupt V done\t\
else await interrupt V done[i]
fi;

if -*done[i] then SuspendTask{i) fi;
wait 1

end.

Figure 18: Priority scheduler

6 Timed Systems 4: Continuity

6.1 Drifting clocks

So far, we have assumed that all clocks are mathematically precise. In dis
tributed systems, however, one is often confronted with physical clocks, which
are necessarily imprecise. Typically all that is known about a process clock x is
that the drift of x is bounded; that is, in any time interval of length 1 the clock
may deviate from the actual time by a fswitor of p, for a positive real number
p > 0. If the clock is started at 0, after t time units it mayshow as little as t/p
and as much asi •p. We indicate that the drift of the clock x is bounded by p
with the clock declaration x: clock drift p (the condition drift 1 is suppressed
as usual), and p is called the drift bound of x. Forexample. Figure19shows the
railroad-gate controller from Figure 1, assuming that the drift of the controller
clock X is bounded by p = 1.1. This version of the controller may close the gate
as early as (approx.) 4.55time units and as late as 5.5 time units after the train
signals its approach.

The behavior of drifting clocks during delays is best described by differential
constraints. For this purpose, let v be the first derivative of the variable v. Then,
if the drift of the clock x is bounded by 2, all states that are passed by delays
satisfy the differential constraint 0.5 < x < 2. Referring to its mixed discrete-
continuous nature, a system with drifting clocks is called "hybrid." Hybrid
systems have both discrete variables, which are updated in discrete steps that
consume no time (resulting in jumps), and continuous real-valued variables—

34



program DcGateControUer:
local X: clock drift 1.1;
external train.present: bool;
loop

await train.present]
X := 0; await x = 5;
CloseGate]
await -strain.present]
OpenGate
end.

Figure 19: Railroad-gate controller with a drifting clock

such as clocks and drifting clocks—which are updated as continuous functions
while time elapses (during delays, resulting in so-called "flows"). When more
general differential constraints are permitted to describe the evolution of con
tinuous variables, they can be used to measure not only time, or the values of
drifting physical clocks, but arbitrary continuous parameters such as tempera
ture, pressure, or position.

6.2 Hybrid systems

The behavior of a hybrid system consists of jumps and flows. The flows are gen
eralizations of delays. Formally, a flow (/, <5) consists of a nonnegative real S—
the duration of the flow—and a differentiable function / from the closed interval
[0,<5] of the real line to states (a function / from the reals to states is differen
tiable if for every variable u, the projection f\v is differentiable;^^ in particular,
for every variable v E V that does not range over the reals, the projection /|v
must be a constant function). The state /(O) is the source state of the flow
(/, <5), and the state f{S) is the target state of the flow. A state cr* is passed by
the flow (/, S) if = /(c) for some nonnegative real e < ^. A hybrid behavior
is a countably infinite sequence f = tq, ri, r2,... of jumps and flows such that
any two neighboring elements of r are consecutive—i.e., for all i > 0, the target
state of Ti is equal to the source state of Tj+i. The definitions of divergence,
initial truth of state predicates, and jump-invariants carry over directly from
behaviors to hybrid behaviors.

We describe flows using flow predicates. Let V be the set of dotted variables
v for which the undotted version v occurs in V and ranges over the reals. A flow
predicate is a formula of predicate logic whose free variables are taken from V
and V. The flow predicate x is true for the flow (/,^) if x is true for all states

'^For all reals e, define /|t;(€) = /(«)(*')*

35



program Thermostat:
local heat: {on, off}; 6: continuous;
initially heat := on; 6 := 68;
loop heat = off A $ <6b -¥ heat := on

or heat = on A $ >70 —)• heat := off
or heat = on A6 < 70 wait[^ = Co(ci —0)]
or heat = off A$ > Ob -¥ wait[^ = —cq0\
end.

Figure 20: Thermostat program

a' that are passed by the flow {f,S), where the truth value of x for = /(c)
is obtained as follows: each free variable t; 6 K in x is interpreted as the value
<t'{v) of f\v at €, and each free variable u € 1^ in x is interpreted as the first
derivative of /]« at e. The flow predicate x is a flow-invariant for the hybrid
behavior f if x is true for all flows of f.

A {closed) hybrid system is a real-time system whose time-progress condition
is a flow predicate. The hybrid behavior f is possible for the hybrid system S if
(1) the initial condition of S is initially true for f, (2) the next-state condition
of «S is a jump-invariant for f, (3) the time-progress condition of iS is a flow-
invariant for f, and (4) f diverges. Suppose that 5 is a hybrid system with the
time-progress condition x^ • The variable t; is a discrete variable of S if either
Vis not a real-valued variable, or the time-progress conditionx^ implies u = 0;
that is, the variable v is not modified during flows. All other variables in V are
continuous variables of S. In particular, the continuous variable ® is a clock if
the time-progress condition x^ implies «>OAx = l. A real-time system, then,
is the special case of a hybrid system for which all variables in V are discrete
variables or clocks. Other examples of continuous variables are drifting clocks
and stopwatches: the continuous variable y is a drifting clock, with drift bound
p > 0, if the time-progress condition x^ implies y>OA l/p < y < p\ the
continuous variable z is a stopwatch if the time-progress condition implies
(z > 0 A i = 1) V (z = 0). Unlike clocks, a stopwatch can be halted and later
restarted from the value at which it was halted.

Continuous variables can be used to measure continuous parameters other
than time. Consider, for example, a thermostat that regulates the room tem
perature. Suppose that the initial room temperature is 68 degrees and the heat
is turned on. When the temperature reaches 70 degrees, the heat is turned
off, and the temperature 6 decreases over time t according to the exponential
function 9{t) = 70e"®°*, where cq is a constant determined by the room. When
the temperature falls to 65 degrees, the heat is turned on, and the temperature
6 increases according to the exponential function 0{t) = 656"*^°* -f ci(l —e"®"').

36



program Train:
local d: continuous; train4)r€sent: bool;
loop

£o : d := 5000;
repeat

£i: wait[—55 < d < —45] watching d < 1000
£2: until d < 1000;

£3: train jpresent := true]
repeat

£4: wait[-50 <d< —35] watching d < -100
£5: until d < —100;

£&: train jpresent false;
£7: wait[—55 < d < —45]
end.

Figure 21: Tlrain program

where ci is a constant determined by the power of the heater. The resulting
hybridsystem has the initial condition <f>^, the next-statecondition , and the
time-progress condition •

<i>' =
=

T
X =

{heat = on A ^ = 68)
{heat —off A ^ < 65 A heat' = on)^ V
{heat = on A 0 > 70 A heat' —off)9
{heat = on A^ = Co(ci —̂) A^ < 70) V
{heat = off A 0 = —cqO B> 65)

Here, the status of the heater is modeled by the discrete (boolean-valued) vari
able heat] the room temperature, by the continuous (real-valued) variable 6.

The definitions of nonzenoness, open systems, and receptiveness carry over
directly from real-time systems to hybrid systems, provided that all uncontrolled
variables are discrete. For a discussion of open hybrid systems with uncontrolled
continuous variables, such as the water-level controller from Figure 2, we refer
the interested reader to the references given in the bibliographic remarks.

6.3 Hybrid programs

Wedescribe hybrid systems by guarded-command programs such as the Thermo
stat program of Figure 20, which describes the example from Section 6.2, or by
while programs such as the Train program of Figure 21. Clock variables (pos
sibly drifting) are declared, as before, as clock; all other continuous variables.

37



(j)^ = (pc = 4)

— (pC —£q A pd —£\ Ad' —5000)tratn_pre5ent V
(pc —£i A pc' —£2)train-present,d V
(pC —£2 A d "> 1000 A pc' = £\) train-present,d V
(pc —£2 A d ^ 1000 A pc' —4)train-present,(f V
(pc= 4 A pc' = 4 A train-present' = irtie)^ V
(pc —£4 A pc' —£5)train-present,d V
(pc = 4 A rf > 100 A pc' —£4) train-present,d V
(pc = 4 A d < —100 A pc' = 4)train-present,d V
(pc= £$ A pc' = 4 A train-present' = false)d V
(pc —£7 A pc' —£q) train-present,d

= (pc = 4 A -55 < d < -45 A d > 1000) V
(pc = 4 A -50 < d < -35 A d > -100) V
(pc = 4 A -55 < d < -45)

Figure 22: Hybrid system i<l>^,xp^tX^) described by the program Train

as continuous. Given a state predicate <f> and a differential constraunt
the guarded wait statement <p -)• wait[x] delays the program by an arbitrary
amount of time, but at most until the guard becomes false. Throughout the
delay, the evolution of the continuous variables is governed by the dilTential con
straint X' The execution of the guarded wait statement ^ -> wait[x], therefore,
results in a flow that satisfies the flow predicate <t>AX' As expected, the instruc
tion wait[x] watching <f> stands for the guarded waitstatement -y<f> —> wait[x]-

In the Train program, the continuous variable d represents the distance,
in meters, of a train from the railroad crossing. The dotted variable d, then,
represents the speed of the train in meters per time unit. The speed of the train
stays between 45 and 55 meters per time unit until the train is 1,000 meters
from the crossing. At this point, the train signals its approzu:h, by setting the bit
trainpresent, and slows down to 35 to 50 meters per time unit. When the train
is 100 meters past the crossing, it leaves and may return along a cyclic track
whose length is at least 5,100 meters. The hybrid program Train describes,
therefore, the hybrid system of Figure 22. We may wish to compose the Train
program with the gate controller DcGateControUer. It is left to the ambitious
reader to determine the hybrid system that is described by the concurrent hybrid
program Train\\DcGateControHer. The resulting system satisfies the safety

^^DifTerential constraints are flow predicates with certain restrictions on executability, such
as solvability of differential equations. For details, we refer the interested reader to the refer
ences given in the bibliographic remarks.

38



requirement that whenever the train is within 10meters of the crossing (—10 <
d < 10), the gate is closed.

Bibliographic remarks. The bounded-drift assumption underlies the clock
synchronization problem fordistributed systems(see, for example, the survey by
Schneider [Sch87]). The dichotomy ofdiscrete transitions(jumps) versus contin
uous transitions (flows) was introduced by Manna, Maler, and Pnueli [MMP92].
The use of flow-invariants to model hybrid systems in general [ACH"'"95], and
driftingclocks in particular [AHH96], wasdeveloped in the framework ofhybrid
automata (see, forexample, the survey [Hen96]). Openhybridsystems were first
discussed by Lynch, Segala, Vaandrager, and Weinberg [LSVW96]. A detailed
presentation of our model for open hybrid systems, complete with uncontrolled
continuous variables and a discussion of executable differential constraints, can
be found in [AH97]. Recent workshop proceedings provide an excellent overview
ofapplications forhybridsystems[GNRR93, ANKS95, AHS96]. The thermostat
example is due to Nicollin, Sifakis, and Yovine [NSY93].

7 Conclusion

We illustrated the clock paradigm for specifying timed systems. The clock
paradigm permits a clean and natural extension of the state-transition seman
tics from discrete reactive systems to real-time systems: lower time bounds
on transitions, which specify when transitions may happen, are included in
the next-state condition of a system; upper time bounds, which specify when
transitions must happen, are described by the time-progress condition, which re
places the fairness condition of a system. The dichotomy between instantaneous
transitions (jumps) and time transitions (delays) permits the extension of the
interleaving view of concurrency from untimed to timed system: the parallel
composition of clock systems interleaves jumps while overlaying delays. Fur
thermore, the clock paradigm can be readily generalized for specifying hybrid
systems, with variables that change continuously over time.

For dense-time systems, which may exhibit Zeno phenomena, executability
becomes a subtle issue. Hence we developed a formal semantics for clock systems
in order to understand their operational behavior. This semantics can be used
also for reasoning about functional and timing properties of clock systems. The
two appendices below discuss, very briefly, the deductive and the algorithmic
approach to real-time reasoning using the clock paradigm.

39



Appendix A:
Proving Properties of Real-time Systems
(by Rajeev Alur, Thomas A. Henzinger, and Peter W. Kopke)

We formalize system requirements as sets of behaviors. Intuitively, a require
ment is the set of those behaviors that satisfy the requirement. For instance,
for a discrete integer variable m, the requirement "m is always even" is the set
of behaviors that contain only states that map m to even numbers; the require
ment *'m is sometimes odd" is the set of behaviors that contain some state that
maps m to an odd number. Requirements that involve continuous variables
are more subtle. For instance, for a clock x, the requirement "x is sometimes
equal to 1" is not simply the set of behaviors that contain some state that maps
X to 1, but the set of behaviors that contain or pass some state that maps x
to 1 (where a state <t is passed by the behavior a- if <7 is passed by some delay
of o"). For the railroad crossing from Section 6.3, then, the safety requirement
"Whenever the train is within 10 meters of the crossing, the gate is closed" is
the set of behaviors that do not contain or pass a state a for which the gate is
open and —10 < <r(d) < 10.

A set of behaviors is called a property. Let be a closed real-time system.
We write |5| for the set of possible behaviors of 5, and [«S] for the set of
possible and convergent behaviors of S. Then S is nonzeno iff |«9| is dense
in [5] with respect to the Cantor metric on infinite sequences [Hen92]. '̂̂ The
real-time system S satisfies the property 11 if |«S| C 11. The real-time system
S pre-satisfies the property IT if [5] C 11. Clearly, pre-satisfaction is a sufficient
but not a necessary condition for satisfaction. Any sound and complete proof
calculus for discrete systems gives rise to a sound and complete calculus for
provingif a real-timesystem pre-satisfies a property from a given class. Such a
calculus, therefore, is sound but may not be complete for proving if a real-time
system satisfies a property from that class.

Properties can be described, for example, by formulas of linear temporal
logic [MP92]. For a state predicate <f>, the temporal formula D<f> describes the
set of behaviors that contain (and pass) only states for which <f> is true, and the
temporal formula O0 describes the set of behaviors that contain (or pass) some
state for which <f> is true. Since state predicates may contain clocks, temporal
formulas can express timing requirements. For example, the requirement "The
real-time while program RtUpDownS terminates within 15 to 70 time units" is
specified by the temporal formula

0(pc = ii9 A 15 < X< 70),

because the clock x of the program RtUpDownS measures the total elapsed

^®For the verification of an open system, consider its closure.
'^In the Cantor metric, two infinite sequences are close if they have long prefixes in common:

the longer the longest common prefix, the closer the two sequences.

40



time. We write 5 |= if the real-time system S satisfies the property that is
described by the temporal formula i?. Based on [HK94], we present a deductive
method for proving assertions of the form 5 }= The method is interesting,
because it relies on considerable technologytransfer from the discrete case. The
two extensions that are necessary for proving properties of real-time systems
concern (1) the density of the timedomain, which causes passed states to be of
interest,^® and (2) the divergence of time.^®

Safety properties

A safety property is a closed set ofbehaviors [ADS86].^^ For instance, the prop
erty "m is alwayseven" is a safety property; the property "m is sometimesodd"
is not. Every temporal formulaof the form Ci<f>, for a state predicate describes
a safety property. By elementary topology, for nonzeno real-time systems, the
pre-satisfaction of safety properties coincides with satisfaction [Hen92]. Hence,
for proving safety properties of nonzeno real-timesystems, we can use any cal
culus for proving safety properties of discrete systems.

Consider, for instance, the invariance ruleSafe ofMannaand Pnueli[MP95],
whose translation into our framework is shown in Figure 23. The rule Safe is
sound and complete for proving assertions of the form 5 |= for a nonzeno
real-time system S = stud a state predicate <f). In the figure, we
use the following notation. We write ^ ^ if the state predicate <j> is valid—i.e.,
if 0 is true for all states (this can be checked by predicate logic). The formula
V = V -t- <y, for a nonnegative real <5, stands for the conjunction

{^v' = v) A =
v£D X€C

where D is the set of discrete variables and C is the set of clocks. For a state
predicate <f>, the state predicate + <5 is obtained by replacing every free occur
rence of each clock x in ^ by x -t- For a state predicate the state predicate
<f>' is obtained by replacing every free occurrence of each variable v in by the
primed version v'. The auxiliary state predicate y? of the rule Safe is cadled an
inductive invariant. The challenging part of a safety proof is the construction
of a suitable inductive invariant.

We use the rule Safe to show that the executable real-time while program
RtUpDownS terminates within 15 to 70 time units. For this purpose, we need
to prove the assertion

RtUpDownS [= 0(pc = ^19 A 15 < x < 70).

should be noted that the density of the time domain also renders unappealing the
next-time operator of temporal logic.

'^As discussed below, the divergence of time becomes an issue only for liveness properties.
^^Closure in the Cantor metric is exactly limit closure, as defined in Section 2.4.

41



Figure 23: Rule Safe for proving invariants of nonzeno real-time systems

Every such time-bounded O property is a safety property (this folk theorem is
formalized in [Hen92]). In particular, over the possible behaviors of RtUpDownS,
our proof obligation is equivalent to the conjunction of the two safety assertions

RtUpDownS 1= •(pc = ^19 =» X> 15)

and

RtUpDownS 1= •(« > 70 => pc €

The first • property specifies the lower bound on termination; it states that
the program will not terminate before 15 time units. The second • property
specifies the upper bound; it states that the program will terminate within 70
time units. This is because, as time diverges, eventually the value of x will be
greater than 70. When this happens, according to the second • property, the
program will have terminated (assuming the technical proviso that the initial
value of Xis not greater than 70). Both • properties can be concluded from the
rule Safe with the inductive invariant shown in Figure 24. All premises follow
by predicate logic.

Liveness properties

While nonzenoness enables the direct application of discrete techniques to the
verification of safety properties for real-time systems, liveness properties require
a different approach. Our solution uses an auxiliary clock tick to identify the
divergent behaviors. Let S = {(f>^,X^) be a closed real-time system. We
write iS h r? if 5 pre-satisfies the property that is described by the temporal
formula d. We define a new resJ-time system Suck by adding to the clocks in
V a new clock variable, called ficfc, adding the conjunct tick = 0 to and
adding the jump schema (tic/: = 1 A tick' = 0)v as a disjunct to . Since
the possible behaviors of S are closed under timed stuttering, it follows that for
every temporal formula i?,

5 1= t? iff Stick b (•0(tic/: = 0) A •0(<ic/: = 1)) t?.

42



Vo<i<i9
A pc = ii n = 1

A pc = t2 n = 1 A X = 0

A pc € {^3>^4} n=lAx=zAz<b

A pc = e^ 1 < n < 11 A

(n=l=» A
(n = 2 => X< 5 -hy) A
(n>2 => n-l-fj/<x<10-l-yAl<y<5)

A pc = 4 n>lAn<x<10A

(n = 1 => X< 5)
A pc = £7 => n>2An — l<x<10 A

(n = 2 => X< 5)
A pc G Al} n>2An —l-hy<x<10-|-yAy<5 A

(n = 2 x<5-Hy)
A pc G {^12,^13) 3<n<ll Ax<10-f-yAy<5
A pc = £14 =» n>OA 15 — n<x<70 — 5n

A pc = £15 n>OA 15 — n<x<70 — 5n

A pc = £i6 n>OA 14 — n<x<65 — 5n

A pc G {£i7)^18} n>OA 14-n-f-z<x<65 —n-|-zA^<5

A

o>

II

=> X > 15

Figure 24: Inductive invariant tp for the real-time while program RtUpDownS

We may use discrete temporal reasoning to prove the latter. In this way, any
sound and complete calculus for proving temporal properties of discrete sys
tems provides a sound auid complete calculus for proving properties of real-time
systems. The main drawback of this approach is its complexity: to prove a O
property of a real-time system, we must use a rule for proving DO properties of
discrete systems. Such rules can be found, for example, in (MP84].

Appendix B:
Automatic Analysis of Real-time Systems

In Appendix A, we outlined a methodology for establishing properties of real
time systems using mathematical proof. Similar proof methods can be found
in [dBHdRR92, MKP96] and are supported by deductive verification tools such
as STeP [BBC+96]. An alternative, more limited but more automated, ap
proach employs algorithms for establishing properties of real-time systems. The
algorithmic approach, often referred to as model checking, has proved successful
for the analysis of large-scale untimed systems [CGL94], and has recently been
extended to real-time systems. Here we only attempt to direct the reader to
some of the relevant literature.

43



System specification:
timed automata and rectangular automata

Our definition of real-time system is too general to permit automatic analy
sis, and two restrictions are necessary. A real-time system is finitary if (1) all
discrete variables are boolean, and (2) edl clock variables occur, in initial, next-
state, and time-progress conditions, only within atomic constraints of the form
X c or x' = a; or x' = c, where x is a clock, c is a rational constant, and
~ is a comparison operator. Thus, in a finitary real-time system,
clock values can be compared with constant values and reset to constant values.
The discrete aspect of a closed finitary real-time system can be represented by
a graph whose vertices encode values for the boolean variables. The represen
tation of a closed finitary real-time system as a graph annotated with clock
constraints is called a timed automaton [AD94].^^ Since clocks range over the
nonnegative reals, every nontrivial timed automaton has infinitely many states.
However, in [AD94] it is shown that for every timed automaton we can con
struct a bisimilar finite-state system (where bisimilarity is defined with respect
to the event alphabet that consists of the edges of the timed automaton). This
observation forms the basis of all verification algorithms for timed automata.

If the clocks of a finitary real-time system are permitted to drift with con
stant, rational drift bounds, we obtain a finitary drifting-clock system. The
representation of a closed finitary drifting-clock system as a graph annotated
with constraints on drifting clocks is called an initialized rectangular automa
ton [HKPV95].^® There are initialized rectangular automata that are not bisimi
lar to any finite-state system [Hen95]. However, in [HKPV95] it is shownthat for
every initialized rectangular automaton we cam construct a finite-state system
with the saune language (over the alphabet of edges of the rectauigular automa
ton). This observation is central to the algorithmic verification of rectangular
automata.

Requirement specification:
timed automata and real-time logics

Two popular specification languages for the algorithmic verification of untimed
systems are finite automata and propositional temporal logics. In order to
specify timing constraints, these languages can be extended by adding clock
variables.^® If we judiciously add clocks to finite automata, we obtain the
timed automata (Ta) discussed above [AD94]; from propositional linear tem
poral logic, we obtain the real-time logic Tptl [AH94]; from the propositional

Timed automata with a time-progress (delay-inveuiant) condition instead of a fairness
(acceptance) condition are sometimes referred to as timed safety automata [HNSY94].

^^In a noninitialized rectangular automaton, the drift bounds of a clock may vary.
^'^In addition to finite automata and temporal logics, sdso process algebras have been en

riched with clock variables [NS91, LV92, DB96].

44



branching-time logic Ctl, we obtain the real-time logic Tctl [ACD93]. While
we have seen, in Appendix A, that certain timing requirements of a system can
be specified using references to the clocks of the system, for other requirements
it may be necessary (or convenient) to introduce new clocks in the specification.
Within temporal formulas, the scope of these specification clocks is determined
by quantifiers that initialize the clocks. For example, the Tptl formula

Oz := 0. (^1 0(^2 A z < 5))

contains a specification clock z that is bound by the quantifier "z := 0," which
initializes the clock to 0. The formula asserts that along every possible behavior
of a system, each state for which <i>i is true must be followed within 5 time units
by a state for which <^2 is true. A summary of automata-based and logic-based
real-time specification languagescan be found in [AH92].

Verification algorithms

We have two fundamental decidability results for the verification of timed and
hybrid systems: for finitary real-timesystems, XcTL specifications can be check
ed [ACD93]; for finitary drifting-clock systems, Ta specifications without spec
ification clocks and Tptl specifications without specification clocks can be
checked [HKPV95]. These results depend on the finitary bisimilarity relations
of finitary real-time systems and on the finitary language-equivalence relations
of finitary drifting-clock systems, respectively. Based on the decidability re
sults, several verification algorithms for finitary real-time systems have been
implemented [DW95, AK96, BLL+96, DOTY96].

The efficiency of these tools has been improved along many dimensions, of
which we mention two. First, an incremental appro8u:h is useful for coping
with the high cost of analyzing a large numberof clocks [AIKY95]: initieilly all
clock constraints are ignored; then the clock constraints are added one by one,
as needed to prove a given specification. Second, a symbolic approach avoids
the expensive construction of the bisimilarity quotient (the so-called "region
graph") of a finitary real-time system [HNSY94]. Suppose, for instance, that
we wish to prove a system invariant. For this purpose, we need to compute
the set of all states that appear along possible behaviors of the system. The
state predicate that characterizes this set of reachable states can be computed
by symbolicexecution of the system. The efficiency of the computation depends
on the representation of state predicates. In the case of finite-state systems, the
involved state predicates are boolean expressions, and binary decision diagrams
have turned out to provide a cost-effective representation [McM93]. For finitary
real-time systems, the involvedstate predicates contain clock constraints (of the
form x —y^c), and difference-bounds matrices have been the data structure of
choice [Dil892^ (alternative representations are being investigated, for example,
in [ABK+97]).

45



Both decidability results for real-time verification are sharp: for Ta and
Tptl specifications with specification clocks, the validity problem (which is
equal to the verification problemover the system with all possible behaviors) is
undecidable [AD94, AH94]; for several generalizations of finitary real-time and
drifting-clock systems, such as timed automata with a singlestopwatch, simple
reachability questions are undecidable [HKPV95]. These undecidability results
have led researchers to consider several special cases: in [AFH94, RS97] the
use of specification clocks is restricted to refer only to immediately preceding
or succeeding occurrences of events; in [AFH96] the use of specification clocks
is restricted to refer only to the approximate times of events; in [AH94, HK97]
the durations of all delays are restricted to be (observed as) integers. The
verification problem for finitary drifting-clock systems can be solved under any
of these restrictions.

Perhaps most encouraging is the observation that even the verification prob
lem for general hybrid systems, while undecidable, can be solved in many in
stances of practical interest using the symbolic approach (see, for example,
[HW95, HWT96]). In particular, symbolic model checkers have been imple
mented for hybrid systems whose continuous dynamics are approximated by
piecewise-linear envelopes [HHWT97].

Acknowledgments. The authors thank Ranee Cleaveland, Limor Fix, David
Karr, Peter Kopke, Fred Schneider, and Bernhard Steffen for helpful comments.

References

[ABK'''97] E. Asarin, M. Bozga, A. Kerbrat, 0. Maler, A. Pnueli, and A. Rasse.
Data structures for the verification of timed automata. In O. Maler, editor,
HART 97: Hybrid and Real-time Systems, Lecture Notes in Computer Science
1201, pages 346-360. Springer-Verlag, 1997.

[ACD93] R. Alur, 0. Courcoubetis, and D.L. Dill. Model checking in dense real
time. Information and Computation, 104(1):2-34, 1993.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science, 138:3-34, 1995.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Com
puter Science, 126:183-235,1994.

[ADS86] B. Alpern,A.J. Demers, and F.B. Schneider. Safetywithout stuttering.
Information Processing Letters, 23(4):177-180,1986.

[AFH94] R. Alur, L. Fix, and T.A. Henzinger. A determinizable class of timed
automata. In D.L. Dill, editor, CAV 94' Computer-aided Verification, Lecture
Notes in Computer Science 818, pages 1-13. Springer-Verlag, 1994.

46



[AFH96] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punc
tuality. Journal of the ACM, 43(1):116-146,1996.

[AFK88] K.R. Apt, N. Francez, and S. Katz. Appraising fairness in languages
for distributed programming. Distributed Computing^ 2(4):226-241,1988.

[AH92] R. Alur and T.A. Henzinger. Logics and models of real time: a survey.
In J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rxjzenberg, editors,
Real Time: Theory in Practice, Lecture Notes in Computer Science600, pages
74-106. Springer-Verlag, 1992.

[AH94] R. Alur and T.A. Henzinger. A really temporal logic. Journal of the
ACM, 41(l):181-204, 1994.

[AH96] R. Alur and T.A. Henzinger. Reactive modules. In Proceedings of the
11th Annual Symposium on Logic in Computer Science, pages 207-218. IEEE
Computer Society Press, 1996.

[AH97] R. Alurand T.A. Henzinger. Modularity for timedand hybrid systems.
In A. Mazurkiewicz and J. Winkowski, editors, CONCUR 97: Concurrency
Theory, Lecture Notes in Computer Science 1243, pages 74-88. Springer-
Verlag, 1997.

[AHH96] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verifi
cation of embedded systems. IEEE Transactions on Software Engineering,
22(3):181-201, 1996.

[AHS96] R.Alur, T.A.Henzinger, andE.D. Sontag, editors. Hybrid Systems III:
Verification and Control. Lecture Notes in Computer Science 1066. Springer-
Verlag, 1996.

[AIKY95] R. Alur, A. Itai, R.P. Kurshan, and M. Yannakakis. Timing verifica
tion by successive approximation. Information and Computation, 118(1):142-
157, 1995.

[AK96] R. Alur and R.P. Kurshan. Timing analysis in COSPAN. In R. Alur,
T.A. Henzinger, and E.D. Sontag, editors. HybridSystems III, Lecture Notes
in Computer Science 1066, pages 220-231. Springer-Verlag, 1996.

[AL93] M. Abadi and L. Lamport. Composing specifications. ACM Transac
tions on Programming Languages and Systems, 15(1):73-132, 1993.

[AL94] M. Abadi and L. Lamport. An old-fashioned recipe for real time.
ACM Transactions on Programming Languages and Systems, 16(5):1543-
1571, 1994.

[ANKS95] P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors. Hybrid
Systems 11. Lecture Notes in Computer Science 999. Springer-Verlag, 1995.

47



[BBC+96] N. Bj0rner, A. Browne, E. Chang, M. Colon, A. Kapur, Z. Manna,
H.B. Sipma, and T.E. Uribe. STeP: deductive-algorithmic verification of
reactive and real-time systems. In R. Alur and T.A. Henzinger, editors, CAV
96: Computer-aided Verification^ Lecture Notes in Computer Science 1102,
pages 415-418. Springer-Verlag, 1996.

[BOSS] G. Berry and G. Gonthier. The synchronous programming language
Esterel: Design, semantics, implementation. Technical Report 842, INRIA,
1988.

[BLL+96] J. Bengtsson, K.G. Larsen,F. Larsson,P. Pettersson, and W. Yi. Up-
PAAL: a tool-suite for automatic verification of real-time systems. In R. Alur,
T.A. Henzinger, and E.D. Sontag, editors. Hybrid Systems III, Lecture Notes
in Computer Science 1066, pages 232-243. Springer-Verlag, 1996.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesisof synchronization
skeletons using branching-time temporal logic. In Workshop on Logic of Pro
grams, Lecture Notes in Computer Science 131, pages 52-71. Springer-Verlag,
1981.

[CGL94] E.M. Clarke, 0. Grumberg, and D.E. Long. Verification tools for
finite-state concurrent systems. In A Decade of Concurrency: Reflections
and Perspectives, Lecture Notes in Computer Science 803. Springer-Verlag,
1994.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley Publishing Company, 1988.

[DB96] P.A. D'Argenio and E. Brinksma. A calculus for timed automata. In
B. Jonsson and J. Parrow, editors, FTRTFT 96: Formal Techniques in Real
time and Fault-tolerant Systems, Lecture Notes in Computer Science 1135,
pages 110-129. Springer-Verlag, 1996.

[dBHdRR92] J.W. de Bakker,K. Huizing, W.-P. de Roever, and G. Rozenberg,
editors. Real Time: Theory in Practice. Lecture Notes in Computer Science
600. Springer-Verlag, 1992.

[Dij65] E.W. Dijkstra. Solution of a problem in concurrent programming con
trol. Communications of the ACM, 8(9):569, 1965.

[Dij75] E.W. Dijkstra. Guarded commands,nondeterminacy, and formalderiva
tion of programs. Communications of the ACM, 18(8);453-457,1975.

[Dil89a] D.L. Dill. Timing assumptions and verification of finite-state concur
rent systems. In J. Sifakis, editor, CAV 89: Automatic Verification Methods
for Finite-state Systems, Lecture Notes in Computer Science 407, pages 197-
212. Springer-Verlag, 1989.

48



[Dil89b] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of
Speed-independent Circuits. The MIT Press, 1989.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos.
In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems III,
Lecture Notes in Computer Science 1066, pages 208-219. Springer-Verlag,
1996.

[DW95] D.L. Dill and H. Wong-Toi. Verification of real-time systems by succes
sive over- and underapproximation. In P. Wolper, editor, CAY95: Computer-
aided Verification, Lecture Notes in Computer Science 939, pages 409-422.
Springer-Verlag, 1995.

[Eme83] E.A. Emerson. Alternative semantics for temporal logics. Theoretical
Computer Science, 26(1):121-130, 1983.

[GNRR93] R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Hy
brid Systems /. Lecture Notes in Computer Science 736. Springer-Verlag,
1993.

[GSSAL94] R. Gawlick, R. Segala, J.F. Sogaard-Andersen, and N.A. Lynch.
Liveness in timed and untimed systems. In S. Abiteboul and E. Shamir,
editors, ICALP 94: Automata, Languages, and Programming, Lecture Notes
in Computer Science 820, pages 166-177. Springer-Verlag, 1994.

[Hal93] N. Halbwachs. Synchronous Programmingof Reactive Systems. Kluwer
Academic Publishers, 1993.

[Hen92] T.A. Henzinger. Sooner is safer than later. Information Processing
Letters, 43(3):135-141, 1992.

[Hen95] T.A. Henzinger. Hybrid automata with finite bisimulations. In Z. Fiilop
and F. Gecseg, editors, ICALP 95: Automata, Languages, and Programming,
Lecture Notes in Computer Science 944, pages 324-335. Springer-Verlag,
1995.

[Hen96] T.A. Henzinger. The theory of hybrid automata. In Proceedings of the
11th Annual Symposium on Logic in Computer Science, pages 278-292. IEEE
Computer Society Press, 1996.

[HHWT97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: a model
checker for hybrid systems. In O. Grumberg, editor, CAV 97: Computer-
aided Verification, Lecture Notes in Computer Science 1254, pages 460-463.
Springer-Verlag, 1997.

[HJL93] C.L. Heitmeyer, R.D. Jeffords, and B.C. Labaw. A benchmark for
comparing different approaches for specifying and verifying real-time systems.
In Proceedings of the Tenth International Workshop on Real-time Operating
Systems and Software, 1993.

49



[HK94] T.A. Henzinger and P.W. Kopke. Verification methodsfor the divergent
runs of clock systems. In H. Lauigmaack, W.-P. de Roever, and J. Vytopil,
editors, FTRTFT 94-' Formal Techniques in Real-time and Fault-tolerant
Systems, Lecture Notes in Computer Science 863, pages 351-372. Springer-
Verlag, 1994.

[HK97] T.A. Henzinger and P.W. Kopke. Discrete-timecontrol for rectangular
hybrid automata. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela,
editors, ICALP 97: Automata, Languages, and Programming, Lecture Notes
in Computer Science 1256, pages 582-593. Springer-Verlag, 1997.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya.What's decid-
able about hybrid automata? In Proceedings of the 27th Annual Symposium
on Theory of Computing, pages 373-382. ACM Press, 1995.

[HKWT95] T.A. Henzinger, P.W. Kopke, and H. Wong-Toi. The expressive
power of clocks. In Z. Fiildp and F. Gecseg, editors, ICALP 95: Automata,
Languages, and Programming, Lecture Notes in Computer Science 944, pages
417-428. Springer-Verlag, 1995.

[HMP94] T.A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodolo
giesfor timed transition systems. Information and Computation, 112(2):273-
337, 1994.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym
bolic model checking for real-time systems. Information and Computation,
lll(2):193-244,1994.

[HW95] P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control
protocol. In P. Wolper, editor, CAV95: Computer-aided Verification, Lecture
Notes in Computer Science 939, pages 381-394. Springer-Verlag, 1995.

[HWT96] T.A. Henzinger and H. Wong-Toi. Using HyTech to synthesize con
trol parameters for a steam boiler. In J.-R. Abrial, E. Borger, and H. Lang-
maack, editors. Formal Methods for Industrial Applications: Specifying and
Programming the Steam Boiler Control, Lecture Notes in Computer Science
1165, pages 265-282. Springer-Verlag, 1996.

[Lam83] L. Lamport. What good is temporal logic? In R.E.A. Mason, editor,
Information Processing 83: Proceedings of the Ninth IFIP World Computer
Congress, pages 657-668. Elsevier Science Publishers, 1983.

[Lam94] L. Lamport. The Temporal Logic of Actions. ACM Transactions on
Programming Languages and Systems, 16(3):872-923,1994.

[LSVW96] N.A. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberg. Hybrid
I/O Automata. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hy
brid Systems III, Lecture Notes in Computer Science 1066, pages 496-510.
Springer-Verlag, 1996.

50



[LV92] N.A.Lynch and F. Vaandrager. Actiontransducers and timed automata.
In R.J. Cleaveland, editor, CONCUR 92: Theories of Concurrency, Lecture
Notes in Computer Science 630, pages 436-455. Springer-Verlag, 1992.

[McM93] K.L. McMillan. Symbolic Model Checking: An Approach to the State-
Explosion Problem. Kluwer Academic Publishers, 1993.

[MKP96] Z. Manna, Y. Kesten, and A. Pnueli. Verifying clocked transitionsys
tems. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors. Hybrid Systems
III, Lecture Notes in Computer Science 1066, pages 13-40, Springer-Verlag,
1996.

[MMP92] 0. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems.
In J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors,
Real Time: Theory in Practice, Lecture Notes in Computer Science600, pages
447-484. Springer-Verlag, 1992.

[MP84] Z. Manna and A. Pnueli. Adequate proof principles for invariance and
liveness properties of concurrent programs. Science of Computer Program
ming, 4(3):257-289,1984.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur
rent Systems: Specification. Springer-Verlag, 1992.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, 1995.

[NS91] X. Nicollin and J. Sifakis. An overview and synthesis on timed pro
cess algebras. In K.G. Larsen and A. Skou, editors, CAV 91: Computer-
aided Verification, Lecture Notes in Computer Science 575, pages 376-398.
Springer-Verlag, 1991.

[NSY93] X. Nicollin, J. Sifakis, and S. Yovine. From Atp to timed graphs and
hybrid systems. Acta Information, 30:181-202,1993.

[RS97] J.-F. Raskin and P.-Y. Schobbens. State clock logic: a decidable real
time logic. In O. Maler, editor, HART 97: Hybrid and Real-time Systems,
Lecture Notes in Computer Science 1201, pages 33-47. Springer-Verlag, 1997.

[Sch87] F.B. Schneider. Understanding protocols for byzantine clock synchro
nization. Technical Report CSD-TR-87-859, Cornell University, 1987.

51


	Copyright notice 1997
	ERL-97-78

