

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THREE-DIMENSIONAL CODING OF MOTION

VECTOR FIELDS IN VIDEO

by

Joseph Chiaming Yeh

Memorandum No. UCB/ERL M97/87

29 November 1997

THREE-DIMENSIONAL CODING OF MOTION

VECTOR FIELDS IN VIDEO

by

Joseph Chiaming Yeh

Memorandum No. UCB/ERL M97/87

29 November 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THREE-DIMENSIONAL CODING OF MOTION

VECTOR FIELDS IN VIDEO

by

Joseph Chiaming Yeh

Memorandum No. UCB/ERL M97/87

29 November 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Three-Dimensional coding of Motion Vector Fields in Video

by

Joseph Chiaming Yeh

Abstract

Current video coding standards such as H.261/3 and MPEG rely mainly on a combi
nation of Discrete Cosine Transform coding and Motion Estimation and compensation to
achieve compression of image sequences. The resulting coding method exploits both spatial
and temporal redundancies in the image data. Motion vector fields are used to predict one
image from another, eliminating the need to resend image data for an object which has only
moved translationally between two subsequent images. The more motion information sent,
the better the prediction of the subsequent image. However, the motion information itself
can occupy too much bandwidth to justify the better prediction quality.

Hence, it is necessary to find ways to efficiently compress motion vector information.
Pel recursive schemes, which offer pixel accurate motion information at low bandwidth,
have long been investigated in academic circles, however their computational cost has pre
cluded them from wide acceptance. We present two methods of compressing motion vector
information using standard "Blockmatching" techniques for estimating the motion vectors.

The first method takes advantage of an expected consistency between two successive
motion vector fields. To explain, if the objects within the camera's view have not accelerated
at all within a frame, then it should be possible to accurately predict the next motion
vector field. Our first method predicts a subsequent motion vector field from a previous
one, then uses this new motion vector field to estimate the next frame in an image sequence,
eliminating the need for the encoder to transmit another field.

The second method uses the well-known zerotree method to code motion vectors. A

modified version of Shapiro's zerotree algorithm is used to encode three dimensional array
of motion vectors over space and time, taking advantage of both spatial and temporal
redundancies to achieve coding efficiency. Experiments and results show that these methods
may be promising approaches to pursue.

Ill

Acknowledgments

Many people have helped me out through my time at Cal. Above all, I want to thank

my family, Cindy, and her family for their love and support. I am forever indebted to Ruth

Gjerde and the folks at the Graduate Student Administrative Office for their indispensable

help.

My advisor, Martin Vetterli, has been the primary supporter of this work. He in

troduced me to the topic of motion estimation in video over two years ago, and has since

continually encouraged me on this subject. In general, Martin hasencouraged mein my aca

demic career. Martin has a unique interest in the intellectual development of his students,

and in turn has a unique ability to inspire them.

My gratitude also goes out to my fellow students in the Wavelet Research Group:

Grace Chang, Michael Goodwin, Vivek Goyal, Francis Ng, and Matt Podolsky. Masoud

Khansari, now at Hewlett-Packard Laboratories, was very influential in the early stages of

this work. Some of the work in this thesis was also inspired by discussions with Paul Haskell

of NextLevel Systems, Janusz Konrad of INRS Telecommunications, and Michael Orchard

of Princeton University. Some of the video sequences used in this work were supplied by

Ralph Neff of the Video and Image Processing (VIP) Lab here at Cal. Thanks also go out

to Avideh Zakhor, hezid of the VIP lab, for agreeing to be the second reader of this thesis.

Finally, I would like to thank all the professors, teaching assistants and fellow students

I have not mentioned who have helped me educate myself throughout my six years at Cal,

first as an undergraduate and then as a graduate student.

IV

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Structure of conventional video coders 2

1.2 Motivation for Three-Dimensiona! Video Coders 2

1.3 Structure of Three-Dimensional MC-DCT Coders 3

1.4 Outline of the Report 5

2 Overlapped Block Motion Estimation 6
2.1 Basic Blockmatching Motion Estimation 6
2.2 Potential Problems of SAD Blockmatching Motion Estimation 7
2.3 Overlapped Blocks 9
2.4 Windowing 10
2.5 AR(1) Model 12
2.6 Simulations 14

2.7 Computational Complexity 16

3 Three Dimensional Discrete Cosine Transform 17

3.1 Definition and Purpose of Discrete Cosine Transform 17
3.2 Approximation to Karhunen Loeve Transform 17
3.3 Mathematical Definition 18

3.4 Coding Gain 18
3.5 Computational Complexity 19
3.6 Transmission of DCT coefficients 20

3.7 Simulations 23

4 Autocompensation 26
4.1 Interframe coding of motion vectors 26
4.2 First Implementation of Method 28
4.3 Modifications 29

4.4 Simulations and Results 30

4.5 Conclusion 34

5 3D Zerotree Coding of Motion Vector Fields 36
5.1 Differences between Vector and Image Data 36
5.2 Implementation of Haar Transform 37
5.3 Zerotree Algorithm 39
5.4 Simulations and Conclusions 42

6 Conclusion and Future Work 44

Bibliography 46

VI

List of Figures

1.1 Block diagram of a conventional hybrid video coder 3
1.2 General block diagram of the coders in this thesis 4
1.3 CMC diagram 4

2.1 Illustration of ambiguity caused when blocksize becomes too small 8
2.2 Illustration of Overlapped Block Motion Estimation 10
2.3 Illustration of OBME using pixels in B' from two frames 11

3.1 Illustration of zigzag scan for a 8 x 8 array 20
3.2 Illustration of zigzag scan for a 4 x 4 x 4 array 22
3.3 Performance of Zigzag scan on 30 fps sequences 24
3.4 Performance of Zigzag scan on 7.5 fps sequences 24
3.5 Performance of 3D MC-DCT coder compared with H.263. Different operating

points were achieved by varying the quantizer step in both coders 25

4.1 (a) Three hypothetical images of a video sequence. The rectangular object is
moving at constant velocity, while the falling circle is accelerating, (b) The
extracted motion sequence, (c) The compensated field V3 and its difference
from V3 27

4.2 Block diagram of a whole "motion compensated" motion vector coding system. 28
4.3 Flowchart for encoding each vector in An- f the ideal MV is null, then that

means there is no proper approximation in the previous image, and fresh
image data has to be sent 31

4.4 The first four MVP's of the sequence Foreman estimated from a conventional
motion estimation algorithm 32

4.5 The first four MVP's of the sequence Foreman estimated with autocompen-
sation. They represent Vi, A2, A3, and A4 33

4.6 (a) Coding results for the sequence Coast, (b) Coding results for the sequence
Mother and Daughter, (c) Coding results for the sequence Foreman 35

5.1 (a) A 512 X 512 image passed through two stages of octave band decompo
sition. (Values have been normalized and adjusted for display purposes) (b)
An illustration of a possible zerotree in two dimensions 38

Vll

5.2 Arrangement of coefficients in a three dimensional transformed array. The
lowest frequency band is shown in the front top left 40

5.3 Illustration of the method used in H.263 to code motion vectors. The median

is taken from the motion vectors of blocks A, B, and C in both the x and
y directions to compute a predictor for the motion vector in the block of
interest. The difference between the predicted vector and the actual vector
is then coded 42

Vlll

List of Tables

2.1 Simulation Results for 8 x 8 motion vectors 15

2.2 Simulation Results for 4 x 4 motion vectors: {B = B') 15
2.3 Simulation Results for 4 x 4 motion vectors: {B C B') 15
2.4 Simulation Results for 4 x 4 motion vectors estimated with a 8 x 8 window

in the current frame and a corresponding 4x4 window in the previous frame 15

5.1 Simulation Results for Coding Motion Vector Fields from GIF Sequences . . 42

Chapter 1

Introduction

It is well-known that video signals contain a large amount of redundancy along the

temporal dimension. Therefore, considerable compression is achieved by removing this

redundancy. This is indeed the approach taken in various video compression standards and

other proposed coding algorithms. A popular approach is to detect and compensate for

image motion to predict the present frame from one or more previous frames. The values

of these motion vectors and the prediction residuals are then transmitted.

In very low bitrate video coding, the bitrate used to represent motion vectors can

become a non-trivial portion of the bit budget. In medium to high bitrate coding, denser

motion vector fields (MVF's) could predict frames better, but the bitrate consumed by the

MVF's could exceed the bitrate saved by better prediction. Thus, all types of video coding

need efficient methods of coding MVF's. So far, only intraframe dependency has been used

to code MVFs and the dependencies among these consecutive MVFs in time have not been

taken into consideration.

Currently, MPEG-1 and 2 use first-order intraframe differential coding of motion vec

tors to compressmotion data. Although intraframe differential coding will be effective when

the motion field is smooth, it does not achieve satisfactory results when the motion vectors

vary greatly from one block to the next. Differential coding is the most common strategy

used to compress MVF's, although work has been done to achieve compression with vector

quantization of motion vectors [9] and layered decomposition of motion vectors [19].

This thesis presents two methods for taking advantage of redundancies between subse

quent motion vector fields. The first one, "Autocompensation" is presented in Chapter 4.

The second one, zerotreecoding using Shapiro's method over three dimensions, is presented

in Chapter 5. The rest of this introduction will explain the structure of the video coders

that employ these two methods by comparing and contrasting them with the structure of

a conventional hybrid video coder.

1.1 Structure of conventional video coders

Figure 1.1 shows a block diagram for a conventional video coder. A image sequence

is transmitted by first sending an initial image Iq to a receiver, after which the motion

compensation loop can begin. The encoder then segments the next frame I\ to be sent

into square blocks, all of the same size. For each block of /i, the encoder tries to find the

best approximate match in the previous image and records the displacement of this match

from the location in /i. The encoder then sends the displacements (motion vectors) of each

block, so the decoder can attempt to assemble the I\ out of blocks cut from Iq.

After this step, the decoder has /i, a (usually poor) approximation of I\. The encoder

then encodes the error (motion residual) I\ —Ii block by block with a DCT transform and

then sends the encoded residual to the receiver. The loop can begin again, with the encoder

segmenting the next frame I2 into blocks and then trying to find ideal displacements in 7i.

At times, new objects can appear in a image sequence. In this case, the encoder is

unable to find a match in the previous image. In this case, no motion vector is sent, and

the image data for the new objects is coded and sent to the receiver.

1.2 Motivation for Three-Dimensional Video Coders

Lately, subband coding for video has been a subject of interest, with Taubman and

Zakhor [16], Karlsson and Vetterli [8], and Ohm [12] all making significant contributions.

Typically, a group of frames is taken together as a three-dimensional array and filtered

into different frequency bands along spatial and temporal dimensions. One motivation for

coding frames together in a group is that coding a signal in whole is more efficient than

dividing it into parts and encoding each part separately.

However, as of this writing, DCT based methods still dominate digital video commu

nication. In general, subband coders have not been able to outperform MC-DCT coders

enough to justify their increased complexity. The following section discusses a strategy to

use simple MC-DCT techniques in three-dimensional coders, in order to still take advantage

lln)
frame by±ame_

ME

e DOT Q

MC

residua] images

Ql

IDCT

©

motion vectors

Figure 1.1: Block diagram of a conventional hybrid video coder,

the associated coding benefits of coding frames together in groups.

1.3 Structure of Three-Dimensional MC-DCT Coders

The coder described in this thesis mimics the conventional coder structure above ex

cept in one major aspect. Although the conventional coders exploit the similarity between

adjacent frames of an imagesequence, information is essentially sent frame by frame to the

receiver. In our implementation, information is sent to a receiver in groups of N frames.

Figure 1.2 shows a general block diagram for our implementation. GMC stands for

"Group Motion Compensation." Motion estimation and compensation (the reconstruction

of the image using data from previous images) is done inside this unit. The N MVF's

resulting from the procedure are then encoded and sent to the receiver. The N motion

residuals are then gathered together and coded with a 3D DOT transform discussed in

Chapter 3.

We employ this structure for our coder becausewe wish to exploit redundancies between

subsequent MVF's, hence we need to code MVF's together in groups. We then code the

residual with a 3D DCT for two reasons: 1) if image data is being sent in groups instead

of frame by frame, then we might as well use a 3D DCT and exploit any existing temporal

Group G[n]
DCT-3D

3D Motion Residual

CMC

Motion Vectors

IDCT-3D

Extraction of Images

Figure 1.2: General block diagram of the coders in this thesis.

l[Mn-l)

Group G(n]
Degrouping

Motion

Ccmipensation

Motion

Estimation

GMC

Figure 1.3: GMC diagram.

Grouping
Motion Compensated
Group Cj„[n]

3D MVGrouping

redundancy in the image data, 2) we are using small blocksizes in these implementations,

which decrease the coding gain that we get from a 2D DOT; a 3D DOT helps us to achieve

more.

This thesis presents experiments with different implementations of Group Motion Com

pensation. The zerotree implementation uses the method explained in Chapter 2 to estimate

motion vectors, and the Autocompensation implementation uses the procedure explained

in Chapter 4 to estimate motion vectors. In both cases, the GMC can be summarized by

Figure 1.3. Motion estimation and compensation is done for all the images in the current

group, without any residual being added in. The last images in the previous group need to

be input to approximate the first image in the current group.

1.4 Outline of the Report

Chapter 2 describes Overlapped Block Motion Estimation (OBME), a slight modifi

cation to conventional block-matching techniques which is used to estimate high-density

MVF's. Section 2.1 reviews the basics of block-matching motion estimation. Section 2.2

explains why conventional block-matching motion estimation might be detrimental in some

situations, and Sections 2.3 through 2.5 present and explain OBME as an extension to con

ventional block-matching which can succeed where conventional block-matching fails. Sec

tion 2.6 presents some simulations which compare OBME to conventional block-matching

techniques. Section 2.7 discusses the computational complexity of OBME.

Chapter 3 discusses the Three-Dimensional Discrete Cosine Transform used in the

block diagrams above. Sections 3.1 through 3.4 discuss the mathematical formulation of

the DCT, its extensions to two and three dimensions, and its use in coding image data.

Section 3.5 discusses the computational complexity of the 3D-DCT, Section 3.6 presents a

method for scanning 3D-DCT coefficients for transmission, and Section 3.7 concludes with

some simulations.

Chapter 4 describes Autocompensation, a technique for estimating and encoding vec

tors which reduces the bitrate occupied by the vectors. Sections 4.1 and 4.2 give a general

overview of the technique, and Section 4.3 explains some modifications to the technique for

coding block-based motion vectors. Finally, Section 4.4 presents simulation results for a 3D

MC-DCT coder based on Autocompensation.

Chapter 5 discusses the zerotree algorithm used to code 3D arrays of motion vectors.

Section 5.1 discusses some differences between vector and image data which make it difficult

for standard image compression techniques to be applied to motion data. The chapter then

goes on to explain our implementation in Sections 5.2 and 5.3. Finally, simulations are

presented in Section 5.4.

Chapter 6, the conclusion of this thesis, summarizes the work presented in the thesis

and goes on to suggest future directions to pursue.

Chapter 2

Overlapped Block Motion

Estimation

Schemes like autocompensation which attempt to reduce the bitrate occupied by MVF's

need a consistent estimate of motion, not just an estimate which reduces the prediction error

of an image. For this purpose, we have developed the motion estimation strategy presented

in this chapter.

This chapter begins with an explanation of how blockmatching motion estimation al

gorithms are used in current video coding standards to reduce bandwidth. It then explains

our method of using overlapped blocks and tries to justify why we need it in our coding

algorithm.

2.1 Basic Blockmatching Motion Estimation

As mentioned in the introduction, consecutive frames in a video sequence will often

differ very little in content. Most often, either objects in the image or the background

might have shifted. An intuitive solution is to attempt to code the motion between one

frame to the next, so that the decoder could compose a subsequent frame from a previous

one. Blockmatching motion estimation is a common method used to deduce the motion

between two frames.

In blockmatching motion estimation, a frame is partitioned into square blocks of size

N by N. In coding algorithms such as MPEG and H.263, block sizes of 8 by 8 and 16 by

16 are used. The motion vector is calculated by searching for the (p, 9) which minimizes

the following summation:

N N

53 + i,i>y + i)t /p(^>x + i + p, ^>y + i + ?)]
1=0 j=0

where Z) is a mismatch function that indicates the amount of dissimilarity between two

pixel values, Ic refers to the current frame to be coded, and Ip refers to the decoded version

of the previous frame. The most commonly used distance metric is the Sum of Absolute

Differences (SAD). In this case the mismatch function D[UjV] is simply \u —uj.

Less commonly, a motion vector can be calculated by searching for the (p,9) which

maximizes

53 S[Jc{m,n),Ip{m + p,n+ q)] (2.1)
m,n€B

where 5 is a similarity function. One such similarity function is a product, where 5[u, u] =

uv. This would ideally estimate the cross-correlation between the two 2D signals. Vargas

[17] discusses the advantages and implementation of using similarity functions for motion

estimation.

In the case that a new object appears in a frame (e.g. a person coming in through a

door), there would be no way to estimate that information based on a previous frame, so a

motion vector cannot be estimated. Most likely, the above summation would not go below

a certain threshold T, and the encoder could deduce that a suitable (p, 9) does not exist.

2.2 Potential Problems of SAD Blockmatching Motion Es

timation

After the motion vectors are estimated and sent to the decoder, the decoder compen

sates the previous image in order to try to produce an approximation to the current image.

This approximation is usually far from acceptable as the final decoded version of the video

frame, so an approximation to the residual must be sent to the decoder via transform cod

ing. One reason that blockmatching motion vectors are so widely used is that they are

extremely compatible with the DCT: the error comes in square blocks already "formatted"

for the DCT.

Typically, the larger the block size, the greater the error will be over the whole image.

This occurs because of two main reasons: (1) the larger block is more likely to contain

Figure 2.1: Illustration of ambiguity caused when blocksize becomes too small

image data from two different objects moving in two different directions, and is unable to

describe the motion of both; (2) block motion vectors can only describe translation motions

orthogonal to the line of sight of the camera, whereas objects might be rotating or the

camera might be zooming in and out.

To further illustrate, we compare by block motion estimation with MN by MN

block motion estimation. Essentially, N hy N motion estimation will give better results

because

min ^ D[lc{m,n),}p{m-\-p,n-{-q)]> mm ^ D[Ic{m,n)Jp{m + pi,n-\-qi)]
m,n£K Bi^K m,n^B,

where K is a MN by MN block, which can also be seen as a collection of blocks of

size N hy N.

The solution is then to use smaller block sizes. However, when block sizes get smaller,

there is a certain ambiguity. This ambiguity can be illustrated in Figure 2.1, which is a

graph of a hypothetical signal in 1-D: 1

Say the signal on top is the current frame to be coded, and the signal on bottom is the

decoded version of the previous frame. The signal moved slightly to the right with respect

to reference point r. When we estimate the block corresponding to 6, we are able to find

it's displacement in the previous image.

Now we want to use block sizes that are half the size (in 2-D they would be quarter

the size). Then when we try to estimate the block corresponding to a, we see two possible

locations in the previous image.

If the signal is predicted equally well from either location, then it shouldn't matter

whether we use the vector corresponding to ai or the "true motion" in a2. However, it is

important to pick the correct motion because that will cause the resulting motion vector

field to be smoother and therefore easier to encode.

2.3 Overlapped Blocks

Somehow, we would like to have the better predicting power of a dense motion vec

tor field with small block sizes but still have a smooth motion vector field which actually

represents the motion of the image. This section discusses Overlapped Block Motion Com

pensation (OBMC), and how we can use a similar approach to estimate a smooth, dense

motion vector field using block based techniques.

First, in [1], Auyeung, Kosmach, Orchard, and Kalafatis introduced OBMC, which was

eventually included in the teleconferencing video standard H.263 [5]. OBMC is currently

primarily used to reduce the blocking artifacts associated with hybrid coded video. In

OBMC, the decoder uses many vectors instead of just one to predict the value of a pixel.

Without OBMC, the predicted value of a pixel /(m, n) is

i{m + p,n + g)

where / is the previous coded image and (p,q) is the motion vector of the corresponding

block of pixel (m, n) In OBME, it is

A'

^ajl(m-i-pj,n + qj)
i=o

where the a's are weights under the constraint cij = 1and the (pj, gj)'s are the motion

vectors of a group of blocks in the vicinity of (m, n)

OBMC uses more than one vector to compute a pixel value, so we propose a technique

called Overlapped Block Motion Estimation (OBME) to use a specific pixel to compute

more than one vector. Morespecifically, wegeneralize motion estimation so that for a given

block By we use the criteria

D[Ic{myn)yIp{m + Pyn-\-q)]

reconstructed previous
image I[n-1] present image l[n]

• •

/

/

1

1

1

1

1

1

10

" block of interest

Figure 2.2: Illustration of Overlapped Block Motion Estimation

where B C B', so pixels outside of B are used in the calculation. To further illustrate,

Figure 2.2 shows the surrounding area of a block B used in estimating its motion vector.

In the zerotree method used to code vectors in this project, it helps to have motion

vector fields that are not only smooth throughout a frame, but also motion vector fields that

are smooth throughout time. For this reason, we have also considered using the criteria

^ (D[/c(m,n),/p(m + p,n+ 9)] + D[/p(m,n),/p_i(m + p,n+9)]) (2.2)

where /p_i is the decoded frame preceding Ip in time. In other words, instead of only using

pixels in B' in the current image, we also use pixels in B' from the previous image to help us

estimate motion vector fields that are smooth over time. Figure 2.3 illustrates this concept.

2.4 Windowing

Although OBME results in a smoother motion vector field, the vectors themselves will

not be as good at predicting pixel values. A vector (Pni9n) estimated in non-overlapped

Block Motion Estimation gives the minimum for the mismatch function summed over all

pixels in B, the vector (po»9o) found in OBME cannot do any better, and usually will do

worse. More specifically,

I>[/c(m,7i),/p(77? 9o)] > 51 ^[fc(w,n),/p(m-l-p„,n-)-9n)]
m,n^B m,,n^B

The solution then is to weigh the diflferences of the summation corresponding to pixels

reconslnicted previous
image Un-l]

reconstructed l(n-2]

present image l[n]

~ block of interest

Pixels used for estimation of M V

reconstructed previous
image I[n-I]

Figure 2.3: Illustration of OBME using pixels in B' from twoframes.

11

(m,n) inside B more than the differences corresponding to pixels in B'\B. The criterion

for the ideal vector then becomes

+ h by + j), /p(6x -\-i-\-p.by + j + g)]
i=0 j=0

where o is a 2-D weighting matrix for each of the terms in the summation. Usually,

as in OBMC, cuij is separable, i.e. Q,,j = 7i7j where 7^- is an 1-D weighting array. In this
project we use a "raised cosine" window defined by

7a-
1 _ 7r(2A: - 7), , „ ,

= - (1 + cos r),« = 0,1,..., 7
8

when M = S.

As seen in the last section of this chapter, windowed OBME does lower the first-order

entropy estimates of the dense motion vector fields while producing better prediction results

than coarse motion vector fields. One disadvantage of OBME, especially in light of real

time encoding and decoding, is the increased computational load, which will be discussed

in the last section. The next section discusses the improvements made by OBMC from a

mathematical standpoint.

12

2.5 AR(1) Model

Even if there is no ambiguity as described in Section 2.2, there is still a potential

for error in the motion estimate. In this section we consider an abstraction of the block

matching problem using a 1-D Gaussian AR(1) process. The intention is to gain insight into

the effect of the blocksize on the reliability of motion ^timates when there is a underlying

"true" motion.

Although motion vectors are more often estimated by minimizing a dissimilarity func

tion, in this section motion vector calculation is assumed to be done from maximizing the

product, i.e. with the S[u, v] = uv function shown in section 2. This makes the analysis in

this section more manageable.

We further simplify the problem by considering the problem in 1-D (looking at signals

I[n] instead of I{m,n) with no windowing). We then look at the current "image" I[n] as a

Gaussian AR(1) process with autocorrelation function Rj[m] = < 1. We view it as

a shifted version of the previous decoded image /[n], i.e.

I[n] = I[ti -I- p]

where p is the "true displacement," and the motion estimation should ideally find this p.

The criterion to maximize (2.1) becomes:

1

J7. S + P]
nn=:0

or

, M-1

H ^(nK[n-P + Pl (2-3)
n=0

Ideally, the cross correlation function Rj^[m] = E{I[n]i[n -|- m]} should be maximized
at p, and the algorithm would return the ideal vector. However, since we can only work

with estimates of the cross correlation function, there will be some variance, and hence our

final guess of the vector may be wrong. The greater the variance is, the bigger the chance

that we will make a mistake.

Setting d = p - p, we can find the variance of 2.3 as follows:

. M-l n M-i

= E{^T,nn]nn+d\-E{j^Y,nn]nn +A}y
n=0 n=0

M2
71=0

M2
n=0

M2
n=0

, M-\

-^E{ X: {I[n]Iln +d\-E{I[n]I[n +d]})}^
1 M—1

, M-1

LEl^IlnMn +djj'-p'"

13

. M-1 M-1

= TH E E+ + <«]}-/'"' (2-4)M2
n=0 m=0

, M-1 M-1

TH 12 12 {E{J[n]J[n + d\}E{I[m]I[m + rf]} + (2.5)M2
71=0 771=0

2d£'{/[m]/[n]}E{/[m+ rf]/[n + cri}+E{/[n]/[m+ <(|}E{/[m]/[n + rf]}) —/>
, M-1 M-1

M2
71=0 771=0

+E{/[n]/[m4- ffl}E{/[m]/[n+ (/]})
1 M-1 M-1

M2
72=0 771=0

o M-1 M-1

^ E E p'-"'
72=0 772=0

2 M-I
jjp(M +2^(M-n)^»)

< (2.6)
72=0

< ^(l+a) (2.7)
Where a = and we use the fact that for four jointly Gaussian random variables

and Z, E{WXYZ} = E{WX}E{YZ} + E{WY}E{XZ}-\-E{WZ}E{XY} in going from

(2.4) to (2.5) [10]. We can then see that the upper bound for <Tg decreases with M, so then

the estimate of the motion vector is more certain for larger blocksizes.

Although there is no rigorous derivation for dissimilarity minimizing motion vector

searches, the result for cross-correlation estimation should help in understanding why larger

block sizes result in smoother motion vector fields.

72=0

M-1

14

2.6 Simulations

We did experiments on the first 9 frames of the standard video coding test sequences

Foreman, Carphone, and the HDTV testing sequence MIT. For the first two, we used QCIF

size frames, and for the last one, we cropped the 512 x 512 images to QCIF size. In the

experiments, we used four different types of motion estimation:

1. One vector for every8x8 block, estimated usingonly the pixels in the block {B = B').

2. One vector for every 4x4 block, estimated using only the pixels in the block {B = B').

3. One vector for every 4x4 block, estimated using the 8x8 block which contains the

4x4 block at its center {B C B').

4. The same as above except the window from Section 2.4 is used on the 8x8 block,

and weighted pixels from the 4x4 block in the previous frame are also used as in

Equation 2.2 (Their effect is negligible).

We used the first frame to approximate the second, then used that approximation to

approximate the third, etc. all the way to the ninth frame. We basically simulated a video

coder with no addition of motion residual. With the 8 estimated frames, we then computed

the mean absolute difference of each pixel from the original, and the mean PSNR from the

original.

We also calculated a histogram of the motion vectors to model a pdf, and then cal

culated the entropy of that pdf. In this way we could estimate how hard it would be to

encode the motion vectors. These results are presented in Tables 2.1 through 2.4.

As can be seen, the 4x4 vectors referred to in Table 2.2 exhibit much more first-order

entropy than the 8x8 vectors in Table 2.1, but they do a much better job of predicting

the images. In a Huffman-style coder, 4x4 vectors would be much harder to code because

of the higher entropy and the fact that there are four times as many of them. Using 8

X 8 blocks to estimate 4x4 vectors in Table 2.3 reduces the first-order entropy, but the

prediction quality is compromised. Finally, combining the window from Section 2.4 and the

use of previous frame pixels as in Equation 2.2 allows us to keep the entropy under control

with less compromise in the prediction quality.

Sequence Mean DFD Mean PSNR Entropy
(Bits per Vector)

Foreman 3.30 31.90 5.751

MIT 6.01 25.77 5.164

Carphone 3.20 31.46 6.900

Table 2.1: Simulation Results for 8 x 8 motion vectors

Sequence Mean DFD Mean PSNR Entropy
(Bits per Vector)

Foreman 2.25 34.71 7.411

MIT 4.44 29.11 8.795

Carphone 2.24 34.40 8.731

Table 2.2: Simulation Results for 4 x 4 motion vectors: (B = B')

Sequence Mean DFD Mean PSNR Entropy
(Bits per Vector)

Foreman 3.09 32.76 5.661

MIT 5.88 26.29 5.377

Carphone 2.99 32.28 7.174

Table 2.3: Simulation Results for 4 x 4 motion vectors: (B C B')

Sequence Mean DFD Mean PSNR Entropy
(Bits per Vector)

Foreman 3.04 33.57 4.835

MIT 4.16 29.49 3.181

Carphone 2.79 33.90 3.704

15

Table 2.4: Simulation Results for 4 x 4 motion vectors estimated with a 8 x 8 window in

the current frame and a corresponding 4x4 window in the previous frame

16

2.7 Computational Complexity

Without OBME, when the blocksize for computing motion vectors with a minimum

SAD criterion is reduced from MN by MN to iV by TV while the search region remains

the same, the number of calculations made in computing the distance metric for each

displacement (p,q) remains the same, while the number of comparisons goes up by a factor

of M^, because there are as many vectors to compute.

When OBME is introduced, the number of calculations made in computing the distance

metric also goes up by a factor of W, where lA"! is the number of pixels in set X. Fur

thermore, introducing windows (which may consist of floating point values) adds another

computational overhead.

However, in the case of MSAD, many calculations will be repeated, since the sets B'

are not mutually exclusive, so it may be wise to calculate and store the absolute differences

for each pixel in the image to be coded over all possible displacements (p, q) in the previous

decoded image, and then compute the block mismatch functions from the stored values.

This would prevent some redundancy in calculation, but the memory requirements would

be huge.

Chapter 3

Three Dimensional Discrete

Cosine Transform

17

3.1 Definition and Purpose of Discrete Cosine Transform

The Discrete Cosine Transform (DCT) has been a workhorse of video coding since its

introduction in the 1970's. Today, both MPEG and the H.26x standards are primarily based

on a combination of motion estimation/compensation and the DCT. When a,n N x N block

of pixels is viewed as a matrix A, the DCT is basically a similarity transform CAC~^ = JB,

where the matrix B is mostly comprised of numbers close to zero and is therefore easier to

transmit and/or store after quantization as a matrix B. When the image data needs to be

used again, either when receiving encoded data or retrieving an image file for examination,

an inverse transform A = C~^BC is performed for decoding.

3.2 Approximation to Ksirhunen Loeve Transform

The DCT compresses image data well because it is a very close approximation to a

Karhunen-Loeve Transform (KLT) for an AR(1) process with correlation coefficient p close

to 1. The KLT is defined as a linear transform Ka = b where a is a block of samples

from a wide-sense-stationary process, and the columns of K are the eigenvectors of the

autocorrelation matrix Ra of the wide sense stationary process.

The KLT is the ideal transform for concentrating the "energy" of the elements of a in

as few of the elements of 6 as possible. Therefore, since both rows and columns of images

18

can be reasonably modeled as AR(1) processes, it makes sense to perform the transform on

blocks of images,

3.3 Mathematical Definition

The DCT [6] A[k], fc = 0,l,...,A''-lofa sequence a[n], n = 0,1,..., iV - 1 is given by

A[k] = I3[k] Y, aW (3.1)
n=0

where /3[0] = and p[k] = for k ^ 0.

This is also equivalent forming a column vector a out of a[n] and left-multiplying it by

a matrix C to produce a column vector A of A[fc]'s. The matrix C is given by

C =1 ^ '
cos otherwise

This matrix is unitary^ having the property that C~^ —C^.

In the case of higher dimensional data such as 2D or 3D arrays of pixels, the DCT is

implemented by doing the transform in each dimension separately. For example, in order to

transform a, N x N array of pixels, every row would be transformed, and then every column

would be transformed (it does not matter whether rows or columns are done first). To be

consistent with our definition in the first section, the left multiplication by C transforms the

columns of A, whereas the right multiplication by C~^ = transforms the rows of A. To

transform a,dD N xNxN array, every NxN frame in the array would be transformed, and

then every segment across time would be transformed (again, the order is not important).

3.4 Coding Gain

The DCT performs well in compressing signal data because it has a significant coding

gain [7] Gdct (over Pulse Code Modulation). This means that if a signal is first DCT-

transformed and then quantized, the resulting signal to noise (SNR) ratio will be Gdct

times that if the signal is simply quantized. A lot more than quantization goes into the

encoding of images, making the "coding gain" formulas incomplete for describing the whole

process, but this is a significant first step.

19

Since the DCT is an approximation of the KLT, the coding gain Gdct of the DCT

will be less than or equal to the coding gain Gklt- We can therefore use the coding gain

analysis of the KLT to estimate an upper bound for the coding gain of the DCT. The KLT

coding gain for coding N samples of a 1-D AR(1) signal is given by [7]

^Gklt = (1 - P^)~~

Since p < 1, it seems as if we should let the size N of one side of the block become as large

as possible. However, if N becomes too large, the AR(1) model of the data starts to fail.

For this reason, Chan and Siu [2] have introduced the idea of doing 3D-DCT's of variable

sizes, varying the size along the temporal axis to coincide with scene changes or fast motion

in the video.

3.5 Computational Complexity

In Section 3.3, we discovered how the DCT transform in one dimension can be seen as

a matrix multiplication Ca = 6. In general, this calculation takes multiplications and

N{N —1) axiditions. A first glance at (3.1) would reach the same conclusion. However,

certain matrices have structures which allow the product Ca to be computed faster.

In particular, the Discrete Fourier Transform (DFT) and other related transforms,

including the DCT have "decimation in time" and "decimation in frequency" algorithms

which allow the computation to be done in N log2 N multiplications and N log2 N additions

if N is a power of 2 [13]. For this reason, DCT's are almost always done with a size which

is a power of 2.

The decimation algorithms work by segmenting a size N transform into 2 size N/2

transforms recursively until the size N transform is broken down into N/2 size 2 transforms.

Each segmentation cost N additions and N multiplications.

In transforming an N by N block from an image, 2N 1-D transforms are performed.

In general, in transforming an M dimensional block with side A, MN^~^ 1-D transforms

will be done, bringing the computational complexity up to 0(MN^log2 N).

In the coder described in this paper, 4x4x4 transforms would be done on

4 consecutive images of size M by N. On the same set of images, a more conventional

coder (such as H.263) would do 8x8 transforms. According to the analysis above,

-T- 7l 77 A-5 -,16 28- -29
/

.•5 24 n .27' 36

'4 A li 2S .42' M

v6 25 ,32 /n 45
' ✓

n 26
/

24 23 40 45
/

.53 ^5

21 34 3$ /i .52 61

2i 35
/

3^ ,48 60 ,62

36-
/

•37 49- -50 5fr 5$ 63- 624

20

Figure 3.1: Illustration of zigzag scan for a 8 x 8 array

they each would perform 384 multiplications and additions for each transform, so the total

computational cost is the same.

3.6 Transmission of DCT coefficients

Since a bitstream is one-dimensional in structure, a 2-D or 3-D array has to be scanned

into a 1-D data structure for transmission or storage. One trivial way to do this would

be to "raster" scan the data line-by-line along one dimension, but a better method would

take advantage of the fact that most of the higher frequency AC coefficients will be zero,

and the fact that the 1-D array of scanned coefficients will be run-length encoded before

transmission.

For this reason, people have developed the zigzag scan. Figure 3.1 illustrates the zigzag

scan for a 2-D array. The DC coefficient is scanned first, and then the AC coefficients are

scanned, with lower frequency being scanned first and higher frequencies scanned later. We

want to maximize the lengths of zeros in the scan; in particular, if we have a long block of

zeros at the end of the scan, they do not need to be transmitted because an "end of block"

(FOB) symbol is sent with the last nonzero coefficient.

This "zigzag" scan satisfies the following two criteria:

1. If we calculate the sum i + j (where i is the row index and j is the column index)

for each pixel in the array, we see that we scan the pixels where i-\- j = 0 (the DC

21

coefRcient), and then all the pixelswhere the i+j = 1, and so on up to i+i = 2(A^-1)

where N is the size of the block edge.

2. We also see that the rath and (ra + l)th positions in the scan differ at the most by

one in their row indices or their column indices. That is, if i„ and are the row and

column indices of the rath position in the scan, then |in —Wi| < 1 and|j„—j„+i| < 1.

The first criterion stems from an assumption that higher frequency AC coefficients are

more likely to be zero, and the sum i + j is a measure for how "high" the coefficients are

in frequency. It can also be derived from the fact that data from image rows and columns

can be modeled as AR(1) processes, and the closer the correlation coefficient p is to 1, the

better the DOT will perform. Although the p of columns and rows will probably be different

within a single block (i.e. a image block from a referee's shirt will have a large p within

columns but a very small p within rows), the encoder can assume that p will be about the

same between columns and rows over many blocks.

The second criterion stems from an assumption that DOT coefficients will satisfy a

smoothness criterion; if a coefficient is zero, then there is a good chance that its neighbors

are zero. The zigzag scan will then group these coefficients together, resulting in large runs

of zeroes which can be coded efficiently with run-length coding.

From these two criteria, we can also derive a zigzag scan for coefficients in a 3-D array,

or an N-D array in general:

1. If we calculate the sum (where i/ is the index in dimension I) for each pixel

in the array, we scan the pixels where ii = 0 (the DC coefficient), and then all

the pixels where the ii = 1, and so on up to Yif=o ~ 1) where N is
the size of the block edge and L is the number of dimensions.

2. If iki is the /th dimensional index of the kth position in the scan, then —^(fc+i)/| < 1

for all possible k and /.

A 3-D scan based on the two criterion above for a 4 x 4 x 4 DOT transform is shown

in Figure 3.2. The spatial "frequency" dimensions are labeled by i and j, and the tem

poral "frequency" dimension is labeled by k. The individual pixels are labeled by their

corresponding order in the scan.

However, we may not necessarily be able to assume p will be about the same between

different dimensions between blocks. More specifically, in the 3-D case, the p in the temporal

1 2 8 14

4 7 15 26

5 19 25 38

20 21 44 45

Figure 3.2: Illustration of zigzag scan for a 4 x 4 x 4 array

22

23

direction depends on criteria such as the motion of the camera, the motion of objects being

filmed, and whether or not frames are dropped in the compression process as a first step.

At the very least, it cannot be assumed to be the same as the p in the spatial dimensions.

This brings up the question of what to do if the p is substantially different on average.

The solution proposed here is to change the criterion where pixels are scanned in order of

their "index sum" i-\- j -\-k to a criterion where pixels are scanned in order of a "weighted

index sum" ai + aj + bk. If p is larger in the temporal dimension, then 6 > a, if not, then

b < a. In this case, however, we cannot have the second condition anymore, where every

pixel in the scan is no more than one coordinate away in each direction.

The last section of this chapter describes simulations that were done with different scan

orders.

3.7 Simulations

We simulated two scans, the "equally weighted" one shown in Figure 3.2 and another

"modified" one where a = 1 and 6 = 2, with uniformly quantized DCT coefficients with a

quantization factors of 5, i.e. the coefficients were floored to the nearest multiple of 5. The

data came from the video-coding test sequences Coast, Carphone, and MIT. Within each

sequence, a 144 x 176 x 4 array of pixels (from four frames) was divided into 1584 4x4 x4

3D blocks, which were all transformed with a 3D DCT. We then had a total of 4752 blocks

to work with.

For each location k in the scan, we tallied the total number of instances throughout

the 4752 blocks where pu 7^ 0, where pk is the pixel in location k in the scan. Ideally, this

should monotonically decrease to zero in order for run-length/EOB coding to work well on

the scanned coefficients.

In the first experiment (Figure 3.3), the 4 frames were from 30 frames/sec video se

quences. In the second (Figure 3.4) experiment, the 4 frames were from 7.5 frames/sec

video sequences. The purpose of this experiment was to see how the dropping of frames (a

common step in video compression) affected the performance of the 3D-DCT.

As can be seen, the modified scan outperformed the even-weighted scan on the 30

fps sequence, taking advantage of the high temporal correlation between adjacent samples

of the images, whereas both sequences demonstrated mediocre performance with the 7.5

sequence. This suggests that 3D DCT techniques should be more useful in high quality

r 2000

1000

Performance of Zigzag Scan

—^ Even-Weight Scan
K Modified Scan

20 30 40
Scanning Order

Figure 3.3: Performance of Zigzag scan on 30 fps sequences

5000

O3500

M 3000

r 2000

Performance of Zigzag Scan

Even-Weight Scan
M Modified Scan

20 30 40
Scanning Order

Figure 3.4: Performance of Zigzag scan on 7.5 fps sequences

24

30MC-DCT

MIT OF Sequence

5 5.5

Bits per Frame

25

Figure 3.5: Performance of 3D MC-DCT coder compared with H.263. Different operating
points were achieved by varying the quantizer step in both coders.

video communication systems with high framerates than in low-bitrate videoconferencing

systems.

We also compared a 3D MC-DCT coder which used the motion estimation scheme of

Chapter 2 to estimate motion vectors and the 3D DCT to code motion residual. With each

coder, we coded the first eight frames of a CIF sized version of the MIT sequence. The

3D coder gradually outperforms H.263 as the PSNR of the coded result gets higher. The

results are shown in Figure 3.5.

In the 3D MC-DCT coder, vectors were coded using the DPCM technique described

in Section 5.4. The next chapter describes a technique which tries to improve on DPCM

coding. At the time of this writing, the technique does not perform well enough in a full

video coding system, but we have presented it in Chapter 5 in hope that a future version

can be included in a 3D MC-DCT coder.

26

Chapter 4

Autocompensation

This chapter explains an algorithm that takes advantage of the temporal redundancy

between motion vector fields to reduce the cost of sending motion information. Note that

the algorithm is decoupled from the actual process of estimating motion from images, and

can be used on vectors computed by any motion estimation scheme.

The following section will explain and illustrate our method of motion coding using

a simple, three-frame image sequence. This report then discusses the implementation of

the method, first discussing general implementations on MVF's and then discussing a spe

cific implementation on "Block-Matching" based MVF's. Finally, the last section presents

simulations and results.

4.1 Interframe coding of motion vectors

Consider three successive frames of a video sequence: /i, /2, and h- From this sequence,

two motion fields can be defined; V2, which allows the decoder to compose I2 from /i, and

V3, which allows the decoder to compose Jz from /2. Figure 4.1 shows the three underlying

images in the first row, and quiver plots of the motion vector fields extracted from the three

images in the second row.

Essentially, the sequence of motion vector fields has a few distinguishing differences with

respect to the sequence of time-varying images. First, a two dimensional vector, namely x

and y velocity components, is assigned to each block of pixels. Whereas an image is a two

dimensional array of scalar values, a motion vector field is a two dimensional array of vector

values. In video coding algorithms, motion vector fields are used to reconstruct images from

27

Figure 4.1: (a) Three hypothetical images of a video sequence. The rectangular object
is moving at constant velocity, while the falling circle is accelerating, (b) The extracted
motion sequence, (c) The compensated field V3 and its diflference from V3.

other images in the same video sequence. In that sense, a motion vector field can be seen

as an operation or mapping, transforming an image into another /n+i, where n refers

to an instance in time. In the same sense, a motion vector field can be applied to itself,

transforming itself into another motion vector field.

An example can be given with pixel-accuracy motion vectors. If there is a vector

(3,4) at pixel location (1,2), a guess could be made that in the next frame, pixel location

(1 + 3,2 + 4) = (4,6) has the vector (3,4).

To generalize, let V be a motion vector field where V(a, b) is the value of the motion

vector field at location (a, 6). Then one can find a new motion vector field through an

operation called Autocompensation:

Vn+i (a + p, 6 -f </) = Vn(a, 6) (4.1)

where

(P.9) = V„(o,6) (4.2)

First, consider the case where the objects in the scene are moving with constant velocity

(both the magnitude and the direction of the speed are constant). Then, the motion vector

field at time n -f 1 can be found by autocompensating the field at time n using Equation

4.1. Similarly, by autocompensating the field at time n -I-1, one can find the field at time

Vln] + A[n]

- ii

V[n] Auto Frame

Compensatior Delay

28

e
+

Figure 4.2: Block diagram of a whole "motion compensated" motion vector coding system.

n + 2, etc. Therefore, the knowledge of Vq (the first motion vector field) is sufficient to

generate the entire sequence.

However, in most cases, the velocity of objects is not constant, and a way must be

found to account for this acceleration. Hence, let us now define

A„ = Vn - V„ (4.3)

Note that An corresponds to the acceleration of the objects in the scene and also that

knowing V„ and Vn is sufficient to characterize An. If we now assume that the direction of

motion does not change with time and only the magnitude of motion is time-varying, then

the direction of each element of An is the same as that of the corresponding motion vector

in V„ and hence a scalar component would be sufficient to describe each component of An-

In general, however, both the magnitude and the direction of the velocity change with time

and a vector component is necessary to characterize the acceleration.

The third row of Figure 4.1 shows the field V3 extracted from V2 and also the accel

eration field A3 resulting from subtracting V3 from V3. As can be seen, the vector field

A3 will be much easier to code than V3, while providing just as much information to the

receiver. Figure 4.2 shows a block diagram of the entire vector coding system.

4.2 First Implementation of Method

Uncovered boundaries, uncovered objects, and fading have presented problems in the

whole area of motion estimation from images. In turn, motion estimation of motion vectors

presents even more problems. In the following paragraph, this paper explains two major

29

problems of motion estimation: ill-posedness, and vector location of non-integer valued

vectors.

In luminance-based motion estimation from images, a portion of an image In+i may

not be found in /„, causing an ill-posed problem in the estimation. When estimating a

subsequent motion field with 4.1, similar ill-posed problems can occur. For example, if two

or more motion vectors in a motion field V„ point to the same location (a, 6), then there is

a conflict as to which vector will be represented in Vn+i. In the same way, there will be a

problem if all of the vectors in the field point away from a location (a, 6) Therefore, there

will be no motion vector representing (a, b) in the subsequent field.

A problem related to and even more important than the above is vector location. In

order to be useful, vectors in MVP's must correspond to certain pixel or block locations.

Equation 4.1 does not guarantee this condition. Therefore, a re-interpolation must be done

around pixel locations to compute the new MVP. A weighted average of vectors surrounding

the location is used; this equation summarizes the method:

(4.4)
a a a a

where Vo's are all of the vectors in the field V„(a + p, 6-f g) which are located within

a square search area centered around location and the da's used for the weighing

averages correspond to the distance of these vectors from location Note that this

method gets around the case of no vectors being located at however, when a vector

is actually located at (i, j), it takes precedence over all other vectors. When more than one

vector is located at our algorithm chooses one at random.

In [20], MVP's were coded using this algorithm. This thesis goes one step further and

estimates its performance in a full video coding system where the bitrate of both motion

vectors and motion residual is considered. The next section details further modifications

made to this algorithm for coding block-estimated motion vectors.

4.3 Modifications

One aspect of motion estimation not covered by the above section is the possibility

that a motion vector might not "exist" in a particular location; the introduction of Chapter

5 discusses this in greater detail. In this case, a NULL vector is encoded, telling the

30

encoder to directly encode the image data in the corresponding block instead of trying to

approximate with data from the previous image. We choose to ignore these NULL vectors

when performing the calculation in 4.4; accordingly, we also encode a NULL vector when

no valid (non-NULL) vectors are found within a certain distance from location (i, j).

After Autocompensation we perform the following evaluation on every valid vector in

V„+i(i, j). We calculate and store the distance metric (explained in Chapter 2) Ca of the

motion residual resulting from the vector. We then find the distance metric e© of the optimal

vector. If €a —€o < P, where P is some factor by which we "prefer" the autocompensated

vector, we use the autocompensated vector and set An{i,j) to 0. Otherwise, we use the

optimal vector and set A„(z, j) to be the difference between the optimal vector and the

autocompensated vector. In this way, the decoder can deduce using A„ the MVF used by

the encoder.

Figure 4.3 shows a flowchart which summarizes the above method for coding vectors

in A„.

4.4 Simulations and Results

We used this method to code eight frames of test sequences Mother and Daughter

and Coast. First an initial frame (the "zeroth" frame) is DCT encoded and transmitted.

Then, CMC is performed on the next four frames. Motion estimation using the method in

Chapter 2 is performed for the first frame, then the distance metric in Chapter 2 is used in

conjunction with autocompensation to estimate the second, third, and fourth frames. The

residual of the four frames is encoded with a 3D-DCT as explained in Chapter 3 and then

transmitted. The cycle then repeats for the next four frames.

To illustrate further, Figure 4.4 shows four MVF's from a standard motion-compensated

coder, and Figure 4.4 shows four MVF's from a coder using autocompensation. In the au

tocompensated coder, the last three MVF's are A„ fields which require much less bits to

transmit than the corresponding V„ frames in the standard coder.

The total bitrate of the autocompensated coder is compared to the total bitrate of

another coder which uses standard motion compensation, but also gathers residual over

four frames and encodes it with a 3D-DCT. In both cases, the total bitrate is approximated

by

^vectors "b -^residual ^intra

No

Figure Autocompensated
Vector for Block

Figure Distance
Metric for

Autocompensated Vector

Preform Motion Estimation

for Block

(compute ideal vector)

Autocompensated Vector
NULL?

No

Ed.

Yes

Encode

Ideal Vector

Distance Metric(Autocompensated) >
Distance Metric(ideal) + factor ?

Yes

Encode Zero
Encode (Autocomp Vector -

Ideal Vector)

Ideal Motion Vector

NULL?

Yes

Encode Zero

31

Figure 4.3: Flowchart for encoding each vector in A„. f the ideal MV is null, then that
means there is no proper approximation in the previous image, and fresh image data has
to be sent.

It . /. ,
\ « * %• ^ .

f% %«« *1,I %% «*»w ^
%% « Wy »» *• ••••••••••,»«

• %lfllA% •**«»«**« •• ••«•••••••«>«

"Js:::.. :::::.•V.'.^rS'V I'.

IlIrTiI'
rT/s « « «

9%

t#

« «VW Ak «
X « % *«

f* • *****

irilk

y

t>^ I.. 1 t.-.- .V « . ..
t««... If iZ^»

yr>««w<

«NV% • •

— K
•

X «ik

:::::::* ;r^::.v5

..'*'7:.—yv.....

.1 * •

:>^>- y.;:;^r:*::

**.* .*V i

'.t:::*V**
^ t*t:: ****.., **^* •v ..

:::::::
zhPS-' ::::;::* :.\r.

** .**. *x, ^********.

)< ** ***
. V.
*,. *\\. *.....**

\V^*::::::;:
.*V ^*******.********.*.***. .M.*.

32

Figure 4.4: The first four MVP's of the sequence Foreman estimated from a conventional
motion estimation algorithm.

1

t«%« « « » C>«. « « « *
!»»%» I. ,, »» %%%%^%*^ V %•
1% % « I % « « * « % « ««. I r ^ • • •

t II «««%«•««%

T7Tt\

— *5
. #%%%«

>• • « .K ,

• ••• • %'

::::::>

;::*c:. \

. .

1 > ' ^ /•
.

• • \ • • •

• ". *. I

.. v:. ^
.. .:.

. V

^ ...

:. ' "N.
"S.

1 - ::;, ' 7

%>•

w » » • • • •
• -r

"K. A . •
• \

. T ^ .j ^ • \

1 ^ V ** ^ ^ **

r* !•?! I ^ ;:: '"Vs *
H-V* • V '

• s

• • • s * .. . \

* • • * ^ \

l" N : .. . ^

1 '. '. *
:; ^ * •

4

• - s V
"4

'"#!' .'_ ^ *,.

J' • *C-* *'. V

' V .. ' .'' '!*

\ N ^:: r ;.J:
>\ • ::•' :
\ X* . . • . . • • ^ ^

\\ • • • *

NN, f

V

33

Figure 4.5: The first four MVP's of the sequence Foreman estimated with autocompensa-
tion. They represent Vi, A2, A3, and A4.

34

where intra refers to "uncompensable" information which couldn't be approximated by

motion vectors. The motion vector fields (eight V„'s without autocompensation, two Vn's

and six An's with autocompensation) are scanned with the DPCM method in Section

5.4 and then the entropy of the vector differences is scaled by the number of vectors to

estimate jRyectors- 3D-DCT residual coefficients and the DCT intra coefficients are

zigzag scanned and run-length encoded. The entropy of runs and lengths is then scaled to

estimate -Rpesidual -^intra* Although an actual encoder would use Huffman tables to
encode the above data, the above method should give a fair comparison on a case by case

basis.

Different operating points were achieved by varying the quantizer step used on the

DCT residual coefficients- For a given quantizer step, the bitrate spent on vectors would

always be lower for the autocompensation coder, but the bits spent on residual would be

higher since the autocompensated vectors could not predict as well as the normal vectors.

The results are shown in Figure 4.6. In the sequence Codst autocompensation almost

introduces a constant gain over normal motion estimation. In the Mother Daughter sequence

we see that the gain introduced by autocompensation "closes up" as the picture quality

gets better. Autocompensation worked well on these two particular sequences because their

motion is relatively simple. In other sequences with more complicated motion such as the

MIT sequence used later in this thesis, the algorithm does not fare so well. The vector

bitrate is always reduced, but the residual bitrate is increased too much.

4.5 Conclusion

Autocompensation of motion vectors is a new approach to coding motion for very low

bitrate applications. Taking advantage of both the temporal redundancy and the "mapping"

property of motion vectors, this method predicts a subsequent motion vector field from a

previous vector field. This predicted motion vector field is then used in turn to predict

image data. A simple version of this method based on interpolation has been presented

which shows promise, working well on sequences with mostly translational motion as well as

"teleconferencing" sequences. With more experimentation and training, autocompensation

can be adapted further and is expected to perform better on more complicated sequences.

33.5

33.4

33.3

32.0

32.8

3S.3

35.2

34.7

WKh Autocomp»nMtion
O «• —O Without AutoeomponMtion

4.6 4.8

(a)

Mothor ond Doughter

With Autocomponsation
Q. - —O Wtthout Auiofiompansation

(b)

Wtth Autocompansaiton
O WKhout Aiftoeompanaation

Total Bits for 8 Frames

(c)

1.76

X 10*

7.6

* 10*

35

Figure 4.6: (a) Coding results for the sequence Coast (b) Coding results for the sequence
Mother and Daughter, (c) Coding results for the sequence Foreman.

Chapter 5

3D Zerotree Coding of Motion

Vector Fields

36

DPCM was used in the simulations at the ends of Chapter 4 and Chapter 3 to encode

motion vector fields (MVF's). This chapter describes an alternative method to coding

motion vectors. More specifically, we use three-dimensional zerotree coding after a Haar

Transform. The coding method is an extension of Shapiro's zerotree method of coding image

data. The following section discusses extending image coding methods to vector fields, and

the rest of the chapter discusses our implementation of zerotree coding.

5.1 Diflferences between Vector and Image Data

People have tried to look at MVF's as images, and use image-coding methods to com

press motion vector data. They have met with limited success, most likely due to some

fundamental differences between motion vector data and image data.

At first glance, motion vector data seems similar to image data because there are often

large areas that have exactly or approximately the same value, since they correspond to a

large object moving at a constant speed. For this reason. Nickel and Husoy [11] and others

have tried to use techniques such as the DCT to encode motion vector fields (MVF's).

However, there are important differences between motion vector and image data that

must be addressed in order for such coding techniques to work well. First, if the coding is

lossy, such as in a DCT-based system, the coder must take into account how the encoding

error in motion vectors will affect the coding of motion residual data. Chen, Villasenor and

37

Park [3] have looked at this problem through posing the estimation and coding of motion

vectors as a rate-distortion problem. Second, whereas an image will have a defined value

for every pixel, a block-estimated MVF will not necessarily have a motion vector for every

block. For example, when a new object appears in a video frame, no motion vectors can

describe it from the previous frame. Filling in zeros may not be a good solution because

most transform coders will perform less well when the input data has a lot of singularities.

Although our schemeis transform based, weaddress the two issuesabove by first coding

the vector data losslessly and then by having an efficient method of treating blocks where

motion vectors are not found. We first describe our transform in Section 5.2, and then

describe the coding of the transform coefficients in Section 5.3.

5.2 Implementation of Haar Transform

The Haar Transform is essentially the simplest non-trivial subband decomposition pos

sible. It can be used to transform a string of N numbers into two strings of N/2 numbers,

representing a highpass and lowpass decomposition of the signal. In this way, the Haar

Transform can be defined as

//•[n] = h[2n] -H h[2n -f 1]

Hi[n] = h[2n] - h[2n+ 1]

with inverse transform

\ fof »even

ft[n] =I for nodd
where Ho[n] is the low-frequency portion of h[n] and Hi[n] is the high-frequency portion.

The Haar Transform can also be used in many dimensions when applied separately in each

dimension.

The above transform can also be seen as putting h[n] through both a lowpass and a

highpass filter in parallel and then subsampling the outputs by 2, keeping the total number

of samples constant. In Octave-band filter banks, the subsampled lowpass output is again

put through a lowpass and highpass filter, and each output is subsampled by 2. This

happens K times, where 2^ is the largest power of 2 which can divide into the number of

LL, HL,

LH3 HH3 "^2

LH2 \\ HHj

Figure 5.1: (a) A 512 x 512 image passed through two stages of octave band decomposition.
(Values have been normalized and adjusted for display purposes) (b) An illustration of a
possible zerotree in two dimensions.

samples N. Figure 5.1 (a) shows an image which has gone through two iterations in both

the vertical and horizontal dimensions.

When we take these sums and differences, however, we run into the danger of creating

numbers of larger magnitude which will be even harder to code. To explain, if two signed

integers A and B can be represented with N bits in two's-complement notation, then A + B

and A —B will each need N + 1 bits. This will result in one more pass needed by our coding

algorithm. However, we can economize by noting that A + B and A - B are either both

odd or both even. Therefore, we can "throw away" the LSB of A + B ot A —B since it

holds redundant information. We choose to throw away the least significant bit of A - B

(the high frequency component). We then have a "Modified Haar Transform" equivalent to

the "Sequential" transform of [14], shown here:

with inverse transform

Ho[n] = h[2n] + h[2n + 1]

H,[n]=ll{hl2n]-h[2n +l]]\

h[n] =

h[n] =

When the motion estimator cannot find an appropriate motion vector for a block, it

recordsa DONTCARE value in its place. When either h[2n] or h[2n+ l] is a DONTCARE,

we will transform according to the following rules:

Ho[n] = 2h[2n] if h[2n + 1] is DONTCARE

Ho[n] = 2h[2n + 1] if h[2n] is DONTCARE

Ho[n] = DONTCARE if both are

Hi[n] = 0

The DONTCARE in the third equation is then propagated to the next octave-band decom

position, or a transform in another dimension.

Using the decoding rules in (5.3) and (5.4), all vectors which are not DONTCARE's

will be decoded correctly, and those which are DONTCARE's will be decoded with the value

of their closest neighbor which is not DONTCARE. However, this will cause no problem

because the motion vector will be ignored in the decoding algorithm.

5.3 Zerotree Algorithm

Our coder uses 4x4 sized macroblocks on 288 x 352 sized images (CIF size). Over

8 images, we then have a 72 x 88 x 8 array of motion vectors, which is put through three

stages in octave-band decomposition in each of three dimensions. Figure 5.2 shows how the

coefficients are arranged in the final array before encoding.

Our coder then takes advantage of structures called zerotrees to code efficiently. This

concept was first presented by Shapiro [15] in 1993. This concept is illustrated in Figure

5.1 (b) for two dimensions, and in Figure 5.2 for three dimensions.

First the data is organized into "trees," with (using Figure 5.1 to explain) "parent"

nodes in bands ffffn+i, and HLn+\^ and "children" nodes in bands and

HLn, respectively. Depending on how many stages there are in the octave-band decomposi

tion, the "children" can have "children" of their own, and so on. In an N-dimensional array,

39

+Hi[|] for neven (5.3)

^ffo[|]J -H,[|] for nodd (5.4)

40

Figure 5.2: Arrangement of coefficients in a three dimensional transformed array. The
lowest frequency band is shown in the front top left.

there are 2^ children for each parent, located at the samespatial location corresponding to

the parent.

A zerotree-based coder then assumes that the (normalized) magnitude of a parent will

more likely be greater than that of its children than smaller. Therefore, if we find that the

magnitude of a parent node is low, then it is likely that the magnitude of its corresponding

children will be low. Thus, we can take advantage of zerotrees, illustrated by the boxes in

Figure 5.1 and the zeroes in Figure 5.2. Zerotrees occur when a parent's magnitude along

with the magnitude of all its descendants are less than a particular coding threshold.

Our coding method is similar to [15] in that we use four symbols POS (positive), NEG

(negative), JZ (isolated zero) and ZT (zerotree). It is somewhat simpler because we are

performing lossless coding; more specifically we do not use a subordinate pass. The general

procedure is outlined below:

1. The coefficients in LLLn (the lowest frequency band) are directly encoded (without

using any entropy-coding technique).

2. Each coefficient in LLH^^ LHLisj^ LHHjsj, ... is processed by a recursive

41

coding procedure, described below, which will encode it along with all its descendants.

The vectors have a range of -15 to 15 (they are measured in half-pixels), and so they

would need 5 bits each for encoding without any processing. Every time an octave-band

decomposition is done, the magnitude in the low frequency band increases by a factor of 2,

and one more bit is needed. Therefore, 14 = 5 + 3 x 3 (3 decompositions in 3 dimensions)

bits will be needed for each coefficient in the lowest frequency band. Although this may

seem wasteful at first, it is well amortized in the rest of the coding algorithm.

For the recursive coding procedure, we successively run through each coefficient in

LLHn, LHLn, LHHn, ififHiv and go through the following procedure:

1. We set an initial threshold T,- to 2^^, where M is 2 less than the number of bits that

would be needed to code the coefficients in a particular band directly. For example,

M = 11 for bands LLHn, LHLj^, and HLLn, M = 10 for bands HHLn, HLH^,

and and M = 9 for band

2. We label the coefficient x ofthe root node as follows: they are labeled POS if a: > 2^,

NEG is a: < -2^, and ZERO otherwise.

3. We then decrease the threshold to 2~^Ti and then label all the children of the node

according to this threshold. When a child is labeled, it's own children are also labeled

with threshold 2~®r,.

4. Then if the node and all descendants are ZERO, we code a ZEROTREE, otherwise

we code the node label and then recursively code the descendants by checking if they

are roots of zerotrees or not.

5. After coding is done, all nodes labeled POS have the threshold subtracted from them,

and all nodes labeled NEG have the threshold added to them.

6. Coding starts again with a threshold of2^~\ and steps 2 through 5 follow again in
a loop. After a node is labeled with threshold 2° = 1, it will be coded once more to
see if what remains is -1, 0 or 1.

7. After coding is done, the stream of symbols is entropy coded.

A B

c

Block

of

Interest

42

Figure 5.3: Illustration of the method used in H.263 to code motion vectors. The median
is taken from the motion vectors of blocks A, B, and C in both the x and y directions to
compute a predictor for the motion vector in the block of interest. The difference between
the predicted vector and the actual vector is then coded.

Sequence Zerotree DPCM

Bits per MVF Bits per MVF
Hall Monitor 21766 16981

MIT 16960 17368

Container 2571 12861

Table 5.1: Simulation Results for Coding Motion Vector Fields from GIF Sequences

5,4 Simulations and Conclusions

We tested our algorithm on the motion vectors estimated with the scheme in Chapter

2 on the video coding test sequences Hall Monitor, Container Ship and MIT. (We skip

through the first 40 frames on Hall Monitor because there is no motion, only image noise.)

We compared our method of coding with the DPCM technique currently used in H.263 to

code motion vectors illustrated in Figure 5.3 [5].

For comparison, we entropy coded the symbols from the zerotree method and we en

tropy coded the differences from the DPCM method. We then compared the total bitrate

in both cases. The results are shown in Table 5.1.

The zerotree method under-performs relative to DPCM for the Hall Monitor sequence,

43

where there is a large amount of noise in the underlying images. It achieves somewhat

better results on the MIT sequence, a sequence with complex motion where many objects

are moving around in different directions. It far outperforms DPCM on the Container

sequence, a sequence with slight motion where most of the vectors are zero.

Ideally, a video coding algorithm would be able to switch (or the user could set it as

a parameter) between 3-D zerotree coding of motion vectors or DPCM or some other 2-D

method of coding motion vectors. More attention could be given to coding the motion vec

tors in a lossy context, or using another wavelet with better frequency separation properties

than the Haar wavelet.

44

Chapter 6

Conclusion and Future Work

In Chapters 2 and 3 the thesis discussed the advantages of overlapped block motion

estimation and the 3D DCT. These two algorithms are currently part of the general structure

of the proposed 3D MC-DCT coder. Further exploration into reducing the amount of

unnecessary computation in OBME is needed in order for the coder to work in real time.

Further exploration is also needed to see if other 3D transforms might work better than the

3D DCT for coding residual. Finally, the overall structure of the 3D MC-DCT coder could

be adapted for backwards and bidirectional motion estimation and compensation, which

has proved beneficial in video coding standards.

This thesis proposed two approaches to reducing temporal redundancy in MVF's for

bitrate reduction. First, it defined the "Autocompensation" algorithm used to predict a

subsequent motion field from a previous one. Second, it proposed the method of removing

temporal redundancy in the last chapter, which was to take a group of MVF's over time

and then code them with a three dimensional adaptation of Shapiro's zerotree algorithm.

The following two paragraphs detail the advantages of each algorithm and suggest future

directions to pursue.

The Autocompensation algorithm shows promise in reducing the bitrate consumed

by motion information and the total bitrate in general. For a given SNR, the bitrate

it saves on vectors outweighs the added residual bitrate. Besides conserving bandwidth,

Autocompensation could also help in other areas of research. Because it takes advantage of

the consistency of motion between frames, Autocompensation merits more investigation into

its application to image sequence interpolation and in computer vision problems involving

motion.

45

Although the zerotree algorithm shows promise in coding motion vector fields esti

mated from fresh, uncorrupted raw images, the algorithm at present is less effective at

coding motion vector fields in a full video coding scheme. Other schemes of "smoothing"

MVF's besides OBME need to be considered in conjunction with the zerotree algorithm.

The promising performance of the Autocompensation algorithm demonstrates that there

is significant advantage to reducing temporal redundancy of MVF's in video coding, and

further exploration is needed to discover the best way to reduce this redundancy in zerotree

coding.

46

Bibliography

[1] C. Auyeung, J. Kosmach, M. Orchard, and T. Kalafatis, "Overlapped Block Motion

Compensation", SPIE Conf. Visual Communication Image Processing, vol. 1605, pp.

561-571, November 1992.

[2] Y.L. Chan and W.C. Siu, "Variable Temporal-Length 3-D Discrete Cosine Transform

Coding", IEEE Trans, on Image Processing, vol. 6, no. 5, pp. 758-763, May 1997.

[3] F. Chen, J.D. Villasenor, and D.S. Park, "A Low Complexity Rate- Distortion Model

for Motion Estimation in H.263", Proc. of IEEE International Conference on Image

Processing, 1996.

[4] K. Illgner and F. Miiller, "Hierarchical Coding of Motion Vector Fields", Proc. of IEEE

International Conference on Image Processing, vol. 1, pp. 566-569, October 1995.

[5] ITU-T/SG15/LBC Special Rapporteur for Very Low Bitrate Visual Telephony, "Draft

Recommendation H,26P (Video coding for telecommunication channels at < 64

kbits/s)," PTT Netherlands, 1995. LBC-95-027.

[6] A. Jain. Fundamentals of Digital Image Processing, Prentice Hall, 1989.

[7] N.S. Jayant and Peter Noll, Digital Coding of Waveforms, Prentice Hall, 1984.

[8] G. Karlsson and M. Vetterli, "Three Dimensional Sub-band Coding of Video", Proc.

of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2,

pp. 1100-1103, April 1988.

[9] Y.Y. Lee and J. W. Woods, "Motion Vector Quantization for Video Coding", IEEE

Trans, on Image Processing, March 1995.

47

[10] A. Leon-Garcia, Probability and Random Processes for Electrical Engineering^ p. 265,

Addison Wesley, 1993.

[11] M. Nickel and J.H. Husoy, "A hybrid coder for image sequences using detailed motion

estimates", Proc. of the SPIE^ vol. 2501, pt. 1, pp. 963-71,1991.

[12] J.-R. Ohm, "Three-Dimensional Subband Coding with Motion Compensation", IEEE

Trans, on Image Processing, vol. 3, pp. 559-571, September 1994.

[13] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, Chapter 9, Prentice

Hall, 1989.

[14] A. Said and W.A. Perlman, "An image multiresolution representation for lossless and

lossy image compression" , IEEE Trans, on Image Processing, vol. 6, pp. 1303-1310,

June 1996.

[15] J.M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients", IEEE

Trans, on Signal Processing, vol. 41, no. 12, December 1993.

[16] D. Taubman and A. Zakhor, "Multirate 3-D Subband Coding of Video", IEEE Trans,

on Image Processing, vol. 3, pp. 572-588, September 1994.

[17] R. Vargas. Fast Algorithms Using MSE for MPEG Motion Estimation, Masters disser

tation, U.C. Berkeley, May 1996.

[18] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice Hall, 1995.

[19] J.Y.A. Wang and E.H. Adelson, "Representing Moving Images with Layers", IEEE

Trans, on Image Processing, vol. 3, no. 5, pp. 233-242, September 1994.

[20] J. Yeh, M.Khansari, and M.Vetterli, "Motion Compensation ofMotion Vectors", Proc.

of IEEE International Conference on Image Processing, vol. 1, pp. 574-577, October

1995.

	Copyright notice 1997
	ERL-97-87

