

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

IMPLEMENTATION OF PROCESS NETWORKS

IN JAVA

by

Richard S. Stevens, Marlene Wan, Peggy Laratnie,
Thomas M. Parks, and Edward A. Lee

Memorandum No. UCB/ERL M97/84

1 November 1997

IMPLEMENTATION OF PROCESS NETWORKS

IN JAVA

by

Richard S. Stevens, Marlene Wan, Peggy Laramie,
Thomas M. Parks, and Edward A. Lee

Memorandum No. UCB/ERL M97/84

1 November 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Implementation of Process Networks in Java

Richard S,Stevens^, Marlene Wan, Peggy Laramie,
Thomas M. Parks, Edward A. Lee

November 1,1997

Abstract

Aprocess network, as described by G. Kahn, is a network of sequential processes con
nected byFIFO queues. Process networks, a generalization ofdataflow graphs, are used
extensivelyfor representing signalprocessing algorithms. The requirement to runfor long
times with limited memory raises concerns about deadlocking and memory requirements.
T. Parks gives an algorithm for executing a given process network forever in bounded
memory, whenever possible. This algorithm depends on recognition of and response to
deadlock conditions. We implemented this algorithm in Java and devised a new robust
methodfor detecting deadlocks.

1.0 Introduction

Managing concurrency has become a critical issue in many domain-specific models of
computation. Concurrency is required in reactive systems, whichneed to interact with an
environment that produces multiple simultaneous stimuli. Networked applications are
inherently concurrent, as is any application with a non-trivial user interface. The Javalanr
guage provides threads, which areconcurrent sequential programs that can share data, pre
cisely to deal with such applications. However, programming with threads in their raw
formcan easily lead to errors that are difficult to diagnose. In particular, the Java language
(correctly) does not define precisely how threads are scheduled. This is dependent on the
implementation. Consequently, writing multithreaded applications that behave identically
across multiple implementations requires painstaking care and attention to detail.

A Kahn process network is a directed graph, comprising a set of nodes (processes) con
nected by a set of directed arcs (FIFO queues) [1,2]. Each process executes a sequential
program. At any given moment this process may read a data token from one of its input
queues, or it may write a data token to one of its output queues, subject to the following
constraint: if a process attempts to read a token from an empty queue, the read is blocked,
and the process must wait until a token is available on that queue. Such process networks
are known to be determinate^, which means that the sequence of tokens passing through

1. Richard S. Stevens is an employee of the U.S. Government, whose written work is not subject to copy
right. His contribution to this work falls within the scope of 17 U.S.C. A7 105.

2. Kahn[1] givesa moregeneralcondition fordeterminacy, thatprocesses be monotonic functions mapping
input sequences to output sequences, where"monotonic" is withrespect to a prefix order. In this paper,
we will be concernedonly with a subset of monotonicfunctions: those that can be describedas sequential
processes with blocking reads.

ImpIemeotalioD of ProcessNetwoiks is Java November19,1997 1

eachqueueovertime is dependent onlyon theprocess network and noton its implementa
tion [1, 2, 3]. A deadlock occurs when every process in the network is blocked while
attempting to read an empty queue.

Kahn process networks provide a higher-level concurrency model that is inherently deter
minate, guaranteeing consistent behavior across implementations. Moreover, although
process networks are not an ideal model of computation for all applications, they match a
wide variety of applications well. They are excellent for computation-intensive real-time
applications such as signal and image processing, as evidenced by the widespread accep
tanceof dataflow in the signal processing community. Dataflow is a special case of Kahn
process networks [5]. Process networks aremore difficult to use, however, fortransaction-
based applications where sharing a common database is key.

Many real-time applications are intended to run indefinitely using a limited amount of
memory. This motivates our interest in process networks that (a)will runforever and (b)
will do so using a boimded amount of memory. Some process networks canbe analyzed
statically to determine whether or not they meet these criteria. However, one of the
authors (Parks) has observed that, in general, the questions of whethera process network
meets these criteria are not decidable in finite time [6].

A further question arises about algorithms for scheduling the execution of a process net
work, and whethera given algorithmwill use unbounded memory whenbounded memory
will suffice. Parks provides a method of running a process network forever in bounded
memory, if possible. A capacity is assigned to each queue, and a write to a full queue is
blocked When a deadlock occurs involving some processes that are blocked while
attempting to write, queue capacities are increased to break the deadlock, and processing
continues.

We use the Java language to implementprocess network execution with Parks' algorithm.
There is a thread for each processin addition to a main thread. Themain thread creates all
of the queues, creates and starts all of the process threads, and handles the deadlocks as
they occur.

In the following discussion, we use pseudo-code to show the various methods. Section 2
discusses the details of process networks, with specific emphasis on how we implemented
blocking reads. In Section 3 we give a precise description of blocking writes and Parks'
prescription forrunning in bounded memory. Section 4 presents our Java implementation,
together with our analysis of the two methods for detecting deadlocks. Section 5 gives
some examples of process networks taken from [6]. Having runthese examples using our
implementation, wemake some observations about the behavior that we observed.

2.0 Process Networks

A process network is a set of sequential processes communicating via first-in-first-out
(FIFO) channels, or queues [1,2]. The following are some basic characteristics of a pro
cess network:

Implementation ofProcess Netwmks inJava November 19,1997 2

• Each process is a sequential, imperative program that reads data from its input queues
and writes data to its output queues.

• Each queue has just one source and one destination.

• The network has no global data.

• Each process is blocked if it- tries to read a communication channel with insufhcient
data. The read may proceed when the channel acquires sufficient data. Writing is not
blocking; each queue may store an unlimited amount of data.

Kahn proved that a process network is determinate in the following sense: The sequence
of tokens on eachqueue is determined solely by the process network andnotby its imple
mentation [1,2]. It can alsobe shown thatif a process network willdeadlock, thenit must
deadlock in a unique state that is independent of thescheduling method [1,2,3].

Blocking reads may bespecified in terms ofget and put methods onthe data queue. The
get method is called by the process reading from the queue, and the put method iscalled
by the process writing to the queue.

Forexample, assume that one token is transferred ineach get and each put method. The
get and put methods are defined in Figure 2.1.

int get() {
if (empty) waitForPutO;
return firstTokenO;

}
void put (int value) {

enqueue(value);
if (waitingForPut) resiameGet () ;

}

Figure 2.1:
Blocking read implemented by get and put methods.

o

Figure 2.2:
A Process Network with two processes con

nected by a queue.

Tosee how this works,visualize a queue Qthat connects two processes Aand B, where A
writes to Q and B reads from Q,as in Figure 2.2. Suppose that Qhas one token and that B
reads firom Qbycalling theget method onQ. The get first checks whether Qis empty. In
this case, Q is not empty. The f irstToken () method removes the first token from the

Tinpii»m«M»tntion of Pfocess Nctworks ih Jaiva November 19,1997

queue androtums its value. Now suppose that Breads another token from Q. This time, Q
isempty,,so"waitForPut {) iscalled, blocking the read. Suppose now that Awrites to Q
by calling Hhe put method. This adds a new token to Q. In Java, one thread can notify
another cf an event that affects it.The resumeGet performs this notification by causing
the corresponding get method to be resumed after the put is complete. At this point Qis
empty but notblocking aread. IfAnow writes to Q, a token will be added to Q. Because B
is not wadtiDg for a token, notification is not necessary.

3*0 Bounded Memory Scheduling

In a procaess network [1,2], no restriction isplaced on the number ofprocesses in the net
work oron the amount of memory required by individual processes. Either or both may
beunbounded. A process network may require unbounded memory for any one or a com-
binatiottof the following reasons:

• One or more queues muststore an unbounded number of tokens.

• The tokens have unbounded size.

• One or more processes in the network requires unbounded memory.

• running, the process network is reconfigured by the continual addition of new
processes and/or new queues.

Hencefbrtfi, unless otherwise stated, we take bounded memory scheduling to mean that the
number* of tokens on each queue should remain bounded. We are not concerned about
token size, memory requirements of individual processes, or the number ofprocesses and
queues in the process network.

We sunnmarize the results of Parks [6]. The following questions arise:

• Will a given process network mn forever without reaching a deadlock state?

• Will a given process network run inbounded memoryl Specifically, is there a bound B
and a: scheduling scheme for running the process network such that the number of
tokens on each queue never exceeds B?

Each oftheabove questions is equivalent to the halting problem of a Tunng machine and
is thusuadecidable [4,6]. If a process network eventually reaches a deadlock state, then it
runs in bounded memory. Thus the question of undecidability for execution in bounded
memory applies in the case where running forever iseither possible ornot known.

Atany gjrven moment, several of the processes may be able torun. If the process network
is running on a system with a single processor, then a scheduling policy may be used to
interleave the execution of the processes. Several scheduling policies are well known,
such as data, driven and demand driven. Data driven scheduling activates a process as
soon as sufficient input tokens are available. Demand driven scheduling defers process
activatioa until itsoutput tokens areneeded. For further information about these and other
schedulingpolicies, see [6].

liiq)tenientaiionatfProcess Networks in Java November 19,1997

Most traditional scheduling policies, such asdata driven and demand driven, will execute
process networks forever, if possible. For each ofthe traditional scheduling policies there
isan example ofaprocess network which the policy runs, using unbounded memory when
bounded memory would suffice [6].

Parks gives an algorithm that runs a process network forever in bounded memory when
ever thait is possible. If a. process network requires unbounded memory to run forever,
then thexe is a conflict between the two goals of running forever and doing so in bounded
memory- In this case Parks' algorithm prefers the use of unbounded memory to run for
ever over terminating to stay within bounded memory.

Parks' algorithm assigns a capacity toeach queue in the process network, which lunits the
number oftokens that the queue can contain. Just as a read isblocked when there is insuf
ficient data, a write is blocked when there is insufficient capacity.

\^th the introduction of blocking writes to process networks, the questions of detemun-
ism and deadlock must be addressed anew. By similar arguments it can be shown that
such a ptooess network isdeterminate, and that ifitwill deadlock, then itmust deadlock in
a unique state.

int get() {

if (empty) waitForPutO;
if (waitingForGet) resiomePut ();
return firstTokenO;

}
void put (int value) {

if (full) waitForGet();
enqueue(value);
if (waitingForPut) resumeGetO;

}

Figure 3.1: .Blocking writes and blocking reads
implementedby get and put methods.

For blocking writes, modified get and put methods are shown in Figure 3.1, which
retain bicicking reads. Referring again toFigure 2.2, suppose that Qhas acapacity of 1and
that Qhas a token. Then Q is full. If A writes to Qby calling put, wai tForGet () is
called, blocking the write. Now suppose that Breads from Qby calling the get method. A
token being available, there isnoneed towait. The resumePut causes the corresponding
put m^od to be resumed after the get is complete. The firstTokenO method
removes the first token fiximthe queue and returns its value.

With blocking writes andblocking reads, a deadlock may now occur in wWch oneor more
processes areblocked while writing. This is an artificial deblock. A true deadlock occurs
when all processes are blocked while reading.

ImplementatBBB of Process Networks in Java November 19,1997

To runin bounded memory when it ispossible todoso, we may use any scheduling policy
that ensures eventual execution of an executable process (e.g., data driven or demand
driven) aintil a deadlock occurs. If anartificial deadlock occurs, we increase thecapacities
of the queues to break the deadlock and continue running. One of the following cases
must ap^ly:

• Theprocess network can run forever in bounded memory: If the initial capacities are
sufhoiently large, the process network will run forever without a deadlock ever occur
ring- Otherwise some artificial deadlocks will occur, and the queue capacities will be
increased. Eventually the capacities willbecome sufficiently large for die process net-
woric. to run without further deadlocks. The process network will run forever in
bouiadied memory.

• The process network can run forever but requires unbounded memory: Artificial dead
locks will occur continually, and queue capacities will be increased without bound.
The process networkwill run foreverusingunbounded memory.

• Theprocess network eventually halts: Inthis case, a true deadlock will occur, possibly
afteic'some artificialdeadlocks and resulting increasesin queue capacities.

Hgure 3..2 shows this schedulingalgorithmin pseudo-code.

void deadlockManager() {
do {

waitForDeadlock();

if (trueDeadlock) terminateO;
increaseQueueCapacities(); // Artificial deadlock

} forever;

>

Figure 3.2:
Scheduling algorithm for execution in bounded memory, if possible.

When an.artificial deadlock occurs, there is some latitude in selecting the queues whose
capacities should be increased. Forexample, increasing the capacity of every queue will
achieve the ultimate goal of executing in bounded memory whenever possible. With an
eye toward memory conservation, this is unnecessary. A better choice is to increase the
c£q}acities of those queues that are blocking writes, because nothing will be gained by
increasing the capacities of queues that are only blocking reads. Beyond that. Parks
observesthat it is sufficient to increase the capacity of just one queue, i.e., one with mini
mumcapacitychosenfirom the queues that areblocking writes [6].

4.0 Iraplementation in Java

The Javalanguage [7,8, 9]has a number of features that makes programming anddebug-
ging relailiyefy easy:

Impleiiicntatiaai.of Pn>cess Networks in Java November 19,1997

• Java is object oriented.

• Java supports multiple threads.

• Java supports exception handling.

• Java is strongly typed.

• Java collects garbage, eliminating memory leaks.

• Java provides run-time checks (e.g., array index outofbounds).

Inour implementation^ we define a thread for each process in the process network. Thus,
instead of controlling the processing with a data-driven, demand-driven, or other tradi
tional scheduling policy, we run all of the process threads, using the wait () and
notify () methods of Java threads to implement blocking reads and writes. In addition,
we a main thread to create the queues, to create and start the process threads, and
(as we shall see) to detect and handle deadlocks.

When a deadlock occurs, suddenly nothing happens, because all process threads are wait
ing. Thus arises a problem: how to detect a deadlock. There are at least two possible
solutions, both using a main thread to monitor the execution of the processes in the pro
cess network:

(1) Run tiie main thread at a lower priority than the process threads. When a deadlock
occurs, no process threads are running, and so the main thread runs to analyze and handle
thedeadlock. An implementation of this solution is described in [6].

(2) Keep acount ofall current read and write blocks. Adeadlock is detected when the total
number ofblocks equals the number ofprocesses, atwhich point the main thread analyzes
and handles the dea^ock. This isanew approach.

Solution (I) seems attractive for the following reasons:

• There is no run-time overhead except during a deadlock.

• Design and coding is relatively simple.

Solution (1) works if the implementation is run on a single processor. However, on a
multi-pro^ssor network, this solution might allow the main thread to run on an idle pro
cessor while there are process threads still running.

Solution (2) requires some run-time overhead to keep track ofthe number ofcurrent read
and write blocks. Each read block and write block is recorded by incrementing the respec
tive counter. If a deadlock condition exists, then the main thread is resumed so that it c^
break thedeadlock. Each read unblock and write unblock is recorded bydecrementing the
respective counter. This solution works on a multiprocessor environment as well as on a
single processor. Judging this to bemore robust, we choose it for our implementation.

The methods to support deadlock detection are shown in Figure 4.1. These methods are
called from within the get and put methods. A process does not know when it is

ImptementadcHiofProcess Netwoiks inJava November 19,1997 ^

blocked; itsimply waits for theget orput toreturn. This approach isvalid, because each
process luns a sequential program; each call to a get or aput must complete before the
process continues. Thus each process may be blocked only by one get or put at any
given time. A deadlock occurs when all processes are blocked, which occurs exactly when
the total number of read and write blocks equals the total number of processes.

We implement mutual exclusion for the block counters, which are global data shared by
all the tibieads. This is accomplished in Java by declaring methods to be synchronized.
When a threadcalls a synchronized method of an object, thatobject is locked, preventing
any other concurrent cdls to s3mchronized methods of that object [7, 8, 9], If a synchro
nized method waits for a condition, the lock is released until that condition is set and the
method is resumed.

void recordReadBlock() {

increment (readBlockCounter) ;

deadlockTest();

}
void recordReadUnblock() {

decrement (readBlockCo\mter) ;

} •
void recordWriteBlock() {

increment (writeBlockCounter) ;

deadlockTest{);

}
void recordWriteUnblock() {

decrement(writeBlockCounter);

}
void deadlockTest() {

if (readBlockCoiinter + writeBlockCo\inter

== processCount) { // deadlock detected
resumeDeadlockManager () ;

}

}

Figure 4.1: Methods to support block counting and deadlockdetection.

Figure 42 shows the additional queuemethod to increment the queue's capacity.

void incrementCapacity () {
increment(capacity);
resumePut();

}

Figure 4.2:
Queue method for incrementing a queue's capacity.

ImplemeatatiiBa ofProcess Networks in Java November 19,1997

Figure 4.3 shows the get and put methods in the Queue class modified to record read
and write blocks.

int get() {
if (en^ty) {

recordReadBlock();

waitForPut();

}
if (waitingForGet) {

recordWriteUnblock();

resumePut() ;

}

retuxn firstToken();

}
void put (int value) {

if (full) {

recordWriteBlock() ;

waitForGet() ;

}
enqueue(value) ;
if (waitingForPut) {

recordReadUnblock() ;

resumeGet() ;

}

}

Figure 4.3: The get andput methods withcalls
to record blocking and unblocking reads and writes.

For the main thread weuse the algorithm shown in Figure 3.2, increasing the capacity of
just one queue for each artificial deadlock, a blocking queue with the lowest capacity as
suggested in [6].

5.0 Tests and examples

Figure 5.1 through 5.8 exhibit pseudo-code definitions for the processes used in the test
cases. See [6] for details.

int stream W = process interleave (int stream U, int stream V) {
do {

put (get (tJ), W) ;
put(get (V), W);

} forever;

}

Figure 5.1: A process to interleaves two streamsinto one.

Implementationof Process Netwoiks in Java November 19,1997

Cint stream V, int stream W) = process alternate (int stream U) {

put (get (U), V) ;
put (get (U), W) ;

I' forever;

}

Figire 5.2: A process to distribute odd and even tokens from ones streamto two.

•tnt^ Stream V = process begin_with (int stream U, int x) {
EBit (x, V) ;
(£• {

put (get (U), V) ;
}; forever;

}

Figure 5.3: A process to insert a tokenat the beginning of a stream.

(Jnt stream V, int streeu:n W) = process duplicate (int stream U) {
do {

±nt u = get(U);
put(u, V) ;
put(u, W) ;

}; forever;

}

Figure 5.4: A process to duplicate a stream.

irrt stream V = process add (int stream U, int x) {
do {

put (get (U) + X, V) ;

1 forever;

}

Figure 5.5: A process to add a constant to each token of a stream.

(int. stream V, int stream W)

= process multiple (int stream U, int y) {
db I

int u = get(U);
if (u mod y == 0) put(u, V) ;
else (put u, W);

> forever;

}

Figure 5.6: A process to separate the multiples.pf a given constant
from the non-multiples.

ImpIerocataabB-ofProcess Networks inJava November 19,1997 10

(int stream W) = process merge (int stream U, int stream V) {
int u = get(U);
int V = get(V);
do {

if (u < V) {

put (u, W) ;
u = get(U);

}
else if (u > v) {

put (v, W) ;

V = get(V);

}
else {

put(u, W);
u = get(U);

V = get(V);

}
} forever;

Figure 5.7: Aprocess to implement a sorting merge. Two monotonically increasing input
streams aremerged intoone monotonically increasing stream. Two equal tokens on the

two input streams result in one output token.

process print (int stream U) {
do {

print(get(U));

} forever;

}

Figure 5.8: A process to print the tokens of a stream.

To study the behavior of various process networks using our implementation, we offer a
choice of three modes of execution. We discuss the results of various test cases running
under the different modes.

• Th&free memory mode supports execution without blocking writes. Whenever a put
is c^ed, if the queue is fuU, the capacity is increased inunediately.

• ThQfixedmemory modenever increases thecapacity of any queue. Initial queue capac
ities are assigned, andthe processes in the process network run until the first deadlock
occurs (either artificial or true), at which point execution is terminated.

• The bounded memory mode supports execution forever in bounded memory, if possi
ble, as described above.

Example 5.1 is a process network that will always execute forever in bounded memory
regardless of thescheduling policy. Example 5.2is a process network that will eventually

Implementation ofProcess Networks inJava November 19,1997 11

become deadlocked with any scheduling policy. Example 5.3 will run forever, but it
requires unbounded memory to do so. Running these process networks with the various
modes, we observe the expected behavior.

I inter

leave

inter

leaveleave

begin;. X begin. begin.

witbCfl) Y with(l) with(O)

Example 5.1

alter

nate

Example 5.2

n
dupli
cate

begin_
with{0)

inter

leave

Example 5.3

In example 5.4,each of the directed cycles is a source that produces a linearly increasing
sequence starting with 0. The upper source increments by 2; the lower source increments
by 3. These two sequences aremerged at the process merge to produce a single increas
ing sequence that is printed by print. A data driven scheduler will cause the output
channelfrom the lowersourceto growin sizeovertime, thususing unbounded memory. A
demanddriven scheduler will run this process network in bounded memory. Withthe free
memory option, our implementation runs this example with the output channel from the
lowersource growing as we would expect witha datadriven scheduler. With the bounded
memory and fixed memory options, this example runs forever with the capacity of 1 for
every channel.

b©gin_

with (0)

add(2)

hegm_

wxttlit 0)

aiddl3)

dupli

cate

dupli
cate

merge print

Example 5.4

In example5.5, the process multiple (3) outputs the multiples of 3 to its upper output
queue and the non-multiples of 3 to its lower output queup, A data driven scheduler will
run this example in bounded memory. A demand driven scheduler will fail to run in

Implemenmiim .cf Process Netwoiks in Java November 19,1997 12

bounded! memory, because the two sink processes print must execute at different rates.
When run with the free memory and bounded memory options, no queue ever contains
more than one token.

jbegin_
jwit:h(0)

add(l)

duplicate multiple(3)

print

print

Example 5.5

Example 5.6 illustrates a graph in which different queues have different bounds. The
source a£ the left produces the sequence 0, 1,2,.... The process multiple (5) outputs
allmult%)Ies of 5 to its upper output queue and all non-multiples of 5 to its lower output
queue. The process merge then merges these two sequences in ascending order, causing
the process print to print the original sequence 0,1,2,....

This example demonstrates that the bounded memory scheme only guarantees bounded
memory,, not minimum memory. In fact, the free memory option uses less memory than
the boundedmemory option. Torunforever, thelower output queue from multiple (5)
mustbe able to containthree tokens; for all otherqueues, a capacity of one tokenis suffi
cient. Tine free memory option runs this process network within those limits.

duplicate multiple(5) merge print

Example 5.6

Running with the bounded memory option and all queue capacities initially set to 1, a
deadlockoccurs with duplicate and multiple (5) write blocked: duplicate is
blocked by its only output queue, and multiple (5) iswrite blocked by itslower output
queue. Allotherprocesses are read blocked. The two write blocking queues have capac
ity 1. fricrementing the capacity of one of these two write blocking queues from 1 to 2
breaks tiie tteadlock, andanother deadlock occurs with thesame two processes blocked by
the same twoqueues. This time one of the two queues has capacity 2, and the other has
capacity 1, which is incremented to 2. The process repeats until the lower output queue of
multiple (5) has capacity 3, at whichpointtheprocess network has sufficient memory
to run foiever. This behavior is consistent with observations reported in [6].

Implenaentatiaa frf'ProcessNetworksin Java November 19,1997 13

6.0 Swnmary and Conclusions

We discxissed an implementation of process networks in Java. Instead of designing a
scheduling algorithm that decides which process to run, we implement a policy thatuses
multiple threads with blocking reads and works correctly regardless of the scheduling
algorithm used for the threads. The only requirement we make of such of a scheduling
algorithm is that if there is aprocess that isnot blocked, then atleast one process will run.

To ensure that memory usage is bounded whenever possible, weimplement queue capaci
tieswithblocking writes andincrease thecapacity of a selected queue whenever an artifi
cial deadlock occurs. To detect deadlocks, we track the number of blocked processes, a
deadlock occurring if and only if thisnumber is equal to the total number of processes in
the netvBork. In this way we recognize deadlocks, determine the type of deadlock (artifi
cialor true), and respond accordingly. This is a valid approach on a multi-processor dis
tributed system as well as on a single processorwith threads.

7.0 References

[1] G. Siahn, The-semantics ofa simple languagefor parallel programming. Information
Processihg 74, pp. 471-475, Stockholm, August 1974.

[2] G. Eahn & D. MacQueen, Coroutines and Networks of Parallel Processes, Informa
tion PrcMCSsing 77, pp.993-998 Toronto, August 1977.

[3] R. Stevens & D. Kaplan, Determinacy of Generalized Schema, IEEE Trans. Comp.,
Vol. 41 pp. 776-779, June 1992.

[4] J. Buck, Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the
Token Flow Model, Ph.D. Thesis, University of Cilifomia, Berkeley, 1993.

[5] E. Lee & T. Parks, Dataflow Process Networks, IEEE Proceedings, pp. 773-799, May
1995

[6] T. Paries. Bounded Scheduling ofProcess Networks, Ph.D Thesis, University of Cali
fornia, Beikeley, 1995.

[7] K. Arnold & J. Gosling, TheJava Programming Language, 1996,Addison Wesley.

[8] G. Gsfmell & C. Horstmann, Core Java, 1996, Prentice Hall.

[9] M. Giond, Java Language Reference, 1997, O'Reilly.

ImplemeatatiioB of Process Networicsin Java November 19,1997

	Copyright notice 1997
	ERL-97-84

