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Negative Thinking in Search Problems

Luca P. Carloni

Abstract

We introduce a new technique to solve exactly a discrete optimization problem, based on
the paradigm of “negative” thinking. When searching the space of solutions, often a good solution
is reached quickly and then improved only a few times before the optimum is found: hence most
of the solution space is explored to certify optimality, but it does not yield any improvement in the
cost function. So it is quite natural for an algorithm to be “skeptical” about the chance to improve
the current best solution. This suggests that more powerful lower bounding would speed up the
search dramatically, as shown by the good results obtained by Olivier Coudert with its “limit lower
bound” technique [1). Our approach is more radical than Coudert’s because, when we deal with
a subspace of solutions, if appropriate, we switch the search strategy to a different one based on
negative thinking by incremental problem solving.

For illustration we have applied our approach to the unate covering problem. We designed
aprocedure, raiser, implementing a negative thinking search, which is incorporated into a common
branch-and-bound procedure. raiser is invoked at a node of the search tree which is deep enough
to justify negative thinking. raiser tries to detect a hard core of the matrix corresponding to the
node by augmenting an independent set of rows in order to increase incrementally the cost of the
minimum solutions covering the matrix. Eventually either raiser prunes the subtree rooted at the
node (having found a lower bound equal or greater than the current best solution) or returns a new
solution that becomes the current best one.

We developed a program, AURA, based on this paradigm. Experiments show that AURA
outperforms both ESPRESSO and our enhancement of ESPRESSO using Coudert’s limit lower bound.
It is always faster and in the most difficult examples either has a running time better by up to two
orders of magnitude, or the other programs fail to finish due to timeout or spaceout. The package
SCHERZO developed by Olivier Coudert is faster on some examples and loses on others, due to a less
powerful pruning strategy of the search space, partially mitigated by a more effective computation
of the maximal independent set.
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Most of us may not believe in the story of a Devil to whom one can sell one’s soul,
but those who must know something about the soul (considering that as clergymen,
historians, and artists they draw a good income from it) all testify that the soul
has been destroyed by mathematics and that mathematics is the source of an evil

intelligence that while making man the lord of the earth has also made him the
slave of his machines.

R. Musil.



Chapter 1

Positive Thinking and Negative
Thinking

1.1 Branch-and-Bound and the Unate Covering Problem

A common approach to find an exact solution to problems in combinatorial optimization
is branch-and-bound (BAB), which improves over exhaustive enumeration, because it avoids the
exploration of some regions of the solution space, when it can certify by means of lower bounds
that they do not contain a solution better than the current best one.

To ground the exposition in a concrete domain, we consider BAB applied to the solution
of the Unate Covering Problem (UCP), that is of great interest in logic synthesis and operations
research. UCP can be stated as follows.

Definition 1.1.1 Given: A Boolean matrix A (all entries are 0 or 1), with m rows, denoted as
Row(A), and n columns, denoted as Col(A), and a cost vector c of the columns of A (c; is
the cost of the i-th column).

Minimize: The cost zTc = Y5 z;c;, over all z € {0,1}",

Subject to:
Az > (1,1, , DT (1.1)

The constraint A z > (1,1, -+ ,1)7, ensures that the nonzero elements of z determine a column
set S = {7 |z; = 1}, which “covers" all rows of A, that is,

Vi, 35 € S suchthat A;; = 1.
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Thus the minimum unate covering problem is to find a column set of minimum cost, which satisfies
the constraint Equation 1.1. We shall discuss mainly the special case of this problem for which
¢; =1, Vj. Exceptions to this assumption will be specifically noted in the sequel. We will denote
an instance of UCP with matrix A as UCP(A).

A complete survey of the covering problem from the perspective of the logic synthesis
community can be found in the fifth chapter of the book “Synthesis of Finite State Machines:
Functional Optimization” by T. Kam et. al. [2). An exact solution of the covering problem is
obtained by a branch-and-bound recursive algorithm, which has been implemented in successful
computer programs [3, 4]. Branching is done by columns, i.c., subproblems are generated by
considering whether a chosen branching column is or is not in the solution.

A run of the algorithm, call it mincov, can be described by its computation tree. The
root of the computation tree is the input of the problem, an edge represents a call to mincov, an
internal node is a reduced input. A leaf is reached when a complete solution is found or the search
is bounded away. From the root to any internal node there is a unique path, which is the current path
for that node. The path leading to the node gives a partial solution and a submatrix Ax obtained
from the A by removing some rows and columns. On the path some columns are included in the
partial solution; we denote by path(A ) the set of columns included in the partial solution.

Suppose that we know that any minimal cover of Ay is greater or equal to a value L(AN).
The value is called a lower bound of the solutions of UCP(AN). So the size of any solution of
UCP(A) including the columns in path(Ay) is greater or equal to L(An) + |path(An)|. So if
we found before a solution best with the same or a smaller number of columns, i.e.,

|best| < L(An) + path(An)

we can stop the recursion and backtrack to the parent node of Ay .

Denote by K (Ay) the value |best| — L(An) — |path(An)|. The condition to stop the
recursion is given by K (An) < 0. On the other hand, if K (Ay) has a large positive value, usually
it means that L(Ay) is far from the size of a minimal solution to UCP(Ay) and so “a lot of
branching” is expected from Ay before a leaf can be reached.

Suppose that there is no way of improving the solution best in the search tree rooted
at Ay, yet K(Ap) is positive. Usually a branch-and-bound algorithm must continue branching.
However, there is another way of making K (A ) negative or zero: it is to improve the lower bound
L(Ap).

The first way is “positive”, in the sense that the algorithm tries to construct a better
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solution, and branching columns are chosen in the hope of improving the current best solution. The
second way is “negative”, in the sense that the algorithm tries to disprove that there is a better
solution in the tree rooted at Ay.

To compare the role of “negative” and “positive” ways of search, notice that at the n-th
level of the computation tree we can have up to 2" nodes, i.e., subproblems. It is an experimental
fact that usually in the first leaf, a solution very close to the minimum one is found, so only a few
improvements are required to get a minimum solution. Therefore “positive” search will succeed
and yield a new better solution only in a few of the 2" subproblems. In the overwhelming majority
of the subproblems “negative” search is more natural. The less frequently the best current solution
is improved during the search, the more “negative” search is justified. In turn this is related to how
much the solution space is “diversified”, i.e., different solutions have different costs. Notice that
BAB uses “negative thinking” in optimization problems by finding lower bounds, and in decision
problems by checking the consistency of the partial solution with the current subproblem.

1.2 Incremental Problem Solving

To exploit both “positive” and “negative” search, BAB is modified as follows. We
start solving the initial problem with “positive thinking” in the ordinary column branching mode,
called PT-mode. Then, when the number of subproblems generated in the column branching mode
becomes large “enough”, each subproblem is solved in the “negative thinking” mode, called NT-
mode. In optimization problems modes are switched depending on the ratio of the expected number
of improvements to the number of subproblems generated at this level of the search tree. The
smaller the ratio, the more appropriate is to switch to the NT-mode.

Let P be a subproblem to be solved in NT-mode and suppose that, if the cost of P is
greater than a given ubound, then solving P cannot give a better solution (w.1.0.g., assume we are
solving a minimization problem). The aim of the algorithm in the NT-mode is to prove that there is
no solution of P with cost less than ubound.

We propose a new way to implement “negative thinking”: incremental problem solving
(IPS). When solving a problem P incrementally, we start with a subproblem P’ of P, such that the
solutions of P’ can be represented compactly. Then we modify gradually P’ by making it more
complex to come closer to the full problem P and we recompute the set of solutions of the modified
problem. When applying “negative thinking”, we try to find first the most difficult “obstacles” in
the sequence from P’ to P with the goal to prove that no solution of P’ can overcome the obstacles
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and be extended to a solution of P.

More precisely, let P’ be a subproblem of P such that its set of solutions Sol(P’) can
be represented in a compact form. Each solution of P’ from Sol(P') can be considered as a seed
from which one may grow some solutions of P. In the NT-mode, the algorithm tries to show that
no solution of P with cost(P) < ubound can grow from any solution S € Sol(P'). A naive
approach is to form a sequence of problems P, - - -, P, where P = P’ and P, = P. Ateach step
one recomputes Sol(P;) starting from Sol(P;—;) and discards all solutions in Sol(F;) with a cost
greater than ubound. If, after removing the solutions costing more than ubound, Sol(Pi) = @, for
some P;, i < n, then there is no solution of P with cost less than ubound. A direct implementation
of this approach has two drawbacks:

1. The size of the representation of Sol(F;) may grow exponentially.

2. There are different ways of approaching P from P’. Each specific seed solution S € Sol(P')
is extended more quickly to a solution costing more than ubound by a specific sequence of
augmentations, different from those appropriate for another solution S € Sol(P).

As a remedy we propose the paradigm of clusterization of solutions. We group in a cluster the
solutions that are similar, in the sense of having the same witnesses of the fact that they cannot
produce solutions of P costing less than ubound. ‘

Inthis work we present anincremental UCPsolver called raiser. Althou gh we demonstrate
our technique on UCP it can be applied to any discrete optimization problem with a monotone cost
function, i.e., for which a minimum solution of a subproblem has a smaller cost than that of the
initial problem.

The ideas discussed in this dissertation were presented for the first time at the International
Conference on Computer-Aided Design (ICCAD) on November 1997 [S].

The dissertation is organized as follows. In Chapter 2 we first review briefly how UCP is
solved traditionally by branch-and-bound and then we show how an incremental solver is incorpo-
rated into the standard branch-and-bound procedure for UCP. Chapter 3 describes how the solutions
of UCP are represented and recomputed. The raising procedure is explained in detail in Chapter 4
and its relation to previously known lower bounding techniques is explored in Chapter 5. Exper-
imental results are discussed in Chapter 6. Applications of incremental problem solving to other
optimization and decision problems are outlined in Chapter 7. Conclusions are given in Chapter 8.



Chapter 2

Incremental Problem Solving

2.1 A Branch-and-Bound Algorithm for Minimum Cost Unate Covering

In this section we present with more detail the branch-and-bound recursive algorithm
mincov to solve exactly UCP. The inputs of the mincov algorithm as outlined in Fig. 2.1 are:

e acovering matrix A;
e a partial solution of the current path, denoted path (initially empty);

e a row of non-negative integers weight, whose i-th element is the cost or weight of the i-th
column of A;

o alower bound lbound (initially set to 0), which is the cost of the partial solution on the current
path (a monotonic increasing quantity along each path of the computation tree);

o an upper bound ubound (initially set to the sum of weights of all columns in A), which
is the cost of the best overall complete solution previously obtained (a globally monotonic
decreasing quantity). ‘

The best column cover for input A extended from the partial solution path is returned as
the best current solution, if it costs less than ubound. Instead an empty solution is returned if a
solution cannot be found which beats ubound !. Infeasibility means that no satisfying assignment
of the product of clauses exists. When mincov is called on A with an empty partial solution path
and initial /bound and ubound, it returns a best global solution.

lin the case of an instance of BCP (see Section 7.1.1) an empty dolution is netumed if a solution cannot be found
which beats ubound or an infeasibility is detected.
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The algorithm calls first a procedure reduce that applies to A essential column detection
and dominance reductions. These reduction operations delete from A some rows, columns and
entries. What is left after reduction is called a cyclic core. The final goal is to get an empty cyclic
core. The value of the lower bound is updated using a maximal independent set computation. If no
bounding is possible and the reductions do not suffice to solve completely the problem, a partition of
the reduced problem into disjoint subproblems is attempted and each of them is solved recursively.
When everything fails, binary recursion is performed by choosing a branching column. Solutions
to the subproblems obtained by including the chosen column in the covering set or by excluding it
from the covering set are computed recursively and the best solution is kept (the second recursion
is skipped if the solution to the first one matches the updated lower bound).

The procedure mincov returns when:

e The cost of a partial solution, found by adding essential columns to select, is more than
ubound or infeasibility is detected when applying the domination rules (line 1). An empty
solution is returned.

o The best current solution is found by applying Gimpel’s reduction technique (line 2). Since
gimpel _reduce calls recursively mincov, an empty solution could be returned too.

o The updated lower bound, determined by adding to lbound the cost of the essential primes
and of the maximal independent set, is not less than ubound (line 5). An empty solution is
returned.

o The previous case does not hold and there is no cyclic core. The best current solution is found
by updating select with the new essential and unacceptable columns (line 6).

e The best current solution is found by partitioning the problem (line 7). The procedure mincov
is called recursively on two smaller covering matrices determined by block_partition (line 8
and 10). An empty solution can be returned by either recursive call. If the first call to mincov
returns an empty solution, the second one is not invoked (line 9). If neither call returns an
empty solution, each contributes its returned value to the current solution.

o A branching column is chosen and mincov is called recursively with the branching column
in the covering set (line 12). If the recursive call of mincov returns a non-empty solution that
matches the current lower bound (lbound_new), that solution is returned as the best current
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mincov(A, path, weight, lbound, ubound) {
* Apply row dominance, column dominance, and select essentials */
if (not reduce(A, path, weight, ubound)) return empty_solution
/* See if Gimpel's reduction technique applies */
if (gimpel_reduce(A, path, weight, lbound, ubound, best)) return best
/* Find lower bound from here to final solution by independent set */
MSIR = mazimal_independent_set( A, weight)
/* Make sure the lower bound is monotonically increasing */
lbound_new = maz(cost(path) + cost(M SIR), lbound)
/* Bounding based on no better solution possible */
if (lbound_new > ubound) best = empty.solution
else if (A is empty) { /* New best solution at current level */
best = solution_dup(path)
} else if (block_partition(A, A;, A2) gives non-trivial bi-partitions) {
pathl = empty_solution
bestl = mincou(Ai, pathl, weight, 0, ubound — cost(path))
/* Add best solution to the selected set */
if (best] = empty_solution) best = empty-solution
else {
path = path U best1
best = mincov(Az, path, weight, lbound.new, ubound)
}
} else { /* Branch on cyclic core and recur */
branch = select.column(A, weight, MSIR)
pathl = solution_dup(path) U branch
let Asranch be the reduced table assuming branch in solution
bestl = mincov(Avranch, pathl, weight, lbound_new, ubound)
/* Update the upper bound if we found a better solution */
if (bestl # empty_solution) /* It implies (ubound > cost(best1)) */
ubound = cost(bestl)
/* Do not branch if lower bound matched */
if (best1 # empty_solution) and (cost(best1) = lbound_new) return best1
let Ago—; be the reduced table assuming branch not in solution
best2 = mincov( A5, path, weight, lbound_new, ubound)
best = best_solution(bestl,best2)

}

return best

Figure 2.1 A branch-and-bound algorithm for covering problems.
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solution (line 14). If the cost of the best current solution is less than ubound, ubound is
updated, i.e., the best current solution is also the best global solution (line 13).

e As in the previous case, except that mincov is called recursively with the branching column
not in the covering set (line 15). The best among the solution found in the previous case and
the one computed here is the best current solution.

Notice the following facts about the procedure mincov:

o The parameter lbound is updated once (line 4). The reason is that after the computation of the
essential columns (line 1) and of the independent set (line 3), the cost of the previous partial
solution summed to the cost of the essential columns and of the independent set is potentially
a sharper lower bound on any complete solution obtained from this node of the recursion
tree. The updated value lbound_new is used in the rest of the routine. The lower bound is a
monotonically increasing quantity along each path of the computation tree.

o The parameter ubound is updated once (line 13). At that point a new complete solution has
just been returned by the recursive call to mincov (line 12) and an updated value of ubound
must be recomputed for the following recursive call of mincov (line 15). The reason is that
when a new complete solution is obtained, the current ubound is not any more valid and
therefore it must be updated before it is used again. To be updated, ubound is compared
against the cost of the newly found solution, and the minimum of the two is the new ubound.
The upper bound is a monotonically decreasing quantity throughout the entire computation.

The previous analysis proves that the algorithm finds a minimum cost satisfying assign-
ment to the problem.

2.2 Incorporating an Incremental Solver into Branch-and-Bound

The flow of a UCP solver based on branch-and-bound is shown in Fig. 2.2. The parts of
text in bold font refer to the incremental solver and will be explained below. For details the reader
is referred to [2]. Given a matrix A, existing UC P solvers employ column branching to decompose
the problem and use a maximal set of independent (non-intersecting) rows (M. S1R) to compute a
lower bound of UC P(A) (since no column covers two rows from M SIR).

Procedure raiser, performing “negative thinking”, is invoked with a parameter » when
M S IR is a lower bound not sufficient to prune the subtree rooted at the current node, but increasing
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[

branch.and_bound(A, Sol, n) {
/* A = matrix of UCP, Sol = current (partial) solution */
/* n = “range” of raiser, best = best current solution */
if(A=0)
return({Sol) /* new best solution */
/* Column and row dominance */
simplify(A)
/* Lower bound evaluvation */
MSIR = find_msir(A)
if (lower bound(A) + cost(Sol)) > cost(best))
return(9)
7* Is the current node within the range of raiser ? */
if (|M SIR| + cost(Sol) + n) > cost(best)) {
/* n’ exact amount to raise */
n' = cost(best) — (|]MSIR| + cost(Sol))
return(raiser(MSIR, n', A))
}
/* select a branching column */
J = select_column(A)
/* Decomposition: A;(A2) for including (not including) j in solution */
Soly = Sol U {j}
Sol, = Sol
forG=1i<2i++)
{New = branch_and_bound(A;, Soli,n)
if (cost(New) < cost(best)) {

best = New
if (cost(best) < (cost(Sol) + |[MSIRY|)
return{best)
}
}
return(best)

Figure 2.2 Branch-and-Bound enhanced by incremental solver
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the lower bound by n would allow such pruning. Raiser starts from the subproblem UCP(M SIR)
whose solution space is very regular and then tries to extend it gradually to A, raiser either returns a
minimum cost solution of UC P(A), if the lower bound cannot be raised by =, or returns the empty
solution.

The parameter n is specified a-priori and is the same for all invocations of raiser in the
column branching mode. The value of n is usually a small number in the range from 2 to 4 for two
reasons:

1. if n is small then the node is deep enough to warrant the application of negative thinking,

2. if n is small then one can make use of the fact that UC P(M SIR) has a regular solution
space.

Note that improving the lower bound even by a small amount may lead to considerable runtime
reductions. For example, in (6] a new technique for pruning the search tree called limit lower bound
was reported. Sometimes this technique allows one to reduce the search tree size by ten times. It
can be shown that the limit lower bound technique prunes no more branches of the search tree than
the procedure raiser invocated withn = 1.

The idea of incremental improvement of the lower bound is discussed in the following
Section, while Chapter 3 describes how the solutions of UCP are represented and recomputed and
Chapter 4 gives a detailed description of the raising algorithm.

2.3 Incremental Improvement of the Lower Bound

Given an optimization problem P such that for any subproblem P’ the cost of a minimum
solution of P is greater than or equal to that of P, the size of a minimum solutionof P’ gives alower
bound on the size of a minimum solution of P. This fact is called cost monotonicity assumption
and it is of practical interest if it is not difficult to find a minimum solution of the subproblem.

Denote by min(UC P(A)) the size of a minimum solution of UC P(A) and let A’ be a
submatrix of matrix A, consisting of some rows of A, i.e., Col(A) = Col(A’) and Row(A’) C
Row(A). Any UC P(A') where A’ is a submatrix of A satisfies the cost monotonicity assumpﬁon,
since min(UCP(A")) < min(UCP(A)). We shall call lower bound submatrix a submatrix A’
whose minimum solution is used for evaluating a lower bound for UCP(A). A maximal set of

independent (non-intersecting) rows (M SIR) of A is usually chosen as submatrix A’, denoted
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also as A’ = MSIR(A). If A’ is a MSIR then min(UCP(A')) = | Row(A’)| because each row
in MSIR is covered by a different column.

We are now going to describe the idea underlying the method for an incremental im-
provement of the lower bound. Denote by A’ + A, the submatrix of A obtained by adding to A
arow A, € Row(A) \ Row(A’). Let S be a solution of UCP(A). A column j € S is called
redundant if S \ {5} is also a solution of UC P(A). If a solution of UC P(A) does not contain
redundant columns then it is said to be irredundant. Denote by Sol(A’, m) the set of solutions
of UC P(A’) which includes all the irredundant solutions consisting of m or fewer columns. So if
m = min(UCP(A")) then Sol(A’, m) gives exactly the set of all minimum solutions of UC P(A').

Suppose that for a lower bound submatrix A’ of A we know a set of solutions Sol(A4’, m).
The lower bound given by A’ is equal to m = min(UCP(A')). Let us add a row A, of A to A'.
Obviously Sol(A’+ A,, m) C Sol(A’, m), since in general some solutions from Sol(A’, m) do not
cover A, and so are not contained in Sol (A'+ Ap, m). So after having added a set of rows A, , .., Ai,
of A to A, we canreach a stage when Sol(A’ + A;, + ..+ A;,, m) = 0, meaning that we improved
the lower bound for UC P(A) by 1 taking as a lower bound the submatrix A’ + A;, + ..+ A;,. If
Sol(A'+ A, + .. + A;,,v) = 0,r > m we improved the lower bound by r — m + 1.

So an attractive idea is to start from a submatrix A’ which is an M S R (since the solutions
of an M SIR can be represented compactly) and then to add rows to the M SIR with the goal to
improve the initial lower bound given by |{M SIR|. The proposal relies on the fact that, knowing
Sol(A',m), it is not difficult to recalculate Sol(A’ + Ap,m), and, adding one row at a time,
eventually we may reach the desired lower bound improvement. In Section 3.1 we will discuss
how to recalculate solutions. However, this “naive” way of raising the lower bound may require
too much memory. In Section 3.3 we will introduce a technique to avoid the problem which is
based on clustering the solutions in cubes and branching by clusters. Finally, Section 4.2 contains
an example which shows how to raise the lower bound incrementally.

The previous discussion motivates the following modification of the algorithm illustrated
in Fig. 2.1. This modification corresponds to the parts of text in bold font in Fig. 2.2 and is based
on the new procedure raiser, which is invoked with an integer parameter n. When a node N is
reached, compute an M ST R for the matrix Ay comresponding to the node. If

|MSIR)| + |path(AN)| + n > | Best|

where Best is the best current solution, then procedure raiser is applied to UC P(An), otherwise
branching on columns continues. The outcome of raiser may be either that the lower bound | M ST R|
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can be improved by the quantity
n = |Best| — |MSIR| — |path(AN)|

and the recursion in the node stops, or that the lower bound cannot be improved by n to become
equal to |MSIR| + n. In the latter case a minimum solution S(Ay) of UCP(Ap) is found such
that S(An) U path(Ay) is the new best current solution of UC P(A).

Notice that improving the lower bound even by a small amount may lead to considerable
runtime reductions. For example, in [6] it was reported that the limit lower bound allows the pruning
of some or many branches of the search tree. The effect of this modification is to reduce the runtimes
for some examples 10 times and even more. The limit lower bound prunes no more branches of the
search tree than raiser withn = 1.

The next task is to design an efficient procedure to implement raiser. A “naive” imple-
mentation where one stores the set of solutions Sol(A’,|MSIR(A)| 4+ n), where A’ is a lower
bound submatrix for UC P(A), may require too much memory. In other words, if the lower bound
can be raised to | M SIR| + n, eventually Sol(A’,|MSIR(A)|+ n) will be empty, but if raiser
fails to raise the lower bound then A itself will be taken as a lower bound submatrix and we will
have to store the whole set Sol(A, |MSIR(A)| + n), i.e., all irredundant solutions of UC P(A)
with |M SIR| + n or fewer columns. In the next chapter we present another way to design raiser,
so that the previous memory problem is avoided by means of a new scheme of branching on rows.
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Chapter 3

Representation and Recomputation of

the Solutions

In order to present the algorithm for raising the lower bound we must describe how the
set of solutions of a matrix is represented and updated.

3.1 Recomputation of the Solutions

Let A’ be a submatrix of A and A, a row from Row(A) \ Row(A’). Let S be a solution of
UCP(A). Denote by O(Ap) the set {j | Ap; = 1}, i.e., the set of all columns covering A, and by
Rec(A' + A,, S) the set of solutions of UCP(A’ + A,) obtained according to the following rules:

1. if S is a solution of UCP(A’ + A,), then Rec(A’ + A, S) = {S};
2. if Sisnotasolutionof UCP(A'+A4,), i.e., no columnof S covers A, then Rec(A'+A,, ) =
{Su{s}|ie 04y}

So Rec(A’ + Ay, S) gives the solutions of UC P(A’ + A,) that can be obtained from the solution
of UCP(A’). According to rule 2, if S is not a solutionof UC P(A’ + Ay), then we obtain [O(A4,)]
solutions of UC P(A’ + Ap) by adding to S the columns covering Ap.

Theorem 3.1.1 For any irredundant solution S* € UC P(A’ + A,) there is an irredundant solution
S € UCP(A') such that S* is an element of Rec(A' + Ay, S).

Proof: Let S* be an irredundant solution of UCP(A’ + A,). Clearly S* is a solution of UC P(A’).
There are two cases:
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1. §* is irredundant for UCP(A’) too. In this case S* € Rec(A’ 4+ Ap, S*).

2. S* is redundant for UCP(A’). First of all, we show that in this case there is only one

redundant column and this is a column covering A,. Indeed a column of S* is irredundant
if and only if it covers a row not covered by others columns. Any column j in S* not
covering A, cannot be redundant for UCP(A'), since $* is irredundant for UCP(A’ + Ay).
Indeed, if j is redundant for UC P(A’) and does not cover A, then it remains redundant for
UCP(A' + Ap).
On the other hand, two (or more) columns cannot cover A,. Indeed, if two columns cover A,
and one of them is redundant for UC'P(4'), then it remains redundant for U CP(A'+ Ap)
(the column cannot become irredundant because there is no row in A’ + A, covered only by
it), which contradicts the condition that S* is irredundant for UCP(A’ + Ap).

S0 S* can be represented as S’ U {5} where j is redundant for UC P(A’) and it is the only
column from S* covering A, and S’ is an irredundant solution of UC P(A’) not covering A,.

Moreover, by definition of Rec, any solution of UCP(A’ + A,) represented as S’ U {j},
where S’ is an irredundant solution to UC P(A’) not covering A, and j € O(A,) is also in
Rec(A' + Ap, S").

So we conclude that for any irredundant solution S* € UC P(A'+ Ap) there is an irredundant
solution S € UCP(A') such that S* is an element of Rec(A’ + A,, S).

0
Notice that it is possible that Rec(A’ + Ap, S) may contain also redundant solutions.
Consider the following situation

€ €2 €3 €4 Cs5
4]0 1 0 1 0
1
A0
0
A’ has the following two irredundant solutions

(= =
O = O
o O O
- O

Sol = c1,¢C3,C5, C2,C3,C5
Then we compute Rec(A’ + A, S) as

Rec(A’ + Ap, Sol) = ¢1,c3,¢5,¢2; €1,€3,C5,€4; €2,C3,C5
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where the first two solutions come from cy, ¢3, ¢s and the last one from cz, c3, ¢s. The solution
¢1, €3, ¢s, ¢2 is redundant.

Corollary 3.1.1 Let Sol be a set containing all irredundant solutions of UCP(A'). Let Sol* =
Usesot Rec(A’ + Ap, S), then Sol* contains every irredundant solution S* € UCP(A' + Ap).

Proof: 1t is a direct consequence of Theorem 3.1.1. (]

3.2 Cubes of Solutions

In principle, given the operator Rec, one could add one row at a time to A’ and build the
set of irredundant solutions of UC P(A) from the set of irredundant solutions of UC'P(A’). This
“naive” approach must be discarded because of two disadvantages:

1. The size of the set of irredundant solutions may grow exponentially in the number of added
TOWS.

2. Suppose that we want to raise the lower bound of MSIR by 3 and that S is a solution of
UCP(MSIR). It may happen that in order to raise S by 3 we need to add only a small set
of rows from Row(A) \ Row(MSIR). Denote the set R(S). Let S’ be another solution of
UCP(MSIR) and suppose that to raise it by 3 we need to add a small set of rows R(S’).
The problem is that R(S) and R(S’) are usually different. This implies that when we add
rows to M ST R we want to add a minimal number of rows which raise all solutions of MSIR
by 3. But, since the small sets R(S) are usually different for different solutions S from
UCP(MSIR), we actually need to add almost all rows.

To solve the previous issues we propose to group solutions in clusters that can be raised by the same
rows from Row(A) \ Row(MSIR). This is achieved by the introduction of cubes of solutions, a
data structure inspired by multi-valued cubes. Applying the operator Rec to a cube of solutions one
obtains a collection of cubes of solution, thereby providing a natural clustering of the recomputed
solutions. In Chapter 4 we will use this idea to design a raising algorithm based on branching in
cluster of solutions, each cluster being one of the recomputed cubes of solutions.

Note however that cubes should not be considered as the only convenient way to cluster
solutions. We believe that studying clusters based on different data structures, e.g., binary decision
diagrams, will yield interesting results.



16 CHAPTER 3. REPRESENTATION AND RECOMPUTATION OF THE SOLUTIONS

As anticipated, we represent the solutions of UC P(A) by sets with a structure of multi-
valued cubes [7]. We define a cube to be the set C = D X - - - X Dg where D; N D; = @, ¢ # j and
D; Cc Col(A),1 < i,j < d. The subsets D; are the domains of cube C. So cube C denotes a set of
sets consisting of d columns. In contrast to common cubes used for the representation of multi-valued
functions, here cubes may have different numbers of domains. For example, if |Col(A)| = 10, then
sets C) = {1,5} x {2,6,7} x {3,4} and C; = {1} x {2,4} x {3, 7} x {5, 6, 10} are both cubes.

Let A’ be a MSIR of A. The set of all irredundant solutions (which are at the same time
minimum) of UC P(A’) can be represented as the cube O(A;,) X - - - X O(A;,), where A;, - -+, Ai,
are the rows forming A’.

Let A’ be a submatrix of A and A, be a row from Row(A) \ Row(A’). Let C =
D) x - -+ x Dy be a cube of solutions of UCP(A'). From the definition of the Rec operator it
follows that

Rec(A' + Ap,C) = partl(C) U part2(C) x O(4p) (€R))

where part1(C) is the set of solutions contained in C which cover A, and part2(C) is the set of
solutions contained in C' which do not cover Ap.
There are three cases:

1. If D; C O(A,) for some ¢, 1 < i < d, then any solution from C covers the row A, and so
Rec(A'+ Ap,C) =C.

2. If O(Ap) N D; = @ for any ¢,1 < i < d, then no solution from C covers A, and so
Rec(A' + A,,C) = C x O(Ap) = D1 x - -+ X Dg x O(4p).

3. If 1. and 2. are not true, i.e., no D; is a subset of O(A,) and O(A,) intersects at least one
domain (without loss of generality, we may assume that A, intersects the first r domains, i.e.,
Dy, -+, D,), then cube C can be partitioned into the following r 4 1 pairwise not intersecting
cubes:

Ci = DiNO(Ap) X Dy x-+-x Dy

C; = Di1\O(Ap) x DaNO(Ap) x D3 X -+ x Dy
C; = D1\O(Ap) x D2\ O(Ap) x D3NO(Ap) X Dy X -+ X Dy 3.2)

C, = Dl\O(Ap)X-"XD,-._l\O(Ap)XD,-ﬂO(A,,)XD,-.HX---XDd
Cry1 = Di1\O(Ap) x+++ X Dr_1\ O(Ap) X Dy \ O(Ap) X Dry1 X -++ X Dy
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It is not hard to check that the union C; U - - - U Cy.41 gives the cube C and that for any pair
Ci,Cj,i # 5,CiN C; = 0. Moreover, the first r cubes give the solutions of UC P(A’) from
C which cover A, and the cube C41 gives the solutions of UC P(A’) from C which do not
cover Ap. Therefore

partl(C) = CyU---UC,, part2(C)=Cyy1. 3.3)

Equations 3.1-3.3 realize the Rec operator as defined in Section 3.1 and characterized by Theo-
rem 3.1.1. Notice that here we force the Rec operator to generate non-intersecting cubes of solutions;
this is not a consequence of the definition of Rec, but is an additional requirement introduced now
to avoid considering the same partial solution in more than one branch.

We mentioned that in the computation of Rec some redundant solutions may be introduced.
The following revised definition of Rec avoids the generation of obviously redundant solutions
obtained from the application of formula 3.1. Namely, any solution S’ of UCP(A’ + A,) from
part2(C) x O(A,) that strictly contains asolution S of UC P(A'+A,) from part1(C) is redundant
since it contains more columns than S”.

Theorem 3.2.1 If the computation of the Rec operator is modified as follows:
Rec(A' + A,,C) = partl(C) U part2(C) x [0(4;) \ (D1U---UDg)]  (34)
no irredundant solution of A' + A, is discarded.

Proof: Let C = Dj x - -+ x Dy be the cube of solutions and A, the row to be added. Without loss
of generality assume that A, intersects the first  domains of C, r < d.

By construction part1(C) = Cy U---U C,, where Cx = D} x -+ x D}_; x Di x
Diy1 X +++ X Dg, 1 < k < r, D} = D;\ O(4,) and D} = Dy N O(A,). Moreover, part2(C) =
Dy x+++X D] X Dry1 X +++ X Dqy.

If we prove that any solution from the cube C* = part2(C) x (O(Ap) N D), is redundant,
where D = D; U - - -U Dy, we are allowed to replace the computation of part2(C) x O(Ap) with
the computation of part2(C) x (O(Ap) \ D).

Since, by distributivity of the Boolean operators U and N, D N O(Ap) = DYU---U Dy,
cube C can be rewritten as follows:

C* = part2(C) x (DN O(Ap))
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= part2(C) x (D{U---U Dy)
= part2(C) x D{U---Upart2(C) x D!

and so C* can be represented as C; U - - - U C; where Cy = part2(C) x D{,1<k<r.

Now define the cubes C}, 1 < k < r, obtained from part2(C) by replacing in turn D
with Dj}.. Cubes C}, and Cj, - which have the same number of domains - are constructed so that
cube Cj (obtained from part1(C)) contains cube C}, (obtained from part2(C)), as shown by a
component-wise comparison, using the fact that D . ; = Di41 \ O(4,),- -+, D; = D, \ O(4Ap):

Cr = Dix- +xXDj_yXD{XDgg1X++*XDyp X Dy X+++X Dy,
Ci = Dix-+XDj_y X D{XDjyy X+++X DX Dpy1 X+++X Dp.

Consider the k-th component of cube C*,for1 < k < r,

C; = part2(C) x DY,
= Dy{x--XD.XDyy1X+++%x Dy xD{

= Dyx--+XDj-++XD.XDpyy X++-x Dy x Df
and permute the domains D}, (from part2(C)) and D}

Ci = D{x++xDy++-xD]XDpyy X+--X Dy x Dj
= Cj X Dj.
Therefore any solution S from Cj, consists of a set of columns S’ € C}, and acolumn j € Dj. Since
C} contains C}, (as shown earlier) and by construction C}. is made of solutions of A’ which cover

also Ap, then S’ covers both A’ and A, and so column j is redundant in the solution § = S’ + ;.
So any solution from Cj, is redundant for1 < k < r. u]

3.3 Avoiding Repeated Generation of Solutions

Given UCP(A), suppose that C = Dy X Dy X --- x Dy is the cube of solutions of
UCP(A'), where A’ is a subset of rows of A. Then add row A,, which, say, intersects only the
domain D;. As argued in Section 3.2, the solutions of A’ + A, are found by

Rec(A'+ A,,C) = C1UC; x O*(4y)
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where

Ci = DixDyx---x Dy,

C; = D{xD;x---x Dy,

D} = Di1NO(4,),

Dll' = Di1\O(4,),
0*(4p) = O(Ap)\ D1

Now let S = (j1,72,"**,j4) be a solution from C) and S’ = (41, j2," -, Ja, Ja+1) be a solution
from C; x O*(A,), which differs from S; only by replacing j; with j] and by adding ji41 from
O*(A,). Suppose that there is a solution S” of UC P(A) containing a partial solution S U S’. Then
the same solution S” may be constructed both from the branch of cube C and the branch of cube
C> x O*(A,). In general this means that a solution may be generated more than once.

The reason is that, even though when forming D{ we remove from D, the columns
covering Ay, still it is possible to extend solutions from C) by adding columns from D; \ O(4,)
and O*(A,) and to extend solutions from Cz X O*(A,) by adding columns from D; N O(4,), so
that we may obtain from both branches the same partial solution from D NO(A4,) X D1\ O(4,) x
Dy x +++x Dg x O*(Ap).

To eliminate this possibility it is sufficient to avoid the consideration of solutions contain-
ing columns from O(A,) N D; in the branch of cube C x O*(Ap). Indeed, if we do so, a solution
containing the partial solution S U S’ can be found only in the branch of cube C}, because in the
branch of C, solutions containing columns from O(A,) N D; are not considered, whereas S U S’
contains such a column, i.e., column j;.

In summary, if A, intersects the first r domains of C, in the branch of cube Cj, 1 <
k < r + 1, where Cy contains k — 1 domains D; \ O(4,),t = 1,---,k — 1, we should avoid
generating solutions containing columns from (D} U D2 U -+ U Dg_1) N O(A). The following
lemma guarantees that no irredundant solution is missed by this restriction.

Lemma 3.3.1 LetCbea cub(; of solutions of U PC(A') and A, be a row from Row(A) \ Row(A’).
Let S be a solution of UC P(A) from Gen(C), where Gen(C) denotes all the solutions of UC P(A)
which contain a partial solution from C. Supposew.l.o.g. that A, intersects the firstr domains of C.
Then S can be generated in one of the r + 1 branches corresponding to the cubes Cr,1 < k < r+1,
even if in the branch of each cube Cx,1 < k < r + 1 we do not generate any solution containing
columns from (D1 U - - -U Di—1) N O(Ap).
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Proof: Let S be a solution of UC P(A) contained in Gen(C) (as a matter of fact there may be many
partial solutions from C covered by S). There are two cases:

1. There is a partial solution from C' contained in S which covers A,. Since part1(C) contains
all partial solutions from C covering A,, the partial solution from C' contained in S is in
some of the cubes Cj, - - -,C,. Let Cj, be the first of the cubes of part1(C) containing the
partial solution from C contained in S. Then the solution S is found in the branch of cube
C}. By hypothesis the solutions containing columns from (D; U - - - U Dyx_1) N O(A4,) are
excluded. But no column from S is contained in the set (D U - -U D) NO(A,). Indeed,
since S contains a partial solution from C, then D;NS # 0,1 <i < r. Eg, forr = 1,if
D1NO(Ap) NS # 0, then C, contains a partial solution from C contained in S. If not, i.e.,
if D;NO(Ap) NS = 0, then (D; \O(A4,)) NS # 0 (given DN S # 0, if D1NO(A,) does
not contain a column from S, then there is a column from S contained in D; \ O(A4,)).

In general, if for the first k — 1 < r domains Dy, - - -, Dy intersecting Ap, it is true that
D;NO(A,),1 < i < k—1does not contain a column from S, then there is a column from S
containedin D;\O(4,),1 < i < k— 1. If, for example, Dx NO(Ay) contains a column from
S, then the cube Cx = D1\ O(Ap) X * ++ X D1\ O(Ap) X DxNO(Ap) X D41 X -+-X Dy
contains a partial solution from C contained in S and among the columns that we neglect
@i.e., those in (D) U - - U Dg—1) N O(Ap)) in the branch of Cj, there are no columns of S
(because D; NO(A;) NS =0,1< i< k—1). So solution S can be found in this branch.

2. No partial solution from C contained in S covers A,. Then partial solutions from C contained
in S are in C,41. In the branch corresponding to Cy.4 all solutions containing columns from
(DyU---UD,) NO(A,) are excluded. But from the previous argument D; NO(A,) NS =
9,1 < i < r. So, again the solution S can be found in this branch.
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Chapter 4

The Raising Procedure

Fig. 4.1 shows how the branch-and-bound algorithm of Fig. 2.1 is modified to incorporate
the technique of incremental raise of the lower bound as discussed in Section 2.2. After the
computation of the lower bound, if the gap dif ference between the upper and lower bound is
small, i.e., less than a global parameter maz Raiser, a new procedure raiser is invoked with
parameter n = di f ference. The parameter maz Raiser currently is decided a-prior, but ideally
it should be adapted dynamically. Intuitively if the gap is small, we conjecture that a search in this
subtree will not improve the best solution and so we trigger the procedure raiser that may either
confirm the conjecture and prove that no better solution can be found here or disprove the conjecture
and improve one or more times the best solution, updating the current one.

4.1 Overview of the Raising Algorithm

As anticipated in Section 2.3, we propose a raiser procedure, based on cube (row)
branching !. Consider a covering matrix A, for which A’ = MSIR(A). We start with the set of
irredundant solutions of UC P(A’), represented by the cube C = O(4;,) X - - - X O(A;,), in which
A;,, -+, A;, are the Tows in the M SIR. Then choose a “good” row of A from those not in A', say
row A,. According to Equations (3.1-3.4), Rec(MSIR(A) + Ap, C) can be represented by r + 1
cubes where r is the number of rows of the M STR(A) intersecting A,. Then perform recursively
the process for each of the r + 1 cubes, i.e., choose a new row from those not yet selected for each
of the r + 1 cubes of solutions and split each cube according to Equations (3.1-3.4).

'In the sequel we will use the expression n-raiser to denote an invocation of the raiser procedure with a given
parameter n (e.g. we will use 1-raiser if n-raiser is invoked with n = 1)
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AuraMincov(A, path, weight, lbound, ubound) {
/* Apply row dominance, column dominance, select essentials and, if it is possible, Gimpel's reduction */  (1X2)
if (not reduce(A, path, wesght, ubound)) return empty._solution
if (gimpel_reduce(A, path, weight, lbound, ubound, best)) retur best

/* Find lower bound from here to final solution by independent set */ 3
MSIR = mazimal_independent_set( A, weight)
/* Make sure the lower bound is monotonically increasing */ @)

Ibound_new = maz(cost(path) + cost(M SIR), lbound)
dif ference = ubound — lbound_new

/* Bounding based on no better solution possible ¥/ ()]

if (dif ference < 0) best = empty.solution

else if (dif ference < maz Raiser){ /* Apply raiser with n = dif ference ¥/ 16)
SolCube = cover MSIR(MSIR) an
lower Bound = |SolCube| 18)
answer = ralser (SolCube, di f ference, A, lower Bound, bestSolution, ubound) 19
if (answer = 1) best = empty_solution 20)
else best = path U bestSolution /* (answer =0) %/ 1)

} elseif (A is empty) { I* New best solution at current level */ (6)
best = solution_dup(path)

} else if (block_partition(A, A, Az) gives non-trivial bi-partitions) { O
pathl = empty_solution
bestl = mincov(Ai, pathl, weight, 0, ubound — cost(path)) 8)
/* Add best solution to the selected set */ (€]
if (best1 = empty_solution) best = empty.solu.'tion
else { path = path Ubestl; best = mincov(Az, path, weight, lbound_new, ubound)} (10)

} else { /* Branch on cyclic core and recur */ an

dranch = select.column(A, weight, MSIR)

pathl = solution_dup(path) U branch

let Apranca be the reduced table assuming branch in solution (12)
best]l = mincov(Abranch, pathl, weight, lbound new, ubound)

/* Update the upper bound if we found a better solution */ (13)
if (best1 # empty_solution) ubound = cost(best1)

/* Do not branch if lower bound matched */ . (14)
if (best1 # empty_solution) and (cost(bestl) = lbound_new) return best1

let Ag—— be the reduced table assuming branch not in solution (15)
best2 = mincov(Ag——, path, weight, lbound_new, ubound)

branch?

best = best_solution(bestl, best2)

}

return best

Figure 4.1 AuraMincov: The Algorithm of Fig. 2.1 enhanced by incremental raising.
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The process can be described by a search tree, called cube branching tree. The initial
cube of solutions C' corresponds to the root node, to which we associate also a pair of matrices
MSIR(A) and A — MSIR(A) (i.e., matrix A without the rows of M SIR(A)). In each node a
choice of an unselected row from the second matrix of the node is made. The chosen row is removed
from the second matrix of the pair and added to the first matrix of the pair. So the first matrix gives
a “lower bound submatrix” for the node.

The number of branches leaving a node is equal to the number of cubes in which the cube
corresponding to the node is partitioned by the Rec operation, and each child of a node gets one of
the cubes obtained after splitting. So the cube corresponding to a node represents a set of solutions
covering the first submatrix of the pair.

When applying an n-raiser, we may prune the branches corresponding to cubes of more
than [MSTR(A)| + n domains. If at a node a row A, is chosen such that no solution from the
cube C of the node covers A,, then there is no splitting of the cube, since Rec yields only one cube
C x [O(Ap) \ (D1U- - -U Dy)]. The first matrix of the pair corresponding to a node gives a “lower
bound submatrix” for the node. At each node the following reduction rule can be applied to the
second matrix of the pair: if a row of the second matrix is covered by every solution of the cube C
corresponding to the node, then the row can be removed from the matrix since, if we add it to the
lower bound submatrix of the pair, then the recomputed cube will be equal to C.

The recursion terminates if one of the two following conditions hold:

1. There is a node such that there are no rows left in the second matrix of the pair and the
corresponding cube has k& domains, where £k < |[MSIR|+ n. This means that the lower
bound |M SIR| cannot be improved by n. Any solution from the cube can be taken as the
best current solution of UC P(A).

2. From all branches, nodes are reached corresponding to cubes with a number of domains
greater than | M SI R| + n. In this case the lower bound has been raised to |M S1R| + n, since
no solution S of UC P(A) exists such that |S| < |MSIR| + n.

4.1.1 Correctness of procedure n-raiser

The correctness of the n-raiser procedure, applied to matrix A withlower bound |[M SIR(A)|,
can be argued using the notions of subsolution or partial solution and of complete set of solutions,
introduced as follows.
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Aset S’ of columns of A is a subsolution or partial solution of UC P(A) if it is a solution
of a subproblem A’, but is not a solution of UC P(A).
4 Let C be the cube of subsolutions corresponding to M SIR(A), then C has the property

that for any solution S of UCP(A) there is a subsolution from C which is contained in S.

Indeed, since S covers all the rows of A, including those contained in M STR(A), then S contains
|MSIR(A)| columns covering the submatrix M SIR(A) that form a subsolution from C. A set of
subsolutions is complete if for any solution S of UC P(A) there is a subsolution from the set which
is contained in S. So the set of subsolutions contained in the cube C is complete.

Let S’ be a solution of subproblem UC P(A’). Denote by Gen(S’) the set of irredundant
solutions of UC P(A) that contain S’. Similarly, if C is a set of partial solutions, denote by Gen(C)
the set of irredundant solutions of UC P(A), each of which contains a solution from C.

 Lemma 4.1.1 Let S’ be a solution of UCP(A’) and Ay be a row from Row(A) \ Row(A'). Then
Gen(S') C Gen(Rec(A'+ Ap, S')) where Rec is the recalculation operation defined in Section 3.1.

Proof: Let S be a solution of UC P(A) containing S, i.e., S € Gen(S’). If S’ covers row A, then
Rec(A’ + Ay, S') is equal to {5’} and so Gen(Rec(A' + Ay, S')) contains S. If S’ does not cover
Ay, then Rec(A’ + Ap, S') contains every solution $' U {j}, j € O(A,). Moreover, S contains S’
and, since it covers Ay, it obviously contains acolumn j € O(4,). So again Gen(Rec(A'+ A4y, S'))
contains S. : o

From Lemma 4.1.1 it follows that the Rec operation preserves the completeness of a set
of subsolutions.

Theorem 4.1.1 The n-raiser procedure finds correctly a larger lower bound or a smaller upper
bound.

Proof: n-raiser starts with the set of solutions of UC P(M SIR), which is a complete set of partial
solutions of UCP(A). Since the Rec operation preserves completness, the set of all “boundary”
cubes, i.e., cubes corresponding to either leaf nodes of the search tree or to the nodes not yet split,
is a complete set of partial solutions. When we apply an n-raiser to A we actually try to find a
complete set of partial solutions containing at least | M S1R(A)|+ n columns. If such a set is found
then no solution of UC P(A) has less than | M ST R(A)| + n columns, and so the procedure n-raiser
succeeds in increasing the lower bound by =.
Suppose that there is no complete set of partial solutions consisting of atleast | M ST R(A) |+

n columns. It means that n-raiser finds a leaf node with a cube containing solutions of |[M STR(A)|+
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n' columns where 2’ < n. In that case we update the n-raiser into an n’-raiser and continue the
search. If the n’-raiser succeeds we return a solutionof | M STR(A)|+ n’ columns which is minimal.

If the n'-raiser fails then there is a solution of UC P(A) consisting of |M SIR(A)| + »"
columns, where n” < n’. Then we update the n/-raiser into an n"-raiser and continue the search. O

4.2 An Example of 1-raiser

As an example, apply an I-raiser to the following matrix A:

A A W=

O = OO = O
S = O = O ON
-_ O O = = OlWw
O O O = O =|s
-0 © O O =l
O O = = O O
O O = O O = |

Suppose that the set of rows A’ = {A4, As, Ag} is chosen as M STR(A). The set of irredundant
solutions of UC B(A’) is represented by the cube C = {1,2} x {3, 5} x {6, 7}. The aim of applying
an I-raiser to A is to improve the lower bound from 3 to 4. The root node of the search tree is
specified by the cube C and the pair of matrices A’, A” where Row(A") = Row(A) \ Row(A’).

Choose row A3 from A” to be added to A’. Since row A3 intersects all three rows of A,
according to (3.1-3.3) the set of all irredundant solutions of no more than 4 columns of A’ + Aj is
given by the following expression:

G = {2}x{3,5} x {67},
C2 = {1} x{3} x{6,7},
Cy = {1} x {5} x {6},

Cs = {1} x {5} x {7}

partl(C) = CL1UCUC3, part2(C) = Cy,
D = DyuU...uDy={1,2,3,5,6,7}
Sol(C,A'+ A3) = partl(C)UCs % (O(A3)\ D)
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where O(A43) = {2,3,4,6}and D = D;U...U Dy = {1,2,3,5,6,7},s0 that 2
Sol(C,A'+ A3) = part1(C)UCjy x {4}.

Cube C) describes the set of solutions from C covering A’ + A; in which A3 is necessarily
covered by a column of the first domain of C' (and maybe by columns of other domains) and so
C1 = {1,2} N O(A3) x {3,5} x {6,7}. Cube C, describes the set of solutions not contained
in C; in which row Aj is necessarily covered by a column of the second domain and so C; =
{1,2} \ O(A3) x {3,5} N O(A43) x {6,7} = {1} x {3} x {6,7}. Cube C3 describes the set of
solutions from C not contained in C; and C in which A3 is necessarily covered by a column of
the third domain. Finally, cube C4 describes the set of solutions of UC P(A’) from C which do not
cover row Az and so are not solutions of UCP(A’ + A3).

So the root node has four children nodes, each specified by one of the four cubes C; and by
the pair of matrices A’+ A3, A”— A3. Letus follow the branch corresponding to Cy = {2} x{3,5} x
{6,7}. Suppose thatrow A; is chosen from A" — A3 to be added to A’ + As. Since O(A4z) = {1, 3}
intersects only the second domain of C, C; splits in: C, = part1(C1) = {2} x {3} x {6,7},
C, = part2(C) = {2} x {5} x {6,7}.

So the node corresponding to C; has two branches whose pair of matrices are A'+ A3+ A2
and A” — A3 — Aj. Let us follow the branch corresponding to the cube C,. Only row A is left in
A" — A3 — A;. Since O(A;) = {4, 5, 7} intersects the third domain of C},, we have the following
splitting of Cy,: part1(Cy,) = {2} x {3} x {7}, part2(Cy,) = {2} x {3} x {6}.

The branch corresponding to the cube part1(C},) leads to the node at which the first
matrix of the pair is equal to A and so the second is empty. This means that the cube part1(Cj,)
contains solutions of A of 3 columns (in this case only one solution) and so the lower bound cannot
be raised to 4.

4.3 Detailed Description of the Raising Algorithm

The procedure raiser returns 1 if the lower bound can be raised by n, otherwise it returns 0,
which means that the current best solution has been improved at least once by raiser. The following

2Notice that we used Equation 3.4. Instead applying Equation 3.1, we would obtain:
Ca x O(43) = {1} x {5} x {7} x {2,3,4,6},

which includes the following additional solutions: {1} x {5} x {7} x {2}, {1} x {5} x {7} x {3}, {1} x {5} x {7} x {6}.
It is a fact that they are all redundant; their irredundant counterparts are respectively: {5} x {7} x {2}, {1} x {7} x {3},
{1} x {5} x {6}, and they aiready appearin part1(C).
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raiser(SolCube, n, A, lbound, bestSolution, ubound) {
/* retums 1 if solutions in SolCube raise lower bound of A by n */
stillToRaise = lbound + n — number_domains(SolCube)
if (stillToRaise < 0) return 1
/*1If A = @ then path + solutions of A in SolCube beats upper bound */
if (A=0) retum found_solution(SolCube, n, bestSolution, ubound)
/* consider rows of A not covered by any solution from SolCube */
BSONTIR = find.best_setof nonintersecting_rows(A, SolCube)
foreach row r; € BSON'IR { /* add a new domain for the columns covering r; € A */
SolCube = add_domain(SolCube, A, r;)
stillToRaise = stillToRaise — 1
if (stillToRasse < 0) return 1
}
A= A\ BSONIR /*Remove covered rows from A and check again if A is empty */
if (A=90) retum found_solution(SolCube,n,bestSolution, ubound)
if (stillToRasse = 1) {
/* Cover (with SolCube) and remove from A the 1-intersecting rows */
/* If 2 rows intersect 2 different cols in the same domain, prune the branch */
if (add_set_of _lintersecting_rows(A, SolCube) = 1) retum 1
if (A=0) retum found_solution(SolCube,n, bestSolution, ubound)
}
/* select next "best” row to be covered with SolCube and remove it from A */
r; = select best_uncovered_row(A, SolCube)
A=A\ {r:i} i
/* splitting: Part, = {SolCube, - - -, SolCubes}; Part; = {SolCubek+1} */
split_cubes(SolCube, A, r;, Party, Partz)
/* add to SolCubey 4y € Part; new domain of the columns covering r; */
SolCubek+) = add_domain(SolCubek41, A, ri)
/* branching on cubes of Part, and Part; */
returnValue =1
while (Part, U Part; # 0) {
/* select first cubes from Part), then cube from Part; */
SolCube; = get_nezt cube(Part; U Part;)
/* if a better global solution has been found set returnValue to 0 */
if (raiser(SolCube;j,n, A, lbound, bestSolution, ubound) = 0)
returnValue =0

}

return returnValue

Figure 4.2 The raiser algorithm.
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found_solution(SolCube, n, bestSolution, ubound) {
I* extract any solution from SolCube by picking a */
/* column from each domain and update global variables */
bestSolution = get_solution(SolCube)
newUbound = cost(bestSolution)
newN = n — (ubound — newlUbound)

n =newN
ubound = newUbound
return 0
}
Figure 4.3 Algorithm to handle terminal case A = 0.
parameters are needed:

e A is the matrix of rows not yet considered. Initially A = A’ \ MSIR, where A’ is the
covering matrix at the node (of the column branching tree) that called raiser, and MSIR is
the maximal independent set of rows, found at the node (of the column branching tree) that
called raiser. Hence A’ is the covering matrix related to the subproblem which is obtained
by following in the column branching tree tl{e choices of columns in the path from the root to
the node that called raiser. The set of chosen columns is denoted by path.

e SolCubeis a cube which encodes a set of partial solutions of the covering matrix A’. Initially
SolCube is equal to the set of solutions covering the MSIR.

e n is number by which the lower bound lbound must be raised. n is an input-output parameter
initially equal to ubound — | M SI R| —|path|, which is modified (decreased) if raiserimproves
(decreases) the best current solution.

o lbound is an input parameter for raiser equal to | M SIR|. Notice that lbound differs from
the original lower bound 3 by a quantity equal to |path|, for consistency with the previous
definition of n.

e ubound is the cardinality of the best solution known at the time of the current call of raiser.

3lbound_new = |MSIR| + |path]|.
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o bestSolution is the output of the procedure and contains the new best solution found by
raiser if the lower bound could not be raised by =, otherwise is meaningless.

Fig. 4.2 shows the flow of raiser, the procedure that attempts to raise the lower bound of
A. Notice that it requires a routine split.cubes which, for a selection of arow r; covered by & of the
d domains of SolCube, partitions SolCube in k + 1 disjoint cubes, each of d domains; so Part;
has k cubes of solutions from SolCube covering r;, whereas Part; has one cube of solutions from
SolCube not covering r;. The number of domains of SolCube is computed by number_domains.

raiser is a recursive procedure which starts by handling two terminal cases. The first
one occurs when the variable stillToRaise 4, which measures the gap between the upper bound
and the current lower bound, is less or equal to zero. If so, we know that the solutions in SolCube
raise the lower bound of A by at least n, so that no solutions of A can beat the current upper bound.
The second terminal case occurs when, after some recursive calls, A has become empty, and so any
solution in the union of the solutions of A in SolCube together with the columns in the current
path is the new best solution. Fig. 4.3 shows the housekeeping operations to update the variables
bestSolution, ubound and n.

After performing these preliminary checks, the computation reaches the call of routine
find_best_set_of non_intersecting_rows, a routine which returns a set of rows of A denoted by
the acronym BSONZIR. The code of this routine, which is reported in Figure 4.4, implements a
fast heuristic to find a good subset of rowsvof A which do not intersect any domain of SolC'ube and
which do not intersect each other. Ideally, we would like to get the best BSONZR which is a sort
of “maximum set of independent rows” related to SolCube, but this would require the solution of
another NP-complete problem. Therefore we are satisfied insert sequentially rows into BSONIR
on the basis of the following criterion: we pick the largest row non intersecting neither a solCube
domain or those row which have been just inserted into BSONIR.

Once we have completed the previous selection, each row r; in BSONIR is not covered
by any solution encoded in SolCube and, therefore, we must add a new domain to SolCube made
by the columns which cover r;, While we are adding these new domains, we keep decreasing the
variable stillToRaise and checking if its value becomes equal to zero. Finally, we can remove the

“By definition

stillToRaise = lbound + n — number Domains(SolCube) =
|MSIR| + ubound — |MSIR| — |path| — number Domains(SolCube) =
ubound — |path| — number Domains(SolCube)
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find.best_set.of non_intersecting_rows(A, SolCube) {
/* Heuristic returning the best set of rows non intersecting solCube domains. */
/% Ideally we would like the M STR among rows non intersecting solCube domains. */
emptyInterRows = 0
bestRow =0
foreachrowr € A {
/* D is the set of SolCube domains intersected by r */

D = compute_set_of intersected_domains(SolCube, r)

f(P=90){
emptyInter Rows = emptyInter RowsU r
if bestRow < r
bestRow=r
}

}

/* If every row intersects solCube domains then return the empty set */
if (emptyInter Rows = 0)
retum 0
else {
/* Let's build BSON IR starting from best Row */
do {
BSONZIR = bestRow
emptyInter Rows = emptylnter Rows \ best Row
previousBest Row = bestRow
bestRow = 0 )
/* Find the new best Row within emptyInter Rows*/
foreach row r € emptyInter Rows {

if r N previous Best Row
emptylInter Rows = emptyInter Rows \ r
else if bestRow < r
bestRow = r
}
} while (emptyInter Rows # 0)
}
return BSONIR

Figure 4.4 Algorithm to find the best set of rows non-intersecting solCube.
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set BSONZIR from A because the rows have been covered by the new added domains.

Notice that during the first call of raiser the set BSONZR is empty because SolCube
encodes the MSIR and, by definition, every row not in the M SIR must intersect at least one
row in the M STR. However, during the following recursive calis of raiser the original domains
of SolCube may change, namely decrease in cardinality due to the actions taken in the routines
split_cubes and add_set_of _lintersecting_rows(A, SolCube). Hence, at some node of the re-
cursion tree, it may very well happen that a row of A is not covered anymore by any domain of
SolCube.

After having removed the rows belonging to BSONZR, another optimization step can
be applied successively before splitting SolCube. If at this point stillToRaise is equal to 1, it
means that we have already raised the lower bound by » — 1. Therefore, if we are forced to add one
more domain to SolCube, then we can prune the current branch. Hence, a simple condition which
leads immediately to pruning is the following: consider two rows r; and r; of A which intersect
SolCube only in one domain d = {c!, ¢, - - -, c'}, and suppose that r, intersects only the column
¢, while r, intersects only the column ¢/, This fact allows us to prune the current branch because to
cover one of the rows we can choose either one of the two distinct columns of the domain. Without
loss of generality, say that we cover r) with ¢', then to cover r, we must use a column which does
not belong to any domain of SolCube and so we are forced to add one more domain to SolCube,
thereby raising the lower bound by n.

Figure 4.5 illustrates the procedure add set o f _lintersecting_rows(A, SolCube) which
exploits the previous situation and, in practice, is invoked often because the condition stillT'oRaise =
1 happens very commonly in hard problems. Basically, the routine is based on two nested cycles.
The external cycle is repeated until the internal cycle does not modify SolCube anymore. The
internal cycle computes, for each row r of A, the set D of the domains of SolC'ube intersected by
r. If the cardinality of D is equal to 1, e.g., D = {d}, we remove from d all the columns which are
not intersected by r and then we remove r from A, since r has been covered.

Notice that add_set_of _lintersecting_rows is called just after we removed from A the
set of non-intersecting rows BSONZR and therefore all the remaining rows of A intersect at least
one domain of SolCube. However, after cycling inside this routine and removing some columns
(which makes “leaner” some domains), it is possible that a row of A is not covered anymore, i.e.,
| D| = 0. Asdiscussed above, this happens, e.g., when two 1-intersecting rows intersect two different
columns in the same domain D. In this case the routine returns 1 in order to inform the caller to
prune the current branch. If this fact does not happen before the end of both cycles, a 0 is returned
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add_set.of lintersecting_rows(A, SolCube) {
/* This routine is called only if stillToRaise = 1. It covers */
/* with SolCube and removes from A the 1-intersecting rows, */
/* i.e., the rows intersecting only one domain of SolCube. */
/* If 2 rows intersect 2 different columns in the same domain, */
/* return 1 to the caller to prune the current branch */
do {
reducingDomains = FALSE
foreachrow r € A {
/* D is the set of SolCube domains intersected by r */
D = compute_set_of intersected_domains(SolCube, r)
f(IDl=1){
reducingDomains = TRUE
* Get the domain d of SolCube covering r and */
/* remove from d all the cols which do not cover r */
d = get_covering.domain(SolCube, r)
simpli fy domain(d,r)
/* Remove the covered row r from A */

A= A\{r}
}
elseif (| D |=0) {

/* After removing some columns, a row may not be */

/* covered anymore, so current branch must be pruned. */
}

/* else (| D |> 1): do nothing */
/* because r is not a 1-intersecting row */

}

} while (reducingDomains)
return 0

Figure 4.5 Algorithm to handle the 1-intersecting rows.
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but, at least a certain number of rows have been removed from A and the corresponding intersected
domains of SolCube have been made “leaner”. After calling add_set_of -lintersecting_rows
and removing 1-intersecting rows, it is possible that A has become empty. If so, raiser calls
found_solution to update the variables bestSolution, ubound and n.

After all these special cases have been addressed, we must select a new row r; to be
covered with SolCube. The row r; is removed from A and drives the splitting of SolCube. The
selection of r; is performed by select_best_uncovered_row, shown in Fig. 4.6. The strategy to
select the best row in order to split the current SolCube, before calling recursively raiser, looks
for the row of A which intersects the minimum number of domains of SolCube. The reason is to
reduce the number of branches from the node, i.e., the number of domains intersecting the row to
be added plus 1. Notice that at this stage each row of A intersects at least 2 domains of SolCube.
In case of ties between different rows, the row having the highest weight is chosen. The weight of

arow A, is defined as:
1 D4l

it [Diel
where m is the number of domains of SolC'ube intersecting A,, D;, is a domain intersected by A,
and D!, = D;, \ O(A,). So the weight of A, is just the fraction of solutions from SolC'ube that
do not cover A,, which we want to maximize when selecting a new row. If D} = 0, for some k,

this means that A, is covered by any solution from SolCube. Such a row is simply removed from
A” and added to A’.

The splitting of SolCube is done as explained in Section 3.2. Then raiser is called
recursively on the disjoint cubes of the recomputed solution. If the current best solution is not
improved in any of the calls, then raiser returns 1, meaning that the lower bound has been raised by
n. If instead the current best solution has been improved once or more times, raiser returns 0 after
having updated the current best solution and upper bound.
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select best_uncovered_row(A, SolCube) {
/* Return the row which intersects fewer domains of SolCube. */
/* When it is called each row of A intersects at least one domain */
bestIntersectedRowNum = 0o
bestWeight =0

foreachrowr € A {
intersected RowNum = 0
wesght =1
foreach domain D € SolCube {
if(r nD){

intersected RowNum = intersected RowNum + 1
Dz = rowMinus(D,r)

w=|D:|/|D]|

weight = wesght * w

}

if (intersected RowNum < bestIntersectedRowNum) {
bestIntersected RowNum = intersected Row Num
bestWeight = weight
bestRow =r

} else if (intersected Row Num = bestIntersected Row Num) {
/* Tiebreaker: pick the row with the highest weight */
if (weight > bestWeight) {
bestIntersected Row Num = intersected RowNum
bestWeight = weight
bestRow=r

}

return best Row

Figure 4.6 Algorithm to select the best row to be covered.
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Chapter 5

Of Lower Bounds there is No End

5.1 Maximal Independent Set Lower Bound

The cardinality of a maximum set of pairwise disjoint rows (i.e., there are no 1s in the
same column) is a lower bound on the cardinality of the solution to the covering problem, because
a different element must be selected for each of the independent rows in order to cover them. If the
size of current solution plus the size of the independent set is greater or equal to the best solution
seen so far, the search along this branch can be terminated because no solution better than the
current one can possibly be found. Since finding a maximum independent set is an NP-complete
problem, in practice a heuristic is used that provides a weaker lower bound. Notice that even the
lower bound provided by solving exactly the maximum independent set problem is not sharp. In [8]
an example of size O(n?) is given, whose minimal solution has cost O(n), but whose lower bound
by independent set is 1. In practice a lower bound by independent set is poor when the covering
matrix is dense.

5.2 Limit Lower Bound

In [1] new rules to prune the search space were introduced. One such rule, called limit
lower bound, has been shown of great effectiveness in practice. Given a covering problem A that
corresponds to a node of the computation tree N, define the following notation: let A.min be the
cost of a minimum solution, A.lower the value of a lower bound on A.mén, A.path the cost of the
partial solution from the root to node N, and A.upper the cost of the best solution found so far.
Then the following holds.
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mincov(A, path, weight, lbound, ubound) {
* Apply row dominance, column dominance, select essentials and, if it is possible, Gimpel’s reduction */
if (not reduce( A, path, weight, ubound)) return empty_solution
if (gimpel_reduce(A, path, weight, lbound, ubound, best)) return best
MSIR = mazimal_independent_set(A, weight)
lbound_new = maz(cost(path) + cost(M SIR),lbound)
/* Test if it is possible to apply Limit Lower Bound */
emptyIntersection = true
while (A # 0) and (lbound.new + 1 > ubound) and (emptylIntersection)){

}

/% Remove from A columns having no intersection with MSIR */
emptylIntersection = false
foreach columnc € A
if (not check:intersection(M SIR,c)) {A=A\{c} emptylntersection= true }
if (not reduce(A, path, weight, ubound)) return empty_solution
MSIR = mazimal_independent_set( A, weight)
lbound_new = maz(cost(path) + cost(M SIR),lbound)

/* Bounding based on no better solution possible */

if (lbound_new > ubound) best = empty.solution

else if (A is empty) { best = solution_dup(path) } /* New bestsolution at current level */
} else if (block_partition(A, Ai, A2) gives non-trivial bi-partitions) {

pathl = empty_solution

bestl = mincov(A,, pathl, weight, 0, ubound - cost(path))

if (bestl = empty_solution) best = empty.solution /* Add best solution to the selected set */
else { path = path Ubestl; best = mincov(A2, path, weight, lbound_new, ubound)}

} else { /* Branch on cyclic core and recur */

}

branch = selectcolumn(A, weight, MSIR)

pathl = solution_dup(path) Ubranch

let Asranch be the reduced table assuming branch in solution

best] = mincov(Abranch, pathl, weight, lbound_new, ubound)

/* Update the upper bound if we found a better solution */

if (best1 # empty_solution) /* It implies (ubound > cost(best1)) */
ubound = cost(best1)

* Do not branch if lower bound matched */

if (best1 # empty_solution) and (cost(best1) = lbound_new) return best1

let Ag5; be the reduced table assuming branch not in solution

best2 = mincov(Ag—omop path, weight, lbound_new, ubound)

best = best_solution(bestl, best2)

return best

Figure 5.1 The Algorithm of Fig. 2.1 enhanced by the “limit lower bound” technique.
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Theorem 5.2.1 (Limit lower bound). Given a binate covering problem A, let I be an independent
set of the rows, i.e., a set of unate rows intersecting no common column. Let A.lower be a lower
bound from the independent set I, i.e., the sum of a minimum cost column for each row in I.
Consider the set B of the columns b that do not intersect rows in I and such thatb € B only if

A.path + A.lower 4 Cost(b) > A.upper.

Then the columns in B and the rows that intersect them in a 0 can be removed from the covering -
table and a minimum solution can still be found.

A proof can be found in [2]. In practice in the common case that all columns have cost 1 if included
in a solution, one needs only to check whether

A.path + A.lower 4+ 1 > A.upper,

If so, all the columns that do not intersect rows in the independent set I can be removed 1
Experimental results in [1] on exact two-level minimization show strong gains by this new pruning
technique, resulting in reductions of the search space up to three orders of magnitude.

Fig. 5.1 shows the branch-and-bound algorithm of Fig. 2.1 enhanced by the limit lower
bound. When the condition lbound_new + 1 > A.upper is true, the columns of A which do not
intersect the M STR are deleted . Then the matrix is reduced again and the M SIR is recomputed.

This sequence of actions is iterated as long as lbound_new + 1 > A.upper holds and until nothing
changes.

5.3 Lower Bound by Incremental Raising

We develop an example that shows how to raise the lower bound incrementally by means
of our technique, developed in Chapter 4. Consider the following matrix A that cannot be reduced

1Together with the rows that they intersect in a 0, in instances of binate covering (see Chapter 7).
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by dominance.
012345¢617829
0|11 00000O0O00O0
110011000000
210000110000
3j[0 000001100
411 0 00000010
5|01 00000010
6({0 01 000O0O0O0T1
7{0 001 000 0O01
8]0 000011000
9i10 0 0 01 00100
Suppose that Ay is the submatrix corresponding to the node N of a column branching

search tree, such that ubound = 6 and |path(An)| = 0.

An MSIR is made by the 4 rows Ag, A1, A2 and Aj3. Since ubound — |path(An)| —
|MSIR| = 2, the limit lower bound does not apply. Instead we can apply a 2-raiser. Initially the
cube of solutionsis Cp = {0, 1} x {2, 3} x {4, 5} x {6, 7}. Select row A4 from the rest of the matrix.
Applying the operator Rec, the cube Cy splits into two cubes: C) = {0} x {2, 3} x {4,5} x {6,7}
and C; = {1} x {2,3} x {4,5} x {6,7} x {8}. -

Consider the branch corresponding to C . Select row As that is not covered by any solution
inC}. So adomain mustbe added to C, whichbecomes C; = {0} x {2,3} x {4, 5} x{6,7} x{1,8}
Now select row A, which intersects only the second domain of C;. As a result C; becomes
Cy = {0} x {2} x {4,5} x {6,7} x {1,8). But no solutionin C} covers row A and therefore one
should add one more domain, and so the lower bound is raised to 6 and we can prune the search.

Consider the branch corresponding to Ca. If we select row Ag, which intersects only the
second domain of Cs, then C; becomes C; = {1} x {2} x {4,5} x {6,7} x {8}. But no solution
in C; covers row A7 and therefore one should add one more domain, and so the lower bound is
raised to 6 and we can prune the search.

Summarizing, by using a 2-raiser the search requires 1 node of the column branching
search tree and 3 nodes of the row branching search tree. The same example with the limit lower
bound requires 5 nodes of the column branching search tree. Finally 9 nodes are required with a
standard implementation that relies only on the M SIR to find a lower bound. It is important to
notice that a node of the row branching search tree is much less expensive than a node of the column
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branching search tree.

For ease of comparison, Fig. 5.2 shows the column branching search tree of the matrix
A, constructed by calling the original mincov of ESPRESSO. We explain how the parameters change
at each node. We refer to the numbers of the nodes in the picture; notice that to the upper right
of each node there is a pair of numbers, being respectively lbound (left) and ubound (right). The
reader is advised to follow the run on the algorithm presented in Fig. 2.1. The procedure mincov
has been called on matrix Ay, = Ay with ubound = 6 to simulate the assumption that Ay is a
submatrix at the node N of a column branching tree, whose root starts with a matrix A, of which
the currrent best solution has cardinality 6 2.

Node 1 Parameters of mincov: lbound = 0, ubound = 6, path = 0,

01234567809]
0: 11
1: 11
2: 11 .
3: 11

Avy=14: 1 1

5: 1 1 .
6: 1 1
7: 1 1
8: 11 .
9 . . . 1. .1 . .

No reduction of A, is possible. MSIR = {0, 1,2, 3}. After recomputation of the maximal
independent set we have lbound = 4, ubound = 6, path = (. Matrix Ay, is decomposed
into two submatrices Ay, and An;.

Node 2 Parameters of mincov: lbound = 0, ubound = 6, path = 0,

1 8
1

(=
— s | O

AN, =
2 1

LS:.II

This assumption has been made in order to build a simple example which brings out the different behavior of the
algorithms being compared.
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No reduction of A is possible. MSIR = {0}. After recomputation of the maximal
independent set we have lbound = 1, ubound = 6, path = (). Branching on column 0.

Node 3 Parameters of mincov: lbound = 1, ubound = 6, path = {0}.

1 8
AN3= ————————
5: 11

Aj is empty after column dominance and selection of essential column 1. After recomputation
of the maximal independent set we have lbound = |path|+|MSIR| = 1+1 = 2, ubound =
6, path = {0, 1}. Returns the solution best = {0, 1}. Back to node 2, ubound = |best| = 2.

Node 4 Parameters of mincov: lbound = 1, ubound = 2, path = 0.

[ 1 8]
0: 1 .
AN, =
4: 1
[ 5: 1 1

During reduction, after row dominance and selection of essential columns 1 and 8, this node
is pruned because |path| = 2 > ubound = 2.

Node 5 Parameters of mincov: lbound = 4, ubound = 6, path = bestnode1 = {0,1}.

23456789
11

AN =

O 00 N3 O W N =
—
—

i

No reduction of As is possible. MSIR = {1,2,3}. After recomputation of the maximal
independent set we have lbound = |path| + |MSIR| = 2+ 3 = 5, ubound = 6, path =
{0, 1}. Matrix Ay, is decomposed into two submatrices An, and An,.
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Node 6 Parameters of mincov: lbound = 0, ubound = uboundyoges — |pathnodes| =6 —2 =4,

path = 0.
23 9]
1: 11
AN, =
6: 1 . 1
7: . 1 1]

No reduction of Ag is possible. MSIR = {1}. After recomputation of the maximal
independent set we have lbound = 1, ubound = 4, path = (. Branching on column 2.

Node 7 Parameters of mincov: lbound = 1, ubound = 4, path = {2}.

39
7: 11

A7 isempty after column dominance and selection of essential column 3. After recomputation
of the maximal independent set we have lbound = |path|+|MSIR| = 141 = 2, ubound =
4, path = {2,3}. Returns the solution best = {2, 3}. Back to node 6, ubound = |best| = 2.

Node 8 Parameters of mincov: lbound = 1, ubound = 2, path = §.

3 9]
1: 1
AN3=
6: . 1
| 7: 1 1

During reduction, after row dominance and selection of essential columns 3 and 9, this node

is pruned because |path| = 2 > ubound = 2.
Node 9 Parameters of mincov: lbound = 5, ubound = 6, path = pathn,ges U bestlnodes =
{0,1}uU {2,3} = {0,1,2,3}.

456 7)
11

AN, =

2

3. .

8§: . 11
9: 1 . . 1]
No reduction of Ag is possible. MSIR = {2,3}. So the lower bound becomes |path| +
|MSIR| = 4+ 2 = 6 and this node is pruned at line (5) of Fig. 2.1 because lbound = 6 2

ubound = 6.
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@ Ibound = 4 / ubound = 6

Deco

172
Pick0 \card 0
comp\

: @ *

Pick1 Pick2 Discard 2
{0,1} Pruned
G’D 12 ’ p7)
2,3}

Figure 5.2 Search tree of Ay in Section 5.3 by mincov of ESPRESSO.

The procedure mincov enhanced by the limit lower bound prunes the previous search
tree at Node 5. More precisely, it discovers that lbound + 1 =5+ 1 = 6 > ubound = 6 and so it
removes from the matrix

[ 23456709)]
1: 11

2: 11 .

An, = 3: 11

6: 1 1
7: 1 . . 1
8: .11

_9: 1 1 |
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column 9 which does not intersect any row of the MSTR = {1, 2, 3}. The result is the matrix

23456 7]
1: 11 .
2: 11
3: 11

AN"= 6: 1

7: 1
8: 11
9: 1 l_

whose MSIR is now {6,7,8,9}. This raises the lower bound to lbound = |path| + |[MSIR| =
244 = 6, enabling to prune the node because lbound = 6 > ubound = 6 and so no better solution
is possible.



45

Chapter 6

Experimental Results

We have implemented a program AURA to solve UCP and we have compared it with the
routine mincov available in ESPRESSO, with MINCOV_LLB, that is our implementation of some features
of SCHERZO, and with the results of the real SCHERZO implemented by O. Coudert. The program
SCHERZO is the most effective solver of UCP previously reported. Its main features described in
the literature [1, 8, 6] include a better heuristic selection of the M SIR, logarithmic lower bound,
left hand side lower bound, limit lower bound, and partition-based pruning. Of these features we
have implemented in MINCOV_LLB, to the best of our understanding of the original description, the
following two: better heuristic selection of the MSIR and limit lower bound. The limit lower
bound is a major novelty of SCHERZO, which accounts for strong savings in the number of nodes of
the computation tree compared to the original mincov of ESPRESSO.

The benchmarks belong to three classes: in Table 6.1 there are difficult cases from the
collection of ESPRESSO (we start from the matrix obtained by ESPRESSO after removing the essential
primes), in Table 6.2 there are random generated matrices with varying row/column ratios and
densities, in Table 6.3 there are matrices encoding constraints satisfaction problems from [9]. For
each of these matrices, we report in Table 6.4 their size and their sparsity. The experiments were
performed with a 2GB 300Mhz Alpha with timeout set to 3 days of cputime.

The tables report two types of data for comparison: the number of nodes of the column
branching computation tree and the running time. About the number of nodes we clarify that

1. AURA has two types of nodes: those of the column branching computation tree and those of
the cube branching computation tree (called A-nodes in the tables). Indeed AURA follows
a dual strategy, i.e., it builds the column branching computation tree, but when at a node



46 CHAPTER 6. EXPERIMENTAL RESULTS

the difference between the upper bound and the lower bound is less or equal to the raising
parameter r (or maz Raiser), AURA calls the procedure raiser which builds a cube branching
computation tree, appended at the node where raiser was called. So we need to report both
numbers of nodes to measure a run of AURA.

2. Nodes of the cube branching computation tree usually take much less computing time than
those of the column branching computation tree, even though it is not known a-priori a time
ratio between the two types of nodes. The reason is that in each node of the column branching
mode, expensive procedures for finding dominance relations and the M SI R are applied.

3. The raising parameter is an input to AURA. Currently we have experimented with some values
and we report in the tables the value used in a specific run. The higher is the raising parameter,
the fewer column branching nodes compared to cube branching nodes there will be. With a
value high enough, there will be a single column node and the rest will be all row nodes.

We compared also with the real SCHERZO, whose author was kind enough to run for us
the examples. There is a large gap in many cases between the results of SCHERZO and those of
MINCOV_LLB, which is our implementation of a subset of SCHERZO, A major reason may be that
our reimplementation of the better heuristic selection of the MSIR; even though it follows the
hint given by Coudert, in practice it does not mimic well enough the one in SCHERZO; moreover, as
already said, SCHERZO features additional improvements that we did not implement. It is important
for comparison results to underline that:

1. both AURA and MINCOV_LLB exploit the same re-implementation of Coudert’s better heuristic
selection of the MSIR,

2. AURA could be improved noticeably by reproducing more successfully the better heuristic
selection of the M ST R or any other feature of SCHERZO. In other words, AURA demonstrates
a dual search technique, which may benefit from other improvements to standard branch and
bound.

3. overall SCHERZO has been implemented more efficiently, as magnified also by the circumstance
that it is comparatively faster on a slower machine.

The experiments show that AURA outperforms ESPRESSO and MINCOV_LLB. It is always
faster and in the most difficult examples either it has a running time advantage up to two orders of
magnitude or the other programs fail due to timeout (3 days) or spaceout (2G)..Instead SCHERZO
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is a very tough competitor, which is faster on the examples from Table 6.1, but has a less effective
pruning strategy in those of Tables 6.2 and 6.3, partially compensated by a better MSIR. The
example saucier:t is an extreme case where the virtues of AURA prevail.

Recently O. Coudert kindly provided us with a copy of SCHERZO, to let us analyze in
depth the comparative features of the two programs. We will report on the study as soon as done.
We expect to transfer to AURA the better computation of the M SIR apparently implemented in
SCHERZO.

We do not have a systematic comparison with the results by BCU, a recent ILP-based
covering solver [10). However, the intuition is that an algorithm based on linear programming is
better suited for problems with a solution space diversified in the costs, i.e., for problems which
are “closer” to numerical ones. To test the conjecture we asked the authors of [10] to run BCU
on saucier.t, whose solution space is poorly diversified (a minimum solution has 6 columns, while
most of the irredundant solutions cost in the range from 6 to 8). BCU ran out of memory after 20000
seconds of computations (the information was kindly provided by S.Liao), while AURA completed
the example in less than 3 minutes.

matrix | Sol. | ESPRESSO SCHERZO MINCOV_LLB AURA

nodes | time | nodes | time | nodes | time | modes/A-nodes | time | r
exps 76 13| 0.0 na na 13 0.0 13/0 0013
fout 38 161 | 1.3 na na 49 0.7 18/44 022
max512 | 113 111} 14 na na 25 04 19725 0413
addm4 165 121 | 3.6 na na 29 1.1 17/11 0612
mlp4 109 | 2122 | 22.6 24 0.1 153 4.3 34/206 1313
pdc 94 195 | 62.7 4 6.1 88 58 41/132 529 |3
lin.rom 120 370 29.1 238 4.7 106 10.1 61/240 7713
exs 37 - | time | 616091 | 2450.5 | 597644 | 214300 155/169245 | 13152 | 4
prom2 278 - | time | 25993 | 5149.2 - time | 1478/1097624 | 240714 | 3
max1024 | 245 - | time | 531618 | 9583.6 - time | 12402/3850628 | 36240 | 3

Table 6.1 Results from Espresso Benchmarks
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matrix | Sol. SCHERZO MINCOV_LLB AURA
nodes | time | nodes | time | nodes | time | nodes/A-nodes | time | r |
90 | 2] 135 26| 2] 00 3 03] 31 o013
tc.70 2 135 35 2 0.0 3 0.2 n 013
tc.50 3 2569 | 139 107 0.6 107 23 5/32 011}3
tc.30 41 12047 | 378 65 0.3 1061 7.1 11/203 023
tc.10 8 843 33 90 0.1 131 0.7 17/166 013
tr.10 8| 12466 | 59.6 | 2077 4.1 2232 21.1 94/2529 2913
.20 51 16905 49 | 1823 3.9 2193 19.2 31/951 1713
tr.30 3 947 9.5 63 09 61 34 5126 0313
tr.40 2 73 4.3 2 0.0 3 0.6 3/1 033
ts.90 2 175 | 21.2 2 0.0 3 2.6 3/1 113
ts.70 3 5083 47.0 167 53 163 15.8 5/112 0713
ts.50 4| 66147 | 3164 | 4011 | 20.2 3137 67.3 7/1030 1613
ts.30 51116307 | 7928 | 1752 8.5 8997 | 139.6 35/1108 2513
ts.10 12 - | time | 95573 | 187.3 175255__1_255.1 5043/201091 | 1293 | 3
Table 6.2 Results from Random Generated Matrices
matrix | Sol. | ESPRESSO SCHERZO MINCOV_LLB ~ AURA
nodes | time | nodes | time | modes | time | nodes/A-nodes | time | r

bbara 7 61| 0.02 0 0.0 7 0 7/2 0|3
dk512x 6 213 024 55 0.0 571 0.15 9/24 004 | 3
ex4inp 51 5279 | 16.81 17 0.3 19 | 0.66 9/14 02713
exSinp 4 64| 0.05 4 0.0 6| 0.01 6/2 00113
ex6inp 4 639 | 0.54 35 0.0 103 | 0.28 7123 00313
maincont 7 504 | 0.69 68 0.0 101 04 11/12 00613

opus 5 121 0.1 7 0.0 5| 001 52 001 |3

ricks 5 20| 037 10 0.2 12| 0.36 8/43 03313
saucier 6 - | mem | 186927 5441.0 -|{mem| 10/76 | 22247 | 3

Table 6.3 Results from Encoding Problem Matrices




[mattix | R x C(Sparsity) [ Sol |
exps 680 x 696 (1.2%) | 76 |
fout 177 x 431 (2.4%) 38
max512 559 x 515 (1.3%) 113
addm4 832 x 1073 (0.6%) | 165
mip4 530 x 594 (0.99%) | 109
pdc 6904 x 19021 (0.34%) | 94
lin.rom 1030 x 1076 (0.9%) | 120
ex5 831 x 2428 (2%) 37
prom2 | 1924 x 2611 (0.31%) | 278
max1024 | 1090 x 1264 (0.52%) | 245
tc.90 50 x 100 (90%) 2
tc.70 50 x 100 (70%) 2
.50 50 x 100 (50%) 3
tc.30 50 x 100 (30%) 4
t.10 50 x 99 (10%) 8
tr.10 100 x 50 (20%) 8
r.20 100 x 50 (40%) 5
tr.30 100 x 50 (60%) 3
r.40 100 x 50 (80%) 2
15.90 . 100 x 100 (90%) 2
ts.70 100 x 100 (70%) 3
t5.50 .100 x 100 (50%) 4
15.30 100 x 100 (30%) 5
ts.10 100 x 100 (10%) 12
bbara 45 x 26 (41%) 7
dk512x 91 x 59 (45%) 6
ex4inp 91 x 240 (46%) 5
ex5inp 36 x 34 (48%) 4
ex6inp 28 x 96 (48%) 4
maincont 105 x 67 (35%) 7
opus 45 x 63 (45%) 5
ricks 78 x 363 (47%) 5
saucier 171 x 6207 (47%) 6

Table 6.4 Characteristics of the Benchmarks
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Chapter 7

Future Work

7.1 Extension to Binate Covering

71.1 Definition of Binate Covering Problem and Related Work

At the core of the exact solution of various logic synthesis problems lies often a so-called
covering step that requires the choice of a set of elements of minimum cost that cover a set of
ground items, under certain conditions. Prominent among these problems are the covering steps in
the Quine-McCluskey procedure for minimizing logic functions, selection of a set of encodeable
generalized prime implicants, state minimization of finite state machines, technology mapping and
boolean relations. Let us review how the binate covering problem is defined formally.

Suppose that a set S = {s1,...,5n} is given. The cost of s; is ¢; where ¢; > 0. By
associating a binary variable z; to s;, whichis 1if s; is selected and O otherwise, the binate covering
problem (BCP) can be defined as finding S’ C S that minimizes

zn: CiTi, (701)

=1
subject to the constraint
A(z1,%2,. .-, z,) =1, (1.2)

where A is a boolean function, sometimes called the constraint function. The constraint function
specifies a set of subsets of S that can be a solution. No structural hypothesis is made on A. Binate
refers to the fact that A is in general a binate function (a function is binate if it has at least a binate
variable). BCP is the problem of finding an onset minterm of A that minimizes the cost function
(i.e., a solution of minimum cost of the boolean equation A(z1,22,...,%s) = 1).
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If A is given in product-of-sums form, finding a satisfying assignment is exactly the
problem SAT, the prototypical N P-complete problem ( [11]). In this case it also possible to write
A as an array of cubes (that form a matrix with coefficients from the set {0, 1,2}). Each variable
of A is a column and each sum (or clause) is a row and the problem can be interpreted as one of
finding a subset C of columns of minimum cost, such that for every row r, either

1. 3j suchthata;; = landc; € C,or
2. 3j suchthate;; =0andc; ¢ C.

In other words, each clause must be satisfied by setting to 1 a variable appearing in it in the positive
phase or by setting to O a variable appearing in it in the negative phase. If A is given in product-
of-sums form one can say that the assignment of a variable to 0 or 1 covers some rows that are
satisfied by that choice. The product-of-sums A is called covering matrix or covering table. In a
unate covering problem, the coefficients of A are restricted to the values 1 and 2 and only the first
condition must hold.

As an example of binate covering formulation of a well-known logic synthesis problem
consider the problem of finding the minimum number of prime compatibles that are a minimum
closed cover of a given FSM. A binate covering problem can be set up, where each column of the
table is a prime compatible and each row is one of the covering or closure clauses of the problem [12].
There are as many covering clauses as states of the original machine and each of them states that a
state is covered by any of the prime compatibles in 'which it is contained. There are as many closure
clauses as prime compatibles and each of them states that if a given prime compatible is chosen,
then for each implied class in the corresponding class set one of the prime compatibles containing
it must be chosen too.

In the matrix representation, entry (¢, ) is 1 or O according to the phase of the literal
comresponding to prime j in clause ¢; if such a literal is absent the entry is 2.

Various techniques have been proposed to solve binate covering problems. A class of
them [13, 14] are branch-and-bound techniques that build explicitly the table of the constraints
expressed as product-of-sum expressions and explore in the worst-case all possible solutions, but
avoid the generation of some of the suboptimal solutions by a clever use of reduction steps.

A second approach [15] formulates the problem with Binary Decision Diagrams (BDD’s)
and reduces finding a minimum cost assignment to a shortest path computation. In that case the
number of variables of the BDD is the number of columns of the binate table.
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A mixed technique has been proposed in [16] by Jeong and Somenzi in [16]. Itis a
branch-and-bound algorithm, where the clauses are represented as a conjunction of BDD’s. The
usage of BDD’s leads to an effective method to compute a lower bound on the cost of the solution.

Notice that unate covering is a special case of binate covering. Therefore techniques for
the latter solve also the former. In the other direction, exact state minimization, a problem naturally
formulated as a binate covering problem, can be reduced to a unate covering problem, after the
generation of irredundant prime closed sets [17). But there is a catch here: the cost function is not
anymore additive, so that the reduction techniques so convenient to solve covering problems, are
not anymore applicable as they are.

7.1.2 Computation of MSIR

For applying the paradigm of “pegative” thinking to the binate covering problem (BCP)
we need to start from the computation of M SR as we do for the unate covering problem (UCP). In
the BCP case we compute a M ST R of the rows having only 1s and dashes (as it is done in standard
implementations of the binate solver) and then we augment it maximally by adding non-intersecting
rows. The latter rows are useless for lower bound estimation, but should be added to the lower
bound submatrix, when forming an initial matrix for the raiser procedure, because further addition
of rows and recalculation of the solution space may discover sooner costly cubes of solutions to be
bounded away.

For instance, suppose that an augmented M SI R consists of three rows {z1, 22}, {3, 24}
and {Zs, z¢}. From the lower bound point of view the lastrow is useless, since it does not contribute
to the lower bound estimate (equal to 2) due to the costless assignment zs = 0. Suppose t0 add
row {Zs, z7} to the previous M SIR . After recomputation there are two cubes of solutions. The
first cube {z1, 2} X {z3, 24} X {Fs} corresponds to the assignment zs = 0 and contains solutions
of cost 2. The second cube {z1, 22} X {z3,24} X {2576} X {z7} corresponds to the assignment
z5 = 1 and contains solutions of cost 5.

7.1.3 Cubes of Solutions

We revise the definition of solution cube to accommodate the fact that a solution may
require positive and negative literals. A solution cube is a set of solutions represented by

C=DyxDyx:--xDy
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where D; is a set of partial solutions consisting of assignments to some variables from the set
var(D;), which is the support of D;. The sets var(D;),¢ = 1,---, n are disjoint. We define the
minimal cost of the solutions contained in C as cost(D)) + - - - + cost(Dg), where cost(D;) is the
minimal cost of the solutions contained in D;.

An example of a cube of solutions is C = D; X D;, whete Dy = {Z122, 21,2223},
var(D,) = {71, %2, 23} D2 = {2425, 2526}, var(D2) = {24, =s, z6}. For instance, 71z, denotes
the partial solution with z; = 0 and z2 = 1. The cube C contains 6 (6 = 3 x 2) solutions. Since
cost(D,) = 1(Z1z; and z; have both cost 1) and cost(D;) = 2 (z4z5 and z5z¢ have both cost 2),
then cost(C) =1+2=3.

Notice that in the unate covering formulation there are no products of literals in a domain
D, which then consists only of a collection of single literals.

7.1.4 Recomputation of Solutions

The recalculation Rec(C, A'+ A,) of C can be described by formulas structurally similar
to Equations (3.1-3.4), but with a different interpretation of the involved operations. Let the cube
C of solutions of matrix A’ be

C=DyxDyx-+xXDy
Denote by var(C) the set var(D;) U - - - U var(Dy) and by ver(Ap) the set of variables occurring

inrow A,.
Equation 3.4 is modified to

Rec(A' + Ap,C) = partl(C) U part2(C) x sol'(Ap)

where sol’(Ap) is the set of solutions covering A, and consisting of variables var(4,) \ var(C).
Moreover, in the definition of part1(C) and part2(C) the operators N and \ must be replaced as
follows:

1. Instead of the operation D; N O(Ap) use the operation D;(1sol(Ap), where sol(A,) are
solutions covering A, consisting of variables in var(D;). Operation 1 returns all irredundant
solutions either

(a) included in D; and covering A, or

(b) extensions (by setting variables from var(D;) N var(A,)) which cover A, of solutions
in D; not covering Ap.
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2. Instead of the operation D; \ O(A,) use the operation D;\O(4,) returning all irredundant
solutions either

(a) included in D;, not covering A, and not extendable to cover A, (by setting variables
from var(D;) N var(Ap)), or

(b) extensions (again, by setting variables from var(D;) N var(Ap)) which do not cover
A, of solutions in D; not covering A,.

We introduce an example to clarify the previous extension to the binate case of the
recomputation rule presented in Chapter 3 for the unate case. Let C = D; X D; be a cube of
solutions, with D1 = {27, z3} and D2 = {%4,%s} and let A, = 7} + 25 + 27 be the row to be
added. After the recomputation of solutions, cube C yields three cubes Cy, C; and Cs:

C1 = {z3T1} x {T4,%s}

C, = {z1%2, 2371} X {Zazs}
Cs = {z132,z321} X {Ts5,%4T5}
partl(C) = CLUC:
part2(C) = C3

Rec(A'+ Ap,C) = partl(C) U part2(C) x {z7}.

Cube C is equal to D x D5, where D is the set of the solutions from D covering A, or
of the extensions (by setting variables from var (D)) N var(A,)) which cover A, of solutions from
D not covering A,. In fact, z,Z2 does not cover A, and cannot be extended to cover A, (assigning
values to free variables from var(D;) N A,, i.e., variable z3). Solution 23 does not cover Ay, but it
can be extended to cover A, by assigning 0 to z,, so that D1’ = {z371}.

Cube C; is equal to D x Dj, where DY is the set of the solutions from D) not covering
A, and not extendable to cover Ay, or the extensions (by setting variables from var(Dy) Nvar(A,))
which do not cover A, of solutions from D not covering A,. So D1” = {z%2,2321}. In fact,
the first solution of D), 17>, does not cover A, and is not extendable to cover Ap, because the
extensions in the domain z;, z2, z3 of 2,72 are z1Z>z3 and z1%,Z3 which do not cover A,. The
second solution of D), z3, does not cover A, and its extension z3z) in the domain zy, z2, z3 does
not cover A, either, while the extension z3Z; does. So z3z; is in Dj.

D), consists of the solutions from D covering A, or extendable to cover A, by assigning
a value to variables from var(D3) N var(A,). In fact, D, contains Z4 and 75, of which Z5 cannot
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be extended in the domain z4, z5 to cover A,, while T4 can be extended to Z4z5 to cover A,.

Cube C3 = DY x D} contains the solutions from D not covering A, and not extendable
to cover Ap, or the extensions (by setting variables from var (D) N var(A,)) which do not cover
A, of solutions from D, not covering A,. D, contains Z4 and Fs. Solution Z5 does not cover A,
nor any of its extensions in the domain z4 and z5 does, while T4 has an extension Z4%s which does
not cover A, and an extension T4zs which covers A,. Since in Dj the conjunct Z47s is subsumed
by %5, we can remove the former, so that var(D%) ends up as equal to {zs}. Therefore in general
after the recalculation the support of the domains of the cubes may shrink.

The additional domain {z7} multiplied by part2(C) describes the solutions covering A,
by setting variables from var(A;) \ ver(C).

The following rule to obtain the domains D} and D}, given the domain D; and arow A,
can be given.

Recomputation rule. Suppose w.l.o.g. that A, = d(z1) + - - - + d(zp), where d(zx)
is either z), or Ty, and that var(D;) N var(A,) consists of variables z,--+,z,,7 < p. To get
D! multiply each solution from D; by each literal d(zx),k = 1,---,r. To get D multiply each
solution from D; by the product term d(z;) -- - --d(z.,). If a solution from D; implies d(z ) then that
solution is added to D/. If the result of multiplying a solution by d(z) is empty then that solution
is added to DY. After obtaining D/ and D, remove conjuncts subsumed by other conjuncts.

Theorem 7.1.1 The recomputation of Rec(A’ + A,, C) with the previous recomputation rule yields
a collection of non-overlapping solution cubes whose union is exactly the set of all the irredundant
solutions of A" 4 A,.

7.2 Other Applications of Incremental Problem Solving

To underline its versatility, we show how incremental problem solving can be applied to
the following problems: graph coloring (GC), traveling salesman problem (TSP) and satisfiability
(SAT). We do not provide ready-to-use algorithms, but only demonstrate the applicability of IPS to
different problems.

Notice that when solving an optimization problem as a starting point for IPS we can
always employ a “lower bound” subproblem from a traditional BAB formulation. Such lower
bound subproblems are used because they are easy to solve, due to the simple and regular structure
of their solution space which can be represented in a compact form.
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Graph Coloring Let G = (V, E) be a graph to be colored. Suppose that we need to prove that
there is no n-coloring of G. A lower bound subproblem of GC(G) is GC(G'), where G’ is
a complete subgraph G’ of G of maximal size. Let Col(V'’) be an assignment of colors to
vertices from V. The solution space Sol(G') of GC(G') is exactly the set Perm(Col(V")),
where the operator Perm generates all |V’|! permutations of Col(V").

However, in G there may be several subgraphs of maximal size not intersecting each other.
Denote by Gy, - -, Gy, all such complete subgraphs of maximal size, where G; = (V;, E),
Vi C V, E; C E,|Vi| = |V;| and V; does not intersect Vj, i # j, i =1, - -, n. Obviously the
choices of the G;s can be made in different ways.

The set of all minimal colorings of G U - - -UG), is exactly equal to Perm(Col(V1)) X « - - X
Perm(Col(V,)). So we can choose GC(G'), where G’ = G1 U+ - UGy, V! = V1U---UV,
and E' = E; U ---U E,, as a starting problem. Then we approach GC(G), by adding each
time to G’ a vertex v from V \ V” and all edges E(v) connecting v from E \ E'. To that
effect, one can formulate rules to recalculate the solution space from Sol(G’) to Sol(G"),
where G = (V”,E"), V" = V' U {v} and E” = E’ U {E(v)}. Once the solutions of the
augmented graph are recomputed, the solutions with » or more colors are discarded.

Traveling Salesman Problem Let C = {cy,- - -,cq} be the set of cities and D be the distance
matrix where D;; specifies the distdnce between cities ¢; and c;. TSP is the problem to find
a minimal distance tour going through all cities of C..

Suppose that we need to prove that T'S P(C, D) has no solution costing less than ubound.
Denote by D’ the matrix all whose elements are equal to m, where m is the minimal distance
between two cities from C. TSP(C, D) is a lower bound subproblem of T'SP(C, D).
Denote by I (C) an assignment of integers 1, - - -, d to the cities from C specifying a tour. Then
the set of minimal solutions Sol(C, D") of TSP(C, D') is exactly Perm(I(C)), because
every tour has the same cost d - m. So we can use T'S P(C, D) as a starting problem in the
IPS paradigm.

Then we approach TSP(C, D) from T'SP(C, D') by replacing each time an element D;;
with the corresponding element D;;, so that the two matrices D and D' become closer. One
can formulate rules to recalculate the solution space of the modified cost matrix. After the
recomputation, any solution costing more or as ubound is discarded.

Satisfiability We conclude with an example of IPS applied to a decision problem, SAT, i.e.,
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satisfiability of a conjunctive normal form (CNF). Suppose that the input is a CNF C=
Dy----- D,, of n implicates. Denote by Lit(D;) the set of literals occurring in D;.

Let Indep(C) = D,, - - -, D;, be a set of implicates from C of maximal size not intersecting
each other, i.e., for D;, D;, i # j, 41 < & < dp, 1 £ j £ ip,, it is the case that Lit(D;)
and Lit(D;) do not intersect. The set of solutions of Sat(Indep(C)) can be represented as
A;, X -+« X A;,, where A;, is a set of assignments satisfying implicate D;, . For example if
D;, = z5+ 77 the set of assignments satisfying D;, consists of two elements: {zs = 1,27 =
0}.

Then we approach Sat(C) by adding to Indep(C) implicates of C not containedin Indep(C).
One can formulate rules to recalculate the solution space after adding a new implicate. There
will be solutions of the starting problem that cannot be extended to solutions of the augmented
CNE, because of contradictory requirements on the assignments.
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Conclusions

We have presented a new technique to solve exactly a discrete optimization problem,
based on the paradigm of “negative” thinking. The motivation is that when searching the space of
solutions often a good solution is reached quickly and then it is improved only a few times before
the optimum is found; so most of the solution space is explored to certify optimality, but it does
not yield any improvement in the cost function. This suggests that more powerful lower bounding
would speed up the search dramatically, as shown by the introduction of the limit lower bound [1].
Our approach is more radical because when we are dealing with a subspace of solutions unlikely to
improve the upper bound, we switch the search strategy to a different one geared to raise the lower
bound. A key technical contribution to design a search strategy which realizes negative thinking is
the introduction of cubes of solutions, a data structure inspired by multi-valued cubes. Applying the
operator Rec to a cube of solutions one obtains a collection of cubes of solution, thereby providing a
natural clustering of the recomputed solutions. As argued in this dissertation, clustering is required
to design a recursive algorithm based on branching in subsets of solutions and allows the lower
bound to be raised independently starting from different subsets of solutions.

For illustration we applied our technique to the unate covering problem, usually solved
exactly by a branch-and-bound procedure, where lower bounds are obtained by means of an in-
dependent set of rows, and branches are on columns. We have designed a dual search technique,
called raiser, which is invoked when the difference between the upper bound and the lower bound
is within a parameter maz Raiser, that we are free to set. The procedure raiser tries to detect a hard
core of the matrix to be solved (lower bound submatrix), augmenting an independent set of rows in
order to increase incrementally the cardinality of the minimum solutions that cover it. Eventually
either this incremental raising yields a lower bound that matches the current upper bound and so we
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are done with this matrix, or we produce at least one better solution. raiser defines a computation
tree whose nodes have associated a lower bound submatrix and a cube of solutions. The selection of
a next row induces the recomputation of all the solutions of the lower bound submatrix augmented
by the next row, as disjoint cubes of solutions. Each such cube together with the augmented matrix
defines a new node; operationally raiser calls itself recursively passing as parameters each such
disjoint cube of solutions and the augmented lower bound submatrix. It would be interesting to
explore a mixed approach where one accumulates some cubes of solutions at the same node and
fewer recursive calls are made, trading off time vs. memory.

The reported experiments show that our program AURA, outperforms ESPRESSO and MIN-
COV_LLB, which is the algorithm in ESPRESSO enhanced by our implementation of Coudert’s limit
lower bound. The package SCHERZO is faster than AURA on the examples from Table 6.1, but it has
a less effective pruning strategy in the examples of Tables 6.2 and 6.3, partially compensated by a
better MSIR.

Future work includes a more careful study of some algorithmic design issues, like the
selection of the next row, trading-off number of nodes vs. number of cubes stored in a node, and
setting automatically and adaptively the raiser parameter. Also of great interest is the extension of
our algorithm to the binate covering problem and to other exact search problems.

A more basic line of research is the exploration of data structures different from cubes
of solutions, but still enjoying their nice properties, since the latter are just the simplest way
of representing sets of partial solutions. We believe that studying various ways of implicitly
representing sets of solutions is a promising direction of investigation to rescue branch-and-bound
from its current limits.
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