Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

IMPLEMENTATION OF PROCESS NETWORKS
IN JAVA

by

Richard S. Stevens, Marlene Wan, Peggy Laramie,
Thomas M. Parks, and Edward A. Lee

Memorandum No. UCB/ERL M97/84

1 November 1997

IMPLEMENTATION OF PROCESS NETWORKS
IN JAVA

by

Richard S. Stevens, Marlene Wan, Peggy Laramie,
Thomas M. Parks, and Edward A. Lee

Memorandum No. UCB/ERL M97/84

1 November 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Implementation of Process Networks in Java

Richard S, Stevens!, Marlene Wan, Peggy Laramie,
Thomas M. Parks, Edward A. Lee
November 1, 1997

Abstract

A process network, as described by G. Kahn, is a network of sequential processes con-
nected by FIFO queues. Process networks, a generalization of dataflow graphs, are used
extensively for representing signal processing algorithms. The requirement to run for long
times with limited memory raises concerns about deadlocking and memory requirements.
T. Parks gives an algorithm for executing a given process network forever in bounded
memory, whenever possible. This algorithm depends on recognition of and response to
deadlock conditions. We implemented this algorithm in Java and devised a new robust
method for detecting deadlocks.

1.0 Introduction

Managing concurrency has become a critical issue in many domain-specific models of
computation. Concurrency is required in reactive systems, which need to interact with an
environment that produces multiple simultaneous stimuli. Networked applications are
inherently concurrent, as is any application with a non-trivial user interface. The Java lan-
guage provides threads, which are concurrent sequential programs that can share data, pre-
cisely to deal with such applications. However, programming with threads in their raw
form can easily lead to errors that are difficult to diagnose. In particular, the Java language
(correctly) does not define precisely how threads are scheduled. This is dependent on the
implementation. Consequently, writing multithreaded applications that behave identically
across multiple implementations requires painstaking care and attention to detail.

A Kahn process network is a directed graph, comprising a set of nodes (processes) con-
nected by a set of directed arcs (FIFO queues) [1, 2]. Each process executes a sequential
program. At any given moment this process may read a data token from one of its input
queues, or it may write a data token to one of its output queues, subject to the following
constraint: if a process attempts to read a token from an empty queue, the read is blocked,
and the process must wait until a token is available on that queue. Such process networks
are known to be determinate?, which means that the sequence of tokens passing through

1. Richard S. Stevens is an employee of the U.S. Government, whose written work is not subject to copy-
right. His contribution to this work falls within the scope of 17 U.S.C. A7 105.

2. Kahn [1] gives a more general condition for determinacy, that processes be monotonic functions mapping
input sequences to output sequences, where “monotonic” is with respect to a preﬁx order. In this paper,
we will be concerned only with a subset of monotonic functions: those that can be described as sequential
processes with blocking reads.

Implementation of Process Networks in Java November 19, 1997 1

each queue over time is dependent only on the process network and not on its implementa-
tion [1, 2, 3]. A deadlock occurs when every process in the network is blocked while
attempting to read an empty queue.

Kahn process networks provide a higher-level concurrency model that is inherently deter-
minate, guaranteeing consistent behavior across implementations. Moreover, although
process networks are not an ideal model of computation for all applications, they match a
wide variety of applications well. They are excellent for computation-intensive real-time
applications such as signal and image processing, as evidenced by the widespread accep-
tance of dataflow in the signal processing community. Dataflow is a special case of Kahn
process networks [5]. Process networks are more difficult to use, however, for transaction-
based applications where sharing a common database is key.

Many real-time applications are intended to run indefinitely using a limited amount of
memory. This motivates our interest in process networks that (a) will run forever and (b)
will do so using a bounded amount of memory. Some process networks can be analyzed
statically to determine whether or not they meet these criteria. However, one of the
authors (Parks) has observed that, in general, the questions of whether a process network
meets these criteria are not decidable in finite time [6].

A further question arises about algorithms for scheduling the execution of a process net-
work, and whether a given algorithm will use unbounded memory when bounded memory
will suffice. Parks provides a method of running a process network forever in bounded
memory, if possible. A capacity is assigned to each queue, and a write to a full queue is
blocked. When a deadlock occurs involving some processes that are blocked while
attempting to write, queue capacities are increased to break the deadlock, and processing
continues.

We use the Java language to implement process network execution with Parks’ algorithm.
There is a thread for each process in addition to a main thread. The main thread creates all
of the queues, creates and starts all of the process threads, and handles the deadlocks as
they occur. ’

In the following discussion, we use pseudo-code to show the various methods. Section 2
discusses the details of process networks, with specific emphasis on how we implemented
_blocking reads. In Section 3 we give a precise description of blocking writes and Parks’
prescription for running in bounded memory. Section 4 presents our Java 1mplementanon
together with our analysis of the two methods for detecting deadlocks. Section 5 gives
some examples of process networks taken from [6]. Having run these examples using our
implementation, we make some observations about the behavior that we observed.

2.0 Process Networks

A process network is a set of sequential processes communicating via first-in-first-out
(FIFO) channels, or queues [1,2]. The following are some ‘basic characteristics of a pro-
cess network:

Implementation of Process Networks in Java November 19, 1997 2

» Each process is a sequential, imperative program that reads data from its input queues
and writes data to its output queues.

o Each queue has just one source and one destination.
o The network has no global data.

« Each process is blocked if it tries to read a communication channel with insufficient
data. The read may proceed when the channel acquires sufficient data. Writing is not
blocking; each queue may store an unlimited amount of data.

Kahn proved that a process network is determinate in the following sense: The sequence
of tokens on each queue is determined solely by the process network and not by its imple-
mentation {1, 2]. It can also be shown that if a process network will deadlock, then it must
deadlock in a unique state that is independent of the scheduling method [1, 2, 3].

Blocking reads may be specified in terms of get and put methods on the data queue. The
get method is called by the process reading from the queue, and the put method is called
by the process writing to the queue.

For example, assume that one token is transferred in each get and each put method. The
get and put methods are defined in Figure 2.1.

int get () (
if (empty) waitForPut();
return firstToken();
}
void put (int value) {
enqueue (value);
if (waitingForPut) resumeGet();

Figure 2.1:
Blocking read implemented by get and put methods.

Q

Figure 2.2:
A Process Network with two processes con-
nected by a queue.

To see how this works, visualize a queue Q that connects two processes A and B, where A
writes to Q and B reads from Q, as in Figure 2.2. Suppose that Q has one token and that B
reads from Q by calling the get method on Q. The get first checks whether Q is empty. In
this case, Q is not empty. The £irstToken () method removes the first token from the

Implementation of Process Networks in Java November 19, 1997 3

queue amd returns its value. Now suppose that B reads another token from Q. This time, Q
is empty, sowaitForPut () is called, blocking the read. Suppose now that A writes to Q
by calling the put method. This adds a new token to Q. In Java, one thread can notify
another af an event that affects it. The resumeGet performs this notification by causing
the corresponding get method to be resumed after the put is complete. At this point Q is
empty but mot blocking a read. If A now writes to Q, a token will be added to Q. Because B
is not waiting for a token, notification is not necessary.

3.0 Baunded Memory Scheduling

In a process network [1, 2], no restriction is placed on the number of processes in the net-
work or en the amount of memory required by individual processes. Either or both may
be unbounded. A process network may require unbounded memory for any one or a com-
binatiom of the following reasons:

» One eor more queues must store an unbounded number of tokens.
» The tkens have unbounded size.
 One or more processes in the network requires unbounded memory.

e While running, the process network is reconfigured by the continual addition of new
processes and/or new queues.

Henceforth, unless otherwise stated, we take bounded memory scheduling to mean that the
number of tokens on each queue should remain bounded. We are not concerned about
token size, memory requirements of individual processes, or the number of processes and
queuss in the process network.

We sunmmarize the results of Parks [6]. The following questions arise:
» Will a given process network run forever without reaching a deadlock state?

« Will a given process network run in bounded memory? Specifically, is there a bound B
and z scheduling scheme for running the process network such that the number of
tokens on each queue never exceeds B?

Each of the above questions is equivalent to the halting problem of a Turing machine and
is thus uadecidable [4, 6]. If a process network eventually reaches a deadlock state, then it
runs in trounded memory. Thus the question of undecidability for execution in bounded
memory applies in the case where running forever is either possible or not known.

At any gfven moment, several of the processes may be able to run. Ifthe process network
is runnimg on a system with a-single processor, then a scheduling policy may be-used to
interleave the execution of the processes. Several scheduling policies are well known,
such as data driven and demand driven. Data driven scheduling activates a process as
soon as sufficient input tokens are available. Demand driven scheduling defers process
activation umtil its output tokens are needed. For further information about these and other
scheduling policies, see [6]. "

Implementation of Process Networks in Java November 19, 1997 4

Most traditional scheduling policies, such as data driven and demand driven, will execute
process metworks forever, if possible. For each of the traditional scheduling policies there
is an example of a process network which the policy runs, using unbounded memory when
bounded memory would suffice [6].

Parks gives an algorithm that runs a process network forever in bounded memory when-
ever that is possible. If a process network requires unbounded memory to run forever,
then there is a conflict between the two goals of running forever and doing so in bounded
memory. In this case Parks’ algorithm prefers the use of unbounded memory to run for-
ever over terminating to stay within bounded memory.

Parks’ algorithm assigns a capacity to each queue in the process network, which limits the
number of tokens that the queue can contain. Just as a read is blocked when there is insuf-
ficient data, a write is blocked when there is insufficient capacity.

With the introduction of blocking writes to process networks, the questions of determin-
ism and deadlock must be addressed anew. By similar arguments it can be shown that
such a process network is determinate, and that if it will deadlock, then it must deadlock in
a unique state.

int get() {
if (empty) waitForPut();
if (waitingForGet) resumePut();
return firstToken():;
}
void put (int value) {
if (£full) waitForGet():
enqueue (value) ;
if (waitingForPut) resumeGet():;

}

Figure 3.1: Blocking writes and blocking reads
implemented by get and put methods.

For blocking writes, modified get and put methods are shown in Figure 3.1, which
‘retain blacking reads. Referring again to Figure 2.2, suppose that Q has a capacity of 1 and
that Q has a token. Then Q is full. If A writes to Q by calling put, waitForGet () is
called, blocking the write. Now suppose that B reads from Q by calling the get method. A
token befng available, there is no need to wait. The resumePut causes the corresponding
put method to be resumed after the get is complete. The £irstToken () method
removes the first token from the queue and returns its value.

With blocking writes and blocking reads, a deadlock may now occur in which one or more
processes are blocked while writing. This is an artificial deadlock. A true deadlock occurs
when all processes are blocked while reading.

Implementaticn of Process Networks in Java November 19, 1997 5

To run in bounded memory when it is possible to do so, we may use any scheduling policy
that ensures eventual execution of an executable process (e.g., data driven or demand
driven) antil a deadlock occurs. If an artificial deadlock occurs, we increase the capacities
of the queues to break the deadlock and continue running. One of the following cases
must apply:

e The process network can run forever in bounded memory: If the initial capacities are
sufficiently large, the process network will run forever without a deadlock ever occur-
ring. Otherwise some artificial deadlocks will occur, and the queue capacities will be
increased. Eventually the capacities will become sufficiently large for the process net-
work. to run without further deadlocks. The process network will run forever in
boumded memory.

« The process network can run forever but requires unbounded memory: Artificial dead-
locks will occur continually, and queue capacities will be increased without bound.
The process network will run forever using unbounded memory.

» The process network eventually halts: In this case, a true deadlock will occur, possibly
aftersome artificial deadlocks and resulting increases in queue capacities.

Figure 3.2 shows this scheduling algorithm in pseudo-code.

void deadlockManager ()
do {
! waitForDeadlock();
: if (trueDeadlock) terminate();
. increaseQueueCapacities(); // Artificial deadlock
! } forever;
: }

Figure 3.2:
Scheduling algorithm for execution in bounded memory, if possible.

When aw artificial deadlock occurs, there is some latitude in selecting the queues whose
capacities should be increased. For example, increasing the capacity of every queue will
achieve the ultimate goal of executing in bounded memory whenever possible. With an
eye toward memory conservation, this is unnecessary. A better choice is to increase the
capacmes of those queues that are blocking writes, because nothing will be gained by
increasing the capacities of queues that are only blocking reads. Beyond that, Parks
observes that it is sufficient to increase the capacity of just one queue, i.e., one with mini-
mum capacity chosen from the queues that are blocking writes [6].

4.0 Implementation in Java

The Java Ianguage [7, 8, 9] has a number of features that makes programming and debug-
ging relatively easy:

Implementatian. of Process Networks in Java November 19, 1997 6

Java is object oriented.

Java supports multiple threads.

Java supports exception handling.

Java is strongly typed.

Java collects garbage, eliminating memory leaks.

Java provides run-time checks (e.g., array index out of bounds).

In our implementation, we define a thread for each process in the process network. Thus,
instead of controlling the processing with a data-driven, demand-driven, or other tradi-
tional scheduling policy, we run all of the process threads, using the wait() and
notify () methods of Java threads to implement blocking reads and writes. In addition,
we define a main thread to create the queues, to create and start the process threads, and
(as we shall see) to detect and handle deadlocks.

When a deadlock occurs, suddenly nothing happens, because all process threads are wait-
ing. Thus arises a problem: how to detect a deadlock. There are at least two possible
solutions, both using a main thread to monitor the execution of the processes in the pro-
cess network:

(1) Run the main thread at a lower priority than the process threads. When a deadlock
occurs, no process threads are running, and so the main thread runs to analyze and handle
the deadlock. An implementation of this solution is described in [6].

(2) Keep a count of all current read and write blocks. A deadlock is detected when the total
number of blocks equals the number of processes, at which point the main thread analyzes
and handles the deadlock. This is a new approach.

Solution (1) seems attractive for the following reasons:
e There is no run-time overhead except during a deadlock.

o Design and coding is relatively simple.

Solution (1) works if the implementation is run on a single processor. However, on a
multi-processor network, this solution might allow the main thread to run on an idle pro-
cessor while there are process threads still running.

Solution (2) requires some run-time overhead to keep track of the number of current read
and write blocks. Each read block and write block is recorded by incrementing the respec-
tive counter. If a deadlock condition exists, then the main thread is resumed so that it can
break the deadlock. Each read unblock and write unblock is recorded by decrementing the
respective counter. This solution works on a multiprocessor environment as well as on a
single processor. Judging this to be more robust, we choose it for our implementation.

The methods to support deadlock detection are shown in Figure 4.1. These methods are
called from within the get and put methods. A process does not know when it is

Implementation of Process Networks in Java November 19, 1997 7

blocked: it simply waits for the get or put to return. This approach is valid, because each
process runs a sequential program; each call to a get or a put must complete before the
process continues. Thus each process may be blocked only by one get or put at any
given time. A deadlock occurs when all processes are blocked, which occurs exactly when
the total number of read and write blocks equals the total number of processes.

We implement mutual exclusion for the block counters, which are global data shared by -
all the threads. This is accomplished in Java by declaring methods to be synchronized.
When a thread calls a synchronized method of an object, that object is locked, preventing
any other concurrent calls to synchronized methods of that object [7, 8, 9]. If a synchro-
nized method waits for a condition, the lock is released until that condition is set and the
method is resumed.

void recordReadBlock() {
increment (readBlockCounter) ;
deadlockTest () ;
}
void recordReadUnblock() {
decrement (readBlockCounter) ;
)
void recordWriteBlock({) {
increment (writeBlockCounter) ;
deadlockTest () ;
}
void recordWriteUnblock() ({
decrement {(writeBlockCounter) ;
}
void deadlockTest() {
if (readBlockCounter + writeBlockCounter
== processCount) { // deadlock detected
resumeDeadlockManager () ;

}

Figure 4.1: Methods to support block counting and déadlock detection.

_ Figure 4.2 shows the additional queue method to increment the queue’s capacity.

void incrementCapacity () {
increment (capacity):;
resumePut () ;

}

Figure 4.2:
Queue method for incrementing a queue’s capacity.

Implementaticn of Process Networks in Java November 19, 1997 8

Figure 4.3 shows the get and put methods in the Queue class modified to record read
and write blocks.

int get() {(
if (empty)
recordReadBlock();
waitForPut();
}
if (waitingForGet) {
recordWriteUnblock();
resumePut () ;
}
return firstToken();
}
void put (int value) {
if (£full) (
recordWriteBlock();
waitForGet () ;
}
enqueue (value) ;
if (waitingForPut) (
recordReadUnblock();
resumeGet () ;

Figure 4.3: The get and put methods with calls
to record blocking and unblocking reads and writes.

For the main thread we use the algorithm shown in Figure 3.2, increasing the capacity of
just one queue for each artificial deadlock, a blocking queue with the lowest capacity as
suggested in [6].

5.0 Tests and examples

Figure 5.1 through 5.8 exhibit pseudo-code definitions for the processes used in the test
cases. See [6] for details.

int stream W = process interleave (int stream U, int stream V) {
do (
put (get (U}, W);
put (get(V), W);
} forever;

}

Figure 5.1: A process to interleaves two streams into one.

Implementation of Process Networks in Java November 19, 1997 9

(int stream V, int stream W) = process alternate (int stream U) {
do {
put(get(U), V);
put (get(U), W);
I forever;
}

Figure 5.2: A process to distribute odd and even tokens from ones stream to two.

ing stream V = process begin_with (int stream U, int x) {
put (x, V);
do { .
put (get(U), V);
) forever;

Figure 5.3: A process to insert a token at the beginning of a stream.

(dnt stream V, int stream W) = process duplicate (int stream U) ({
do {
int u = get(U);
put(u, V);
put(u, W);
Y forever;

Figure 5.4: A process to duplicate a stream.

irrt stream V = process add (int stream U, int x) {
do {
put (get(U) + x, V);
} forever;

Figure 5.5: A process to add a constant to each token of a stream.

(imt stream V, int stream W)
= process multiple {(int stream U, int y) {
do {
int u = get(U);
if (u mod y == 0) put(u, V);
else (put u, W);
} forever;

}

Figure 5.6: A process to separate the multiples, of a given constant
from the non-multiples.

Implementatiba :of Process Networks in Java November 19, 1997

10

(int stream W) = process merge(int stream U, int stream V) ({
int u = get(U);
int v = get(V);
do (
if (u < v) {
put (ul W),‘
u = get(U);
}
else if (u > v) (
put(v, W);
v = get(V);
} .
else (
put (u, W);
u get (U);
v get (V) ;
}

} forever:;

}

Figure 5.7: A process to implement a sorting merge. Two monotonically increasing input
streams are merged into one monotonically increasing stream. Two equal tokens on the
two input streams result in one output token.

process print (int stream U) {
do {
print(get(U));
} forever;
}

Figure 5.8: A process to print the tokens of a stream.

To study the behavior of various'process networks using our implementation, we offer a
choice of three modes of execution. We discuss the results of various test cases running
under the different modes.

‘o The free memory mode supports execution without blocking writes. Whenever a put
is called, if the queue is full, the capacity is increased immediately.

e The fixed memory mode never increases the capacity of any queue. Initial queue capac-
ities are assigned, and the processes in the process network run until the first deadlock
occurs (either artificial or true), at which point execution is terminated.

e The bounded memory mode supports execution forever in bounded memory, if possi-
ble, as described above.

Example 5.1 is a process network that will always execute forever in bounded memory
regardless of the scheduling policy. Example 5.2 is a process network that will eventually

Implementation of Process Networks in Java November 19, 1997 H

become deadlocked with any scheduling policy. Example 5.3 will run forever, but it
requires unbounded memory to do so. Running these process networks with the various
modes, we observe the expected behavior.

y inter- inter- dupli-
{- | leave {- leave ff- cate
begin,_ begin__ begin_ begin_
with(8) with(1l) with(0) with(0)
&. alter- _// & alter- inter-
nate nate leave
Example 5.1 Example 5.2 Example 5.3

In example 5.4, each of the directed cycles is a source that produces a linearly increasing
sequence starting with 0. The upper source increments by 2; the lower source increments
by 3. These two sequences are merged at the process merge to produce a single increas-
ing sequence that is printed by print. A data driven scheduler will cause the output
channel from the lower source to grow in size over time, thus using unbounded memory. A
demand driven scheduler will run this process network in bounded memory. With the free
memory option, our implementation runs this example with the output channel from the
lower saarce growing as we would expect with a data driven scheduler. With the bounded
memory and fixed memory options, this example runs forever with the capacity of 1 for
every channel.

begin_
with(0)

\ dupli-

/A/ cate
add(2)

| merge |——>—— Print

begin_
with{0)

\ dupli—

/ cate

add{3)

Example 5.4

In examrple 5.5, the process multiple (3) outputs the multiples of 3 to its upper output
queue and the non-multiples of 3 to its lower output queue, A data driven scheduler will
run this example in bounded memory. A demand driven scheduler will fail to run in

Implemensarion of Process Networks in Java November 19, 1997 12

bounded memory, because the two sink processes print must execute at different rates.
When run with the free memory and bounded memory options, no queue ever contains
more than one token.

begin_ print
witch(0) \ /
+ duplicate |— > multiple(3)
add(l) print

Example 5.5

Example 5.6 illustrates a graph in which different queues have different bounds. The
source at the left produces the sequence 0, 1, 2, The process multiple (5) outputs
all multiples of 5 to its upper output queue and all non-multiples of 5 to its lower output
queue. The process merge then merges these two sequences in ascending order, causing
the process print to print the original sequence 0, 1, 2,

This example demonstrates that the bounded memory scheme only guarantees bounded
memory, not minimum memory. In fact, the free memory option uses less memory than
the boumded memory option. To run forever, the lower output queue frommultiple (5)
must be able to contain three tokens; for all other queues, a capacity of one token is suffi-
cient. The free memory option runs this process network within those limits.

begin_
with(0)
]] c 3
duplicate|l ~Imultiple(5) merge j—>— Print
/ |
ad&(l)

Example 5.6

Running with the bounded memory option and all queue capacities initially set to 1, a
deadlock occurs with duplicate and multiple (5) write blocked: duplicate is
blocked by its only output queue, and multiple (5) is write blocked by its lower output
queue. All other processes are read blocked. The two write blocking queues have capac-
ity 1. Incrementing the capacity of one of these two write blocking queues from 1 to 2
breaks the deadlock, and another deadlock occurs with the same two processes blocked by
the same two queues. This time one of the two queues has capacity 2, and the other has
capacity I, which is incremented to 2. The process repeats until the lower output queue of
multiple (5) has capacity 3, at which point the process network has sufficient memory
to run forever. This behavior is consistent with observations reported in [6].

Implementation of Process Networks in Java November 19, 1997 13

6.0 Summary and Conclusions

We discussed an implementation of process networks in Java. Instead of designing a
scheduling algorithm that decides which process to run, we implement a policy that uses
multiple threads with blocking reads and works correctly regardless of the scheduling
algorithm used for the threads. The only requirement we make of such of a scheduling
algorithm is that if there is a process that is not blocked, then at least one process will run.

To ensuve that memory usage is bounded whenever possible, we implement queue capaci-
ties witfe blocking writes and increase the capacity of a selected queue whenever an artifi-
cial deadiock occurs. To detect deadlocks, we track the number of blocked processes, a
deadlock occurring if and only if this number is equal to the total number of processes in
the network. In this way we recognize deadlocks, determine the type of deadlock (artifi-
cial or true), and respond accordingly. This is a valid approach on a multi-processor dis-
tributed system as well as on a single processor with threads.

7.0 References

[1] G. Kahn, The. semantics of a simple language for parallel programming, Information
Processing 74, pp. 471-475, Stockholm, August 1974.

[2] G. Eahn & D. MacQueen, Coroutines and Networks of Parallel Processes, Informa-
tion Pracessing 77, pp.993-998 Toronto, August 1977.

[3] R. Stevens & D. Kaplan, Determinacy of Generalized Schema, IEEE Trans. Comp.,
Vol. 41 gp. 776-779, June 1992.

[4] J. Buck, Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the
Token Flow Model, Ph.D. Thesis, University of California, Berkeley, 1993.

[5] E. Lee & T. Parks, Dataflow Process Networks, IEEE Proceedings, pp. 773-799, May
1995 '

[6] T. Parks, Bounded Scheduling of Process Networks, Ph.D Thesis, University of Cali-
fornia, Berkeley, 1995.

. [7]1 K. Amold & J. Gosling, The Java Programming Language, 1996, Addison Wesley.
[8] G. Cornell & C. Horstmann, Core Java, 1996, Prentice Hall.

[91 M. Guand, Java Language Reference, 1997, O’Reilly.

Implementatin of Process Networks in Java November 19, 1997 14

	Copyright notice 1997
	ERL-97-84

