

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

NETWORK OF WORKSTATIONS ACTIVE

MESSAGES TARGET FOR PTOLEMY 0 CODE

GENERATION

by

Patrick Warner

Memorandum No. UCB/ERL M97/8

24 January 1997

NETWORK OF WORKSTATIONS ACTIVE

MESSAGES TARGET FOR PTOLEMY 0 CODE

GENERATION

by

Patrick Warner

Memorandum No. UCB/ERL M97/8

24 Januaiy 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract:

Ptolemy is a softwareenvironment for simulating,prototyping, and synthesizing heterogeneous
systems. For studyingnetwork, parallel, and distributedsystems, a Ptolemy Code Generation in
C (CGC) domain target using Active Messages (AM) on a Network of Workstations (NOW)
is a valuable tool. Active messages provide a low-overhead, portable communications protocol
that can take advantage of performance improvements in the underlying network. A NOW pro
videsa parallel platform to studyPtolemy simulations on. This project implements a NOW AM
targetfor Ptolemy's CGC domain and explores the issues involved in creatingappropriate NOW
Ptolemy systems.

1. Introduction

Ptolemyis a softwareenvironmentfor simulating,prototyping, and synthesizing heterogeneous
systems[l]. Examples of such systems include an ATM network for transmitting videosignals, a
Unix workstation and Digital Signal Processing (DSP) target board used for music tone genera
tion, and a VHDL (VHSIC Hardware Description Language) model of a computer Central Pro
cessing Unit interacting with serial data. Ptolemy has existing support for network,parallel, and
distributed systems through its use of dataflow modeling and scheduling. Ptolemy can model a
system with dataflow paradigms, then generate a schedule that will execute the system in a paral
lel or concurrent manner. What is lacking in Ptolemy is a parallel platform on which to run the
systems. The ability to run Ptolemy systems on a parallel platform, such as Berkeley's Network
of Workstations (NOW)or any group of well networked workstations, would be valuablebecause
the systemswould be observedon an actual parallel system (as opposed to runninga parallel sim
ulation on a single workstation), and simulations would take less time to run because of the
improved processing speed.

A NOW is a collection of stand-alone computers connected by a high-speed, low-latency,reliable
network. A NOW can serve as a parallel platform for computing massive programs. The idea
behind a NOW is to eventually create a distributed supercomputer on a building-wide scale. By
using a low-latency, reliable, fully-connected network model, a NOW interconnect mirrors that of
a massively parallel processor (MPP) computer. As Ptolemy schedulers can already map systems
on to multiple processors, using a NOW with Ptolemy becomes a matter of defining how the pro
cessors will communicate with each other. A communication protocol matching that of a MPP
seems reasonable for a NOW, and AM is a proven MPP communication method[2].

AM was originally developed strictly for MPP platforms as the Generic Active Messages (GAM)
specification [3]. The GAM library was restricted to SPMD (Single Process Multiple Data) pro
grams [4] that required the same code image to execute on each computing node. As the uses for
GAM extended into more distributed, client-server computing (operating systems, file systems,
network RAM), the SPMD model became too restrictive. The resulting AM specification elimi
nated the SPMD requirement and added an error model that had not existed in GAM. The
Ptolemy multiprocessor code generation facilities automatically produce a different code image
for each processor in a distributed system, making AM a more useful communication protocol on
NOW than GAM. The AM implementation on Berkeley's NOW seeks to provide low-level
access to the network hardware, an essential feature for effective parallel simulations.

With all the components necessary for NOWinteractionwith Ptolemyin place, the issue becomes
how best to use these systems together. As mentioned briefly above, Ptolemy has existing support
for parallel and distributed platforms in its schedulers and code generation facilities. Ptolemy is
divided into models of computation called domains. Ptolemy's Code Generation (CO) domain
takes modeled systems and translates them into a program. The Ptolemy Code Generation in C
(CGC) domain generates C programs. The AM library is coded in C, so the CGC domain is an
appropriate place to integrate the NOWplatform. A Target within the CGCdomain defines how
the C code will be generated for a specific hardware platform. The solution for using Ptolemy and
a NOW together is a NOW AM (NOWam)target in the CGC domain.

The main motivation in creating a CGC NOWam target is to expand the uses of Ptolemy into
broader parallel and networkingareas of research. With a parallel and distributed platform such
as a NOW to run on, parallel and distributed Ptolemy simulations can be observed executing on an
distributed system. The primary issue in implementing a CGC NOWam target is interprocess
communication (IPC). IPC is accomplished using the AM library, so the AM library's implemen
tation itself becomes an important issue in CGC NOWam target development.

A reference implementation of AM over the User Datagram Protocol/Internet Protocol (UDP/IP)
(UDPAM) was created to test the AM specification. Although using UDP/IP doesn't conform to
AM's goal of direct network hardware access, it does provide a useful and portable reference for
testing purposes. Because of UDP/IPs computation overhead,bulk data transfers are more effi
cient than a fine grain message passing approach common to MPP platforms. At the time of this
project, UDPAM is the only AM implementation available, so a bulk transfer technique for pass
ing data is chosen.

The second part of this report discusses AM in more detail. Section 3 gives an overview of
Ptolemy, focusing on code generation details. The following part of the report details the imple
mentation of the NOWam target. Section 5 discusses parallel simulations for the NOWam target,
and the results of running simulations on a NOW are discussed in Section 6. The final section
summarizes the findings of the project and proposes future work.

2. Active Messages

AM seek to minimize the latency associated with communication protocol overhead and maxi
mize user-level application bandwidth. Research at the Universityof Califomia at Berkeley
observed "communicationprotocols such as TCP/IP add unnecessary overhead to the base hard
ware cost"[5]. As network hardware continues to advance into the area of multi-gigabit band-
widths and sub-microsecond switch latencies, the existing protocol software overheads will
dominate communication costs. AM provide a simple, portable, and general-purpose communi
cations interface with direct application-network interactions that bypass the operating system on
high-performance implementations [2].

AM have been shown to be a useful means for building high-performance communication proto
cols, run-time environments, and message passing libraries on MPPs. In the original implementa
tion of AM, GAM, all communication occurred within individual parallel processes with one
networkport per process. The parallel programitself had to be SPMD, a restriction makingcli-

ent/server applications and more general communication impossible. The current AM specifica
tion is no longer restricted to parallel SPMD applications, and is general enough to support such
applications as file systems, operating systems, client/server programs, peer/peer programs, and
parallel programs as well.

High-performance network hardwareoften uses an embeddedprocessor or controlleron the inter
face device, allowing communication and computation to overlap. This overlap feature is
achieved by the embedded processor performing loads and stores from the communication host's
memory. The operating system is bypassed in this case, and the user-levelapplication has a direct
connection to the network device using load and store operations. AM implementations seek to
take advantage of the embedded processor to provide the direct application to network device
channel.

The AM interface allows arbitrary serial and parallel processes to create multiple communication
endpoints [2]. The communication endpoints are completely independent and secure network
ports that resembleconventionalBerkeley Unix sockets. Messages can be sent from any endpoint
to any other endpoint, with the restriction that they use a common tag for protection purposes.
Bach endpoint has a message send pool, a message receive pool, a bulk transfer virtual memory
segment, an authentication tag for receiving messages, a handler table that translates indices into
handler functions, and a translation table that translates indices into global endpoint names.

A set of AM endpoints grouped together as a single unit for communication, synchronization, and
event management is referred to as a bundle. The components of a bundle is shown in Figure 1.
A bundle has (1) a collection of endpoints, (2) a thread synchronization variable, (3) an event
mask that selects which state or state transitions generate events to an AM application, and (4) an
access mode flag to indicate if concurrent access to the bundle or its endpoints is expected.

Figure 1: AM Bundle

Bundle

(4)
Access Mode Flag

(3)
Event Mask

Endpoint

Network

Semaphore

The AM library is accessed through an ANSI C application programming interface (API), which
is detailed in [2]. The features of primary interest to the NOWam target are:

ea_t

This type designates an endpoint address (see above for endpoint description).

eb_t

This type designates an endpointbundle address (see above for bundledescription).

handler_t

This type designates a handler-table index (described above with endpoints).

AM_Init()

This function initializes the AM layer and must be called before any interface function is used.

AM__Terminate ()

This functioncleans up and releases system resourcesused by AM and is called when finished
using AM.

AM_Request4(

ea_t request_endpoint, /* endpoint sending request */
int reply_endpoint, /* index of endpoint sending reply */
handler_t handler, /* index into destination endpoint's handler table */
int argO, int argl, int arg2, int arg3)

This function sends 4 integers to the destination. The receiver invokes the message handler when
the request is received. The handler prototypeis: void handler(void *token, int argO, int argl, int
arg2, int arg3) where token represents the sending endpoint and argO-3 are the 4 integer argu
ments.

AM_Reply4{

void *token,

handler_t handler, /* index into destination endpoint's handler table */
int argO, int argl, int arg2, int arg3)

This function sends the reply message to the requesting endpoint responsible for invoking the
request handlermaking the reply. The receiverof the reply invokes a handler with the same pro
totype as AM_Request4 above.

AM_RequestXferAsync4(

ea_t request_endpoint, /* endpoint sending request */
int reply_endpoint, /* index of endpoint sending reply */
int dest_offset,

handler_t handler, /* index into destination endpoint's handler table */
void *source_addr,

int nbytes,

int argO, int argl, int arg2, int arg3)

This function sends nbytes of contiguous data and then 4 integers to the destination. The receiver
invokes the messagehandler with a pointer to the virtual-memory segment offset by dest_offset
bytes, the numberof data bytes transferred, and the 4 integerswhen the request is received. The
handler prototype is: voidhandler(void *token, void*buf, int nbytes, int argO, int argl, int arg2,
int arg3) where token represents the sendingendpoint, buf is the virtualmemory segmentpointer
with offset,nbytes is the number of bytes sent, and argO-3 are the 4 integer arguments.

AM_Po11(eb_t bundle)

This function services incoming active messages from all endpoints in the specified bundle.

Communication between two endpoints is based on a request-reply model. An Active Message is
sent from an endpoint send pool with an AM_Request or AM_Repiy, and received into an endpoint
receive pool. The message has an index that selects the handler function for the message from the
receiving endpoint's handler table. After am_po11 is called, the request or reply handler is
invoked with the sent arguments. A bundle will handle multiple requests and replies on each
AM_Poii. After messages are sent or received, they are removed from their respective message
pools.

The above features will be used as the IPG mechanism in the NOWam target. With the IPG mech
anism defined, the Ptolemy system itself, emphasizing the code generation facilities, must be
examined to produce the NOWam target.

3. Ptolemy Overview

As stated in Section 1, Ptolemy is a software environment for simulating, prototyping, and synthe
sizing code for heterogeneous systems. Ptolemy uses an object-oriented framework {C++) to
build its systems. A collection of various G++ classes are used to create Ptolemy applications.
Using the base classes and paradigms of dataflow, higher-level constructs define Ptolemy's sched
uling and code generation behavior. This section begins with a brief description of Ptolemy's
base classes, and concludes with an introduction to its scheduling and code generation functional
ity.

The basic element of Ptolemy's modularity is the Block. The Block contains the go() method,
which defines the Block's behavior at run-time. Derived from Block, the Star class is the elemen
tal module in Ptolemy implemented by user code. A Star performs some computation, such as a
single add or a complicated Fast Fourier Transform (FFT), or generates code to do so. A Galaxy,
also derived from Block, contains a collection of Stars and/or other Galaxies internally. Another
Block derivative, a Target, controls the execution of a Ptolemy application, or Universe. A Uni
verse is a type of Galaxy that also inherits from class Runnable, which defines the execution and
simulation or code generation behavior of the Universe.

The model of computation for which Ptolemy code synthesis has been best defined is synchro
nous dataflow (SDF), a special case of the dataflow model of computation developed by Dennis
[6]. SDF Stars produce and consume a constant number of data tokens at each invocation.
Because of this, the execution order and resource requirements of SDF Stars can be determined at
compile time. The SDF paradigm is used extensively in the definitions of Ptolemy's scheduling
and code generation facilities.

With both a Universe of functional blocks to be scheduled and a Target describing the layout and
behavior of the system for which code is to be generated, the Scheduler will: (a) determine which
Block invocation will execute on which processor (for multi-processor systems); (b) determine
the execution order of Stars on a processor; and (c) arrange the Stars' execution order into stan
dard control structures, such as nested loops. After the scheduling phase, each processing ele
ment (single or multiple) is assigned scheduler-determined order of Blocks to execute. The Target
class supplies the Scheduler with IPG information, enabling scheduling and code synthesis. The
Scheduler uses IPG communication cost data to determine whether the cost is low enough to merit

parallel execution.

The SDF model produces a graph that exposes the functional parallelism available in an algo
rithm. The next step in multiprocessor scheduling is to construct an Acyclic Precedence Expan
sion Graph (APEG) from the original SDF graph[7]. The APEG adds additional information such
as communication costs between graph nodes and node computation costs. With the application
APEG, a Ptolemy multiprocessor scheduler will map the graph nodes onto processors, taking into
account IPG costs and communication overlap capabilities of the Target

A Ptolemy Domain is made up of Blocks, Targets, and Schedulers that follow a common compu
tational model. A "computational model" in this context is the operational semantics that govern
Block interaction. In code generation, a Domain's Blocks and Targets synthesize the same lan
guage. A Scheduler uses a Domain's definition to help order Block execution. Domains with the
same computational model are subdivided further according to the language used. The CGC
domain, under which the NOWam target is created, is derived from the CG domain. The CG
domain obeys SDF semantics, allowing it to be scheduled at compile time. The relationship
between the CG Domain, CGC Subdomain and their Targets, Schedulers, and Stars is pictured in
Figure 2.

Figure 2: Ptolemy Domain and Subdomain Relationships

CGDomain

(^^^C^lultiT^e^ CGCDomain

Schedulero

Star)
Star) Star)

Star)
Star) ->^[|̂ ^^^^cheduler^^

Code generation consists of two phases, scheduling and synthesis. The scheduling phase,
described briefly above, partitions functional operators for possible parallel execution and orders
Block execution on each target processor (single or multiple). Send and Receive Stars are spliced
into the partition graph for IPG. In the synthesis phase, the scheduler-ordered code segments
associated with each Block are stitched together. Most code generation work related to memory
allocation and symbol generation is processor-independent, allowing these facilities to be con
tained in generic CG classes.

For a single processor CG Target, two scheduling choices are available, non-looping and looping.
The first option, non-looping, is a quick and efficient scheduling method for applications that
don't make abundant rate changes. The graph nodes are ordered according to Target resource
costs. If Blocks are invoked many times, the generated code can become massive, as each invoca
tion of a Block results in its own piece of code being added to the overall program. Using looping
can result in dramatic code size reduction when the application makes large sample rate changes.

Multiple invocations of a Block can be placed inside a loop, with appropriate rate changes taking
place between iterations.

Multiprocessor targets use the APEG described earlier to map graph nodes onto multiple proces
sors. If IPG is ignored Hu's level-based list scheduling is used. TTiis method is known a Highest
Levels First with Estimated Times list scheduling, and assigns nodes to processors when they are
ready to be executed and a processor is available, not taking communication cost into account.
Using IPG communication costs and allowing overlapping communication, Sih's dynamic level
(DL) scheduling[7] results in less communication because a node must have a high enough execu
tion time to warrant the IPG overhead costs of transferring data between processors. This tech
nique allows communication and computation to overlap, assumingdedicated communication
hardware is available. The final Scheduler, Sih's declustering scheduling[7], makes multiple iter
ations over the graph, whereas Sih's DL scheduling makes a single pass, grouping nodes into
"clusters" and analyzing trade-offs between parallel execution and IPG overhead.

The base GO star class (GGStar) contains the methods shared by all code generation Stars.
GGStarconsists of portholes, states, code blocks, a start() method, an initGode() method, a go()
method, a wrapupOmethod and an execTime() method. Portholes designate the inputs and out
puts of the Star. States represent parametersthat can be set by the user or internal memory states
needed in the generatedcode. Godeblocks contain the target language and Star macro functions.
Macro functions include parametervalue substitution,unique symbol generation with multiple
scopes, and state reference substitution [8]. The start() method is invoked prior to any scheduling
or memory allocation because it initializesany informationthat will affect these actions. The init-
GodeO method is called before scheduling but after memory allocation. The go() method is called
by the Scheduler, synthesizing the code of the main loop.The wrapupO methodplaces code out
side of the main loop, after scheduling is done. The execTime() methodreturns a number that
estimates the time to completeone Star invocation. This information is used by the Scheduler for
determining the parallel execution of Stars within a Universe.

In review, Ptolemy applications. Universes, are made up of:
(a) elemental functions. Stars;
(b) collections of these functions and other collections. Galaxies;
(c) a scheduling procedure. Scheduler;
and (d) an execution host definition. Target.
A Universe is developed within a Domain, which describes how all the Universe's pieces interact
with one another. For a GG Domain, the Stars eventually produce the Domain's target language,
using their go() method. The Targetdefinitiondesignates how the code will be compiled and exe
cuted, and how IPG will take place. The Scheduler communicates with the Stars (execTime) and
the Target (IPGmechanism) to determinethe order of execution of all modules and any parallel
execution possible. After the scheduling is completed, the code is synthesized by the GGStar
methods, start(), initGode(), go(), and wrapup(). With the AM library described in section 2, and
Ptolemy's code generation facilities outlinedhere, a GGG NOWam Targetcan be implemented.

4. NOW AM CGC Target

In order to create a new GGG target in Ptolemy two major components are needed: the target def-

inition and the IPC mechanism. The target definition itself describes how the code will be col
lected, specifiesand allocates resources, definesany needed platform initialization code, and
finally dictates how to compile and run the generatedcode. The IPC component consists of send
and receive actors for implementation.

The first step in creating a new target is to create a new instantiation of the Ptolemy Target class.
In Ptolemydevelopment, new Stars are usuallycreated using a ptlang file. Ptlang is a high-level
language which is preprocessed into C-h- .h and .cc files for integration into the Ptolemy kernel.
Ptlangcannot be used for definingCG targets, so C++ must be coded directly. The existingCGC
target, CGCMultiTarget, was used as a model to code the CGCNOWamTarget from. A major dif
ference in the resulting code is that CGCNOWamTarget inherits directly from the CGMultiTarget,
which models a fully-connected multiprocessor architecture that allows overlapping communica
tion. CGCMultiTarget inherits from CGSharedBus, which being based on a shared bus architec
ture, does not allow communication to overlap. The Berkeley NOW behaves as a fully-connected
architecture, so the CGMultiTarget design is the best suited for it. The .h and .cc source files for
the CGCNOWamTargetcan be found in Appendix A. Because CGCNOWamTarget is a multipro
cessor target, several additional design issues in Ptolemy are raised.

To support multiprocessor targets, a concept of parent-child target relationships is used [9]. The
parent target defines the IPC mechanism and resources to be shared by the children. A hierarchy
of child targets, which may themselves be complex heterogeneous multiprocessors or a single
processor, completes the multiprocessor target definition. The child targets manage resources
local to themselves. For the NOWam target, CGCNOWamTarget is the parent, and each proces-
sor(child) is represented by a default-CGC or Makefile-C target.

Sih's DL scheduling is a natural match for the CGCNOWamTarget. IPC costs are considered in
assigning APEG nodes to processors and DL scheduling allows conununication and computation
to overlap. This technique fits in well with the AM practice of using dedicated network hardware.
Sih's DL scheduling makes a single-pass over the graph, taking IPC overheads and resource con
straints into account to schedule the communications and computations. IPC conununication
costs can be adjusted to have higher values for bulk transfers, and lowered when fast, dedicated
network hardware is present.

As discussed in Section 3, the Scheduler splices Send and Receive Stars into the code where IPC
takes place. It it up to the parent target in a multiprocessor target to define the Send and Receive
stars. The Send and Receive Stars dictate the underlying communication mechanism used in the
Target. For the CGCNOWamTarget,AM is used for the Send and Receive Stars.

The initial implementation of the NOWam target used a fine grain transfer approach, passing sin
gle fioating point values between processors. This is a strait-forward approach that integrates well
with the existing Ptolemy CG IPC architecture. At the time of this research UDPAM is the only
AM implementation available. With UDPAM, a bulk transfer method is more efficient because
the UDP/IP overhead is balanced out by sending large amounts of data with each UDP invocation.
Ptolemy does not currently support a matrix data type in the CGC domain, so a conditional go()
method was used. The code to send the data is inserted only once for each Send/Receive pair.

The Send star uses the AM_RequestxferAsync4 () function described in Section 2, to send its
data. AM_RequestxferAsync4 () was used in lieu of AM_Requestxfer4 SO that computation
could overlap the communication. AM_RequestxferAsync4 () retums control to the calling pro
cess immediately. The ReceiveStar includesthe definition of the request handler function, and a
call to AM_Poii (). The requesthandlermoves the received data from the endpointvirtual mem
ory segment into a local data structure that the rest of the applicationcan access. The AM_wait ()
function was initially used to block the ReceiveStar until new data arrived. Because each
AM_Poll () serves multipleendpoints within an AM bundle, the Send and ReceiveStars in an
application would become unsynchronized when multiple Sendsoccurred beforea Receive. To
correct this problem, a synchronizing while loopwasusedin the Receive star. This causes the
Receive to wait until its new data has arrived. Both the Send and Receive Stars were coded in
ptlang, Ptolemy's high-level description language. Afterbeingpreprocessed, .h and .cc files were
produced for integration into the Ptolemy kemel. The .pi files for the CGCNOWamSend and
CGCNOWamReceive can be examined in Appendix B.

The data beingpassed in the CGCNOWamTarget applications is double fioating point numbers.
For the original CGCNOWam target, a method was devised to pass single floating point values
efficiently. This technique will be importantfor future CGCNOWam implementations wherefine
grain communicationis acceptable, such as on the Myrinet LANai cards. There is no
AM_Request message that directly sends double floating point data. For this reason, an initial IPC
implementation used the AM_Requesti4 () function, which sends a bufferof data. The double
floating point number was sent as a stream of bytes and retrieved using the ANSI C memcpy ()
function. An improvement in performance can be achieved in AM by using the AM_Request4
function, which sends the least amount of data (4 integers) in AM. A C union type was created to
transport a double fioating point number as two integers. The type definition is:

typedef xinion ints_or_double {
int aslnt[2);

double asDouble;

} convert;

The data is sent as follows:

convert myData;

myData. asDoiible = double_float ;
AM_Request4(endpoint, reply_index, handler_index,myData.asint[0],
royData.asInt[1], 0, 0);

The data is retrieved as follows:

void handler(void *token, int argO, int argl, int arg2, int arg3)

{
convert temp;

temp.asInt[0] = argO;
temp.asInt[1] = argl;
Receive_double = temp.asDouble;

}

As UDPAM is the only AM implementation available at the time of this research, a bulk transfer

10

method forsending data proves tobemore efficient. The UPD/IP overhead results in simulations
over 10times slower running inparallel than on a single workstation when passing single floating
point values. For the bulk transfer method, the data tobesent isfirst copied into the sending end-
point's virtual memory segment. AM_RequestxferAsync () is then invoked. On the receiving
side, thedata is copied outof thevirtual memory segment. A possible performance enhancement
would be to map the input andoutput datadirectly intotheendpoint's virtual memory segments
using AM_SetSeg (), eliminating two potentially large data copies. The disadvantage to this
approach isthat the local data segments might becorrupted by the application while the transfer is
t^ng place asynchronously. For this reason, the copies have been left in place.

UDPAM uses IP address/port pairs to create theunique AMglobal endpoint names. TheCGC-
NOWamTarget takes a listofhost names corresponding to thenumber ofprocessors, ornetwork
nodes, to be used in the Ptolemy application. The IP addresses of all the hosts are passed to the
SendandReceive Starsto be usedby the AMendpoint and bundle initialization code. EachSend/
Receive pair in the application isrepresented bytwo endpoints with the same port number. Each
child target in theCGCNOWamTarget has one bundle to handle all endpoint communication, syn
chronization, and event management. Multiple bundles were tested, but found to causetoo much
application overhead (each bundle creates a new thread to handle endpoint management).

The AM specification does not supply any mechanism for sharing endpoint names across applica
tions. Thiscapability is not included because global endpoint names will differ from implementa
tion to implementation (an IPaddress/port pair forUDPAM, a processor number foran MPP). It
recommends the use of an external name server that stores endpoint names and supplies them to
applications requesting them. Inorder to eliminate the need foranexternal name server in the
CGCNOWamTarget, theUDPAM library was modified to usepredefined ports in creating end-
points. This allowed the CGCNOWamTarget definition of global endpoint names asIPaddress/
port pairs to be implemented without a name server.

With the CGCNOWamTarget implementation complete, appropriate Ptolemy simulations mustbe
developed to test its correctness and performance.

5. Parallel Simulations

Appropriate Ptolemy applications for a NOW are those where computation dominates communi
cation. In order to ensure that the CGCNOWamTarget produced correct results, an existing
Ptolemy application with known results is desirable for testing. There areseveral existing
Ptolemy simulations developed to model DSP systems with large amounts of computation. FFTs
and Finite Impulse Response(FIR) filters involve performing complex math computations on
potentially large amounts of data. One such simulation, an up-sample system, accomplishes the
difficult taskof converting signal sampling ratesfrom44.1 kHz to 48 kHz. The rateconversion is
performed in multiple stages, each stage of which canbe mapped on to multiple processors. See
Appendix C for a detailed description of what thesystem does. The schematic is pictured inFig
ure 3.

11

Figure 3: Up Sample Ptolemy Schematic

impulse
Sample Rate Conversion

44JLkH2 - 48 kHz (16£m7)

88.2

117.6

use edit-comment

for documentation

DFT of the

impulse response

Manual scheduling was used for this simulation in order to create well-defined divisions for bulk
transfers. The simulation was tested with only one bulk transfer taking place between processor 1
and processor 2, one between processor 2 and processor 3, and one between processor 3 and pro
cessor 4. Sending all the data at once is anticipated to make the UDP/IP overhead insignificant.

Alternate schedules were also produced in order to compare the different scheduling algorithms.
Although Ptolemy's built-in schedulers were able to produce schedules in most cases, the com
puter's memory was exhausted before code could be generated. Because of the lack of source
code to compile and test, the respective scheduler's executions could not be compared, but their
schedules could (see the next section. Results).

When manual scheduling is used, Ptolemy follows a one Star on one processor rule. This limits
parallelismthat may be availableby spreadingStars across multiple processors. Bachof four pro
cessors was assigned one rate Galaxy to execute, and all Stars leading up to one of the respective
graph Stars, labeled with frequency values on the schematic pictured in Figure 3. The internals of
the rate Galaxy are pictured in Figure 4.

Figure 4: Rate Ptolemy Schematic

Rational Sample Rate Change

>--eriBB- Gain Focfc

1,Vp8aW»

1QpSaflbe

12

plot signals on common
frequency scale

Choo
dB

DB

Choo
dB

DB

dB
DB

The workin each of the rate Galaxies is not exactlyequal due to the different sampling rates.
Eachprocessor doesexecute oneFIR filter andfour FFTs,but thesecomputations differin the
number of data samples operated on and in the orderof the FFTs. In looking at the schedule, an
equal number ofFFTs with equal execution times appear on each processor. Thedifference in
workloadis most obvious in countingthe number of FIR filters executedby each processor. Pro
cessor1executes 147FIR filters, processor 2 executes 98 FIR filters, processor 3 executes 56 FIR
filters, andprocessor 4 executes 40FIRfilters. These differences aredueto thedifferent sampling
rates of each rate Galaxy. Referto Appendix C for more information on this simulation. Examin
ingthe information from theschedule, processor 1 is observed to do themost amount of work. A
benefit of theup-sample system is thatalloftheprocessors canoverlap computation immediately.
Within each ofthe rate G^axies, awave signal ispassed into an FFT. Before the last 3processors
wait to receivedata, theycan workon this part of the simulationwhile the firstprocessorprepares
to send the data. Unlike the other processors,processor 1 does not have to wait for data to arrive
to start computing. This fact may help balance out processor 1*s heavier workload.

For a two processortest, the first two stagesof the up-sample simulation wereused. The simula
tion was also scheduled manually, in order to provide a better comparison with the four processor
simulation. Because of the two processor test's smaller size, the built-in Ptolemy schedulers may
have been able to generate code. But the manual schedule makes the overall experiment more
uniform, so it is used. The same division for processor 1 and 2 is used for the two processor test,
where one bulk transfer is made between processor 1 and 2. An attempt was made to schedule all
four stages of the up-sample simulation on just two processors, but the generated code was too
large and exhausted the computer's memory during compilation.

A side-effect of using manual scheduling was non-looping code being generated for each proces
sor. As discussed in Section 3, non-looping code leads to simulations with changing sampling
rates to generating code for every invocationof a Star, resulting in massive code explosion. As an
example, theWaveForm Star insidethe rateGalaxyis invoked 256 times. Ratherthan a loop with
256 iterations, the generated code contains 256 instances of the WaveFormcode. This code
explosion is whatcausedthe compilerto run out of memory whencompiling all four stagesof the
up-samplesimulation on two processors. A solution to this problem is to use Ptolemy's hierarchi
cal scheduling[10]. This scheduler allows one of the three multiprocessor schedulers discussed in
Section 3 to be used as a top-level scheduler. For each child of the multiprocessor target, a single
processor looping scheduleris used to reduce code explosion. The effects of using this schedul
ing technique is left to future research.

In order to determine the maximum speedup possible for the simulation, information from the
Ptolemy schedulecan be used. Speedup is defined as the time it takesthe program to execute on a
single processor divided by the total elapsed time to execute the program in parallel[4]. A graph
with node computation costs and communication costs is pictured in Figure 5. Each node in the
graph is assigned to a processor, taking into account communication delays and delays resulting
from scheduling. The scheduling delays result when a node must wait for another node to com
plete before it can compute. The schedule, includingcommunication delay,is shown in Figure 6.
The time to execute the program in serial is calculated by adding up the node computation times,
2+1 + 2 + 4 + 2 + 2 + 2 + 2 + 4 = 21. The parallel time is the total time over the breadth of the
graph, or makespan, 10. The speedup is calculatedby taking the time to executethe program in

13

serial divided by the makespan, 21 /10 = 2.1.

Figure 5: Example APEG Figure 6: Example Multiprocessor Schedule

Proc 1

Proc 2 B

Proc 3

Another way to calculate the maximum speedup is to determine how much of the parallel time all
processors are being used, reported the Ptolemy schedule as the utilization. For the schedule in
Figure 6, processor 1 has a 8 / 10 = 80% utilization, processor 2 has a 5 / 10 = 50% utilization, and
processor 3 has a 8 / 10 = 80% utilization. The total for all 3 processors is (80% + 50% + 80%) /
3 = 70%. Without any communication or scheduling delays, the maximum speedup would be
equal to the number of processors, 3. With communication and scheduling delays accounted for,
the maximum speedup is .7 x 3 = 2.1.

6. Results

The use of manual scheduling for the multiprocessor simulations resulted in non-looping code
being generated. For a fair comparison, the single workstation code was initially generated using
a non-looping schedule, which resulted in a huge C source file (191736 lines). This code was not
able to be compiled because the computer's memory was exhausted. Instead, a looping schedule
was used for the single processor code, which resulted in a 65 times reduction in code size (2967
lines). Timing measurements were made, and the results for the two and four processor simula
tions are presented below.

The resulting schedule for four processors reports that 74% utilization is achieved, showing that
the processors are computing 74% of the total execution time, and idle for 26% of the time. Tak
ing this into account, a maximum speedup of .74 x 4 = 2.96 is theoretically possible for the four
processor simulation.

The two processor simulation schedule shows 84% utilization, signifying a 1.68 maximum
speedup should be possible.

For the two processor simulation, two SparcStation 20s with 128 MB of RAM connected by 100
Mbps switched Ethernet network were used. The results are summarized in Table 1. As can be
seen, the simulation attains approximately a 1.6 times speedup running on two processors over
one. The speedup is calculated using the time of processor 2 in this case, as both processors begin
computing at the same time. Processor 2 spends 17% of its time, on average, waiting for the data
from processor 1 to arrive. The time is takes processor 1 to send data, about 1.3 ms on average, is

negligible. If the time waiting for the receive data could beeliminated, the maximum speedup of
1.68 would beapproached. Efficiency inparallel computing is thespeedup divided bythenumber
of processors[4]. Forthe twoprocessor simulation, the efficiency is 80%.

Table 1: Two Processor Results

Processor 1 Processor 2 Single Processor

Send Time 1.310 ms N/A N/A

Receive Time N/A 138.8 ms N/A

Execution Time 696.0 ms 827.2 ms 1316.0 ms

Thefour processor simulation was carried out usingthreeSparcStation 20swith 128MB of
RAM, and one SparcStation 10 with 80 MB of RAM, all connectedby a 100Mbps switched
Ethernet network. The results are summarized in Table 2. The timing for the stand-alone system
differed from the SparcStation20s to the SparcStation 10. The SparcStation20s were about 1.7
times faster than the SparcStation 10 in executing the program on a single processor. The average
time between all four of these systems was used to calculate the one processor value. The fourth
processorin this simulation spends almost50% of its time waiting for its data to arrive. The third
processor spends about 23% of its total time waiting for data, the second processor almost 10%.
As in the two processor system, removing these times would allow the maximum speedup to be
approached. This waiting timeis due to scheduling. The latterprocessors finish the workthat is
not dependent on the data they receive before the receive data is ready to be sent. This results in
the processorswasting computecycles waiting for that data to arrive. This wait time increases
with later processors, as in diis simulation all the processorsdo the same amountof computation
before waiting for receive data to arrive. More efficient scheduling could undoubtedly improve
performance, but better scheduling in this specific simulation may not be applicable as there is
only a limited amount of work that can be carried out without the received data (essentially one
FFT). The speedup for the four processor simulation is 1.8, the efficiency is 45%.

Table 2: Four Processor Results

Processor 1 Processor 2 Processor 3 Processor 4 Single Processor

Send Time 1.140 ms 1.230 ms 0.712 ms N/A N/A

Receive Time N/A 98.10 ms 287.9 ms 782.8 ms N/A

Execution Time 804.8 ms 976.3 ms 1234.1 ms 1647.9 ms 2884.3 ms

An alternate schedule that divides the rate Galaxy work more evenly among the processors may
result in better performance, but this would also incur more communication costs. A schedule
was generated using DL schedulingand assuming fine grain communication. This schedule
resulted in 72% utilization with communication sends and receives were spread throughout the
generated code. With the bulk transfer method, the DL scheduler arranged sends and receives into
larger groupings, and a 75% utilization was reported.

15

These results show that a definite benefit is gained in using multiple processors (workstations) for
large Ptolemy simulations. With better scheduling, higher efficienciescan be achieved. When the
times are measured in milliseconds, the benefits may not appear as significant, but milliseconds
are very significant to a CPU. The speedup is graphed in Figure 7.

Figure 7: Up-Sample Simulation Speedup

a
TD

O
a>
Cu

CO

0

o

—^ \ r

2 3 4

Number of Processors

• Measured

o Maximum

7. Summary

An initial implementation of a CGCNOWamTarget was built using GAM. The target was not
functional due to GAM's requirement of a SPMD parallel program, i.e. each node in the process
had to be running the same code image. Test data was collected by stitching each file produced by
the CGCNOWamTarget into a single file that was then compiled and run on each node. The GAM
implementation tested was built on TCP/IP, so the TCP/IP overhead canceled any benefit gained
using Berkeley's NOW.

The UDPAM implementation of the CGCNOWamTarget is fully integrated into Ptolemy, as the
SPMD requirement of GAM is no longer part of the AM specification. Because UDPAM is built
on top of UDP/IP, a CGCNOWamTarget application can be created, compiled, and run any net
work supporting UDP/IP. The use of UDP/IP is a benefit in the sense CGCNOWamTarget can be
run on systems other than Berkeley's NOW, but it has the same detriment that the original CGC
NOWamTarget using TCP/IP did, costly UDP/IP overhead. Even with protocol overhead, appro
priate Ptolemy applications can be designed and run on Berkeley's NOW or other networks
supporting UDP/IP. These applications would simply have to have a higher degree of computa
tion than communication.

The up-sample simulations show that Ptolemy systems do exist that benefit from running on mul
tiple processors. The 80% efficiency and 1.6 times speedup achieved with two processors is
excellent and certainly shows an added benefit from running the simulation on two processors

16

rather than one. These valueswereclose the maximumpossible speedupof 1.68andefficiency of
84%. Although the simulation appears not to scale well to four processors, the 1.8 times speedup
is amplified in importance if overdl execution time is critical, and is 60% of the possible maxi
mum of 3. If a massive simulation took 10 days to run on one processor, only taking 5 1/2 days
would definitely prove beneficial, even at only 45% efficiency. If nothing else, these results show
the potential for creating Ptolemy simulations that will execute in less time on multiple proces
sors, and the CGQ^OWam target is a means of using multiple processors.

The current CGCNOWamTarget is not portable across AM implementations because of its use of
known ports in creating endpoints. Although a name server is suggested in the AM documenta
tion, no interface is provided. If a name server was developed for the CGCNOWamTarget, there
is still no guarantee the name server interface would be the same for other AM implementations.
Although not restricting global names of endpoints is an essential feature of the AM specification
for portability, it is a potential weakness unless a common name server interface is defined.

Although the building-wide supercomputer has not yet been realized, the CGCNOWam target
running over 100 Mbps Ethernet shows the goal is being approached. It is already the case where
accessing data over the network from the memory of another computer is faster than accessing a
local hard disk. This fast network communication lends itself naturally to using networked com
puters as a parallel platform.

Fumre potential work on the CGCNOWamTarget includes a port to the new LAM n library,
which is an AM implementation running on Myrinet LANai network cards. This implementation
is true to the AM goals in that it provides a direct link between an application and the network
hardware, bypassing the operating system. This new CGCNOWamTarget would perform closely
to a MPP system, and would be able to run a wider range of Ptolemy applications more efficiently
than the UDPAM CGCNOWamTarget. Other future work could include experimenting with addi
tional Ptolemy scheduling techniques and developing more NOW simulations.

8. References

[1] Joseph Buck, Soonhoi Ha, Edward A. Lee, David G. Messerschmitt, "Ptolemy: A Framework
for Simulating and Prototyping Heterogeneous Systems," International Journal of Computer Sim
ulation, 1992.

[2] Alan M. Mainwaring, "Active Message Applications Progranuning Interface and Communica
tion Subsystem Organization," Draft Technical Report, University of California at Berkeley, Com
puter Science Department, 1996.

[3] David Culler, Kim Keeton, Cedric Krumbein, Lok Tin Liu, Alan Mainwaring, Rich Martin,
Steve Rodrigues, Kristin Wright, Chad Yoshikawa, "Generic Active Message Interface Specifica
tion," Version 1.1, University of California at Berkeley, Computer Science Department, 1995.

[4] Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis, Introduction to ParallelCom
puting: Design and Analvsis of Algorithms. The Benjamin/Cummings Publishing Company, Inc.,
Redwood City, California, 1994.

17

[5] Remzi H. Arpaci, Andrea Dusseau, Amin M. Vahdat, Lok T. Liu, Thomas E. Anderson, and
David A. Patterson, "The Interaction of Parallel and Sequential Workloads on a Network of Work
stations,"TechnicalReport CS-94-838,University of California at Berkeley,Computer Science
Department, 1994.

[6] Edward A. Lee and David G. Messerschmitt, "Synchronous Data Flow,"Proceedings of the
IEEE, September, 1987.

[7] GilbertC. Sih, "Multiprocessor Scheduling ToAccount For Interprocessor Communication",
Ph.D.Thesis,University of California at Berkeley, Department of Electrical Engineering and
Computer Science, 1991.

[8] Jose L. Pino, "Software Synthesisfor Single-Processor DSP SystemsUsing Ptolemy," Mas
ter's Report, University of California atBerkeley, Department of Electrical Engineering andCom
puter Science, 1994.

[9] Jose L. Pino, SoonhoiHa, Edward A. Lee, Joseph T. Buck, "Software Synthesisfor DSP
Using Ptolemy," Joumal of VLSI Signal Processing, 9,7-21,1995.

[10] Jose L. Pino and EdwardA. Lee, "Hierarchical Static Scheduling of Dataflow Graphsonto
Multiple Processors," Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, May 1995,pp. 2643-2646.

18

Appendix A

CGCNOWamTargeth
^**

Version identification:

@(#)CGCN0WainTarget.hl.6 3/4/96

Copyright (c) 1995-1996 The Regents of the University of California.
All Rights Reserved.

Permission is hereby granted, without written agreement and without
license or royalty fees, to use, copy, modify, and distribute this
software and its dociamentation for any purpose, provided that the above
copyright notice and the following two paragraphs appear in all copies
of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY

FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES

ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF

THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE

PROVIDED HEREUNDER IS ON AN «AS IS" BASIS, AND THE UNIVERSITY OF

CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,

ENHANCEMENTS, OR MODIFICATIONS.

COPYRIGHTENDKEY

Programmer: Patrick Warner

***^

#ifndef _CGCNOWamTarget_h
#define _CGCNOWamTarget_h 1

tifdef ^GNUG
tpragma interface
#endif

#include "CGMultiTarget.h"
#include **StringState.h"
#include "IntArrayState.h"
#include "IntState.h"

class EventHorizon;

class CGCTarget;

class Virtuallnfo {

friend class CGCNOWamTarget;

unsigned long inetAddr; // internet address
int virtNode; // active message virtual node

19

const char* run; It machine name

public:
Virtualinfo(): virtNode(O), nm(0) {}

);

class CGCNOWamTarget : public CGMultiTarget {
public:

CGCNOWamTarget(const char* name, const char* starclass, const char*

desc);

-CGCNOWamTarget();

Block* makeNewO const;

int isA(const char*) const;

if redefine I PC f\incs

DataFlowStar* createSend(int from, int to, int num);

DataFlowStar* createReceive(int from, int to, int num);

if spread and collect
DataFlowStar* createSpread();

DataFlowStar* createCollect();

it redefine

void pairSendReceive(DataFlowStar* s, DataFlowStar* r);

if get Virtualinfo
Virtuallnfo* getvirtualinfo() { return machinelnfo; }
void setMachineAddr(CGStar*, CGStar*);

// signal TRUE when replication begins, or FALSE when ends
void signalCopy(int flag) { replicateFlag = flag; }

protected:
void setup();

// redefine

int sendWormData(PortHole&);

int receiveWormData(PortHole&);

private:
if states indicate which machines to use.

StringState machineNames;
StringState nameSuffix;

// In case, the cody body is replicated as in "For" and "Recur"
// construct, save this information to be used in getMachineAddr().
IntArray* mapArray;

int baseNum;

int replicateFlag;

if information on the machines

Virtuallnfo* machinelnfo;

it nijmber of send/receive pairs

20

int pairs;

// identify machines
int identifyMachines();

// return the machine_id of the given target,
int machineld{Target*);

};

#endif

CGCNOWamTarget.cc

static const char file_id[] = ''CGCNOWamTarget .cc* ;
/**

Version identification:

@(#)CGCNOWamTarget.ccl.lO 3/8/96

Copyright (c) 1995-1996 The Regents of the University of California.
All Rights Reserved.

Permission is hereby granted, without written agreement and without
license or royalty fees, to use, copy, modify, and distribute this
software and its dociamentation for any purpose, provided that the above
copyright notice and the following two paragraphs appear in all copies
of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY

FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES

ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF

THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE

PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF

CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,

ENHANCEMENTS, OR MODIFICATIONS.

COPYRIGHTENDKEY

Programmer: Patrick Warner

***/

#ifdef _GNUG
#pragma implementation
#endif

#include "pt_fstream.h"
#include "Error.h"

#include "CGUtilities.h"

#include "CGCStar.h"

21

#include "KnownTarget.h"

#include "CGCNOWamTarget.h"

tinclude "CGCTarget.h"

#include '^CGCSpread.h"
#include "CGCCollect.h"

#include "CGCNOWamSend.h"

include "CGCNOWaitjRecv. h"

#include <ctype.h>

#include <stdio.h>

#include <sys/types.h>
#include <netdb.h>

#include <netinet/in.h>

#include <arpa/inet.h> // Sol2 needs this for inet_addr()

// stream for logging information. It is opened by the setup method.

static pt_ofstream feedback;

//

CGCNOWamTarget::CGCNOWamTarget{const char* name,const char* starclass,
const char* desc) : CGMultiTarget (name,starclass,desc) {

// specify machine names
addState(machineNames.setState("machineNames",this,"lucky, babbage"

^machine names (separated by a comma)"));
addState(ncimeSuffix.setState("nameSuffix",this,"",

"common suffix of machine names(e.g. .berkeley.edu)"));

// make some states invisible

childType.setlnitValue("default-CGC");
compileFlag.setlnitValue("NO");
riinFlag. setlnitValue ("NO") ;
displayFlag.setlnitValue("YES");
resources.setlnitValue("");

machineinfo = 0;

pairs = 0;
baseNiam = 0 ;

mapArray = 0;

replicateFlag = 0;

}

CGCNOWamTarget :: -CGCNOWamTarget() {
// if (inherited0 ==0) {

LOG_DEL; delete [] machineinfo;

// }

}

//

DataFlowStar* CGCNOWamTarget :: createSend(int, int, int) {
LOG_NEW; CGCNOWamSend* s = new CGCNOWamSend;
return s;

}

22

DataFlowStar* CGCNOWamTarget :: createReceive(int, int, int) {
LOG_NEW; CGCNOWamRecv* r = new CGCNOWamRecv;
return r;

}

DataFlowStar* CGCNOWamTarget :: createSpread() {
LOG_NEW; return (new CGCSpread);

}

DataFlowStar* CGCNOWamTarget :: createCollect() {
LOG_NEW; return (new CGCCollect);

}

void CGCNOWamTarget :: pairSendReceive(DataFlowStar* s, DataFlowStar* r) {
feedback « "\tpairing " « s->fullName () « « r->fullName ()

« Nn" ; feedback. flush ();

CGCNOWamSend* cs = (CGCNOWamSend*) s;

CGCNOWcimRecv* cr = (CGCNOWamRecv*) r;

int pnum = (int)nprocs;

cs->numNodes.setlnitValue(pnum);
cr->numNodes.setlnitValue(pnum);

cs->pairNumber.setlnitValue(pairs);
cr->pairNumber.setlnitValue(pairs);
pairs++;

StringList nodeAddrs = "
for (int i = 0; i < pnum; i++) {

nodeAddrs « (int){machineInfo[i).inetAddr) « "

}
cs->nodeIPs.setlnitValue(hashstring(nodeAddrs));
cr->nodeIPs.setInitValue(hashstring(nodeAddrs));

cs->partner = cr;

}

void CGCNOWamTarget :: setMachineAddr(CGStar* s, CGStar* r) {
CGCNOWamSend* cs = (CGCNOWamSend*) s;

CGCNOWamRecv* cr = (CGCNOWamRecv*) r;

CGTarget* tg = cr->cgTarget();
if (replicateFlag && mapArray) {

int six = -1;

int rix = -1;

CGTarget* sg = cs->cgTarget();
int numMatch = Of

fer (int i = 0; i < mapArray->size(); i++) {
CGTarget* temp = (CGTarget*) child(mapArray->elem(i));
if (temp == sg) {

six = i; numMatch++;

} else if (temp == tg) {
rix = i; numMatch++;

}

23

}

if (numMatch >= 2) break;

}

if ((six < 0) II (rix < 0) || (numMatch != 2)) {
Error :: abortRun(''setMachineAddr failed.");

return;

}
int 22 = six /baseNum;

if ((rix / baseNum) != 22) {

int newlx = 22 * baseNum + (rix % baseNxam) ;

tg = (CGTarget*) child(mapArray->elem(newlx));

)

}

// machine address

int dix = machineld(tg);
if (dix < 0) {

Error :: abortRun(*cr, "no child target for this star.");
return;

}
cs->hostAddr.setlnitValue(machinelnfo[dix].virtNode);

int CGCNOWcimTarget : : machineld(Target* t) {
for (int i = 0; i < nChildrenAlloc; i++) {

if (child(i) == t) return i;

}

return -1;

)

//

///////////////////

// setup

///////////////////

void CGCNOWamTarget :: setup() {

if {inherited()) {

CGCNOWamTarget* orgT = (CGCNOWamTarget*) child(0)->parent();
machinelnfo = orgT->getVirtualInfo();
CGMultiTarget :: setupO;
return;

}

// all runs will append to the same file.
// FIXME: should not be done this way.
if (!feedback) feedback.open("CGCNOWam_log");
if (!feedback) return;

// machine idetifications

if (identifyMachines() == FALSE) return;

CGMultiTarget :: setupO;

// machine name setup

for (int i = 0; i < nChildrenAlloc; i++) {

24

CGCTarget* t = (CGCTarget*) child(i);
t->setHostNaine{machineInfo [i] .nm) ;

}
feedback.flush();

}

int CGCNOWamTarget identifyMachines() {
// construct machine information table

int pnum = int(nprocs);
LOG_NEW; machinelnfo = new Virtuallnfo[pnum];

feedback « " ** machine identification ** \n";

const char* p = machineNames;
int i = 0;

while (*p) {
char buf[80], *b = buf;

while (isspace{*p)) p++;
while ((*p != 6e& (*p != 0)) {

if (isspace(*p)) p++;
else *b++ = *p++;

}

if (*p == ^') P++;
*b = 0; // end of string.
// record names

StringList mname = (const char*) buf;
mname « (const char*) nameSuffix;

machinelnfo[i].nm = hashstring((const char*) mname);
// internet address calculation

struct hostent* hp;

if ((hp = gethostbyname((const char*) mname)) == NULL) {

StringList errMsg;
errMsg « "host name error: " « mname;

Error :: abortRun(errMsg);

return FALSE;

}

struct in_addr* ptr = (struct in_addr*) hp->h_addr_list[0];
machinelnfo[i].inetAddr = inet_addr(hashstring(inet_ntoa(*ptr)));
machinelnfo[i].virtNode = i;

// monitoring.
feedback « "machine(" « i « ") = ";

feedback « mname « ": ";

feedback « machinelnfo[i].virtNode « "\n";
feedback.flush();

X++;

}

// check if the nimnber of processors and the machine names are matched,
if (i != pnum) {

Error :: abortRun(*this, "The number of processors and",
" the niimber of machine names are not equal.");

return FALSE;

}

25

return TRUE;

)

//

Block* CGCNOWamTarget :: makeNewO const {

LOG_NEW; return new CGCNOWamTarget(name(),starType(),descriptor());

}

//

/////////////////////////////

// wormhole interface method

/////////////////////////////

int CGCNOWamTarget :: receiveWormData(PortHole& p) {
CGPortHole& cp = *(CGPortHole*)&p;

cp.forceSendData();

return TRUE;

}

//

int CGCNOWamTarget :: sendWormData(PortHole& p) {
CGPortHole& cp = *(CGPortHole*)&p;

cp.forceGrabData();
return TRUE;

}

//

ISA_FUNC(CGCNOWamTarget,CGMultiTarget) ;

static CGCNOWamTarget targ("CGCNOWam","CGCStar*,

"A NOW target for parallel C code generation");

static KnownTarget entry(targ,"CGCNOWam");

26

Appendix B

CGCNOWamRecv.pl

defstar {

name { NOWamRecv)

domain { CGC }

desc {

Receive star between NOW processors.

}

version { @(#)CGCNOWamRecv.pll.25 8/22/96 }
author { Patrick Warner }

copyright {
Copyright(c) 1995-1996 The Regents of the University of California
All rights reserved.
See the file $PTOLEMY/copyright for copyright notice,
limitation of liability, and disclaimer of warranty provisions.
}

location { CGC NOW Active Message target library }
explanation {

Produce code for inter-process communication (receive-side).

)
private {

friend class CGCNOWamTarget;

}
output {

name {output}

type {FLOAT}

}

state {

name { niimData }

type { int }
default { 1 }

desc { n\imber of tokens to be transferred }

attributes { A_NONSETTABLE }

}

state {

name { nodelPs }

type { intarray }
default {^^0123"}

desc { IP addresses of nodes in program. }
attributes { A_NONSETTABLE }

}
state {

}
state {

name { numNodes }

type { int }
default { 0 }

desc { Number of nodes in program,
attributes { A_NONSETTABLE }

name { pairNumber }
type { int }

27

default { 0)

desc { Send Receive pair number for unique IP port. }
attributes { A_NONSETTABLE }

}

state {

name { runCoxint)

type { int }
default { 0)

attributes { A_NONSETTABLE }

}

defstate {

name { localData)

type { floatarray }
default { "0" }

attributes { A_NONSETTABLE }

)

setup {

niomData = 400;

localData.resize (niamData) ;

output.setSDFParams(int(numData), int(numData)-1);

}

codeblock (outData) {

for (i = $val(numData) - 1; i >= 0; i—) {
$ref(output,i) = $ref(localData)[j++];

}

)
codeblock (timeincludes) {

#ifdef TIME_INF01

#include <sys/time.h>
#endif

}

codeblock (ipcHandler) {
void $starSymbol(ipc_handler)(void *source_token, void *buf, int nbytes,

int dl, int d2, int d3, int d4)

{
$starSymbol(RecvData) = 100.0;

)

)
codeblock (errorHandler) {

void error_handler(int status, op_t opcode, void *argblock)

{
switch (opcode) {

case EBADARGS:

fprintf(stderr,"Bad Args:");
fflush(stderr);

break;

case EBADENTRY:

fprintf(stderr,"Bad Entry:");
fflush(stderr);

break;

case EBADTAG:

fprintf(stderr,"Bad Tag:");

28

}

}

fflush(stderr);

break;

case EBADHANDLER:

fprintf(stderr,"Bad Handler:");
fflush(stderr);

break;

case EBADSEGOFF:

fprintf(stderr,"Bad Seg offset:");
fflush(stderr);

break;

case EBADLENGTH:

fprintf(stderr,"Bad Length:");
fflush(stderr);

break;

case EBADENDPOINT:

fprintf(stderr,"Bad Endpoint:");
fflush(stderr);

break;

case ECONGESTION: '
fprintf(stderr,"Congestion:");
fflush(stderr);

break;

case EUNREACHABLE:

fprintf(stderr,"Unreachable:");
fflush(stderr);

break;

}
codeblock (amdecls) {

en_t global;

eb_t bundle;

}
codeblock (timedecls) {

#ifdef TIME_INF01

hrtiine_t timeRun;

hrtime_t beginRun;
hrtiine_t endRun;
#endif

}
codeblock (stardecls) {

#ifdef TIME_INF03

hrtime_t $starSymbol(timeRecv);
hrtime_t $starSymbol(beginRecv);
hrtime_t $starSymbol(endRecv);
#endif

int $starSymbol(i);
en_t *$starSymbol(endname);

ea_t $starSymbol(endpoint);

}
codeblock (aminit) {

AM_Init() ;

if (AM_AllocateBundle(AM_PAR, &bundle) != AM_OK) {
fprintf(stderr, "error: AM_AllocateBundle failed\n");

29

exit(1);

}

if (AM_SetEventMask(b\indle, AM_NOTEMPTY) != AM_OK) {
fprintf(stderr, "error: AM_SetEventMask error\n");
exit(1);

}

}
codeblock (timeinit) {

#ifdef TIME_INF03

$starSyinbol (timeRecv) = 0.0;
#endif

#ifdef TIME_INF01

beginRun = gethrtime();
#endif

}

codeblock (starinit) {

$starSyinbol(RecvData) = -0.001;

if (AM_AllocateKnownEndpoint(bundle, &$starSyinbol(endpoint),
&$starSyinbol(endname), HARDPORT + $val(pairNumber)) != AM_OK) {

fprintf(stderr, "error: AM_AllocateKnownEndpoint failedXn");
exit(1);

)

if (AM_SetTag($starSyinbol(endpoint), 1234) != AM_OK) {
fprintf(stderr, "error: AM_SetTag failedXn");
exit(1);

}

if (AM_SetHandler($starSyinbol(endpoint), 0, error_handler) != AM_OK) {
fprintf(stderr, "error: AM_SetHandler failedXn");
exit(1);

}
if (AM_SetHandler($starSyinbol(endpoint), 2, $starSymbol(ipc_handler)) !=
AM_OK) {

fprintf(stderr, "error: AM_SetHandler failedXn");
exit(1);

}

if (AM_SetSeg($starSyinbol(endpoint), (void *)$ref(localData), $val(numData) *
sizeof(double)) != AM_OK) {

fprintf(stderr, "AM_SetSeg errorXn");
exit(-1);

}

for ($starSymbol(i) = 0; $starSymbol(i) < $val(numNodes); $starSymbol(i)++) {
global.ip_addr = $ref(nodelPs, $starSymbol(i));
global.port = HARDPORT + $val(pairNumber);
if (AM_Map($starSymbol(endpoint), $starSymbol(i), global, 1234) !=

AM_OK) {

fprintf(stderr, "AM_Map errorXn");
fflush(stderr);

exit(-1);

}

}

30

initCode {

addGlobal("#define HARDPORT 61114\n", "hardPort");

addGlobal("double $starSyinbol(RecvData);Nn");
addlnclude("<stdio.h>");

addlnclude("<stdlib.h>")

addlnclude {"<string.h>'')
addlnclude("<thread.h>")

addlnclude ("<udpain. h> ") ;
addlnclude ("<ain. h>") ;

addCompileOption{
"-I$PTOLEMY/src/domains/cgc/targets/NOWam/libudpam");

addLinkOption(
"-L$PTOLEMY/lib.$PTARCH -ludpam -Insl -Isocket -Ithread");

addCode(timeincludes, "include", "timelncludes");

addProcedure(ipcHandler);
addProcedure(errcrHandler, "CGCNOWam_ErrorHandler");

addCode(amdecls, "mainDecls", "amDecls");

addCode(timedecls, "mainDecls", "timeDecls");

addCode(stardecls, "mainDecls");

addCode(timeinit, "mainlnit", "timelnit");

addCode(aminit, "mainlnit", "aminit");

addCode(starinit, "mainlnit");

}

codeblock (block2) {

/* riin receive once */

)
codeblock (block) {

int i, j = 0;

#ifdef TIME_INF03

$starSymbol(beginRecv) = gethrtime();
#endif

while ($starSymbol(RecvData) == -0.001) {
if (AM_Poll(bundle) != AM_OK) {

fprintf(stderr, "error: AM_Poll failedXn");
exit(1);

)

}

$starSymbol(RecvData) = -0.001;

#ifdef TIME_INF03

$starSymbol (endRecv) = gethrtimeO;
$starSymbol(timeRecv) += $starSymbol(endRecv) - $starSymbol(beginRecv);
printf("Cumulative time to receive %lld usec\n", $starSymbol(timeRecv) /

1000);

#endif

}

go {

if (runCount ==0) {

31

addCode(block);

addCode(outData);

runCount = 1;

} else {

addCode(block2);

}

}
codeblock (nantime) {

#ifdef TIME_INF01

endRun = gethrtime();
timeRun = endRun - beginRun;
printfCTime to run %lld usecXn", timeRun / 1000);
#endif

}
wrapup {

addCode(runtime, "mainClose", "runTime");
addCode (^^AM_Terminate (); \n", "mainClose", "amTerminate") ;

}

}

CGCNOWamSend.pI

defstar {

name { NOWamSend)

domain { CGC }

desc {

Send star between NOWam processors.

}
version { @(#)CGCNOWamSend.pll.20 8/22/96)
author { Patrick 0. Warner)

copyright {
Copyright(c) 1995-1996 The Regents of the University of California

}

location { CGC NOW Active Message target library }
explanation {

Produce code for inter-process comm\anication (send-side)
}

private {
friend class CGCNOWamTarget;

CGStar* partner;

}

input {
name {input}
type (FLOAT)

)
state {

name { numData }

type { int }
default { 1 }

desc { number of tokens to be transferred }
attributes { A_NONSETTABLE >

}

state {

name { nodeIPs }

32

type { intarray }
default { «0 1 2 3" }

desc { IP addresses of nodes in program,
attributes { A_NONSETTABLE }

}
state {

name { hostAddr }

type { int }
default { 0 }

desc { Host virtual node for server }

attributes { A_NONSETTABLE)

}
state {

name { numNodes }

type { int)
default { 0 }

desc { Number of nodes in program. }
attributes { A_NONSETTABLE }

}
state {

}
state {

name { pairNumber }
type { int }
default { 0 }

desc { Send Receive pair number for unique IP port. }
attributes { A_NONSETTABLE }

name { runCount }

type { int }
default { 0 }

attributes { A_NONSETTABLE }

}
defstate {

name { localData }

type { floatarray }
default { "0" }

attributes { A_NONSETTABLE }

}

hinclude { ''CGCNOWamTarget .h" }

setup {
numData = 400;

localData.resize(numData);

input.setSDFParams (int(n\amData), int(numData)-1);

}

codeblock(loadCode) {

int i, check, j = 0;
for (i = $val(numData) - 1; i >= 0; i—) {

$ref(localData)[j++] = $ref(input,i);

}

)
codeblock (timeincludes) {

33

#ifdef TIME_INF01

tinclude <sys/tiine.h>
#endif

}
codeblock (replyHandler) {

void reply_handler(void *source_token, int dl, int 62, int d3, int d4)
{

}

}
codeblock (errorHandler) {

void error_handler(int status, op_t opcode, void *argblock)

{
switch (opcode) {

case EBADARGS:

fprintf(stderr,"Bad Args:");
fflush(stderr);

break;

case EBADENTRY:

fprintf(stderr,"Bad Entry:");
fflush(stderr);

break;

case EBADTAG:

fprintf(stderr,"Bad Tag:");
fflush(stderr);

break;

case EBADHANDLER:

fprintf(stderr,"Bad Handler:");
fflush(stderr);

break;

case EBADSEGOFF:

fprintf(stderr,"Bad Seg offset:");
fflush(stderr);

break;

case EBADLENGTH:

fprint f(s tderr,"Bad Length:");
fflush(stderr);

break;

case EBADENDPOINT:

fprintf(stderr,"Bad Endpoint:");
fflush(stderr);

break;

case ECONGESTION:

fprintf(stderr,"Congestion:");
fflush(stderr);

break;

case EUNREACHABLE:

fprintf(stderr,"Unreachable:");
fflush(stderr);

break;

}

}

}
codeblock (amdecls) {

en_t global;

34

eb_t bxondle;

}
codeblock (timedecls) {

#ifdef TIME_INF01

hrtiine_t timeRxin;
hrtime_t beginRun;
hrtime_t endRun;

#endif

}
codeblock (stardecls) {

#ifdef TIME_INF02

hrtime_t $starSyinbol(timeSend) ;
hrtime_t $starSymbol(beginSend);
hrtime_t $starSymbol(endSend);

#endif

en_t * $ s tarSymbol (endname) ;
ea_t $starSymbol(endpoint);
int $starSymbol(i);

}
codeblock (timeinit) {

#ifdef TIME_INF02

$starSymbol(timeSend) = 0.0;
#endif

#ifdef TIME_INF01

beginRun = gethrtimeO;
#endi f

}
codeblock (aminit) {

AM_Init();

if {AM_AllocateBundle(AM_PAR, &bundle) != AM_OK) {
fprintf(stderr, "error: AM_AllocateBundle failed\n");
exit(1);

}
if (AM_SetEventMask(bundle, AM_NOTEMPTY) != AM_OK) {

fprintf(stderr, "error: AM_SetEventMask error\n");
exi t(1);

}

}
codeblock (starinit) {

if (AM_AllocateKnownEndpoint(bundle, &$starSymbol(endpoint),
&$starSymbol(endname), HARDPORT + $val(pairNumber)) != AM_OK) {

fprintf(stderr, "error: AM_AllocateKnovmEndpoint failed\n");
exit(1);

)

if (AM_SetTag($starSymbol(endpoint), 1234) 1= AM_OK) {
fprintf(stderr, "error: AM_SetTag failedXn");
exit(1);

}

if (AM_SetHandler($starSymbol(endpoint), 0, error_handler) != AM_OK) {
fprintf(stderr, "error: AM_SetHandler failedXn");
exit(1);

35

)
if (AM_SetHandler($starSymbol(endpoint), 1, reply_handler) != AM_OK) {

fprintf(stderr, "error: AM_SetHandler failedXn");
exit(1);

)
if (AM_SetSeg($starSyitibol (endpoint) , (void *) $ref (localData) , $val(nuinData) *
sizeof(double)) != AM_OK) {

fprintf(stderr, "AM_SetSeg errorXn");
exit(-1);

}

for ($starSymbol(i) = 0; $starSyinbol(i) < $val(nuinNodes) ; $starSyinbol(i)++) {
global.ip_addr = $ref(nodelPs, $starSymbol(i));
global.port = HARDPORT + $val(pairNumber);
if (AM_Map($starSymbol(endpoint), $starSymbol(i), global, 1234) !=

AM_OK) {

fprintf(stderr, "AM_Map errorXn");
fflush(stderr);

exit(-1);

}

)

)

initCode {

// obtain the hostAddr state from parent MultiTarget.
// Note that this routine should be placed here.

CGCNOWamTarget* t = (CGCNOWamTarget*) cgTarget()->parent();
t->setMachineAddr(this, partner);

hostAddr.initialize();

// code generation.
addGlobal ("#define HARDPORT 61114\n'', "hardPort") ;

addinclude("<s tdio.h>");

addlnclude("<stdlib.h>'') ;

addinclude("<thread.h>");

addlnclude("<udpam.h>");

addlnclude ("<am.h>'') ;

addCompileOption(
«_I$PTOLEMY/src/domains/cgc/targets/NOWam/libudpam'') ;

addLinkOption(
"-L$PTOLEMY/lib.$PTARCH -ludpam -Insl -Isocket -Ithread");

addCode(timeincludes, "include", "timelncludes");

addProcedure(replyHcindler, "CGCNOWam_ReplyHandler");

addProcedure(errorHandler, "CGCNOWam_ErrorHandler");

addCode(amdecls, "mainDecls", "amDecls");

addCode(timedecls, "mainDecls", "timeDecls");

addCode(stardecls, "mainDecls");

addCode(timeinit, "mainlnit", "timelnit");

addCode(aminit, "mainlnit", "aminit");

addCode(starinit, "mainlnit");

}

codeblock (block2) {

/* run send once */

36

}
codeblock (block) {

#ifdef TIME_INF02
$starSyinbol(beginSend) = gethrtimeO;

#endif

check = AM_RequestXferAsync4 ($starSyinbol(endpoint) / $val(hostAddr), 0,
2, (void *)$ref(localData), $val(numData)*si2eof(double), 0, 0, 0, 0);

if (check == -1) {

fprintf(stderr, "Error in sending dataXn");
fflush(stderr);

}

#ifdef TIME_INF02
$starSyinbol (endSend) = gethrtimeO;
$starSyinbol(timeSend) += $starSyinbol (endSend) - $starSyinbol (beginSend) ;
printf ("Ciomulative time to send %lld usec\n", $starSymbol (timeSend) /

1000);

#endif

}

go {

}

if (runCount ==0) {

addCode(loadCode);

addCode(block);

runCount = 1;

) else {

addCode(block2);

)

codeblock (runtime) {

#ifdef TIME_INF01

endRun = gethrtime();
timeR\in = endRun - beginRun;

printf("Time to run %lld usecXn", timeRun / 1000);
#endif

}

wrapup {
addCode(runtime, "mainClose", "runTime");
addCode("AM_Terminate();Xn", "mainClose", "amTerminate");

}

)

37

Appendix C

Up-Sample Simulation (from Ptolemy Galaxy comments)

Converting sampling rates from 44.1 kHz to 48 kHz is a difficult problem. A naive approach
would be to interpolate (upsample) to a sampling frequency which is the least common multiple
of these two frequencies, filter to prevent aliasing, then decimate (downsample) to the desired out
put rate. Unfortunately the sampling rate ratio in this case is 160:147. This would require inter
polating to an intermediate frequency of 7.056 MHz. Designing a lowpass filter with a pass band
of 0-20 kHz and a stop band of 22.05-3528 kHz would be very challenging. Such a high-Q filter
would require many, many coefficients to obtain reasonable performance.

A better approach is to perform the rate conversion in multiple stages. Rate conversion ratios
are chosen by examining the prime factorization of the two sampling rates. The prime factoriza
tions of 48000 and 44100 are 2^1 * 3 * 5'̂ 3 and 2^2 * 3'̂ 2 * 5'̂ 2 * 7'^2, respectively. Thus the
ratio 48000:44100 is 2'^5 *5:3* 1^2 or 160:147. In this example the conversion is performed in
four stages - 2:1,4:3,5:7, and 4:7.

The first stage requires a filter with a relatively sharp cut-off with a transition band from 20-
22.05 kHz. Because of this, the ratio for this stage was chosen to be 2:1. With the smallest possi
ble interpolation factor of 2, the cut-off frequency of 20 kHz is as high as possible with respect to
the intermediate sampling rate (88.2 kHz in this case). This means that the filter for this stage will
require fewer coefficients than if a higher interpolation factor had been chosen. Unfortunately, no
decimation can take place in this stage since the smallest decimation factor is 3. The first filter,
which has 173 taps, interpolates by a factor of 2 and does not decimate. The pass band is 0-20
kHz and the stop band is 22.05-44.1 kHz. Note that the filter operates at a sampling rate of 2x44.1
= 88.2 kHz. The output of this filter is a signal at a 88.2 kHz sampling rate with no energy above
22.05 kHz.

The second filter, which has 31 taps, interpolates by a factor of 4 and decimates by a factor of
3. The pass band is 0-20 kHz and the stop bands are 44.1 kHz wide and are centered at multiples
of 88.2 kHz (the sampling rate of the input to this stage). More specifically, the stop bands are
66.15-110.25 kHzand 154.35-176.4 kHz. Note that this filter operates at a san^ling rateof
4x88.2 = 352.8 kHz. The output of this filter is a signal at a 117.6 kHz sampling rate.

The third filter, which has 33 taps, interpolates by a factor of 5 and decimates by a factor of 7.
The pass band is 0-20 kHz and the stop bands are 44.1 kHz wide and are centered at multiples of
117.6 kHz (the sampling rate of the input to this stage). More specifically, the stop bands are
95.55-139.65 kHz and 213.15-257.25 kHz. Note that this filter operates at a sampling rate of 5 x
117.6 = 588 kHz. The output of this filter is a signal at a 84 kHz sampling rate.

The fourth filter, which has 33 taps, interpolates by a factor of 4 and decimates by a factor of
7. The pass band is 0-20 kHz and the stop bands are 44.1 kHz wide and are centered at multiples
of 84 kHz (the sampling rate of the input to this stage). More specifically, the stop bands are
61.95-106.05 kHz and 145.95-168 kHz. Note that this filter operates at a sampling rate of 4 x 84
= 336 kHz. The output of this filter is a signal at a 48 kHz sampling rate. Because Ae second filter
has the same interpolation factor as the fourth and operates at a higher rate, it can actually use the
same filter coefficients.

38

	Copyright notice 1997
	ERL-97-8
	Copyright notice 1996
	ERL-97-8

