

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

NEGATIVE THINKING IN SEARCH PROBLEMS

by

Luca P. Carloni

Memorandum No. UCB/ERL M97/89

12 December 1997

NEGATIVE THINKING IN SEARCH PROBLEMS

by

Luca P. Carloni

Memorandum No. UCB/ERL M97/89

12 December 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Negative Thinking in Search Problems

Luca P. Carloni

Abstract

Weintroduce a new technique to solve exactly a discrete optimizationproblem, based on

theparadigm of"negative" thinking. When searching thespace ofsolutions, often a good solution

is reached quickly and then improved only a few times before the optimum is found: hence most

of thesolution space is explored to certify optimality, butit does notyield any improvement in the

costfunction. So it is quite natural for an algorithm to be "skeptical" about the chance to improve

the current best solution. This suggests that more powerful lower bounding wouldspeed up the

search dramatically, as shown by the good results obtained byOlivier Coudert withits "limitlower

bound" technique [1]. Our approach is more radical than Coudert's because, when wedeal with

a subspace of solutions, if appropriate, we switch the search strategy to a different onebased on

negativethinking by incremental problem solving.

Forillustration wehaveapplied ourapproach totheunatecovaingproblem. Wedesigned

aprocedure, raiser, implementing a negative thinking search, which is incorporated intoacommon

branch-and-bound procedure, raiser is invoked at a node of thesearch tree which is deep enough

to justify negative thinking, raiser tries to detect a hard core of the matrix corresponding to the

node by augmenting an independent set of rows in order to increase incrementally the costof the

minimum solutions covering the matrix. Eventually either raiser prunes the subtree rooted at the

node(having found a lower boundequal or greater thanthe current bestsolution) or returns a new

solution that becomes the current best one.

We developed a program, aura, based on this paradigm. Experiments showthat AURA

outperforms both espresso andourenhancement ofespresso using Coudert^s limitlower bound.

It is always faster and in the mostdifficult examples eitherhas a running time betterby up to two

orders of magnitude, or the otherprograms fail to finish due to timeout or spaceout. The package

SCHERZO developed byOlivier Coudert is faster onsomeexamples andloseson others, dueto a less

powerful pruning strategy of the search space, partially mitigated by a more effective computation

of the maximal independent set.

Acknowledgements

I wouldliketo thankmyadvisorProfessor AlbertoL, Sangiovanni-Vincentelli foritsencouragement

andsupport during thesefirst years atBerkeley. Alberto hasalways given methe timeandfreedom

to choose myresearch areaandI amexcited by thepCTSpective of working withhimto achieve my

Ph.D. degree.

I am very grateful to Professor Robert K. Brayton, who has been a constant point of

reference formyresearch, toHziano\filla, my"maestro" at Berkeley, andto Evguenii I. Goldberg,

who came from Belarus to share his many bright ideas with us.

Thepresent work, bomfrom an ideaof Evguenii, is a joint effort withall thesepeople.

m

Contents

List of Figures v

List of Tables vii

1 Positive Thinkingand Negative Thinking 1
1.1 Branch-and-Bound and the UnateCovering Problem 1
1.2 Incremental Problem Solving 3

2 Incremental Problem Solving 5
2.1 A Branch-and-Bound Algorithm for Minimum CostUnate Covering 5
2.2 Incorporating an Incremental Solver intoBranch-and-Bound 8
2.3 Incremental Improvement of theLower Bound 10

3 Representation and Recomputation of the Solutions 13
3.1 Recomputation of theSolutions 13
3.2 Cubes of Solutions 15
3.3 Avoiding Repeated Generation of Solutions 18

4 The Raising Procedure 21
4.1 Overview of the Raising Algorithm 21

4.1.1 Correctness of procedure n-rawgr 23
4.2 AnExample of 1-raiser 25
4.3 Detailed Description of the Raising Algorithm 26

5 Of Lower Bounds there Is No End 35
5.1 Maximal Independent Set LowerBound 35
5.2 Limit Lower Bound 35

5.3 LowerBoundby Incremental Raising 37

6 Experimental Results 45

7 Future Work 51

7.1 Extension to Binate Covering 51
7.1.1 Definition of Binate Covering Problem and Related Work 51

iv CONTEmS

7.1.2 Computation of MSIR 53
7.1.3 Cubes of Solutions 53

7.1.4 Recomputationof Solutions 54
7.2 Other Applicationsof IncrementalProblem Solving 56

8 Conclusions 59

References 61

List of Figures

2.1 A branch-and-bound algorithm forcovering problems 7
2.2 Branch-and-Bound enhanced byincremental solver 9

4.1 AuraMincov: The Algorithm ofFig. 2.1 enhanced byincremental raising 22
4.2 The raiser algorithm 27
4.3 Algorithm tohandle terminal case A= 0 28
4.4 Algorithm tofind the best set ofrows non-intersecting solCube 30
4.5 Algorithm tohandle the1-intersecting rows 32
4.6 Algorithm toselect thebest row tobecovered 34

5.1 The Algorithm ofFig. 2.1 enhanced bythe "limit lower bound" technique 36
5.2 Search treeof in Section 5.3by mincov of espresso 42

Vll

List of Tables

6.1 RGS\iitsf£om Espresso Benchmarks 47
6.2 Results from Random Generated Matrices 48
6.3 ResaWstcomEncodingProblemMatrices 48
6.4 Characteristics of the Benc/imarfo 49

Most of us may not believe in the storyof a Devil to whom one can sell one's soul,
but thosewhomustknow something about the soul (consideringthat as clergymen,
historians, and artists they draw a good income from it) all testify that the soul
has been destroyed by mathematics and that mathematics is the source of an evil
intelligence that while making man the lord of the earth has also made him the
slave ofhis machines.

R. Musil.

Chapter 1

Positive Thinking and Negative

Thinking

1.1 Branch-and-Boimd and the Unate Covering Problem

Acommon approach to find an exact solution to problems in combinatorial optimization

is branch-and-bound (BAB), which improves over exhaustive enumeration, because it avoids the

exploration of some regions of thesolution space, when it can certify by means of lower bounds

that they do not contain a solutionbetter than the currentbest one.

lb ground theexposition in a concrete domain, weconside* BAB applied to thesolution

of the UnateCovering Problem (UOP), that is of greatinterest in logic synthesis and operations

research. UCP can be stated as follows.

Definition 1.1.1 Given: A Boolean matrix A (all entries are 0 or 1), with m rows, denoted as

Row(A), andn columns, denoted as Col(A), anda cost vector cofthe columns ofA (ci is

the cost ofthe i-th column).

Minimize: The cost x^c = XjCj, over allx e {0,1}",

Subject to:

Ax> (1,1, ••• ,1)^. (1.1)

TheconstTaiiiti4 z > (1,1, , 1)^, ensures that the nonzero dements ofz determine a coltunn

setS = {j \xj = 1},which "covers" all rows of A, that is,

Vi, 3jeS such that A,j = 1.

2 CHAPTER 1. POSITIVE THINKING AND NEGATTVE THINKING

Hius the minimumunatecovering problem is to finda columnsetof minimum cost,whichsatisfies

the constraintEquation 1.1. We shall discuss mainlythe special case of this problemfor which

Cj = 1, Vj. Exertions to thisassumption willbespecifically noted in thesequel. We willdenote

an instanceof UCP withmatrixA as UCP(A).

A completesurvey of the covering problem fioom the perspective of the logic synthesis

conununity can be found in the fifth chapter of the book "Synthesis of Finite State Machines:

Functional Optimization" by T. Kam et. al [2]. An exact solution of the covering problem is

obtained by a branch-and-bound recursive algorithm, which has been implemented in successful

computer programs [3, 4]. Branching is done by columns, i.e., subproblems are gen^ated by

consideringwhether a chosen branchingcoluirmis or is not in the solution.

A run of the algorithm, call it mincov, can be described by its computation tree. The

root of the computation tree is the input of the problem, an edge represents a call to mincovy an

internalnode is a reducedinput. A leaf is reachedwhen a completesolutionis foundor the search

is bounded away. Fromtheroot to anyinternal nodeth^e is a uniquepath,whichis thecurrentpath

for that node. The path leading to the nodegives a partialsolution and a submatrix Afj obtained

from the A by removing somerowsand columns. On the path somecolumns are included in the

partial solution;we denoteby path(AN) the setof columnsincludedin the partial solution.

Suppose thatwe know that any minimal cover ofAn isgreater orequal toavalue L(Ajv).

The value is called a Iowct bound of the solutions of UCP{An)' So the size of any solution of

UCP(A) including the columns inpat/i(Ajv) is greater orequal to L{An) + \path{AN)\' So if

we found before a solution best with the same or a smaller number of columns, i.e.,

\best\ < L{An) -\-path{AN)

we can stop the recursionand backtrackto the parentnode of An.

Denote by K{An) the value 16esf| - L(An) —\path{AN)\. Thecondition to stopthe

recursion is given by K(An) < 0. Ontheother hand, if K(An) hasa large positive value, usually

it means that L(An) is far from the size of a minimal solution to UCP(An) and so "a lot of

branching"is expected from An before a leaf can be reached.

Suppose that there is no way of improving the solution best in the search tree rooted

at An, yet K(An) is positive. Usually a branch-and-bound algorithm mustcontinue branching.

However, thereis anotherwayof makingK (An) negativeor zero: it is to improvethe lowerbound

L(An).

The first way is "positive", in the sense that the algorithm tries to construct a better

1.2. INCREMENTAL PROBLEM SOLVING 3

solution, andbranching columns arechosen in thehopeof improving thecurrent bestsolution. Hie

second way is '̂negative", in the sense that the algorithm tries to disprove that th^e is a better

solution in the tree rooted at An.

lb compare die roleof "n^ative" and '̂positive** ways of search, notice that at the n-th

level of the computation tree we can haveup to 2" nodes, i.e., subproblems. It is an experimental

fact that usually in the first leaf, a solution very closeto the minimum oneis found, so only a few

improvements are required to get a Tninimnm solution. Therefore **positive" searchwill succeed

andyielda newbettersolution onlyin a fewof the 2" subproblems. In the ovowhelmingmajority

of the subproblems "n^ative" searchis morenatural. The less frequently the best currentsolution

is improved duringthe search, the more"negative" searchis justified. In turn this is relatedto how

much the solutionspace is "diversified", i.e., different solutions have different costs. Notice that

BAB uses "negative thinking" in optimization problems by finding lowerbounds, and in decision

problems by checking the consistency of the partial solution withthe current subproblem.

1.2 Incremental Problem Solving

lb exploit both "positive" and "negative" search, BAB is modified as follows. We

start solving the initial problemwith "positivethinking"in the ordinarycolunmbranching mode,

called PT-mode. Then, when the number of subproblemsgeneratedin the colunm branching mode

becomes large "enough", each subproblem is solved in the "negative thinking" mode, calledNT-

mode. In optimizationproblems modes are switched depending on theratioof theexpected number

of improvements to the number of subproblems generated at this level of the search tree. The

smaller the ratio, the more appropriate is to switch to the NT-mode.

Let P be a subproblem to be solved in NT-mode and suppose that, if the cost of P is

greater than a given ubound, then solving P cannot give a better solution (w.l.o.g., assume we are

solvinga minimizationproblem). The aim of the algorithmin the NT-mode is to provethat there is

no solution of P with cost less than ubound.

We proposea newwayto implement "negative thinking": incremental problem solving

(IPS). When solving a problem P inCTementally, westart with a subproblem P' of P, such thatthe

solutions of P' can be represented compactly. Then we modify gradually P* by making it more

complex to come closer to the full problemP and we recomputethe set of solutionsof the modified

problem. When applying "negative thinking", we try to find first the most difficult "obstacles" in

the sequence fromP' to P with the goal to provethat no solutionof P' can overcome the obstacles

4 CHAPTER 1. POSITIVE THINKING AND NEGATIVE TMNKJNG

and be extended to a solution of P.

More precisely, letP' bea subproblem of P such that its setof solutions Sol{P') can

berepresented ina compact form. Each solution ofP' from Sol{P*) can beconsidered asa seed
from whidi one maygrow somesolutions of P. In the NT-mode, the algorithm triesto showthat

no solution of P with co8t{P) < ubound can grow from any solution S £ 5o/(P'). A naive

iq)proach is toform asequence ofproblems Pi, •••,Pn* where Pi = P' and Pn = P. Ateach step

one recomputes Sol(Pi) starting from 5o/(P-i) and discards all solutions in Sol{Pi) with a cost
greater than ubound. If, afro: removing the solutions costing more than ubound^ Sol(Pi) = 0, for
somePut < n, thentho'eis nosolution of P with costlessthanubound. A direct implementation

of this approach has two drawbacks:

1. The sizeof the representation of Sol (P) may growexponentially.

2. There are different ways of^proachingPfrom P'. Each specific seed solution5 € Sol(P')

is extended more quickly to a solution costing more than ubound by a specific sequence of

augmentations, different from those appropriate for another solution .§ € Sol(P').

As a remedy wepropose theparadigm of clusterization ofsolutions. We group in a cluster the

solutions that are similar, in the sense of having the same witnesses of the fact that they cannot

produce solutions of P costing lessthanubound.

Inthisworkwepresentanincremental UCPsolvercalled rawer. Althoughwedemonsfrate

ourtechnique on UCP it canbe applied to any discrete optimization problem witha monotone cost

function, i.e., for which a minimum solutionof a subproblem has a smaller cost than that of the

initial problem.

Theideasdiscussedin thisdissertation werepresentedforthe firsttimeat theInternational

Conference on Computer-Aided Design (ICCAD) on November 1997 [5].

Thedissertation is organized asfollows. In Chapter 2 wefirst review briefly howUCP is

solved traditionally by branch-and-bound andthen weshow how aninaementalsolver is incorpo

rated into the standardbranch-and-bound procedure for UCP. Ch£q)ter 3 describeshowthe solutions

ofUCP are rqjresented and recomputed. The raising procedure isexplained indetail inChapto: 4

and its relation to previously known Iowct bounding techniques is explored in Chapt^5. Exper

imental results are discussed in Chapter 6. Applications of incremental problem solving to other

optimization and decision problems are outlined inChapter 7. Conclusions are given inChapter 8.

Chapter 2

Incremental Problem Solving

2.1 A Branch-and-Bound Algorithm for Minimum CostUnate Covering

In this section we present with more detail the branch-and-bound recursive algorithm

mincov to solveexactly UCR Theinputs of the mincov algorithm asoutlined in Fig.2.1 are:

• a covering matrix A;

• a partial solution of thecurrent path, denoted path (initially empty);

• a rowof non-negative integers weighty whose i-th element is the costor weight of the i-th

column of A;

• a lowerboundWound (initially set to 0), whichis thecostof the partialsolutionon the current

path(a monotonic increasing quantity along eachpathof thecomputation tree);

• an upp^ bound ubound (initially set to the sum of weights of all columns in A), which

is the cost of the best overall completesolution previously obtained(a globally monotonic

deaeasing quantity).

The best columncover for input A extended from the partial solutionpath is returned as

the best current solution, if it costs less than ubound. Instead an empty solution is returned if a

solution cannotbe found which beatsubound ^ Infeasibility means that no satisfying assignment

of theproduct of clauses exists. When mincov is called on A withan empty partial solutionpath

and initial Wound and uboundy it returns a best global solution.

'in the case of an instanceof BCP (see Section 7.1.1) an empty dolution is returned if a solutioncannot be found
which beats ubound or an infeasibility is detected.

6 CHAPTER 2. INCREMENTAL PROBLEM SOLVING

The algorithm calls first a procedure reduce that appliesto A essentialcolumndetection

and dominance reductions. These reduction operations delete from A some rows, columns and

entries. What is left afto: reduction is called a cyclic core. The final goal is to get an empty cyclic

core. The value of the lower bound is updated using a maximal ind^ndent set computation. If no

bounding is possible andthereductions do notsuffice to solvecompletely theproblem, a partition of

the reducedprobleminto disjointsubproblems is attempted andeachof themis solvedrecursively.

When everything fails, binaryrecursion is performed by choosing a branching column. Solutions

to the subproblems obtained by including the chosen colunmin the covering set or by excluding it

from the coveringset are computed recursivelyand the best solution is kq>t(the second recursion

is skippedif the solutionto the firstone matchesthe updatedlowerbound).

The procedure mincov returns when:

• The cost of a partial solution, found by adding essential columns to select, is more than

abound or infeasibility is detected when applying the domination rules (line 1). An empty

solution is returned.

• The best current solution is found by applying Gimpel's reduction technique (line 2). Since

gimpeljeduce calls recursively mincov, an empty solutioncouldbe returnedtoo.

• The updated lowerbound, determined by adding to Wound the cost of the essential primes

and of the maximal independent set, is not less than abound (line 5). An empty solution is

returned.

• Theprevious casedoesnotholdandthereis no cycliccore. Hie bestcurrentsolutionis found

by updating selectwith the newessential and unacceptable columns Qine 6).

• The best current solutionis found by partitioning the problem (line 7). Hie procedure mincov

is calledrecursively on two smallercovering matrices determined by block^artition (line 8

and 10). An emptysolutioncan be returnedby either recursivecall. If the firstcall to mincov

returns an empty solution, the second one is not invoked(line 9). If neither call returns an

emptysolution, eachcontributes its returned valueto the currentsolution.

• A branching colunmis chosenand mincov is called recursively with the branching column

in the covering set (line 12). If the recursive call of mincov returns a non-empty solutionthat

matches the current lower bound (Iboundjtew), that solution is returned as the best current

2.1. A BRANCH'AND'BOUND ALGORITHMFOR MINIMUM COST UNATECOVERINGl

mincov{A,pathfweight,Ibound, ubound){

/*Apply row dominance, column dominance, and selectessentials */ (1)
if (notreduce{A,path, weight,vbound)) letumemptysolution

/*See ifGimpel's leduction technique applies */ (2)

if (gimpeljreduce{A,path,weight, Ihound, ubound,best)) letuinbest

I*Findlower bound from hereto final solution byindependentset */ (3)

MSIR = maximalJndependent^et{A, weight)

t* Make surethelower bound ismonotonicaUy increasing */ (4)

Iboundjxew== max{cost(path) + cost{MSIR),lbound)

/*Bounding based onnobetter solution possible */ (3)

if {Iboundjnew > ubound) beet = emptyjsolution

else if (Aisempty) { /* New bestsolution atcurrent level */ (fi)
beet = eolutionjiupipath)

} else if{ldock4>artition{A, Ai,A2) gives non-trivial bi-partitions) { (7)
pathl = empty^olution

beetl = mtncot>(Ai,pathl, weight,0,ubound —coet(path)) (8)

/* Add best solution to the selected set */ (9)

if (bestl = emptysolution) beet = emptyjsolution

else { (10)
path = path U bestl

beet —mincov{A2,path, weight, Iboundjnew,ubound)

}
} else { /♦ Branch oncyclic core and recur ♦/ . (11)

branch = eelect^olumn{A, weight, MSIR)

pathl = eolutionjiupipath) Ubranch

let Abronch be thereduced tableassuming branch in solution (12)

bestl = mincov{AbTaneh,pathl, weight, Iboundjnew, ubound)

/* Update theupper bound if wefound a better solution */ (13)

if (bestl emptyjsolution) I*It implies [ubound> cost(6estl)) */

ubound = cost(6estl)

/* Do not branch if lower bound matched */ (14)

if (bestl ^ emptyjsolution) and (cost(bestl) = Iboundjnew) return bestl

let be the reducedtableassuming branch not in solution (15)

best!= mincov[A-^^^^,path, weight, Iboundjnew, ubound)
beet = beet^olution[beetl,best2)

}
return beet

Figure 2.1 A branch-and-boundalgorithmfor coveringproblems.

8 CHAFIER2, INCREM^HAL PROBLEM SOLVING

solution (line 14). If the cost of the best current solution is less than ubound, ubomd is

updated, i.e., the best current solution is also the best global solution (line 13).

• As in the previous case, except that mincov is called recursively with the branching column

not in the covering set (line 15). Hie best among the solution found in the previous case and

the one computed here is the best current solution.

Notice the following facts about the procedure mincov:

• The paramet^ Woundis updatedonce (line4). The reasonis that afterthe computationof the

essential columns (line 1) and of the independent set (line 3), the cost of the previous partial

solution summed to the cost of the essential columns and ofthe independent set is potentially

a sharper Iowct bound on any complete solution obtained from this node of the recursion

tree. The updated value WoundJiew is used in the rest of the routine. The low^ bound is a

monotonically increasing quantity along each path of the computation tree.

• Hie parameter uboundis updated once (line 13). At that point a new complete solution has

just been returned by the recursive call to mincov (line 12) and an updatedvalueof ubound

must be recomputed for the following recursive call of mincov(line 15). The reason is that

when a new complete solution is obtained, the current ubound is not any more valid and

therefore it must be updated before it is us^ again. Tb be updated, uboundis compared

against the costof the newly found solution, andthe minimum of the twois thenewubound.

The upper bound is a monotonically decreasingquantity throughoutthe entire computation.

Hie previous analysisproves that the algorithmfinds a minimum cost satisfying assign

ment to the problem.

2.2 Incorporating an Incremental Solver Into Branch-and-Bound

The flow of a UCP solver based on branch-and-bound is shown in Fig. 2.2. Hie parts of

text in bold font refer to the incremental solver and will be explained below. For details the reader

is referred to [2]. Given a matrix A, existing UCP solvers employ column branching to decompose

the problem anduse a maximal set of independent (non-intersecting) rows{MSIR) to compute a

lowerboundof UCP(A) (sinceno columncovers two rowsfrom MSIR).

Procedure raiser, performing "negative thinking", is invoked with a parameter n when

MSIRissi lower bound not sufficient to prune the subtree rooted at the current node, but increasing

2,2. mCORPORAUNG AN INCREMENTAL SOLVER INTOBRANCH-AND'BOUND

branchjandJbound{AfSol, n) {

/* A = matrix of UCP,Sol = cuirent (partial) solution */

f*n = "range" of raiser, best = best current solution ♦/

if(i4 = 0)

retum(5o2) /* new best solution */

!* Column and row dominance */

aimjAify{A)

I* Lower bound evaluation */

MSIR —findjn3ir{A)

if ({lowerJ>ound{A) + cost{Sol)) > co3t{be3t))

retum(0)

/* Is the current node within the range of raiserl */

if {\MSIR\ + co3t{Sol) + n) > co3t{be3t)) {
/* n' exact amount to raise */

n' = cost(best)—(|M5/i2j + co3t{Sol))

retum(ratser(M5/A, n', i4))

}
f* select a branching column */

j = selectj:olumn{A)

/* Decomposition: Ai(^42) for including (notincluding) j in solution */

5011 = Sol U{jf}

5012 —Sol

for(t = 1;* < 2;i + +)

{Neti;= branch-andJ)ound{Ai, Soli, n)

if (co3t{New) < co3t{be3t)) {

beat = New

if (co3t{best) < {co3t{Sol) + 1M5/A|)

retum(6esO

}

}
tetum(best)

}

Figure 2.2 Branch-and-Bound enhancedby incrementalsolver

10 CHAPTER 2. INCREMENTAL PROBLEM SOLVING

thelowCT bound by n would allow suchpnming. Raiserstarts from thesubproblem UCP(MSIR)

whosesolutionspace is veryregularand then tries to extendit graduallyto A; raisereither returns a

minimum costsolutionof UCP[A), if thelowerboundcannot be raisedby n, or returns the empty

solution.

Theparameter n is specified a-piiori andis the samefor all invocations of raiser in the

colunm branching mode. Thevalueof n is usually a smallnumb^ in the rangefrom 2 to 4 for two

reasons:

1. if n is small then the node is deep enough to warrant the applicationof negativethinking,

2. if n is small then one can make use of the fact that UCP(MSIR) has a r^ular solution

space.

Note that improving the lowerboundeven by a small amount may lead to considerable runtime

reductions. Forexample, in [6]a newtechnique forpruningthe searchtreecalledlimitlowCT bound

was reported. Sometimes this technique allows oneto reduce the search tree size by ten times. It

can be shownthat the limit lower bound techniqueprunes no more branchesof the search tree than

the procedure raiser invocated with n = 1.

The idea of incremental improvement of the lower bound is discussed in the following

Section, whileChapter 3 describes howthe solutions of UCP are represented andrecomputed and

Chapter4 gives a detailed descriptionof the raising algorithm.

2.3 Incremental Improvement of the Lower Bound

Given anoptimizationproblem P such thatforany subproblem P' thecostof a minimum

solutionofP isgreater thanorequal tothatofF, thesizeofaminimumsolutionofP* gives alower

bound on the size of a minimum solution of P. This fact is called cost monotonidty assumption

andit is of practical int^est if it is notdifficult to find a minimum solution of the subproblem.

Denote by min{UCP(A)) thesize ofa minimum solution of UCP(A) and let A' be a

submatiix of matrix A, consisting of some rows of A, i.e., Col{A) = Co/(A') and Row{A') C

Row(A). Any UCP(A') where A' is a submatiix of A satisfies thecostmonotonidty assumption,

since min{UCP(A')) < min(UCP(A)). We shall call lower bound submatrix a submatrix A'
whose minimumsolution is used for evaluating a lower bound for UCP{A). A maximal set of

independent (non-intersecting) rows {MSIR)of Ais usually chosen as submatiix A', denoted

2.3. INCREMENTAL IMPROVEMENT OF THELOWERBOUND 11

also as A' = MSIR(A). IfA' isa MSIR then min{UCF(A')) = \Row{A')\ because each row
in MSIR is covered by a different column.

We are now going to describe the ideaunderlying the method for an ina:emental im

provement ofthe lower bound. Denote by A' Ar the submatrix ofAobtained by adding to A'
a row Ar € Row(A) \ Row(A'), Let 5 be a solution of UCP(A). A column j € S is called
redundant if 5 \ {j} is also a solution of UCP{A). If a solution of UCP{A) does not contain

redundant columnsthen it is said to be irredundant. Denoteby SoI(A', m) the set of solutions

ofUCP(A') which includes all the irredundant solutions consisting ofmorfewer columns. Soif
m= min{UCP{A')) then 5o/(A', m) gives exactly the set ofall minimumsolutionsofUCP(A').

Supposethat for alow^bound submatrix A'ofAwe know asetofsolutions 561(A', m).
The lower bound given by A'is equal tom = min(UCP(A')). Let us add a row Ap ofAto A'.
Obviously 5o/(A'-I-Ap, m) C Sol{A\ m), sinceingeneral some solutions from Sol(A', m) do not
cover Ap and so are notcontainedin5o/(A'-|-Ap, m). So afterhaving addedasetofrows A,*,,A,j^
of Ato A', wecanreach a stage when Sol(A'-H A^, -f.. -H Ai^^, m) = 0, meaning thatweimproved

thelower bound for UCP(A) by 1taking asa lower bound the submatrix A' -I- At, +.. + A,*,^. If

Sol(A'-f- A,-, + .. + A,-,., r) = 0,r > m weimproved theIowct bound byr - m -1-1.

So an attractive idea is to start from a submatrix A' which ism MSIR (since the solutions

of an MSIR canbe represented compactly) and thento addrows to the MSIR withthe goal to

improve theinitial lower bound given by•|MiS'/i2|. The proposal relies onthefact that, knowing

Sol(A',m), it is not difficult to recalculate Sol{A' + Ap,m), and. adding one row at a time,

eventually we may reach the desired lower bound improvement. In Section 3.1 we will discuss

how to recalculate solutions. However, this "naive" way of raising the lower bound may require

too much memory. In Section 3.3 we will introduce a technique to avoid the problem which is

based on clustering the solutions in cubes andbranching by clusters. Finally, Section 4.2 contains

an examplewhichshowshowto raise the lower bound incrementally.

Theprevious discussion motivates thefollowing modification of thealgorithm illustrated

in Fig. 2.1. Thismodification corresponds to the parts of textin boldfont in Fig.2.2 andis based

on the new procedure raiser, which is invoked with an integer parameter n. When a node N is

reached, compute an MSIR for the matrix An corresponding to the node. If

\MSIR\ -1- \path{AN)\ •¥n> \Best\

where Best is the bestcurrent solution, thenprocedure raiser is applied to UCP(An), otherwise

branchingoncolumns continues. Theoutcomeofraisermay beeither that the Iowct bound \MSIR\

12 CHAPTER 2. JNCREMENTAL PROBLEM SOLVING

can be improved by the quantity

n = \Best\ —\MSIR\ —|patft(Ajv)|

and the recursion in the node stops, or that the lower bound cannot be improved by n to become

equal to \MSIR\ + n. In the latto* case a minimum solution S(An) of UCP{An) is foundsuch

thatS{An) Upath{AN) is the newbestcurrent solution of UCP{A).

Notice that improving the low^ bound even by a small amount may lead to considerable

runtime reductions. For example, in [6] it was reported that the limit lowo: bound allowsthe pruning

ofsome or many branches ofthe search tree. The effect ofthis modificationis to reduce the runtimes

for some examples 10 times and evenmore. The limit low^ boundprunesno more branches of the

search tree than raiser with n = 1.

The next task is to design an efficient procedure to implement raiser. A "naive** imple

mentation where one stores the set of solutions Sol(A\ \MSIR(A)\ + n), where A' is a lower

bound submatrixfor UCP(A)y mayrequire too much memory. In other words, if the Iowct bound

can be raised to \MSIR\ n, eventually 5o/(A', \MSIR{A)\ + n) will be empty, but if raiser

fails to raise the lower bound then A itself will be taken as a lower bound submatrix and we will

have to store the wholeset 5o/(A, \MSIR{A)\ -f n), i.e., all irredundant solutions of UCP(A)

with \MSIR\ + 71 or fewer columns. In the next chapter we present another way to design raiser,

so that the previous memory problem is avoided by means of a new scheme of branching on rows.

Chapter 3

Representation and Recomputation of

the Solutions

13

In order to present the algorithm for raising the lower bound we must describe how the

set of solutions of a matrix is represented and updated.

3.1 Recomputation of the Solutions

LetA! beasubmatilx ofAand Ap arow from Row{A) \ Row{A'). Let5 beasolutionof

UCP(A). Denote by0(Ap) theset {j \ Apj = 1}, i.e., the set ofall columns covering Ap and by

R€c{A' + Ap, 5) thesetofsolutions ofUCP{A' + Ap) obtained according tothefollowing rules:

1. if 5 is a solution ofUCP(A' + Ap), then Rec{A' + Ap, S) = {S};

2. if5 isnotasolutionofUCP(A'+Ap), i.e., no columnof5 covers Ap then Rec{A'+Ap, S) =
{5U{i}li €0(Ap)}.

So Rec(A' + Ap, S) gives the solutions ofUCP(A' + Ap) that can beobtained from the solution S
ofUCP{A'). According torule 2,ifS isnot asolutionofUCP(A' + Ap), then we obtain \0 (Ap) |

solutions of UCP(A' + Ap) by adding to 5 thecolumns covering Ap.

Theorem 3.1.1 Foranyirredmdantsolution S* GUCPiA'+Ap) there isan irredundantsolution

S € UCP(A') such thatS* is an element ofRec(A^ + Ap, S).

Proof: Let 5*bean irredundant solution ofUCP(A' + Ap). Clearly 5*isasolutionofUCP(A').
There are two cases:

14 CHAPTERS. REPRESENTATION AND RECOMPUTATION OF THE SOLUTIONS

1. S* is irredundant forUCF{A') too. In this caseS* € Rec{A' + Ap, 5*).

2. 5* is redundant for UCP(A'). First of all, we show that in this case there is only one

redundant column and this is a column covering Ap. Indeed a column of 5* is irredundant

if and only if it covers a row not covered by others columns. Any column j in S* not

covering Ap cannot be redundant for UCP{A'), since 5* is irredundant for UCP{A' + Ap).
Indeed, if j is redundant for UCP(A') anddoes notcover Ap thenit remains redundant for

UCP(A'-\-Ap).

Ontheoth^ hand, two(ormore) columns cannot cova: Ap. Indeed, if twocolumns covo: Ap

and one of them is redundant for UCP(A'), then it remains redundant for UCP{A' + Ap)

(thecolunm cannot become irredundant because there is norow in A' + Ap covered only by

it),which contradicts thecondition thatS*is inedundant for UCP(A' + Ap).

So S*canbe represented as S' U{j} where j is redundant for UCP{A') and it is theonly

colunm from S* covering Ap and S' isanirredundant solutionofUCP(A') not covering Ap.

Moreover, bydefinition of Rec, any solution of UCP{A' + Ap) represented as 5' U{j},

where S' is an irredundant solution to UCP{A') notcovering Ap andj € 0(Ap) is also in

Rec(A' Ap^S').

Soweconclude thatforany inedundant solutionS* CP(A'+Ap) thereis anirredundant

solution S € UCP(A') such thatS* is anelement of Rec(A'+ Ap, S).

•

Notice that it is possible that Rec{A' + Ap, S) may contain also redundant solutions.

Consider the following situation

ci C2 C3 C4 C5

Ap 0 1 0 1 0

1 1 0 0 0

A' 0 0 1 0 0

0 0 0 0 1

A' has the following two irredundant solutions

Sol = Ci, C3, C5; C2, C3, C5

Then wecompute Rec{A' + Ap, S) as

R€c(A' Ap^Sol) = Ci^ C3, C5, C2; Ci, C3, C5, C4; C2, C3, C5

3.2. CUBES OF SOLUTIONS 15

where the first two solutions come fiom 01,03,03 and the last one fiom 02,03,05. Ihe solution

ci, C3, C5, C2 is redundant

Corollary 3.1.1 Let Sol be a setcontaining all irredundant solutions ofUCP{A'). Let Sol* =

[Jsqsoi Rec{A' + Ap, 5), then Sol* contains every irredundant solution S* GUCP{A' + Ap),

Proof: It is a directconsequence of Hieorem 3.1.1. °

3.2 Cubes of Solutions

Inprinciple, given theoperator Recy one could add one row ata time to A' and build the

setof irredundant solutions of UCP(A) from thesetof irredundant solutions of UCP(A'). This

"naive" approach must be discarded because of two disadvantages:

1. The size of the set of irredundant solutions may grow exponentially in the number of added

rows.

2. Suppose that we wantto raisethe lower bound of MSIR by 3 andthat 5 is a solution of

UCP(MSIR). It may happen thatin order to raise5 by 3 weneed to addonlya small set

of rows from Row{A) \ Row(MSIR). Denote theset i2(5). LetS' be another solution of

UCP(MSIR) and suppose that toraise it by 3 we need toadd a small set ofrows R{S').
Theproblem is that R(S) and lies') are usually different. This implies that when we add

rows to MSIR we want to add a minimal number ofrows which raise all solutions ofMSIR

by 3. But, since the small sets li(S) are usually different for different solutions S from

UCP{MSIR)y we actually needto add almostall rows.

Tbsolvethe previous issuesweproposeto groupsolutions in clustersthatcanbe raisedby the same

rows from Row(A) \ Row(MSIR). Thisis achieved by the introduction of cubes of solutions,a

data structureinspired by multi-valuedcubes. Applyingthe operator Rec to a cube ofsolutions one

obtains a collection of cubes of solution, thereby providing a natural clustering of the recomputed

solutions. In Chapter 4 we will use this idea to design a raising algorithm based on branching in

cluster of solutions, each cluster being one of the recomputed cubes of solutions.

Note however that cubes should not be considered as the only convenient way to cluster

solutions. We believe that studying clusters based on different data structures, e.g., binary decision

diagrams, will yield interesting results.

16 CHAPTER 3. REPRESENTATION AND RECOMPUTATION OF THE SOLUTIONS

As anticipated, we represent the solutions of UCP{A) by setswitha structure of multi

valued cubes [7]. We define a cube tobe thesetC = Di x •••x where A n-Dj = 0,i^iand

Di c Col(A),l < i,i < d. Hiesubsets A aiethedomains ofcube C. Socube C denotes a setof

setsconsisting ofdcolumns. Incontrast tocommoncubes usedfortherepresentationofmulti-valued

functions, here cubes may have diSeteni numbers ofdomains. Forexample, if \Col(A) | = 10, then

sets Ci = {1,5} X{2,6,7} x {3,4} and C2 = {1} x {2,4} x {3,7} x {5,6,10} are both cubes.

Let A' be a MSIR of A. The set of all irredundant solutions (which are at the same time

minimum) oft/CP(A') can berepresented asthe cube O(A,,) x ••"X O(Aij),where A,-,, •• Aj^

are the rows forming A'.

Let A' be a submatrix of A and Ap be a row from Row(A) \ Row(A'). Let C =

Di X ••• X Dd be a cube of solutions of UCP{A'). From the definition of the Rec operator it

follows that

/?ec(A'-f-Ap,C) = partl(C) U part2(C) x 0(Ap) (3.1)

where partl(C) is the set ofsolutions contained inC which cover Ap and partl(C) is the set of

solutionscontainedin C which do not cover Ap.

There are three cases:

1. If A Q 0(Ap) for some i, 1 < i < d, then any solution from C covers therow Ap and so

Rec{A'-\'Ap,C) = C.

2. If 0(Ap) n A = 0 for any i, 1 < i < d, then no solution from C covers Ap and so
Rec(A' -i- Ap, C) = C X0(Ap) = £>1 x •••x A x 0(Ap).

3. If 1. and2. are not true, i.e., no Di is a subsetof 0(Ap) and 0(Ap) intersects at leastone

domain(withoutloss of geuCTality, we mayassumethat Apintersectsthe firstr domains,i.e.,

Dw", Dr\ thencubeC canbepartitionedintothefollowing r -}-1 pairwisenotintersecting

cubes:

C\ = A nO(Ap) XA X••• XA

C2 = A\0(Ap) XAnO(Ap) XAx-'-x A

C3 = A\0(Ap)x A\0(Ap)x AnO(Ap)x Ax-'-x A (3.2)

Cr = A\0(Ap)x---xDr-i\0(Ap)x AnO(Ap)x A+ix-'-x A

Cr+I = A\0(Ap)x...x A-i\0(Ap)x A\0(Ap)x A+ix-'-x A

3.2. CUBES OFSOLUTIONS 17

It is not hard to checkthat the union Ci U •••UCr+i gives the cube C and that for anypair

Cu Cji i # i, Ci n Cj = 0. Moreovw, the first r cubes give the solutions ofUCP{A') firom
C which cover Ap and the cube Cr+i gives the solutions ofUCP{A') fix)m C which do not
cover Ap. Therefore

partl{C) = Ci U•••UCr, part2(C) = Cr+i. (3.3)

Equations 3.1-3.3 realize the Recoperator as defined in Section 3.1 and characterized by Theo

rem 3.1.1. Noticethat hereweforcethe Rec operatorto generatenon-intersectingcubesof solutions;

thisis nota consequence of thedefinition of i2ec, butis anadditional requirement introduced now

to avoidconsidering the samepartialsolutionin morethan one branch.

WementionedthatinthecomputationofRecsomeredundantsolutionsmaybeintroduced.

The following revised definition of Rec avoids the generation of obviously redundant solutions

obtained firom the application of formula 3.1. Namely, any solution 5' of UCP{A' -I- Ap) firom
part2{C) xO(Ap) that strictly contains asolution5"oft/CF(A'-l-Ap) firom porn(C) isredundant
since it contains more columns than S".

Theorem3,2.1 If thecomputation of theRec operatoris modified asfollows:

Rec{A' -h Ap, C) = partl(C) U part2(C) x [0(Ap) \ (Di U•••UDd)] (3.4)

no irredundantsolution of A' Apis discarded.

Proof: LetC = JDi x •••x Dj bethecube ofsolutions and Ap therow tobeadded. Without loss

ofgenerality assume that Ap intersects thefirst r domains ofC, r < d.

By construction part\(C) = Ci U•••UCr, where Ck = D[x " - x x D'J. x

Djb+i X"-xDdA<k<r,D'i = Di\ 0(Ap) and D'l = DkO 0{Ap). Moreover, part2{C) =
D[x '"XD'^x Dr+i X'"X Dd.

Ifweprove that any solution firom thecube C* = part2{C) x (0(i4p)nZ)),isredundant,

where D = U•••UDd,weareallowed to replace the computation of part2(C) x 0{Ap) with

thecomputation of pari2(C) x {0(Ap)\D).

Since, by distributivity ofthe Boolean operators Uand n, D D0(A^ = D'/U•••UD",

cube C can be rewritten as follows:

C* = part2{C)x(DnO{Ap))

18 CHAPTERS. REPRESENTATION AND RECOMPUTATION OF THE SOLUTIONS

= part2(C)x(D'{[J'"UD';)

= part2{C) XjD'/ U•••Upart2{C) x D"

andsoC* canberepresented asCf U•••UC* v/here Cjf = part2(C) x jDjJ, 1 < fe < r.

Now define the cubes Q, 1 < < r, obtained from part2{C) byrq)lacing in turn D'̂

with D'l^. Cubes Cj^ andCk - which have the same number of domains - are constructed so that

cube Ck (obtained from part1(C)) contains cube Cj^ (obtained from part2(C)), as shown by a

component-wise comparison, using thefact that = Dk+i \ 0(Ap), •••, \ 0(A^\

Ck = I>1 X•••XDfc.i XD'k XDjfe+I X"'XDrX Dr+l X "XDn

C'k = D'lX -"X D'k^i XD'k XD'k^i X"'X D'rX Dr+l X•••XDn.

Consider the A-th component ofcube C*, for 1 < fc < r,

Ci = part2(C) XD'i,

= £>1 X•••X XDr+l X•••XDn XDjfe

= Dj X•••XDi •••XD^ XDr+l X -'X DnX D'k

and permute thedomains D'k (from part2(C)) and D'̂

Ck = Dj X•••XDfc •••XDj. XDr+l X'"X DnX D'k

= C'k XD'k.

Therefore any solution5 from CJ consists ofasetofcolumns S' € C'k and acolunm j € DJ.. Since

Ck contains C'k (as shown earlier) and byconstruction Ck is made of solutions of A' which cover
iQso Ap, then S' covers both A' and Ap and socolunm j is redundant inthesolution S = S' + j.

Soanysolution from CJ is redundant for 1 < A; < r. •

3.3 Avoiding Repeated Generation of Solutions

Given UCP(A), suppose that C = Di x D2 x ••• x D^ is the cube of solutions of

UCP(A')y where A' is a subset of rows of A. Thenadd row Ap, which, say, intersects onlythe

domain Di. As argued in Section 3.2, thesolutions of A' -H Ap arefound by

Rec{A' + Ap,C) = CiUC2xO*(Ap)

3.3. AVOIDING REPEMED GENERATIONOF SOLUTIONS 19

where

Ci = D'l XD2 X•••XDd,

C2 = Dj X D2 X ••• X Dd,

D[= DinO(Aj,),

D'{ = i?i\0(Ap),

O^(Ap) = 0(A,)\Di.

Now let 5 = (ii,i2, ••-jJd) be a solution from Ci and S' = (i(,i2, ••-jidjid+i) be a solution

from C2 X0*(i4p), which differs from 5i only byreplacing ji with j[and by adding jd+i from

O* (i4p). Suppose that there isasolutionS"ofUCP{A) containing apartial solutionSUS', TTien
the same solutionS" may be constructed both from the branchof cube Ci and the branchof cube

C2 XO*(Ap). In general this means thata solution may begenerated more than once.

The reason is that, even though when forming D" we remove from Di the columns

covering Ap, still it ispossible toextend solutions from C\ by adding colunms from Di \ 0(Ap)
and 0*(Ap) and toextend solutions from C2 x 0*(Ap) by adding columns from Di n 0(Ap), so
that wemay obtain from both branches thesame partial solution from DiOO (Ap) xDi\0(Ap) x

£>2 X ••• XDd X0*(Ap).

lb eliminatethispossibilityit is sufficient to avoidthe consid^ation of solutionscontain

ingcolumns from 0(Ap) n Di in thebranch ofcube C2 x O* (Ap). Indeed, if wedoso,a solution

containing the partial solution S\J S' can be found only in the branch of cubeCi, because in the

branch of C2 solutions containing columns from 0(Ap) n Di are not considered, whereas Su S'

contains such a column, i.e., column ji.

In summary, if Ap intersects the first r domains of C, in the branch of cube Ck,l <

k < r ly where Ck contains k - 1 domains Di \ 0(Ap), i = 1, •••, A; - 1, we should avoid

generating solutions containing columns from (Di U1^2 U•••UDk-i) n 0(Ap). The following

lemma guarantees that no iiredundant solution is missed by this restriction.

Lemma 33.1 Let C bea cube ofsolutionsofUPC (A')andAp bea rowfrom Row(A) \ Row(A').

Let Sbea solution ofUCP(A)from Gen(C),where Gen(C)denotes all the solutions ofUCP(A)

which contain apartialsolutionfromC. Suppose w.lo.g, thatAp intersects thefirst r domains ofC.

Then S can begeneratedinoneofthe r -f 1branchescorresponding to thecubesCjt, 1 < A; < r -f-1,

even if in the branch ofeach cube CkA k < r \ we do not generate any solution containing

columnsfrom (Di U •••UDk^i) fl 0(Ap).

20 CHAPTER 3. REPRESENTATION AND RECOMPUTATION OF THE SOLUTIONS

Proof: Let5 bea solutionof I/CP(A)containedin Gen(C) (asa matterof factthore maybemany

partial solutionsfrom C coveredby 5). Hiere are two cases:

1. There is a partial solution from C contained in 5 which covers Ap. Since part\(C) contains

all partial solutions from C covering Ap, the partial solution from C contained in 5 is in

some of the cubesCi, •••, Cr. Let Ck be the ftrstof the cubesof part\(C) containing the

partial solution from C contained in 5. Thenthe solution 5 is found in the branch of cube

Ck. Byhypothesis thesolutions containing columns from (P\ u ♦ ••UDk-\) n 0(Ap) are

excluded. Butnocolumn from S is contained in the set (jDi U•••UDk-i) n 0(Ap). Indeed,

since5 contains a partial solution from C, then D,- n 5 ^ 0,1 < i < r. E.g., for r = 1, if

Di n 0(Ap) n S ^ 0,then C\ contains a partial solution from C contained inS. If not, i.e.,

if Di n 0(Ap)n S = 0,then (Di \0(Ap)) n S ^ 0(given Di n S ^ 0,if Di n 0(Ap)does

notcontain a column from 5, thenth^e is a column from 5 contained in Di \ O(Ap)).

In general, if for the first k —1 < r domains Di, •••, Dk-i intersecting Ap, it is true that

Din O(Ap), 1 < t < ib - 1does not contain acolumn from 5, then there isacolumn from S

containedinD,\0(Ap), 1 < t < ib-1. If,for example, DkC\0{Ap) contains acolumn from

5, then thecube Cib = Di\0(Ap) x- --x Dk-i\0(Ap) x DfcnO(Ap) x Dk+i x-'-xDd

contains a partial solution from C contained in S and among the columns that we neglect

(i.e., those in (Di U•••UDk-i) n 0(Ap)) in the branch of Ck there are no columns of S

(because D,- n 0(Ap) n 5 = 0,1 < i < - 1). So solution 5 canbe found in this branch.

2. Nopartial solutionfrom C contained inS covers Ap. Then partial solutionsfrom C contained

in 5 arein Cr+i. Inthebranch corresponding to Cr+1 all solutions containing columns from

{D\ U•••UDr) n 0(Ap) are excluded. But from the previous argument Di n 0(Ap) n 5 =

0,1 < i < r. So, again the solution 5 can be found in this branch.

21

Chapter 4

The Raising Procedure

Fig.4.1 showshowthebranch-and-bound algorithm ofFig.2.1is modified to incorporate

the technique of incremental raise of the lower bound as discussed in Section 2.2. After the

computation of the lower bound, if the gap difference between the upper and lowerbound is

small, i.e., less than a global parameter maxRaiser, a new procedure raiser is invoked with

parameter n = difference. Theparameter maxRaiser currently is decided a-priori, butideally

it should be adapted dynamically. Intuitively if thegapis small, weconjecture that a search in this

subtree will not improve the best solution andso we trigger the procedure raiser that mayeither

confirm theconjecture andprovethatnobettersolutioncanbe found hereordisprove theconjecture

and improve one or more times the best solution,updating the current one.

4.1 Overview of the Raising Algorithm

As anticipated in Section 2.3, we propose a raiser procedure, based on cube (row)

branching ^ Consider a covering matrix A, forwhich A' = MSIR{A). We start with the setof

irredundant solutions ofUCP(A')y represented bythecube C = 0(Ai,) x •••x 0(A,j), inwhich

***>̂ id the rows inthe MSIR. Then choose a"good" row ofAfix)m those not inA', say
row Ap. According toEquations (3.1-3.4), Rec{MSIR{A) + Ap, C) can berq)resented byr + 1

cubes where r is the numberof rowsof the MSIR(A) intersecting Ap. Ihen perform recursively

the processfor each of the r + 1 cubes,i.e., choosea newrow fromthosenot yet selectedfor each

of the r + 1 cubes of solutions and split each cube accordingto Equations (3.1-3.4).

'in the sequel we will use the expression n-raiser to denote an invocation of the miser procedure with a given
parameter n (e.g. we will use 1-raiserif n-raiser is invokedwith n = 1)

22 CHAPTER 4. THE RAISING PROCEDURE

AuraMincov{Afpath, weighty Ihound,ubound) {

/* ^ply row dominance,column dominance,select essentialsand, if it is possible,Gimpel's reduction */ (1X2)

if (notreduce{A,pathf weight, ubound)) returnemptyjsolution

if (gimpeljreduce{A,path, weight, Ibound, abound,besf)) retum beat

/* Find lower bound from here to final solution by independent set */ (3)

MSIR = maximalJndependent^et{A, weight)

I* Make sure the lowerboundis monotonicallyincreasing*/ (4)

Iboundj^ew = max(co3t(path)+ co3t{MSJR),lbound)

difference = ubound —Iboundjiew

/* Boundingbasedon no better solutionpossible */ (5)

if (difference < 0) best = emptysolution

elseif (d»//erence < maxRai3er){ /* Apply raiserwithn = difference •/ (16)

SolCube —cover-MSIR(MSIR) (17)

lowerBound —|5olCube| (18)

anawer = raiser (5olCube,difference. A, lowerBound, beatSolution, ubound) (19)

if (answer = 1) beat = emptyjsolution (20)

else best = path UbeatSolution I* (answer = 0) */ (21)

} elseif (A is empty) { I*New bestsolution atcurrent level *! (6)

best = aolutionJiupipath)

} elseif (Jolock4)artition(A, A\, A2) gives non-trivial bi-paititions) { (7)

pathl = emptysolution

bestl = mtncov(At,pathl, weight,0, ubound —coat(path)) (8)

/* Add best solution to the selected set */ (9)

if (bestl = empty^olution) beat = emptyjaolution

else{path = path Ubestl; best = mincov(A2^path, weight,IboundJtew,ubound)} (10)

} else{/* Branch oncyclic coreandrecur•/ (11)

branch = aelectJX)lumn(A, weight, MSIR)

pathl = aolutionjIup(path) Ubranch

let Abranch be the reduced table assumingbranch in solution (12)

bestl = mincov(Abranch, pathl, weight, Iboundjnew, ubound)

/* Updatethe upperboundif we founda better solution*/ (13)

if (bestl ^ emptyjaolution) ubound= coat(Jaeat\)

I* Do not branch if lower bound matched ♦/ (14)

if (bestl ^ emptyjaolution) and (coat(beatl)= Iboundjnew) retum bestl

let be the reduced table assuming branch not in solution (15)

best2 = mincov(A-gj:^j^,path, weight, Iboundjnew, ubound)
beat = beat^olution(beatl,beat2)

}
retum best

Figure4.1 AuraMincov: The Algorithm of Fig. 2.1 enhanced by incremental raising.

4.1. OVERVIEW OF THE RAISING ALGORITHM 23

The process can be described by a search tree, calledcube branching tree. The initial

cube of solutions C corresponds to the root node, to which we associate also a pair of matrices

MSIR(A) and A - MSIR{A) (i.e., matrix A without therows of MSIR(A)). Ineach node a

choiceofan unselected row from the second matrix ofthe node is made. The chosen row is removed

from the secondmatrix of the pair and addedto the first matrixof the pair. So the first matrix gives

a 'Tower bound submatiix" for the node.

The numberof branchesleaving a node is equal to the number ofcubes in which the cube

corresponding to the node is partitionedby the Rec operation,and each child of a node gets one of

the cubes obtainedafter splitting. So the cube correspondingto a node represents a set of solutions

covering the first submatrix of the pair.

When applying an n-raiser^ we may prune the branches corresponding to cubes of more

than \MSIR(A) \+ n domains. If at a node a row Ap is chosen such that no solutionfrom the

cubeC of the node covers Ap, thenthereis nosplitting of thecube, sinceRec yields onlyonecube

C X[0(Ap) \ {DiU•••UDd)]. Thefirst matrix ofthepaircorresponding to a nodegives a "lower

bound submatrix'* for the node. At each node the following reduction rule can be applied to the

secondmatrixof the pair: if a row of the secondmatrixis covered by everysolutionof the cube C

correspondingto the node, then the row can be removed from the matrix since, if we add it to the

lowerboundsubmatrix of the pair, then the recomputed cube will be equal to C.

The recursion terminates if one of the two following conditions hold:

1. There is a node such that there are no rows left in the second matrix of the pair and the

corresponding cube has k domains, where k < \MSIR\ + n. This means that the lower

boimd \MSIR\ cannot be improved by n. Any solution from the cube can be taken as the

best currentsolutionof UCP{A).

2. Erom all branches, nodes are reached corresponding to cubes with a number of domains

greater than|Af5/jR|+n. In thiscasethelower bound hasbeenraisedto \MSIR\ + n, since

no solution S of UCP{A) existssuchthat \S\ < \MSIR\ + n.

4.1.1 Correctness of procedure n-raiser

Thecorrectness ofthen-raiserprocedure, appliedto matrixAwithlowerbound|MS/JS(A)|,

can be argued using the notions of subsolution or partial solution and of complete set ofsolutions,

introduced as follows.

24 CHAPTER 4. THE RAISING PROCEDURE

AsetS' of columnsof Ais asubsolution or partial solution of UCP(A) if it is a solution

of a subproblem A', butis not a solution of UCF(A).

Let C be the cube of subsolutions corresponding to MSIR{A), then Chas the property

that for any solution 5 of UCP(A) there is a subsolution from C which is contained in S.

Indeed, sinceS covers allthe rows of A, including thosecontained in MSIR(A)t thenS contains

\MSIR{A) Icolumns coving the submatrix MSIR{A) that form asubsolution from C. Asetof

subsolutions is complete if forany solution S of UCP{A) there is a subsolutionfrom thesetwhich

is contained in S. So the set of subsolutions contained in the cube C is complete.

LetS' be a solution of subproblem UCP{A'). Denote by Gen{S') the setof irredundant

solutionsofUCP(A) that containS'. Similarly, ifC isasetofpartial solutions, denotebyGen(C)
thesetof irredundant solutions of UCP(A), each of which contains a solution from C.

Lemma 4.1.1 Let S' bea solution ofUCP(A') and Ap bea rowfrom Row(A) \ Row(A'). Then

Gen(S*) C Gen{Rec{A'+Ap, S')) where Rec isthe recalculation operation definedinSection 3.2.

Proof: Let5 bea solutionof UCP(A) containing 5', i.e., 5 € Gen{S'). If 5' covcts row Ap then

Rec{A + Ap, S') isequal to {5'} and so Gen{Rec(A' + Ap, 5')) contains S. If5' does not cover
Ap, then Rec(A' + Ap, S') contains every solution S' U{j}, j € 0(Ap). Moreover, S contains S'
and, sinceitcovCTsAp, itobviouslycontains acolurrmj G0(Ap). SoagainGen(jRec(A'+Ap,5'))

contains S. °

From Lemma 4.1.1 it follows that the Rec op^ation preserves the completeness of a set

of subsolutions.

Theorem 4.1.1 The n-raiser procedure finds correctly a larger lowerboundor a smaller upper

bound.

Proof: n-raiser starts with thesetof solutions of UCP(MSIR), which is a complete setofpartial

solutions of UCP{A). Since the Rec operation preserves completness, thesetof all "boundary"

cubes, i.e., cubes corresponding to either leaf nodes of the search treeor to the nodes not yet split,

is a complete set of partial solutions. When we apply an n-raiser to A we actually try to find a

complete setofpartial solutions containing atleast \MSIR{A) | + n columns. Ifsuch asetis found

then nosolution of UCP(A) has less than \MSIR(A)\-I- n columns, and sotheprocedure n-raiser

succeeds in increasing the lower bound by n.

Supposethat thereisno completesetofpartial solutions consistingofatleast \MSIR(A) |+

n columns. It means thatn-raiserfinds aleafnodewithacubecontaining solutionsof |MSI R(A) |-H

4.2. ANEXAMPLE OF 1-RAISER 25

n' columns where n' < n. In that casewe update the Ti-raiso: into an n'-raiSCT and continue the

search. Ifthen'-rais^ succeeds wereturn asolutionof \MSIR{A)1+n'columns whichis minimal.

If the»'-raiser fails then there is a solution of UCP(A) consisting of \MSIR{A) \+ n"

columns, where n" < n'. Then weupdate then'-raiser intoan re"-raisCT andcontinue thesearch. •

4.2 An Example of 1-raiser

As an example, applyan 1-raiser to the following matrixA:

1 2 3 4 5 6 7

1 0 0 0 1 1 0 1

2 1 0 1 0 0 0 0

3 0 1 1 1 0 1 0

4 0 0 0 0 0 1 1

5 1 1 0 0 0 0 0

6 0 0 1 0 1 0 0

Suppose that theset of rows A' = {A4, A5, As} is chosen as MSIR{A). Hie set of irredundant

solutionsofUCB(A') isrepresented bythecube C = {1,2}x {3,5}x {6,7}. The aim of^plying

an 1-raiser to A is to improve the lower bound from 3 to 4. The root node of the search tree is

specified bythe cube C and the pair ofmatrices A', A" where Row{A") = Row(A) \ Row(A').

Choose rowA3 from A" to be added to A'. SincerowA3 intersects all threerows of A',

according to (3.1-3.3) thesetofall irredundant solutions ofno more than 4 columns ofA'+ A3 is

given by the following expression:

Ci = {2} X{3,5} X{6,7},

Ci = {l}x{3}x{6,7},

C3 = {l}x{5}x{6},

C4 = {l}x{5}x{7}

part\(C) = Ci UC2UC3, partl{C) = C4,

D = £>i U...U£>d = {1,2,3,5,6,7}

5o/(C, A'+ A3) = partl(C) UC4 x (0(A3) \ D)

26 CHAPTER 4. THE RAISING PROCEDURE

wtoe 0(^43) = {2,3,4,6} and D = Di U... U = {1,2,3,5,6,7}, so that ^

Sol(C, A'+ ^43) = pori1(C) UC4 x {4}.

Cube Ci describes the set of solutions from C covering A' + ^3 in whidi A3 is necessarily

covered by a column of the first domain of C (andmaybe by columns of otherdomains) andso

C\ = {1,2} n 0(A3) X{3,5} X{6,7}. Cube €2 describes the set of solutions not contained

in C\ in which row A3 is necessarily covered by a column of the second domain and so C2 =

{1,2}\0(A3) X{3,5}nO(A3) X{6,7} = {1} x {3} x {6,7}. Cube C3 describes thesetof

solutions from C not contained in C\ and C2 in which A3 is necessarily covered by a colunm of

thethirddomain. Finally, cubeC4describes thesetof solutions of UCP{A') from C which donot

coverrow A3 and so are not solutions of UCP(A' + A3).

So the root nodehas fourchildrennodes,each specifiedby one of the four cubesC, andby

thepairofmatricesA'+A3, A"-A3. Letusfollow thebranchcorresponding toCi = {2}x{3,5}x

{6,7}. Suppose that row A2 ischosen from A" - A3 tobeadded toA'+A3. Since O(A2) = {1,3}

intersects only thesecond domain of Ci, C\ splits in: Ci, = partl(Ci) = {2} x {3} x {6,7},

C12 = part2{Ci) = {2} x {5} x {6,7}.

Sothenodecorresponding toCi hastwo branches whose pairofmatrices areA'+A3+A2

and A" - A3 - A2. Let us followthe branchcorresponding to the cube Ci,. Onlyrow Ai is left in

A" - A3 - A2. Since0(Ai) = {4,5,7} intersects the thirddomain of Ci,, wehave the following

splitting ofCi,: partl(Cl^) = {2} x {3} x {7},part2(Ci,) = {2} x {3} x {6}.

The branch corresponding to the cubeperil (Ci,) leads to the node at which the first

matrix of the pair is equal to A and sothesecond is empty. This means that thecube paril(Ci,)

contains solutions of A of 3 columns (in this case only one solution) and so the lower bound cannot

be raised to 4.

4.3 DetaUed Description of the Raising Algorithm

Theprocedure raiserreturns 1if theIowctboundcanberaisedbyn, otherwiseit returns 0,

which means that the current best solution has been improved at least once by raiser. The following

^Notice thatweusedEquation 3.4.Instead applying Equation 3.1,wewould obtain:

C4 X0{A3) = {1} X{5} X{7} X{2,3.4,6},

which includes the following additionalsolutions: {1} x {5} x{7} x{2}, {1} x{5} x{7} x {3}, {1} x{5} x {7} x{6}.
It isafact that they are all redundant; their irredundantcounterparts are respectively: {5} x {7} x {2}, {l}x{7}x{3},
{1} X{5} X{6},andthey already appear inparti (C).

4.3. DETAILED DESCRIPTION OF THERAISING ALGORnmi 27

raiser{SolCube, n,A,Ibound, bestSolution^ uhound) {
/* returns 1 if solutioiis in SolCube raise lower bound of >4 by n */

atiUToRaise = Ibound+ n —number jdomain3{SolCuhe)

if {stUlToRaiae < 0) return 1

/*lifA —(b thenpath + solutions of A in SolCube beatsupperbound*/

if (i4 = 0) return foundsolution{SolCube, n,beatSolution^ ubound)
/* considerrowsof A not covered by anysolution fromSolCube */

BSOAfm —findJ)e3tj3etjofj%onJnter3ectingjrowa{A, SolCube)

foreach row r, € BSOAflU { /» adda new domain forthecolumns covering ne A *1

SolCube = addjiomain{SolCubef A,ri)

atillToRaise = atillToRaise — 1

if {atillToRaiae < 0) return 1

}
A = A\ BSOAfm I*Remove covered rows from A and check again ifA is empty ♦/

if (i4 = 0) return found^olution{SolCube^ n,beatSolution, ubound)
if (atillToRaise = 1) {

/* Cover(withSolCube) andremovefromA the 1-intersecting rows ♦/

/* If 2 rows intersect 2 differentcols in the same domain, prune the branch */

if (add^etJOfAinter3ectingjrow3{A, SolCube) = 1)return 1

if (j4 = 0) return found.Bolution(SolCube, n,beatSolution, ubound)

}
/♦ select next "best" row to be covered with SolCube and remove it from A */

n = selectJ>e3tMncoveredjrow{A,SolCube)

A = A\ {r,-}

/*splitting: Part\ = {SolCubei,-• •,SolCubek}',Partz = {SolCobcfc+i} */
split jcube3(SolCubet A^ n, Parti, Partj)

/♦ add to SolCubek+\ € Part2 newdomainof the columns covering r,- */

SolCubek+\ = addjdomain(SolCubek+i,A,ri)

f*branchingon cubesof Parti and Part2 *!

returnValue = 1

while(Parti UPart2 9^ 0) {

f* select first cubes from Parti, then cube from Part2 */

SolCubej = getjnextj:ube(Parti UPart2)

/* if a betterglobalsolution has beenfound set returnValue to 0 */

if (ratser(SolCubej,n,A,Ibound^ bestSolution, ubound) = 0)
returnValue = 0

}
return returnValue

}

Figure 4.2 The raiser algorithm.

28 CHAPTER 4. THE RAISING PROCEDURE

foundj8olution{SolCube, n, bestSolution, vhound) {

/* extract any solution fiom SolCvbe by picking a */

/* colunm from each domain and update global variables */

beatSolution = get^olution{SolCube)

newUbound = co3t{bestSolution)

newN = n —(ubound —newUhound)

n = newN

ubound = newUbound

return 0

}

Figure 4.3 Algorithm to handle terminal case >1 = 0.

parameters are needed:

• >1 is the matrix of rows not yet considered. Initially A = A' \ MSIR, where >1' is the

covering matrixat the node(of the column branching tree) that calledraiser, andMSIR is

the maximal independent set of rows, found at the node (of the column branchingtree) that

called raiser. Hence A' is the covering matrix related to the subproblem which is obtained

by followingin the column branching tree the choices ofcolumns in the path from the root to

the node that called raiser. The set of chosen colunms is denoted by path.

• SolCube is a cubewhichencodesa set of partialsolutionsof the covering matrixA'. Initially

SolCube is equal to the set of solutions coveringthe MSIR.

• n is numberby whichthe IowctboundIboundmustbe raised, n is an input-outputparameter

initiallyequalto ubound-\MSIR\- \path\,whichismodified (decreased) ifraiserimprowes

(decreases) the best current solution.

• Ibound is an inputparameter for raiser equal to \MSIR\. Notice that Ibound differs from

the original lower bound ^ by a quantity equal to \path\, for consistency with the previous
definition of n.

• ubound is the cardinality of the best solution known at the time of the cunent call of raiser.

Hboundjnew = \MSIR\ + \path\.

4.3. DETAILED DESCRIPTIONOF THERAISING ALGORITHM 29

• bestSolution is the output of the procedure and contains the new best solution found by

raiser if the lower bound could not be raised by n, othawise is meaningless.

Rg. 4.2shows theflow of raiser, theprocedure thatattempts toraise thelower bound of

A. Notice that itrequires aroutine splitxubes which, for a selectionofarow ri covered byk ofthe

d domains of SolCube, partitions SolCube in A; + 1 disjoint cubes, each of d domains; so Parti

has k cubesof solutions from SolCube covering r,*, whereas Part2 has onecube of solutionsfrom

SolCubenotcovering r, . Hie numbo- of domains of SolCubeis computed bynumberJomains.

raiser is a recumive procedure which starts by handling two tominal cases. The first

one occurs when the variable stillToRaise which measures the gap between the upp^ bound

andthecurrent lowerbound, is less or equal to zero. If so, we know that the solutions in SolCube

raisethelower boundof Aby at leastn, so thatnosolutions of A canbeatthecurrent upperbound.

The second terminal case occurs when, after some recursive calls, A has become empty, and so any

solution in the union of the solutions of A in SolCube together with the columns in the current

path is the new best solution. Fig.4.3 shows the houseke^ing operations to update the variables

bestSolution, ubound and n.

Alter performing these preliminary checks, the computation reaches the call of routine

findJ)est.set.of.nonJntersecting.rows, a routine which returns a setof rows of A denoted by

the acronym BSOAfXTZ. The codeof this routine, which is reported in Figure 4.4, implements a

fastheuristic to find a goodsubset of rows of A which donotintersect any domain of SolCubeand

which do notint^sect each other. Ideally,"we would liketo getthebestBSOAfXTZ which is a sort

of "maximum set of independent rows" related to SolCube, butthis would require the solutionof

another NP-complete problem. Therefore we are satisfied insert sequentially rows into BSOMXU
on the basisof the following criterion: we pick the largest rownonintersecting neither a solCube

domain or thoserowwhich havebeenjust insoted intoBSOMXH.

Once wehave completed theprevious selection, each row r, inBSOAfXV, isnotcovered

by anysolution encoded in SolCube and, therefore, we mustadda newdomain to SolCube made

by the columns which cover r,-. While we are addingthese newdomains, we keep decreasing the

variablestillToRaise and checking if its value becomesequal to zero. Rnally, we can remove the

^By definition

stillToRaise = Ibound + n —numberDomains{SolCube) =

= |Af5/i?| + ubound —\MSIR\ —\path\ —numberDomains{SolCube) =
= ubound —\path\ —numberDomains{SolCube)

30 CHAPTER 4. THE RAISING PROCEDURE

findJ)e3t^etjofjnonJntersectingjrow3{A^ SolCube) {

/* Heuristic letuming the best setof rowsnonintersecting aolCube domains. */

f*Ueallywe wouldlikedie MSIR amongrowsnonintersecting aolCtihe domains. */

emptylnterRowa = 0

heatRow = 0

foreachrowr € {

/* D is the set of SolCube domains intersected by r */

J>= compufe_setjo/Jntersectedjtfomams(5olCu6e, r)

if(l> = 0){

emptylnterRowa —emptylnterRowaU r

ifheatRow < r

heatRow = r

}

}
/* If everyrow intersectsaolCuhe domains then return the empty set */

if {emptylnterRowa = 0)

return 0

else{

/♦ Let's build BSOJ^XR startingfrom heatRow */

do {

BSOMm = heatRow

emptylnterRowa —emptylnterRowa \ heatRow

previouaBeatRow = heatRow

heatRow = 0

/♦ Find the new heatRow within emptylnterRowa*!

foreachrow r € emptylnterRowa {

if r n previouaBeatRow

emptylnterRowa = emptylnterRowa \ r

else if heatRow < r

heatRow = r

}
} while {emptylnterRowa ^ 0)

}
return BSOMXR

}

Figure 4.4Algorithm to find thebestsetof rows non-intersecting solCube.

4.3. DETAILED DESCRIPTION OF THE RAISING ALGORTTHM 31

set BSOAfXH from A because the rows have been covered by the new added domains.

Notice thatduring the first call of raiser thesetBSOAfXV. is empty because SolCube

encodes the MSIR and, by definition, every row not in the MSIR must intersect at least one

rowin the MSIR. However, during the following recursive callsof raiser the original domains

of SolCube maychange, namely decrease in cardinality due to the actions takenin the routines

splitjcubes and addjsetjofAintersectingjrows(A^ SolCube). Hence, at somenode of the re

cursiontree, it may very well happen that a row of A is not covered anymore by any domainof

SolCube.

After having removed the rows belonging to BSOAfXTZ, another optimization step can

be applied successively before splitting SolCube. If at this point stillToRaise is equal to 1, it

means that we have alreadyraised the Iowa:bound by n —1. Therefore, if we are forced to add one

more domain to SolCube^then we can prune the currentbranch. Hence, a simpleconditionwhich

leads immediately to pruning is the following: considertwo rows ri and rz of A whichintersect

SolCube only inone domain d = {c^c^, •••,c'}, and suppose that ri intersects only the column
c\ while r2 intersectsonlythe colunmc'. This fact allowsus to prune the currentbranchbecauseto

cover one of the rows we can choose eitho: one of the two distinct columns of the domain. Without

lossof generality, say thatwe cover ri withc*, thento covo: r2 we mustuse a colunm whichdoes

notbelong to any domain of SolCubeandso weareforced to addonemore domain to SolCube^

thereby raising the lower bound by n.

Figure4.5illustrates theprocedureadd^etjofAintersecting-rows{A^ SolCube) which

exploits theprevious situationand, inpractice, isinvokedoftenbecausetheconditionstillToRaise =

1 happens verycommonly in hard problems. Basically, the routineis basedon two nestedcycles.

The external cycle is repeated until the internal cycle does not modify SolCube anymore. The

intmial cyclecomputes, for eachrow r of A, the set D of the domains of SolCubeintersected by

r. If the cardinality of D is equal to 1,e.g., D = {d}, we removefromd all the colunms whichare

not intersected by r and then we remove r from Ay since r has been covered.

Notice that addjset.ofAinterseatingjrows is called just after we removedfrom A the

set of non-intersecting rowsBSOAfXR and tharefore all the remaining rowsof A intersea at least

one domain of SolCube. However, after Qrcling inside this routine and removing some colunms

(which makes 'leaner" some domains), it is possible that a row of A is not covered anymore, i.e.,

|£)| = 0. Asdiscussedabove, thishappens,e.g., whentwo 1-intersectingrowsintersecttwodifferent

columns in the same domain D. In this case the routine returns 1 in order to inform the caller to

prune the current branch. If this fact does not happen before the end of both cycles, a 0 is returned

32 CHAPTER 4. THE RAISING PROCEDURE

add^etjofAintersectingjrotvs(A, SolCube) {

/* This routitteis calledonly if atillToRaiae = 1. It covers */

I* with SolCube and removes from A the 1-intersecting rows, */

/* ie., therowsintersecting onlyonedomain of SolCube. */

/* If 2 rows intersect 2 different columns in the same domain, */

/* return 1 to die caller to pnme the currentbranch */

do{

reducingDomaina = FALSE

foreachrow r € ^4 {

/* 2>is the set of SolCube domains intersected by r */

V = compute^etjofJnteraectedjiomaina{SolCube, r)

if(ii>i= i){

reducingDomaina —TRUE

I* Get the domain d of SolCube covering r and */

/* remove fiom d all the cols which do not cover r */

d = getjcoveringjiomain{SolCube, r)

aimplifyjiomain{d, r)

/* Remove the covered row r fiom A */

A = A\{r}

}
elseif (I D 1=0) {

/* After removing some columns, a row may not be */

/* covered anymore, so current branch must be pruned. */

}
/♦ else (I V \> 1): do nothing ♦/

!* because r is not a 1-intersecting row ♦/

}
} while{reducingDomaina)

return 0

}

Figure 4.5 Algorithmto handle the 1-intersectingrows.

4.3. DETAILED DESCRIPTION OF THERAISINGALGORITHM 33

but,at leasta certain number of rows havebeenremoved fromA andthecorresponding intersected

domains of SolCube have been made "leaner**. After calling addjsetjofAintersedingjrows

and removing 1-intersecting rows, it is possible that A has become empty. If so, raiser calls
foundjsolution to update the variables bestSolution, uboundandn.

After all these special cases have been addressed, we must select a new row r< to be

cov^ed with SolCube. The row ri is removed from A and drives the splittingof SolCube. The

selection of r,- is performed by selectJbestjuncoveredj^owt shown in Fig. 4.6. The strategy to

selectthe best rowin orderto split the current SolCube, before calling recursively raiser, looks

for the row of A which intersects the minimum number of domains of SolCube. The reason is to

reduce the number of branches from the node, i.e., the number of domains intersecting the row to

beadded plus 1. Notice that at this stage each row of Aintersects atleast 2 domains ofSolCube.

In case of ties betweendifferentrows, the row havingthe highest weight is chosen. The weight of

a row Apis definedas:

L\
where m is thenumber of domains of SolCubeintersecting Ap, Di^ is a domain intersected by Ap

and = Di^ \ 0(Ap). So the weight of Ap isjust the fraction ofsolutions from SolCube that
do not cover Ap, which we want to maximize when selecting a new row. If = 0, for some k,
this means that Ap is covered byany solution from SolCube. Such a row is simply removed from

A" and added to A'.

The splitting of SolCube is done as explained in Section 3.2. Then raiser is called

recursively on the disjoint cubes of the recomputed solution. If the current best solution is not

improved in any of thecalls, thenraiser returns 1,meaning thatthelower bound hasbeen raised by

n. If insteadthe currentbest solutionhas been improved onceor moretimes, raiser returns0 after

having updated the current best solution and upper bound.

34 CHAPTER 4. THE RAISING PROCEDURE

selectJbestjuncoveredj'oiv(A, SolCube) {

f* Return the row which intersects fewer domains of SolCube. */

/* When it is called each row of A intersects at least one domain */

bestlnteraectedRowNum = oo

beatWeight —0

fbreachrow r € {

interaectedRowNum = 0

weight = 1

foreachdomainD € SolCube {

if (r n D) {

interaectedRowNum = interaectedRowNum + 1

Di = rowMinua{D, r)

W==\D2\/\D\

weight = weight * w

}

}
if [interaectedRowNum < beatlnteraectedRowNum) {

beatlnteraectedRowNum = interaectedRowNum

beatWeight = weight

beatRow = r

} else if [interaectedRowNum = beatlnteraectedRowNum) {
/* Tiebreaker:pick the row with the highestweight */

if [weight > beatWeight) {

beatlnteraectedRowNum = interaectedRowNum

beatWeight = weight

beatRow = r

}

}
return beatRow

Rgure 4.6 Algorithmto select the best rowto be covered.

35

Chapter 5

Of Lower Bounds there is No End

5.1 Maximal Independent Set Lower Bound

The cardinality of a maximum set of pairwise disjointrows (i.e., there are no Is in the

same column) is a lower bound on the cardinality of the solution to the covering problem, because

a different element must be selected for each ofthe independent rows in ord^ to cover them. If the

size of current solution plus the size of the independentset is greater or equal to the best solution

seen so far, the search along this branch can be terminated because no solution better than the

currentone can possiblybe found. Since'finding a maximum independent set is an NP-complete

problem, in practice a heuristic is usedthat provides a weaker Iowctbound. Notice that eventhe

lower bound provided bysolving exactly themaximum independent setproblem is notsharp. In [8]

anexample ofsize O(n^) isgiven, whose minimal solution has cost 0(7i), but whose lower bound

by independent set is 1. In practicea lower bound by independent set is poor when the covering

matrix is dense.

5.2 Limit Lower Bound

In [1] new rules to prune the search space were introduced. One such rule, called limit

lower bound, has been shownof great effectiveness in practice. Given a covering problem A that

corresponds to a nodeof the computation tree iV, define the following notation: let A.min be the

cost of a minimum solution, A.lower the value of a lower bound on A.min, A.path the cost of the

partial solutionfrom the root to node N, and A.upper the cost of the best solutionfound so far.

Then the following holds.

36 CHAPTERS. OFLOWER BOUNDS THERE IS NO END

mincov{Atpatht weight, Ibound,ubound) {

/* Apply row dominance, column dominance, select essentials and,if it ispossible, Gimpel's reduction */ (IX^)

if (notreduce{A,path,weight, ubound)) return empty^olution

if (gimpeljreduce{A,path, weight,Ihound, ubound, best)) retum best

MSIR = maximalJndependentjset{A, weight) (3)

Iboundjiew = max{cost(path) + cost{MSIR), Ibound) (4)

/*Testif it is possible toapplyLimitLower Bound */ (4a)
emptyIntersection = true

while ((A 9^0) and (lbound_neu> + 1 > ubound) and {emptyIntersection)){

/* Remove fromAcolumns having no intersection withMSIR*! (4b)

emptyIntersection = false

foreach column c € A

if(not checkJnter3ection{MSIR, c)) {A = A\ {c} emptyIntersection =true}
if (not reduce{A,path, weight,ubound)) retum emptyjsolution

MSIR = fnaximaLindependent_aef(A,weight)

Iboundjiew = max{cost(path)+ cost{MSIR),Ibound)

}
/*Bounding based onnobetter solution possible */ (3)

if {Iboundjnew > ubound) best = empty.solution

elseif (Aisempty) { best = solutionjiup{path)} /*New bestsolution atcurrent level ♦/ (6)

} else if{block4>artition{A, Ai,A2) gives non-trivial bi-partitions) { (7)
pathl —empty.solution

bestl = mincoy(Ai,pat/il,weight, 0,ubound —cost{path)) (8)
if{bestl = empty^olution) best = emptyjsolution f* Add best solution tothe selected set*/ (9)
else {path = pathUbestl; best = mincov{A2,path, weight, Iboundjnew, ubound)} (10)

} else { /* Branch oncyclic core and recur */ (11)
branch = selectxolumn{A, weight,MSIR)

pathl = 3olutionjiup{path) Ubranch

let Abranch bethereduced table assuming branch in solution (12)

bestl = mincov{Abranch,pothl,weight,lboundjnew,ubound)
t*Update the upper bound ifwefound a better solution *! (13)

if (bestl ^ empty.solution)i*It implies {ubound > cost(bestl)) */
ubound = cost{best\)

I* Do not branch if lower bound matched */ (14)

if (bestl # emptyjsolution) and (cost(bestl) = Iboundjnew) retum bestl
let be thereduced table assuming branch notin solution (IS)

best2 = mmcot;(path, weight, Iboundjnew, ubound)
best —bestj3olution{bestl,bestl)

}
retum best

Rgure 5.1 The Algorithm ofFig. 2.1 enhanced bythe"limit lower bound" technique.

5.3. LOWER BOUNDBY INCREMENTAL RAISING 37

Theorem 5^.1 (Limit lower bound). Given a binate coveringproblem A letI bean independent

setofthe rows, Le., a setofunate rows intersecting no common column. Let A.lower bea lower
bound from the independent set I, Le,, the sum ofa minimum cost column for each row in I.
Consider thesetB ofthecolumns bthatdonotintersect rows in I andsuch thatb ^ B only if

A.path + A,lower + Cost(6) > A,upper,

Then the columns in B and the rows that intersect them in a 0 can be removedfrom the covering

table and a minimumsolution can still be found.

Aproofcanbe found in [2]. Inpractice in thecommon casethatallcolunms have cost1if included

in a solution, one needs only to check whether

A,path + A,lower + 1 > A,upper^

If so, dl the columns that do not intersect rows in the independent set I can be removed ^
Experimental results in [1] on^act two-level minimization show strong gains by thisnew pmning

technique, resulting in reductions of thesearch space up to threeorders of magnitude.

Fig. 5.1 shows the branch-and-bound algorithm of Fig. 2.1 enhanced by the limit lower

bound. When the condition Iboundjnew -I-1 > A.upper is true, the columns of A which do not

intersect the M5/jR are deleted. Then the matrix is reduced again and the MSIR is recomputed.

Thissequence of actions is iterated as longas Iboundjnew -1-1 > A,upper holdsanduntilnothing

changes.

5.3 Lower Bound by Incremental Raising

Wedevelopan examplethat showshowto raise the lowerboundincrementallyby means

ofourtechnique, developed in Chapter 4. Consider thefollowing matrix An thatcaimotbereduced

'ibgether with therows thatthey intersect in a 0, in instances of binate covering (seeChapter 7).

38 CHAPTERS. OFLOWER BOUNDS THERE IS NO END

by dominance.

0123456789

01 100000000

10011000000

200001 10000

30000001 100

41000000010

50100000010

60010000001

70001000001

8000001 1000

90000100100

Supposethat An is the submatrix corresponding to the node N of &columnbranching

searchtree, such that ubound = 6 and \path{AN)\ = 0.

AnMSIR is made by the 4 rows Aq, A\, A2 and A3. Since ubound - \path(AN)\ -

\MSIR\ = 2, the limit lowerbounddoes not apply. Insteadwe can applya 1-raiser. Initiallythe

cubeofsolutionsisCo = {0, l}x{2,3}x{4,5}x{6,7}. Select row A4 from therestofthematrix.

Applying the operator Rec^ thecube Co splits into two cubes: C\ = {0} x {2,3}x {4,5} x {6,7}

andC2 = {1} X{2,3} X{4,5} x {6,7} x {8}.

Considerthe branchcorrespondingto Ci. Selectrow A5 that is not cov^ed by anysolution

inCi. So adomain mustbe added toCi,whichbecomes Cj = {0}x{2,3}x{4,5}x{6,7}x{l,8}
Now select row Ae, which intersects only the second domain ofCj. As a result C[becomes
C'l = {0} X{2} X{4,5} X{6,7} X{1,8}. But no solution in Cj' covers row A? and therefore one
should add one more domain, and so the lower bound is raised to 6 and we can prune the search.

Consider the branch correspondingto C2. If we select row As, which intersectsonly the

second domain ofC2, then C2 becomes C'l = {1} x {2} x {4,5} x {6,7} x {8}. But no solution
inC'l covers row A? and therefore one should add one more domain, and so the lower bound is
raised to 6 and we can prune the search.

Summarizing, by using a 2-raiser the search requires 1 node of the columnbranching

search tree and 3 nodes of the row branching search tree. The same example with the limit lower

boimd requires 5 nodes of the column branching search tree. Finally 9 nodes are required witha

standard implementation that relies only on the MSIR to find a Iowct bound. It is important to

notice that a node ofthe row branching search tree is much less expensive than a node ofthe column

5.3. LOWER BOUND BY mCREMENTAL RAISING 39

branching search tree.

For ease of comparison, Fig. 5.2 shows the column branching search tree of thematrix

Ajv. constructedbycalling theoriginal mincov ofespresso. We explainhow the parameters change
at each node. We refer to the numb^ of the nodes in the picture; noticethat to the upper right

ofeach node there is a pair ofnumbers, being respectively Ibound uhound (right). The
reader is advised to follow the run on the algorithm presented in Fig.2.1. The procedure mincov

has been called onmatrix Ajvi = Ajv with ubound = 6 to simulate the assumption that Ajv is a
submatrix at the node iV of a column branching tree, whose rootstarts witha matrix A, of which

the currrent best solution has cardinality 6

Node 1 Parameters of mincov: Ibound = 0, ubound = 6, path = 0,

An. =

0 1 2 3 4 5 6

00

9 "

0: 1 1 .

1 ; . . 1 1

2: . . . 1 1
• •

3- 1 1 ♦

4: 1 1

5: . 1

6: 1

7: . 1 • • . .
1

8: 1 1 . •

9: • • •
1

• •
1 .

•

No reduction of Ai is possible. MSIR = {0,1,2,3}. After recomputation of themaximal

independent set we have Ibound = 4, ubound = 6, path = 0. Matrix Ani is decomposed

into two submatricesAni and An^-

Node 2 Parameters of mincov: Ibound = 0, ubound = 6, path = 0,

An2 =

0 1 8 "

0: 1 1 .

4: 1 . 1

5: . 1 1

^This assumption has been made inorder to build a simple example which brings outthe different behavior of the
algorithms being compared.

40 CHAFFERS. OFLOWER BOUNDS THERE IS NO END

No reduction of A2 is possible. MSIR = {0}. Alter recomputation of the maximal

ind^ndent set wehaveIbound= 1,ubound = 6, path = 0. Branching on column 0.

Node3 Parameters of mincov: Ibound = 1, ubound = 6, path = {0}.

1 8
Apf, =

5: 1 1

A3 isemptyaftercolumndominanceandselectionof essential column1. Afterrecomputation

ofthe maximal independent setwehave/6ound = \path\+\MSIR\ = 1+1 = 2^ ubound =

6,path = {0,1}. Returns thesolution best = {0,1}. Back tonode 2,ubound = \best\ = 2.

Node 4 Parameters of mincov: Ibound —1, ubound = 2, path = 0.

AiV4 =

1 8 '

0: 1 .

4: • 1

5 : 1 1

During reduction, after row dominance and selectionof essential columns 1 and 8, this node

is prunedbecause\path\ = 2 > ubound = 2.

Node5 Parameters of mincov: Ibound = 4, ubound = 6, path = bestNodei = {0,1}.

An. =

2 3 4 5 6 7 9

1: 1 1

2: . • 1 1 . . .

3: 1 1 .

6: 1 1

7: . 1 • • . . 1

8: . • • 1 1 . .

9:
• •

1
• •

1
•

No reduction of A5 is possible. MSIR = {1,2,3}. After recomputation of the maximal

independent set wehave Ibound = \path\ + \MSIR\ = 2 + 3 = 5, ubound = 6, path =

{0,1}. Matrix Ans is decomposed into twosubmatrices An^ andA^,.

5.3. LOWER BOUND BYINCREMENTAL RAISING 41

Node6 Parameters of mincov: Ihound= 0, ubound = uboundf^odeS - \pO'if^Node5\ = 6-2 —4,

path = 0.

A.N6 =

2 3 9 '

1: 1 1 •

6: 1 . 1

7: . 1 1

No reduction of Ae is possible. MSIR = {1}. After recomputation of the maximal

independent setwehave Ibound = 1,ubound = 4, path = 0. Branching oncolunm 2.

Node7 Parameters of mincov: Ibound = 1, ubound = 4, path = {2}.

3 9
i4jv7 =

7: 1 1

A? isempty after columndominance andselectionofessential column3. After recomputation

ofthemaximal independent setwehave/ftound = \path\-^\MSIR\ = 1+1 = 2,ubound =

4,path = {2,3}. Returns thesolution best = {2,3}. Back tonode 6,ubound = \best\ = 2.

Node 8 Parameters of mincov: Ibound = 1, ubound = 2, path = 0.

3 9

AiVa =
1:1.

6: . 1

7: 1 1

During reduction, after row dominance andselection of essential columns 3 and9, thisnode

is prunedbecause \path\ = 2 > ubound = 2.

Node 9 Parameters of mincov: Ibound = 5, ubound = 6, path = pathfjodeS U bestXfjodeS ~

{0,1}U{2,3} = {0,1,2,3}.

An. =

4 5 6 7 '

2: 1 1 . .

3: . . 1 1

8: . 1 1 .

,9: 1 . . 1

No reduction of A9 is possible. MSIR = {2,3}. So the lower bound becomes \path\ +

\MSIR\ = 4 + 2 = 6 andthisnode is pruned at line(5)of Rg. 2.1 because Ibound = 6 >

ubound = 6.

42

PiekO

1/2

Pickl

CHAPTERS. OFLOWER BOUNDS THERE IS NO END

Ibound = 4 / ubound = 6

1/2

Discard 0

Deeomp
Matrix

2/2

Pruned

1/2

5/6

1/2 6/6

Discard 2

Pruned

2/2

Pruned

Figure5.2Search treeof Ajv in Section 5.3 by mincov of espresso.

Theprocedure mincov enhanced by the limit lower bound prunes the previous search

treeat Node 5. More precisely, it discovers thatIbound +1 = 5 + 1 = 6> ubound = 6 andso it

removes from the matrix

An. =

2 3 4 5 6 7 9

1: 1 1 .

2: . 1 1 • . .

3: . . . 1 1 .

6: 1 . • • • 1

7: . 1 . . • . 1

8: . . 1 1 • .

9:
•

1
• •

1
•

5.3. LOWER BOUND BYINCREMENTAL RAISING

column 9 which does notintersect any row oftheMSIR = {1,2,3}. The result is thematrix

ANi =

2 3 4 5 6 7

1: 1 1

2: . . 1 1 . .

3: 1 1

6: 1 . . • • .

7: . 1 . • . •

8: . . .
1 1

•

9:
• •

1
• •

1

43

whose MSIRisnow {6,7,8,9}. This raises the lower bound to Ibound = |path| + |Af5/fi| =
2+4 = 6,enabling toprune thenode because Ibound = 6 > ubound = 6and sonobetter solution

is possible.

45

Chapter 6

Experimental Results

Wehave implemented a program AURA to solve UCP andwe have compared it withthe

routine mincovavailable in espresso, with mincovjllb, that is our implementationofsome features

of SCHERZO, and with the results of the real scherzo implemented by O. Coudert. The program

SCHERZO is the most effective solver of UCP previously reported. Its main features described in

the literature [1,8,6] include a betterheuristicselectionof the MSIR, logarithmic lowerbound,

left hand side lower bound, limit lower bound, and partition-basedpruning. Of these features we

have implemented in mincovjxb, to thebestof ourunderstanding of theoriginal description, the

following two: better heuristic selection of the MSIR and limit Iowctbound. The limit lower

bound is a major novelty of scherzo, which accounts forstrong savings in thenumbo: of nodes of

the computationtree comparedto the original mincov ofespresso.

The benchmarks belong to three classes: in Tcible 6.1 there are difhcult cases from the

collectionofespresso (we start from the matrix obtainedby espresso after removingthe essential

primes), in Thble 6.2 there are random generated matrices with varying row/column ratios and

densities, in Thble 6.3 there are matricesencodingconstraintssatisfactionproblemsfrom [9]. Fbr

each of these matrices, we rqport in Table 6.4 their size and their sparsity. The experiments were

performedwitha 2GB SOOMhz Alphawith timeoutset to 3 days of cputime.

The tablesrqporttwo types of data for comparison: the numberof nodesof the column

branchingcomputationtree and the runningtime. About the numb^ of nodes we clarify that

1. AURA has two types of nodes: those of the colunmbranching computation tree and those of

the cube branching computationtree (called A-nodes in the tables). Indeed aura follows

a dual strategy, i.e., it builds the column branching computation tree, but when at a node

46 CHAPTER 6. EXPERIMENTAL RESULTS

the difference between the upp^ bound and the lower bound is less or equal to the raising

parameterr (or maxRaiser), AURA calls the procedureraiser whichbuildsa cubebranching

computationtree, ^jpended at the node where raiser was called. So we need to tepoci both

numb^ of nodes to measure a run of aura.

2. Nodes of the cube branching computationtree usually take much less computing time than

those of the colunm branchingcomputationtree, even though it is not known a-priori a time

ratio betweenthe twotypes of nodes. The reasonis that in each nodeofthe columnbranching

mode,expensive procedures for finding dominance relations and the MSIR are tilled.

3. Hie raisingparamet^ is aninputto aura. Currently wehaveexperimented withsomevalues

andwereport in thetablesthe valueusedin a specificrun. Thehigheris the raisingparameter,

the few^ column branching nodes compared to cube branching nodes thore will be. With a

valuehigh enough, there will be a singlecolumnnode and the rest will be all row nodes.

We compared also with the real scherzo, whose author was kind enough to run for us

the examples. There is a large gap in many cases betweenthe results of scherzo and those of

MiNCOV_LLB, which is our implementationof a subset of scherzo, A major reason may be that

our reimplementation of the better heuristic selection of the MSIR\ even though it follows the

hint given by Coudert, in practice it does not mimic well enough the one in scherzo; moreover, as

already said, scherzofeatures additional improvements that we did not implement. Itisimportant
for comparison results to underline that:

1. both AURA and mincov-LLB exploit the same re-implementationof Coudert's bett^ heuristic

selection of the MSIR\

2. AURA could be improved noticeably by rq)roducing more successfully the better heuristic

selection of the MSIR or any other feature of scherzo. In other words, aura demonstrates

a dual searchtechnique, whichmay benefitfirom other improvements to standardbranchand

bound.

3. overall scherzohas been implemented moreefficiently,as magnifiedalso by the circumstance

that it is comparatively faster on a slowermachine.

The experiments showthat aura outperforms espresso and mincov-LLB. It is always

fast^ and in the most difficult examples eith^ it has a running time advantage up to two ord^ of

magnitiidft or the Other programs fail due to timeout (3 days) or spaceout (2G)..Instead scherzo

47

is avery tough competitor, which isfaster onthe examples from Thble 6.1, but has a less effective
pruning strategy inthose ofTables 6.2 and 6.3, partially compensated by a better MSIR. The
example saucier.t is anextreme case where thevirtues ofaura prevail.

Recently O. Coudert kindly provided us with a copy of scherzo, to let us analyze in

depth the comparative features of the two programs. We will report onthe study as soon as done.

We expect to transf^ to aura the better computation of the MSIR apparently implemented in
SCHERZO.

We do not have a systematic comparison with the results by BCU, a recent ILP-based

covering solver [10]. However, theintuition is that analgorithm based onlinear programming is

bett^ suited for problems with a solution space diversified in thecosts, i.e., for problems which

are "cIosct*' to numerical ones, lb test the conjecture we askedthe authors of [10] to run ecu

onsaucier.u whose solution space is poorly diversified (aminimum solution has6 columns, while

most of theirredundant solutions costintherange from 6to 8). ecu ranoutofmemory after 20000

seconds ofcomputations (the information was kindly provided byS.Liao), while aura completed

the example in less than 3 minutes.

matrix Sol. Espresso SCHERZO MINCOVJLLE Aura

nodes time nodes time nodes time nodes/A-nodes time r

exps 76 13 0.0 na na 13 0.0 13/0 0.0 3

fout 38 161 1.3 na na 49 0.7 18/44 0.2 2

max512 113 111 1.4 na na 25 0.4 19/25 0.4 3

addm4 165 121 3.6 na na 29 1.1 17/11 0.6 2

mlp4 109 2122 22.6 24 0.1 153 4.3 34/206 1.3 3

pdc 94 195 62.7 44 6.1 88 58 41/132 52.9 3

lin.rom 120 370 29.1 238 4.7 106 10.1 61/240 7.7 3

ex5 37 - time 616091 2450.5 597644 214300 155/169245 1315.2 4

prom2 278 - time 25993 5149.2 - time 1478/1097624 24071.4 3

maxl024 245 - time 531618 9583.6 - time 12402/3850628 36240 3

Thble 6.1 Results from Espresso Benchmarks

48 CHAPTERS. EXPERIMENTAL RESULTS

matrix Sol. Espresso Scherzo MINCOVJXB Aura

nodes time nodes time nodes time nodes/A-nodes time r

tc.90 2 135 2.6 2 0.0 3 0.3 3/1 0.1 3

tc.70 2 135 3.5 2 0.0 3 0.2 3/1 0.1 3

tc.50 3 2569 13.9 107 0.6 107 2.3 5/32 0.1 3

tc.30 4 12047 37.8 65 0.3 1061 7.1 11/203 0.2 3

tc.lO 8 843 3.3 90 0.1 131 0.7 17/166 0.1 3

tr.lO 8 12466 59.6 2077 4.1 2232 21.1 94/2529 2.9 3

tr.20 5 16905 49 1823 3.9 2193 19.2 31/951 1.7 3

tr.30 3 947 9.5 63 0.9 61 3.4 5/26 0.3 3

tr.40 2 73 4.3 2 0.0 3 0.6 3/1 0.3 3

ts.90 2 175 21.2 2 0.0 3 2.6 3/1 1 3

ts.70 3 5083 47.0 167 5.3 163 15.8 5/112 0.7 3

ts.50 4 66147 316.4 4011 20.2 3137 67.3 7/1030 1.6 3

ts.30 5 116307 792.8 1752 8.5 8997 139.6 35/1108 2.5 3

ts.lO 12 - time 95573 187.3 175255 1255.1 5043/201091 129.3 3

Tible 6.2 Results from Random Generated Matrices

matrix Sol. Espresso Scherzo MINCOV_LLB Aura

nodes time nodes time nodes time nodes/A-nodes time r

bbara 7 61 0.02 0 0.0 7 0 7/2 0 3

dk512x 6 213 0.24 55 0.0 57 0.15 9/24 0.04 3

ex4inp 5 5279 16.81 17 0.3 19 0.66 9/14 0.27 3

ex5inp 4 64 0.05 4 0.0 6 0.01 6/2 0.01 3

ex6inp 4 639 0.54 35 0.0 103 0.28 7/23 0.03 3

maincont 7 504 0.69 68 0.0 101 0.4 11/12 0.06 3

opus 5 121 0.1 7 0.0 5 0.01 5/2 0.01 3

ricks 5 20 0.37 10 0.2 12 0.36 8/43 0.33 3

saucier 6 - mem 186927 5441.0 - mem 10/76 222.47 3

TEible 6.3 Results from Encoding Problem Matrices

matrix R X C (Sparsity) Sol.

exps 680 X696 (1.2%) 76

fout 177 X431 (2.4%) 38

max512 559 X515 (1.3%) 113

addm4 832 X 1073 (0.6%) 165

mlp4 530 X594 (0.99%) 109

pdc 6904 X 19021 (0.34%) 94

lin.rom 1030X 1076 (0.9%) 120

ex5 831 X2428 (2%) 37

prom2 1924x 2611 (0.31%) 278

maxl024 1090X1264(0.52%) 245

tc.90 50 X 100 (90%) 2

tc.70 50 X 100 (70%) 2

tc.50 50 X 100 (50%) 3

tc.30 50 X 100 (30%) 4

tc.lO 50 X99 (10%) 8

tr.lO 100 X50 (20%) 8

tr.20 100 X50 (40%) 5

tr.30 100 X50 (60%) 3

tr.40 100 X50 (80%) 2

ts.90 . 100 X 100 (90%) 2

ts.70 100 X 100 (70%) 3

ts.50 . 100 X 100 (50%) 4

ts.30 100 X 100 (30%) 5

ts.lO 100 X 100 (10%) 12

bbara 45 X 26 (41%) 7

dk512x 91 X59 (45%) 6

ex4inp 91 X240 (46%) 5

exSinp 36 X 34 (48%) 4

ex6inp 28 X96 (48%) 4

maincont 105 X67 (35%) 7

opus 45 X 63 (45%) 5

ricks 78 X363 (47%) 5

saucier 171 X6207 (47%) 6

Table 6.4 Characteristics of the Benchmarks

49

51

Chapter 7

Future Work

7.1 Extension to Binate Covering

7.1.1 Definition ofBinate Covering Problem and Related Work

At the core of the exact solutionofvarious logic synthesis problems lies often aso-called
coveting step that requires the choice of aset of dements of minimum cost that cover aset of
ground items, under certain conditions. Prominent among these problems are the covermg steps m
the Quine-McCluskey procedure for minimizing logic functions, selectton of aset of encodeable
generalized prime impUcants, state minlmizaUon of finite state machines, technology moping and
boolean rdations. Let us review how the binate covering problem is defined formally.

Suppose that aset S= {si,..., «„} is given. The cost of si Is c; where a >0. By
McnriaHng abinary variable to s;, which is 1ifs; is selected and0otherwise, the binatecovenng
problem (BCP) can be defined as finding S' CSthat minimizes

EciXi, (7-1)
t=l

subjectto the constraint
A(a:i,X2,...,a;n) = If

where Ais aboolean function, sometimes called the constraint function. The constraint function
specifies aset of subsets ofSthat can be asolution. No structural hypothesis is made on A. Binate
refers to the fed that AIs in general abinate function (a fimcUon is binate ifithas at least abinate
variable). BCP is the problem of finding an onset minterm of Athat minimizes the cost function
(i.e., asolutionofminlmumcost oftheboolean equation A(ii, 312,.. .,®n) = !)•

52 CHAPTER?, FUTUREWORK

If A is given in product-of-sums form, finding a satisfying assignment is exactly the

problemSAT, the prototypical iVP-complete problem ([11]). In this case it also possible to write

A as an array of cubes (thatform a matrix withcoefiSdents firom the set {0,1,2}). Eachvariable

of A is a column and each sum (or clause) is a row and the problem can be interpreted as one of

finding a subsetC ofcolumns of minimumcost, such that for every row n, eith^

1. suchthat = 1 and Cj € C, or

2. suchthat aij = 0 and Cj ^ C.

In other words, each clause must be satisfied by setting to 1 a variable s^pearing in it in the positive

phase or by setting to 0 a variable £^pearing in it in the n^ative phase. If A is givenin product-

of-sums form one can say that the assignment of a variable to 0 or 1 covers some rows that are

satisfied by that choice. The product-of-sums A is called covering matrixor covering table. In a

unatecovering problem,the coefficients of A are restrictedto the values 1 and 2 and only the first

condition must hold.

As an exampleof binate covering formulation of a well-known logic synthesisproblem

consider the problem of finding the minimumnumb^ of prime compatibles that are a minimum

closed cover of a given FSM. A binate covering problem can be set up, where each column of the

tableisaprimecompatibleandeachrowisoneofthecovoingorclosureclauses oftheproblem [12].

There are as many coving clauses as states of the original machine and each of them states that a

state is coveredby any of the prime compatibles in which it is contained. There are as many closure

clauses as prime compatiblesand each of them states that if a given prime compatibleis chosen,

then for each implied class in the corresponding class set one of the prime compatibles containing

it must be chosen too.

In the matrix representation, entry (t, j) is 1 or 0 according to the phase of the literal

corresponding to primej in clause t; if such a literal is absentthe entry is 2.

Various techniques have been proposed to solve binate covering problems. A class of

them [13, 14] are branch-and-bound techniques that build explicitly the table of the constraints

expressed as product-of-sum expressions and &cplore in the worst-case all possible solutions,but

avoidthe generationof some of the suboptimalsolutionsby a clever use of reductionsteps.

A secondapproach [15]formulates theproblemwithBinaryDecision Diagrams (HDD's)

and reduces finding a minimum cost assignment to a shortestpath computktion. In that case the

number of variables of the HDD is the numb^ of columns of the binate table.

7.1. EXTENSJONTOBINArECOVERING

Amixed technique has been proposed in [16] by Jeong and Somenzi in [16]. It is a
branch-and-bound algorithm, wh«e the clauses are represented as aconjuncUon of BDD's. Hie
usage of BDD's leads to an effective method to compute aIowa hound on the costofthe solution.

Notice that unate covoing is aspecial case of binate covering. Therefore tedmiques for
thelatta solve also the forma. In theotha direction, exact state minimization,aproblan naturally
formulated as ahinate covering problem, can be reduced to aunate covaing problem, afta the
generation ofirredundant prime closed sets [17]. But thoe is acatch hoe: the cost function is not
anymore additive, so that the reduction techniques so convenient to solve covaing problems, are
notanymore applicable astheyare.

7.1.2 Computation of MSIR

Fbr applying the paradigm of "negative" thinking to the binate covering problem (BCP)we need to start from the computationofJl/5/fi as we do for theunate covering problem (UCP). In

the BCP case we computeaMSIR of the rows having only Is and dashes (as it is done in standardimplementationsofthebinate solver) and then we augmentitmaximally by adding non-intersecting

rows. The latta rows are useless for Iowa bound estimation, but should be added to the Iowa
bound submatrix, when forming an initial matrix for the raiser procedure, because furtha addition
ofrows and recalculation ofthe solution space may discova soona costly cubes ofsolutions to be
bounded away.

For instance, suppose that an augmented M5/i2 consists of three rows {«!, 0:2}, {®3, ®4}
and {x5, X6}. From the Iowa boundpointofview the last row is useless, since it does not contribute
to the lowa bound estimate (equal to 2) due to the costless assignment 15 = 0. Suppose to add
row {15, x?} to the previous MSIR. Afta recomputation there are two cubes of solutions. The
first cube {i,, X2} x{x., X4} x{^5} corresponds to the assignment xj =0and contains solutions
of cost 2. The second cube {x,, xz} x{xj, X4} x{xsxs} x{x,} corresponds to the assignment
15 = 1and contains solutions ofcost 5.

7.1.3 Cubes of Solutions

We revise the definition of solution cube to accommodate the fact that a solution may
require positive and negative Uterals. Asolution cube is aset of solutions represented by

C = DiX D2X '"X Dd

54 CHAPTER 7. FUTURE WORK

wh^e Di is a set of partial solutions consisting of assignments to some variables from the set

var(Di), which is the support of Di. The sets var(A)»» = 1,•**»are disjoint. Wedefine the

minimal costof thesolutions contained in C as cost(Di) H 1- cost(Dd),whCTe cost(Di) is the

minimal cost of the solutions contained in A*.

An example of a cubeof solutions is C = Di x A. whae Di = {xiaii «2®3}»

uar(Di) = {xi, X2,2:3} D2 = {a:4«5, xsxe}* var(D2) = {2:4,2:5,2:6}. For instance, xiX2 denotes

the partial solution with2;i = 0 and X2 = 1. ThecubeC contains 6 (6 = 3 x 2) solutions. Since

cost(Di) = l(xiX2 and 2:1 have both cost 1)and cost(A) = 2 (2:4x5 and X5X6 have both cost 2),

then cost(C) = 1 + 2=3.

Notice that in the unate covering formulation thore are no products oflit^als in a domain

D, which then consists only of a collection of single literals.

7.1.4 Recomputation of Solutions

Therecalculation Rec(C, A'+ Ap) ofC canbedescribed byformulas structurally similar

to Equations (3.1-3.4), butwitha different interpretation of the involved operations. Let the cube

C of solutions of matrix A! be

C = D\ X D2X'"X Dd

Denote by t;ar(C) theseti;ar(Di) U•••Uvar{Dd) andby var{Ap) thesetof variables occurring

in row Ap.

Equation 3.4 is modified to

Rec{A' + ApyC) = partl(C) Upart2{C) x sol'{Ap)

whCTe sol'(Ap) is the set ofsolutions covering Ap and consisting ofvariables var{Ap) \ var{C).

Moreover, in the definition of parti{C) andpart2(C) theop^ators fi and \ mustbe replaced as

follows:

1. Instead of the operation A n 0(Ap) use the operation Aftso/(Ap), whwe sol{Ap) are

solutions covering Ap consisting ofvariables inwar(A). Operation ft returns all irredundant

solutions eitho:

(a) includedin A and covering Ap,or

(b) extensions (bysetting variables from t;ar(A) n t;ar(Ap))which cover Ap of solutions

in A not covering Ap.

7.1. EXIENSION TOBINAJE COVERING 55

2. Instead ofthe operation Di \ 0(i4p) use the operation Di\0{Ap) letuming ail irredundant
solutions dth^

(a) included in not covering Ap and not extendable to covct Ap (by setting variables

from var{Di) n var(i4p)),or

(b) extensions (again, by setting variables from uar(D,) n var{Ap)) which do notcover

Ap of solutions in Di notcovering Ap.

We introduce an example to clarify the previous extension to the binate case of the

recomputation rulepresented in Chapter 3 for the unate case. Let C = Di x £>2 be a cube of

solutions, with DI = ®3} and D2 = {x4,0^5} andlet Ap = + 3:5 + x^ be the rowto be

added. After therecomputation of solutions, cube C yields three cubes Ci, C2 andC3:

Ci = {0:3^1} X{X4,»5}

C2 = {xiX2,X3Xi} X{X4X5}

C3 = {xi®2,®3«i} X{®5,«4®5}

parfl(C) = C1UC2

part2(C) = C3

Rec{A' 4- Ap, C) — parti(C) Upart2(C) x {a;?}'

Cube Ci isequal to DJ x D2, where D'l is thesetofthesolutions from Di covering Ap or

of theextensions (by setting variables from var(Di) n var(Ap)) which cover Ap of solutions from

D\ not covering Ap. Infact, a; 1x2 does not cover Ap and cannot beextended tocover Ap (assigning

values to free variables from var (Di) n Ap, i.e., variable 13). Solution X3 does notcover Ap, butit

can beextended tocover Ap byassigning 0 to xi, sothat DI' = {X3X1}.

Cube C2 is equal to D'{ x i?2'where D'{ is thesetof thesolutions from Di notcovering

Ap and not extendable tocover Ap, orthe extensions (by setting variables from var(Di) n var(Ap))
which do not cover Ap ofsolutions from Di not covering Ap. So DI" = {xiX2, X3X1}. Infact,
the first solution of Di, xiX2, does not cover Ap and is not extendable to cover Ap, because the

extensionsin the domain xi, X2, X3 of xiX2 are x1x2x3 and x1x2x3 which do not cover Ap. The

second solution of Du ®3. doesnotcover Ap andits extension X3X1 in thedomain xi, X2, X3 does

not cover Ap either, while the extension X3X1 does. SoX3X1 isinDJ.

D'2 consists of thesolutions from D2covering Ap orextendable to cover Ap byassigning

a value to variables from var{D2) n var{Ap). In fact, D2contains X4 andX5, of which X5 cannot

56 CHAPTER 7. FUTURE WORK

beextended in thedomain 24,0:5 to cover Apt while X4 canbe extended to X4X5 to cover Ap.

Cube C3 = D'{ XD'{ contains thesolutions ftomD2notcovoing Ap andnotextendable

tocovCT Apt or theextensions (by setting variables from vor(D2) n var(Ap)) which donotcover

Ap of solutions from Dznotcovering Ap. Dzcontains X4 and ^5. Solution xs does notcover Ap

nor any ofits extensionsin the domain X4 and X5 does, while 24 has an extension^4x5 which does

not cover Ap and anextension 24x5 which covers Ap. Since inD'i theconjunct x^xs is subsumed

by xst wecanremove theformer, sothatvar{P2) ends up as equal to {0:5}. Th^eforein general

aft^ the recalculation the support of the domains ofthe cubes may shrink.

Theadditional domain {27} multiplied bypart2{C) describes thesolutions coving Ap

bysetting variables from uar(i4p) \ var(C).

Thefollowing ruletoobtain thedomains D'l andD'{t given thedomain A anda row Ap,

can be given.

Recomputation rule. Suppose w.l.o.g. that Ap = H 1- d{xp)t whwe d(xk)

is either Xk or Xk, and that uar(A) n t;ar(Ap) consists of variables «!,•••, JCr, r < p. Tb get

D'i multiply each solution from A byeach literal d(xfc), k = 1,•••, r. Tb get D" multiply each

solutionfrom A bytheproduct term d{xi) d(xr). Ifasolutionfrom Di implies d(xit) thenthat

solution is added to D[. If theresult of multiplying a solution by d{xk) is empty then thatsolution

is added to D'/. After obtaining DJand£)J'» remove conjuncts subsumed by other conjuncts.

Theorem 7.1.1 The recomputation ofRec{A'+Ap,C) with theprevious recomputation ruleyields

a collection ofnon-overlapping solution cubes whose union is exactly theset ofall theirredundant

solutions of A' + Ap.

7.2 Other Applications of Incremental Problem Solving

lb undo^line its versatility, we show how inaemental problem solving can be applied to

the following problems: graphcoloring (GC), traveling salesmanproblem(TSP) and satisfiability

(SAT). We donotprovide ready-to-use algorithms, butonlydemonstrate the applicability of IPSto

diffident problems.

Notice that when solving an optimization problem as a starting point for IPS we can

always employ a 'lower bound" subproblem from a traditional BAB formulation. Such lower

boimd subproblems areusedbecause theyareeasyto solve, due to the simpleandregular structure

of thdr solutionspace which can be r^esented in a compact form.

7.2. OTHER APPUCATIONS OF INCREMENTAL PROBLEM SOLVING 57

Graph Coloring Let G = (V, E) be a gra^h to be colored. Suppose that we need to prove that

there is no n-coloring of G. A lower bound subproblem of GG(G) is GG(G'). where G' is

a complete subgraph G' of G of maximal size. Let Col(V') be an assignment of colors to

voticesfrom V. The solution space 5o/(G') ofGG(G') isexactly thesetPerm{Col(V')),

where theop^ator Perm generates adl |V|! permutations ofCol{V').

However, in G theremay be sev^al subgraphs of maximal size not intersecting each otho:.

Denote byGi, •••, Gn all such complete subgraphs of maximal size, where G, = (K', Ei),

Vi c V, Ei c E,\Vi\ = |Vj| andVi does not intersect Vj, i 1,•••,». Obviouslythe

choices of the G{Scan be made in different ways.

The setofall minimal colorings ofGi U••-UGn is©tactly equal toPerm(Go/(Vi)) x •••x

Perm{Col(Vn)). So we can choose GG(GO, where G' = GiU---UG„,y' = ViU---UV;
andE' = El U•••UE„ as a starting problem. Then weapproach GG(G), by adding each

time to G' a vertex v from V \ V' and all edges E{v) connecting v from E \ E'. lb that

effect, one can formulate rules torecalculate the solution space from Sol(G') toSol{G"),

wh©e G" = (V"y E"), V" = V u {v} and E" = E' U{E(u)}. Once the solutions ofthe
augmented graph are recomputed, the solutions with n ormore colors are discarded.

IVaveling Salesman Problem Let G = {ci,•••,cj} be the set of cities and D be the distance
matrix where Dij specifies the distance between cities c,- and cj. TSP isthe problem to find
a minimal distance tourgoing through all cities of G.

Suppose that we need to prove that TSP(C, D) has no solution costing less than ubound.
Denote by D' the matrix all whose elements are equal tom, where misthe minimal distance
between two cities from G. TSP{C, D') is a lower bound subproblem of TSP{C, D).
Denote by I (G) an assignmentofintegers 1, •••,dto thecities from Gspecifyingatour. Then
the set of minimal solutions 5o/(G, D') of TSP(C,V) is exacfly Perm{I{C)), because
evCTy tour has the same cost d-m. So we can use TSP(C,D') as astarting problem inthe
IPS paradigm.

Then we approach TSP(C, D) from T5P(G, D') by replacing each time anelement

with the corresponding element Dij, so that the two matrices D and D' become closer. One
ran formulate rules to recalculate the solution space of the modified cost matrix. Afterthe

recomputation, any solution costing more orasubound is discarded.

Satisfiability We conclude with an example of IPS applied to a decision problem, SAT, i.e..

58 CHAPTER?. FUTURE WORK

satisfiability ofa conjunctive nonnal fonn (CNF). Suppose that the input is a CNF C =
Di D„ofn implicates. Denote byLit(Di) thesetoflita:als occurring inA.

Let Indep{C) = A',,*••>Apbe aset ofimplicates firom Cofmaximal size not intersecting
each other, i.e., for Di, Dj, i 5^ j, »i < i < ip* M< i < «p»» isthe case that Ltf(A)
and Lit(Dj) do not intCTsect. The set ofsolutions ofSat{Ind€p{C)) can be rqjresented as
Ai, X•••XA,p, where Ai^ isaset ofassignments satisfying implicate Di^. For example if
Di^ = X5thesetofassignments satisfying A^consists oftwo elements: {x5 = 1, a;? =
0}.

Thenwe approach 5af(C)by adding toIndep(C) implicatesofCnotcontainedin/n(icp(C).

One can formulate rules to recalculate the solution space aft^ adding a new implicate. There

willbe solutionsof the startingproblemthatcannotbe extendedto solutionsof the augmented

CNF, because ofcontradictory requirements on the assignments.

59

Chapter 8

Conclusions

We have presented a new technique to solve exactly a discrete optimization problem,

basedon the paradigm of ''negative" thinking. Themotivation is that whensearching the spaceof

solutions often a good solution is reached quickly and then it is improved only a few times before

the optimum is found; so most of the solution spaceis explored to cotify optimality, but it does

not yield any improvement in the cost function. This suggests that morepowerful lowerbounding

wouldspeedup the searchdramatically, as shownby the introductionof the limit lowerbound[1].

Our approach is moreradical becausewhenwe aredealing witha subspace of solutionsunlikelyto

improve theupper bound, we switch thes^ch strategy toa different one geared toraise thelower

bound. A key technicalcontributionto design a searchstrategywhich realizesnegativethinkingis

the introductionof cubesofsolutions,a data structureinspiredby multi-valuedcubes. Applyingthe

operatorRec to a cubeof solutions oneobtainsa collection of cubesof solution, therebyproviding a

natural clustering of the recomputedsolutions. As arguedin this dissertation,clustering is required

to design a recursive algorithm based on branching in subsets of solutions and allows the lower

bound to be raised independently starting from different subsets of solutions.

For illustration we applied our technique to the unate covering problem, usually solved

exactly by a branch-and-bound procedure, where lower bounds are obtainedby means of an in

dependent set of rows, and branches are on columns. We have designed a dual search technique,

called raiser, which is invoked when the difference between the upper bound and the lower bound

is withina parametermaxRaiser, that we arefree to set. The procedureraiser tries to detecta hard

core of the matrix to be solved Qower bound submatiix), augmenting an independent set of rows in

order to increase incrementally the cardinality of the minimum solutions that cover it. Eventually

either this incremental raising yields a lower bound that matches the current upper bound and so we

60 CHAPTERS. CONCLUSIONS

are done with this matrix,or we produce at least one better solution, raiser definesa computation

tree whose nodes have associated a low^ bound submatiix and a cube of solutions. Hie selection of

a nextrow inducesthe recomputation of all the solutionsof the lowerboundsubmatiixaugmented

by the nextrow, as disjoint cubesof solutions. Eachsuchcubetogether withthe augmented matrix

defines a new node; op^ationally raiser calls itself recursively passing as parameters each sudi

disjoint cube of solutions and the augmented Iowa bound submatiix. It would be intoesting to

explore a mixedt^proach whereone accumulates somecubes of solutions at the same node and

fewer recursive calls are made, trading off time vs. memory.

Thereportedexperiments showthat ourprogram aura, ou^poforms espresso and MIN-

covJLLB, whichis the algorithm in espresso enhanced by our implementation of Coudert's limit

lowerbound. The packagescherzo is fasterthanaura on the examples fromTbble 6.1, but it has

a less effective pruningstrategy in the ocamples of Tables 6.2 and 6.3, partiallycompensated by a

better MSJR.

Future work includes a more careful study of some algorithmic design issues, like the

selectionof the next row, trading-off numberof nodes vs. number of cubes storedin a node, and

setting automatically andadaptively the raisa parameta. Alsoof great interest is the extension of

our algorithmto the binatecoveringproblem and to other exact searchproblems.

A more basic line of research is the exploration of data structures diffaent firom cubes

of solutions, but still enjoying their nice properties, since the latter are just the simplest way

of representing sets of partial solutions. We believe that studying various ways of implicitly

rqpresenting setsof solutions is a promising direction of investigation to rescue branch-and-bound

from its current limits.

61

References

[1] O.Coudert and J. Madre, "New ideas for solving covering problems" in The Proceedings of

theDesign Automation Conference^ pp. 641-646,June 1995.

[2] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, Synthesis ofFSMs: Functional

Optimization. Kluwer Academic Publishers, 1996.

[3] R. Rudell, "Espresso," ComputerProgram, 1987.

[4] J.-K. Rho andF. Somenzi, "Stamina," Computer Program, 1991.

[5] E. I. Goldberg, L. P. Carloni, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,

"Negative Thinking by Incremental ftoblem Solving: Application toUnate Covering," inThe

Proceedings of the International Conference on Computer-Aided Design, pp. 91-98, IEEE,

Nov. 1997.

[6] O. Coudert, "Two-level logic minimization: anoverview," Integration, vol. 17-2, pp. 97-140,

Oct. 1994.

[7] R.Rudell andA.Sangiovanni-Vincentelli, "Multiple-valued minimization forPLAoptimiza

tion," IEEE lyansactions on Computer-Aided Design, vol. CAD-6, pp.727-750, Sept. 1987.

[8] O. Coudert, "On solving binate covering problems," in The Proceedings of theDesign Au

tomationConference, pp. 197-202, June 1996.

[9] T.Villa, EncodingProblems inLogicSynthesis. PhD thesis. UniversityofCalifornia, Berkeley,

Electronics Research Laboratory, May 1995. Memorandum No. UCB/ERL M95/41.

[10] S.Liao andS. Devadas, "Solving covering problems using LPR-based lower bounds," in The

Proceedings of theDesign Automation Conference, June 1997.

62 REFERENCES

[11] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-

completeness. W.H. Freemanand Company, 1979.

[12] A. Grasselli and F.Luccio, method for minimizing the number of internal states in incom

pletelyspecified sequential networks,** IRETransactionsonElectronic Computers»vol. EC-14,

pp. 350-359, June 1965.

[13] R. Brayton andF.Somenzi, *'An exactminimize for Boolean rdations,** in The Proceedings

of theInternationalConference on Computer-Aided Design, pp. 316-319, Nov. 1989.

[14] L. Lavagno, "Heuristicand exactmethods for binatecovalng,** EE290ls Report,May 1989.

[15] B. Lin and F. Somenzi, "Minimization of symbolic relations,** in The Proceedings of the

International Conferenceon Computer-AidedDesign, pp. 88^91, Nov. 1990.

[16] S.-W. Jeong and F. Somenzi, "A new algorithm for 0-1 programming based on binary deci

sion diagrams,** in Proceedings of ISKIT-92, International symposium on logicsynthesis and

microprocessorarchitecture, lizjuka, Japan, pp. 177-184, July 1992.

[17] S. D. Sarkar, A. Basu, and A. Choudhury, "Simplificationofincompletely specified flow tables

with the help ofprime closed sets,** IEEE Transactionson Computers,pp. 953-956, Oct. 1969.

	Copyright notice 1997
	ERL-97-89

