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Abstract

Adaptive Signal Models: Theory, Algorithms, and Audio Applications

by

Michael Mark Goodwin

Doctor of Philosophy in Engineering—Electrical Engineering and Computer
Science

University of California, Berkeley

Professor Edward A. Lee, Chair

Mathematical models of natural signals have long been of interest in the scientific
community. A primary example is the Fourier model, which was introduced to explain
the properties of blackbody radiation and has since found countless applications. In this
thesis, a variety of parametric models that are tailored for representing audio signals are
discussed. These modeling approaches provide compact representations that are useful for
signal analysis, compression, enhancement, and modification; compaction is achieved in a
given model by constructing the model in a signal-adaptive fashion.

The opening chapter of this thesis provides a review of background material
related to audio signal modeling as well as an overview of current trends. Basis expansions
and their shortcomings are discussed; these shortcomings motivate the use of overcomplete
expansions, which can achieve improved compaction. Methods based on overcompleteness,

e.g. best bases, adaptive wavelet packets, oversampled filter banks, and generalized time-

frequency decompositions, have been receiving increased attention in the literature.

The first signal representation discussed in detail in this thesis is the sinusoidal

model, which has proven useful for speech coding and music analysis-synthesis. The

model is developed as a parametric extension of the short-time Fourier transform (STFT);
parametrization of the STFT in terms of sinusoidal partials leads to improved compaction

for evolving signals and enables a wide range of meaningful modifications. Analysis meth

ods for the sinusoidal model are explored, and time-domain and frequency-domain syn

thesis techniques are considered.

In its standard form, the sinusoidal model has some difiiculties representing non-

stationary signals. For instance, a pre-echo artifact is introduced in the reconstruction of

signal onsets. Such difficulties can be overcome by carrying out the sinusoidal model in

a multiresolution framework. Two multiresolution approaches based respectively on filter

banks and adaptive time segmentation are presented. A dynamic program for deriving



pseudo-optimal signal-adaptive segmentations is discussed; it is shown to substantially

mitigate pre-echo distortion.

In parametric methods such as the sinusoidal model, perfect reconstruction is gen

erally not achieved in the analysis-synthesis process; there is a nonzero difference between

the original and the inexact reconstruction. For high-quality synthesis, it is important to

model this residual and incorporate it in the signal reconstruction to account for salient

features such as breath noise in a flute sound. A method for parameterizing the sinusoidal

model residual based on a perceptually motivated Alter bank is considered; analysis and

synthesis techniques for this residual model are given.

For pseudo-periodic signals, compaction can be achieved by incorporating the

pitch in the signal model. It is shown that both the sinusoidal model and the wavelet

transform can be improved by pitch-synchronous operation when the original signal is

pseudo-periodic. Furthermore, approaches for representing dynamic signals having both

periodic and aperiodic regions are discussed.

Both the sinusoidal model and the various pitch-synchronous methods can be

interpreted as signal-adaptive expansions whose components are time-frequency atoms

constructed according to parameters extracted from the signal by an analysis process. An

alternative approach to deriving a compact parametric atomic decomposition is to choose

the atoms in a signal-adaptive fashion from an overcomplete dictionary of parametric time-

frequency atoms. Such overcomplete expansions can be arrived at using the matching

pursuit algorithm. Typically, the time-frequency dictionaries used in matching pursuit

consist of Gabor atoms based on a symmetric prototype window. Such symmetric atoms,

however, are not well-suited for representing transient behavior, so alternative dictionaries

are considered, namely dictionaries of damped sinusoids as well as dictionaries of general

asymmetric atoms constructed using underlying causal and anticausal damped sinusoids.

It is shown that the matching pursuit computation for either type of atom can be carried
out with low-cost recursive filter banks.'

In the closing chapter, the key points of the thesis are summarized. The conclu

sion also discusses extensions to audio coding and provides suggestions for further work

related to overcomplete representations.

Professor Edward A* .
Dissertation Committee Chair
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Chapter X

Signal Models and Analysis-Synthesis

T he term signal modeling refers to the task of describing asignal with respect
to an underlying structure —a model ofthe signal's fundamental behavior. Analysis 'is the
process offitting such a model to a particular signal, and synthesis'is the process by which
a signal is reconstructed using the model and the analysis data. This chapter discusses
the basic theory and applications of signal models, especially those in which a signal is
represented as a weighted sum of simple components; such models are the focus of this
thesis. For the most part, the models to be considered are tailored for application to
audio signals; in anticipation of this, examples related to audio are employed throughout
the introduction to shed light on general modeling issues.

1.1 Analysis-Synthesis Systems

Signal modeling methods can be interpreted in the conceptual framework of
analysis-synthesis. A general analysis-synthesis system for signal modeling is shown in
Figure 1.1. The analysis block derives data pertaining to the signal model; this data is
used by the synthesis block to construct a signal estimate. When the estimate is not
perfect, the difference between the original x[n] and the reconstruction x[n] is nonzero;
this difference signal r[n] = x\ri] —x\p\ is termed the residual. The analysis-synthesis
framework for signal modeling is developed further in the following sections.

1.1.1 Signal Representations

A wide variety of models can be cast into the analysis-synthesis framework of
Figure 1.1. Two specific cases that illustrate relevant issues will be considered here: filter
banks and physical models.



x[n]
Original

signal
Analysis Synthesis

r[n]
Residual

Signal model data

{r[n]
Reconstruction

Figure 1.1: An analysis-synthesis framework for signal modeling. The analysis

block derives the model data for the signal x[n]; the synthesis block constructs a
signal estimate f [n] based on the analysis data. If the reconstruction is not perfect,
there is a nonzero residual r[n].

Filter banks

A common approach to signal modeling involves using analysis and synthesis
blocks consisting of filter banks. In such methods, the signal model consists of the sub-
band signals derived by the analysis bank plus a description of the synthesis filter bank;
reconstruction is carried out by applying the subband signals to the synthesis filters and
accumulating their respective outputs. This filter bank scenario has been extensively
considered in the literature. A few examples of filter bank techniques are short-time

Fourier transforms [1], discrete wavelet transforms [2], discrete cosine transforms [3],
lapped orthogonal transforms [4], and perceptual coding schemes wherein the filter bank
is designed to mimic or exploit the properties of the human auditory or visual systems
[5, 6, 7, 8, 9, 10, 11]. Such filter-based techniques have been widely applied in audio
and image coding [7, 8, 12, 13, 14, 15, 16, 17, 18, 19], and a wide variety of designs and
structures for analysis-synthesis filter banks have been proposed [2, 20].

Physical models

Asignificantly different situation arises in thecase ofphysical modeling ofmusical
instruments [21, 22], which is a generalization of the source-filter approaches that are
commonly used in speech processing applications [23, 6, 24, 25, 26, 27]. In source-filter
approaches, the analysis consists of deriving a filter and choosing an appropriate source
such that when the filter is driven by the source, the output is a reasonable estimate

of the original signal; in some speech coding algorithms, the source mimics a glottal
excitation while the filter models the shape of the vocal tract, meaning that the source-



iilter structure is designed to mirror the actual underlying physical system from which
the speech signal originated. In physical modeling, this idea is extended to the case of
arbitrary instruments, where both linear and nonlinear processing is essential to model
the physical system [21]. Here, the purpose of the analysis is to derive a general physical
description of the instrument in question. That physical description, which constitutes
the signal model data in this case, is used to construct a synthesis system that mimics
the instrument's behavior. In a guitar model, for instance, the model parameters derived
by the analysis include the length, tension, and various wave propagation characteristics
of the strings, the acoustic resonances of the guitar body, and the transfer properties of
the string-body coupling. These physical parameters can be used to build a system that,
when driven by a modeled excitation such as a string pluck, synthesizes a realistic guitar
sound [21, 28, 29, 30].

Mathematical and physical models

In either of the above cases, the signal model and the analysis-synthesis process
are inherently connected: in thefilter bank case, thesignal is modeled as an aggregation of
subbands; ina physical model, thesignal isinterpreted astheoutputofa complex physical
system. While these representations are significantly different, they share a common
conceptual framework in that the synthesis is driven by data from the analysis, and in
that both the analysis and synthesis are carried out in accordance with an underlying
signal model.

In the literature, physical models and signal models are typically differentiated.
The foundation for this distinction is that physical models are concerned with the systems
that are responsible for generating the signal in question, whereas signal models, in the
strictest sense, are purely concerned with a mathematical approximation ofthe signal irre
spective ofits source —thesignal is not estimated via an approximation ofthe generating
physical system. As suggested in the previous sections, this differentiation, however, is
somewhat immaterial; both approaches provide a representation of a signal in terms of
a model and corresponding data. Certainly, physical models rely on mathematical anal
ysis; furthermore, mathematical models are frequently based on physical considerations.
While the models examined in this thesis are categorically mathematical, in each case the
representation is supported by underlying physical principles, e.g. pitch periodicity.

Additive models

Thegeneral topic ofthis thesis is mathematical signal modeling; as stated above,
the models are improved by physical insights. The designation ofa model as mathematical
is rathergeneral, though. More specifically, the focus ofthis thesis isadditive signal models



ofthe form ^

»=i

wherein a signal is represented as a weighted sum of basic components; such models are
referred to as decompositions or expansions. Ofparticular interest in these types ofmodels
is the capability of successive refinement. As will be seen, modeling algorithms can be
designed such that the signal approximation is successively improved as the number of
elements in the decomposition is increased; the improvement is measured using a metric
such as mean-squared error. Thisnotion suggests another similarity between mathematical
and physical models; in either case, the signal estimate is improved by making the model
more complex - either by using a more complicated physical model or by using more
terms in the expansion. In this light, the advantage of additive models is that the model
enhancement is carried out by relatively simple mathematics rather than complicated
physical analyses as in the physical modeling case.

Signal models of the form given in Equation (1.1) are traditionally grouped into
two categories: parametric and nonparametric. The fundamental distinction is that in
nonparametric methods, the components ^t[^] are a fixed function set, such as a basis;
standard transform coders, for instance, belong to this class. In parametric methods, on

the other hand, the components are derived using parameters extracted from the signal.
These issues will be discussed further throughout this thesis; for instance, it will be shown

in Chapter 6 that the inherent signal-adaptivity of parametric models can be achieved
in models that are nonparametric according to this definition. In other words, for some
types of models the distinction is basically moot.

General additive models have been under consideration in the field of computer

music since its inception [31, 32, 33, 34, 35]. The basic idea of such additive synthesis
is that a complex sound can be constructed by accumulating a large number of simple
sounds. This notion is essential to the task of modeling musical signals; it is discussed

further in the section on granular synthesis (Section 1.5.4) and is an underlying theme of

this thesis.

1.1.2 Perfect and Near-Perfect Reconstruction

Filter banks satisfying perfect reconstructionconstraints have received consider
able attention in the literature [2, 20]. The term "perfect reconstruction" was coined to
describe analysis-synthesis filter banks where the reconstruction is an exact duplicate of
the original, with the possible exception of a time delay and a scale factor:

x[n\ = Ax[n — (1.2)

This notion, however, is by no means limited to the case of filter bank models; any model
that meets the above requirement can be classified as a perfect reconstruction approach.



Throughout, A = l and = 0 will often be assumed without loss of generality.
In perfect reconstruction systems, provided that the gain and delay are com

pensated for, the residual signal indicated in Figure 1.1 is uniformly zero. In practice,
however, perfect reconstruction is not generally achievable; in the filter bank case, for
instance, subband quantization effects and channel noise interfere with the reconstruction
process. Given these inherent difficulties with implementing perfect reconstruction sys
tems, thedesign ofnear-perfect reconstruction systems has been considered for filter bank
models as well as more general cases. In these approaches, the models are designed such
that the reconstruction error has particular properties; for instance, filter banks for audio
coding are typically formulated with the intent of using auditory masking principles to
render the reconstruction error imperceptible [7, 9, 6, 10, 11].

As stated, signal models typically cannot achieve perfect reconstruction. This
is particularly true in cases where the representation contains less data than the original
signal. I.e. in cases where compression is achieved. Beyond those cases, some models, re
gardless ofcompression considerations, simply do not account for perfect reconstruction.
In audiovisual applications, these situations can be viewed in light ofa looser near-perfect
reconstruction criterion, that of perceptual losslessness ot transparency^ which is achieved
in an analysis-synthesis system if the reconstructed signal is perceptually equivalent to the
original. Note that a perceptually lossless system typically invokes psychophysical phe
nomena such as masking to effect data reduction or compression; its signal representation
may be more efficient than that of a perfect reconstruction system.

The notion of perceptual losslessness can be readily interpreted in terms of the
analysis-synthesis structure of Figure 1.1. For one, a perfect reconstruction system is
clearly lossless in this sense. In near-perfect models, however, to achieve perceptual loss
lessness it is necessary that either the analysis-synthesis residual contain onlycomponents
that would be perceptually insignificant in the synthesis, or that the residual be modeled
separately and reinjected into the reconstruction. The latter case is most general.

As will be demonstrated in Chapter 2, the residual characteristically contains
signal features that are not well-represented by the signal model, or in other words, com
ponents that the analysis is not designed to identify and that the synthesis is not capable
of constructing. If these components are important (perceptually or otherwise) it is nec
essary to introduce a distinct model for the residual that can represent such features ap
propriately. Such signal-plus-residual models have been applied to many signal processing
problems; this is considered further in Chapter 4.

The signal models discussed in this thesis are generally near-perfect reconstruc
tion approaches tailored for audio applications. For the sake of compression or data re
duction, perceptually unimportant information is removed from the representation. Thus,
it is necessary to incorporate notions of perceptual relevance in the models. For music,
it is well-known that high-quality synthesis requires accurate reproduction of note onsets



or attacks [7, 36]. This so-called attack problem will be addressed in each signal model;
it provides a foundation for assessing the suitability of a model for musical signals. For
approximate models of audio signals, the distortion of attacks, often described using the
term pre-echo, leads to a visual cueforevaluating the models; comparative plotsoforiginal
and reconstructed attacks are a reliable indicator of the relative auditory percepts.

Issues similar to the attack problem commonly arise in signal processing appli

cations. In manyanalysis-synthesis scenarios, it is important to accurately model specific
signal features; other features are relatively unimportant and need not be accurately rep
resented. In other words, the reconstruction error measure depends on the very nature of

the signal and the applications of the representation. One example of this is compression
of ambulatory electrocardiogram (EGG) signals for future off-line analysis; for this pur
pose it is only important to preserve a few key features of the heartbeat signal, and thus
high compression rates can be achieved [37].

1.2 Compact Representations

Two very different models were discussed in Section 1.1.1, namely filter bank

and physical models. These examplessuggest the wide range of modeling techniques that
exist; despite this variety, a few general observationscan be made. Any given model is only
useful inasmuch as it provides a signal description that is pertinent to the application at
hand; in general, the usefulness of a model is difficult to assess without a priori knowledge
of the signal. Given an accurate model, a reasonable metric for further evaluation is
the compaction of the representation that the model provides. If a representation is

both accurate and compact, i.e. is not data intensive, then it can be concluded that the
representation captures the primary or meaningful signal behavior; a compact model in

some sense extracts the coherent structure of a signal [38, 39]. This insight suggests that
accurate compact representations are applicable to the tasks of compression, denoising,
analysis, and signal modification; these are discussed in turn.

1.2.1 Compression

It is perhaps obvious that by definition a compact representation is useful for
compression. In terms of the additive signal model of Equation (1-1), a compact represen
tation is one in which only a fjBw of the model components ckigi[n] are significant. With
regardsto accurate waveform reconstruction, suchcompaction is achieved when onlya few
coefficients a,* have significant values, provided of course that the functions gi[n] all have
the same norm. Then, negligible components can be thresholded, i.e. set to zero, without
substantially degrading the signal reconstruction. In scenarios where perceptual criteria
are relevant in determining the quality of the reconstruction, principles such as auditory



masking can be invoked to achieve compaction; in some cases, masking phenomena can
be used to justify neglecting components with relatively large coefficients.

Various algorithms for computing signal expansions have focused on optimizing
compaction metrics such as the entropy or L\ norm ofthe coefficients or the rate-distortion
performance ofthe representation; these approaches allow for anexploration ofthe tradeoff
between the amount of data in the representation and its accuracy in modeling the signal
[40, 41, 42, 43]. In expansions where the coefficients are all ofsimilar value, thresholding
is not useful and compaction cannot be readily achieved; this issue will come up again in
Section 1.4and Chapter 6. Notethat for the remainder of this thesisthe terms compression
and compaction will for the most part be used interchangeably.

1.2.2 Denoising

It hasbeen argued that compression and denoising are linked [44]. Thisargument
is based on the observation that white noise is essentially incompressible; for instance, an

orthogonal transform of white noise is again white, i.e. there is no compaction in the
transform data and thus no compression is achievable. In cases where a coherent signal
is degraded by additive white noise, the noise in the signal is not compressible. Then, a
compressed representation does not capture the noise; it extracts the primary structure
of the signal and a reconstruction based on such a compact model is in some sense a
denoised or enhanced version of the original. In cases where the signal is well-modeled as
a white noise process and the degradations arecoherent, e.g. digital data with a sinusoidal
jammer, this argument does not readily apply.

In addition to the filter-based considerations of [44], the connection between com

pression and denoising has been explored in the Fourier domain [45] and in the wavelet
domain [46]. In these approaches, the statistical assumption is that small expansion coef
ficients correspond to noise instead of important signal features; as a result, thresholding
the coefficients results in denoising. There are various results in the literature for thresh
olding wavelet-based representations [46]; such approaches have been applied with some
success to denoising old sound recordings [47, 48]. Furthermore, motivated by the ob
servation that quantization is similar to a thresholding operation, there have been recent
considerations of quantization as a denoising approach [49].

It is interesting to note that denoising via thresholding has an early correspon
dence in time-domain speech processing for dereverberation and removing background
noise [50, 51]. In that method, referred to as center-clipping^ a signal is set to zero if it is
below a threshold; if it is above the threshold, the threshold is subtracted. For a threshold
a, the center-clipped signal is

x[n]
{ar[n] -a z[n] >a

0 x[n\ < fl.



which corresponds to soft-thresholding the signal in the time domain rather than in a
transform domain as in the methods discussed above.^ This approach was considered
eifective for removing long-scale reverberation, i.e. echoes that linger after the signal is
no longer present; such reverberation decreases the intelligibility of speech. Furthermore,
center-clipping is useful as a front end for pitch detection of speech and audio signals
[1, 53]. The recent work in transform-domain thresholding can be viewed as an extension
of center-clipping to other representations.

1.2.3 Analysis, Detection, and Estimation

In an accurate compact representation, the primary structures of the signal are

well-modeled. Given the representation, then, it is possible to determine the basic be

havior of the signal. Certain patterns of behavior, if present in the signal, can be clearly
identified in the representation, and specific parameters relating to that behavior can be
extracted from the model. In this light, a compact representation enables signal analysis

and characterization as well as the related tasks of detection, identification, and estima

tion.

1.2.4 Modification

In audio applications, it is often desirable to carry out modifications such as time-

scaling, pitch-shifting, and cross-synthesis. Time-scaling refers to altering the duration
of a sound without changing its pitch; pitch-shifting^ inversely, refers to modifying the
perceived pitch of a sound without changing its duration. Finally, cross-synthesis is the

process by which two sounds are merged in a meaningful way; an example of this is

applying a guitar string excitation to a vocal tract filter, resulting in a "talking" guitar

[54]. These modifications cannot be carried out flexibly and effectively usingcommercially
available systems such as samplers or frequency-modulation (FM) synthesizers [55]. For
this reason, it is of interest to explore the possibility of carrying out modifications based

on additive signal models.

A signal model is only useful with regard to musical modifications if it identifies
musically relevant features of the signal such as pitch and harmonic structure; thus, a
certain amount of analysis is a prerequisite to modification capabilities. Furthermore, data

reduction is of significant interest for efficient implementations. Such compression.can be
achieved via the framework of perceptual losslessness; the signal model can be simplified by

exploiting the principles of auditory perception and masking. This simplification, however,
can only be carried out if the model components can individually be interpreted in terms

'Note that this kind of thresholding nonlinearity does not necessarily yield objectionable perceptual
artifacts in speech signals; a similar nonlinearity has been successfully applied in the recent literature to
improve the performance of stereo echo cancellation without degrading the speech quality [52].



of perceptually relevant parameters. If the components are perceptually motivated, their

structure can be modified in perceptually predictable and^ meaningful ways. Thus, a

compact transparent representation in some sense has inherent modification capabilities.

Given this interrelation of data reduction, signal analysis, and perceptual considerations,

it can be concluded from the preceding discussions that the modification capabilities of a

representation hinge on its compactness.

1.3 Parametric Methods

As discussed in Section 1.1, signal models have been traditionally categorized

as parametric or nonparametric. In nonparametric methods, the model is constructed

using a rigid set of functions whereas in parametric methods the components are based
on parameters derived by analyzing the signal. Examples of parametric methods include
source-filter and physical models [27, 21], linear predictive and prototype waveform speech
coding [23, 56], granular analysis-synthesis of music [33], and the sinusoidal model [57, 36].
The sinusoidal model is discussed at length in Chapter 2; granular synthesis is described

in Section 1.5.4. The other models are discussed to varying extents throughout this text.

The distinction between parametric and nonparametric methods is admittedly

vague. For instance, the indices of the expansion functions in a nonparametric approach
can be thought of as parameters, so the terminology is clearly somewhat inappropriate.

The issue at hand is clarified in the next section, in which various nonparametric methods

are reviewed, as well as in Chapter 2 in the treatment of the phase vocoder, where a
nonparametric method is revamped into a parametric method to enable signal modifica

tions and reliable synthesis. The latter discussion indicates that the real issue is one of

signal adaptivity rather than parametrization, i.e. a description of a signal is most useful if
the associated parameters are signal-adaptive. It should be noted that traditional signal-
adaptive parametric representations are not generally capable of perfect reconstruction;

this notion is revisited in Chapter 6, which presents signal-adaptive parametric models

that can achieve perfect reconstruction in some cases. As will be discussed, such methods

illustrate that the distinction between parametric and nonparametric is basically insub

stantial.

1.4 Nonparametric Methods

In contrast to parametric methods, nonparametric methods for signal expansion

involve expansion functions that are in some sense rigid; they cannot necessarily be repre

sented by physically meaningful parameters. Arbitrary basis expansions and overcomplete

expansions belong to the class of nonparametric methods. The expansion functions in

these cases are simply sets of vectors that span the signal space; they do not necessar-
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ily have an underlying structure. Note that these nonparametric expansions are tightly
linked to the methods of linear algebra; the following discussion thus relies on matrix
formulations.

1.4.1 Basis Expansions

For a vector space V of dimension iV, a basis is a set of N linearly independent
vectors {61,62? ••Linear independence implies that there is no nonzero solution

{Th} to the equation

5^Tn6n = 0. (1-4)
n=l

Then, the matrix

B = [61 62 ••• bjv], (1.5)

whose columns are the basis vectors {6n}, is invertible. Given the linear independence
property, it follows that any vector x € V can be expressed as a unique linear combination
of the form

N

X = '̂ Qnbn' (1.6)
n=l

In matrix notation, this can be written as

a: = Bo, (1.7)

where o = [oi 02 03 ... o^]^. The coefficients of the expansion are given by

a = S-'i. (1.8)

Computation of a basis expansion can also be phrased without reference to the matrix
inverse B~^; this approach is provided by the framework of biorthogonal bases, in which

the expansion coefficients are evaluated by inner products with a second basis. After that
discussion, the specific case of orthogonal bases is examined and some familiar examples
from signal processing are considered.

It should be noted that the discussion of basis expansions in this section does not

rely on the norms of the basis vectors, but that no generality would be lost by restrict
ing the basis vectors to having unit norm. In later considerations, it will indeed prove
important that all the expansion functions have unit norm.

Biorthogonal bases

Two bases {ai, 02,..., a//} and {61,62,..., 6a^} are said to be a pair of biorthog
onal bases if

A"B = I, (1.9)
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where H denotes the conjugate transpose, / is the N x N identity matrix and the matrices
A and B are given by

A = [ai a2 aj^f] and B = [6i 62 *•• f>N] •

Equation (1.9) can be equivalently expressed in termsof the basis vectors as the require
ment that

(aubj) = a^bj = S[i-j]. (1.11)

Such biorthogonal bases are also referred to as dual bases.
Given the relationship in Equation (1.9), it is clear that

A" = B-K (1.12)

Then, because the left inverse and right inverse of an invertible square matrix are the same
[58], the biorthogonality constraint corresponds to

AB" = / and BA" = /. (1.13)

This yields a pair of simple expressions for expanding a signal x with respect to the
biorthogonal bases:

x = AB^x = BA"x

N N (1-14)

n=l n=l

This framework of biorthogonality leads to flexibility in the design of wavelet filter banks
[2]. Furthermore, biorthogonality allows for independent evaluation of the expansion co
efficients, which leads to fast algorithms for computing signal expansions.

Orthogonal bases

An orthogonal basis is a special case of a biorthogonal basis in which the two
biorthogonal or dual bases are identical; here, the orthogonality constraint is

(6., 6,) = Sli-j], (1.15)

which can be expressed in matrix form as

B"B = I => B" = B'K (1.16)

Strictly speaking, such bases are referred to as orthonormal bases [58]; however, since most
applications involve unit-norm basis functions, there has been a growing tendency in the
literature to use the terms orthogonal and orthonormal interchangeably [2].
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For an expansion in an orthogonai basis, the coefficients for a signal x are given

by

a = B^x a„ = (6„,a:), (1-17)

so the expansion can be written as

N

X = '£(bn,x)bn. (1.18)
n=l

As in the general biorthogonal case, the expansion coefficients can be independently eval
uated.

Examples of basis expansions

The following list summarily describes the wide variety of basis expansions that
havebeen considered in the signal processing literature; supplementarydetails are supplied
throughout the course of this thesis when needed:

• The discrete Fourier transform (DFT) involves representing a signal in terms of
sinusoids. For a discrete-time signal of length iV, the expansion functions are sinu

soids of length N. Since the expansion functions do not have compact time support,
i.e. none of the basis functions are time-localized, this representation is ineffective

for modeling events with short duration. Localization can in somesense be achieved
for the case of a purely periodic signal whose length is an integral multiple of the
period M, for which a DFT of size M provides an exact representation.

• The short-time Fourier transform (STFT) is a modification of the DFT that has
improved time resolution; it allows for time-localized representation of transient
events and similarly enables DFT-based modeling of signals that are not periodic.
The STFT is carried out by segmenting the signal into frames and carrying out

a separate DFT for each short-duration frame. The expansion functions in this
case are sinusoids that are time-limited to the signal frame, so the representation of
dynamic signal behavior is more localized than in the general Fourier case. This is
examined in greater detail in Chapter 2 in the treatment of the phase vocoder and
the progression of ideas leading to the sinusoidal model.

• Block transforms. This is a general name for approaches in which a signal is seg
mented into blocks of length N and each segment is then decomposed in an N-
dimensional basis. To achieve compression, the decompositions are quantized and

thresholded, which leads to discontinuities in the reconstruction, e.g. blockiness in
images and frame-rate distortion artifacts in audio. This issue is somewhat resolved
by lapped orthogonal transforms, in which the support of the basis functions extends
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beyond the block boundaries, which allows for a higher degree of smoothness in
approximate reconstructions [4, 59].

• Critically sampled perfect reconstruction filter banks compute expansions of signals
with respect to a biorthogonal basis related to the impulse responses of the anal
ysis and synthesis filters [2]. This idea is fundamental to recent signal processing
developments such as wavelets and wavelet packets.

• Wavelet packets correspond to arbitrary iterations of two-channel filter banks [2];
such iterated filter banks are motivated by the observation that a perfect reconstruc
tion model can be applied to the subband signals in a critically sampled perfect re
construction filter bank without marring the reconstruction. This leads to arbitrary

perfect reconstruction tree-structuredfilter banks and multiresolution capabilities as
will be discussed in Section 1.5.1. Such trees can be made adaptive so that the filter

bank configuration changes in time to adapt to changes in the input signal [60]; in
such cases, however, the resulting model is no longer simply a basis expansion. This
is discussed further in Section 1.4.2, Chapter 3.

• The discrete wavelet transform is a special case of a wavelet packet where the two

filters are generally highpass and lowpass and the iteration is carried out successively
on the lowpass branch. This results in an octave-band filter bank in which the
sampling rate of a subband is proportional to its bandwidth. The resulting signal
model is the wavelet decomposition^ which consists of octave-band signal details plus

a lowpass signal estimate given by the lowpass filter of the final iterated filter bank.
This model generally providessignificant compaction for images but not as much for
audio [18, 19, 14, 15, 61]. As will be seen in Chapter 5, in audio applications it is
necessary to incorporate adaptivity in wavelet-based models to achieve transparent

compaction [14].

Shortcomings of basis expansions

Basis expansions have a serious drawback in that a given basis is not well-suited
for decomposing a wide variety of signals. For any particular basis, it is trivial to provide

examples for which the signal expansion is not compact; the uniqueness property of basis

representations implies that a signal with a noncompact expansion can be constructed

by simply linearly combining the N basis vectors with N weights that are of comparable

magnitude.

Consider the well-known cases depicted in Figure 1.2. For the frequency-localized

signal of Figure 1.2(a), the Fourier expansion shown in Figure 1.2(c) is appropriately
sparse and indicates the important signal features; in contrast, an octave-band wavelet

decomposition (Figure 1.2(e)) provides a poor representation because it is fundamentally
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Figure 1.2: Shortcomings of basis expansions. The frequency-localized signal in

(a) has a compact Fourier transform (c) and a noncompact wavelet decomposition
(e); the time-localized signed in (b) has a noncompact Fourier expansion (d) and a
compact wavelet representation (f).

unable to resolve multiple sinusoidal components in a single subband. For the time-

localized signal of Figure 1.2(b), on the other hand, the Fourier representation of Figure
1.2(d) does not readily yield information about the basic signal structure; it cannot provide
a compact model of a time-localized signal since none of the.Fourier expansion functions

are themselves time-localized. In this case, the wavelet transform (Figure 1.2(f)) yields a

more effective signal model.

The shortcomings of basis expansions result from the attempt to represent ar

bitrary signals in terms of a very limited set of functions. Better representations can be
derived by using expansion functions that are signal-adaptive; signal adaptivity can be
achieved via parametric approaches such as the sinusoidal model [57, 36, 62], by using
adaptive wavelet packets or best basis methods [40, 41, 60], or by choosing the expansion
functions from an overcomplete set of time-frequency atoms [38]. These are fundamentally.

all examples of expansions based on an overcomplete set of vectors; this section focuses on
the latter two, however, since these belong to the class of nonparametric methods. The

term overcomplete means that the set or dictionary spans the signal space but includes
more functions than is necessary to do so. Using a highly overcomplete dictionary of

time-frequency atoms enables compact representation of a wide range of time-frequency
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behaviors; this depends however on choosing atoms from the dictionary that are appro

priate for decomposing a given signal, i.e. the atoms are chosen in a signal-adaptive way.
Basis expansions do not exhibit such signal adaptivity and as a result do not provide
compact representations for arbitrary signals. According to the discussion in Section 1.2,
this implies that basis expansions are not generally useful for signal analysis, compression,
denoising, or modification. Such issues are revisited in Chapter 6; here, the shortcomings
simply provide a motivation for considering overcomplete expansions.

1.4.2 Overcomplete Expansions

For a vector space V of dimension iV, a complete set is a set of M vectors

{di,d2i•--idM} that contains a basis (M > N). The set is furthermore referred to as
overcomplete or redundant if in addition to a basis it also contains other distinct vectors
(M > iV). •As will be seen, such redundancy leads to signal adaptivity and compact
representations; algebraically, it implies that there are nonzero solutions {7m} to the
equation

M

= 0. (1.19)
m=l

There are thus an infinite number of possible expansions of the form
M

X = ^ Qmdm' (1.20)
m=l

Namely, if {dm} is a solution to the above equation and {7m} is a solution to Ek)uation
(1.19), then {dm + 7m} is also a solution:

M M M M

^ = 2(»m+7m)rfm = dm^m + ^ ^mdm- (1-21)
m=l m=l m=l m=l

In matrix notation, with

D = [di ^2 ••• ^m] ) (1.22)

Equation (1.20) can be written as

X = Dq, (1.23)

where a = [qi ... the multiplicity of solutions can be interpreted in terms
of the null space of Z?, which has nonzero dimension:

X = Z>(d-f7) = Dd-l-i^7 = Da. (1*24)

Since there are many possible overcomplete expansions, there are likewise a variety of
metrics and methods for computing the expansions. The overcomplete case thus lacks the
structure of the basis case, where the coefficients of the expansion can be derived using

an inverse matrix computation or, equivalently, correlations with a biorthogonal basis. As

a result, the signal modeling advantages of overcomplete expansions come at the cost of
additional computation.
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Derivation of overcomplete expansions

In thegeneral basis case, thecoefficients oftheexpansion aregiven by a = B~^x.
For overcomplete expansions, one solution to Ek^uation (1.20) can be found by using the

singular valuedecomposition (SVD) of the dictionary matrix D to derive its pseudo-inverse
The coefficients q = D'^x' provide a perfect model of the signal, but the model is

however not compact; this is because the pseudo-inverse framework finds the solution a

with minimum two-norm, which is a poor metric for compaction [58, 42].
Given this information about the SVD, not to mention the computational cost

of the SVD itself, it is necessary to consider other solution methods if a compact represen

tation is desired. There are two distinct approaches. The first class of methods involves

structuring the dictionary so that it contains many bases; for a given signal, the best ba
sis is chosen from the dictionary. The second class of methods are more general in that

they apply to arbitrary dictionaries with no particular structure; here, the algorithms are

especially designed to derive compact expansions. These are discussed briefly below, after

an introduction to general overcomplete sets; all of these issues surrounding overcomplete

expansions are discussed at length in Chapter 6.

Frames

An overcomplete set of vectors {dm} is a frame if there exist two positive con
stants £• > 0 and F < oo, referred to as frame bounds, such that

BIkll' < ^ -fll®!!' (1-25)
m

for any vector x. If F = F, the set is referred to as a tight frame and a signal can be

expanded in a form reminiscent of the basis case:

I = (1-26)
m

If the expansion vectors dm have unit norm, F is a measure of the. redundancy of the

frame, namely M/N for a frame consisting of M vectors in an AT-dimensional space.

The tight frame expansion in Equation (1.26) is equivalent to the expansion given

by the SVD pseudo-inverse; it has the minimum two-norm of all possible expansions and

thus does not achieve compaction. A similar expansion for frames that are not tight can

be formulated in terms of a dual frame; it is also strongly connected to the SVD and does

not lead to a sparse representation [2, 63].
More details on frames can be found in the literature [2, 63, 64]. It should simply

be noted here that frames and oversampled filter banks are related in the same fashion

as biorthogonal bases and critically sampled perfect reconstruction filter banks. Also,
if a signal is to be reconstructed in a stable fashion from an expansion, meaning that
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bounded errors in the expansion coefficients lead to bounded errors in the reconstruction,

it is necessary that the expansion set constitute a frame [2].

In the next two sections, two types of overcomplete expansions are considered.

Fundamentally, these approaches are based on the theory of frames. Instead of using

the terminology of frames, however, the discussions are phrased in terms of overcomplete

dictionaries; it should be noted that these overcomplete dictionaries are indeed frames.

Best basis methods

Best basis and adaptive wavelet packet methods, while not typically formalized

in such a manner, can be interpreted as overcomplete expansions in which the dictionary

contains a set of bases:

D = [Bi B2 Bz ... ]. (1.27)

For a given signal, the best basis from the dictionary is chosen for the expansion according

to some metric such as the entropy of the coefficients [40], the mean-squared error of

a thresholded expansion, a denoising measure [65, 66], or rate-distortion considerations
[41, 60]. In each of the cited approaches, the bases in the dictionary correspond to tree-

structured filter banks; there are thus mathematical relationships between the various

bases and the expansions in those bases. In these cases, choosing the best basis (or

wavelet packet) is equivalent to choosing the best filter bank structure, possibly time-

varying, for a given signal. More general best basis approaches, where the various bases

are not intrinsically related, have not been widely explored.

Arbitrary dictionaries

As will be seen in the discussion of time-frequency resolution in Section 1.5.2,

best basis methods involving tree-structured filter banks, i.e. adaptive wavelet packets,

still have certain limitations for signal modeling because of the underlying structure of the

sets of bases. While that structure does provide for efficient computation, in the task of

signal modeling it becomes necessary to forego those computational advantages in order to

provide for representation of arbitrary signal behavior. This suggestion leads to the more

general approach of considering expansions in terms of arbitrary dictionaries and devising

algorithms that find compact solutions. Such algorithms come in two forms: those that

find exact solutions that maximizea compaction metric, either formallyor heUristically [42,.
67, 68], and those that find sparse approximate solutions that model the signal within some
error tolerance [38, 39, 69]. These two paradigms have the same fundamental goal, namely
compact modeling, but the frameworks are considerably different; in either case, however,

the expansion functions are chosen in a signal-adaptive fashion and the algorithms for
choosing the functions are decidedly nonlinear. This issue will be revisited in Chapter 6.
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The various algorithms for deriving overcomplete expansions apply to arbitrary

dictionaries. It is advantageous, however, if the dictionary elements can be parameterized

in terms of relevant features such as time location, scale, and frequency modulation.

Such parametric structure is useful for signal coding since the dictionaries and expansion

functions can be represented with simple parameter sets, and for signal analysis in that

the parameters provide an immediate indication of the signal behavior. Such notions

appear throughout the entirety of this thesis. It is especially noteworthy at this point that

using a parametric dictionary provides a connection between overcomplete expansions and

parametric models; this connection will be discussed and exemplified in Chapter 6.

1.4.3 Example; Haar Functions

An illustrative comparison between basis expansions and overcomplete expan

sions is provided by a simple example involving Haar functions; these are the earliest and

simplest examples of wavelet bases [2]. For discrete-time signals with eight time p>oints,

the matrix corresponding to a Haar wavelet basis with two scales is

Hjimt —

1
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1

-72 0 0 0 0 0 0

0 0
1
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1

0 0 0 0

0 0 0 0 1
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0 0 0 0 0 0
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1

2

1

2

1

2
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1

2

1

2

1
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1

2

1

2

1

2

1

2
0 0 0 0

0 0 0 0 1

2
1

2

1

2

1

2

(1.28)

•where the basis consists of shifts by two and by four of the small scale and large scale

Haar functions, respectively. The matrix is written in this transposed form to illustrate

its relationship to the graphical description of the Haar basis given in Figure 1.3. An
overcomplete Haar dictionary can be constructed by including all of the shifts by one of
both small and large scales; the corresponding dictionary matrix is given in Figure 1.4.

Figure 1.5(a) shows the signal xi[n] = 62, the second column of the Haar basis
matrix. Figure 1.5(b) shows a similar signal, X2\n\ = x\\n —1], a circular time-shift
of xi[n]. As shown in Figure 1.5(c), the decomposition of a:i[n] in the Haar basis is
compact - because a;i[n] is actually in the basis; Figure 1.5(d), however, indicates that
the Haar basis decomposition of X2[n] is not compact and is indeed a much less sparse
model than the pure time-domain signal representation. Despite the strong relationship
between the twosignals, the transform representations are very different. The breakdown
occurs in this particular example because the wavelet transform is not time-invariant;
similar limitations apply to any basis expansion as discussed earlier. Expansions using
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the overcomplete Haar dictionary are shown in Figures 1.5(e) and 1.5(f). Both of these
representations are compact. Noncompact overcomplete expansions derived using the
SVD pseudo-inverse of Unaar shown in Figures 1.5(g) and 1.5(h). Given the existence
of the compact representations in Figures 1.5(e) and 1.5(f), the dispersion evident in
the SVD signal models motivates the investigation of algorithms other than the SVD for
deriving overcomplete expansions. Algorithms that derive compact expansions based on
overcomplete dictionaries will be addressed in Chapter 6. .

1.4.4 Geometric Interpretation of Signal Expansions

The linear algebra formulation developed abovecan be interpreted geometrically.
Figure 1.6 shows a simple comparison of basis and overcomplete expansions in a two-
dimensional vector space. The diagrams illustrate synthesis of the same signal using

the vectors in an orthogonal basis, a biorthogonal basis, and an overcomplete dictionary,

respectively; issues related to analysis-synthesis and modification are discussed below.

Analysis-synthesis

In each of the decompositions in Figure 1.6, the signal is reconstructed exactly as

the sum of two expansion vectors. For the orthogonal basis, the expansion is unique and the

expansion coefficients can be derived independently by simply projecting the signal onto
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Figure 1.4: The dictionary matrix for an overcomplete Haar set.
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Figure 1.5: Compeuison ofdecompositions in the Hazu* basis of Elquation (1.28) and
the Haar dictioneU*y of Equation (1.29). Decompositions ofsignals (a) and (b) appear
in the column beneath the respective signal. The basis expansion in (c) is compact,
while that in (d) provides a poor model. The overcomplete expansions in (e)and (f)
are compact, but these cannot generally be computed by linear methods such as the
SVD, which for this case yields the noncompact expansions given in (g) and (h).
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Orthogonal
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Biorthogonal
basis
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Figure 1.6: Geometric interpretation of signal expansions for orthogonal and
biorthogonal bzises and an overcomplete dictionary or frame.

the basis vectors. For the biorthogonal basis, the expansion vectorsare not orthogonal; the
expansion is still unique and the coefficients can still be independently evaluated, but the
evaluation of the coefficients is done by projection onto a dual basis as described in Section
1.4.1. For the overcomplete frame, an infinite number of representations are possible, since
the vectors in the frame are linearly dependent. One wayto compute such an overcomplete
expansion is to project the signal onto a dual frame; such methods, however, are related
to the SVD and do not yield compact models [70]. As discussed in Section 1.4.2, there
are a variety of other methods for deriving overcomplete expansions. In this example, it is
clear that a compact model can be achieved by using the frame vector that is most highly
correlated with the signal since the projection of the signal onto this vector captures most
ofthe signal energy. This greedy approach, known as matching pursuit, isexplored further
in Chapter 6 for higher-dimensional cases.

Modification

Modifications based on signal models involve either adjusting the expansion co

efficients, the expansion functions, or both. It is desirable in any of these cases that the
outcome of the modification be predictable. In this section, the case of coefficient modifi
cation is discussed since the vector interpretation provided above lends immediate insight;
modifying the coefficients simply amounts to adjusting the lengths of the component vec
tors in the synthesis. In the orthogonalcase, the independence of the components leads to
a certain robustness for modifications since each projection can be modified independently;

if the orthogonal axes correspond to perceptual features to be adjusted, these features can
be separately adjusted. In the biorthogonal case, to achieve the equivalent modification
with respect to the orthogonal axes, the coupling between the projections must be taken
into account. The most interesting caveat occurs in the frame case, however; because an
overcomplete set is linearly dependent, some linear combinations of the frame vectors will
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axid to zero. This means that some modifications of the expansion coefficients, namely

those that correspond to adding vectors in the null space of the dictionary matrix D, will
have no effect on the reconstruction. This may seem to be at odds with the previous

assertion that compact models are useful for modification, but this is not necessarily the
case. If fundamental signal structures are isolated as in compact models, the correspond
ingcoefficients and functions can be modified jointly to avoid such difficulties. In Chapter
2, such issues arise in the context of establishing constraints on the synthesis components
to avoid distortion in the reconstruction.

1.5 Time-Frequency Decompositions

The domains of time and frequency are fundamental to signal descriptions; relar

tively recently, scalehas been considered as another appropriate domain for signal analysis
[2]. These various arenas, in addition to being mathematically cohesive, are well-rooted
in physical and perceptual foundations; generally speaking, the human perceptual expe
rience can in some sense be well summarized in terms of when an event occurred (time),

the duration of a given event (scale), and the rate of occurrence of events (frequency).
In this section, the notion of joint time-frequency representation of a signal is

explored; the basic idea is that a model should indicate the local time and frequency
behavior of a signal. Some extent of time localization is necessary for real-world processing
of signals; it is impractical to model a signal defined over all time, so some time-localized
or sequential approach to processing is needed. Time localization is also important for
modeling transients in nonstationary signals; in arbitrary signals, various transients may
have highly variable durations, so scale localization is also desirable in signal modeling.
Finally, frequency localization is of interest because of the relationship of frequency to
pitch in audio signals, and because of the importance of frequency in understanding the
behavior of linear systems. Given these motivations, signal models of the form

t

are of special interest when the expansion functions gi[n] are localized in time-frequency,
since such expansions indicate the local time-frequency characteristics of a signal. Such
cases, first elaborated by Gabor from both theoretical and psychoacoustic standpoints

[71, 72], are referred to as time-frequency atomic decompositions; the localized functions
gi[n] are time-frequency atoms^ fundamental particles which comprise natural signals.

Atomic decompositions lead naturally to graphical time-frequency representa

tions that are useful for signal analysis. Unfortunately, the resolution of any such analysis

is fundamentally limited by physical principles [73, 74, 75]. This is the subject of Section

1.5.1, which discusses resolution tradeoffs between the various representation domains.
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With these traxieofFs in mind, various methods for visualizing time-frequency models are

discussed in Sections 1.5.2 and 1.5.3. Finally, time-frequency atomic decompositions have

been of interest in the field of computer music for some time [33, 76, 77, 78]; this is
discussed in Section 1.5.4.

1.5.1 Time-Frequency Atoms, Localization, and Multiresolution

The time-frequency localization of any given atom is constrained by a resolution
limitation equivalent to the Heisenberg uncertadnty principle ofquantum physics [71, 74].
In short, goodfrequency localization can only be achieved by analyzing over a long period
of time, so it comes at the expense of poor time resolution; similarly, fine time resolution
does not allow for accurate frequency resolution. Note that analysis over a long period of
time involves considering large scale signal behavior, and that analysis over short periods
of time involves examining small scale signal behavior; furthermore, it is sensible to ana
lyzefor low frequency components over large scalessincesuch components by definition do
not change rapidly in time, and likewise high frequency components should be analyzed
over short scales. The point here is simply that scale is necessarily intertwined in any

notion of time-frequency localization. These tradeoffs between localization in time, fre
quency, and scale are the motivation of the wavelet transform and multiresolution signal
decompositions [79, 2].

The localization of an atom can be depicted by a tile on the time-frequency plane,

which is simply a rectangular section centered at some ^.nd having some widths
At and Au; that describe where most of the energy of the signal lies [2]:

A? = r (t-tof\x(t-U))\^dt (1.30)
J—oo

Ai = f" (u>-u>oflX(u-uo)l^du>. (1.31)
J—OO

The uncertainty principle provides a lower bound On the product of these widths:

A,A„ > (1.32)

This uncertainty bound implies that there is a lower bound on the area of a time-frequency

tile. It should be noted that non-rectangular tiles can also be formulated [80, 81, 82].
Within the limit of the resolution bound, many tile shapes are possible. These

correspond to atoms ranging from impulses, which are narrow in time and broad in fre
quency, to sinusoids, which are broad in time and narrow in frequency; intermediate tile
shapes basically correspond to modulated windows, i.e, time-windowed sinusoids. Various
tiles are depicted in Figure 1.7.

It should be noted that tiles with area close to the uncertainty bound are of

primary interest; larger tiles do not provide the desired localized information about the
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Figure 1.7: Tiles depicting the time-frequency localization of various expansion
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signal. With this in mind, one approach to generating a set of expansion functions for
signal modeling is to start with a mother tile ofsmall area and to derive a corresponding
family of tiles, each having the same area, by scaling the time and frequency widths by
inverse factors and allowing for shifts in time. Mathematically, this is given by

a )' (1.33)

where g{t) is the mother function. The continuous-time wavelet transform is based on
families of this nature; restricting the scales and time shifts to powers of two results in the
standard discrete-time wavelet transform. Expansion usingsuch a set with functions with
variable scale leads to a multiresolution signal model, which is physically sensible given
the time-frequency tradeoffs discussed earlier.

Given a signal expansion in terms ofa set of tiles, the signal can be readily mod
ified by altering the underlying tiles. Time-shift, modulation, and scaling modifications
of tiles are depicted in Figure 1.8. One caveat to note is that synthesis difficulties may
arise if the tiles are modified in such a way that the synthesis algorithm is not capable
of constructing the new tiles, i.e. if the new tiles are not in the signal model dictionary.
This occurs in basis expansions; for instance, in the case of critically sampled filter banks,
arbitrary modifications of the subband signals yield undesirable aliasing artifacts. The en
hancement of modification capabilities is thus another motivation for using overcomplete

expansions instead of basis expansions.

In this framework of tiles, the interpretation is that each expansion function in

a decomposition analyzes the signal behavior in the time-frequency region indicated by
its tile. Given that an arbitrary signal may have energy anywhere in the time-frequency
plane, the objective of adaptive signal modeling is to decide where to place tiles to capture
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the signal energy. Tile-based interpretations of various time-frequency signal models are
discussed in the next section.

1.5.2 Tilings of the Time-Frequency Plane

Signal expansions can be interpreted in terms of time-frequency tiles. For in
stance, a basis expansion for an iV-dimensional signal can be visualized as a set of N
tiles that cover the time-frequency plane without any gaps or overlap. Examples of such
time-frequency tilings are given in Figure 1.9; in visualizing an actual expansion, each
tile is shaded to depict where the signal energy lies, i.e. to indicate the amplitude of the
corresponding expansion function.

As indicated in Figure 1.9, the tilings for Fourier and wavelet transforms have
regular structures; this equates to a certain simplicity in the computation of the corre
sponding expansion. As discussed in Section 1.4.1, however, these basis expansions have
certain limitations for representing arbitrary signals. For that reason, it is of interest to
consider tilings with more arbitrary structure. This is the idea in best basis and adaptive
wavelet packet methods, where the best tiling for a particular signal is chosen; the best
basis from a dictionary of bases is picked, according to some metric [40, 41, 60, 66, 65].

The time-varying tiling depicted in Figure 1.9 is intended as an example of an
adaptive wavelet packet implemented with a signal-adaptive filter bank. This approach
is suitable for a wide class of signals and allows for efficient computation, but the tiling
is still restricted by the dyadic relationships between the scales, modulations, and time-
shifts. The lack of complete generality arises because the tile sets under consideration
cover the plane exactly^ this captures all of the signal energy, but not necessarily in a
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compact way. In the overcomplete case, overlapping tiles are admitted into the signal

decomposition; compact models can then be achieved by choosing a few such general tiles
that cover the regions in the time-frequency plane where the signal has significant energy.

1.5.3 Quadratic Time-Frequency Representations

Quadratic time-frequency representations or bilinear expansions have received
considerable attention in the literature [83]. Fundamentally, such approaches are based
on the Wigner-Ville distribution (WVD):

WVD{x}(u,t) =J ® +I) ® ~I) (1-34)
Such representations provide improved resolution over linear expansions, but at the ex
pense of the appearance of cross terms for signals with multiple components. For exam
ple, for a signal that consists of a single linear chirp (sinusoid with linearly increasing
frequency), this behavior is clearly identifiable in the distribution; for a signal consisting
of two crossing chirps, the product in the integral yields cross terms that degrade the
readability of the time-frequency distribution [84, 85]. These cross-terms can be smoothed
out in various ways, but always with the countereffect of decreasing the resolution of the
signal representation [2, 86, 87].

Cross-terms detract from the usefulness of a quadratic time-frequency represen

tation. In some sense, the cross-terms result in a noncompact model; they are extraneous

elements in the representation that impede signal analysis. Even in cases where the cross-
terms are smoothed out, the loss of resolution corresponds to a loss of compaction, so this
problem with quadratic time-frequency representations is quite general. One approach
is to improve the resolution of a smoothed representation by a nonlinear post-processing
method referred to as reallocation or reassignment, in which the focus of the distribution

is successively refined [85, 88]. Another approach is to derive an atomic decomposition of
the signal, perhaps approximate, and then define a time-frequency representation (TFR)
ofthe signal as a weighted sum ofthe time-frequency representations ofthe atoms [38]:

i

TFR{x]{u,t) = 2|aip IVVDisJCa-.r). (1.36)
t

There are no cross-terms in distributions derived in this manner [38, 89]; thus, another

motivation for atomic time-frequency models is that they lead to clear visual descriptions of
signal behavior. Ofcourse, if the atomic decomposition iserroneous, the visual description
will not be particularly useful.
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1.5.4 Granular Synthesis

Granular synthesis is a technique in computer music which involves accumulating
a large number of basic sonic components or grains to create a substantial acoustic event
[33]. This approach is based on a theory of sound and perception that wasfirst proposed
by Gabor [72]; he suggested that any sound could be described using a quantum rep
resentation where each acoustic quantum or grain corresponds to a local time-frequency
component of the sound. Such descriptions are psychoacoustically appropriate given the
time-frequency resolution tradeofifs and limitations observed in the auditory system.

In early efforts in granular music synthesis, artificial sounds were composed by
combining thousands of parameterized grains [33]. Individual grains were generated ac
cording to synthetic parameters describing both time-domain and frequency-domain char
acteristics, for example time location, duration, envelope shape, and modulation. This
method was restricted to the synthesis of artificial sounds, however, because the repre
sentation paradigm did not have an accompanying analysis capable of deriving granular
decompositions of existing natural sounds [78].

Simple analysis techniques for deriving grains from real sounds have been pro
posed in the literature [76, 77]. The objectiveofsuch granulationapproaches is to derive a
representation of natural sounds that enables modifications such as time-scaling or pitch-
shifting prior to resynthesis. The basic idea in these methods is to extract grains by apply
ing time-domain windows to the signal. Each windowed portion of the signal is treated as
a grain, and parameterized by its window function and time location. These grains can be
repositioned in time or resampled in various waysto achieve desirable signal modifications
[76, 77]. Similar ideas have been explored in the speech processing community [56, 90].

Grains derived by the time-windowing process can be interpreted as signal-

dependent expansion functions. If the grains are chosen judiciously, e.g. to correspond
to pitch periods of a voiced sound, then the representation captures important signal
structures and can as a result be useful for both coding and modification. Because of the

complicated time structure of natural sounds, however, grains derived in this manner are

generally difficult to represent efficiently and are thus not particularly applicable to signal
coding. Nevertheless, this method is of interest because of its modification capabilities
and its underlying signal adaptivity.

The time-windowed signal components derived by granulation are disparate from

the fundamental acoustic quanta suggested by Gabor; time-windowing of the signal, while.

effective for modifications, is not an appropriate analysis for Gabor's time-frequency rep

resentation. With that as motivation, the three distinct signal models in this thesis are

interpreted as granulation approaches: the sinusoidal model, pitch-synchronous expan

sions, and atomic models based on overcomplete time-frequency dictionaries can all be

viewed in this light. These models provide time-frequency grains for additive synthetic
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reconstruction of natural signals, and these grains can generally be thought of as tiles on
the time-frequency plane.

1.6 Overview

This thesis is concerned with signal models of the form given in Equation (1.1),
namely additive expansions. The models in Chapters 2 through 5 can be classified as
parametric approaches. On the other hand, Chapter 6 discusses a method that would
be traditionally classified as nonparametric but which actually demonstrates that the.
distinction between the two types of models is artificial. A more detailed outline is given
below, followed by a discussion of the themes of the thesis.

1.6.1 Outline

The contents of this thesis are as follows. First, Chapter 2 discusses the sinu

soidal model, in which the expansion functions are time-evolving sinusoids. This approach
is presented as an evolution of the nonparametric short-time Fourier transform into the
phase vocoder and finally the fully parametric sinusoidal model; the chapter includes
detailed treatments of the STFT, analysis for the sinusoidal model, and methods for si
nusoidal synthesis. Chapter 3 provides an interpretation of the sinusoidal model in terms
of time-frequency atoms, which motivates the consideration of multiresolution extensions
of the model for accurately representing localized signal behavior. Chapter 4 discusses
the sinusoidal analysis-synthesis residual and presents a perceptually motivated model for
the residual signal. Chapter5 examines pitch-synchronous frameworks for both sinusoidal
models and wavelet transforms; the estimation of the pitch parameter is shown to provide
a useful avenue for improving the signal representation in both cases. In Chapter 6, over-
'complete expansions are revisited; signal modeling is interpreted as an inverse problem
and connections between structured overcomplete expansions and parametric methods are

considered. The chapter discusses the matching pursuit algorithm for computing overcom

plete expansions, and considers overcomplete dictionaries based on damped sinusoids, for
which expansions can be computed using simple recursive filter banks. Finally, Chapter 7
reviews the results of the thesis and presents various concluding remarks about adaptive

signal models and related algorithms.

1.6.2 Themes

This thesis has a number of underlying and recurring themes. In a sense, this text

is about the relationships between these themes. The basic conceptual framework of this
thesis has been central to several preliminary presentations in the literature [91, 62], but in
this document the various issues are explored in greater detail; furthermore, considerable
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attention is given to review offundamental background material. The themes ofthis thesis
are as follows.

Filter banks and multiresolution

Filter bank theory and design appear in several places in this thesis. Primarily,
the thesis deals with the interpretation of filter banks as analysis-synthesis structures for
signal modeling. The connection between multiratefilter banksand multiresolution signal
modeling is explored.

Signal-adaptive representations

Each of the signal models or representations discussed in this thesis exhibits
signal adaptivity. In the sinusoidal and pitch-synchronous models, the decompositions are
signal-adaptive in that the expansion functions are generated basedon data extracted from
the signal. In the overcomplete expansions, the models are adaptive in that the expansion
functions for the signal decomposition are chosen from the dictionary in a signal-dependent
fashion.

Parametric models

The expansion functions in the sinusoidal and pitch-synchronous models are gen

erated based on parameters derived by the signal analysis. Such parametric expansions, as

discussed in Section 1.2, are useful for characterization, compression, and modification of

signals. Overcomplete expansions can be similarly parametric in nature if the underlying
dictionary has a meaningful parametric structure. In such cases, the traditional distinc
tion between parametric and nonparametric methods evaporates, and the overcomplete
expansion provides a highly useful signal model.

Nonlinear analysis

In each model, the model estimation is inherently nonlinear. The sinusoidal and

pitch-synchronous models rely on nonlinear parameter estimation and interpolation. The

matching pursuit is inherently nonlinear in the way it selects the expansion functions from
the overcomplete dictionary; it overcomes the inadequacies of linear methods such as the

SVD while providing for successive refinement and compact sparse approximations. It

has been argued that overcompleteness, when coupled with a nonlinear analysis, yields a

signal-adaptive representation, so these notions are tightly coupled [92, 39].
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Atomic models

Finally, all of the models can be interpreted in terms of localized time-frequency
atoms orgrains. The notion oftime-frequency decompositions has been discussed at length
in several sections of this introduction, and will continue to play a major role throughout
the remainder of this thesis.
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Chapter 2

Sinusoidal Modeling

The sinusoidal model has been widely applied tospeech coding and processing
[57, 93, 94, 95, 96, 97, 98, 99] and audio analysis-modification-synthesis [36, 100, 101,
102, 103, 104, 105]. This chapter discusses the sinusoidal model, including analysis and
synthesis techniques, reconstruction artifacts, and modification capabilities enabled by the
parametric nature of the model. Time-domain and frequency-domain synthesis methods
are examined. A thorough review of the short-time Fourier transform is included as an
introduction to the discussion of the sinusoidal model.

2.1 The Sinusoidal Signal Model

A variety of sinusoidal modeling techniques have been explored in the literature
[106, 96, 95, 98, 57, 36, 102, 101, 97]. These methods share fundamental common points,
but also have substantial but sometimes subtle differences. For the sake of simplicity,

this treatment adheres primarily to the approaches presented in the early literature on
sinusoidal modeling [57, 36], and noton the many variations that have since been proposed
[103, 97, 98]; comments on some other techniques such as [101, 107] are indeed included,
but these inclusions are limited to techniques that are directly concerned with the modeling
issues at hand. It should be noted that the issues to be discussed herein apply to sinusoidal

modeling in general; their relevance is not limited by the adherence to the particular
methods of [57, 36]. Also, note that the method of [102] is discussed at length in the
section on frequency-domain synthesis, where various refinements are proposed.

2.1.1 The Sum-of-Partials Model

In sinusoidal modeling, a discrete-time signal a:[n] is modeled as a sumofevolving
sinusoids called partials:

0(n] Q[n]

ar[n] w x[n] = Pg[n] = A,[n] cos©g[n], (2.1)
9=1 9=1
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where Q[n] is the number of partials at time n. The 9-th partial Pq[n] has time-varying
amplitude Ag[n] and total phase 0g[n], which describes both its frequency evolution and
phase offset. The additive components in the model are thus simply parameterized by

amplitude and frequency functions or tracks. These tracks are assumed to vary on a time

^ale substantially longer than the sampling period, meaning that the parameter tracks
can be reliably estimated at a subsampled rate. The assumption of slow variation leads

to a compaction in the representation in the same way that downsampling of bandlimited
signals leads to data reduction without loss of information.

The model in Equation (2.1) is reminiscent of the familiar Fourier series; the

notion in Fourier series methods is that a periodic signal can be exactly represented by

a sum of fixed harmonically related sinusoids. Purely periodic signals, however, are a

mathematical abstract. Real-world oscillatory signals such as a musical note tend to

be pseudo-periodic; they exhibit variations from period to period. The sinusoidal model
is thus useful for modeling natural signals since it generalizes the Fourier series in the

sense that the constituent sinusoids are allowed to evolve in time according to the signal

behavior. Of course, the sinusoidal model is not limited to applications involving pseudo-

periodic signals; models tailored specifically for pseudo-periodic signals will be discussed
in Chapter 5.

Fundamentally, the sinusoidal model is useful because the parameters capture

musically salient time-frequency characteristics such as spectral shape, harmonic struc

ture, and loudness. Since it describes the primary musical information about the signal

in a simple, compact form, the parameterization provides not only a reasonable coding
representation but alsoa framework for carrying out desirable modifications such as pitch-
shifting, time-scaling, and a wide varietyofspectral transformationssuchas cross-synthesis
[93, 94, 36, 102, 103, 108].

2.1.2 Deterministic-plus-Stochastic Decomposition

The approximation symbol in Equation (2.1) is included to imply that the sum-
of-partials model does not provide an exact reconstruction of the signal. Since a sum
of slowly-varying sinusoids is ineffective for modeling either impulsive events or highly
uncorrelated noise, the sinusoidal model is not well-suited for representing broadband
processes. As a result, the sinusoidal analysis-synthesis residual consistsof such processes,
which correspond to musically important signal features such as the colored breath noise
in a flute sound or the impulsive mallet strikes of a marimba. Since these features are
important for high-fidelity synthesis, an additional component is often included in the
signal model to account for broadband processes:

a:[n] = x[n] + r[n] = d[n] + s[7i]. (2.2)
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The resultant deterministic-plus-stochastic decomposition was introduced in [36, 100] and

has been discussed in several later efforts [109, 110]. Using this terminology brings up
salient issues about the theoretical distinction between deterministic and stochastic pro

cesses; to avoid such pitfalls, the following analogy is drawn: the deterministic part of the

decomposition is likened to the sum-of-partials of Equation (2.1) and the stochastic part

is similarly likened to the residual of the sinusoidal analysis-synthesis process, leading to a

reconstruction-plus-residual decomposition. This method can then be considered in light

of the conceptual framework of Chapter 1. The sinusoidal analysis-synthesis is described

in Sections 2.3 to 2.6 from that, the characteristics of the residual are inferred, which leads

to the residual modeling approach of Chapter 4.

2.2 The Phase Vocoder

Sinusoidal modeling can be viewed in a historical context as an evolution of

short-time Fourier transform (STFT) and phase vocoder techniques. These methods and

variations were developed and explored in a number of references [111, 112, 113, 114, 115,

116, 117, 118, 119]. In this treatment, the various ideas are presented in a progression
which leads from the STFT to the phase vocoder; the shortcomings of these approaches

serve to motivate the general sinusoidal model.

2.2.1 The Short-Time Fourier Transform

In this section, the STFT is defined and interpreted; it is shown that slightly

revising the traditional definition leads to an alternative filter bank interpretation of the

STFT that is appropriate for signal modeling. Perfect reconstruction constraints for such

STFT filter banks are derived. In the literature, 2-transform and matrix representations

have been shown to be useful in analyzing the properties of such filter banks [2, 20, 120].
Here, for the sake of brevity, these methods are not explored; the STFT filter banks are

treated using time-domain considerations.

Definition of the short-time Fourier transform

The short-time Fourier transform was described conceptually in Sections 1.4.1

and 1.5.1; basically, the goal of the STFT is to derive a time-localized representation of

the frequency-domain behavior of a signal. The STFT is carried out by applying a sliding
time window to the signal; this process isolates time-localized regions of the signal, which
are each then analyzed using a discrete Fourier transform (DFT). Mathematically, this is
given by

N-\

X[k^n] — ^ ty[m]a:[n-|-m]e~-'̂ *", (2.3)
771=0
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where the DFT is of size /f, meaning that cjk = 2Trk/Kj and w[m] is a time-domain
window with zero value outside the interval [0,iV —1]; windows with infinite time support

have been discussed in the literature, but these will not be considered here [116]. In the

early literature on time-frequency transforms, signal analysis-synthesis based on Gaussian

windows was proposed by Gabor [71, 72]; given this historical foundation, the STFT is

sometimes referred to as a Gabor transform [2].

The transform in Equation (2.3) can be expressed in a subsampled form which

will be useful later:
N-l

X(k^i) = n;[m]x[m-f 2'jL]e~- '̂̂ *"*, (2.4)
m=0

where L is the analysis stride, the time distance between successive applications of the

window to the data. The notation is as follows: brackets around the arguments are used to

indicate a nonsubsampled STFT such as in X[k^ n], while parentheses are used to indicate

subsampling as in X(&, i), which is used in lieu of X[k,iL] for the sake of neatness.

Admittedly, the notation X (k, i) is somewhat loose in that it does not incorporate the
hop size, but to account for this difficulty the hop size of any subsampled STFTs under

consideration will be indicated explicitly in the text. The subsampled form of the STFT

is of interest since it allows for a reduction in the computational cost of the signal analysis

and in the amount of data in the representation; it also affects the properties of the model

and the reconstruction as will be demonstrated.

The definition of the STFT given in Equations (2.3) and (2.4) differ from that in

traditional references on the STFT [111, 116, 115, 112], where the transform is expressed
as

cx) n-^-N—1

X[k,n] = w[n - w[n - m]x[m]e~ '̂̂ ''̂ y (2.5)
m=—oo m=n

or in subsampled form as

iL+N-l

X{k,i) = w[iL - rn]x[m]€~ '̂̂ ''"^, (2.6)
m=iL

where w[m] is again a time-localized window. The range of m in the sum, and hence the
support of the window w[n]^ is defined here in such a way that the transforms X[fc, n]
and X[kj n\ refer to the same AT-point segment of the signal and can thus be compared;
it should be noted that in some treatments the STFT is expressed as in Equation (2.5)

but without time-reversal of the window [20]. It will be shown that this reversal of the
time index affects the interpretation of the transform as a filter bank; more importantly,
however, the interpretation is affected by the time reference of the expansion functions.
This latter issue is discussed below.
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The time reference of the STFT

In the formulation of the STFT in Equations (2.5) and (2.6), the expansion func
tions are sinusoids whose time reference is in some sense absolute; for different windowed

signal segments, the expansion functions have the same time reference, m = 0, the time
origin ofthe signal x[m]. Onthe otherhand, in E^quations (2.3) and (2.4) the time origin of
the expansion functions is instead the starting point of the signal segment in question; the
phases of the expansion coefficients for a segment refer to the time start of that particular
segment. Note that the STFT can also be formulated such that the phase is referenced to
the center of the time window, which is desirable in some cases [121]; this referencing is
a straightforward extension that will play a role in sinusoidal modeling, but such phase-
centering will not be used in the mathematical development of the STFT because of the
slight complications it introduces.

The two formulations of the STFT have different interpretations with regards to

signal modeling; this difference can be seen by relating the two STFT definitions [1, 112]:

n+N—1

X[k, n] = ^ w[n -
m=n

N-1

w[-m]x[n -f m]e (change of index)
m=0

(2.7)
= w[—m]x[n -j-

m=6
N-1

_ ^ w[m\x[n -I- {w[m] = ty[—m])
m=0

^•[fc.n] = e-'"'-"X[k,n].

This formulation leads to two simple relationships:

X[A:,n] = X[fc,n]e''"'» (2.8)

|X[fc,n]| = |X[fc,n]|. (2.9)

The first expression affects the interpretation of the STFT as a filter bank; the time signal
X[k, n] is a modulated version of the baseband envelope signal X[ky n], so the equivalent
filter banks for the two cases will have different structures. The second expression plays a

role in the interpretation of the STFT as a series of time-localized spectra; the short-time
magnitude spectra are the same in either case. These relations have different consequences

for sinusoidal modeling. First, magnitude considerations have no bearing because of the
equivalence in Equation (2.9). On the other hand, because an estimate of the local phase
of a partial is important for building a localized model of the original signal. Equation

(2.8) indicates that X[k,n] is a more useful representation for sinusoidal modeling than
X[Ar, n]. This will become more apparent in Sections 2.3 and 2.4.
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Figure 2.1: Interpretations of the short-time Fourier transform as a series of time-

localized spectra (vertical) and as a bank of bcmdpass filters (horizontal).

Interpretations of the STFT

In [111, 1] and other traditional treatments of the STFT, two interpretations
are considered. First, the STFT can be viewed as a series of time-localized spectra;

notationally, this corresponds to interpreting X[k^n] as a function of frequency k for a

fixed n. Given that the derivation of a time-localized spectral representation was indeed

the initial motivation of the STFT, the novelty lies in the second interpretation, where

the STFT is viewed as a bank of bandpass filters. Here, X[k^n] is thought of as a function

of time n for a fixed frequency k; it is simply the output of the k-ih filter in the STFT

filter bank. A depiction of these interpretations based on the time-frequency tiling of the

STFT is given in Figure 2.1; indeed, the notion of a tiling unifies the two perspectives.

The two interpretations are discussed in the following sections; as will be seen,

each interpretation provides a framework for signal reconstruction and eaoh framework
yields a perfect reconstruction constraint. In the traditional formulation of the STFT,
the reconstruction constraints are different for the two interpretations, but can be related

by a duality argument [111]. In the phase-localized formulation of Equations (2.3) and
(2.4), the two frameworks immediately yield the same perfect reconstruction condition;
this is not particularly surprising since the representation of the STFT as a time-frequency
tiling suggests that a distinction between the two interpretations is indeed artificial. The
mathematical details related to these issues are developed below; also, the differences in

the signal models corresponding to the two STFT formulations are discussed.
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The STFT as a series of time-localized spectra

If the STFT is interpreted as a series of time-localized spectra, the accompanying

reconstruction framework involves taking an inverse DFT (IDFT) of each local spectrum,
and then connecting the resulting signal frames to synthesize the signal. If K > the
IDFT simply returns the windowed signal segment:

lDFT{X(k, i)} = w[m]x[m+iL] for 0 < m < iV - 1

= w[n —iL]x[n] for iL < n < tX+ TV —1,

where the second step is carried out to simplify the upcoming formulation. Regarding the
size of the DFT, when K > N the DFT is oversampledy which results in a time-limited
interpolation of the spectrum, which is analogous to the bandlimited interpolation that
is characteristic of time-domain oversampling. The condition K > N is imposed at this
point to simplify the formulation; time-domain aliasing is introduced in the undersampled
case K < N, meaning that the formulation must be revised to provide for time-domain
aliasing cancellation [12]. The issue of time-domain aliasing cancellation is discussed in
Section 2.2.2.

If the DFT is large enough that no aliasing occurs, reconstruction can be simply
carried out by an overlap-add (OLA) process, possibly with a synthesis window, which
will be denoted by t;[n] [116, 115, 112]:

z[n] = w[n —iL'\v[n —iL]x[ri\. (2.11)
i

Perfect reconstruction is thus achieved if the windows ty[7i] and u[7i] satisfy the constraint

^ it;[n —tX]v[n —iX] = 1 (2.12)
t

or some other constant. This constraint is similar to but somewhat more general than the

perfect reconstruction constraints given in [1, 111, 116, 115, 112]. Note that throughout
this section the analysis and synthesis windows will both be assumed to be real-valued.

In cases where t;[n] is notexplicitly specified, thesynthesis window isequivalently
a rectangular window covering the same time span as tt?[n]. For a rectangular synthesis
window, the constraint in Equation (2.12) becomes

^it;[7i —iX] = 1. (2.13)
t

The construction of windows with this property has been explored in the literature; a
variety ofperfect reconstruction windows have been proposed, for example rectangular and
triangular windows and the Blackman-Harris family, which includes the familiar Hanning
and Hamming windows [122,123]. These are also referred to as windows with the overlap-
add property^ and will be denoted by WrrM in the following derivations. Note that any
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window function satisfies the condition in £k]uation (2.13) in the nonsubsampled case
L = 1; note also that in the case L = N the only window that has the overlap-add
property is a rectangular window oflength N. Functions that satisfy Elquation (2.13) are
also of interest for digital communication; the Nyquist criterion for avoiding intersymbol
interference corresponds to a frequency-domain overlap-add property [124].

Windows that satisfy E)quation (2.12) can be designed in a number of ways.
The methods to be discussed rely on using familiar windows that satisfy (2.13) to jointly
construct analysis and synthesis windows which satisfy (2.12); various analysis-synthesis
window pairs designed in this way exhibit computational and modeling advantages [116,
115, 112, 102]. In one design approach, complementary powers of a perfect reconstruction
window provide the analysis and synthesis windows:

^WpR[n-iL] = 1 ^ ^ (u;pr[71 - «X])'̂ (u;pR[n - iL])^"'' = 1 (2.14)
i i

Analysis window u;[ri] = (wprM)*^

{

Analysis window w[n] = 5[n]

Synthesis window »[n] =

(2.15)
Synthesis window t;[n] = (tuprM) •

The case 0=5, where the analysis and synthesis windows are equivalent, has been of
some interest because of its symmetry. A second approach is as follows; given a perfect
reconstruction window u;pR[n] and an arbitrary window 6[7i] that is strictly nonzero over
the time support of typR[n], the overlapnadd property can be rephrased as follows:

= 1 =(• = 1

/ n( (2-16)
=" 6[n-l£] ) - ^

(2.17)

i[n]

Noting the form of the synthesis window and the final constraint in Equation (2.16), the
restriction that b[n] be strictly nonzero can be relaxed slightly:.6[n] can be zero where
it;pR[7i] is also zero; if the synthesis window t;[n] is defined to be zero at those points, the
perfect reconstruction condition is met. This latter design method will come into play in
the frequency-domain sinusoidal synthesizer to be discussed in Section 2.5.

The STFT as a heterodyne filter bank

In [111, 115, 116, 20], where the STFT is defined as in Equation (2.5) and the
expansion functions have an absolute time reference, the transform can be interpreted as
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a Alter bank with a heterodyne structure. Starting with Equation (2.5),

n+N—l

X[k^n] = ^2 w[n —m]x[7n]e~ '̂̂ ''"^, (2.18)
m=n

the substitution

Xk[m] = (2.19)

yields an expression that is immediately recognizable as a convolution:

n+jV—1

X[k,n] = ^2 —rn]xk[rn\. (2.20)
m=n

The filter iD[n] is typically lowpass; it thus extracts the baseband spectrum of ®fc[m].
According to the modulation relationship defined In Equation (2.19), Xk[rn\ is a version

of ®[m] that has been modulated down by wjfe; thus, the baseband spectrum of Xk[m]
corresponds to the spectrum of ®[m] in the neighborhood of frequency Uk. In this way, the
A:-th branch of the STFT filter bank extracts information about the signal in a frequency

band around Uk = 27rk/K.

In the time domain, X[k,n] can be interpreted as the amplitude envelope of a

sinusoid with frequency Uk. This perspective leads to the framework for signal recon

struction based on the filter bank interpretation of the STFT; this framework is known

as the filter bank summation (FBS) method. The idea is straightforward: the signal can
be reconstructed by modulating each of these envelopes to the appropriate frequency and

summing the resulting signals. This construction is given by

x[n] = Y^X[k,ny^'''', (2.21)
k

which can be manipulated to yield perfect reconstruction conditions [1, 111]; this non-
subsampled case is not very general, however, so these constraints will not be derived
here. Rather, Equation (2.21) is given to indicate the similarity of the STFT signal model
and the sinusoidal model. Each of the components in the sum of E)quation (2.21) can

be likened to a partial; the STFT X[k, n] is then the time-varying amplitude of the Ar-th
partial. Note that in the phase-localized STFT formulated in Equation (2.3), the corre
sponding reconstruction formula is

x[n] = (2.22)
k

where the STFT X[ky n]corresponds to a partial at frequency ujk rather than its amplitude
envelope.

Figure 2.2 depicts one branch of a heterodyne STFT filter bank and provides an

equivalent structure based on modulated filters [20]. Mathematically, the equivalence is
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Figure 2.2: One channel of a heterodynefilter bank for evaluating the STFT X[/t,n]
defined in Equation (2.5). The two structures are equivalent as indicated in Equation
(2.23). The STFT X[fc,n] as defined in Equation (2.3) is an intermediate signal in
the second structure.

straightforward:

Xi[fc,n]
m

_ g-JWfcn ^ _ yyjjgiwfc(n-m) j _ X2[Ar, Tl]. (2.23)

Given the relationship in Equation (2.8), namely that X[kjn] = X[fc,it is
clear that X[k^n] is the immediate output of the modulated filter without the
ensuing modulation to baseband. This observation, which is indicated in Figure 2.2, serves
'as motivation for interpreting the STFT of E)quation (2.3) as a modulated filter bank.

The STFT as a modulated filter bank

Modulated filter banks, in which the filters are modulated versions of a prototype

lowpass filter, have been of considerable interest in the recent literature [20, 2, 4]. In part,
this interest has stemmed from the realization that the STFT can be implemented with a

modulated filter bank structure. Indeed, the STFT of Equation (2.3) corresponds exactly

to a modulated filter bank of the general form shown in Figure 2.3. This filter bank

is markedly different from the heterodyne structure in that the subband signals are not
amplitude envelopes but are actual signal components that can be likened to partials,
which will prove conceptually useful in extending the STFT to the general sinusoidal
model.

The modulated filter bank of Figure 2.3 implements an STFT analysis-synthesis
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Figure 2.3: Interpretation of the short-time Fourier transform as a modulated filter

bemk. The subband signfds are labeled to match the formulation in the text.

if the filters are defined as

hk[n] = it;[—(2.24)

S*[n] = (2.25)

Note the time-reversal of the window ti;[n] in the definition of the analysis filter hk[n]; the
time-reversal appears here because the window in Equation (2.3) is not thought of in a
time-reversed fashion as in Equation (2.5). Using the notation in Figure 2.3, the subband
signals in the STFT filter bank are given by

Xk[n] = ^ hk[m]x[n —m]
171

(2.26)

= ^ w[-m]x[n —
771

(2.27)

= ^ w[m]x[n -\- (2.28)
7TX

= X[*:,n] (2.29)

yikW =
(2.30)

= X{k,i) (2.31)

Zkln] = - »i]. (2.32)

where the last expression simply describes the effect of successive downsampling and up-
sampling on the signal Xk[n]. Again, note that the subband signals are essentially the
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partials ofthe signal model, and are not amplitude envelopes as in the heterodyne struc
ture of the traditional STFT filter bank.

In the framework of [111], namely the STFT as given in Equation (2.5), the
overlap-add and filter bank summation synthesis methods lead to different perfect recon
struction constraints which can be interpreted as duals. For the phase-localized definition
ofthe STFT, on the other hand, the overlap-add and filter bank methods lead directly to
the same constraint:

(2.33)
ik=0

= ^Mn]*gk[n]) (2-34)
k

= 9k[l]zk[n - I] (2-35)
k I

^ (S[n - / - ii] (2.36)
k I i

- I + - / - iL]. (2.37)
k I i rn

Forujk = 2nklK, the summation over the frequency index k can be expressed as

K-i

—m-\- rK]. (2.38)
fc=:0 ^

If \l —m\ < K for all possible combinations of / and m, then the only relevant term in
the right-hand sum is for r = 0, in which case the equation simplifies to

A'-l
^ K6[l-m]. (2.39)

k=0

The restriction on the values of / and m corresponds to the constraint K > N discussed in

the treatment ofoverlap-add synthesis; namely, time-domain aliasing is introduced if / and
m do not meet this criterion. Further consideration of time-domain aliasing is deferred

until Section 2.2.2.

As in the discussion of OLA synthesis, it is assumed at this point that time-

domain aliasing is not introduced. Then, the FBS reconstruction formula can be rewritten
as

x[n] = E E v[l]S[n - I- iL] ^ w[m]x[n - I-f m]S[l - m] (2.40)
I i rn

/ i

= Kx[n] y w[n —iL]v[n —iL]. (2.42)
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The design constraint for perfect reconstruction, within a gain term, is then exactly the

same as in the overlap-add synthesis approach:

^ u;[n - iL]t;[n —tX] = 1. (2.43)
i

Because of this equivalence, the analysis-synthesis window pairs described earlier can be
used as prototype functions for perfect reconstruction modulated filter banks.

Note that if £ > 1, the synthesis filter bank interpolates the subband signals. In

the nonsubsampled case L = 1, when no interpolation is needed, perfect reconstruction

can be achieved with any analysis-synthesis window pair for which Yin Wv[n] ^ 0. For
example, the synthesis can be performed with the trivial filter bank Qkl^] = ^[n] if the
analysis window satisfies the constraint

^ w[n —i] = 1, (2.44)
t

which indeed holds for any window, within a gain term. The generality of this constraint

is an example of the design flexibility that results from using oversampled or overcomplete

approaches [70, 64, 125]. Reiterating the modeling implications, the STFT signal model

is

x[n] = (2.45)
k k

In the modulated filter bank case, the subband signals can be viewed as the partials of

the sinusoidal model; in the heterodyne case, the subband signals are instead lowpass

amplitude envelopes of the partials. Furthermore, the phase of X\jz^ n] is the phase of the

k-th partial whereas the phase of n] is the phase of the envelope of the A:-th partial; the

former phase measurement is needed for the sinusoidal model. In the next section, it will

be shown that rigid association of the subband signals to partials is basically inappropriate

for either case; the modulated STFT analysis filter bank, however, more readily provides

the information necessary to derive a generalized sinusoidal signal model.

2.2.2 Limitations of the STFT and Parametric Extensions

The interpretation of the STFT as a modulated filter bank leads to a variety

of modeling implications. These issues in some sense revolve around the nonparametric

representation of the signal in terms of subbands and the use of a rigid Alter bank for

synthesis. This section deals with the limitations of the STFT; the considerations motivate

parametric extensions of the STFT that overcome some of these limitations.

Partial tracking

The most immediate limitation of the short-time Fourier transform results from

its fixed structure. A sinusoid with tinn^-varying frequency will move across bands; this
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Figure 2.4: Reconstructed subband signab in an nonsubsampled STFT filter bank

model of a chirp signal. The signals x<i[n] correspond to those labeled in Figure 2.3
for k = {1,2,3,4}. In the simulation, N = 128, K = 128, and L = 1; ii;[n] and i;[n]
are square-root Hanning windows.
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evolution leads to delocalization of the representation and a noncompaot model. Consider

the example shown in Figure 2.4, in which a sinusoid of linearly increasing frequency,

i.e. a linear chirpy is modeled by a nonsubsampled STFT filter bank where the analysis

and synthesis filter prototypes are both square-root Hanning windows (c = ^). The
parameters of the STFT are K = 128, L = 1, and N = 64; the chirp frequency starts at

ljq = 27r/K and increases by that amount every 250 samples.

Figure 2.4 shows the real parts of the reconstructed subband signals for bands
ik = 1,2,3,4. It is necessary to consider the real parts for the following reason: the subband

signalsin the STFT are complex-valued as a result of the complex modulation of the filters.
For real signals, the STFT yields a conjugate symmetric representation like the underlying
DFT; each of these subband signals has a conjugate version. This observation motivates

cosine-modulated filter banks where the prototype filters are modulated with a real cosine

instead of a complex sinusoid. Then, the subband signals are real-valued, which is certainly

desirable in some cases; here, however, it is problematic since the phase provided by the
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complex filter bank is important for sinusoidal modeling as will be seen. While cosine-

modulated filter banks have interesting and significant properties [2, 20, 4, 12, 59], they
are an offshoot of the progression of ideas that leads to the sinusoidal model and will not

be considered in depth here because of this phase problem.

Returning to the example of Figure 2.4, it is clear that the subbands of the

fixed filter bank do not provide a compact representation of the chirp signal. As the chirp

evolves in time, it moves across the bands of the filter bank, and as a result the STFT does

not identify this as a single evolving sinusoid but instead as a conglomeration ofshort-lived

components, i.e. the subband signals shown in Figure 2.4. Whereas this may seem useful in

that it carries out a granulation of the chirp signal (Section 1.5.4), inspection of the signal

components show that the subband grains are not well-localized in time; note that the

transients in the original signal are manifested in all of the subband signals as pre-echoes.

Figure 2.5 shows the model of the same chirp signal using a subsampled STFT filter bank

with L =• 64. This example is perhaps more practical than the nonsubsampled case in that

there is much less data in the representation, but this practicality comes at the cost of more

substantial localization problems in the subbands. Perfect reconstruction can be achieved

in this case; the various artifacts cancel in the synthesis. The signal decomposition,

however, is virtually useless for modifications because of these delocalization artifacts;

if the subbands are modified, e.g. quantized, the subband artifacts will not be properly

cancelled and will lead to artifacts in the final synthesis.

In pseudo-periodic musical signals, the frequencies of the harmonics vary as the

pitch evolves in time; it is intuitively desirable that the sum-of-partials model in such cases

should be an aggregation of chirps whose frequencies are coupled while changing in time

in a complex way. In this case, unlike the single chirp case, all of the STFT filter bank

subbands will generally have significant energy throughout the duration of the signal, so

inspection of the subbands will not necessarily indicate that the various partials are moving

across the bands. When all of the subbands have significant energy, it may seem reasonable

to interpret the subbands as the partials of the sinusoidal model as has been discussed;

this perspective, however, is in contention with the physical foundation of the natural

signal. The generating mechanism for a signal whose harmonic structure varies in time

is a system with a physical parameter, such as a string length, that is correspondingly

time-varying, and a meaningful representation should capture this foundation. Rather

than imposing structure on the partials by restricting them to exist within subbands as in
the STFT model, the time-frequency evolution of the partials should instead be tracked.

As will be seen, this tracking efibrt is what makes the sinusoidal model fundamentally

signal-adaptive.

One approach to the problem of partial tracking in an STFT filter bank is to
make the filter bank pitch-adaptive so that the subbands do correspond to physically
reasonable partials; in that method, which was considered in a preliminary fashion in



48

a:[7i]

3ft{xi[n]}

3^{x2[n]}

nUn]}

9IJ{x4[n]}

Time (samples)

Figure 2.5: Reconstructed subbeuid signals in a subsampl^ STFT filterbeuik model
of a chirp signal. The signeds Xjb[n] correspond to those labeled in Figure 2.3 for
k = {1,2,3,4}. In the simulation, N = 128, K = 128, and L - 64; t«[n] and t;[n] are
square-root Hanning windows.

900

900

900

900

900



49

[126], signal adaptivity improves the model. A pitch-adaptive filter bank, however, does
not account for the more general case of signals composed of nonharmonic partials with
unrelated frequency evolution behavior, for instance a percussive sound such asa cymbal
clash. The intent of modeling arbitrary signals necessitates using a more general model.

Time-domain aliasing cancellation

Time-domain aliasing was mentioned in the discussions of both the overlap-add
and the filter bank summation synthesis methods; in those treatments, it was assumed
that K was large enough that time-domain aliasing was not introduced. In this section, the
issue oftime-domain aliasing isexplored; the treatment leads to general perfect reconstruc
tion constraints for modulated filter banks and various implications for signal modeling.
This issue is discussed here more for the sake of completeness than as a prerequisite for
the development ofthegeneral sinusoidal model. Essentially, time-domain aliasing cancel
lation is a fix that allows for perfect reconstruction despite a lack in frequency resolution;
with this in mind, the importance of frequency resolution in sinusoidal modeling implies
that STFT filter banks that incorporate time-domain aliasing cancellation will not be of
interest in future considerations.

For a signal a[n] of length AT on [0, iV - 1], application ofa size K DFT followed
by a size K IDFT corresponds to

= — ^2irkn/K (2.46)
^ k=0 lm=0 J
^ N-1 K-1

= — a[m] Y, (2.47)
^ m=0 k-0

Using the simplification for the sum over k given in Equation (2.38) yields

aW = (2.48)
m=0 r=-oo

r

where the r values in the sum of the last expression correspond to values of n -H rK that
fall within the sp.an of the signal, namely

0<n-|-rA:<Ar-l for 0<n<Ar-l. (2.50)

This formulation explains the condition on K imposed in the earlier treatments; if K >
time-domain aliasing is not introduced because only the r = 0 term contributes to the
reconstruction. On the other hand, if K < iV, the signal is aliased in the time domain.
Fundamentally, this aliasing is a result of insufficient spectral sampling of the continuous

a[7i]
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function A(e^^)^ the discrete-time Fourier transform (DTFT)ofa[n], and isthus analogous
to the frequency-domain aliasing that occurs when a continuous time-domain signal is
sampled below the Nyquist rate. The DTFT, the DFT, and spectral samplingare discussed
further in Section 2.5.1.

The effectof time-domain aliasingon the perfect reconstruction condition can be
readily formalized; the following derivation uses the overlap-add synthesis framework, but
the same condition results in the filter bank summation approach, within a gain factor of

K. For the signal segment

= w[n - tL]a;[n], (2.51)

the reconstructed version of the segment is given by

d,[n] = ^ai[n + rK] = ^w[n +rK - iL]x[n +rK]. (2.52)
r r

The OLA synthesis of the signal, with synthesis window t;[n], is given by

i[n] = ^v[n —iL]di[n]. (2.53)
t

Substituting for d,[n] and changing the order of the sums yields

^W = S -hrK- iL]. (2.54)
r I

If x[n] = x[n] is to hold, every term but r = 0 must be cancelled in the other sum; the
perfect reconstruction constraint is thus

Y,v[n-iL]w[n-\-rK-iL] = 5[r]. (2.55)
t

In the nonsubsampled case with v[n] = d[n], this simplifies to

w[rK] = d[r], (2.56)

which is reminiscent of the constraint for designing interpolation filters [116, 127]. Note
that since the time index is the start of the window in this treatment, the most appropriate

synthesis window is actually given by t;[n] = d[n —wq]? where no corresponds to the
middle ofthe analysis window. The final constraint on the analysis window is then tu[no-|-
rK] = <S[r], which is satisfied by any function with zeros at no -j- rK for all r ^ 0 and
a nonzero value at no, which can be scaled to unity for gain compensation. A useful
class of windows that meet this constraint can be constructed by multiplying a perfect

reconstruction window by an appropriate sine function. As mentioned earlier, perfect
reconstruction windows can be virtually arbitrary in the nonsubsampled case; here, the
formulation is most appealing if the perfect reconstruction windows under consideration
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are those that apply to subsampled cases. This class ofaliasing cancellation windows are
given by

where the sine function, as written, will introduce a gain oi\/K. The frequency response
of the resultant window is the spectrum of WpR[n] convolved with an ideal lowpass filter
with cutoff frequency ff/K; this convolution relationship implies that w[n] is a broader
lowpass filter than u;pR[n], which corroborates the previous statement that time-domain
aliasing cancellation and lack of frequency resolution are coupled.

As indicated above, the design of time-domain aliasing cancellation windows in
the subsampled case is more restricted than in the nonsubsampled case; in other words,
there is limited freedom in the design of subsampled STFT filter banks that employ
time-domain aliasing cancellation. The subsampling limits the design possibilities since it
introduces frequency-domain aliasing, the cancellation ofwhich is an underlying principle
in the equivalent constraints of Equations (2.12) and (2.43), and is indeed part of the
general constraint given above in Equation (2.55). The critically sampled case L ^ K
is of special interest since the representation and the original signal intrinsically contain
the same amount of data. For critical sampling, however, it can be shown that the only
FIR solutions correspond to windows with N = K nonzero coefficients [2, 120]. In the
straightforward solution of this form, the N nonzero coefficients are all in the interval
[0, iV —1]. Intuitively, there are no solutions of this form for N < K since gaps would
result in the window overlap and various regions of the signal would simply be missed
in the analysis-synthesis. On the other hand, the reason that there are no solutions for
N > K IS less intuitive; this result is proved in [2, 120]. In the critically sampled case,
then, the STFT in effect implements a block transform with block size N; quantization
then leads to discontinuities at the block boundaries, which results in undesirable frame

rate artifacts in audio and blockiness in images. Furthermore, pre-echodistortion occurs in
the reconstruction where the original signal has transient behavior; pre-echo is a common
problem in near-perfect reconstruction signal models such as filter banks with subband
quantization [7].

The requirement that iV = if = L in the critically sampled case means that
there are no critically sampled perfect reconstruction STFT filter banks that employ
time-domain aliasing cancellation. However, time-domain aliasing cancellation can be
incorporated in critically sampled cosine-modulated filter banks; such filter banks are
commonly used in audio coding [12, 7, 9, 16, 17]. The ability to use time-domain aliasing
cancellation in a cosine-modulated filter bank is connected to the result that the expansion

functions in a cosine-modulated filter bank can have good time and frequency localization

[2]. Note that the lapped orthogonal transforms (LOT) mentioned in Section 1.4 belong
to this class of filters. In the LOT, the representation is critically sampled but all of the
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basis functions are smooth and extend beyond the boundaries of the signal segment or

block; this overlap reduces the artifacts caused by quantization. Quantization effects can

also be reduced by oversampling; one advantage of overcomplete representations is that
they exhibit a robustness to quantization noise that is proportional to the redundancy of
the representation [70, 64, 92, 125].

Time-frequency localization

As discussed above, the design of STFT filter banks is extremely limited in the
critically sampled case. The only real-valued prototype windows that lead to orthogonal
perfect reconstruction filter banks are rectangular windows [2]. This result is a discrete-
time equivalent of the Balian-Low Theorem, which states that there are nocontinuous-time
orthogonal short-time Fourier transform bases that are localized in time and frequency,
where the localization is measured in terms of At and A^, from Equations (1.30) and

(1.31); either or both of these uncertainty widths are unbounded for orthonormal STFT
bases. This problem motivates the use ofcosine-modulated filter banks, which can achieve
good time-frequency localization [2].

Further issues regarding time-frequency localization and filter banks are beyond
the scope of this thesis; this issue will thus not be addressed further, with the exception
of various considerations of signal expansions, which have a fundamental relationship
to filter banks. The point of this discussion is simply to cite the result that there are
some difficulties with critically sampled STFT filter banks, and that oversampling is thus
required in order for STFT filter banks to perform well. The useof oversampling, however,
is contrary to the goal of data reduction. This problem is solved in the sinusoidal model
by applying a parametric representation to the STFT to achieve compaction.

Modifications of the STFT

Various signal modifications based on the STFT have been discussed in the lit
erature [1, 111, 114, 115, 112, 117, 128, 129]. In approaches where the modifications are
based directly on the function X(k,i)^ the techniques are inherently restricted to a rigid
framework because the signal is being modeled in terms of subbands which interact in
complicated ways in the reconstruction process. The restrictive framework is exactly this:
a modification is carried out on the subband signals and the effect of the modification on

the output signal is then formulated [111, 115]. This approach is much different from the
desired framework of simply carrying out a particular modification on the original signal.

In some approaches, modifications are based on the STFT magnitude only; the
magnitude is first modified and then a phase that will minimize synthesis discontinuities
is derived [117, 128, 129]. This removal of the phase essentially results in a parametric
representation that is more flexible than the complex subband signals. It is important to
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note that this magnitude-only description has thesame caveat asother parametric models:
for the case of no modification, the magnitude-only description is not capable of perfect
reconstruction.

In the critically sampled case, there is a one to one correspondence between
signals and short-time Fourier transforms; because it is equivalently a basis expansion,
there is no ambiguity in the relationship between the domains. In the oversampled case,
however, many different STFTs will yield the same signal. This multiplicity is obviated
by considering the simplest case: L = 1 and v[n] = ^[n]; the analysis window Tn[n],
which derives the STFT, is virtually unrestricted. Such an overcomplete representation
has a higher dimension than the signal space, meaning that some modifications in that
space may have no effect on the signal or may produce an otherwise unexpected result;
in deriving a phase for the STFT magnitude for synthesis in the overcomplete case, there
are thus consistency or validity concerns that arise [130].

The issues ofaliasing cancellation and validity, among others, indicate the funda
mental point: the synthesis model limits the modification capability. Given that the most
effective modification methods for the STFT rely on parameterizations of the STFT, there

is in some sense no need to use a rigid filter-based structure for synthesis. This observation
is the fundamental motivation for the sinusoidal model, which relies on an STFT analysis

filter bank for parameter estimation, but thereafter utilizes a fully parametric synthesis to
circumvent issues such as frame boundary discontinuities, consistency, and aliasing can

cellation. The channel vocoder and the phase vocoder are the two fundamental steps in
the progression from the STFT to the sinusoidal model.

The channel vocoder

The term vocoder, a contraction of voice and coder^ wascoined to describe an early
speech analysis-synthesis algorithm [131]. In particular, the channel vocoder originatedas
a voice coder which represented a speech signal based on the characteristics of the STFT
filter bank channels or subbands. Specifically, the speech is filtered into a large number of
channels using an STFT analysis filter bank. Each of the subbands is modeled in terms
of its short-time energy; with respect to the k-ih. channel, this provides an amplitude
envelope >lit[»i] which modulates a sinusoidal oscillator at the channel center frequency Uk-
The outputs of these oscillators are then accumulated to reconstruct the signal. Note that
the term "vocoder" has at this point become a general designation for a large number of
algorithms which are by no means limited to voice coding applications.

The phase vocoder

The channel vocoder parameterizes the subband signal in terms of its energy or

amplitude only; the phase vocoder is an extension that includes the phase behavior in
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Figure 2.6: Block HiAgram of the phase vocoder. The amplitude and frequency
(total phase) control functions for the K oscillators are derived fiem the filter bank
output signals by the parameter estimation blocks.

the model parameterization as well. There are a number of variations, but in general the
term refers to a structure like the one shown in Figure 2.6, where the subband signals are
parameterized in terms of magnitude envelopes and functions that describe the frequency
and phase evolution; these serve as inputs to a bank of oscillators that reconstruct the
signal from the parametric model [113, 118, 116, 119]. This approach has been widely
applied to modification ofspeech signals; the success ofsuch approaches substantiates the
previous contention that modifications are enabled by the incorporation of a parametric
•model and a parametric synthesis. Note that if the analysis filter bank is subsampled, the
sample-rate oscillator control functions are derived from thesubsampled frame-rate STFT
representation.

General sinusoidal models

The phase vocoder as depicted in Figure 2.6 does not solve the partial tracking
problem discussed earlier; while its parametric nature does enable modifications, it is still
oflimited use for modeling evolving signals. Afurther generalization leads to thesinusoidal
model. The fundamental observation in the development of the sinusoidal model is that
if the signal consists ofone nonstationary sinusoid such as a chirp, then synthesis can be
achieved with one oscillator. There is no need to implement an oscillator for every branch
of the analysis filter bank. Instead, the outputs of the analysis bank can be examined
across frequency for peaks, which correspond to sinusoids in the signal. These spectral
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signal. The parameter estimation block detects and tracks spectral peaks; unless
Q is externally constrained, the number of peaks detected dictates the number of
oscillators used for synthesis.
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peaks can then be tracked from frame to frame as the signal evolves, and onlyoneoscillator
per tracked peak is required for synthesis. This structure is depicted in Figure 2.7.

For the chirp signal used in Figures 2.4 and 2.5, a sinusoidal model with one
oscillator yields the reconstruction shown in Figure 2.8(b). The model data for the recon
struction in Figure 2.8(b) is extracted from the same STFT produced by the subsampled
analysis filter bank of the Figure 2.5 example. With respect to data reduction, the one-
partial sinusoidal model in Figure 2.8 is basically characterized by three real numbers
{A,a;, for each signal frame; for real signals, the STFT filter bank model consists of
K/2 complex numbers for each frame, so the compression achieved is significant; this is
of course less drastic for complicated signals with many partials. Note that this com
pression is accompanied by the inability to carry out perfect reconstruction. A primary
reconstruction inaccuracy or artifact in the sinusoidal model is pre-echo, which is evident
in Figure 2.8. This problem is discussed further in Section 2.6; in Chapter 3, methods
for alleviating the pre-echo distortion are developed. Note also that the sinusoidal model
provides a better description of the signal behavior than the filter bank decomposition;
this example illustrates how a compact parametric model is useful for analysis.

In the general sinusoidal model, there are no strict limitations on iV, AT, and L
for the analysis filter bank. Typically, K > Ny meaning that oversampling in frequency is
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Figure 2.8: One-component sinusoidal model of the chirp signal from Figure 2.4
using the same suialysis filter bank as in that exsunple.

used, which in some cases yields a more accurate model than critical sampling {K = N)
as will be seen in the next section. Note that an increase in K corresponds to adding

more channels to the filter bank and decreasing the frequency spacing between channels;

because each filter is simply a modulated version of the prototype window, however, the
resolution of the individual channel filters is not affected by a change in K. Also, it is

common to use a hop size of L = N/2 to achieve data reduction. Of course, gaps result
in the analysis if L > iV as in the filter bank case, but in the sinusoidal model such gaps
can be filled in the reconstruction via parameter interpolation.

2.3 Sinusoidal Analysis

The analysis for the sinusoidal model is responsible for deriving a set of time-
varying model parameters, namely the number ofpartials Q[n], which may beconstrained
by rate or synthesis computation limits [132], and the partial amplitudes and
total phases {0g[n]}. As mentioned, these parameters are assumed to be slowly varying
with respect to the sample rate, so the estimation process can be reliably carried out at
a subsampled rate. In [57, 36], this analysis is done using a short-time Fourier transform
followed by spectral peak picking; this procedure was conceptually motivated in the pre
ceding discussion of the STFT. The following sections examine this analysis method in
detail; alternative approaches are also discussed.

2.3.1 Spectral Peak Picking

The analysis for the sinusoidal model is similar to many scenarios in which the
sinusoidal contentof a signal is of interest. Approaches based on Fourier transforms have
been traditionally applied to these problems. In such methods, the signal is transformed
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into the Fourier domain and the peaks in the spectral representation are interpreted as
sinusoids. In this section, the use of the discrete Fourier transform in this framework is

considered; various resolution limits are demonstrated. The relationship of the discrete-
frequency DFT to the continuous DTFT underlies someof the issues here; a discussion of
this relationship, however, is deferred to Section 2.5.1.

A single sinusoid

The case of identifying a single time-limited complex sinusoid is of preliminary
importance for these considerations. For the signal

x[n] = (2.58)

defined on the interval n € [0, iV —1], where ao is a complex number that entails the

magnitude and phase of the sinusoid, a DFT of size N is given by

XN[k] = ao V-) V")
sin (at [f - i^])

sin - <f)
(2.59)

where the subscript N denotes the size of the DFT. This treatment will focus on the

estimation of sinusoids based on peaks in the magnitude of the DFT spectrum, so the

ratio of sines in the above expression is of more importance than the preceding linear

phase term. If the frequency of the sinusoid can be expressed as

0,0 = (2.60)

namely if it is equal to a bin frequency of the DFT, the numerator in this ratio is zero-

valued for all Ar, meaning that the DFT itself is zero-valued everywhere except at A: = A:o,

where the denominator of the ratio is zero. For k = Atq, the ratio takes on a value N by

L'Hopitars rule, so the DFT magnitude is Ar|ao|; the phase at A: = Ajq is given simply

by argOQ. Thus, when ujq corresponds to a bin frequency, the sinusoid can be perfectly

identified as a peak in the DFT magnitude spectrum, and its magnitude and phase can be

extracted, from the DFT. For sinusoids at other frequencies, however, the AT-point DFT

has a less simple structure. In this case, the signal is indeed represented exactly because

the DFT is a basis expansion; however, in terms of spectral peak picking it is erroneous

to interpret the peak in such a DFT as a sinusoid in the signal. These cases are depicted

in Figures 2.9(a) and 2.9(b), respectively.

Oversampling and frequency resolution

For the case of the off-bin frequency illustrated in Figure 2.9(b), the sinusoid

cannot be immediately identified in the DFT spectrum, and the DFT representation of
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Figure 2.9: Estimation of a single sinusoid with the DFT. In (a), the sinusoid is at

the bin frequency 2irko /N for N = 16 and fco = 3, so an N-point DFT identifies the
sinusoid exactly. In (b), the frequency is 2jr(A:o +OA)/N as indicated by the asterisk
in the plot; the sinusoid is not identified by the DFT, and the DFT representation
of the signal is not compact. In (c), an oversampled DFT of size K = 5N is used;
here the sinusoid from (b) can be identified exactly since u;o = 2ir{ko -1- QA)/N =
2ir{5ko+2)JK = 2irKo/K. In (d), a Manning window isapplied to the signal before the
oversampled DFT is carried out. In this figureand in Figure 2.10,filled circles indicate
when perfect estimation is achieved; in cases where the estimation is imperfect, the
2ictu2d signal components are depicted by asterisks.

the signal is not compact. The parameters of the sinusoid can, however, be estimated by
interpolation. Using an oversampled DFT is one such approach, a DFT of size K > N is
given by

XK[k] = ao eJ

In the oversampled case, a sinusoid of frequency

27rK:o
~1<~

Wo =

sin (n
(irk u/n\

K 2)Sin

(2.61)

(2.62)

can be identified exactly as a peak in the spectrum as shown in Figure 2.9(c); sinusoids
at other frequencies cannot be immediately estimated from the /f-point DFT. Higher
resolution can be achieved, however, by simply choosing a larger K.

The spectral representation in Figure 2.9(c) is not compact because using an
oversampled DFT corresponds to padding the end of the signal with K - N zeros prior
to taking the A'-point DFT. The signal is then equivalent to a sinusoid of length K time-
limited by a window of length iV, which means that the spectrum corresponds to the
A-point DFT of a sinusoid of length K circularly convolved with the A-point DFT of
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a rectangular window of length N. The time localization provided by the window thus
induces a corresponding frequency delocalization.

In STFT filter banks, as mentioned earlier, oversampling in frequency is simply

equivalent to adding more filters to the filter bank and decreasing their frequency spacing;
this is readily indicated in the following consideration. For an analysis window «;[n] of
length TV, the filters in an iV-channel filter bank are given by

(2.63)

In terms of the STFT tiling in Figure 2.1, this corresponds to using a critically sampled

DFT for each vertical slice of the tiling. In a K-channel filter bank with A" > TV, which

corresponds to using an oversampled DFT, the filters are modulated versions of the same

prototype window as in the TV-channel case, namely

, (2.64)

but the spacing of the channels is now 2irfK, which is less than the 2ir/N spacing in the

previous case.

For a single DFT, i.e. one short-time spectrum in the STFT, oversampling in

frequency corresponds to time-limited interpolation of the spectrum. Other methods of

spectral interpolation can also be used to identify the location of the spectral peak; these

are generally based on application of a particular window to the original data. Then,

the sinusoid can be identified if the shape of the window transform can be detected in

the spectrum; the performance of such methods has been considered in the literature for

the general case of multiple sinusoids in noise [122, 100, 133]. This matching approach

is particularly applicable when a Gaussian window is used since the window transform

is then simply a parabola in the log-magnitude spectrum; by fitting a parabola to the

spectral data, the location of a peak can be estimated. Such interpolation methods can

be coupled with oversampling. An example is given in Figure 2.9(d), in which a Manning

window is applied to the data prior to zero-padding; note that this windowing broadens

the main lobe of the spectrum but reduces the sidelobes.

Two sinusoids

The case of a single sinusoid is of limited interest for modeling musical signals.

With a view to understanding the issues involved in modeling complicated signals, the

considerations are extended in this section to the case of two sinusoids. It will be indicated

by example that the interference of the two components in the frequency domain leads

to estimation errors; it is shown to be generally erroneous in multi-component signals to

assume that a spectral peak corresponds exactly to a sinusoid in the signal. The reduction

of such errors will be used to motivate certain design constraints.
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The signal in question will simply be a sum of unit-amplitude, zero-phase sinu
soids defined on n € [0,AT - 1]:

x[n] = + e''*"". (2.65)

When Wo and wi both correspond to bin frequencies of an JV-point DFT, both sinusoids
can be estimated exactly in the DFT spectrum as indicated in Figure 2.10(a). As shown
in Figures 2.10(b) and 2.10(c), the AT-point DFTcannot identify the sinusoids if either of
the frequencies is off-bin; The situation is particularly bleak in Figure 2.10(b), where the
two sinusoids are close in frequency.

In the case of a single sinusoid, oversampling was used to improve the frequency
resolution. For the case of two closely spaced sinusoids, oversampling does not provide a
similar remedy. As depicted in Figure 2.10(c), closely spaced sinusoids in an oversampled
DFT appear as a single lobe; neither component can be accurately resolved, and it is
inappropriate to identify the spectral peak as a single sinusoid in the signal. Figures
2.10(d) and 2.10(e) show that the resolution of the oversampled DFT tends to improve
as the frequency difference increases. Note that in all of the simulations, wo = 2'kkoIK
and Wi = 2tzkiIK for some integers kq and k\. This choice offrequencies provides a best-
case scenario for the application of oversampled DFTs, and yet various errors still occur;
the peaks in the spectrum do not generally correspond to the sinusoids in the signal, so
estimation of the sinusoidal coniponents by peak picking is erroneous.

Resolution of harmonics

Asevidenced in Figure 2.10, separation of the spectral lobes improves the ability
to estimate the sinusoidal components. This property can be used to establish a criterion
for choosing the length of the signal frame N in STFT analysis. A reasonable limiting
condition for approximate resolution of twocomponents is that two main lobes appear as
separate structures in thespectrum; thisoccurs when the component frequencies differ by
at least half the bandwidth of the main lobe, where the bandwidth is defined here as the
distance between the first zero crossings on either side of the lobe. Mathematically, this
condition leads to the constraint

(2.66)

where the oversampling factor does not appear; oversampling helps in identifying off-bin
frequencies that are widely separated, butdoes not improve theresolution ofclosely spaced
components. In short, the constraint simply states that cpmponents must be separated
by at least a bin width in an AT-point DFT to be resolved; this requirement was already
suggested in Figure 2.10(b), and will play a further role in the next section. Note that the
constraint in Equation (2.66) involves the standard tradeoff between time and frequency
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Figure 2.10: Estimation of two sinusoids with the DFT. In (a), the sinusoids are at
bin frequencies 2nkofN and 2Kki/N for N = 16, ko = 3, and ko = 4; an N-point

DFT identifies the sinusoids exactly. As in Figure 2.9, filled circles indicate when

perfect estimation is achieved; in cases with imperfect estimation, the actual signal

components are indicated by asterisks. In (b), u)\ is moved off-bin to 27r(fco +0.4)/N
as shown by the asterisk; in (c), wi is moved off-bin to 2jr(ko + 1.2)/N. In either
case, the sinusoids are not identified by the DFT. In (d), an oversampled DFT of size

K = BN is used for the sinusoids in (b); these cannot be resolved by oversampling,

however. In (e), oversampling is applied for the case in (c); because these sinusoids
are separated in frequency, oversampling improves the resolution. The plot in (f)
depicts a more extreme case of frequency sepeiration in which the sinusoids can again

be reasonably identified. Note that in (d), (e), and (f), the sinusoids cannot be

resolved even though their frequencies can be expressed as 2'nKolK and 2irKi/K for

integer kq and kq; this-difficulty results from the interference of the sidelobes in the
combined spectrum, or equivalently because the components are not orthogonal as

will be explained in Section 2.3.2.
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resolution; if N is large, accurate frequency resolution is achieved, but this comes with a
time delocalization penalty resulting from using a large window.

The constraint in Equation (2.66) cannot be applied without some knowledge
of the expected frequencies in the signal. While this is a questionable requirement for
arbitrary signals, it is applicable in the common case of pseudo-periodic signals. The
components in the harmonic spectrum of a pseudo-periodic signal are basically multiples
of the fundamental frequency, so the constraint can be rewritten as

WfundiV > 27r. (2.67)

Note that this constraint can be interpreted in terms of the number of periods of the
fundamental frequency,i.e. pitch periods of the signal, that occur in the length-iV frame;
for the components to be resolvable, it is required that at least one period be in the
frame. When the iV-point window spans exactly one period, an iV-point DFT provides
exact resolution of the harmonic components; this observation will play a role in the
pitch-synchronous sinusoidal model discussed in Chapter 5.

The formulation of the constraint in Equation (2.67) implicitly assumes the use

of a rectangular window. For a Banning window, the main spectral lobe is twice as wide
as that of a rectangular window by construction; as a result, a Banning window must
span two signal periods to achieve resolution ofharmonic components. Since Banning and
other similarly constructed windows have been commonly used, it has become a heuristic
in STFT analysis to use windows of length two to three times the signal period.

Modeling arbitrary signals

Analysis based on the DFT has been used in numerous sinusoidal modeling ap>-
plications [57, 36, 100]. These methods incorporate the constraints discussed above for
resolution of harmonics and have been successfully applied to modeling signals with har
monic structure. Furthermore, the approaches have also shown reasonable performance

for modeling signals where the sinusoidal components are not resolvable and peak picking
in the DFT spectrum provides an inaccurate estimate of the sinusoidal parameters. This
issue is examined here.

Consider a signal of the form given Equation (2.65) with component frequencies
uq and LJi closely spaced as in Figures 2.10(b) and 2.10(d). In this case, peak picking in
the oversampled DFT spectrum identifies a peak between wq and uji and interprets this
peak as a sinusoid in the signal. At this point, it is assumed that the DFTisoversampled
such that tJo = 2nKo/K and a;i = 27rKi jK for integers kq and ki = kq + 2i, where i is
an integer; thiscondition simply means that there will be an odd number of points in the
oversampled DFT between kq and ki. Then, the peak location found by peak picking is
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Figure 2.11: Modeling a two-component signal via peak picking in the DPT. In the
two-component signal of length N = 64, the frequencies are at 2irKofK and 2irKi/K
for Ko = 15, Ki = 17, and K —5N. The sinusoids are closely spaced, so a peak

picking process finds only one sinusoid. The signal is indicated by the solid line m
the plot; the dotted line indicates the siniisoid estimated by peak picking.

simply given by

Wn =

«« =

Wo "I"Wi

2
Kq + Kl
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(2.68)

(2.69)

When kq and kj are related in such a way, the oversampled DFT has a peak midway
between kq and ki which the analysis interprets as a sinusoid in the signal with frequency

Wp and with amplitude and phase given respectively bythe magnitude of the peak by the
phase of the oversampled DFT at the peak frequency. An example of a two-component
signal and the signal estimate given by peak picking is indicated in Figure 2.11.

In considering the signal estimate for the case of closely spaced sinusoids, it is
useful to rewrite the two-component signal as

-/u/n+wi \
:[7i] = 2 )

l(sai^)„ ^ 2cos[(wo-wi)n/2]e''"''", (2.70)

which indicates that the signal can be written as a sinusoid at Wp with an amplitude
modulation term. In terms of the DFT spectrum, the broad lobe resulting from the

overlap of the narrow lobes of the two components can be interpreted as a narrow lobe

at a midpoint frequency that has been widened by an amplitude modulation process. It
is useful to note the behavior of this modulation for limiting cases: the closer the spacing

in frequency, the less variation in the amplitude, which is sensible since the components

become identical as wq —)• wi; for wider spacing in frequency, the modulation becomes

more and more drastic, but this is accompanied by an improved ability to resolve the

components. The intuition, then, is that when the components cannot be resolved, the

modulation is smooth within the signal frame. This modulation interpretation is not

applied in the DFT-based sinusoidal analysis, which estimates the signal components

in a frame in terms of constant amplitude sinusoids. As will be discussed in Section

2.4.2, however, the synthesis routine constructs an amplitude envelope for the partials
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estimated in the frame-to-frame analysis;t this helps to match the amplitude behavior

of the reconstruction to that of the signal. In other words, smooth modulation of the

amplitude can be tracked by the model.

The example discussed above involves a somewhat ideal case. For one, the for

mulation is slightly more complicated when the component amplitudes are not equal.
Furthermore, when the assumptions previously made about the component frequencies do

not hold, the peak picking process becomes more difficult. However, the insights apply

to the case of general signals. For arbitrary signals, then, it is reasonable to interpret
each lobe in the oversampled DFT as a short-time sinusoid. Given this observation, the

partial parameters for a short-time signal frame can be derived by locating major peaks
in the DFT magnitude spectrum. For a given peak, the frequency a;, of the corresponding
partial is estimated as the location of a peak and the phase (j>q is given by the phase of
the spectrum at the peak frequency Uq. Note that in the frame-rate sinusoidal model,
the estimated parameters are designated to correspond to the center of the analysis win
dow, so the phase must be advanced from its time reference at the start of the window
by adding ufqN/2. The amplitude Aq of the partial is given by the height of the peak,
scaled by N for the case of a rectangular window. This scaling factor amounts to the
time-domain sum of the window values, so scaling by N/2 is called for in the case of a

Manning window; note that the peak in Figure 2.9(d) is at half the height of the peak in
Figure 2.9(d). Further scaling by a factor of 1/2 is required if the intent is to estimate
real sinusoids from a complex spectrum. Also, there is a positive frequency and a negative

frequency contribution to the spectrum for this case of real sinusoids, which can result in
some spectral interference that may bias the ensuing peak estimation; this is analogous to
the estimation errors that occur due to sidelobe interference in the two-component case.

While this method is prone to such errors, it is nevertheless useful for signal modeling;
the models depicted in later simulations rely on analysis based on oversampled DFTs.

2.3.2 Linear Algebraic Interpretation

In the previoussection, estimation of the parameters of a sinusoidal model using
the DFT was considered. It was shown that this estimation process is erroneous in most

cases, but that the errors can be reduced by imposing certain constraints. Here, the
estimation problem is phrased in a linear algebraic framework that sheds light on the
errors in the DFT approach and suggests an improved analysis.

Relationship of analysis and synthesis models

The objective in sinusoidal analysis is to identify the amplitudes, frequencies,
and phases of a set of sinusoids that accurately represent a given segment of the signal.
This problem can be phrased in terms of finding a compact model using an overcomplete
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dictionary of sinusoids; the background material for this type of consideration was dis
cussed in Section 1.3. For &n N xK dictionary matrix whose columns are the normalized
sinusoids

dk = (2.71)

where wjb = 27r/:/A', the synthesis model for a segment of length N can be expressed in
matrix form as

® = Da, (2.72)

where x and a are column vectors. Finding a sparse solution to this inverse problem
corresponds to deriving parameters for the signal model

(2-73)
k=:l

where many of the coefficients are zero-valued.

In the previous section, analysis for the sinusoidal model using the DFT was
considered. The statement of the problem given here, however, indicates that the DFT
is by no means intrinsic to the model estimation. In general cases, the exact analysis for
an overcomplete model requires computation of a pseudo-inverse of D, which is related to
projecting the signal onto a dual frame. In deriving compact models, a nonlinear analysis
such as a best basis method or matching pursuit is used. Even in the limiting case that D
is a basis matrix and the frequencies are known but not at frequencies 2nk/N, the DFT is
not involved; the model coefficients are given by correlations with the dual basis. The only
case in which the DFT is entirely appropriate for analysis of multi-component signals is

the orthogonal case where the synthesis components are harmonics at the bin frequencies.
It was shown in the previous section, however, that the errors in the DFT analysis are not

always drastic. This issue is examined in the next section.

Orthogonality of components

As stated above, the DFT is only appropriate for analysis when the synthesis

components are orthogonal. This explains the perfect analyses shown in Figures 2.9(a)
and 2.10(a) for the cases of sinusoids at bin frequencies. The one-component example in
Figure 2.9 is not of particular value here, though; even in the general overcomplete case

described above, analysis of one-component signals can be carried out perfectly without

difficulties. The multi-component case, on the other hand, is problematic and is thus of

interest.

Figure 2.10 and the accompanying discussion of frequency separation led to the

conclusion that components can be reasonable resolved by peak picking in the DFT spec

trum if the components are spaced by at least a bin. Consider two unit-norm sinusoids at
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different frequencies defined as

joH =^ and j,[n] = (2.74)
The magnitude of the correlation of these two functions is given by:

sin

l<So,Si)l =
sin

(2.75)

This function is at a maximum for «o = ki, when the sinusoids are equivalent; |ko —«i| >

K/Ny namely separation by more than a bin in an iV-point spectrum, corresponds to the
sidelobe region, where the values are significantly less than the maximum. This insight
explains why separation of lobes in the spectrum leads to reasonable analysis results in
the DFT approach; when the lobes are separated, the signal components are not highly
correlated, i.e. are nearly orthogonal. Furthermore, this explains why DFT analysis for
the sinusoidal model works reasonably well in cases where the window length is chosen

according the constraint in Equation (2.67).

fVames of complex sinusoids

In discussion of the sinusoidal model, a localized segment of the signal has often

been referred to as a frame. Treating the sinusoidal analysis in terms of frames of vectors,
then, introduces an unfortunate overlap in terminology. For this discussion, the localized
portion of the signal will be assumed to be a segment of length iV, and the term frame
will be reserved to designate an overcomplete family of vectors.

The frame of interest here is the family of vectors

dt = n€[0,JV-l]. . (2.76)
y/N

If K = N, this family is an orthogonal basis and signal expansions can be computed
using the DFT. For compact modeling of arbitrary signals, however, the overcomplete
case (K > N) is more useful. Indeed, the oversampled DFT can be interpreted as a signal
expansion based on this family of vectors:

(2.77)
n=0

= VN{dk,x). (2.78)

The reconstruction can then be expressed as

(2.79)
fc=0
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= ^ E ^Klk]dk (2.80)
ib=0

= ^^(^k,x)dk. (2.81)
^ /fc=0

Recalling the earlier discussion of zero-padding, the oversampled DFT can be interpreted

as an expansion of a time-limited signal on [0, iV —1] in terms of sinusoidal expansion func

tions supported on the longer interval [0,K —1]; this interpretation provides a framework

for computing a unique expansion in terms of an orthogonal basis. Equation (2.81), on the

other hand, indicates another viewpoint based on the discussion of frames in Section 1.4.2;

noting the similarity of Equation (2.81) to Equation (1.26), it is clear that the oversampled

DFT corresponds to a signal expansion in a tight frame with redundancy K/N.

As discussed in Section 1.4.2, frame expansions of the form given in Equation

(1.26) are not generally compact. For the oversampled DFT case, this noncompactness is

indicated in the previous section in Figures 2.9 and 2.10. These noncompact expansions

do provide perfect reconstruction of the signal, but this is of little use given the amount

of data required. Restating the conclusion of the previous section in this framework, it

is possible in the DFT case to achieve a reasonable signal approximation using a highly

compacted model based on extracting the largest values from the noncompact tight frame

expansion. This assertion is verified in Figure 2.11 for a simple example; the shortcoming

in this example, however, is that there is an exact compact model in the overcomplete

set that the DFT fails to identify. With respect to near-perfect modeling of an arbitrary

signal, the shortcoming is that there are compact models that are more accurate than the

model derived by DFT peak picking. Arriving at such models, however, is a difficult task

as described in Section 1.4.2. It is an open question as to whether the incorporation of

such approaches in the sinusoidal model will improve the rate-distortion performance with

respect to models based on.DFT parameter estimation. Derivation of compact models in

overcomplete sets is discussed more fully in Chapter 6, but primarily for the application of

constructing models based on Gabor atoms. A method for sinusoidal modeling based on

analysis-by-synthesis using an overcomplete set of sinusoids is described in Section 2.3.3.

Synthesis and modifications

In an overcomplete signal model, the components are necessarily not all orthogo
nal. As discussed briefly in Section 1.4.4, this results in a difficulty in synthesis of modified

expansions. Some additive modifications will correspond to vectors in the null space, and
no modification will be manifested in the reconstruction. Further, given that a component
can be expressed as a sum of other components, some modifications correspond to cancel
lation of a desired component, or, in the worst case, cancellation of the entire signal. It is
thus important to monitor modifications carried out in overcomplete expansions so as to
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avoid these pitfalls. A formal consideration of these issues is left as an open issue.

While overcomplete sinusoidal models have been widely used for signal modifi

cation, the problems discussed above have not been explicitly discussed in the literature.
It will be seen in later sections that the parametric structure of the sinusoidal model al

lows for resolution of some signal cancellation issues; a specific fix discussed in Section

2.5.2 is that phase matching conditions can be imposed on additive components at sim

ilar frequencies to prevent destructive interference. Furthermore, cancellation issues are

circumvented to a great extent in applications involving sinusoids separated in frequency;
as shown in Equation (2.75), such sinusoids are nearly orthogonal. Synthesis based on
nearly orthogonal components of an overcomplete set is well-conditioned with respect to

modification, so the sinusoidal model performs well in such scenarios.

2.3.3 Other Methods for Sinusoidal Parameter Estimation

A number of alternative methods for estimating the parameters of sinusoidal

models have been considered in the literature. A brief review is given below; the focus is

placed primarily on methods that introduce substantial model adjustments.

Analysis-by-synthesis

In analysis-by-synthesis methods, the analysis is tightly coupled to the synthesis;

the analysis is metered and indeed adapted according to how well the reconstructed signal
matches the original. Often this is a sequential or iterative process. Consider an example
involving spectral peak picking: rather than simultaneously estimating all of the peaks,
only the largest peak is detected at first. Then the contribution of a sinusoid at this peak,
i.e. a spectral lobe, is subtracted from the spectrum, and the next peak is detected; this

approach can be used to account for sidelobe interaction. One advantage of this structure

over straightforward estimation is that it allows the analysis to adapt to reconstruction
errors; these can be accounted for in subsequent iterations. On the other hand, this

approach can have difficulties because of its greedy nature.

The matching pursuit algorithm to be discussed in Chapter 6 is an analysis-by-
synthesis approach; this notion will be elaborated upon considerably at that point. Here,
it suffices to note that analysis-by-synthesis has been applied effectively in sinusoidal mod
eling, especially in the case where the sinusoidal parameters are estimated directly from
the time-domain signal [101]. The particular technique of [101] employs a dictionary of
short-time sinusoids and is indeed an example of a method that bridges the gap between

parametric and nonparametric approaches. At each stage of the analysis-by-synthesis
iteration, the dictionary sinusoid that best resembles the signal is chosen for the decom
position; its contribution to the signal is then subtracted and the process is repeated on
the residual. Though it uses a dictionary of expansion functions and should thus be cate-
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gorized as a nonparametric method according to the heuristic distinctions of Sections 1.3
and 1.4, the algorithm indeed results in a parametric model since the dictionary sinusoids
can be readily parameterized.

Global optimization

The common methods of sinusoidal analysis yield frame-rate signal model pa

rameters. Generally the analysis is independent from frame to frame, meaning that the
parameters derived in one frame do not necessarily depend on the parametersof the previ
ous frame; in some cases the estimation is guided according to pitch estimates and models
of the signal evolution, but such guidance is generally localized among nearby frames. If
the entire signal is considered as a whole in the sinusoidal analysis, a globally optimal
set of model parameters can be derived. Such optimization is a highly complex operation
which requires intensive off-line computation [107]. This issue is related to the method
to be discussed in Section 3.4, in which a slightly restricted global modeling problem is

phrased in terms of dynamic programming to reduce the computational cost [134].

Statistical estimation

A wide variety of methods for estimating the parameters of sinusoidal and quasi-

sinusoidal models have been presented in the spectral estimation literature. These differ

in the structure of the models; some of these differences include assumptions about har-

monicity and the behavior of the partial amplitudes, the effects of underestimating or

overestimating the model order, i.e. the number of sinusoids in the signal, the presence

of noise or other contamination, and the metrics applied to determine the parameters,

e.g. minimum mean-squared error, maximum likelihood, or a heuristic criterion. Key

references for these other methods include [135, 136, 137, 138, 139, 140, 141].

2.4 Time-Domain Synthesis

Synthesis for the sinusoidal model is typically carried out in the time domain by

accumulating the outputs of a bank of sinusoidal oscillators in direct accordance with the

signal model of Equation (2.1). This notion was previously depicted in Figure 2.7; the

simple structure of the synthesis bank is given again in Figure 2.12 to emphasize a few key

points. First, banks of oscillators have been widely explored in the computer music field

as an additive synthesis tool [31, 35, 34]. Early considerations, however, were restricted
to synthesis of artificial sounds based on simple parameter control functions since corre

sponding analyses of natural signals were unavailable and r^ince computational capabilities

were limited. The development of analysis algorithms has led to the application of this



70

Oscillator 1

Oscillator 2

Oscillator q

Oscillator Q

piH

)—i-xfTl]
Reconstruction

Figure 2.12: Time-domain sinusoidal synthesis using a bank of oscillators. The

amplitude and phase control fimctions can be derived using an STFT analysis as
depicted in Figme 2.7, or in other ways as described in the text.

approach to modeling and modification of natural signals, and advances in computation

technology have enabled such synthesis routines to be carried out in real time [132, 142].
Figure 2.12 also serves to highlight the actual control functions Aq[n] and 0g[w].

The output ofthe ^-thoscillator is Aq\n\ cos0q\p]\ this isdictated bysample-rate amplitude
and total phase control functions that must be calculated in the synthesis process using
the frame-rate (subsampled) analysis data. This process involves two difficulties: line
tracking and parameter interpolation^ both of which arise because of the time evolution
of the signal and the resultant analysis parameter differences from frame to frame; for
instance, the estimated frequencies of the partials change in time as the spectral peaks
move. It is of course reasonable that some difficulties should arise, given the iiitent of

generalizing the Fourier series to have arbitrary sinusoidal components; these difficulties
are discussed in the following two sections.

2.4.1 Line Tracking

The sinusoidal analysis provides a frame-rate representation of the signal in terms
ofamplitude, frequency, and phase parametersfor a set ofdetected sinusoids in each frame.
This analysis provides.the sinusoidal parameters, but does not indicate which parameter
sets correspond to a given partial. To build a signal model in terms of evolving partials
that persist in time, it is necessary to form connections between the parameter sets in
adjacent frames. The problem of line tracking is to decide how to connect the parameter
sets in adjacent frames to establish continuity for the partials of the signal model. Such
continuity is physically reasonable given the generating mechanism of a signal, e.g. a
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vibrating string.

Line tracking can be carried out in a simple successive manner by associating

the q-th parameter set in frame t, namely to the set in frame i + 1 with

frequency closestto a;,,,- [57]. The trackingstarts by makingsuch an association for the pair
of parameter sets with the smallest frequency difference across all possible pairs; frequency

difference is used as the metric here, but other cost functions, perhaps including amplitude

or a predicted rate of frequency change, are of course plausible. Once the first connection

is established, the respective parameter sets are taken out of consideration and the process

is repeated on the remaining data sets. This iteration is continued until all of the sets in

adjacent frames are either coupled or accounted for as births or deaths - partials that are

newly entering or leaving the signal. Generally, there is some threshold set to specify the

maximum frequency difference allowed for a partial between frames; rather than coupling

a pair of data sets that have a large frequency difference, such instances are treated as a

separate birth and death. This tracking is most effective for relatively stationary signal

segments; it has difficulty for signal regions where the spectral content is highly dynamic,

such as note attacks in music. This breakdown is not so much a shortcoming of the line

tracking algorithm as of the signal model itself; a model consisting of smoothly evolving

sinusoids is inappropriate for a transient signal.

For complicated signals with many evolving partials, the problem of line tracking

is obviously difficult. One important fix, proposed in [36, 100], is the use of backward line
tracking when necessary; this technique can be used to track the partials of a note from

the sustain region back to their origins in the note attack, which helps with the difficulties

previously discussed. Another observation is that line tracking can be aided by considering

harmonicity; if the partials are roughly harmonic, the data sets can be coupled more readily
than in the general case [57, 36]. A number of more complex methods have been explored
in the literature. One noteworthy technique involves using the Viterbi algorithm to find
the best set of partial tracks [143, 144]; the cost of a given set of tracks is generally
measured by summing the frame-to-frame absolute frequency differences along all of the
tracks in the set. This approach finds the set of tracks that has the minimum global cost,
i.e. the smoothest frequency transitions for the entire set, which is markedly different

from the greedy successive track selection algorithm discussed above. This method, which
can be cast in the framework of hidden Markov models, has proven useful for sinusoidal
modeling of complex sounds [145]. Furthermore, neural networks have been posed as a
possible solution to the line tracking problem [146]; nonlinear methods have also proven
useful for overcoming some of the difficulties in line tracking [147].

It should be noted that line tracking is sometimes considered part of the analysis
rather than synthesis. Then, the model includes a partial index or tag for each parameter
set in each frame. The advantage of including this extra data in the representation is

that the reconstruction process is simplified such that the synthesis can meet real-time
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computation constraints. The inclusion is thus useful in cases where the analysis can be
performed oif-line; for instance, in audio distribution or in reaJ-time signal modification, it
is necessary to have a low-complexity synthesis, meaning that high-complexity operations
such as line tracking should be lumped with the analysis if possible, even if it does require
the inclusion of extra data in the parameterization.

2.4.2 Parameter Interpolation

After partial continuity is established by line tracking, it is necessary to inter
polate the frame-rate partial parameters {Aq,ujq,(f>q} to determine the sample-rate os
cillator control functions Aq[n] and 0,[n]. Typically, interpolation is done using low-
order polynomial models such as linear amplitude and cubic total phase; the specific
approach of [57] is presented here, but other interpolation methods have been considered
[36,107,148,149,150]. The partial amplitude interpolation insynthesis frame i is a linear
progression from the amplitude in analysis frame i to that in frame «+ 1 and is given by

Aq^i[n] = Aq^i + (2.82)

where ra = 0,1,..., 5 - 1 is the time sample index, and S is the length of the synthesis
frame; this frame length is equal to the analysis stride L unless the analysis parameters
are intermediately interpolated or otherwise modified to a different time resolution. Note
that this amplitude envelope plays a role in modeling sinusoids modulated by slowly
varying amplitude envelopes; it was shown in Section 2.3.1 that such partials correspond
to components that are not resolved by the DFT analysis. The phase interpolation is
given by

©g,tM = 0g,t + + /3g,t«^, (2.83)

where 0 and wenforce phase and frequency matching constraints at the frame boundaries,
and a and /? are chosen the make the total phase progression maximally smooth [57]. Such
phase and frequency matching constraints are explored in greater detail in Section 2.5.

Interpolation of the phase parameter is clearly more complex than the amplitude
interpolation. For efficient synthesis, then, it is of interest to consider more simple models
of the phase. Indeed, the experimental observation that the auditory system is relatively
insensitive to phase motivates the investigation of models based on amplitude envelopes
and low-complexity phase evolution models, thus merging a waveform model with psy-
choperceptual phenomena in an effort to create a perceptually lossless model. In some
cases, this so-called magnitude-only reconstruction can be done transparently; however,
transient distortion is increased when the phase is neglected.

In the frequency-domain synthesis algorithm to be discussed in the next section
(Section 2.5), the parameter interpolation is not performed directly on the time-domain
control functions, but is instead implicitly carried out by an overlap-add process which
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results in a pseudo-linear amplitude envelope and a transcendental phase interpolation
function. These particular interpolation methods will be considered in Section 2.5. The
key issue regarding parameter interpolation, however, can be made without reference to
a specific interpolation scheme: namely, reconstruction artifacts occur when the behavior
ofthe signal does not match the interpolation model. This idea is revisited in Section 2.6.

2.5 Frequency-Domain Synthesis

An alternative to time-domain synthesis using a bank of oscillators is frequency-
domain synth^is, in which a representation of the signal is constructed in the frequency
domain and the time-domain reconstruction is generated from that representation by an
inverse FFT (IFFT) and overlap-add (OLA) process. This approach provides various com
putational advantages over general time-domain synthesis [102, 132]. Frequency-domain
synthesis was described in [57, 150, 151] and more fully presented in [102]. In this section,
the algorithm in [102] is explored in detail.

2.5.1 The Algorithm

The frequency-domain synthesis algorithm is fundamentally based on the rela
tionship between the DTFT and the DFT and the resulting implications for representing
short-time sinusoids. After a brief review of these issues, which are intrinsically connected

to the matters discussed in Section 2.3.1, the algorithm is described.

The DTFT, the DFT, and spectral sampling

For an N-point discrete-time sequence a:[n] defined on the interval n 6 [0, iV— 1],
the discrete-time Fourier transform is defined as

N-i

X[e'") = iHe--""™. (2.84)
n=0

. Note that the DTFT is inherently 27r-periodic; the signal can be reconstructed from any

DTFT segment of length 27r. For the specific interval [0,27r], the equation for signal
synthesis is

®[n] = (2.85)

where the interval simply provides the limits for the integral.

The DTFT is a continuous frequency-domain function that represents a discrete-

time function; for finite-length signals, there is redundancy in the DTFT representation.
The redundancy can be reduced by sampling the DTFT, which is indeed necessary in
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digital applications. Sampling the DTFT yields a discrete Fourier transform if the samples
are taken at uniformly spaced frequencies:

X[k] = (2.86)
n=0

For K = iV, the sampled DTFT corresponds to a DFT basis expansion of a;[n]. If K < N,
the spectrum is undersampled and time-domain aliasing results as discussed throughout

Section 2.2.1. On the other hand, the case K > N corresponds to oversampling of the

spectrum; such oversampled DFTs were considered at length in Section 2.3.1 for the

application of sinusoidal analysis. \{ K > the signal can be reconstructed exactly from
the DTFT samples using the synthesis formula

4n] = (2-87)
^ k=0

Representations at different spectral sampling rates have a simple relationship if the rates
are related by an integer factor; introducing a subscript to denote the size of the DFT,

XKlk] = (2.88)
\ / la/- —

XmH = (2-89)
Af

M=^iK XMhik] = x(e^-)| = XK[k]. (2.90)

This relationship will come into play in the frequency-domain synthesis algorithm to be
discussed.

The underlying reason that reconstruction can be achieved from the samples of
DTFT is that the DTFT is by definition a polynomial function of order N —1 (for a
signal of length N). Then, any N samples specify the DTFT exactly, so the signal can in
theory be reconstructed from any N or more arbitrarily spaced samples. The special case
of uniform spectral sampling has been of greater interest than nonuniform sampling since
it leads to the fast Fourier transform.

Spectral representation of short-time sinusoids

To carry out frequency-domain synthesis, a spectral representation of the partials.
must be constructed. This construction is formulated here for the case of a single partial;

the extension to multiple partials is developed in the next section.

A short-time sinusoid with amplitude A,, frequency Wg, and phase 4>q can be
written as

p,[n] = (2.91)



75

where 6[7i] is a window function of length N. In the frequency domain, this signal corre
sponds to

P,(e'") = B{ei")*A,e^*^Slu-u>,] = A,e'*-B , (2.92)

where * denotes convolution and B{€ '̂̂ ) is the DTFT of the window 6[7i]. The upshot
of this derivation is that the spectrum of a short-time sinusoid windowed by 6[n] is the
window transform shifted to the frequency of the sinusoid.

For synthesis based on an IDFT ofsize K, theappropriate amplitudes and phases
for a K-bin spectrum must be determined. This discrete frequency model can be derived
via spectral sampling of the DTFT in Equation (2.92):

P,[k] = A,ei*- B , (2.93)

which corresponds to shifting the window transform B to the continuous frequency
Uq and then sampling it at the discrete bin frequencies ujk = 2'KkfK^ where K > N \s
required to avoid time-domain aliasing.

Using the above formulation, the short-time sinusoid can be expressed in
terms of the lif-bin IDFT to be used for synthesis:

p,[n] =IDFTk B }• (^.94)
This representation isdepicted in Figure 2.13 for three distinct cases: (1) an unmodulated
Hanning window 6[n], (2) modulation to a bin frequency ofthe DFT, and (3) modulation
to an off-bin frequency. Note the location of the sample points with respect to the center
of the main lobe in each of the cases; in the case of off-bin modulation in (3), the samples
are asymmetric about the center. Also note that in (1) and (2) the only nonzero points
in the DFT occur in the main lobe since the frequency-domain samples are taken at zero
crossings oftheDTFTsidelobes. All ofthe windows in theBlackman-Harris family exhibit
this property by construction [122, 123]; it is not a unique feature of the Hanning window.
In some applications, this zero-crossing property is useful in that a window can be applied
efficiently in the DFT domain by circular convolution [122].

Spectral motifs

In Equation (2.93) the spectral representation of a short-time sinusoid is com
puted by evaluating B at the frequencies 2TrkfK —ujq. This computation is pro
hibitively expensive with regards to real-time synthesis, however, so it is necessary to pre-
compute and tabulate B (e-"^) [102, 132]. Such tabulation requires approximating B (c- '̂̂ )
in a discrete form; this approximation, which will be referred to as a spectral mofi/[102],
is considered here.
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Figure 2.13: A depiction of frequency-domain sampling for spectra of short-time
sinusoids. The continuous spectra are the DTFTs of the modvilated window functions
and the circles indicate the spectral samples corresponding to their DFTs. Case (1)
is the luimodulated Hanning window 6[n], case (2) involves modulation to the bin
frequency 27rk/K for A: = 2 and K = 16, and case (3) involves modulation to the
off-bin frequency corresponding to A: = 2.4. Note that for A: = 0 £tnd k —2, the DPT
of the Hanning window consists of only three nonzero points.
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A sinusoid at any frequency Ug can be represented in the form given in EJqua-
tion (2.93). Such arbitrary frequency resolution is achieved since B is a continuous
function and spectral samples can be taken at arbitrary frequencies 27rk/K —u^g. In a dis
crete setting, such resolution can be approximated by representing B using a highly
oversampled DFT of size M » K; in this framework, the spectral motif is

BH = (2.95)

Using such a motif, a sinusoid of frequency Ug = 27rmg/M can be represented exactly in
a K-bin spectrum if M is an integer multiple of AT, say M = fiK:

= (2.97)

= (2.98)

= AgC^*^"B\)ik - m,]. (2.99)

In this way, a spectral representation of a short-time sinusoid is constructed not by directly
sampling the DTFT but by sampling the motif, which is itself a sampled version of the
DTFT. The frequency resolution is thus limited not by the size of the synthesis IDFT
but by the oversampling of the motif; in some other incarnations of frequency-domain
synthesis, large IDFTsare required to achieve accurate frequency resolution [57,150,151].
In this algorithm, arbitrary frequency resolution can be achieved by increasing the factor

provided that enough memory is available for storage of the motif. In music synthesis,
however, the resolution limits of the auditory system can be taken into account in choosing
the oversampling [102].

Figure 2.14 gives an example of a spectral motif and depicts the resolution issues
discussed above. Note that if the frequency of a partial cannot be written as 27rm,/M,
the samples in the shifted motif will not align with the bins of the synthesis IDFT. To
account for this, partial frequencies can be rounded; alternatively, linear or higher-order
interpolation can be applied to the motif if enough computation time is available. These
techniques allow for various tradeoffs between the frequency resolution and the motif
storage requirements. Beyond the issue of frequency resolution, a further approximation

in the motif-based implementation is also indicated in Figure 2.14. Namely, only the main'
lobe of B (e '̂") is tabulated; the sidelobes are neglected. The result of this approximation
is that the spectral representation does not correspond exactly to a sinusoid windowed

by b[n]; furthermore, each different modulation of the motif actually corresponds to a
slightly different window. In practice, these errors are negligible if the window is chosen

appropriately [102].
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Figure 2114: Spectral motifs in the frequency-domain synthesizer. The motif is the

oversampled main lobe of the DTFT of some window 6[n], which is precomputed
and stored. To represent a partial, the motif is modulated to the partial frequency

etnd then sampled at the bin locations of the synthesis IDFT as shown in (b). If
the modulation does not align with the motif samples, the tabulated motif can be
interpolated.

In sinusoidal analysis, the issues discussed above lead to the assumption that each
lobe in the short-time spectrum of the signal corresponds to a partial. Various caveats

involving this assumption were examined in Section 2.3.1; these are not considered further
here. The point in this development is simply that a notion that is dual to the sinusoidal
analysis applies for frequency-domain synthesis: a partial can be synthesized by inverse
transforming an appropriately constructed spectral lobe.

Accumulation of partials

Since the DTFT and the DFT are linear operations, the spectrum of the sum of

partials for the signal model can be constructed by accumulating their individual spectra.
Denoting the DTFT for the i-th synthesis frame as X and introducing the sub
script i to denote the frame to which a partial parameter corresponds, the accumulation
of partials for the i-th frame is given by

Q Q

X{e^,i) = £p,.i(e^") =
g=l g=l

Q

9=1

which corresponds in the time domain to

i.[n] = 5[n]
9=1

(2.100)

(2.101)

(2.102)
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which is simply a windowed sum of sinusoids. If K > N, the IDFT, implemented as
an IFFT for computational efficiency, can be used to generate ®,[n] from the sampled
spectrum

This formulation shows that a if-bin spectrum for synthesis of a signal segment can be

constructed by accumulating sampled versions of a modulated window transform. The

result in synthesis is then the sum of sinusoids given in Equation (2.102). To synthesize a

sum of real sinusoids, the /jT-bin spectrum can be added to a conjugate-symmetric version

of itself prior to the IDFT; note that the window b[n] is assumed real.
As discussed in the previous section, the window transform is represented using

a spectral motif. These motifs are modulated according to the partial frequencies from

the analysis, and weighted according to the partial amplitudes and phases. The approx

imations made in the motif representation lead to some errors in the synthesis, though;

namely, the motifs for each partial do not exactly correspond to modulated versions of

6[7i], so the synthesized segment is not exactly a windowed sum of sinusoids. This error
can be made negligible, however, by choosing the window appropriately. Noting that the
window b[n] is purely a byproduct of the spectral construction, and that it is not necessar
ily the window used in the sinusoidal analysis, it is evident that the design of b[n] is not

governed by reconstruction conditions or the like. Rather, 6[7i] can be chosen such that

its energy is highly concentrated in its main spectral lobe; then, neglecting the sidelobes
does not introduce substantial errors. Other considerations regarding the design of b[n]
will be indicated in the next section.

Overlap-add synthesis and parameter interpolation

Given a series of short-time spectra constructed from sinusoidal analysis data as

described above, a sinusoidal reconstruction can be carried out by inverse transforming

the spectra to create a series of time-domain segments and then connecting these segments

with an overlap-add process. This process has distinct ramifications regarding the interpo

lation of the partial parameters. Whereas in time-domain synthesis the frame-rate data is

explicitly interpolated to create sample-rate amplitude and phase tracks, in this approach

the interpolation is carried out implicitly by the overlap-add. For reasons to be discussed,

it is important to note that the overlap-add can be generalized to include a second window

t;[n] in addition to 6[n]; the resultant window will be denoted by t[7i] = 6[n]v[n]. Assuming
t[n] is of length N and a stride of L = N/2 is used for the OLA, the synthesis of a single
partial for one overlap region can be expressed as

(2.104)
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where the subscripts 0 and 1 are frame indices, and the subscript q has been dropped for
the sake of neatness; the offset of L in the second term serves to adjust its time reference

to the start of the window t[n —L]. The contributionsfrom the twoframes can be coupled
into a single magnitude-phaseexpression; the amplitude evolutionof the magnitude-phase
form is given by

A[n\ = -|- A\t[n - + 2Aoi4it[n]f[n - L] cos[(u;o - uJi)n -f ljiL + </»o - <^i]
(2.105)

and the phase is

•Aot[n] sin(a>on + ^o) + Ait[n —L] sin(a;iTO —uiL + <f>i)'
©[n] = arctan

.Aot[n] cos(a;on + (po) + Ait[n —L]cos(a;in —wiL + ^i).
(2.106)

The region where thesefunctions apply is n € [!», N]^ namely the second halfof the window
t[n] and the first half of t[n —L].

The OLA interpolation functions are clearly more complicated than the low-
order polynomials used in time-domain synthesis. The complications arise because the
amplitude and frequency evolution are not decoupled as in the time-domain case. The
reconstruction in the overlap region is a sum of two sinusoids of different amplitudes
and frequencies; these are different since the sinusoidal parameters change from frame to
frame for evolving signals. In the OLA interpolation, this parameter difference results in
amplitude distortion due to the beating of the different frequencies; furthermore, it results
in a transcendental phase function. The parameter interpolation functions in OLA are

dealt with further in Section 2.5.2. Here, the discussion will be limited to choosing the

synthesis window t[n]. This choice will be motivated by adhering to the caseof slow signal
evolution, where the parameters do not change drastically from one synthesis frame to the
next; specifically, the treatment will adhere to the limiting case in which the frequency
parameter is assumed constant across frames: wq = wi. This heuristic, coupled with
the phase-matching assumptions to be discussed later, leads to a simplification in the
amplitude interpolation:

A[7i] = + Ait[n —L], (2.107)

If t[n] ischosen to be a triangular window oflength JV, this overlap-add sum provides linear
amplitude interpolation as shown in Figure 2.15. This feature is desirable since it enables
the frequency-domain synthesizer to perform similarly to the time-domain method while
takingadvantage of the computational improvements that result from using the IFFT for
synthesis [102, 132].

For the overall OLA window t[n] to be a triangular window, the hybrid window
v[n] = t[n]/b[n] must be applied to the IDFT output prior to overlap-add. Thus, the quo
tient t;[n] = t[n]/b[n] must be well-behaved in order for the synthesis to be robust. While
v[n] is theoretically a perfect reconstruction window for this OLA process, finite precision
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Figure 2.15: Overlap-add with a triangular window provides linear amplitude in
terpolation if the partial frequencies in adjacent frames are equal. Plot (a) shows
a trietngular-windowed partial of amplitude 1 in synthesis frame t, plot (b) shows a
partial of amplitude 2 in synthesisframe t-{-l, and plot (c) showsthe linear amplitude
interpolation resulting from overlap-add of the two frames.
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effects may lead to significant errors in the reconstruction if t;[7i] has discontinuities due
to zeros in 6[n], for instance. Example of such hybrid windows are given in Figure 2.16
for the case ofa Hanning window, a Hamming window, and a Blackman-111 window [122];
this shows that a Hanning window is actually unsuitable for this application given the
discontinuities at the edges of the hybrid window.

Frequency-domain synthesis and the STFT

It was shown in Section 2.2.1 that the STFT synthesis can be interpreted as

an inverse Fourier transform coupled with overlap-add process. Likewise, the IFFT/OLA

process in the frequency-domain synthesizer can be interpreted as an STFT synthesis filter
bank. This point of view leads to yet another variation of the block diagrams given in
Figures 2.6 and 2.7. In this interpretation, a parametric model is incorporated across all

of the bands in the analysis bank as in the sinusoidal model of Figure 2.7; this parametric

model includes the sinusoidal analysis and the construction of short-time spectra from

the analysis data. Then, the short-time spectra serve as input to a synthesis filter bank,

which replaces the oscillator bank used in time-domain sinusoidal synthesis; the filters in

the bank are given by gk[n] = where t;[7i] is the hybrid window discussed earlier.

This structural interpretation of the IFFT/OLA synthesizer is depicted in Figure 2.17;

the structure is similar to that used in the STFT modifications discussed in Section 2.2.2.
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Figure 2.16: Overlap-add windows in the frequency-domain synthesizer. The plots
in the right column shown t[n]/6[n] when 6[n] is a Hanning window, a Hamming
window, and a Blackman-111 window, respectively.
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Figure 2.17: Block diagram of frequency-domain synthesis for sinusoidal modeling.
The parametric model includes the sinusoidal analysis and the construction ofshort-
time spectra from the analysis data. The IFFT/OLA process can be interpreted as
an STFT synthesis filter bank.
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2.5.2 Phase Modeling

In the time-domain synthesizer, low-order polynomial models are used to inter
polate the frame-rate parameters to derive sample-rate amplitude and phase functions;
this interpolation is carried out explicitly for each partial identified by the line tracking
algorithm. In contrast, in the frequency-domain synthesizer the parameter interpolation
is carried out implicitly by the overlap-add process; OLA automatically establishes partial
continuity without reference to any line tracking method. Line tracking is thus only re
quired forsynthesis if a model ofcontinuity isdesired for intermediate signal modifications
or if the signal is to be reconstructed from the amplitude data only. The latter case is
discussed here.

Magnitude-only reconstruction and amplitude distortion

Compression can be achieved in the sinusoidal model by discarding the phase
data. Such compaction is justifiable in audio applications given the heuristic notion that
the ear is insensitive to phase; high-fidelity synthesis can be achieved usingonly the ampli
tude and frequency information from the analysis. Such magnitude-only reconstruction,
however, relies on imposing sensible phase models that take the frequency evolution into
account. In the frequency-domain synthesizer, for instance, ignoring phase relationships
in adjacent frames can lead to significant amplitude distortion; consider E)quation (2.106)
for the simple case Ao = Ai = 1 with zero phase <^ = = 0:

A[n] = y/t[nP + t[n-LY 2t[n]t[n- L]cos(uiL). (2.108)

The cosine term in this expression can result in highly distorted amplitude envelopes as

shown in Figure 2.18. Note that equal amplitudes leads to a worst case scenario since the
interfering signals can canceleach other exactly at the midway point in the overlapregion.

Phase matching

The example in Figure 2.18 shows that neglecting the phase can lead to signifi
cant distortion in the OLA synthesis; synthesis with zero phase can result in substantial

destructive interference. It is thus necessary to impose a phase model to avoid amplitude

distortion artifacts in the reconstruction. One approach to limiting the destructive inter

ference is to match the phases of the interfering sinusoids halfway through the overlap
region. This constraint is given by

«>, = + wo - Wi , (2.109)

where N = 2L is the frame size.
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Figure 2.18: Plot (a) showsthe ideal amplitude envelope for overlap-addwith equal
eunplitudes in adjacent frames; the underlying triangular windows are also shown.
Plot (b) shows examples of the amplitude distortion that occiuv in the overlap region
due to phase mismatch; this example is specifically for the case of frequencies that are
equal in adjacent frames as formulated in Equation (2.105), but the effect is general
as discussed in the text. In the plot, the phase mismatdi uiL ranges from 0 to x; for
a mismatch of x, the signals cancel exactly at n = 3L/4, halfway through the overlap
region.

If the phase matching specified by Elquation (2.109) is used, the amplitude enve
lope, in the equal-amplitude case, becomes a function of the inter-frame frequency differ
ence —

A[n] =^t[np f t[n -LY +2t[n]t[n -L]cos J(wo -4«^i) -^)] * (2.110)
Examples of this amplitude distortion are given in Figure 2.19(a) for |u;o —wi| = Att/N
with A € [0,5] and N = 512; the corresponding overlap-add phase function 0[n] is given
for A € [0,1,5] in Figures 2.19(b,c,d). Note that the amplitude distortion increases as the
frequency difference increases and that the phase function is well-behaved, especially for
n = 0, where it is linear as expected, and for n = 1, where the nonlinearity introduced by
the frequency change is not pronounced.

To limit the synthesisamplitude distortion characterized in Equation (2.110) and
Figure 2.19(a), N can be chosen such that frequency differences in typical signals do not
lead to significant distortion. If iV is chosen such that

max

all frames,

all partials

TT
(2.111)

the maximum deviation of the envelope from unity will be less than 2% in the worst case
scenario of equal-amplitude partials. Considering this restriction for the case N = 512, a
440Hz partial at a sampling rate of 44.1kHz can double in frequency in about 10 frames,
roughly 60ms, without significant distortion; this rate is suitable for high-quality music
synthesis.
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Figure 2.19: Parameter interpolation in overlap-add with phase matching. The
amplitude distortion in overlap-add is reduced if phase matching is used. If the fre
quencies in adjacent frames are equal, there is no amplitude distortion and linear
interpolation is achieved. In (a), the amplitude distortion is plotted for inter-frame
frequency differences for Air/N, where A € [0,5] atnd N = 512. The distortion in
creasesas the frequency difference increases. In plots (b,c,d), the OLAphase function
is given for vzoious values of A for u>o —5n/N and = 0; the phase is well-behaved.
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As stated earlier, the OLA process does not require line tracking if the amplitude

and phase data from the analysis are both incorporated in the synthesis. Unlike the time-

domain synthesis, which requires tracks for interpolation, the interpolation in OLA is

carried out without reference to the signal continuity. However, in cases where compression

b achieved by discarding the phase data, it is necessary to use a line tracking algorithm

to relate the partials in adjacent frames so that phase matching can be carried out. As

shown in this section, in synthesis based on magnitude-only representations it is necessary

to incorporate phase modeling to mitigate distortion.

Frequency matching and chirp synthesis

In addition to phase matching, the synthesis frequencies in adjacent frames can be

matched in the overlap region. Such frequency matching can be carried out by synthesizing
chirps in each frame instead of constant-frequency sinusoids; the chirp rates are determined
by a frequency-matching criterion [152, 153]. The caveat in this approach is that the
motif must be adjusted to represent a chirp instead of a partial at a fixed frequency,

which can be done by precomputing a motif for various chirp rates and interpolating in

the precomputed table [152]. Such chirp synthesis, however, has not been shown to be
necessaryfor synthesis of natural signals, so the added cost of tabulation and interpolation
is not readily justified. Of course, this conclusion depends on the length of the synthesis

windows; if the windows are short enough, the frequency variations from frame to frame
will be accordingly small and will not lead to distortion. In a frequency-domain synthesizer
with windows on the order of 5 ms long, the phase matching described above is sufficient

for removing perceptible amplitude distortion in the reconstruction of natural signals.

In Section 2.3.1, the issue of orthogonality of the synthesis components was dis

cussed. Orthogonality was argued to be desirable to avoid destructive interaction in the
superp>osition of components in the signal model; this issue was considered using a geo

metric framework. Phase modeling can be interpreted in a similar light; considering the
windowed partials in adjacent frames as vectors, the phase matching process aligns these
vectors in the signal space such that they add constructively instead of destructively.

2.6 Reconstruction Artifacts

As discussed in Section 1.5.1, the analysis-synthesis procedure for any signal

model has fundamental resolution limits. In the case of the sinusoidal model, the resolution

is basically limited by the choice of the frame size and the analysis stride. For long
frames, the time resolution is inadequate for capturing signal dynamics such as attack
transients; for short frames, on the other hand, the frequency resolution is degraded
such that identification of sinusoidal components in the spectrum becomes difficult. The
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sinusoidal model is thus governed by the same fundamental resolution limits as any time-
frequency representation.

In compact models, limitations in time-frequency resolution tend to result in
artifacts in the reconstruction. As a result, the analysis-synthesis process yields a nonzero
residual. The components of the residual include errors made by the analysis or the
synthesis as well as artifacts resulting from basic shortcomings in the model. In the
sinusoidal model, for instance, such errors occur if the original signal does not behave in
the manner specified by the parameter interpolation used in the synthesis. In addition to
the noiselike components discussed in Section 2.1.2, then, the residual in the sinusoidal
model contains such model artifacts.

In Section 1.1.2, the perceptual importance of preserving note attacks in music
synthesis was discussed. With this in mind, the sinusoidal model artifact that will be
focussed on here is pre-echo distortion of signal onsets. This issue was introduced in the
example of Figure 2.8; additional examples involving simple synthetic signals are given in
Figure 2.20.

The pre-echodepicted in Figures 2.8 and 2.20 is generated by the following mech
anism. Before the signal onset, there is an analysisframe in which the signal is not present
and no sinusoids are found. For the frame in which the signal onset occurs, various spec

tral peaks are identified and modeled as sinusoids. The line tracking algorithm interprets
these partiais as births and forms a track connecting them to zero-amplitude partials in
the previous frame, where no spectral peaks were detected. In the reconstruction, then,
each of the partials in the onset is synthesized with a linear amplitude envelope as spec
ified by the parameter interpolation model. The result is that the onset is spread into

the precedingframe. In general, the Wrth of a partial in any given frame is delocalized in
this manner; in an attack, however, the effect is dramatic because all of the partials are

treated in this way simultaneously.

The linear amplitude envelope for a partial onset is clearly visible in the single
sinusoid example of Figure 2.20(a,b,c). This example shows not only the delocalization
of the attack, but also the introduction of a significant artifact in the residual. Figure

2.20(d,e,f)showsthe pre-echo in the sinusoidal modelofa harmonic serieswith three terms;
this illustration is given as a precursor to a more complex example involving a natural
signal, namely the attack of a saxophone note given in Figure 2.21. The delocalization of
the attack degrades the realism of the synthesis, and furthermore introduces an artifact

in the residual. These issues will be discussed in detail in the following two chapters;

Chapter 3 presents multiresolution extensions of the sinusoidal model intended to improve

the localization of transients, and Chapter 4 discusses modeling of the residual. It should

be noted here that the frame-rate parameters derived by the sinusoidal analysis can be

interpolated to a different rate to achieve data reduction or to match the rate required

by the synthesis engine; this process, however, results in additional artifacts due to the
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Figure 2.20: Pre-echo in the sinusoidal model for two synthetic signals: (a) a simple

sinusoid, and (b) a harmonic series. Plots (c) and (d) depict the delocalized recon
structions, and plots (e) and (f) show the respective residuals. Note the pre-edioes
and the artifacts near the onset times, frame size of 1024

implicit smoothing of the interpolation.

One approach for preventing reconstruction artifacts is the method described in
[101], which accounts for the attack problem byseparately modeling the overall amplitude
envelope of the signal. The amplitude envelope is imposed on the sinusoidal reconstruction
to improve the time localization. This representation, however, is nonuniform in that
it relies on independent parametric representations of the envelope and the sinusoidal
components. Chapter 3 discusses methods that improve the localization without altering
the uniformity of the representation.

2.7 Signal Modification

Modifications based on the short-time Fourier transform were discussed in Section

2.2; the difficulty of modifications in such a nonparametric representation was one of
the motivations for revamping the STFT into the parametric sinusoidal model. Here,
modifications based on the sinusoidal model are dealt with more explicitly. Specifically,

time-scaling, pitch-shifting, and cross-synthesis areconsidered. The treatment hereisquite
general; formalized details about modifications in a specific version ofthesinusoidal model
can be found in the literature [93, 101, 154, 94]. Note that the point of this section is not
to introduce novel signal modifications, but rather to emphasize that such modifications
can be easily realized using the sinusoidal model because of its parametric nature.
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Figure 2.21: Pre-echo in the siniisoidal model for a saxophone note: (a) the original,

(b) the reconstruction, and (c) the residual.
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2.7.1 Denoising and Enhancement

The application of denoising deserves mention here inasmuch as the denoising
process can be viewed as a signal modification. As discussed, the sinusoidal model is
ineffective for representing broadband processes. This shortcoming motivates the inclusion
of the stochastic component proposed in [36] to account for musically relevant stochastic
features such as breath noise in a flute or bow noise in a violin; these must be incorporated

if realistic synthesis is desired. This approach assumes that the original signal is a clean
recording of a natural instrument. In cases where the original is a noisy version, the
residual in the sinusoidal model basically contains both the noise and the desired stochastic

signal features; unless these two noise processes can be somehow separated, this type of
residual is not useful for enhancing the signal realism. In these cases, it is generally more
desirable to simply not incorporate the residual in the synthesis; in this way, the signal
can be denoised via sinusoidal modeling. In addition to denoising, the sinusoidal model
has been used for speech enhancement and dynamic range compression. These topics are
discussed in the literature [155, 99]

2.7.2 Time-Scaling and Pitch-Shifting

In Section 1.5.1, it is proposed that signal modifications can be carried out by
modifying the components of a model of the signal. The sinusoidal model is particularly
amenable to this approach because the modifications of interest are easy to carry out on

sinusoids. For instance, it is simple to increase or decrease the duration of a sinusoid, so if
a signal is modeled as a sum of sinusoids, it becomes simple to carry out time-scaling on
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the entire signal. One caveat to note is that in some time-scaling scenarios it is important

to preserve the rate of variation in the amplitude envelope of the signal, t.e. the signal

dynamics, but this can be readily achieved. This issue is related to the time-scaling of

nonstationary signals, in which some signal regions should be time-scaled and some should

be left unchanged; for example, for a musical note, which can be most simply modeled as

an attack followed by a sustsdn, time-scale modifications are most perceptually convincing

if the time-scaling is carried out only for the sustain region and not for the attack.

Time-scale modifications can also be carried out using approaches traditionally

referred to as nonparametric [90]. These involve either STFT magnitude modification

followed by phase estimation as discussed earlier, or analyzing the signal for regions,

e.g. pitch periods, which can be spliced out of the signal for time-scale compression or

repeated for time-scale expansion. Computational cost and quality comparisons between

such approaches and modifications using the sinusoidal model have not been formally

presented, but this is an area of growing interest in the literature and in the electronic

music industry [156].

The sinusoidal model allows a much wider range of modifications than standard

music synthesizers such as samplers, where the signal is constructed from stored sound

segments and modifications are limited by the sample-based representation. For instance,

time-scaling in samplers is carried out by upsampling and interpolating the stored signal

segments prior to synthesis, but this process is accompanied by a pitch shift. The sinusoidal

model can readily achieve time-scaling without pitch-shifting, or the dual modification of

pitch-shifting without time-scaling. With regards to pitch modification, a simple form

can be carried out by scaling the frequency parameters prior to synthesis, but in voice

applications this approach results in unnatural reconstructed speech. Natural pitch trans

position can be achieved by interpreting the sinusoidal parameter as a source-filter model

and carrying out formant-corrected pitch-shifting, which is discussed below.

Formant-corrected pitch-shifting

The sinusoidal model parameterization includes a description of the spectral en

velope of the signal. This spectral envelope can be interpreted as as a time-varying filter
in a source-filter model in which the source is a sum of unweighted sinusoids. In voice

applications, the filter corresponds to the vocal tract and the source represents the glottal

excitation. This analogy allows the incorporation of an important physical underpinning,

namely that a pitch shift in speech is produced primarily by a change in the rate of
glottal vibration and not by some change in the vocal tract shape or its resonances. To
achieve natural pitch-shifting of speech or the singing voice using the sinusoidal model,
then, the spectral envelope must be preserved in the modification stage so as to preserve

the formant structure of the vocal tract. The pitch-scaling is carried out by scaling the
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frequency parameters of the excitation sinusoids and then deriving new amplitudes for
these pitch-scaled sinusoids by interpolating from the spectral envelope. This approach
allows for realistic pitch transposition.

Spectral manipulations

In addition to formant-corrected pitch-shifting, the source-filter interpretation

of the sinusoidal model is useful for a variety of spectral manipulations. In general, any

sort of time-varying filtering can be carried out by appropriately modifying the spectral
envelopes in the parametric sinusoidal model domain. For instance, the formants in the
spectral envelope can be adjusted to yield gender modifications; by moving the formants
down in frequency, a female voice can be transformed into a male voice, and vice versa
[157]. Also, the amplitude ratios ofodd and even harmonics in a pitched signal can be
adjusted. These modihcations are related to methods known as cross-synthesis, which is
considered further in the following section.

2.7.3 Cross-Synthesis and Timbre Space

Time-scaling and pitch-shifting modifications are operations carried out a single
original signal; the term cross'synthesis refers to methods in which a new signal iscreated
via the interactions of twoor more original signals. A common example of cross-synthesis
is based onsource-filter models of twosignals; as exemplified in the previous section, useful
mixture signals can be derived by uring the source from one model and the filter from
the other, for instance exciting the vocal tract filter estimated from a male voice by the
glottal source estimated from a female voice. Such cross-synthesis has been experimented
with in music recording and performance; one of the early examples of cross-synthesis in
popular music, mentioned in Chapter 1, is the cross-synthesized guitar in [54], in which
the signal from an electric guitar pickup is used as an excitation for a vocal tract filter,
resulting in a guitar sound with a speech-like formant structure, the percept ofwhich is a
"talking" guitar.

Parametric representations enable a wide class of cross-synthesis modifications.
Thisnotion isespecially true in the sinusoidal model since the parameters directly indicate
musically important signal qualities such as the pitch as well as the shape and evolution of
the spectral envelope. One immediate example of a modification is interpolation between
the sinusoidal parameters of twosounds; this yields a hybrid signal perceived as a coherent
merger of the two original sounds, and not simply a cross-fade or averaging. This type
of modification has recently received considerable attention for the application of image
morphing^ which is carried out by parameterizing the salient features of an original image
and a target image (such as edges or prominent regions) and creating a map between
these parametric features that can be traversed to synthesize a morphed image [158].
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Such morphing has also been used in the audio domain to carry out modifications based
on the parametric representation provided by the.spectrogram, i.e. the squared magnitude
of the STFT [129].

In the fields of psychoacoustics and computer music, it has been of interest to
categorize instrumental sounds according to their location in a perceptual space. For
instance, the clarinetand the bassoon would befairly close together in this space, while the
piano orguitarwould not be nearby. Such categorization is referred to as multidimensional
scaling [35, 34, 108]. It has been observed that timbre^ which corresponds loosely to
the evolution and shape of the spectral envelope, is an important feature in subjective
evaluations of the similarity of sounds; if two sounds have the same timbre, they are
generally judged to be similar [IDS]. Because the parameters of the sinusoidal model
capture the behavior of the spectral envelope, i.e. the timbre of the sound, the sinusoidal
representations of various sounds can be used to situate the sounds in a timbre space^
which can then be explored in musically meaningful ways by interpolating between the
parameter sets. This interpretation of a parametric timbre space as a musical control
structure has been the focus of recent work in computer music [108].

2.8 Conclusion

In this chapter, the nonparametric short-time Fourier transform was discussed
extensively. It was shown that the STFT can be interpreted as a modulated filter bank
in which the subband signals can be likened to the partials in a sinusoidal signal model.
It was further shown that more compact models can be achieved by parameterizing these
subband signals to account for signal evolution. This idea is fundamental to the sinusoidal
model, which can be viewed as a parametric extension of the STFT; incorporating such

parameterization leads to signal adaptivity and compact models. Various analysis issues

for the sinusoidal model were considered, and both time-domain and frequency-domain

synthesis methods were discussed. Since the sinusoidal model is parametric, any of these

analysis-synthesis methods inherently introduce some reconstruction artifacts, but these

come with the benefits of compaction and modification capabilities. Minimization of such
artifacts by multiresolution methods is discussed in Chapter 3, and modeling of the residual
is examined in Chapter 4.
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Chapter 3

Multiresolution SinusoidEd Modeling

.^.s indicated in the previous chapter, the standard sinusoidal model has diffi
culty modeling broadband processes —both noiselike componentsand time-localized tran
sient events such as attacks. Thus, such broadband processes appear in the residual of the
sinusoidal analysis-synthesis. A perceptual model for noiselike components will be pre
sented in Chapter 4; that representation, however, is inadequate for time-localized events
such as attack artifacts, so it is necessary to consider ways to prevent these events from

appearing in the residual. In this chapter, the sinusoidal model is reinterpreted in terms
of expansion functions; the structure of these expansion functions both indicates why the
model breaks down for time-localized events and suggests methods to improve the model

bycasting it in a multiresolution framework. Twoapproaches are considered: applying the
sinusoidal model to filter bank subbarids, and using signal-adaptive analysis and synthesis

frame sizes. These specific methods are discussed after a consideration of multiresolution

as exemplified by the discrete wavelet transform.

3.1 Atomic Interpretation of the Sinusoidal Model

The partials in the sinusoidal model can be interpreted as expansion functions
that comprise an additive decomposition of the signal; this perspective provides a concep

tual framework for several considerations of sinusoidal modeling that have been presented

in the literature [97, 159, 160]. With this notion as a starting point, the sinusoidal model
is here interpreted as a time-frequency atomic decomposition. This interpretation sheds

some light on the fundamental modeling issues, and indicates a connection between sinu

soidal modeling and granular analysis-synthesis.

As discussed in the previous chapter, in the time-domain synthesis approach

the partials are generated at the synthesis stage by interpolating the frame-rate analysis

parameters using low-order polynomials. Figure 3.1 depicts a typical partial cos0g[t]
synthesized using linear amplitude interpolation and cubic total phase as formulated in
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Figure 3.1: A typical partial in the sinusoidal model (a) with a linear amplitude
envelope (b) and cubic total phase (c).
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[57]. In the next section, this example is used to indicate the aforementioned granular
interpretation of the sinusoidal model.

The atomic interpretation of the sinusoidal model stems from considering the
frame-to-frame nature of the approach. The model given in Equation (2.1), namely

Q[n] Q[n]

a;[n] w ®[n] = ^Pq[n] =
g=l g=l

(3.1)

can be recast into an expression that incorporates the synthesis frames, which are indexed
by the subscript j:

Q[n] QW QW
x[n] w £[n] = '̂ Pqln] = II ^9.iW<^oseg,j[n], (3.2)

g=l j g=l i g=l

where Pq,j[n] denotes the time-limited portion of the g-th partial that corresponds to the
j-th synthesis frame. The time-domain sinusoidal synthesis can thereby be viewed as a
concatenation of non-overlapping synthesis frames, each of which is a sum of localized
partials. Each of the components Pqj[n] in Equation (3.2) is time-localized to a synthesis
frame and frequency-localized according to the function ©g,j[n]- Thus, a sinusoidal model
of a signal can be interpreted as an atomic decomposition given by

« lIPg,iN' where pqj[n] = Aqj[n]coseqj[n] (3.3)
9.i

as indicated in Equation (3.2). For the specific interpolation models discussed in Section
2.4.2, the sinusoidal model derives a signal expansion in terms of atoms with linear am
plitude and cubic phase. An example of this atomic decomposition is depicted in Figure



Figure 3.2: The partial depicted in Figure3.1 can be decomposed into these linear
amplitude, cubic phase time-frequency atoms. This decomposition suggests an inter
pretation of the sinusoidal model asa method ofgranular analysis-synthesis in which
the grains are connected in an evolutionary fashion.
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3.2; the atoms correspond to the partial ofFigure 3.1. Note that the atomsare generated
using parameters extracted from the signal and are thus signal-adaptive. In this sense,
the sinusoidal model can be interpreted as a method of granular analysis-synthesis; by
its parametric nature, it overcomes the limitations of the STFT or phase vocoder with
respect to granulation.

In this atomic interpretation of the sinusoidal model, it should be noted that the
atoms are connected from frame to frame in accordance with a notion of signal continu

ity or evolution. This connectivity results in partials that persist meaningfully in time.
The atoms are not disparate events in time-frequency but rather interlocking pieces of a
cohesive whole.

3.1.1 Multiresolution Approaches

The atomic interpretation of the sinusoidal model indicates why the model has
difficulties representing transient events such as note attacks. Each atom in the decom
position spans an entire synthesis frame; the time support or span is the same for every
atom. The result of this fixed resolution is that events that occur on short time scales

are not well-modeled; this problem is analogous to the difficulty that a Fourier transform
has in modeling impulsive signals. In addition to the limitations that result from the
fixed timesupport of the atoms, however, the sinusoidal model also has time-localization
limitations because of the frame-to-frame interpolation of the partial parameters as dis
cussed in Section 2.6. The sinusoidal model thus delocalizes transient events in two ways:

a transient is spread across a synthesis frame because of the fixed time resolution of the
model expansion functions; furthermore, a transient bleeds into neighboring frames due
to the interpolation process.

The time-localization shortcomings of the sinusoidal model can be remedied by
applying a multiresolution framework to the model. Fundamentally, such approaches are
motivated by the atomic interpretation of the model: atoms with constant time support



96

are inadequate for representing rapidly varying signals, so it is necessary to admit atoms

with a variety of supports into the decomposition. To this point it has been implied that
shorter atoms are of interest, but it should be noted that in some cases it is also useful to
lengthen the time support of the atoms. In regions where a signal is well-modeled by a
sum of sinusoids, lengthening the framesimproves the frequency resolution of the analysis
and can thus improvethe model; furthermore, long frames are useful for coding efficiency.
Incorporating a diverse set of time supports allows for flexible tradeoffs between time and
frequency resolution.

As in other sections of this thesis, the focus in this chapter will be on time reso

lution and pre-echo distortion. Pre-echo results from both of the localization limitations:
within a frame and across frames. The first issue is addressed by using short atoms di

rectly at an attack, and the latter by incorporating shorter atoms in the neighborhood to
limit the spreading.

There are two distinct approaches by which expansion functions with a variety of

time supports can be admitted into the decomposition. In methods based on Alter banks,
subband filtering is followed bysinusoidal modeling of the channel signalswith long frames
for low-frequency bands and short frames for high-frequency bands. In time-segmentation

methods, the frame size is varied dynamically based on the signal characteristics; short
frames are used near transients and long frames are used for regions with stationary

behavior. These methods are discussed in Sections 3.3 and 3.4, respectively.

The multiresolution sinusoidal models to be considered incorporate the time-

frequency localization advantages of wavelet-based approaches while preserving the flex
ibility provided by the parametric nature of the sinusoidal model. Since multiresolution

and wavelets are intrinsically related, these .topics are examined in the next section as a

prerequisite to further discussion of multiresolution methods in sinusoidal modeling.

3.2 Multiresolution Signal Decompositions

The basic concept of multiresolution was discussed in Section 1.5.1. Here, the

issue is developed further; this development is based on the discrete wavelet transform,

which is inherently connected to the notion of multiresolution [2, 79].

3.2.1 Wavelets and Filter Banks

Wavelets and multiresolution are intrinsically related. For this chapter, wavelets

serve as a framework for considering multiresolution as well as the relationship between

atomic and filter bank models; an understanding of the wavelet transform will also be

useful for future considerations, particularly those of Chapter 5. The focus here will be on

the discrete wavelet transform (DWT) and not the related continuous wavelet transform
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(CWT); for a treatment of the CWT, the reader is referred to [2]. This treatment is not
intended as an exhaustive review of wavelet theory but rather as a discussion of wavelets
with a view to understanding multiresolution and related signal modeling issues. The
treatment is restricted primarily to conceptual matters here; various mathematical details
are provided in Appendix A.

Two-channel critically sampled perfect reconstruction filter banks

The discrete wavelet transform can be derived in terms of critically sampled

two-channel perfect reconstruction filter banks such as the one shown in Figure 3.3. The
condition for perfect reconstruction can be readily derived in termsofthe z-transforms of
the signals and filters; details of the derivation are given in Appendix A. The resulting
constraints on the filters can be summarized as:

Gi(z)Hi{z) + Gi(-z)Hi{-z) = 2S[i-3l (3.4)

In the next section, this condition leads to an interpretation of the filter bank in terms of
a biorthogonal basis.

Perfect reconstruction and biorthogonality

By manipulating the perfect reconstruction condition in (3.4), it can be shown
that a perfect reconstruction filter bank derives a signal expansion in a biorthogonal basis;
the basis is related to the impulse responses of the filter bank. This relationship is of
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particular interest in that it establishes a connection between the filter bank model and
the atomic model that underlie the discrete wavelet transform.

A full mathematical treatment of this issue b given in Appendix A; the result is
simply that the perfect reconstruction condition given in Equation (3.4) can be expressed
in the time domain as

{9i[k],hj[2n- k]) = (3-5)

or equivalently as

{hi[k],gj[2n-k]} = ^[n]<5[t-j]. (3.6)

The above expressions show that the impulse responses of the filters, with one of the
impulse responses time-reversed as indicated, constitute a pair of biorthogonaJ bases for
discrete-time signals (with finite energy), namely the space P(z); the time shift of 2n
in the time-reversed impulse response arises because of the subsampling of the channel
signals. Note that real filters have been implicitly assumed; for complex filters, the first
terms in the inner product expressions would be conjugated. Also note that the analysis
andsynthesis filter banks are mathematically interchangeable; thissymmetry is analogous
to the equivalence of left and right matrix inverses discussed in Section 1.4.1.

The result given above indicates that perfect reconstruction and biorthogonality
are equivalent conditions. In the next section, this insight is used to relate filter banks
and signal expansions.

Interpretation as a signal expansion in a biorthogonal basis

Since the impulse responses of a perfect reconstruction filter bank are related
to an underlying biorthogonal basis, it is reasonable to consider the time-domain signal
expansion carried out by the two-channel filter bank. Using the notation given in Figure
3.3, the output of the filter bankcan be expressed as follows; more detailsofthe derivation
are given in Appendix A:

x[n] = ioN + «i[w] (3-7)

= ^yolk]9o[n - 2k] H- ^yi[k]gi[n-2k] (3.8)
k k

= ^2 ko[2k —m]) go[n '-2k] + ki[2k —m]) gi[n —2k] (3.9)
k k

= ^^{x[m],hi[2k--m])gi[n-2k]. (3.10)
t=i k

Introducing the notation

= gi[n-2k] and ai^k = {x[m],hi[2k - m]), (3.11)
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the signal reconstruction can be clearly expressed as an atomic model:

The coefficients in the atomic decomposition are derived by the analysis filter bank, and

the expansion functions are time-shifts of the impulse responsesof the synthesis filter bank.
As noted earlier, the filter banks are interchangeable; the signal could also be written as

an atomic decomposition based on the impulse responses h,'[n]. In any case, the atoms in
the signal model correspond to the synthesis filter bank.

It has thus been shown that filter banks compute signal expansions. Indeed,

any critically sampled perfect reconstruction filter bank implements a signal expansion
in a biorthogonal basis, and any filter bank that implements a biorthogonal expansion
provides perfect reconstruction; biorthogonality and perfect reconstruction are equivalent
conditions [2]. At this point, however, the notion ofmultiresolution hasnotyetentered the
considerations; the atoms in the decomposition of Equation (3.12) do not have multireso
lution properties. In the next section, it is shown that multiresolution can be introduced
by iterating two-channel filter banks. Such iteration is fundamental to implementations
of wavelet packets and the discrete wavelet transform.

Tree-structured filter banks and wavelet packets

A wide class of signal transforms, known as wavelet packets, are based on the
observation that a perfect reconstruction filter bank with a tree structure can be derived
by iterating two-channel filter banks in the subbands. Examples of such tree-structured
filter banksare depicted in Figure 3.4.- For this treatment, it is important to note that the
filters Ho{z) and Hi(z) are generally a lowpass and a highpass, respectively, and likewise
for Go(z) and G\(z)\ this lowpass-highpass filtering in the constituent two-channel filter
banks leads to spectral decompositions such as those depicted in Figure 3.4 for the given
tree-structured filter banks. Frequency-domain interpretations ofaliasing cancellation and
signal reconstruction based on this lowpass-highpass structure are given in [2, 20].

Arbitrary tree-structured filter banks that achieve perfect reconstruction can be
constructed by iterating two-channel perfect reconstruction filter banks; indeed, the filter
trees can be made to adapt to model nonstationary input signals while still satisfying
the reconstruction constraint [60]. In this treatment, the primary issue of interest is the
manner in which iteration of two-channel subsampled filter banks leads to multiresolution.

The basic principle is that a two-channel filter bank splits its input spectrum into two
bands and the ensuing downsampling spreads each band such that the subband signals
are again full band (considered at the subsampled rate); this successive halving leads
to the spectral decompositions given in Figure 3.4 for the specific filter banks shown.
The spectral decompositions indicate multiresolution in frequency, which is inherently
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Figure 3.4: IVee-stmctiired filter banks that satisfy the perfect reconstruction con

dition can be constructed by iterating two-channel perfect reconstruction filter banks.

Sudi iteration is fundamental to the discrete wavelet transform as well as arbi

trary wavelet packet filter banks. These iterated filter banks provide multiresolution

analysis-synthesis as suggested by the indicated spectral decompositions. Note that

the discrete wavelet transform derives an octave-band decomposition of the signal.
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coupled to multiresolution in time by the principle that to increase frequency resolution,
it is necessary to decrease time resolution. The connection is immediate: the narrowest
spectral bands correspond to the deepest levels of iteration; each iteration involves a
convolution, which spreads out the time resolution of the overall branch, so the subbands
that are most localized in frequency are least localized in time.

The brief description of multiresolution in tree-structured filter banks suggests
why such methods might prove useful for processing arbitrary signals, especially ifthefilter
bank is made adaptive; application examples include compression [41, 60] and spectral
estimation [161]. Rather than focusing on such arbitrary tree-structured filter banks here,
however, additional developments of the multiresolution concept will be formulated for
the specific case of the discrete wavelet transform. As noted in Figure 3.4, the discrete
wavelet transform corresponds to successive iterations on the lowpass branch.

The discrete wavelet transform

The discrete wavelet transform is perhaps the most common example of a tree-
structured filter bank. It has been widely explored in the literature [2, 20]. Here, the
discussion is limited to general signal modeling issues.

The discrete wavelet transform is constructed by successive iterations on the
lowpass branch. Given that Ho(z) and Hi(z) are respectively a lowpass and a highpass
filter, the filtering operations can be readily interpreted. The first stage splits the signal
into a highpass and lowpass band, each ofwhich is spread to full band by thesubsequent
downsampling. Given this spreading that accompanies downsampling, the second stage
can be viewed as simply splitting the lowpass portion of the original signal into halves.
Each stage of the discrete wavelet transform thus splits the lowpass spectrum from the
previous stage; this results in an octave-band decomposition ofthe signal, which is depicted
in an ideal sense in 3.4.

As noted in the previous section, the deepest levels of iteration correspond to
narrow frequency bands that necessarily lack time resolution. This tradeoff is very nat
ural for octave-band decompositions. Low frequency signal components change slowly in
time, so time resolution is not important. On the other hand, high frequency compo
nents are characterized by rapid time variations; to track such variations from period to
period, for instance, time localization is important. This is exactly the time-frequency
tradeoff provided by the discrete wavelet transform. Since the auditory system exhibits
such frequency-dependent resolution, the wavelet approach has been considered for the
application of auditory modeling [162, 163, 164].

The time-frequency localization in a given subband depends on its depth in the
filter bank tree. A mathematical treatment of this is most easily carried out for a spe

cific example. Consider a wavelet filter bank tree of depth three. By interchanging filters
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Figure 3.5: A tree-structured wavelet filter bank with three stages of iteration can

be manipulated into this equivalent form.

and downsamplers in the analysis bank and interchanging filters and upsamplers in the

synthesis bank, a depth-three discrete wavelet transform filter bank based on the filters

Go{z)jGi{z)yHo{z)^ and Hi{z) can be recast into the form shown in Figure 3.5; here,
the deepest branches of the wavelet tree are now the filters with the most multiplicative

components and the highest downsampling factors. The frequency-domain multiplication

serves to narrow the frequency response and improve the frequency localization; the cor

responding time-domain convolution serves to broaden the impulse response and decrease

the time resolution. This spreading is shown in Figure 3.6 for a type of Daubechies wavelet

that will be used for all of the wavelet-based simulations in this thesis; the functions shown

are the impulse responses of the synthesis filters in Figure 3.5. Note that the subband sig

nals in the wavelet filter bank are at different sampling rates; appropriately, the narrowest

bands have the lowest sampling rate. Furthermore, it is important to keep in mind that

the synthesis filter bank is required for aliasing cancellation.

Atoms and filters

Earlier, the atomic model of the subband signals in a two-channel filter bank was

derived. A similar model can be arrived at for the discrete wavelet transform [2]. The

transform can thus be interpreted as a filter bank or as an atomic decomposition; there is

a similar duality here as in the interpretations of the STFT discussed in Section 2.2.1, and

the interpretations are connected by way of the tiling diagram. The two interpretations

are further linked by a notion of evolution in that a subband signal is derived as an

accumulation of atoms corresponding to the impulse responses of the synthesis filter in

that band. The evolution, however, is not signal-adaptive as in the sinusoidal model.
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3.2.2 Pyramids

Multiresolution decompositions can be derived using pyramid structures such as
the one in Figure 3.7. These were originally introduced for multiresolution image process
ing [165]; the relationship to wavelets was realized shortly thereafter. The decomposition
is again based on the idea of successive refinement; the signal is modeled as a sum of a
coarse version (the top of the pyramid) plus detail signals.

There are several interesting things to note about the pyramid approach. Most
importantly, perfect reconstruction is immediate; there are no elaborate constraints. This
ease of perfect reconstruction is related to the fact that the pyramid decomposition is not
critically sampled. Note that the coarse signal estimate derived at the highest level of the
pyramid is analogous to the outputof the lowest branch ofa wavelet filter bank tree, but
that the detail signals in the pyramid scheme are at higher rates than the corresponding
detail signals in a wavelet filter bank; the output signal at the lowest level of the pyramid
is itself full rate. For the pyramid in Figure 3.7, the representation is oversampled by a
factor of1+ I + I = J; for continued iterations, the oversampling factor asymptotically
approaches two. Along with simplifying perfect reconstruction, this oversampling results
in added robustness to quantization noise [2]. Note also that the synthesis filters are
included in the analysis; the result is an analysis-by-synthesis process that can be made to
resolve some of the difficulties in wavelet filter banks. For instance, a pyramid-structured

filter bank can be defined such that the subband signals are free of aliasing [166, 167].
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Figure 3.7: A pyramid structure for multiresolution filtering. This diagram depicts
the analysis filter bank of the pyramid approach, whichactually incorporates the syn
thesis process to ensure perfect reconstruction; synthesis is carried out by a structure

similar to the right side of the analysis pyramid.

In the depiction of Figure 3.7, the signal decomposition is based on successive
applications of the same filter pair This is just one specific example of a
pyramid approach, however. The pyramid structure can be generalized by applying arbi
trary signal models on the levels of the pyramid rather than filtering and downsampling;
for instance, in image coding it is common to apply nonlinear interpolation and decimation
operators in such pyramid filters [2].

3.3 Filter Bank Methods

Filter bank methods for multiresolution sinusoidal modeling involve modeling the

subband signals; a basic block diagram for this subband approach is given in Figure 3.8.

The signal is split into bands ofvaryingwidth, and eachsubband signal is the modeled with
a separate sinusoidal model with resolution commensurate to the bandwidth - for narrow

bands, long windows are used, and for wide bands, short windows are used. The filter
bank in Figure 3.8 is shown as a generalized blocksince it may take the form of a discrete
wavelet transform, an adaptive wavelet packet, a pyramid structure, or a nonsubsampled

filter bank. These are discussed in turn in the following sections. Noting the similarity of
this structure to that of Figure 2.6, these methods based on filter banks can be interpreted
in some sense as multiresolution phase vocoders.

Note that the methods to be discussed generally involve octave-band filtering,

which is perceptually reasonable since the auditory system exhibits roughly constant-Q
resolution [162]. Such octave-band filtering is useful with regards to the pre-echo problem.
As shown in Section 2.6, the pre-echo depends on the window length; by using smaller

windows for higher frequencies, the pre-echo becomes proportional to frequency in these
filter bank methods. This proportionality is psychoacoustically viable in that perception
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Figure 3.8: General structure of subband sinusoidal modeling. Alternatively, the
sinusoidal model can be designed to yield signals that are intended as inputs to a
synthesis filter bank, but this method has difficulties with aliasing cancellation.

ofpre-echo isseemingly dependent on frequency; for a given partial, the percept depends
not on the absolute length of the pre-echo but rather on how many periods of the partial
occur in the pre-echo [168]. With that principle in mind, it isclear that pre-echo distortion
can bealleviated by using long frames for low-frequency partials and shortframes for high-
frequency partiaJs.

3.3.1 Multirate Schemes: Wavelets and Pyramids

Multirate systems are effective for dividing signals into subbands with low com
plexity and, in the critically sampled case, without increasing the amount ofdata in the
representation. However, the analysis filtering process generally introduces aliasing, so
the synthesis must incorporate aliasing cancellation to achieve a reasonable signal recon
struction. This aliasing leads to difficulties in the wavelet case that can be resolved by
using a pyramid structure [168]; in Section 3.3.2, such issues arecircumvented by using a
nonsubsampled filter bank.

Wavelets

Sinusoidal modeling based on wavelet filter banks can be carried out in several
ways. One approach is to model the downsampled subband signals, carry out a sinusoidal
reconstruction of each subband at the downsampled rate, and use a waveletsynthesis filter
bank to construct the full-rate signal. The same frame length is used in each subband.
Then, because the lowpass band has the lowest sample rate, the lowpass frames have the
longest effective timesupport; similarly, the frames in the highpass band have the shortest
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time support. This modeling method thus results in a parametric signal representation
with the multiresolution properties of the discrete wavelet transform. As noted in [169],
however, this method hasdifficulties because the sinusoidal model does not provide perfect
reconstruction; aliasing cancellation is not guaranteed in the synthesis filter bank because
the subbands are modified in the modeling process. This difficulty can be circumvented
by reconstructing the output from the subband models without using the synthesis filter
bank; the full rate reconstruction is derived directly from the models of the downsampled
subbands [169]. In this method, it is necessary to explicitly account for aliasing in the
sinusoidal parameter estimation; aliasing cancellation is incorporated into the estimation
of the subband spectral peaks, but this typically accounts for only the aliasing between
adjacent bands [170]. This method has reportedly proven useful for speech coding and
time-scaling [169, 170]. An earlier hybrid algorithm involving wavelet-like filtering and
sinusoidal subband modeling was reported in [171] for the application of sourceseparation;
here, the filter bank is oversampled in order to reduce the aliasing limitations.

Wavelet packets

In the approaches discussed above, the subbands of a wavelet filter bank are
represented with the sinusoidal model to allow for modifications and processing. Such
techniques can be conceptually generalized to the case of adaptive wavelet packets, where
the tree-structured filter bank is varied in time according to the signal behavior; heuris-

tically, the adaptation can be interpreted as follows: during transient behavior, the filter
bank is characterized by short impulse responses to track the time-domain changes, and
during stationary behavior the impulse responses are lengthened to improve the frequency
resolution. Such wavelet packet vocoders have not been formally considered in the litera

ture.

Pyramid structures

Octave-band filtering without subband aliasing can be carried out using a pyra

mid structure [166]. As in the pyramidstructure of Figure 3.7, the subband representation
is oversampled by a factor of two (asymptotically); here, the overcomplete representation
provides an improvement over the critically sampled case in that the subbands are free
of aliasing. This filter bank has recently been proposed as a front end for multiresolution
sinusoidal modeling. The resulting algorithm has been shown to be effective for modeling
a wide range of audio signals [168].

3.3.2 Nonsubsampled Filter Banks

In multirate filter banks, perfect reconstruction is achieved through the process

of aliasing cancellation. In other words, there is inherently some degree of aliasing in
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the subband signals that is cancelled by the synthesis filter bank. This cancellation is a
very exacting process; if an approximate representation such as the sinusoidal model is
applied in the subbands prior to synthesis, aliasing cancellation in the reconstruction is
not guaranteed.

The methods discussed above use various approaches to overcome aliasing prob

lems. These issues never arise, however, if a nonsubsampled filter bank is used to split the
input signals into the requisite bands. Such filter banks satisfy the perfect reconstruction
constraint

= a:[n], (3.13)
9

meaning that there is no aliasing or distortion introduced in the subband signals. The
design ofnonsubsampled filter banks that meet this constraint isvery straightforward; the
design process is discussed explicitly in Section 4.3.1. A decomposition in terms of alias-
free subbands that meet the condition given in Equation (3.13) can indeed be arrived at
using a nonsubsampled wavelet filter bank; the design method in Section 4.3.1, however,
allows for more flexible spectraldecompositions than the octave-band model derived by a
wavelet filter bank.

In the multirate filter banks previously discussed, the subbands have different
sampling rates. Then, a window of some fixed length can be applied in the subbands;
with respect to the original sampling rate, the window in the lowpass band hasthe longest
time support and the window in the highpass band has the shortest time support. The
multiresolution in that case is provided by the multiplicity of sample rates. In the case
of a nonsubsampled filter bank, multiresolution is achieved by using windows ofdifferent
lengths in the subbands. This approach is depicted in a heuristic sense in Figure 3.9 for
the case of a nonsubsampled octave-band filter bank.

Nonsubsampled filter banks are subject to much looser design constraints than
multirate filter banks; this advantage arises because no aliasing cancellation is required.
However, nonsubsampled filter banks have a seeming disadvantage with respect to multi-
rate structures in that more computation is required to perform the filtering. Furthermore,
in the nonsubsampled filter banks designed according to the method of Section 4.3.1, all
of the filters in the filter bank are required to be of the same length; this supports the
contention that multirate structures are more appropriate for multiresolution analysis.
However, this is a somewhat inappropriate conclusion for the application at hand; as long
as the filter bank impulse responses are of shorter duration than the sinusoidal analysis
windows, the time resolution is limited by the subband sinusoidal models and not by the
filter bank. Again, note that in the multirate structures the same window and stride can
be used in each of the subbands; the multiresolution in those cases results from the fact
that the subbands have different sampling rates. In nonsubsampled filter banks, multires
olution is achieved by choosing different window sizes and strides in the various subbands.
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Figure 3.9: Multiresolution sinusoidal modeling with a nonsubsampled filter bank.

The filter bank in this simple depiction provides an octave-band decomposition; the

sinusoidal models have frame sizes scaled by powers of two according to the width of

the respective subband. As described in the text, it is straightforward to design filter

banks that derive other decompositions but it is not feasible to optimize the filter

bank and the sinusoidal models for modeling arbitrary signals.
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Figure 3.10: Multirate sinusoidal modeling using a nonsubsampled filter bank. The
origin2J signal in (a) is the onset of a saxophone note. Plot (b) is a sinusoidal recon
struction using a fixed frame size of 1024; plot (c) is the residual for that case. The
plot in (d) shows a reconstruction based on sinusoidal modeling of the subbands of
a nonsubsampled 7-band octave filter bank. Ran^g fixim the lowest to the highest
band, the subband sinusoidal models use synthesis frame sizes of 1024, 768, 512, 512,

256, 256, and 256. Plot (e) shows the residual for the filter bank case.
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For a multiresolution sinusoidal model based on a filter bank, optimal design is

prohibited by the large number of design parameters. The performance is influenced in
complicated ways by the choices of filter band edges and frequency response properties
as well as the parameters of the subband sinusoidal models (the number of partials, the
window sizes, and the analysis strides). While heuristic designs can lead to modeling
improvements as shown in Figure 3.10,a given design is not necessarily ideal for arbitrary
signals. In a sense, if the filters and subband models are fixed, the problem is again a lack
of sign^ adaptivity; the approach is rigid and can thus break down for somesignals. In
the next section, a signal-adaptive multiresolution framework based on time segmentation
is considered.

3.4 Adaptive Time Segmentation

This section considers algorithms for deriving signal models based on adaptive
time segmentation. The idea is to allow segments of variable size in a model so that
appropriate time-frequency localization tradeoffs can be applied in various regions of the
signal. Such a signal-adaptive segmentation can be arrived at by an exhaustive global
search, by a dynamic program, or by a heuristic approach. These three methods are
discussed in this section; the focus is placed on dynamic programs for segmentation, which

can arrive at optimal models with substantially less computation than a global search.

3.4.1 Dynamic Segmentation

Given an entire signal and arbitrary allowances for intensive off-line computation,

an optimal segmentation with respect to some modeling metric can be derived by a globally

exhaustive search. If the metric is additive and independent across segments, however, the

computational cost can be substantially reduced using a dynamic program. This approach

has been applied to wavelet packet and LPC models [41, 60, 134]; after a brief review of

dynamic programming and the relevant literature, dynamic segmentation for sinusoidal

modeling is considered.

Dynamic programming

Dynamic programming was first introduced for solving minimum path-length

problems [172]. The notion is that the computational cost of some classes of problems
can be reduced by solving the problems in sequential stages; redundant computation is

avoided by phrasing a global decision in terms of successive local decisions. This type

of approach has found widespread use for sequence detection in digital communication,

where it is referred to as the Viterbi algorithm [124]. Similar ideas play a role in hidden
Markov modeling, which is central to many speech recognition systems [173, 174].
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The dynamic programming method can be outlined as follows [175]:

• Consider the choice of a solution as a sequence of decisions.

• Incorporate a metric for the decisions such that the metric for the overall solution
is the sum of the metrics for the individual sequential decisions.

• Assuming that a subset of the necessary decisions has been made, determine which
decisions must be considered next and evaluate the metric for those decisions.

• Starting at the point where no decisions have been made, carry out a recursion to
determine the set of decisions that are optimal according to the additive metric.

This description is rather general since the dynamic programming approach is itselfquite
general. The issues at hand are further clarified in the following discussion of the appli
cation of dynamic programming to signal segmentation and modeling; also, the computa
tional efficiency afforded by dynamic programming will be quantified.

Notation and problem statement

A mathematical treatment of the segmentation problem requiresthe introduction
of some new notation; this is given here along with various assumptions about the signal
and the computation requirements for modeling. First, there is some smallest segment
size €for the signal segmentation. Segments of length €will be referred to as cells, and it
will be assumed that the signal is N cells long, i.e. the signal is of length Ne. For general
signal modeling, it is of interest to have a very flexible set of segment lengths to choose
from; the set, which will be denoted by A, is thus assumed to consist of consecutive integer
multiples of the cell size:

A = {€,2€,3€, ...,L€}. (3.14)

A particular element from such a set of segment lengths will be denoted by A.
Twospecific cases will beconsidered in the treatment ofcomputational cost. The

first case is L = N, which implies that the implementation has no memory restrictions; for
a signal of arbitrary length, the algorithm is capable of computing a model on a segment
covering the span ofthe entire signal. Thesecond case is L < N (and sometimes L « N),
which corresponds to the case of an implementation with finite memory. This restriction
on Z/ is somewhat analogous to the truncation depth commonly used to reduce the delay
in Viterbi sequence detection [124].

Using a diverse set of segment lengths allows for flexibility in signal modeling.
Additional signal adaptivity can be achieved by allowing for a choice of model for each
segment. One example of such a model choice is the filter order in an LPC application
[134]. In the sinusoidal modeling case to be discussed, there is not a multiplicity of
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candidate models for each segment. For this reason, model multiplicity is not considered
here. This omission is further justified in that if the evaluations of each model on a given

segment require the same amount of computation, allowing for a choice of model does not
affect the computation comparisons to be given.

The problem of signal modeling with adaptive segmentation is simply that of
choosing an appropriate set of disjoint segments that cover the signal. The segmentation
is chosen so as to optimize some metric; for proper operation of the dynamic program, it
is required that the metric be independent and additive on disjoint segments. Then, the
total metric for a segmentation a composed of segments A,* can be expressed as a sum of
the metrics on the constituent segments:

D{<t) = (3.15)
i

where i is a segment index and where the constituent disjoint segments of the segmentation
a satisfy

N = '£Xi (3.16)
t

for a signal of length Ne. Mean-squared error and rate-distortion metrics can be applied

in this framework [41, 60, 134].

Computational cost of global search

The globally optimum segmentation is simply the segmentation which minimizes
the metric D{<t). Obviously, this minimization can be arrived at by a globally exhaustive

search in which the metric is computed for every possible segmentation in turn. The brief

consideration here indicates that this exhaustive approach is computationally prohibitive

for long signals; this difficulty motivates formulating the metric computation as a dynamic

program.

In a globally exhaustive search, a model must be evaluated on each segment in

each possible segmentation. Assuming that the cost of model evaluation is independent

and additive on disjoint segments, a simple estimate of the computational cost of a global

search can be arrived at by counting the total number of segments in all of the possible

segmentations. This measure assumes that the cost of model evaluation on a segment is

independent of the segment length. This assumption is admittedly somewhat unrealistic;

for example, an PET of a segment of length Arequires on the order of Alog A multiplies.

The computational cost for other types of models are generally dependent on the segment

length as well, so this enumeration of segments is by no means a formal cost measure but
rather a basic feasibility indicator.

Given the discussion above, it is simply of interest to count the total number of

segments in all of the possible segmentations. For the case £ = AT, this enumeration can
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be derived by simple combinatorics. Noting that there are N —1 cell boundaries in the
interior of the signal and that each of these can be independently chosen as a segment
boundary in thesignal segmentation, there are2^"^ possible segmentations; furthermore,
the average number of segments in a segmentation is (iV + l)/2. The total number of
segments in all of the possible segmentations is ^ven by

C = [number of segmentations] [number of segments per segmentation], (3.17)

so the cost of global search for the case L = N \s

Cl^n = 2^-^(Af + l), (3.18)

which is governed by an exponential dependence on the signal length:

Cl^n oc 2^. (3.19)

In the truncated case L < iV, the segmentcount does not have a simple formulation as in
the unrestricted case. It can be shown, however, that the total number of segments is still
governed by an exponential dependence on thesignal length.^ In either ofthese cases, the
exponential dependence on the signal length prohibits model evaluation via exhaustive
computation.

The next section describes a dynamic program that can derive the same optimal
segmentation as an exhaustive search, but with a cost that is governed by a quadratic
dependence on the signal length for the case L = N and a linear dependence for L« N.
As will be seen, this cost reduction is achieved by removing redundant computation; the
simple insight in dynamic programming is that though some segment Ais a component of
manydistinct segmentations, it is not necessary to calculate D(A) foreachsuch occurrence.
A dynamic program provides a computational framework in which D{X) is only evaluated
once and hence the cost of evaluating a model on Ais incurred only once.

Reduction of computational cost via dynamic programming

The first step in a dynamic approach to signal segmentation is to consider the
time span of the signal as a concatenation of cells. The boundaries between cells will
be referred to as markers; because of the integer-multiple construction of the allowable
segment lengths, the boundaries in any valid segmentation will align with some of these
markers, so they can eflFectively be used as indices. In the dynamic program, each marker
is treated as a possible segment boundary for the signal segmentation.

^In the case L < N, the number of possible segmentations is given by the N-th term of an L-th
order Fibonacci series; this N-th term has an exponential dependence on N. Following the framework of
Equation (3.17), the total number of segments in all of the possible segmentations is then given roughly
by the product of this exponential term and the signal length.
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Without lossof generality, the algorithm will be explained in terms of the exam
ples shown in Figures 3.11 and 3.12, which correspond to the cases L = N and L < iV, re
spectively. In the figures. Dab represents the distortion metricassociated with the segment
of length (6 —a)€ between markers a and 6. Furthernotation required for the explanation
is as follows. At any marker a, the dynamic algorithm has determined the segmentation
that leads to the minimum distortion up to that marker. This partial segmentationwill be
denoted by Ca and the corresponding distortion will be denotedby D(o"o)i tills distortion is
the minimum modeling metricachievable for segmenting the signal up to the a-th marker.
The term Ao will be used to denote the length of the last segment in the segmentation Co

that achieves the minimum metric JD(<To); the algorithm keeps track of this value at each
marker so that the optimal segmentation can be recovered by backtracking after the end
of the signal is reached.

Using the notation established above, the steps of the algorithm in the case
L = N are as follows; this corresponds to the illustration in Figure 3.11:

• Evaluate Dqi, the modeling metric for the cell between markers 0 and 1, and store
the result as D{<ri).

• Evaluate D12 and D02.

• Find D{cr2) = min{J9o2, ^(o"i) + Dn}- This minimum indicates the best segmenta
tion (72 between markers 0 and 2.

• Store D(a2) and A2, the length of the last segment in (72.

• Evaluate Z?23) -Dia, and D03.

• Find D((73) = mm{Do3^Di3-\-D(<Ti),D23-h D{(T2)}. This minimum indicates the
best segmentation <73 between markers 0 and 3.

• Store D{cr3) and A3.

• Evaluate D34, 024^ I^i4, and D04.

• Find £>((74) = min{£>04» A4 + D{(Ti), D24 + D{(T2)i D34 + £>(<^3)}-

• Store jD((74) and A4.

• Continue in this manner until the end of the signal is reached; note that each succes
sive marker introduces a larger number of new candidate segments for consideration.

The minimum D(<tn) calculated at the last marker is the globally optimal metric;
as mentioned earlier, the optimal segmentation (tn can be found by backtracking

through the recorded segment lengths.
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The last item in the above description suggests a noteworthy point. To determine the

segmentation that yields the minimum metric, it is necessary to store the appropriate

segment length at each marker. The minimum metric itself, however, can be computed

without storing path information.

The computational cc»t of the algorithm described above, namely an enumeration

of the number of segments on which models are evaluated, can be easily determined by
considering Figure 3.11. The number of candidate segments that must be evaluated at
each marker is equal to the value of the marker index, so the cost is simply

Cl—N — l + 2-f3 + ... + iV (3.20)

= 1{N^ +N), (3.21)
where the bar is included in the notation C to specify that the cost corresponds to a
dynamic algorithm. Noting the dominant term in the above expression, the cost of a
dynamic segmentation algorithm with L = N can be summarized as:

Cl^n oc (3.22)

This quadratic dependence on the signal length is a considerable improvement over the
exponential dependence of an exhaustive global search.

For the case L < N, depicted in Figure 3.12, the steps in the algorithm are the
same as above, with the exception of the later stages where the bounded segment length
comes into effect:

• Evaluate JDoi and store the result as D{ai).

• Evaluate D12 and Dq2'

• Find D(o"2) = min{Do2» ^(<^1)

• Store D(a2) and A2.

• Evaluate D23, D13, and Dqs-

• Find D{a3) = mm{Do3,Di3 + D(ai)^D23-\-D(<T2)}'

• Store D(<T3) and A3.

• Evaluate 1)34, £>241 ^14-

• Find D((T4) = min{£)i4 + D(o"i), JD24 + ^(<^2)1 D34 + £>((73)}.

• Store D{a4) and A4.
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Figure 3.11: A depiction of a dynamic algorithm for signal segmentation for the

case L = N, where the segment lengths are not restricted. As derived in the text,

the computational cost of the algorithm grows quadratically with the length of the

signal in this case.
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• Continue in this manner until the end of the signal is reached; note that after marker

L, each additional marker introduces a fixed number of candidate segments, namely

L. The minimum D{aN) calculated at the last marker is the globally optimal metric
for this case; the optimal segmentation ajq can be found by backtracking through

the recorded segment lengths.

The computational c<%t of the truncated approach can be readily derived by considering
Figure 3.12, which indicates that the algorithm has a repetitivestructure after the startup.
The number of segments on which models are evaluated is given by

Cl<n = 1+ 2-1-...+ L —l+(iV —I/ + \)L (3.23)
startup

= NL - i(i'-i). (3.24)

The cost of a dynamic segmentation algorithm with L < N can thus be summarized as

Cl<n oc N, (3.25)

where the omission of the terms involving L is particularly valid for cases where L «
Ny i.e. processing of arbitrarily long signals. For instance, in high-quality modeling of
music it is necessary to have L « N due to computational and memory limitations.
Furthermore, it is sensible to restrictthe segment lengths given that music is nonstationary
in a global sense; it isunreasonable to assume that a one-segment model could describe an
entire signal, so thecandidate segment lengths can be justifiably bounded by some finite
duration for which there is a possibility of local stationarity. In such cases, the cost grows
linearly with the length ofthe signal,-which is an improvement over both the global case
of Equation (3.19) as well as the dynamic approax:h with unrestricted segment lengths
described in Equation (3.22).

Applications of dynamic segmentation are discussed in the following; adaptive
wavelet packets, linear predictive coding, and sinusoidal modeling can all be carried out
in this framework. One caveat to note, however, is that in some of these methods it is
necessary to use overlapping segments to ensure signal continuity at the synthesis frame
boundaries. In such cases, the algorithm is not guaranteed to find the globally optimal
segmentation; in practice, however, the effect is negligible, so the dynamic segmentations
can be justifiably referred to as optimal [41]. A further issue to note is that the dynamic
segmentation method, as described, considers the entire signal before a final decision is
made regarding the segmentation; in this form, it is only suitable for off-line computation.
In applications such as voice coding for telephony, it is of more interest to process the
signal in blocks that can be transmitted sequentially. Dynamic segmentation can be
applied in such scenarios by monitoring the candidate segmentation. The segmentations
in signal regions that aredistant in time are generally independent; without significantly
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Figure 3.12: A depiction of a dyn2miic algorithm for signal segmentation for the
case L < N, where the segment lengths are restricted. Note the regiilarity of the

recursion after the startup; the cost of this algorithm grows linearly with the length
of the signal.
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sacrificing the optimality, then, the algorithm can be periodically terminated to derive

blocks for coding [134].

Adaptive wavelet packets

Early applications of dynamic programming to signal modeling involved models

based on wavelet packets. In [41], the best wavelet packet in a rate-distortion sense is
chosen for the model for each segment; in [60], dynamic segmentation is added to allow
for localization of transients. A similar technique was considered in [176].

Arbitrary models

In addition to the wavelet packet algorithms described, dynamic segmentation
and model selection has been applied to image compression [177] and linear predictive
coding [134]. As long as the optimality metric is independent and additive across disjoint
frames, the dynamic program can be used to efficiently find the optimal segmentation
and model selections. In cases where discontinuities across frame boundaries may be
objectionable, the candidate models tend to have dependencies on adjacent frames; for
instance, in the image processing application, where discontinuities result in blockiness,
thecandidate models arelapped orthogonal transforms which reduce the blocking artifacts
incurred in the quantization [59, 177]. Because of the overlap, as mentioned before, the
dynamic algorithm is not guaranteed to find the globally optimal model, but in practice
the effect ofthe dependency is negligible. In the sinusoidal model application, as discussed
below, the dynamic algorithm is again possibly suboptimal but this suboptimality turns
out to be largely irrelevant.

Sinusoidal modeling

As seen in Section 2.6, a sinusoidal model with a fixed frame size results in delo-
calization of time-domain transients if the frames are too long. This delocalization can be
interpreted in terms ofthe synthesis: thesignal is reconstructed in each synthesis frame as
a sum oflinear-amplitude, cubic-phase sinusoids, each ofwhich hasthesame timesupport,
namely the synthesis frame size; this fixed time support results in a smearing ofsignal
features across the frame. In addition to this delocalization within each frame, features
are spread across neighboring frames by the line tracking and parameter interpolation
operations. One consequence of this is the pre-echo distortion discussed in Section 2.6;
the example from Figure 2.21 is repeated here in Figure 3.14 for the sake of comparison
with the improved models to be considered.

Time-domain delocalization, e.g. pre-echo distortion, results from the use of
frames that are too long. If the frames are too short, a similar delocalization occurs
in the frequency domain; frequency resolution is limited for short frames. For modeling
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arbitrary signals, then, it is of interest totrade off time and frequency resolution by select
ing appropriate frame sizes, i.e. by deriving a dynamic segmentation of the signal based
on an accuracy metric. Thus, in this application the metric D(X) is chosen to be the
mean-squared error ofthe reconstruction over the segment A; rate considerations can be
easily incorporated by scaling the metric so as to favor longer frames, but this will not be
dealt with here. In the implementation, the same number of partials is used in models of
short frames and long frames to simplify theline tracking; because ofthis constant model
order, using long frames improves thecoding eflSciency. In thesimulations, the reduction
of pre-echo is used as a visual indication of the modeling improvement. It will be clear
that the algorithm chooses short frames to localize attacks, but it should also be noted
that the method tends to choose longer frames when the signal exhibits stationary behav
ior, i.e. periodicity, since frequency resolution is increased in longer frames; this improved
frequency resolution leads to more accurate modeling in periodic regions.

It was mentioned earlier that the dynamic algorithm is not guaranteed to find

the optimal segmentation if the models in adjacent frames are dependent, but that such
dependence is indeed required in some cases to prevent discontinuities in the synthesis.
This scenario applies in the case of sinusoidal modeling. In the static case, the synthesis

frames are demarcated by the centers of the analysis frames. There is thus an intrinsic

overlap in the modeling process as depicted in Figure 3.13. This same overlap appears

in the case of dynamic segmentation; as a result, the segmentation is not guaranteed to

be optimal. The deviation from optimality, however, is basically negligible; the algorithm

still carries out the intended task of finding appropriate tradeoffs in time and frequency

resolution for modeling arbitrary signals. Figure 3.13 also indicates a noteworthy im

plementation issue, namely that a given segmentation requires a specific set of analysis

windows to cover the signal. Each candidate segmentation thus has its own set of sinu

soidal analysis results. These various analyses can be managed efficiently in the dynamic

algorithm. Finally, it should be noted that the analysis windows, as depicted in Figure

3.13, need not satisfy the overlap-add condition. This design flexibility results from the

incorporation of a parametric representation and applies to the general fixed-resolution

sinusoidal model as well.

Fundamentally, the advantage of dynamic segmentation in the sinusoidal model is

that the time support of the constituent linear-amplitude cubic-phase sinusoidal functions

is adapted such that localized signal features are accurately represented. An example

of the pre-echo reduction in such a multiresolution model is given in Figure 3.14. The

dynamic algorithm chooses short frames near the attack to reduce delocalization, and
long frames where the signal does not exhibit transient behavior.
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Figure 3.13: Analysis and synthesis frames in fixed-resolution and multiresolution
BiniigftiHAl models. This plot is included to indicate the overlap of the analysis firames.

In the dynamic segmentation algorithm, this overlap imdermines the required inde
pendence of the segment metrics; as a result, the synthesis segmentation derived by
a dynamic program is not guaranteed to be globally optimal. This suboptimality is
generally inconsequential, however.
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3.4.2 Heuristic Segmentation

It is common in the development of signal processing algorithms to first investi
gate optimal or nearly optimal algorithms and then compare the results with lower cc^t
methods based on less stringent metrics. In the framework of signal segmentation, this is
tantamount to considering simple forward segmentation based on the immediate model
ing error rather than focusing on global optimality. While the global segmentation is an
analysis-by-synthesis approach that involves the entire signal, the forward segmentation
is an analysis-by-synthesis that simply chooses among the candidate segments at each
marker.

A simple algorithm for forward segmentation

In the sinusoidal model, a heuristic segmentation approach can achieve similar
results as the dynamic algorithm for the example ofFigure 3.14. Thesimple algorithm is
as follows, where the signal segmentation is again described in terms of markers:

• At marker a, evaluate the weighted metric , forb € {o+l? fl4*2, fl+3,. ..,0+1/},
0 CL

where the set corresponds to the candidate segment lengths.

• Find the marker bwhich minimizes the weighted metric and advance to that marker.

• Set a new starting point at o = 6 and repeat the preceding steps.

Note that in this algorithm the segmentation decisions are made based on local minimiza
tion of the distortion metric; since local minima are pursued greedily, global optimality
of the metric is not guaranteed. Of course, many variations of forward segmentation can
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Figure 3.14: Comparison of residnak for a fixed-frame sinusoidal model and an

eulaptive multiresolution model based on dynamic segmentation. The original signal

(a) is a saxophone note. Plot (b) is a reconstruction based on a fixed frame size of
1024 and (c) is the residual for that case; the dotted lines indicate the synthesis frame

boundaries. Plot (d) is a reconstruction using dynamic segmentation with frame sizes

512, 1024, 1536, and 2048; the segmentation arrived at by the dynamic algorithm is

indicated by the dotted lines in the plot of the residual (e). In the dynamic model,
the attack is well-localized and does not contribute extensively to the residual (e).
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be formulated; for instance, by incorporating some dependence on neighboring results, a

more global solution can be targeted. Such variations will not be considered, however;

the intent is merely to draw a comparison between dynamic and heuristic segmentation

methods.

Figure 3.15shows an application of forward segmentation to a saxophone attack;
for this example, the forward method achieves a similar model as the dynamic algorithm,
but such comparable performance is not guaranteed for all signals. As will be shown in
the next section, the forward segmentation requires less computation than the dynamic
approach. In real-time (or limited-time) applications, then, the reduced cost of a forward
segmentation method may merit thisaccompanying decrease in modeling accuracy. Onthe
other hand, in off-line applications such as compression of images or audiofor databases,
it is more appropriate to use an optimal dynamic algorithm.

Cost of forward segmentation

In the heuristic segmentation algorithm described above, the number of markers
visited depends on the signal; ifa long frame ischosen, the algorithm advances to the end
of the frame and skips over the markers in between. Thus, the computation required in
the algorithm is signal-dependent. To quantify the computational cost, then, the worst
case scenario is considered; the case in which every marker is visited provides an upper
bound for the cost. For L = iV, the number ofsegments considered at successive markers
decreases as the algorithm advances toward the end ofthe signal; for the worst case, the
cost is given by

Cl=n = A^+(iV-l) + (iV-2) + ...-h2-Hl (3.26)

= + (3.27)

Cl=n oc (3.28)

where the tilde is included in the notation C to specify that the cost corresponds to a
forward algorithm. Forthe case L< N, the worst case cost is given by

= L L L L —l-j-L —2-t-...-l-24']^ (3.29)
end of signal

= NL-Ul^- L) (3.30)
Cl<n oc N. (3.31)

The costs here are identical to those evaluated for the dynamic algorithm; compare Elqua-

tions (3.27) and (3.30) with Equations (3.21) and (3.24). In either case, the total number
ofsegments considered in the worst case forward segmentation is the same as the number
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Figure 3.15: Comparison of residuals for a fixed-frame sinusoidal model and an

adaptive multiresolution model based on forward segmentation. The original signal

(a) is a saxophone note. Plot (b) is a reconstruction based on a fixed frsune size of

1024 and (c) is the residual for that case; the dotted lines indicate the synthesis frame

boundaries. Plot (d) is a reconstruction using forward segmentation with frame sizes

512, 1024, 1536, and 2048; the segmentation arrived at is indicated by the dotted

lines in the plot of the residual (e). In the forward adaptive model, the attack is

well-localized and does not contribute extensively to the residual.
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Figure 3.16: Multiresolution frequency-domain synthesis with dynamic segmenta

tion involves symmetricmotifwindows and asymmetricinterpolationand overlap-add
windows.

considered in the dynamic algorithm. For the truncated case, a more optimistic formula
tionof the computation required in the forward approach can bearrived at byan averaging
argument. Assuming that thesegment lengths are all equally reasonable for modeling, and
that the expected length ofany ^ven segment chosen by the algorithm is thus {L -h l)/2,
the forward algorithm is expected to visit only 2N/{L + 1) markers. Thecost estimate is
then

(3.32)

=^ . Cl<n oc at, (3.33)

which has the same dependence on the signal length as the upper bound in Equation
(3.31); noting the dependence on L indicated in the formulation, however, it is clear that
the average cost is roughly a factor of £f/2 less than the worst case upper bound.

3.4.3 Overlap-Add Synthesis with Time-Varying Windows

The preceding discussion of dynamic segmentation in the sinusoidal model has
focused on time-domain synthesis. For the sake of completeness, it is noted here that
dynamic segmentation can also be applied in the frequency-domain synthesis approach
discussed in Section 2.5. The fundamentals of such an approach are discussed below, and
connections to current techniques in audio coding are described.

In the synthesizer described in Section 2.5, the signal is modeled in the frequency
domain as a series of short-time spectra, from which the signal is reconstructed using an
IFFT and overlap-add. Each of these short-time spectra is a sum of spectral motifs
corresponding to short-time partials. The motif is basically the transform ofsome window
function 6[7i], so the IFFT results in a sum ofsinusoids windowed by b[n]. The overlap-
add is then carried out with the hybrid window t[n]/b[n] where t[n] is a triangular window
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which satisfies the overlap-add property. As described in Sections 2.5.1 and 2.5.2, this
triangular OLA carries out reasonable interpolation of the sinusoidal parameters if phase
matching is employed.

In a multiresolution implementation, it is necessary to incorporate motifs of
various time resolution; for longer segment sizes, the short-time spectrum has more bins
and the IFFT is larger. Recalling the discussion of Section 2.5, it is computationally
important to use a symmetric motifwindow 6[n] and likewise a symmetric spectral motif.
Adhering to this symmetry in a multiresolution setting results in asymmetric overlap-add
windows; indeed, the interesting adjustment of the algorithm involves the overlap-add
window and the effective interpolating window t[7i]. Because of the variable segment sizes,
to do the appropriate OLA interpolation it is necessary to use asymmetric triangular
functions at transitions between different segment sizes. This approach is best described

pictorially; Figure 3.16 shows a signal segmentation and the corresponding motif and
interpolation windows. Note that the asymmetric transition windows are conceptually

similar to the start and stop windows used in modern audio coding standards [7, 8]; in
those methods, however, such asymmetric windows are used in conjunction with a filter

bank analysis-synthesis and not with a parametric approach as in this consideration.

3.5 Conclusion

In modeling nonstationary signals, it is generally useful to carry out analysis-

synthesis in a multiresolution framework; appropriate time-frequency resolution tradeoffs
can be adaptively incorporated to achieve accurate compact models. In this chapter, the

notion of multiresolution was introduced in terms of the discrete wavelet transform and

further explored in the context of the sinusoidal model. Two methods of multiresolu

tion sinusoidal modeling were discussed, namely filter bank techniques and adaptive time

segmentation. A dynamic programming for signal segmentation was developed; related

computation issues were considered at length. Various simulations in the chapter showed

that multiresolution modeling improves the localization of transients in the sinusoidal

reconstruction; this improvement was indicated by a mitigation of pre-echo distortion.
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Chapter 4

ResidusJ Modeling

he sinusoidal model, while providing a useful parametric representation for
signal coding and modification, does not provide either perfect or perceptually lossless
reconstruction for most natural signals. Thus, it is necessary to separately model the
analysis-synthesis residual if high-quality synthesis is desired; this requirement was the
motivation for the deterministic-plus-stochastic decomposition proposed in [36,100]. This
chapter discusses a parametric approach for perceptually modeling the noiselike residual
for both time-domain and frequency-domain synthesis. Earlier versions ofthis work have
been presented in the literature [110, 178].

4.1 Mixed Models

Mixed models have been applied in many signal processing algorithms. For
instance, in linear predictive coding (LPC) ofspeech, the speech signal is typically classified
asvoiced or unvoiced to determine the synthesis model; in the voiced case, thesynthesis
filter is driven by a periodic impulse train whereas in the unvoiced case, the filter is
driven by white noise. The model thus adapts to a nonstationary signal by choosing the
appropriate excitation. In some variations of the algorithm, a mixed excitation is used
to account for concurrent voiced and unvoiced signal behavior; using a mixture enables
modeling of a wider variety of signals than with a switched excitation [25, 179]. The
voiced-unvoiced model, especially in the case of a mixed excitation, is similar to the
deterministic-plus-stochastic sinusoidal model decomposition proposed in [36, 100] and
explored further in [97, 110, 178, 109, 180]. The components in these latter models are
concurrent in time; the models are thus capable of representing a wide variety ofsignals.

In Section 2.1.2, where the deterministic-plus-stochastic decomposition was first
described, it was noted that in the framework of analysis-synthesis it is natural torephrase
the decomposition in terms of asignal reconstruction and a residu^. The reconstruction is
based on the signal model, in this case the sinusoidal model; the residual is the difference
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Figure 4.1: Analysis-synthesis and residual modeling.

between the original and the reconstruction. When the analysis-synthesis model does not

capture all of the perceptually important features of a signal, it is necessary to separately

model the residual and incorporate it into the reconstruction to achieve perceptual lossless-

ness; this scenario, which applies in the case of sinusoidal modeling, is depicted in Figure

4.1. Such modeling of residuals is used in many audio applications as well as in other

signal processing algorithms, for instance motion-compensated video coding [181]. These

approaches are effective because the residuals tend to be "noiselike^' - in some cases such

as LPC, the signal model is indeed designed with the very intent of leaving a white noise

residual. In modeling such noiselike residuals, it is important to account for perceptual

phenomena. As discussed in Section 1.2.2, white noise processes are basically incompress

ible if perfect reconstruction is desired. On the other hand, compact models of noiselike

residuals can readily achieve perceptual losslessness by incorporating simple principles of

perception. Furthermore, it should be noted that the condition of transparency can be

relaxed somewhat for the residual synthesis given the perceptual masking principles that

come into effect when the modeled residual is recombined with the primary signal. The

fundamental goal is for the recombination to be perceptually equivalent to the original

signal, and not for the synthesized residual to be a transparent version of the original

residual.

In music applications, the sinusoidal model captures the basic musical signal

features such as the pitch and the spectral structure. The residual contains features that

are not well-represented by the slowly-evolving sinusoids of the sum-of-partials model; as

discussed in Sections 2.1.2 and 2.6, these correspond to musically important processes

such as the breath noise of a flute or saxophone or the attacks of a piano or marimba.

Multiresolution sinusoidal approaches were proposed in Chapter 3 to model the attacks,

so the residual model of this chapter is designed to handle the remaining features, namely
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broadband stochastic processes such as breath noise. It is necessary to incorporate these
processes into the reconstruction to achieve realistic or natural-sounding synthesis.

In [36, 100], the residual is modeled using a piecewise-linear spectral estimate;
a random phase is applied to this spectrum, and an inverse discrete Fourier transform
(IDFT) followed by overlap-add (OLA) is used for synthesis. In the approach to be
discussed in this chapter, the model is similarly spectral in nature, but is more directly
based on perceptual considerations. The residual is analyzed by a filter bank motivated
by auditory perception of broadband noise; a parameterization provided by the short-
time energy of the filter bank subbands yields a perceptually accurate reconstruction of
the noiselike residual. Furthermore, the model parameters allow for modifications of the
residual; this capability is useful in that if the sinusoidal signal components are modified,
the residual should undergo a corresponding transformation prior to synthesis [142].

In [109,180] themodels are more elaborate than theone presented in this chapter
inthat they have specific extensions to model attackartifacts present inthe residual, which
were discussed in Section 2.6. The approach taken here is to use multiresolution sinusoidal
modeling to minimize such artifacts so that they do not appear in the residual and thus
do not have to be accounted for in the residual model. A similar approach is taken in the

algorithm in [101], which estimates the time-domain envelope of the signal and applies
it to the sinusoidal model to enhance the modeling of transients. This method involves
incorporating another set of parameters to describe the time-domain envelope, however,
so the multiresolution model has an advantage in that its representation is more uniform.

Figure 4.2 gives a comparison ofthe residuals for a basic sinusoidal model and
multiresolution model based on dynamic time segmentation; more comparisons of this
nature were given in Chapter 3. Clearly, the attack artifacts are not as pronounced in
the residuals of the multiresolution model. Because of its improved ability to represent

the signal transients, the residual energy in the dynamic model is lower; as discussed in
Section 3.4, the multiresolution model is adapted to minimize this energy given various
constraints such as the number of sinusoids in the model; the notion of minimizing the

residual energy is also incorporated in the analysis-by-synthesis algorithm discussed in
[101] and in global parameter optimization methods [107]. Also, in the methods to be
discussed in later chapters, minimization of the residual energy is again the criterion by
which the signal model is adapted.

4.2 Model of Noise Perception

Noting the example ofFigure 4.2 andthe results given in Chapter 3, it is assumed
hereafter that attack transients have been well-modeled in a multiresolution framework.

The residual thus consists of broadband noise processes. A perceptually viable model
for the residual should therefore rely on a model of how the auditory system perceives
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Figure 4.2: Comparison of residuals for fixed and multiresolution sinusoidal models.

The original signal (a) is a saxophone note. Plot (b) is a reconstruction based on a
fixedframesizeof1024and (c) is the residual for that case. Plot (d) is a reconstruction
using dynamic segmentation with frame rizes 512 and 1024; in this case, the attadc
is well-modeled and does not appear as extensively in the residual (e).
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broadband noise. This section discusses a simple filter bank model of the auditory system

that leads to a perceptually lossless representation of the residual.

4.2.1 Auditory Models

Auditory models commonly include a set of overlapping bandpass filters whose

bandwidths increase roughly in proportion to their center frequencies. Such filter bank

models, which were first introduced in conjunction with the classical theory of resonance

[182], are well justified by experimental work ranging from early masking tests for tele
phony applications [183, 184] to recent investigations in perceptual audio coding, where
auditory models are incorporated to achieve transparent compression [8, 7, 9, 10, 11]
These auditory filter banks can be characterized in terms of the classical critical band-
widths, which were derived in experiments on noise masking and perception of complex
sounds; these are generally considered to be the bandwidths of the auditory filters at
certain center frequencies [185]. Early estimates of the critical bandwidth as a function
of center frequency indicate a roughly constant value below 500 Hz and a linear increase
for higher frequencies, resulting in the common interpretation of the auditory system as
a constant-Q filter bank. More recent experiments suggest that the low-frequency critical
bandwidths are quadraticaJly related to the center frequency [186]. Expressions for the
equivalent rectangular bandwidths of the auditory filters differ somewhat from the band
width formulations in classical critical band theory; the difference is depicted in Figure

4.3. Of course, these results are based on aggregate measurements over large groups of
subjects, so the exact relation does not necessarily apply to any given individual. Fur
thermore, for this application of residual modeling it is unnecessary to incorporate formal
exactitudes about the auditory filter responses because the perception of broadband noise
is an inherently coarse phenomenon. The purpose of the previous discussion, then, is only
to support the notion offilter bank auditory models and to establish the terminology; for
the remainder, an equivalent rectangular band will be referred to as an ERB.

4.2.2 Filter Bank Formulation

A simple model of noise perception can be arrived at by dividing the spectrum
into a set of bands based on the ERB formulation. Given this division into bands, the basic

model is that in perceiving a broadband noise, the auditory system is primarily sensitive
to the total short-time energy in each of the bands, and not to the specific distribution
of energy within any single band. In other words, the ear is insensitive to specific local
time or frequency behavior of broadband noise. Analysis ofa broadband noise s[n], which
corresponds to r[n] in the residual modeling framework ofFigure4.1,is then carriedout by
first applying s[n] to an ERB filter bank {/ii[n], haW? •••»l-oderive the ERBsignals
{si[n], 52[n],...,5ii[7i]} as shown in Figure 4.4. These signals are then parameterized on a
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Figure 4.3: Bandwidth vs. center frequency for critical bands (dashed) and equiva
lent rectangular bands or ERBs (solid).

frame-rate basis in terms of their energies; for the t-th frame, the energy of the r-th ERB
signal is given by

AT-l

Er{i) = 5^ Sr[n + iLf, (4.1)
n=0

where N is the frame size and L is the analysis stride. Synthesis according to this model

is achieved by filtering white noise 0[n] through the ERB filter bank with a time-varying
gain Cr(t) on each channel; this structure is shown in figure 4.5.

The time-varying gains in the synthesis filter bank shape the short-time spectrum

of the filter bank output 5[n] so that it matches the short-time spectrum of s[n] in the
sense that their ERB energies are equivalent. The appropriate gain can be derived using

a simple constraint on the expected value of the synthesis energy:

E{Er{l)} = Er{t). (4.2)

Note that this filter bank model relies on the aggregation of filters only inasmuch as they

span the signal spectrum; the interaction between filters is not important. The model

is simply that the subband ERB signal Sr[n] is perceptually equivalent to the subband

reconstruction Sr[n] if their short-time energies meet the above constraint; then, if the

filter bank is designed such that s[n] = perceptual losslessness holds for the

entire filter bank model.

The appropriate gains can be derived by expanding the constrdnt of Equation

(4.2). The expected value of the synthesis energy of the r-th band in the i-th frame is
given by

E{B,(i)} =E|£(Cr(f)sr[n+«X])'|, (4.3)
where

Sr[n] = hr[n] * ^[n] (4.4)
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Figure 4.4: Analysis filter bank for perceptually modeling broadband noise. The
residual is pstrsuneterized in terms of the short-time energies £^r(t) in a set ofequiva
lent rectangular bands (ERBs).
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is the output ofthe r-th synthesis filter before the gain Cr(«) is applied. Substituting this
convolution into Equation (4.3) yields the following expression; the index iL is dropped
without loss of generality:

AT-l

[m]/irWE{^[n - m]i)[n - /]}.
n=0 m I

(4.5)

(4.6)

Denoting the variance of the white noise ti'M ss the expected value in the sum can be
replaced by a^S[m —/]. Summing over I, the expression simplifies to:

£{£1.(0} = <v(t)Wj;hrH'-
m

(4.7)

Note that the fiiters have been assumed reai so that the subband signals are real and
thus immediately perceptually meaningful. Incorporating the constraint ofE<{uation (4.2)
provides a formuia for the gain in termsof the ERB energy parameter:

Cr(i)
I gr(i)

- \lNaij:^hr[mf
(4.8)

Equation (4.8) can be interpreted in two ways. First, the appropriate gain Cr(i)
can be derived in the frequency domain as a ratio between the ERB energy in band r
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Figure 4.5: Synthesis filter bank for perceptually modeling broadband noise. The

time-varying gains Cr(t) given by Equation (4.8) shape the short-time spectrum of
s[n] to match that of s[n] in Figure 4.4.

measured by the analysis and the energy at the output of the r-th synthesis filter:

Er(x) =C.(.r E|ff4fc]|̂ E{|®[fc]|̂ }^
= ''"(O' fi E l^rWI'E (E E (4.10)

k=0 ln=:0m=0 )/

= c,(i)i E i'E E «[» -
k=0 n=0 ms=0 /

= C.(i)Vivl
k=Q

= Cr(i)^<T'̂ N'̂ hr[mf,

(4.9)

(4.11)

(4.12)

(4.13)

which can be manipulated to give Equation (4.8). The second interpretation is based on
equalizing the short-time variances of the subband signal 5r[^] a-nd its estimate SrM* A

slightly biased estimate of the variance of Sr[n] in the i-th frame is given by [187]:

N-l
1 *

var(sr,,[n]) = Sr[n-{• iLf =
n=0

Erji)
N '

(4.14)

The variance of SrW in the t-th frame can be derived by considering the effect of a linear
filter on the autocorrelation of a stochastic process:

E{sr[n]sr[n+t]} =E Cr(i)hr[m]'tl)[n- m]^Cr(i)hr[l]iJf[n+t-f]| (4.15)
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= Cr(«y [m]/ir[/]E{tlf[n - m]^[n + ^—/]} (4.16)
m I

= 5;^ X; /i.[m]/i,[/]iJ[/ - m-1] (4.17)
m I

= <r^Cr(t)^5^/lr[»»]'lr[wi + t]. (4-18)
m

Evaluating at t = 0 yields the variance as

var(sr,t[n]) = (r^Cr{i)^^hr[mf. (4.19)
m

Combining the expressions in (4.14) and (4.19) again yields the gain formula of Equation
(4.8). Thissecond perspective shows that this formulation does not involve strict process
matching in the autocorrelation sense; rather, a loose matching is achieved in the sense
that the local autocorrelations of the processes Sr[n] and Sr[n] are equalized in the first
order. In this light, the filter bank analysis-synthesis can be interpreted as a first-order
subband linear predictive coding system. Higher order LPC methods, while designed to
model locally stationary random processes, are not particularly useful for this modeling
scenario since the parameterization is not tightly coupled to perceptual factors [100].

The formulation above can be rephrased in terms of the powerspectral densities
of the ori^nal and reconstructed processes. This provides a more intuitive explanation of
the filter bank residual model than the variance matching framework, and relates the two
interpretations given in the preceding paragraph. Using the Parseval relation

E ^ r \Hr {e^") fdu, (4.20)
m

the subband gain from Ekjuation (4.8) can be rewritten as

• S1^1
The term Er(i)/N isa variance estimate asestablished in Equation (4.14); then, since the
variance of a random process is the average value of its power spectraldensity (PSD), the
gain can be further rewritten as

(4-22)

where 5r,t (e-'̂ ) is the PSD of the r-th subband signal in the analysis filter bank in the
i-th frame. The numerator in the above expression can be written in terms of the PSD of
the original signal s[n]:



136

This expression indicates that the gain for the r-th band is based on the average value of
the input PSD over the r-th band; the is necessary to normalize the variance of the
white noise source ^[n] in the synthesis filter bank. Using the above equation, the PSD of
theoriginal and reconstructed signals can berelated; note that thePSD ofthesynthesized
process SrM in the t-th frame is given simply by

Sri (e'") = "VCO' l^fr f. (4-24)
Substituting for Cr(i) yields

_ |gr (e^") I'Jo'" Si (e^") \Hr (ei")
jS''\Hr{ei-)\''du

This derivation shows that the ERB parameterization leads to a reconstruction whose
subband power spectra correspond to averages of the input power spectra over the various
bands of the filter bank. The formal relationship between the PSD of the full recon

structed signal and the original signal is more complicated, however, since cross terms are
introduced in the output PSD because the subband signals are not independent. The con
straints required to achieve such independence substantially restrict the filter bank design
and are thus not incorporated; also, since the perceptual model is based on subbands,
considerations regarding the PSD of the fully reconstructed output are not called for.

The result of Equation (4.8) clearly holds for the case L = N, where the gain is
simply updated for each new synthesis frame. Abrupt gain changes at frame boundaries
may cause discontinuities in the output; an alternative approach is to use L = N/2 and
carry out an overlap-add process to construct the output. Then, the abovegain calculation
can also be applied, provided that the window overlap-adds to one for a stride of N/2 and
that the energy in a given band does not change drastically from frame to frame.

This filter bank approach constitutes an eflPective framework for modeling the

noiselike residual of the sinusoidal model in that it provides a small set of parameters that

describe the general time-frequency behavior of the stochastic component. For example,
the model is effective at the sample rate fg = 44.1kHz for R = 12 bands with a frame

size of iV = 256 and a stride of jL = 128; in this case, the residual signal is essentially

downsampled by a factor of 10 into a transparent parametric representation. The ori^nal
and the synthesized signals have the same general time-frequency behavior, and because
the ear is mostly insensitive to the fine details of a noiselike signal, this analysis-synthesis
of the stochastic component is basically perceptually lossless. Greater compaction can be
readily achieved by using larger frames and longer strides; the case above was cited in
particularsince it fits directly into the specific structure of the IFFT synthesizer discussed
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in Section 2.5. Also, to control the amount of model data, the number of bands can
be increased or decreased simply by scaling the bandwidth of each ERB by a common
factor. Finally, note that the length of the analysis frames and strides can be time-varied
to estimate the residual parameters for a dynamically segmented sinusoidal model, ».e. a
multiresolution model. Another way to generate model parameters at arbitrary times is
to interpolate between data points taken at regularly spaced times; such interpolation
assumes a certain smoothness in the evolution of the data.

4.2.3 Requirements for Residual Coding

The filter bank model of the sinusoidal analysis-synthesis residual meets three

basic requirements for residual coding that have been established in the preceding dis
cussions, namely compaction, perceptual relevance, and transparency. Compaction is
especially desirable since the residual is secondary in importance to the primary recon
struction; perceptual relevance allows meaningful modifications to be carried out. Per
ceptual losslessness is of course useful for any audio signal model; in residual modeling,
there is some leeway due to masking effects that occur uponcombination with the primary
reconstruction.

In addition to the criteria discussed above, another useful feature of a residual

model is the ability to economically recombine the residual parameterswith the parameters
of the primary signal model prior to reconstruction. In the IFFT sinusoidal synthesizer,
some computation is saved by using the ERB model to derive a spectral representation
of the residual that can be combined with the sinusoidal spectrum before the IFFT.
This FFT-based implementation is discussed further in the next section; a time-domain
implementation of the filter bank model is also presented.

4.3 Residual Analysis-Synthesis

The filter bank model of broadband noise perception can be implemented in

the time domain as formulated in the previous section. For frequency-domain sinusoidal
synthesis, the model can be rephrased in terms of the FFT to allow a merged synthesis of
the partials and the residual component. Details of both approaches are given below.

4.3.1 Filter Bank Implementation

The filter bank for the residual model is subject to looser design constraints than

critically sampled filter banks. In this section, these constraints are discussed and a simple
design approach is given; theseformulations were originally presented in [178].
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Perfect reconstruction constraints

Perfect reconstruction filter banks were discussed at length in Section 2.2.1; recall

that in the subsampled case, time-domsdn and/or frequency-domain aliasing introduced
by the analysis is cancelled in the synthesis filtering process. Then, the requirement of a

distortionless input-output transfer function along with this aliasing cancellation provides

a set of design constraints for the filter bank. Due to the various advantages of subband

processing, such filter bank approaches have been widely dealt with in the literature, but
primarily for the case of uniform or octave-band filter banks [2, 20]. Some results on
nonuniform critically sampled and oversampled perfect reconstruction filter banks have

also been presented [188, 189, 190, 191, 192].
The design of a nonuniform filter bank for the noise perception model proposed

in Section 4.2 differs from the perfect reconstruction problem discussed above. Summariz

ing the model, the ERB analysis filter bank provides a set of subband signals from which

short-time gains are derived; in the synthesis, these gains are applied to the subbands

of an ERB filter bank driven by white noise. In short, this scenario does not involve a

typical critically sampled analysis-synthesis filter bank. In this framework, then, the filter

bank design is subject to different constraints than those of a critically sampled system.

A sensible perfect reconstruction constraint for the ERB filter bank is that the sum of

the subband signals should equal the original signal; then, no distortion is introduced in

deriving the subband ERB signals. For an R-band filter bank, this constraint corresponds

simply to:

R R

= s[n] ^hr[n] = S[n]. (4.27)
r=l ' r=l

Scaling and delay are of course allowed since such effects can be readily compensated for

in this application. Given the subband perfect reconstruction constraint, the only other

issue is that arbitrary passband edges should be allowed for the filters at the design stage;

such design flexibility enables a wider range of experiments, for instance with variable

band allocation, than in a rigid approach. The filter bank design is discussed below.

Filter bank design

Given a set of arbitrary frequency band edges spanning from 0 to the Nyquist

frequency fs/2, where the set will be denoted by

/edges = {/O /l ... /r ... Ir-I Jr} (4.28)

with /o = 0 and /r = /a/2, which corresponds in radian frequency to

27r
^*'edges — {^0 ^1 ... 1 /edges (4.29)

Js
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with $0 = 0 a-nd = JT, consider ideal bandpass filters of the form

Mn] =^cosKn)(^!^^), (4.30)
where

A, = 4r-*r-l (4-31)

is the bandwidth of the r-th filter and

w, = (4.32)

is the center frequency of the positive frequency passband of the r-th filter; because
the filters are real, each has a negative frequency passband as well. Since the R bands
are nonoverlapping and span the entire spectrum by definition, the frequency responses

of the corresponding R ideal bandpassfilters simply add up to one:

'£Br{e^") =1 fibrin] =«[n], (4.33)
r=l r=l

which shows that this ideal filter bank satisfies the subband perfect reconstruction con
straint of Equation (4.27).

The ideal filter bank {Br consists of two-sided IIR filters that are not
realizable. However, a realizable FIR filter bank that satisfies the subband perfect re
construction constraint can be derived from the ideal filter bank by using the window
method ofFIR filter design; this method suggests that a realizable FIR approximation of
an ideal filter can be obtained by time-windowing the ideal filter's impulse response [193].
The frequency response of the approximate filter is given by a convolution of the ideal
filter response and the transform ofthe window, which results in a smearing ofthe ideal
response:

AapproxH = /[n]/lid.al[n] 4=4- ffapprox = F {e^") . (4.34)

This window-based approximation process isdepicted inFigure 4.6; the approximate filter
has transition regions in thefrequency domain where the ideal filter has sharp cutoffs; also,
ripples appear in the frequency response of the approximate filter.

In designing single filters, the window method leads to approximate realizations.
In the filter bankcase, however, it is possible to satisfy the subband perfect reconstruction
condition exactly with realizable filters based on the window method. Introducing the
window /[n] on both sides of the right-hand expression in Equation (4.33) yields

M't^rln] = S[n]f[n] (4.35)
r-l
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R R

==S-E/W»'-W = = ^W/[0], (4.36)
r=l rsl

where hr[n] = f[n]br[n]. This verifies that the window-based filter bank also satisfy the
constraint, provided that /[O] is nonzero. In the frequency domain, application of the
window corresponds to a convolution:

R

F(e'") (e^) = F(e'") *1 (4.37)
r=l

=>-ZBr (e^) = ^ = /M- (4-38)
r—1

where The convolution of F(e '̂̂ ) with the unity response
of the ideal filter bank sum is simply equivalent to a full-band integration; the result of
the integration is the constant /[O]. The nonideal filters thus also satisfy the
perfect reconstruction constraint of Equation (4.27); in the frequency-domain sum, the
transition regions and ripples of a given filter are counteracted by contributions from the
other filters. It should be noted here that this method does not readily apply to the design

of subsampled perfect reconstruction filter banks.
The derivation in £}quations (4.35) through (4.38) shows that the only restriction

on the window f[n] is that it be nonzero at n = 0; it can thusbe used to vary the response
of the filters without affecting the perfect reconstruction property. One useful choice for
/[n] is the raised cosine pulse, common in digital communication applications [124], which
enables the filter responses to be controlled by way of the excess bandwidth parametera.
The raised cosine is defined as

f[n] =

cos(^^)
1^ (^1^) (4.39)

0 otherwise

such that the length of filters designed with this window is 2M + 1. Also, since the same
window is applied to all the filters, the excess bandwidth parameter for the r-th filter is
given by OrAr = aiAi. In choosing the excess bandwidth, there is thus only one degree
of freedom, which implies that the overlap between adjacent filters will behave similarly
across the entirespectrum. Filter bank responses based on this design are shown in Figure
4.7 for varying M and ai, the excess bandwidth of the first filter.

Thefigure indicates the flexibility ofthedesign: the band edges arearbitrary, the
filter length is arbitrary but the same for each band, and the filter ripple and transition
behavior are readily controllable. Beyond the standard time-frequency resolution tradeoffs
in filter design, the flexibility of the filter response is limited only in that the formulation
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Figure 4.7: FVequency responses for a 6-band filter bank with (a) Af = 20 and
oi = 0.5, (b) M = 40 and oi = 0.5, and (c) Af = 40 and ai = 0.95.

requires that the same window function f[n] be used for each filter in the filter bank.
The choice of window essentially limits the frequency resolution of the narrowest band in
the filter bank. For wide bands, the sine impulse response is characteristically narrow,

meaning that a long, smooth window will not affect the response drastically; for narrow
bands, on the other hand, the time-domain sine response is spread out. To maintain the

frequency resolution of the narrowest band, then, it is necessary that the window be chosen
long enough to cover the majority of the energy of the corresponding sine function.

This design approach has proven useful for the ERB-based stochastic signal
model; the ease and flexibility of the design allow for a wide variety of experiments in

volving reallocating the frequency bands and trading off the time-frequency resolution of

the ERB parameterization.

4.3.2 FFT-Based Implementation

For the frequency-domain synthesizer discussed in Section 2.5, it is computation

ally advantageous to derive a representation of the residual that can be combined with
the spectrum of the partials before the inverse Fourier transform is carried out. It is thus
useful to devise an FFT-based algorithm for modeling the residual; analysis, synthesis,
and normalization issues are discussed below. These results were presented in [110].
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Residual analysis

Analysis for the ERB residual model can be carried out using the FFT. As in the
sinusoidal analysis, this usesa sliding window to[n—iZr] of length N to extract framesof the
residual ^[ti] at times spaced by the analysis hop size L. The frame signal w[n —iL]s[n] is
then transformed into the spectrum 5(&, t) by a DFT of size where K > N. Note that
the values of and L need not correspond to those used in the sinusoidal analysis.

After the DFT, the spectrum is simply divided into bands according to the ERB
model; without degradation of the model, the bandwidths of the ERBs can be scaled
by a common factor to cover the spectrum with fewer bands and thereby achieve data
reduction. After the band allocation is established, the energy in each of the bands is

computed from theDFTmagnitudes; thenegative frequency components arenot included
since the spectrum is conjugate symmetric:

^r{i) = i E |S(fc,<)l'- (4-40)
kepr

where f3r denotes the bins that fall in the r-th ERB; this shorthand will be used throughout
thechapter. In thisFFT-based analysis, these energies serve as the residual parameters for
the t-th frame; changes in the characteristics ofthe residual are reflected inframe-to-frame
variations of the ERB energies. Note that the energies Er(t) are not entirely the same as
theEr(i) formulated inthe filter bank analysb. However, both energy measures Er(i) and
Er(i) are conceptually suitable for the psychoacoustic model, namely that the perceptual
qualities ofbroadband noise aredetermined by the totalenergy in each band, and not by
the specific distribution ofenergy within the bands. The distinction between ^r(0
Er{i) is discussed further later. Also" note that the phase ofthe DFT A[l:] is irrelevant
to the ERB energy calculation, which is justified since the auditory system is primarily
sensitive to the magnitude of the short-time spectrum. This insensitivity to phase is
especially applicable to the case of broadband noise, where the phase is itself a noiselike
process; in such cases, the percept is basically independent of the phase distribution.

Residual synthesis

The modeled residual can be synthesized with the IFFT as follows. First, the
ERB energies are converted into a piecewise constant spectrum wherein the magnitude
of each constant piece is determined bythe corresponding ERB analysis parameter; these
magnitudes correspond to the gains of the time-domain filter bank model. An example
of this is given in Figure 4.8, which shows the magnitude spectrum of an analysis frame
and the corresponding piecewise constant spectral estimate for synthesis based on twelve
ERBs. Synthesis using piecewise linear spectral estimates, sloped within each ERB to
fit the analysis spectrum, gives a reconstruction of the same perceptual quality as the



144

.S
13
B
(M

o

0)

s

'a '! I'l'I /} s\V*
! '' jV

Radian frequency

Figure 4.8; Piecewise constant ERB estimate (solid) of the residual magnitude
spectrum (dotted) for a frame of a breathy saxophone note.

piecewise constant approach, which verifies the assumption that the ear is insensitive to

the specific spectral distribution within each ERB.

For the sake of input-output equalization, it is important to preserve the ERB

energies in the analysis-synthesis pathway; this is demonstrated by the following equations,

where S{kji) denotes the analysis DFT for the t-th frame, 5(/c, i) denotes the piecewise

constant spectral estimate derived in the synthesis, is the number of bins in the r-th

ERB at the synthesis stage, and M is the size of the synthesis IFFT. Note that the analysis

transform and the synthesis transform do not have to be the same size. Accordingly, the

bins in the r-th synthesis band are not necessarily the same as the bins /?r in the r-th

analysis band; also, distinct bin indices k and k are used in the following formula:

= iff E I'SKOi' = i E i5(t.oi'- (4.41)

Every bin in a given synthesis band takes on the same value, so for any k € above

equation can be rewritten as:

£.(«•) = |̂S(k,OI' |S(K,i)l = #£r(i). (4.42)

Energy preservation will be considered further in the upcoming section on normalization;

specifically, normalization issues relating to the overlap-add synthesis process are dealt

with there.
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After the magnitudespectrum is constructed, a uniform random phaseis applied
on a bin-by-bin basis. Frame-to-frame phase correlations can be introduced to control the
texture of the synthesized residual; for instance, varying the smoothness of the residual
may be musically desirable. After the phase is incorporated, the spectrum of the residual
model and the partial spectrum are summed (in rectangularcoordinates) and transformed
into a time-domain signal by the IFFT and OLA. This approach has proven perceptually
viable for broadband residuals such as saxophone and flute breath noise.

Comparison of FFT and filter bank analysis-synthesis methods

While apparently founded on the same basic psychoacoustic principle, the FFT-
based model of the residual discussed in this section and the filter bank formulation of

Section 4.2.2provide different ERB energies for the model. Perceptually, the two methods
yield similar results; given the allegation that the residual model is indeed different, it is of
interest to compare the approaches mathematically so as to reveal the underlying issues.

The difference between the two methods can be understood in the framework

of the STFT. Some restrictions must be imposed to compare the methods; these will be
introduced as the framework is developed. In the FFT method, the analysis with the
sliding window w\n\ can be immediately interpreted as a modulated STFT filter bank
of the form shown in Figure 2.3, with analysis filters given by Note that
the difference between the ERB parameters depends on the analysis, so the synthesis
filter bank will not enter the discussion here. From Section 2.2.1, the STFT of s[7i] with
subsampling by £ is given by

N-\

S{k^i) = -^ to[n]s[n-H (4.43)
n=0

and the ERB parameters in the FFT method, as described earlier, are given by

Sr(0 = 4 E |5(*=.')r (4-44)
Jb€/?r

Then, summing the band enerpes across the spectrum yields the signal energy ofParsevaPs
theorem:

R R K—1 JV—1

= 4E E = -F E = E klnMn +'iir (4-45)
r=l ^ r=lkePr k=0 n=0

As will be seen, a similar summation does not generally apply in the filter bank case;
the sum of the subband energies in a filter bank is not proportional to the energy of the
original signal unless the filter bank corresponds to a tight frame [2].

In considering the filter bank approach, various restrictions must be imposed to
allow for a meaningful comparison with the FFT method. First, the filters are restricted
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to be of the form

ArH = /WirWe^"'", (4.46)

where f[n] is a window function, 6r[n] is an ideal filter, and Ur = 2KkrlK,a bin frequency
of a iif-point FFT. Unlike earlier, these filters are defined to be complex; this allows for
straightforward comparisons to the complex STFT filter bank. For real filters, a scale
factor of two is simply necessary in some of the calculations to account for the negative
frequency components.

With the above restriction on Ur in mind, 6r[»] is constrained to be of the form

4r[n] = X) (4-47)
k——e.r

where
^ 3-"(Wg) (4.48)

^ ' irn

which corresponds in the frequency domain to an ideal filter of bandwidth 2^1 which is
the width of one bin in a K-point FFT. The sum of modulated sine functions in Equation

(4.47) is then just an ideal filterof bandwidth 27r(2€r + l)/if. The last required restriction
is that the window function t(;[n] and the filter bank filters should be related by

u;[n] = f[-.n]b[-n]. (4.49)

In other words, the FFT analysis window w[n] \s a windowed and time-reversed version
of the impulse response of a narrowband sine function. Given these restrictions, it is clear

that any filter in the nonuniform filter bank corresponds to a sum of adjacent STFT filters:

hr[n] = (4.50)

= f[n]e'"--" ^ (4.51)
fc=—Cr

S' (4.52)
k=kr—er

fcr+Cr

= ^ (4.53)
Af=fcr-«r

In this framework, the r-th subband signal of the ERB filter bank corresponds simply to

SrW = 5Z5[A;,n], (4.54)
kepr

where the STFT 5[A;, n] is not subsampled. The ERB energies in the filter bank approach
are thus given by

iL+N-l

Er{i) = E
n^iL te/9r

(4.55)
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In this case, the sum across bands does not yield the same result as the FFT method. This
disparity occurs because of the nonlinearity of the magnitude function; the magnitude is
taken at different points in the two methods. In the FFT method, the magnitude is taken
before the subband signals are summed; in the filter bank method, the magnitude is taken
after the subbands are added together.

The FFT and filter bank methods are mathematically distinct as derived above.

However, they exhibit some type of equivalence in that the perceptual merits of the mod
els are similar. This equivalence, despite the formal difference, indicates that a certain
crudenessor inexactnesscan be incorporated into residual models without causing adverse
effects; this is especially true if the inexactness is well-intentioned based on heuristics or
simple psychoacoustics.

An aside on ParsevaPs theorem

The filter bank residual model relies on the equivalence of time-domain and

transform-domain signal energies; this equivalence is referred to as Parseval's theorem or
relation. ParsevaPs theorem holds for any orthogonal basis, and a similar expression can

be derived for the case of tight frames [2]. In this section, issues related to frequency-
domain signal energies are considered. It should be noted that the issues to be discussed
are not intrinsically coupled to the application of residual modeling, but indeed apply to
arbitrary signals.

Thefrequency-domain representations ofinterest hereare the discrete-time Fourier
transform and the discrete Fourier transform. Considering Parsevai's relation for these

two cases leads to an interesting result. Foran arbitrary discrete-time signal a;[7i] oflength
iV, the signal energy can be expressed in terms of the DTFT or the DFT, which is simply
the uniformly sampled DTFT as discussed in Section 2.5.1:

N-l

, if-i

= i V |A'[i;]p DFT with K>N (4.57)
k=:0

= (4.58)

The right-hand expressions in Equations (4.56) and (4.58) can beequated and manipulated
into the form

£ [x r =g f(I)• (4-59)
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Figure 4.9: Examples of exact stepwise integration for two spectra. As shown in
Equation (4.59), Pauseval's theoremindicates that the stepwise approximation of the
DTFT squared-magnitude based on the DFT is exact if the DFT is large enough that
no time-domain aliasing is introduced.

The left side is simply the integral of the magnitude-squared of the DTFT. The right side
can be interpreted as a piecewise approximation of the continuous integral; the width of a

piece is 2Tr/K and the heightof the piece spanning from frequency 27rkfKto 27r(k-\-l)/K is
|X[A:]p, the squared magnitude of the DTFT sample at 2TrkfK. This stepwise integration
is illustrated in Figure 4.9. For the squared magnitude of the DTFT, there is no error in

approximating the integral in this fashion as long as the DFT is large enough, t.c. there
are enough samples of the DTFT. Essentially, this condition holds because the signal is

time-limited; the notion is analogous to the familiar result that a bandlimited signal can
be perfectly reconstructed from an appropriate set of samples [194]. This issue is mostly
an aside from the discussion of residual modeling, so it will not be considered further.

N ormalization

To achieve perceptual losslessnessin a deterministic-plus-stochastic or reconstruction-

plus-residual model, it is necessary that the relative perceptual strengths of the two com

ponents be preserved by the system. The STFT peak picking described in Chapter 2
provides the proper amplitudes for equalized sinusoidal synthesis. In the residual model,
the loudness equalization is based on preserving the short-time energy of the signal (in
a stochastic sense); such energy preservation was the basis for deriving the short-time
gains for the synthesis filter bank discussed in Section 4.2.2. In the frequency-domain
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synthesizeFf the various operations mandate careful considerations of their effects on the
short-time signal energy. Relative equalization of the subband energies is straightforward
as derived earlier; the various windowing and overlap-add operations, however, introduce
gain changes that must be compensated for.

The FFT-based residual analysis-synthesis is depicted in Figure 4.10. With the
exception of the transparency requirement, the ERB energy parameters in this model im
mediately meet the criteria discussed in Section 4.2.3;namely, the ERB energies comprise
a small set of perceptually meaningful parameters that can be readily combined with the
partials before the IFFT. To meet the final requirement of perceptual losslessness, signal
scsding must be explicitly accounted for; due to the multiple windowing steps and the
possibility of different analysis and synthesis frame sizes and sampling rates, the synthe
sized residual may not have the same loudness as the original residual. In the following
derivations, the subscripts a and s refer to the analysis and synthesis stages, respectively.

The proper scaling of the residual can be derived by considering the energy in
the continuous-time signal. Foran input segment of length r® corresponding to N samples
at the rate fa = 1/Ta, the energy in the continuous-time signal is

F; = / s(t)^<U a "^^ro+nTafTa, (4.60)
n=0

wherethe w refers to the approximation of the integral by the sum ofthe areasof rectangles
of width To and height s[ro -f nTa]^. In discrete time, the energy of this analysis frame of
length N is

Ea = E (4.61)
n=0

The expected value of this energy, which will indeed be used as a measure of energy in
the following, is simply given by

E{E.} = E E{s[n]^} = JVE{sH'}. (4.62)
n=0

This frame energy is now traced through the system; note that, as before, a frame index
is dropped without loss of generality.

First, the output tt;[n]5[7i] of the analysis window has energy

N-l

Eu, = 51 v)[nfs[nY. (4.63)
n=0

Similarly to the derivation for the time-domain filter bank, the expected value of the
energy is now used as a metric; replacing 5[n]^ by its expected value in Equations (4.61)
and (4.63) gives

(4.64)
n=0 n=0
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Figure 4.10: Block diagram of the FFT-based residual analysis-synthesis. The first
three blocks constitute the analysis.

which indicates how the windowing process affects the signal energy. By Parseval's the

orem, the IC-point analysis FFT preserves this energy measure, as does the ERB energy

estimation, by construction; the M-point IFFT likewise preserves the energy as long as the
spectrum is constructed according to (4.42). Using a similar argument as for the analysis
window, the effect of OLA with the length-M window u[7i] can be shown to be

Es = 53 t;[n] (v[n] + vi[n] 4- t;2[n]),
M-l

(4.65)

where ui[n] and U2[n] correspond to the second half of the window from the previousframe
and the first half of the window from the subsequent frame, respectively:

Mlu n+-J
ui[n] =

V2[n] =

0<n<--

M ^ A>f
— <n < M

0<n<y
r Ml M ^
"-yj

(4.66)

(4.67)

Note that a 50% overlap factor has been assumed in the derivation. As a check on

the accuracy of this formulation, for a window u[n] that overlap-adds to one, the post-
windowing and OLA do not affect the energy. In this FFT-based synthesis system, the
ERB spectrum is added to the partial spectrum before the IFFT; the effectiveOLA window

u[n] for the residual is then a triangular window divided by the motif window. This hybrid
window, discussed in Section 2.5, does not overlap-add to one; for this reason, the OLA

scale factor must be included.

The energy Ea given by Equation (4.65) is the discrete-time energy for a synthesis
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frame of length M, The energy of the continuous time output signal l(t) is

rrtt-rTa

K = I (4-68)
Jto
Af-1

» J^^To + nT.]^. = E,T„ (4.69)
n=0

where T, is the synthesis sampling period and r, is the duration of the M-sample output
frame: r, = MT,. However, since the input energy corresponds to an input segment of
duration To, what is required is an equalization of the energy for an output segment of
that same duration To. Let O denote the number of output samples (at rate l/T,) in a
segment of duration To; the energy in this segment is

E': = i: (4.70)
n=0

Noting that

— = Ts. 2.Il = E. (4.711
M Ta MTa M

the entire transformation of the continuous time energies can be expressed as

ej = G.GaK^ (4.72)

where

G. =£ t»[n]' (4.73)
n=0

is the energy scaling incurred in the analysis, and

2

G, = ^ +V2[m]) (4.74)
m=0

is the effect ofsynthesis. In the analysis, then, the signal should be multiplied bythe scale
factor 1/v^ before the ERB energies are calculated; at the synthesis stage, the output
should be multiplied by Xfy/Ul to equalize the energies. Listening tests have verified
that the signal energy of Parseval's theorem is an accurate measure of the loudness of
broadband noise, and that the outlined approach provides input-output equalization in
the ERB analysis-synthesis.

4.4 Conclusion

In modeling complicated signals, it is often necessary to introduce a mixture of
representations. This chapter described the specific framework of residual modeling, in
which the signal is first reconstructed basedon a primary model, and the difference between



152

the original and the reconstruction is then modeled independently. For the multiresolution
sinusoidal model, this residual is a colored noise process that can be parameterized in a
perceptually accurate fashion in terms of the subband energies of the auditory filters;
in audio applications, this process includes features that are perceptually important for
realism, e.g. breath noise in a fiute. This chapter discussed basic filter bank models of
the auditory system as well as a simple approach for designing correspK>nding filter banks.
Two implementations of the resulting residual model were developed and compared. It
was shown that the parameterizations in the two implementations are somewhatdifferent
but further argued that the difference is practically moot; this contention is based on
the experimental observation that crude heuristic models of noiselike signals can achieve
transparency. It should be noted that the residual model discussed in this chapter is not
signal-adaptive; rather, it is intended for usein conjunction withsignal-adaptive sinusoidal
models. Of course, the model could be made signal-adaptive by using a filter bank with

adaptive band allocation, for instance, but such adaptation has not proven necessary for
modeling typical residuals.
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Chapter 5

Pitch-Synchronous Methods

In the general sinusoidal model, the frequencies of the partials are estimated
without regard for the possibility of harmonic structure; at least, it is not necessary to
make any assumptions about the presence of such behavior. In cases where harmonic
structure is prevalent, i.e. in periodic and pseudo-periodic signals, this can be exploited
to improve the signal model with respect to data reduction in that only the fundamental
frequency need be recorded. In this chapter, a pitch-synchronous signal representation
proposed in [195] is considered; similar representations have been applied in prototype
waveform speech coders [56]. This pitch-dependent framework leads to simple sinusoidal
models in which line trackingand peakdetection are unnecessary because of the harmonic
structure; furthermore, the representation leads to wavelet-based models that are more
appropriate for pseudo-periodic signals than the lowpass-plus-details model of the stan
dard discrete wavelet transform. By.separately estimating the pitch or periodicity of a
signal, improvements in both wavelet and sinusoidal models can be achieved. It should
be noted that these approaches rely on robust pitch detection and thus apply only to
signals whose periodic structure can be reliably estimated; in audio applications, then,
appropriate signals consist of a single voice or a single instrument.

5.1 Pitch Estimation

Pitch estimation or pitch detectionrefers to the problem offinding the basic repet
itive time-domain structure within a signal. This issue has been explored most extensively
in the speech and audio processing communities [1, 53, 196, 197, 198]; the terminology
is thus taken from these fields, but the methods apply to any pseudo-periodic signals.
Pitch detection is reviewed in the section below; the section thereafter proposes a simple
algorithm for refining pitch estimates for the purpose of carrying out pitch-synchronous
signal segmentation.
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5.1.1 Review of Pitch Detection Algorithms

Algorithms for pitch detection can be loosely grouped into time-domain and
frequency-domain methods. In frequency-domain approaches, a short-time spectrum of
the signal is analyzed for harmonic behavior, i.e. peaks in the spectrum at frequencies
with a common factor; this factor corresponds to the fundamental frequency of the signal.
In time-domain techniques, cross-correlations of nearby signal segments are computed at
variouslags; the lags that yield peaks in the cross-correlation correspond to the period of
the signal. Both types of methods are fundamentally susceptible to errors: for instance,
in the time domain, a two-period signal segment can be mistaken as a pitch period;
in the frequency domain, dominance of either the odd or even harmonics, or a missing
fundamental, can result in significant estimation errors. Various fixes have been proposed
to account for these problems; for instance, based on the a priori knowledge that a typical

musicalsignal does not have impulsive pitch discontinuities, a median filter can be applied
to the pitch estimates to remove outliers and provide a more robust estimate [1, 53, 197].

For a more detailed discussion of pitch detection algorithms, the reader is referred

to [1, 53, 196]. For the purposes of this chapter, it is assumed that a reliable pitch detec
tion algorithm is available, and that the algorithm is capable of acknowledging, perhaps

according to some heuristic threshold, when no pitch can be reasonably assessed to the
signal. Using this assessment, the algorithm can segment the signal into regions classified
as pitched or unpitched.

5.1.2 Phase-Locked Pitch Detection

A standard pitch detector provides an estimate of the local pitch of a signal, which

is essentially a rough parametric description of the local behavior. A rough estimate of the

local behavior is not entirely adequate, however, for the applications to be discussed here;

as will be seen, it is important that the pitch estimates correspond to precise structures

in the signal. To achieve this correspondence, pitch estimates from a standard algorithm

can be "phase-locked" to the signal as proposed below. First, it is assumed that a robust

pitch detector such as the one described in [197] is used to generate a moving estimate of

the pitch period; the output of the pitch detector is specifically assumed to consist of pitch

periods and their corresponding time indices. This pitch period function will be denoted

by P(t); since detectors generallyestimate the pitch at some fixed interval T, the function
P{t) can be equivaJently represented as P(iT) = P{t)\t=iT' It is further assumed for the
sake of notation that the pitch detection algorithm assigns a value of zero to P(t) when

no reasonable pitch can be assessed to the signal. Note that the onset of a signal cannot

typically be assigned a pitch, so P{t) —0, or likewise P{iT) = 0, will generally be the case
in the onset regions; after the onset, if the signal becomes pseudo-periodic a pitch can be
estimated. A similar observation holds for transitions, for instance note-to-note changes



155

in music; a pitch cannot be assigned to the interstitial regions. Given these assumptions
and oteervations, the phase-locking algorithm is straightforward; it is explained here as
well as in the flowchart of Figure 5.1:

• For the first pitch detected after a region where P{iT) = 0, find the corresponding
time point in the signal (to) and search for the first subsequent positive-slope zero
crossing in the signal. Denote this by to- Since time is discretized and the zero
crossing may not fall on a sample point, to is chosen to correspond to the first
positive signal value after the zero crossing.

• The time to lies between two times to and tj, for which pitches have been estimated
by the initial pitch detection algorithm; thus, an appropriate estimate of the pitch
period at time to can be found by interpolating:

P(^to) — •P(^6)[^o ~fg] (5.1)
tf, —to

F(to) is the estimated length of the signal period starting at to-

• Find the positive-slope zero crossing closest to (not necessarily after) the time to+
P(to). Denote this time by ti. Again, the time is rounded to correspond to the
pc»itive value after the zero crossing.

• Interpolate to estimate P(ti), and then find t2, which is the time of the closest
positive-slope zero crossing to ti -f P(ti).

• Repeat the above step for t2, and so on, until a region where P{tT) = 0 is entered,
at which point the algorithm should be restarted entirely.

• At stages in the interpolation when P(ta) ^ 0 and P(tf,) = 0, the interpolated pitch
is assigned a zero value to prevent incongruous pitch estimates.

• The time points {ti,t2i--.} indicate pitch period boundaries that can be used to
construct a track of phase-locked period estimates P{tj) = tj+i —tj. The starting
times of the pitch periods follow positive-slope zerocrossings by construction, so the
first sample in any pitch period is positive and the last sample is negative.

This phase-locking algorithm yields a set of refined pitch period estimates that correspond
to pseudo-periodic structures that are synchronized to positive-slope zero crossings of the
signal; as will be seen, synchronization at zero crossings, while seemingly arbitrary, is of
importance for deriving a useful pitch-synchronous signal representation. Furthermore, it
has also been reported that zero crossings are of physical significance in speech signals in
that they are linked to instances when the glottis is closed [198].
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save [foi ^(^o) = 0]

t = i + 1 save [jT, P(iT) = 0]

YES YES

i = 0 P{iT) = 0? NO to = PSZC
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Estimate
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to = ti

NO
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closest to

to + f'(to)

save [to, P(to) = ti —to]

Figure 5.1: Flow chart for phase-locked pitch detection. The abbreviation PSZC
refers to a poative-slope zero crossing in the signal. It is assumed that initial pitdi

period estimates, denoted by P(tT), are derived by a standard pitch detection algo

rithm such as the one described in [197]. The itemized description in the text gives
additional details related to the operations carried out by the various blocks.

Some wavelet-based algorithms for pitch estimation based on zero crossings have

been discussed in the literature [199, 198]; the corrective phase-locking described above is
adhered to in this treatment, however, since it is simple and allows for a quick synchro

nization of pitch period estimates to zero crossings in the signal.

5.2 Pitch-Synchronous Signal Representation

Using the time points from the simple phase-locked pitch detector presented
above, the signal can be divided into pseudo-periodic segments, t.e. pitch periods that
are synchronized to positive-slope zero crossings. This segmentation leads to a pitch-
synchronous representation similar to the one proposed in [195]; this representation will
prove useful for signal modeling.

5.2.1 Segmentation

In Section 4.1, mixed models of signals were discussed; this motivated consider
ing the sinusoidal model in terms of a deterministic-plus-stochastic decomposition where
the stochastic component accounted for signal features not well-represented by the sinu
soidal model. The overall model mixture then consisted of slowly-varying sinusoids and
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broaxiband noise.

A representation similar to the deterministic-plus-stochastic decomposition of
Chapter 2 has been widely applied in linear predictive coding (LPC) of speech, where the
speech is coded using a time-varying source-filter model [1, 23]. The filter is adapted in
time to match the speech spectrum, while the source is chosen based on a classification of
the local speech signal as voiced or unvoiced. The characterization voiced refers to sounds,
such as vowels, that exhibit a strong periodicity; the corresponding source for the LPC
model is a i>eriodic impulse train. The alternativeclassification unvoiceddesignates sounds
such as sibilants and fricatives which do not exhibit periodic behavior and are heuristically

more noiselike; the source for unvoiced sounds is typically white noise. Synthesis in the
LPC framework is carriedout by applying the appropriate sourceto the time-varying filter;
when the input is a periodic impulse trsdn, the output has the pseudo-periodic structure
characteristicof voiced sounds,whereas when the input is white noise, the output is simply
colored noise and does not exhibit periodicities.

In LPC, the voiced/unvoiced classification parameter indicates a segmentation
of the signal into regions where different models are appropriate. A similar segmentation
can be applied to arbitrary audio signals; because the terms "voiced" and "unvoiced"
are inappropriate designations for musical signals, the terms "pitched" and "unpitched"
will be used to classify the signal behavior. The phase-locked pitch detection algorithm
described in the previous section is appropriate for deriving such a pitched/unpitched
signal segmentation; regions where a pitch can beestimated are designated as pitched and
regions where P{t) = 0are classified asunpitched. This segmentation ismarkedly different
from the deterministic-plus-stochastic decomposition described in the treatment of the
sinusoidal model; as discussed in Section 4.1, in the sinusoidal model and in some LPC
variations, the model mixtures are concurrent in time. For pitch-synchronous processing,
however, it is necessary to neglect such concurrency and rigidly segment the signal into
pitched and unpitched regions. As will be seen, this introduces some difficulties in the
modeling of unpitched transient regions; a resolution of these difficulties is arrived at in
Section 5.4.3.

In segmenting a dynamic signal such asa musical phrase, the transitions between
regions ofdifferent pitch areclassified as unpitched as described above. Pitch-synchronous
processing algorithms are adjusted at these transitions to account for the pitch variations.
In addition to variations across transitions, each local pitch region exhibits variations,

for instance those that accompany vibrato; such variations are natural in musical signals
and occur even when a vibrato is not immediately perceptible. For the algorithms to
be discussed, it b necessary to segment the signal into pitch periods within each local
pitch region. Because ofsignal characteristics such as vibrato, however, thesepitch period
segments do not each have the same duration. As will be seen, it is necessary to remove
these local pitch variations prior to processing; the variations can be reinjected in the
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synthesis if necessary for realism. Removal of local pitch variations is described in the
next section.

5.2.2 Resampling

In general digital audio applications, it is often desirable to change the sampling
rate; this can be done straightforwardly by converting the signal to continuous time and
then sampling at the desired rate, but that approach is both inefficient and not robust
to noise degradations. It is thus of interest to effect a change in sampling rate in the
digital dommn. This process is referred to as sample rate conversion or resampling. For
the applications in this chapter, resampling will be used to remove local pitch variations
prior to carrying out pitch-synchronous processing; as stated above, the pitch variations
can be reintroduced at the synthesis stage if perceptually necessary.

One method of resampling uses the familiar upsampling and downsampling op
erations. Changing the sampling rate of a sequence a:[n] from /« to §/, is carried out
by upsampling by P and then downsampling by Q, with some appropriate intermediate
filtering to prevent aliasing [193]. The resulting sequence is J times as long as «[»]. A
detailed consideration of this type of approach can be found in [200].

In the pitch-synchronous methods of this chapter, resampling is carried out for
each pitch period of the signal so as to removeslight pitch variations; this enables construc
tion of the pitch-synchronous signal representation discussed in the next section, which
will prove useful for signal coding and modification. The idea is simply to take the local
pitch period segments and resample each one to some period P. In the following discus
sion, then, P will serve to denote the target period; Qi will denote the original period of

the «-th pitch period segment, which will be referred to as Xi\n\. Finally, R denotes the
number of pitch period segments in the local pitch region.

Resampling using the filter-based approach described above tends to introduce

edge effects. This is problematic for the application of pitch period resampling since it
tends to result in discontinuities at period boundaries in the signal reconstructions in

the various pitch-synchronous models to be presented. An alternative method based on

the discrete Fourier transform is more appropriate for this resampling application since it

introduces fewer artifacts at signal boundaries.

Resampling using the DFT is carried out as follows [201]. For a pitch period
Xi[n] of length Q,-, a DFT of size Qi is computed, unless of course Qi is equal to the
target period P. The spectrum is then truncated or extended to size P as described in
the following list, and an IDFT of size P scaled by ^ yields the output sequence a;J[n] of
length P. The resized spectrum is derived differently depending on the relative values of
P and Qi'.

• P = Qi. No resampling is necessary. Since this is computationally advantageous.
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the target period P for a local pitch region is chosen as the mode of the original
periods {Q,*, t € [1, R]} so that this case occurs frequently.

• P < Qi. The resampled output is to be shorter than the input, so the modified

spectrum should have fewer bins than the ori^naJ. This is carried out by discarding
the P —Qi highest frequency bins, which is equivalent to eliminating the highest
frequency harmonics from the signal.

• P > Qi. The resampled output is to be longer than the input, so the modified
spectrum should have more bins than the original. This is done by introducing
P—Qi high-frequency harmonics having eitherzero amplitude or nonzero amplitudes
derived by extrapolating the ori^naJ spectrum.

Note that the Nyquist frequency bin, if present (when P or Qi is odd), is always zeroed
out. Alsonote that since the sampling rate is necessarily largein high-quality audio appli
cations, the periods P and Qi are both typically fairly large. Since local pitch variations
are typically small with respect to the average local pitch, the spectral adjustments de
scribed above are relatively minor. The DFT computation, however, may be intensive,
especially if P or Qi is prime. The cost is not prohibitive, however, since the algorithms
to be discussed are intended primarily for off-line use. Further treatment of resampling is
not merited here; for the remainder of the chapter, it is assumed that the pitch variations
can be reliably removed.

5.2.3 The Pitch-Synchronous Representation Matrix

Once the pitch variations in the R pitch period segments have been removed via
resampling, the signal can be reorganized into Rx P matrix

X =

I'jln]

®3W (5.2)

where «(•[«] is a version of the pitch period a;t[n] that has been resampled to length P. The
matrix will be referred to as the pitch-synchronous representation (PSR) of the signal. As
described in the next section, this representation is useful for carrjdng out modifications;
furthermore, structuring the signal in this fashion leads to the pitch-synchronous sinusoidal
models and wavelet transforms discussed later.

There are several noteworthy issues regarding the PSR. For one, the matrix need
not be constructed via resampling. Alternatively, the period lengths can be equalized by
zero-padding all of the period signals to the maximum period length [195] or by viewing
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each period as an impulse response and carrying out an extension procedure such as in
pitch-synchronous overlap-add methods [90]. These approaches, however, do not yield
the same smoothness as resampling; they do not necessarily preserve the zero-crossing
synchronization and discontinuities may result in the reconstruction.

A second issueconcerns the unpitched re^ons. Each pitched region in a signalhas
a preceding unpitched region; this structure allows the approach to be readily generalized
from the single note scenario to the case of musical phrases. Given this argument, the
considerations herein are primarily limited to signals consisting of a single note. In the
single-note case, the preceding attackisthen the unpitched region in question. Toallow for
uniform processing ofthe signal, the attackissplit intosegments oflength P and included
in the PSR; the beginning of a signal is zero-padded so that the length of the onset is
a multiple of P. In later sections, perfect reconstruction of the attacks is considered in
the frameworks of both pitch-synchronous Fourier and wavelet models. In either of the
transforms, the signal is reconstructed after processing by concatenating the rows of the
synthesis PSR,possibly resampled to the original pitch periods using pitch side information
if necessary for realism.

An example of a PSR matrix is given in Figure 5.2for a portion ofa bassoon note.
Thisbassoon signal and variations ofa similar synthetic signal will be used throughout this
chapter to illustrate the issues at hand. Note that the PSRis immediately meaningful for
signals consisting eitherofsingle notes or several simultaneous notes that are harmonically
related. For musical phrasesor voice, it is necessary to generate a dilferent PSR for each
pitch region in the signal; the various PSR matrices have different dimensions depending
on the local pitch and duration of that pitch. This chapter focuses on the single-pitch case
without loss of generality; extensions of the-algorithms are straightforward.

5.2.4 Granulation and Modification

The pitch-synchronous representation is a granulation of the signal that can
be readily used to facilitate several types of modification: time-scaling, pitch-shifting,
and pitch-synchronous filtering. First, time-scaling can be carried out by deleting or
repeating pitch period grains for time-scale compression or expansion, respectively; this
can be done either in a structured fashion or pseudo-randomly. In speech processing and

granular synthesis applications, similar techniques are referred to as deletion and repetition
[202,203]. Note that thetime-scaling by deletion/repetition isaccomplished without pitch-
shifting, and that it is inherently made possible by the zero-crossing synchronization of
the PSR; without this imposed smoothness of the model, discontinuities would result in
the modified signal.

Pitch-shifting based on the PSR is done simply by resampling the pitch periods;
such pitch-shifting is not formant-corrected, however, but formant correction, which was
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discussed in Section 2.7.2, can be included by incorporating a model of the spectral en
velope in the DFT-based resampling scheme described earlier. Also, this pitch-shifting
changes the duration of the signal, so an accompanying deletion or repetition of the re-
sampled pitch periods is required to preserve the original time scale. Finally, given a pitch
period segmentation ofthe signal, the signal can be viewed as the output ofa time-varying
source-hlter model where the source is a pitch periodic impulse train and the time-varying
filter determines the shape of the pitch i>eriod grains. In this light, a second time-varying
pitch-synchronous filter can be applied to the signal by convolution with the individual
pitch periods; the signal is then reconstructed byoverlap-add of the new period segments.
This notion leads to some time-varying modifications as well as pitch-based cross-synthesis
of multiple signals.

As described in Section 2.7, signals with pitched behavior are well-suited for
modification. The ease of modification based on the pitch-synchronous representation is
thus not particularly surprising. As a final note, it should be clear that the PSR is not
immediately useful for signal coding but that it does expose redundancies in the signal
that can be exploited by further processing to achieve a compact representation. Two
such processing techniques are described in the following sections.
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5.3 Pitch-Synchronous Sinusoidal Models

The peak picking, line tracking, and phase interpolation problems in sinusoidal
modeling can be resolved by applying Fourier methods to a resampled pitch-synchronous
signal representation. These simplifications are a direct result of the prior effort put into
pitch detection and signal segmentation. The pitch-synchronous representation is itself a
signal-adaptive parametric model of the signal; byconstructing the PSR,the signal iscast
into a form which enables a Fourier expansion to be used in an effective manner.

Of course, it is commonplace to apply Fourierseries to periodic signals; it indeed
provides a compact representation for purely periodic signals. Here, the Fourier series
approach is applied to pseudo-periodic signals on a period-by-period basis.

5.3.1 Fourier Series Representations

A detailed review of Fourier series methods is given in Appendix B; various con

nections between the DFT and expansions in terms of real sines and cosines are indicated
there. The result that is of primary interest here is that a real signal of length P can be
expressed as

+ ^^\X[k]\cos{u;kn-\- <f>k), (5.3)
where Uk = 27rfc/P, |A'[A;]| and <f>k are respectively the magnitude and phase of the k-th
bin of a size P DFT of a;[n], and k ranges over the half spectrum [0,P/2]. Note that
this magnitude-phase form resembles the sinusoidal model of Chapter 2. The next section
considers applying the representation of Ekjuation (5.3) to the rows of a PSR, i.e. the
pitch periods of a signal. This approach results in a pitch-synchronous sinusoidal model
in which some of the difficulties of the general sinusoidal model are circumvented. The
various simplifications arise because of the effort given to the process of pitch detection
and signal segmentation.

5.3.2 Pitch-Synchronous Fourier Transforms

Applying the Fourier series to the pitch-synchronous representation of a signal
is equivalent to carrying out pitch-synchronous sinusoidal modeling. In this case, as ex
plained below, the peak picking and line tracking problems are eliminated by the pitch
synchrony.

Peak picking

The DFT of a pitch period samples the DTFT at the frequencies of the pitch
harmonics, namely the frequencies cjk = 27rkfP for a pitch period of length P. These
frequencies correspond to the relevant partials for the sinusoidal model. With regards to
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the discussion of Section 2.3.1, taking the DFT of a pitch period in the PSR is analogous
to using a rectangular window that spans exactly one pitch period, which provides exact
resolution of the harmonic components without spectral oversampling. In short, spectral
peaks do not need to be sought out as in the general sinusoidal model; here, each of the
spectral samples in the DFT corresponds directly to a partial of the signalmodel. Partials
with small amplitude can be neglected in order to reduce the complesdty of the model and
the computation required for synthesis, but this may lead to discontinuities as discussed
later.

Line tracking

In the pitch-synchronous sinusoidal model, the simplification of ]>eak picking
in the Fourier spectrum is accompanied by a simplification of the line tracking process.
Indeed, no line tracking is necessary. A harmonic structure is imposed on the signal
by the model, so the partial tracks are well-behaved by construction. Of course, it is
necessary that the original signal exhibit pseudo-periodic behavior for this approach to be
at all effective; given this foundation, the imposition of harmonic structure is by no means
restrictive. Note that this insight applies to the case of a single note with an onset. To
generate tracks that persist acrc^ multiple notes, it is necessary to either impose births
and deaths in the transition regions or to carry out line tracking of the harmonics across
the transitions.

5.3.3 Pitch-Synchronous Synthesis

Since it is a basisexpansion, the Fourierseriesrepresentation can achieve perfect
reconstruction. Synthesis using basis vectors, however, is not particularly flexible. A
generalized synthesis canbeformalized byexpressing a pitch period »,[»] in the magnitude-
phase form of Equation (5.3) and then phrasing the synthesis as a sum-of-partials model.
This framework is considered in the following sections.

Synthesis using a bank of oscillators

For a pitch period x,[n] of length P, the perfect reconstruction magnitude-phase
expression is given by

= ^^\Xi[k]\cos (ijJkn-^<f>k,i) (5-4)
^ k

for n € [0,P - 1] and Wjk = 27rk/P. The signal can be constructed by concatenating the
pitch period frames:

t ^ i k
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where i is a frame index; «,[»] is the f-th frame, and Xi[k] is the DFT of The
segment aji[n] is supportedon the interval n € [t-P, tP+P —1]; Xi[k] likewise corresponds
to that time interval. More formally, this Fourier amplitude could be expressed as

Xilk] (tt[n - iP] - u[n - (»+ 1)P]), (5.6)

where tt[n] is the unit step function; the simpler notation is adhered to in this treatment.
While the same frequencies appear in the model of Equation (5.5) in every frame,

there are not necessarily actual partials that persist smoothly in time. Consider the
contribution of the components at a single frequency ujk'

Pk[n] = ^2|XtW|cos(a;ibn+<^jfe,,). (5.7)
t

The phase terms are not necessarily the same in each frame, so for this single-frequency
component the concatenation may have discontinuities at the frame boundaries. These
discontinuities are eliminated in the full synthesis; their appearance in the constituent

signals, however, indicates that if components are omitted to achieve compaction, frame-
rate discontinuities will appear in the output. Because of these discontinuities, the Fourier

model in Equation (5.5) cannot be simply interpreted as a sum of partials.

The difficulty with phase discontinuities at the frame boundaries can be cir

cumvented by rephrasing the reconstruction as a sinusoidal synthesis using a bank of
oscillators. Rather than relying on the standard Fourier basis functions, sinusoidal ex
pansion functions that interpolate the amplitude and phase are generated such that the

reconstruction indeed consists of evolving partials and not discrete Fourier atoms with the

aforementioned boundary mismatches caused by phase misalignment. This revision of the

approach provides an example of how a parametric model can improve compaction: in

the approximate reconstructions of compressed models, discontinuities occur at the frame

boundaries in the basis case but not in the sinusoidal synthesis; the sinusoidal model is free

from boundary discontinuities by construction. Note however that this sinusoidal model,

while it is perceptually accurate, does not carry out perfect reconstruction.

Zero-phase sinusoidal modeling

In the standard sinusoidal model, the phase interpolation process at the synthesis

stage is a high-complexity operation. Phase interpolation is thus one of the major obstacles
in achieving real-time synthesis [132]. This difficulty is circumvented here by imposing a
harmonic structure via the processes of pitch detection, segmentation, and resampling.

In the pitch-synchronous sinusoidal model introduced above, the phase of the

harmonics is preserved; phase interpolation from frame to frame is thus required, but
this is problematic in several respects. First, it is computationally expensive. Second,
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the interpolation does not take into account a fundamental property of the representa
tion, namely that the same frequencies are present in every frame; indeed, by fitting a
cubic polynomial to the frequency and phase parameters in adjacent frames, the effective
frequency will be time-varying, which is not desired in this pitch-synchronous algorithm.

Byconstruction, a Fourier sinusoid in a frame moves through an integral number
of periods, meaning that its start and end phases are the same (one sample oflf, that
is). Thus, for the corresponding sinusoid in the next frame to evolve continuously across
the frame boundary, its starting phase should be one sample ahead of the end phase in
the previous frame, or in other words it should be equal to the start phase from the
previous frame. If this continuity is imposed, there is no phase interpolation required in
the synthesis; a harmonic partial has the same phase in every frame.

This method is referred to here as zero-phase sinusoidal modeling since the start

phases in the first frame can all be set to zero; then, the start phase for every partial in
every frame iszero. In some cases, it may be useful to preserve the phase in thefirst frame
to ensure perfect reconstruction there; this technique can be used to reconstruct attacks
without the delocalization incurred in the general sinusoidal model. This initial phase is
then fixed as the start phasefor all frames, so the signal reconstruction can be phrased as

* ^ i k

= 4COS (Wjfen +0fc,o) \Xi[k]\ (5.9)
k i

= 53 (wfcTi -H (f>kfl) 53 W'
k i

where the Ak,i[n] are stepwise amplitude parameters that correspond directly to the
Fourier coefficients:

AkAn] = ^\Xilk]\ (5.11)
for n 6 [tP, tP-b P —1]. Interpolation can be included to smooth the stepwise amplitude
envelopes of the partials in the reconstruction. Then, the signal model is:

= 5ZS'̂ *»*Wcos(u;;bn + «^M) = 5!!)*^°® (5.12)
i k k i

which is simply a sum of partials with constant frequencies each modulated by a linear
amplitude envelope given by

Ak
2 \nXi[k]+{P-n)Xi^ilk]]

P

In the first frame, where i = 0, the amplitude envelope is defined as a constant

(5.13)

n6[0,P-l] (5.14)
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so that perfect reconstruction is carried out there. Moregenerally, this perfect reconstruc
tion can be carried out over an arbitrary number of frames at the onset to represent the
transient accurately. Recalling from the discussion of Section 5.2.3 that the prototypical
signal consists of an unpitched region followed by a pitched region, the approach is to
model the entire unpitched region perfectly in the abovefashion; once the pitched re^on
is entered, the phase is fixed and the harmonic sum-of-partials model of Equation (5.12)
is used.

Manyvariations of pitch-synchronous Fourier series modeling can be formulated.
For instance, the amplitude interpolation can be carried out between the centers of adja
cent pitch period frames rather than between the frame boundaries; this is similar to the
way the synthesis frames in the sinusoidal model are defined between the centers of the
analysis frames. Such variations will not be considered here; some related efforts involv
ing zero-phase modeling, or magnitude-only reconstruction, have been discussed in the
literature [149, 204]. The intent hereis primarily to motivate the usefulness of parametric
analysis and adaptivity forsignal modeling; estimatingthe pitch parameter leadsto simple
sinusoidal models, and incorporating perfect reconstruction allowsfor accurate representa

tion of transients. Note that in either zero-phase or fixed-phase modeling, the elimination

of the phase information results in immediate data reduction, and that this compression
is transparent since it relies on the well-known principle that the ear is insensitive to the
relative phases of component signals.

5.3.4 Coding and Modification

There is a substantial amount of redundancy from one pitch period to the next;

adjacent periods of a signal have a similar structure. This self-similarity is clearly de
picted in the pitch-synchronous representation shown in Figure 5.2 and is of course the
fundamental motivation for pitch-synchronous processing. Since adjacent periods are re

dundant or similar, the expansion coefficients of adjacent periods exhibit a corresponding

similarity. Because of this frame-to-frame dependence, the expansion coefficients can be
subsampled and/or coded differentially. Furthermore, multiresolution modeling can be
carried out by subsampling the tracks of the low frequency harmonics more than those of
the high frequency ones; such subsampling reduces both the model data and the amount
of computation required for synthesis. Indeed, the tracks can be approximated in a very
rough sense; variations between pitch periods, which may be important for realism, can
be reincorporated in the synthesis based on simple stochastic models.

The signal modifications discussed in Section 2.7 can all be carried out in the
pitch-synchronous sinusoidal model. It is interesting to note that some modifications such
as time-scaling and pitch-shifting can either be implemented based on the sinusoidal pa^
rameterization or via the granular model of the PSR matrix. Note that modifications
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which involve resampling are accelerated in the pitch-synchronous sinusoidal model be
cause the Fourier series representation can directly be used for resampling as described in
Section 5.2.2.

5.4 Pitch-Synchronous Wavelet Transforms

This section considers applying the wavelet transform in a pitch-synchronous
fashion as ori^nally proposed in [205, 195]. The pitch-synchronous wavelet transform
(PSWT) isdeveloped asanextension ofthewavelet transform that is suitable for pseudo-
periodic signab; the underlying signal models are discussed for both cases. After the
algorithm is introduced, implementation frameworks and applications are considered.

5.4.1 Spectral Interpretations

The wavelet transform and the pitch-synchronous wavelet transform can be un
derstood most simply in termsof their frequency-domain operation. The spectral decom
positionsof each transform are described below.

The discrete wavelet transform

As discussed in Section 3.2.1, the signal model underlying the discrete wavelet
transform (DWT) can be interpreted in two complementary ways. At the atomic level,
the signal is represented as the sum of atoms of various scales; the scale is long in time
at low frequencies and short for high-frequencies. Each of these atoms corresponds to a
tile in the time-frequency tiling given in Figure 1.9(b) in Section 1.5.2. This atomic or
tile-based perspective corresponds to interpreting thediscrete wavelet transform asa basis
expansion; each atom or tile is a basis function.

Alternatively to the atomic interpretation, the wavelet transform can be thought
of as an octave-band filter bank. As reviewed in Section 3.2.1, the discrete wavelet trans

form can be implemented with a critically sampled perfect reconstruction filter bank with
a general octave-band structure; thecoefficients oftheatomic signal expansion in a wavelet
basis can be computed with such a filter bank. This filter bank equivalence is clearly evi
dent in the tiling diagram ofFigure 1.9(b); considered across frequency, the structure of
the tiles indicates an octave-band demarcation of the time-frequency plane. These bands

in the tiling correspond to the subbands of the wavelet filter bank; in frequency, then,
a wavelet filter bank splits a signal into octave bands, plus a final lowpass band. In a
tree-structured iterated filter bank implementation, this final lowpass band corresponds
to the lowpass branch of the final iterated stage; this branch is of particular interest for
signal coding since it is highly downsampled.
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The filter bankinterpretation shows that the discrete wavelet transform provides
a signal model in terms ofoctave bands plus a final lowpass band. The lowpass band is
a coarse estimate of the signal. The octave bands provide details that can be added to
successively refine the signal; perfect reconstruction is achieved if all of the subbands are
included. This lowpass-plus-details model is appropriate for signals which are primarily
lowpass; the wavelet transform has thus been applied successfully in image compression
[18, 19]. However, for signals with wideband spectral content, such as high-quality audio,
a lowpass estimate is a poor approximation. For any pseudo-periodic signals with high-
frequency harmonic content, a lowpass estimate does not incorporate the high-frequency
harmonics. Indeed, for general wavelet filter banks based on lowpass-highpass filtering at
each iteration, representing a signal in terms of the final lowpass band simply amounts to
lowpass filtering thesignal and using a lower sampling frequency, soit isnotsurprising that
this compaction approach does not typically provide high-quality audio. Wavelet-based
modeling ofa bassoon signal isconsidered in Figure 5.3 for the case ofDaubechies wavelets
oflength eight; these wavelets will be used for allof the simulations in this chapter. Given
the modeling inadequacy indicated in Figure 5.3, it is of interest to adjust the wavelet
transform so that the signal estimate includes the higher harmonics. This adjustment is
arrived at via the following consideration of upsampled wavelets.

Upsampled wavelets

As motivated in the previous section, it is of interest to modify the wavelet
transform in such a way that the coarse estimate of a pseudo-periodic signal includes
the signal harmonics. Conceptually, the first step in achieving this spectral revision is to
consider the effectof upsampling the impulse responses of the iterated filters in a wavelet
analysis-synthesis filter bank. The spectral motivation is described after the following
mathematical treatment.

As derived in Appendix A, a wavelet filter bank can be constructed by iterating

critically sampled two-channel filter banksthat satisfy the perfect reconstruction condition

Go(z)Ho(2) + Gi{z)Hi{2) = 2 (5.15)

Go(z)Ho(-z) Gi{z)Hi{-z) = 0, (5.16)

where the Hi{z) are the analysis filters and the Gi{z) are the synthesis filters. Note that
the condition still holds if the transformation z-¥ z^ is carried out:

Go(z^)Ho(2^) + = 2 (5.17)

Go{z'̂ )Ho{-z'̂ ) + Gi(z^)Hi(-z^) = 0. (5.18)

As will be shown below, this transformed expression is not the same perfect reconstruc

tion condition that arises if the constituent filters are upsampled; a comparison of the
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Figure 5.3: Tlie discrete wavelet transform provides an octave-band decomposition

of a signal. Compaction is achieved by representing the signsd in terms of the highly
downsampled lowpass bfmd; the estimate can be successively refinedby incorporating
the octave-band details. For a wideband pitched audio signal such as the bassoon note

shown, the higherharmonicsextend throughout the wavelet subbands as indicated in
the plot of the spectrum. The lowpass estimate irdwt[n] does not capture the signal
behavior accurately. The residu2d rdwt[n] is the sum of the octave-band details.
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two expressions will lead to a simple sufficient condition for perfect reconstruction in an
upsampled wavelet filter bank.

Given perfect reconstruction filters {Go(z)^G\(z)^Hq{z)^Hi(z)}^ the question at
hand is whether the upsampled filters

M") = Bo{z) = Ho(z^)
(5.19}

Ai(z) = G,(2^) Bi{z) = Hi(z¥)

also provide perfect reconstruction in a two-channel filter bank. The constraint on the
new filters is then

Ao(z)Bo{z) -h Ai{z)Bi{z) = 2 (5.20)

Ao(z)Bo{—z) + Ai{z)Bi{—z) = 0, (5.21)

which can be readily expressed in terms of the original filters as

Go{z^)Ho(z^) + Gi(z^)Hi{z^) = 2 (5.22)

Go{z^)Ho{{-l)^z^) + Gi(z^)Hi({-l)^z^) = 0. (5.23)

Comparing this to the expressions in Equations (5.17) and (5.18) indicates immediately
that perfect reconstruction holds when M is odd. An odd upsampling factor is thus
sufficient but not necessary for perfect reconstruction, meaning that for some filters, an
even M will work, and for others not. The difficulty with an even M can be readily
exemplified for the caseof the one-scale Haar basisdepicted in Figure 5.4(a). Upsampling
the underlying Haar wavelet filters by a factor of two yields the expansionfunctions shown
in Figure 5.4(b), which clearly do not span the signal space and are thus not a basis. As
a result, perfect reconstruction cannot be achieved with filters based on Haar wavelets
upsampled by even factors.

By upsampling the wavelet filters, the spectral decomposition derived by the
filter bank can be adjusted. The frequency-domain effect of upsampling is a compression

of the spectrum by the upsampling factor, which admits spectral images into the range
[0,27r]. The subband of a branch in the upsampled filter bank then includes both the
original band and these images. This spectral decomposition is depicted in Figure 5.5 for
the case of a depth-three wavelet filter bank and upsampling by factors of three and nine.
Whereas in the original wavelet transform the signal estimate is a lowpass version, in the
upsampled transform the estimate consists of disparate frequency bands as indicated by
the shading. The insight here is that upsampling of the filters can be used to redistribute
the subbands across the spectrum so as to change the frequency-domain regions that the
filter bank focuses on. As will be seen, such redistribution can be particularly effective for

spectra with strong harmonic behavior, i.e. pseudo-periodic signals.
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Figure 5.4: The one-scale Haar basb shown in (a) is upsampled by two to derive

the hmctions shown in (b), which clearly do not span the signal space.

Several issues about the upsampled wavelet transform deserve mention. For one,

a model in terms of the lowpass wavelet subba,nd and a model in terms of the upsam

pled lowpass band have the same amount of data. The upsampled case, however, differs
from the standard case in that there is no meaningful tiling that can be associated with
it because of the effect of the upsampling on the time-localization of the atoms in the

decomposition. In a sense, the localizations in time and frequency are both banded, but
this does not easily lend itself to a tile-based depiction. For this reason, the upsampled

wavelet transform and likewise the pitch-synchronous wavelet transform to be discussed

cannot be readily interpreted as an atomic decomposition. The granularity of the PSWT

arises from the pitch period segmentation and not from the filtering process.

Pitch-period upsampling

For signals with wideband harmonic structure, the lowpassestimate of the wavelet

signal model does not accurately represent the signal. In the previous section, it was shown

that upsampling the wavelet filters adjusts the spectral decomposition derived by the filter

bank. If the wavelets in the filter bank are upsampled by the pitch period, the result is

that the lowpass band is reallocated in the spectrum to the regions around the harmonics.

The upsampled filter has a passband at each harmonic frequency; the disparate bands are

indeed coupled. The subband signal of the harmonic band provides a pseudo-periodic es

timate of the signal rather than a lowpass estimate. This leads to the periodic-plus-details
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Figure 5.5: The spectral decompositions of a wavelet transform of depth three and

the corresponding upsampled wavelet transform for an upssunplingfactor of three are
givenin the first two diagrams. The shaded regions correspond to the lowestbranches
of the transform filter bank trees, which generally provide the agnal estimates. A

higher degree of upsampling (9) yields the decomposition in the third plot. Such a
decomposition is usefulif the signal has harmonics that fall within the harmonically-
spacedshaded bands; sudi structure can be imposed by using the pitch period as the
upsampling factor. Note that only the positive-frequency half-band is shown in the
plots.
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Figure 5.6: The pitch-synchronoiis wavelet transform provides a decomposition of
the signal localized around the harmonic frequencies. Compaction is achieved by
representing the signal in terms of the narrowbands around the harmonics, whidi are
coupled into one subband in the PSWT; the estimate can be refined by incorporating
the inter-harmonic details. The inter-harmonic bands are not shown in the spectral

plot for the sakeofneatness. Fora wideband pitched audio signal suchas the bassoon
note shown, the harmonic estimate £ptwt[n] captures the signal behavior mudi more
accurately than the lowpass estimate of the wavelet transform, namely the signal
Xdwt[n] plotted in Figure 5.3. The residual rpawt[n] is the sum of the inter-harmonic
details, and is clearly of lower enei^gy than the wavelet residual rdwt[n] in Figure 5.3.

signal model of the pitch-synchronous wavelet transform. A depiction of the spectral de
composition of the PSWT is shown in Figure 5.5; the harmonic band indicated by the
shaded regions provides the piseudo-periodic signal estimate, and the inter-harmonic bands
derive the detail signals. The estimate is a version of the signal in which local period-to-
period variations have been removed; thesevariations are represented by the detail signals,
and can be incorporated in the synthesis if needed for perceptual realism.

An example of the PSWT signal model is given in 5.6. It should be noted that
the same amount of data is involved in the PSWT signal model of Figure 5.6 and the
DWT signal model of Figure 5.3. The harmonic band of the PSWT simply captures the
signal behavior more accurately than the lowpass bandofthe DWT.Implementation ofthe
PSWT is discussed in the next section; because of the problem associated with upsampling

by even factors, other methods of generating the harmonic spectral decomposition are

considered.
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5.4.2 Implementation frameworks

The pitch-synchronous wavelet transform can be implemented in a number of
ways. Theseare described below; the actual expansion functions in the various approaches
are rigorously formalized in [205, 195].

Comb wavelets

Based on the discussion on the spectral effect of upsampling a wavelet hlter

bank, a direct implementation of a pitch-synchronous wavelet transform simply involves
upsampling by the pitch period P, The corresponding spectral decomposition has bands
centered at the harmonic frequencies, and the signal is modeled in a periodic-plus-details
fashion as desired. An important caveat to note, however, is that these comb wavelets^ as
derived in the treatment of upsampled waveletsand illustrated for the simple Haar case, do
not guarantee perfect reconstruction if P is even. Becauseof this limitation, it is necessary
to consider other structures that arrive at the same general spectral decomposition.

The multiplexed wavelet transform

The problem with the spanning space in the case of comb wavelets can be over

come by using the multiplexed wavelet transform depicted in Figure 5.7. Here, the signal

is demultiplexed into P subsignals, each of which is processed by a wavelet transform;

these P subsignals correspond to the columns of the PSR matrix. The lowpass estimate

in the wavelet transform of a subsignaJ is then simply a lowpass version of the correspond

ing PSR column. A pseudo-periodic signal estimate can be arrived at by reconstructing a

PSR matrix using only the lowpass signals and then concatenating the rows of the matrix.

The net effect is that of pitch-synchronous Altering: period-to-period changes are filtered

out. Perfect reconstruction can be achieved by incorporating all of the subband signals of

each wavelet transform.

Interpretation as a polyphase structure

Polyphase methods have been of some interest in the literature, primarily as a

tool for analyzing filter banks [2]. Here, it is noted that the multiplexed wavelet transform

described above can be interpreted as a polyphase transform; a block diagram is given

in Figure 5.8. The term polyphase simply means that a signal is treated iii terms of

progressively delayed and subsampled components, t.e. the phases of the signal. In the

pitch-synchronous case, the signal is modeled as having P phases corresponding to the P

pitch-synchronous subsignals.

In Figure 5.8, the subsignals are processed with a general transform T, For the

pitch-synchronous wavelet transform, this should obviously be a wavelet transform. If
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only the lowpass bands of the wavelet transforms are retained, the signal reconstruction is

a pseudo-periodic estimate of the ori^nal signal. Indeed, such an estimate can be arrived

at by applying any type of lowpass filters in the subbands; this structure is by no means

restricted to wavelet transforms. For nonstationary or arbitrary signals it may even be of

interest to consider more general transforms, and perhaps joint adaptive optimization of
P and the channel transforms.

Two-dimensional wavelet transforms

The pitch-synchronous wavelet transform takes advantage of the similarity be

tween adjacent pitch periods by carrying out a wavelet transform on the columns of the
PSR matrix. Typical signals, however, also exhibit some redundancy from sample to sam
ple; this redundancy is not exploited in the PSWT, but is central to the DWT. To account

for both types of redundancy, the PSR can be processed by a two-dimensional wavelet
transform; for separable two-dimensional wavelets, this amounts to coupling the PSWT
and the DWT. A similar approach has been applied successfully to ECG data compres

sion [37]. It is an open question, however, if this method can be used for high-quality
compression of speech or audio.

5.4.3 Coding and Modification

In this section, applications of the pitch-synchronous wavelet transform for signal

coding and modification are considered. In the pitch-synchronous sinusoidal model, mod
ifications were enabled both by the granularity of the representation and its parametric

nature; here, the modifications based on granulation are still applicable. However, the
pitch-synchronous wavelet transform does not readily support additional modifications;

for instance, modification of the spectral components leads to discontinuities in the recon

struction as will be shown below. After a discussion of modifications, coding issues are

explored. The modelprovidesan accurate and compact signal estimate for pitched signals;
furthermore, transients can also be accurately modeled since the transform is capable of
perfect reconstruction.

Spectral shaping

In audio processing and especially computer music, novel modifications are of
great interest. An immediate modification suggested by the spectraldecomposition of the
pitch-synchronous wavelet transform is that of spectral shaping. If gains are applied to
the subbands, the spectrum can seemingly be reshaped in various ways to achieve such
modifications. However, this approach has a subtle difficulty similar to the problem in the
discrete wavelet transform wherein the reconstruction and aliasing cancellation constraints



Signal

PSWT
estimate

Residual

Time (samples)

Figure 5.9: The pitch-synchronous wavelet transform provides a signal decompo
sition in terms of a pseudo-periodic estimate and detail signals. Hie model shown
here results from a three-stage transform; the residual is the sum of the details. The
discontinuity occurs because the estimate is subsequently greater than and less than

the original signal in adjacent periods.
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are violated if the subbands are modified. The problem can be easily understood by con
sidering the signal model and the averaging process. The pseudo-periodic original signal
may exhibit amplitude variations from period to period. The estimate signal is derived
by averaging these varying pitch period signals; by the nature of averaging, sometimes
the estimate will be greater than the original and sometimes less. Such a transition is

shown in Figure 5.9. The model residual, which is the sum of the detail signals, exhibits

discontinuities at these transition points. These discontinuities cancel in a perfect signal
reconstruction; if the subbands are modified, however, the discontinuities may appear in

the synthesis. This lack of robustness limits the usefulness of spectral manipulations in

the PSWT signal model. Given the reconstruction difficulties, other modifications are

basically restricted to those that result from the granularity of the pitch-synchronous

representation; these were discussed in Section 5.2.4

Signal estimation

In the discrete wavelet transform, the lowpass branch provides a coarse estimate

of the signal; discarding the other subbands yields a compact model since the lowpass

branch is highly downsampled. This type of modeling has proven quite useful for image

coding [18, 19]. For audio, however, a lowpass estimate neglects high frequency content
and thus tends to yield a low-quality reconstruction. Building from this observation, the

pitch-synchronous wavelet transform estimates the signal in terms of its spectral content

around its harmonic frequencies. For a pitched signal, these are the most active regions in

the spectrum and thus the PSWT estimate captures more of a pitched signal's behavior
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than the DWT. Figures 5.3 and 5.6 can be compared to indicate the relative performance
of the DWT and the PSWT for modeling or estimation of pitched signals.

Coding gain

A full treatment of the multiplexed wavelet transform for signal coding is given

in [195, 206]. The fundamental reason for the coding gain is that the periodic-plus-
details signal model is much more appropriate for signals with pseudo-periodic behavior
than standard lowpass-plus-details models. For the same amount of model data, the
PSWT model is more accurate than the DWT model. In rate-distortion terminology,

the PSWT model has less distortion than the DWT model at low rates; at high rates,

where more subbands are included to refine the models, the distortion performance is more

competitive. One caveat in this comparison is that if the original signal varies in pitch
in a perceptually meaningful way, it fe necessary to store the pitch period values as side
information so that the output pitch periods can be resampled at the synthesis stage; in

cases where the pitch variations are important and must be reintroduced, some overhead
is required. Such coding issuesare not considered in further depth. The next two sections
deal with relevant modeling issues that arise in the pitch-synchronous wavelet transform;

where appropriate, comments on signal coding are given.

Stochastic models of the detail signals

Signal estimates basedon the pitch-synchronous wavelet transform are shown in
Figures 5.6 and 5.9. These estimates are smooth functions that capture the key musical
features of the original signals such as the pitch and the harmonic structure. The PSWT
estimate is thus analogous to the deterministic component of the sinusoidal model; in both
cases, the decompositions directly involve the spectral peaks. Similarly, the detail signals
have a correspondence to the stochasticcomponent of the sinusoidal model. Given this
observation, it is reasonable to consider modeling the detail signals as a noiselike residual.
Such approaches arediscussed in [195]. Thisanalogy between the sinusoidal model and the
PSWT, of course, is limited to pseudo-periodic signals; for signals consisting of evolving
harmonics plus noise, the deterministic-plus-stochastic (i.e. reconstruction-plus-residuaJ)
models are similar.

Pre-echo in the reconstruction

Like the other signal models presented in this thesis, models based on the wavelet
transform can exhibit pre-echo distortion. Of course, this pre-echo is not introduced if
perfect reconstruction is carried out; the problem arises when the signal is modeled in
terms of the lowpass subband, which cannot accurately represent transient events. This
distortion is considered here for the case of the discrete wavelet transform first. Then,
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Figure 5.10: Pre-echo is introduced in the discrete wavelet transform when a tran

sient signal (a) is estimated in terms of the lowpass subband (b). The pre-edio is
significantly increased in the pitdi-syndutmous wavelet transform model (c)since the
discrete wavelet transform pre-edio occurs in esuli of the subsignals; noting the struc
ture of Figure 5.8, the pre-edio in eachsubsignal is upsampled by the pitdi period in
the reconstruction, whidi accounts for the spreading.
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by considering the pre-echo in the DWT models of the pitch-synchronous subsignals,
it is shown that the pre-echo problem is more severe in the pitch-synchronous wavelet
transform.

As discussed in Section 3.2.1, the lowpasssubband in the discrete wavelet trans
form is characterized by good frequency resolution and poor time resolution. The result
is that transients are delocalized in signal estimates based on the lowpass subband. Con
sider the signal onset in Figure 5.10(a) and its lowpass wavelet model shown in Figure
5.10(b). Pre-echo is introduced in the lowpass model ofthe onset. Note that some of this
pre-echo actually results from precision effects in the wavelet filter specification, but that
the majority of it is caused by the poor time localization of the low-frequency subband.

In the pitch-synchronous wavelet transform, each of the subsignals is modeled in
termsof the lowpass band ofa discrete wavelet transform, which means that each of these
downsampled signals is susceptible to the pre-echo of the DWT estimation process. The
subsignal pre-echo occurs in the time domain at a subsampled rate, specifically a factor
P less than the original signal as indicated in the block diagram of Figure 5.8. At the
synthesis side, the subsignals are upsampled by the pitch period P and as a result the
pre-echo is spread out by a factorof P. This drastic increase in the pre-echo is illustrated
in Figure 5.10(c). Another example of PSWT signal estimation and pre-echo is given
in Figure 5.11; in this case, the DWT clearly provides a poor model when compared to
that given by a PSWT involving the same amount of model data, i.c. the same depth of
filtering. This example is discussed further in the next section.
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Figure 5.11: Pre-echo in models of a synthetic signal (a) with higher harmonics.
Thmigh the two models involve the same amount of data, the lowpsiss DWT model
in (b)is clearly a much less accurate signal estimate them the PSWT model in (c). In
the PSWT, however, the pre-edio b spread out by a factor equal to the pitch period.
By incoiporating the detail signab in the onset repon, the pre-echo can be reduced;
perfect reconstruction of the transient b adiieved by adding aU of the detaib in the
vicinity of the onset.
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Perfect reconstruction of transients

In the previous section, it was shown that pre-echo occurs in compact PSWT
models of transient signals. Indeed, pre-echo is a basic problem in compact models; here,
the problem can be readily solved since the PSWT is capable of perfect reconstruction.
The idea is to only use the compact model where appropriate and to carry out perfect

reconstruction where the compact model is inaccurate, namely near the transients. Near

transients, there b significant energy in the det^ signab of the PSWT; if thb condition
occurs then the subbands should be included in the model. In terms of the PSR matrix,

thb corresponds to representing the first few rows of the matrix exactly. Once the peri
odicity of the signal b establbhed, most of the energy falls in the harmonic bands and the
inter-harmonic bands can be discarded without degrading the estimate. Thus, compaction

b achieved in the pitched regions but not in the unpitched regions. An example of thb
signal-adaptive representation b given in Figure 5.11, which showsthe pre-echo reduction
that results from incorporating one detail signal into the reconstruction. With the excep

tion of filter precbion effects, perfect reconstruction b achieved if all of the detail signab
are included; inclusion of all the detalb b generally desired so as to avoid introducing the

aforementioned dbcontinuities into the reconstruction.

In coding applications, the additional cost of allowing for perfect reconstruction

of transients b not significant; in a musical note, for instance, the attack is typically much

shorter than the pseudo-periodic sustain region, so perfect reconstruction b required only

over a small percentage of the signal. Furthermore, since the attack region b perceptu

ally important, perfect reconstruction of the attack is worthwhile from the standpoint of

psychoacoustics; transparent modeling of attacks b necessary for high-quality audio syn

thesis. In application to musical phrases, then, perfect reconstruction is carried out in the

unpitched regions while harmonic PSWT modeling b carried out for the pitched regions.

Thb process preserves note transitions. In a sense, it also introduces a concurrency in

the unpitched regions similar to that of the determinbtic-plus-stochastic model. When

the signal exhibits transient behavior, a full model with concurrent harmonics and inter-

harmonic detalb is used, whereas in stable pitched regions, the harmonic model alone is

used.

Thb approach of signal-adaptive modeling and reconstruction in the PSWT can

be interpreted as a filter bank where only subbands with significant energy are included

in the synthesis. Similar ideas have been employed in compression algorithms based on

more standard filter bank structures such as the dbcrete wavelet transform and uniform

filter banks [2, 20].
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5.5 Applications

Of course, pitch-synchronous methods such as the ones discussed in this chapter
have immediate applications in audio processing. These have been considered throughout
the chapter; a few further issues are treated in Section 5.5.1. Pitch-synchronous methods
can also be applied to any signals with pseudo-periodic behavior, e.g, heartbeat signals.
The advantages of any such methods result from the effort applied to estimation of the
pitch parameter and the accompanying ability to exploit redundancies in the signal.

5.5.1 Audio Signals

Application of pitch-synchronous Fourier and wavelet approaches to single-voice
audio has been discussed throughout this chapter. These models provide compact repre
sentations that enable a wide range of modifications. In polyphonic audio, pitch-based
methods are not as immediately applicable since a repetitive time-domain structure may

not exist in the signal. In those cases it would be necessary to first carry out source sep
aration to derive single voice components with well-defined pitches; source separation is
a difficult problem that has been addressed in both the signal processing community and
in the psychoacoustics literature in considerations of auditory scene analysis [147, 207].
Given these difficulties, the PSWT is in essence primarily useful for the single voice case,

which is relevant to speech coding and musicsynthesis; for instance, data compression can
be achieved in samplers by using the signal estimate provided by the PSWT.

5.5.2 Electrocardiogram Signals

Electrocardiogram (EGG) signals, «.c. heartbeatsignab, exhibit pseudo-periodic
behavior. Nearby pulses are very similar in shape, but of course various evolutionary
changes in the behavior are medically significant. It is important, then, to monitor the
heartbeat signal and record it for future analysis, especially in ambulatory scenarios where
a diagnostic expertmay not bepresent. Forsuch applications, as in alldata storage scenar
ios, it is both economically and pragmatically important to storethe data in a compressed
format while preserving its salient features. Various methods of ambulatory EGG signal
compression have been presented in the literature; these rely on either the redundancy
between neighboring samplings of the signal or the redundancy between adjacent peri
ods [208, 209]. Recently, a method exploiting both forms of redundancy was proposed
[37]; here, the signal is segmented into pulses and arranged into a structure resembling
a PSR matrix. Then, this structure is interpreted as an image and compressed using a
two-dimensional discretecosine transform (DGT); the compression is structured such that
important features of the pulse shape are represented accurately. The pitch-synchronous
approaches discussed in thischapter, especially the extension to two-dimensional wavelets,
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provide a similar approach; important features such as attack tranaents can be preserved
in the representation. Both this DCT-based ECG compression algorithm and the PSWT
itself are reminiscent of several other efforts involving multidimensional processing of one-
dimensionsd signals, for instance image processing of audio [128, 210].

5.6 Conclusion

For pseudo-periodic signals, the redundancies between adjacent periods can be
exploited to achieve compact signal models. This notion was the basic theme ofthischap
ter, which opened with a discussion of estimation of signal periodicity and construction
of a pitch-synchronous representation. This representation, which is itself useful for sig
nal modification because of its granularity, primarily served to establish a framework for
pitch-synchronous processing. Specifically, it was shown that using a pitch-synchronous
representation inconjunction with sinusoidal modeling leads toasimpler analysis-synthesis
and more compact models than in the general case. Furthermore, it was shown that the
wavelet transform, which is intrinsically unsuitable for wideband harmonic signals, can
be cast into a pitch-synchronous framework to yield effective models of pseudo-periodic
signals. In either case, the model improvement isa result ofthesignal adaptivity brought
about by extraction of the pitch parameter.
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Chapter O

Matching Pursuit and Atomic Models

In atomic models, a signal is represented in terms of localized time-frequency
components. Chapter 3 discussed an interpretation of the sinusoidal model as an atomic
decomposition in which the atoms are derived by extracting parameters from the signal;
this perspective clarified the resolution tradeoffs in the model and motivated multiresolu-
tion extensions. In this chapter, signal-adaptive parametric models based onovercomplete
dictionaries of time-frequency atoms are considered. Such overcomplete expansions can
be derived using the matching pursuit algorithm [38]. The resulting representations are
signal-adaptive in that the atoms for the model are chosen to match thesignal behavior;
furthermore, the models areparametric in that the atoms canbedescribed in terms ofsim
ple parameters. The pursuit algorithm is reviewed in detail and variations are described;
primarily, the method is formalized for the case ofdictionaries ofdamped sinusoids, for
which thecomputation can be carried out with simple recursive filter banks. Atoms based
on damped sinusoids are shown to be more effective than symmetric Gabor atoms for
representing transient signal behavior such as attacks in music.

6.1 Atomic Decompositions

Time-frequency atomic signal representations have been ofgrowing interestsince
their introduction by Gabor several decades ago [71, 72]. The fundamental notions of
atomic modeling are that a signal can be decomposed into elementary functions that
are localized in time-frequency and that such decompositions are useful for applications
such as signal analysis and coding. This section provides an overview of the computation
and properties of atomic models. The overview is based on an interpretation of atomic
modeling as a linear algebraic inverse problem, which is discussed below.
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6.1.1 Signal Modeling as an Inverse Problem

As discussed in Chapter 1, a signal model of the form
M

^rndm[n] (6.1)
m=l

can be expressed in matrix notation as

X = Da with D = [di d2'"dm'"dM]i (6.2)

wherethe signal a: is a column vector{Nx 1), a is a column vectorofexpansion coefficients
(M X1), and D is N x. M matrix whose columns are the expansion functions dm[n].
Derivation of the model coefficients thus corresponds to an inverse problem.

When the functions {dmH} constitute a basis, such as in Fourier and wavelet
decompositions, the matrix D in Equation (6.2) is square (N = M) and invertible and
the expansion coefficients a for a signal x are uniquely given by

a = D~^x. (6.3)

In the framework of biorthogonal bases, there is a dual basis D such that

and or = D^x. (6.4)

For orthogonal bases, D = D. Considering one component in Equation (6.4), it is clear
that the coefficients in a basis expansion can each be derived independently using the
formula

Om = = {dm,x), (6.5)
r

While this ease of computation is an attractive feature, basis expansions are not generally
useful for modeling arbitrary signals given t-he drawbacks demonstrated in Section 1.4.1;

namely, basis expansions do not provide compact models of arbitrary signals. This short
coming results from the attempt to model arbitrary signals in terms of a limited and fixed
set of functions.

To overcome the difficulties of basis expansions, signals can instead be modeled

using an overcompleteset of atoms that exhibits a wide range of time-frequency behaviors

[38, 68, 42, 43, 211]. Such overcomplete expansions allow for compact representation
of arbitrary signals for the sake of compression or analysis [38, 92]. With respect to
the interpretation of signal modeling as an inverse problem, when the functions {dmW}
constitute an overcomplete or redundant set (M > AT), the dictionary matrix D is of
rank N and the linear system in Equation (6.2) is underdetermined. The null space of D
then has nonzero dimension and there are an infinite number of expansions of the form

of Equation (6.1). Various methods of deriving overcomplete expansions are discussed
in the next section; specifically, it is established that sparse approximate solutions of an
inverseproblem correspond to compact signal models, and that computation of such sparse
models calls for a nonlinear approach.
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6.1.2 Computation of Overcomplete Expansions

As described in Section 1.4.2, there are a variety of frameworks for deriving

overcomplete signal expansions; these differ in the structure of the dictionary and the
manner in which dictionary atoms are selected for the expansion. Examples include best
basis methods and adaptive wavelet packets, where the overcomplete dictionary consists
of a collection of bases; a basis for a signal expansion is chosen from the set of bases
according to a metric such as entropy or rate-distortion [40,41,60]. In this chapter,signal
decomposition using more general overcomplete sets is considered. Such approaches can
be roughly grouped into two categories: parallel methods such as the method of frames
[63, 70], basis pursuit [42, 43], and FOCUSS [68, 67], in which computation of the various
expansion components is coupled; and, sequential methods such as matching pursuit and
its variations [38, 68, 211, 212, 213, 214], in which models are computed one component
at a time. All of these methods can be interpreted as approaches to solving inverse

problems. For compact signal modeling, sparse approximate solutions are of interest;
the matching pursuit algorithm of [38] is particularly useful since it is amenable to task
of modeling arbitrary signals using parameterized time-frequency atoms in a successive
refinement framework. After a brief review of the singular value decomposition and the
pseudo-inverse, nonlinear approaches such as matching pursuit are motivated.

The SVD and the pseudo-inverse

One solution to arbitrary inverse problems can be arrived at using the singular
value decomposition of the dictionary matrix, from which the pseudo-inverse can
be derived [58]. The coefficient vector d = D'̂ x has the minimum two-norm of all
solutions [58]. This minimization of the two-norm is inappropriate for deriving signal
models, however, in that it tends to spread energy throughout all of the elements of d.
Such spreading undermines the goal of compaction.

An example of the dispersion of the SVD approach was given earlier in Figure
1.5. Figure 6.1 shows an alternative example in which the signal in question is constructed
as the sum of two functions from an overcomplete set, meaning that there is an expansion

in that overcomplete set with only two nonzero coefficients. This exact sparse expansion
is shown in the plot by the asterisks; the dispersed expansion computed using the SVD
pseudo-inverse is indicated by the circles. The representations can be immediately com
pared with respect to two applications: first, the sparse model is clearly more appropriate
for compression; second, it provides a more useful analysis of the signal in that it identi
fies fundamental signal structures. This simulation thus provides an example of an issue
discussed in Chapter 1, namely that compression and analysis are linked.
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pseudo-inverse (o).
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Sparse approximate solutions and compact models

Given the desire to derive compact representations for signal analysis, coding,

denoising, and modeling in general, the SVD is not a particularly useful tool. An SVD-
based expansion is by nature not sparse, and thresholding small expansion coefficients to
improve the sparsity is not a useful approach [215, 69]. A more appropriate paradigm
for deriving an overcomplete expansion is to apply an algorithm specifically designed to
arrive at sparse solutions. Because of the complexity of the search, however, it is not
computationally feasible to derive an optimal sparse expansion that perfectly models a
signal. It is likewise not feasible to compute approumate sparse expansions that minimize
the error for a given sparsity; this is an NP-hard problem [39]. For this reason, it is
necessary to narrow the considerations to methods that either derive sparse approximate
solutions according to suboptimal criteria or derive exact solutions that are not optimally
sparse. The matching pursuit algorithm introduced in [38] is an example of the former
category; it is the method of choice here since it provides a framework for deriving sparse
approximate models with successive refinements and since it can be implemented with low
cost as will be seen. Methods of the latter type tend to be computationally costly and to

lack an effective successive refinement framework [42, 67].

6.1.3 Signal-Adaptive Parametric Models

The set ofexpansion coefficients and functions in E)quation (6.1)provides a model
of the signal. If the model is compact or sparse, the decomp(»ition indicates fundamental
signal features and is useful for analysis and coding. Such compact models necessarily
involve expansion functions that are highly correlated with the signal; this property is an
indication of signal adaptivity.

As discussed throughout this thesis, effective signal models can be achieved by
using signal-adaptive expansion functions, e.g. the multiresolution sinusoidal partials of



189

Chapter 3 or the pitch-synchronous grains of Chapter 5. In those approaches, model
parameters are extracted from the signal by the analysis process and the synthesisexpan
sion functions are constructed using these parameters; in such methods, the parameter
extraction leads to the signal adaptivity of the representation. In atomic models based on
matching pursuit withan overcomplete dictionary, signal adaptivity is instead achieved by
choosing expansion functions from the dictionary that match the time-frequency behavior
of the signal. Using a highly overcomplete set of time-frequency atoms enables compact
representation ofa wide range oftime-frequency behaviors. Furthermore, when the dictio
nary has a parametric structure, i.e. when the atomsin the dictionary can be indexed by
meaningful parameters, the resultant model is bothsignal-adaptive andparametric. While
this framework is fundamentally different from that of traditional parametric models, the
signal models in the two cases have similar properties.

6.2 Matching Pursuit

Matching pursuit is a greedy iterative algorithm for deriving signal decomposi
tions in terms of expansion functions chosen from a dictionary [38]. To achieve compact
representation of arbitrary signals, it is necessary that the dictionary elements or atoms
exhibit a wide range of time-frequency behaviors and that the appropriate atoms from the
dictionary be chosen to decompose a particular signal. When a well-designed overcom
plete dictionary is used in matching pursuit, the nonlinear nature of the algorithm leads
to compactsignal-adaptive models [38, 211, 92].

A dictionary can be likened to the matrix D in Ekjuation (6.2) by considering
the atoms to be the matrix columns'; then, matching pursuit can be interpreted as an
approach for computing sparse approximate solutions to inverse problems [69, 215]. For
an overcomplete dictionary, the linear system is underdetermined and an infinite number
of solutions exist. As discussed in Section 6.1.2, sparse approximate solutions are useful
for signal analysis, compression, and enhancement. Since such solutions are not provided
by traditional linear methods such as the SVD, a nonlinear approximation paradigm such
as matching pursuit is called for [38, 215, 69, 92].

6.2.1 One-Dimensional Pursuit

The greedy iteration in the matching pursuit algorithm is carried out as follows.
First, the atom that best approximates the signal is chosen, where the two-norm is used
as the approximation metric because of its mathematical convenience. The contribution
of this atom is then subtracted from the signal and the process is iterated on the residual.
Denoting the dictionary by D since it corresponds to the matrix D in Equation (6.2), the
task at the t-th stageof the algorithm is to find the atom dm(i)M ^ ^ that minimizes the
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two-norm of the residual signal

n+iW = r.[n] - (6.6)

where a,* is a weight that describes the contribution of the atom to the signal, f.e, the
expansion coefficient, and m(t) is the dictionary index ofthe atomchosen at the t-th stage;
the iteration begins with ri[7i] = ®[n]. To simplify the notation, the atom chosen at the
t-th stage is hereafter referred to as where

9i[n] = dm(i)[n] (6.7)

from Equation (6.6). The subscript t refers to the iteration when gi[v\ was chosen, while
m(i) is the actual dictionary index of

Treating the signals as column vectors, the optimal atom to choose at the t-th
stage can be expressed as

gi = argmin |In+i|p = argmin ||r,- - aigi\p. (6.8)
gi£D SiSD

The orthogonality principle gives the value of a,-:

{ri+iygi) = (ri-ocigi^gi) - (r,-- = 0 (6.9)

V _ _ in\

' ~ ~ llffilP " ^^ ^
where the last step follows from restrictingthe atoms to be unit-norm. The normof r,+i[n]
can then be expressed as

l|ri+lll' = llnll' - = Ikill' - (6.11)

which is minimized by maximizing the metric

* = |a.f = Ksi,ri)p, (6.12)

which is equivalent to choosing the atom whose inner product with the signal has the
largest magnitude; Equation (6.8) can thus be rewritten as

gi = argmax^ = arg max|{gi, r,) |. (6.13)
giED gieD

An example of this optimization is illustrated in Figure 6.2. Note that Equation (6.11)
shows that the norm of the residual decreases as the algorithm progresses provided that
an exact model has not been reached and that the dictionary is complete; for an under-

complete dictionary, the residual may belong to a subspace that is orthogonal to all of the
dictionary vectors, in which case the model cannot be further improved by pursuit.
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Figure 6.2: Matching pursuit and the orthogonality principle. The two-norm or
Euclidean lengthof rt>i is minimized by choosing gi to maximize the metric |{9iirt)|
and Oi such that {ri+i^gi) = 0.

In deriving a signal decompc^ition, the matching pursuit is iterated until the
residual energy is below somethreshold or until someother halting criterion is met. After
/ iterations, the pursuit provides the sparse approximate model

I I

(6.14)
1=1 t=l

As indicated in Equation (6.11), the mean-squared error of the model decreases as the
number of iterations increases [38]. This convergence implies that I iterations will yield
a reasonable /-term model; this model, however, b in general not optimal in the mean-

squared sense because of the term-by-term greediness of the algorithm. Computing the
optimal /-term estimate using an overcomplete dictionary requires finding the minimum
projection error over all /-dimensional dictionary subspaces, which is an NP-hard problem
as mentioned earlier; this comple»ty result is established in [39] by relating the optimal

approximation problem to the exact cover by 3-sets problem, which is known to be NP-

complete.

To enable representation of a wide range of signal features, a large dictionary of

time-frequency atoms is used in the matching pursuit algorithm. The computation of the

correlations (flr, r,) for all y G /^ is thus costly. As noted in [38], this computation can be
substantially reduced using an update formula based on Equation (6.6); the correlations
at stage t -1-1 are given by

(5,r,+i) = - ai(g,gi), (6.15)

where the only new computation required for the correlation update is the dictionary

cross-correlation term (fl',fir»), which can be precomputed and stored if enough memory is
available. This is discussed further in Section 6.4.3.

It should be noted that matching pursuit is similar to some forms of vector

quantization [216] and is related to the projection pursuit method investigated earlier
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in the field of statistics for the task of finding compact models for data sets [217, 218].
Furthermore, such greedy approximation methods have been considered in linear algebra
applications for some time [69, 219].

6.2.2 Subspace Pursuit

Though searching for the optimal high-dimensional subspace is not reasonable, it
is worthwhile to considerthe related problemoffinding an optimal low-dimension subspace
at each iteration of the pursuit, especially if the subspaces under consideration exhibit a
simplifying structure. In this variation of the algorithm, the t-th iteration consists of
searching for an iV x i? matrix G, whose R columns are dictionary atoms, that minimizes
the two-norm of the residual r.+i = r,- —Go, where a is an i2 X 1 vector of weights.
This i2-dimensional formulation is similar to the one-dimensional case; the orthogonality

constraint (r< - Go, G) = 0 leads to a solution for the weights:

a = (G"Gy^G''ri. (6.16)
The energy of the residual is then given by

(r.+i.r.+i) = (run) - rfC G»r.-, (6.17)

which is minimized by choosing G so as to maximize the second term. This approach is
expensive unless G consistsof orthogonal vectors or has some other special structure.

6.2.3 Conjugate Subspaces

One useful subspace to consider in subspace pursuit is the two-dimensional sub-
space spanned by an atom and its complex conjugate. Here, the two columns of G are
simply an atom g and its conjugate g*. Assuming that the signal r,- is real and that g has
nonzero real and imaginary parts so that G has full column rank and G^G is invertible,
the results given in the previous section can besignificantly simplified. Letting T= {g, g*)
and /? = (flf, r,), the metric to maximize through the choice ofg is

® - r(/3*)' - r*^^) (6.18)

and the optimal weights are

a =

• 1« u
1

•

1

1

1

to

—
-I » u

1

•

•

(6.19)

Note that the above metric can also be written as

« = /3*a(l) + ;8a(l)* (6.20)
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and that a(l) = a(2)*, meaning that the algorithm simply searches for the atom p,- that
minimizes the two-norm of the residual

ri+i[n] = r,[n] - a,(l)pi[n] - (6-21)

= ri[n] - 2»{ai(l)<3f,•[»]}, (6.22)

which is real-valued; the orthogonal projection of a real signal onto the subspace spanned
by a conjugate pair is again real.

The decomp(^itions that result from considering conjugatesubspaces are of the
form

I

X « 253»{a,(l)<7.[n]}. (6.23)
t=i

This approach provides real decompositions of real signals using an underlying complex
dictionary. The same notion is discussed briefly in [38] based on a different computational
framework.

Fordictionaries consisting of both complex and purely real (or imaginary) atoms,
the real atoms must be considered independently of the various conjugate subspaces since
the above formulation breaks down when g and g* are linearly dependent; in that case,

|r| = 1 and the matrix G is singular. It is thus necessary to compare metrics of the
form given in Equations (6.18) and (6.20) for conjugate subspaces with metrics of the
form |(p, from Equation (6.12) for real atoms. These metrics quantify the amount of
energy removed from the residual ineither case, and thus provide for a fair choice between
conjugate subspaces and real atoms in the pursuit decomposition.

6.2.4 Orthogonal Matching Pursuit

As depicted in Figure 6.2, the matching pursuit algorithm relies on the orthogo
nality principle. At stage t, the residual n is projected onto the atom gt such that the new
residual r,*+i is orthogonal to p,*. If the dictionary is highly overcomplete and its elements
populate the signal space densely, the first few atoms chosen for a decomposition tend to
be orthogonal to each other, meaning that successive projection operations extract inde
pendent signal components. Later iterations, however, do not exhibit this tendency; the
selected atoms are no longer orthogonal to previously chosen atoms and the projection
actually reintroduces components extracted by the early atoms. This problem of readmis-
sion is addressed in orthogonal matching pursuit and its variations; the fundamental idea
is to explicitly orthogonalize the functions chosen for the expansion.

Backward orthogonal matching pursuit

Orthogonal matching pursuit is a basic variation of the matching pursuit algo
rithm [212]. In this method, the i-th stage is initiated by selecting an atom gi according
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to the correlation metric as in the standard pursuit; then, rather than orthogonalizing the
residual r,+i with respect to the single atom the residual isorthogonalized with respect
to the subspace spanned by the atomschosen for the expansion up to and including the
t-th stage, f.c. the atoms 911921 **",9%' To achieve this orthogonalization, however, it is
necessary to modify all of the expansion coeflBcients at each stage. This issue is clarified
by interpreting orthogonal matching pursuit as a subspace pursuit in which the space is
iteratively grown. In terms of the discussion of subspace pursuit in Section 6.2.2, the
subspace matrix is

Gi = \gi 92 ••• 9i] (6.24)

and the orthogonalization criterion is

{ri+iiGi) = (x-Giai,Gi) = 0. (6.25)

This constraint can be used to derive the appropriate vector of coefficients a,- for the

subspace projection, namely

a.- = (6.26)

which differs from Equation (6.16) in that the coefficients are derived as a function of the
original signal x and not as a function of the residual r,'. The correlation metric for atom
selection, however, is basedon the residual signalas in one-dimensional pursuit. Note that
the inverse can be computed recursively using the matrix inversion lemma and

the inverse (g2.i^?»-i) ĉomputed at the previous stage [212].
At any given stage ofan orthogonal-pursuit, derivation of the newset ofexpansion

coefficients can be interpreted as a Gram-Schmidt orthogonalization carried out on the
new atom chosen for the expansion. This interpretation can be established in an inductive

manner by first assuming that the atoms at stage i —1 have been orthogonalized by a
Gram-Schmidt process; in other words, assume that the matrix Gi-i has been converted
into a matrix G,*_i with the same column space but with orthogonal columns. In this

framework, the signal approximation at stage t —1 can be expressed as

X « Gi-iOi-i, (6.27)

where

= G?_^x (6.28)

since the columnsofGi_i are orthogonal; note that Gi_i is an iSTxt—1 matrix. At stage t, a
new unit-norm atom 9i is chosen for the expansion according to the magnitude correlation
metric of Equation (6.12); then, the approximation error is minimized by projecting the
signal onto the subspace spanned by the columns of the new matrix

Gi = [Gi-i 9i]- (6.29)
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Using the solution for the coefficients given in £)quation (6.26), the *-term signal decom
position can be written as

-1GiOi = [Gi-i a.] a. = [G.-, gi]{GfG,)' G?i (6.30)

li-i GJLiffi 1"'r 0.-1
1 I I gfx

= [Gi-i gi]
T j-+ i_r«r 1-

i-r«r

G?.o.- r'
= <7t] (6.31)

where T = G^iQi and In denotes an identity matrix ofsize n x n. Thedecomposition can
then be simplified to

- ^ , (G.-,G&. -/A,)a.-9f'(G...,GP., -

i

= Gi-ia,-! + gi9i"x = 9j^ (6-34)
i=i

where

ffi = ~ (6.35)
y/l-g?G,.Migi

The vectorgi has unit norm and is orthogonal to the columns of the matrix G»_i. This or
thogonality, combined with the initial orthogonality ofthe columns ofGf-i, indicates that
the final expression in E)quation (6.34) is a basis expansion in an t-dimensionai subspace
ofthe signal space. It is not a basis expansion of the original signal; it is an approximation
of the signal in the subspace spanned by ,^2> •••»9ii for which an orthogonal basis has
been derived by the Gram-Schmidt method. For i = iV, this subspace is equivalent to the
signal space and a perfect representation is achieved.

The Gram-Schmidt orthogonalization discussed above need not be explicit in an
implementation of orthogonal matching pursuit. As mentioned earlier, the pursuit can
be carried out with reference to the original dictionary atoms by updating the inverse
using the matrix inversion lemma; this approach preserves the parametric nature of the
expansion, which would be compromised if the atoms were explicitly modified via the
Gram-Schmidt process. Furthermore, note that this algorithm corrects for readmitted
components in the orthogonalization step. Since this corrective orthogonalization iscarried
out after the atom selection, the algorithm can be referred to as a backward method; this
designation serves to differentiate it from the forward approach discussed in the next
section.

A number of variations of orthogonal matching pursuit can be envisioned. For
instance, the orthogonalization need not be carried out every iteration. In the limit, an
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expansion given bya one-dimensional pursuitcan be orthogonalized after its last iteration
by projecting the original signal onto the subspace spanned by the iteratively chosen
expansion functions. This projection operation minimizes the error of the residual for
appronmating the signal using those particular expansion functions; this approximation
is however not necessarily a globally optimal sparse model.

In the literature, speech codingusingorthogonalmatching pursuit has been dis
cussed [220]. Furthermore, a number of refinements of the algorithm have been proposed
and explored [68, 214]. Such refinements basically involve different ways in which orthog
onality is imposed or exploited; for instance, orthogonal components can be evaluated
simultaneously as in basis expansions [214]. The following section discusses a method
which employs the Gram-Schmidt procedure in a different way than the backward pursuit
described above.

Forward orthogonal matching pursuit

In orthogonal matching pursuit as proposed in [212], which corresponds to the
backward pursuit described above, the atom gi is chosen irrespective of the subspace
spanned by the first i —1atoms, i.e. the column spaceofGi_i, and then orthogonalization
is carried out. Given a decompc^ition with t —1 atoms, however, the approumation error
of the succeeding i-term model can be decreased if the choice of atom is conditioned
on Gt-i. As will be seen, this conditioning leads to a forward orthogonalization of the
dictionary; in other words, the dictionary is orthogonalized prior to atom selection.

Using a similar induction framework as above, where G,_i is assumed to have
orthogonal columns, the i-term expansion can be expressed as in Equation (6.33); the
difference in the forward algorithm is that tbe atom gi has not yet been selected. Rather
than choosing the atom to maximize the magnitude of the correlation {g^ r,*) as above, in
this approach the atom is chosen to maodmize the metric

V- = (6.36)

which corresponds to the second term in Equation (6.17) from the general development
of subspace pursuit. For this specific case, where the subspace is again iteratively grown,
the metric can be expressed as

Htj} = X
^ ^ - lN)9,gnG;.tGfL, - In)] (6.37)

= (6-38)

where gi is as given in Equation (6.35). In the earlier formulation, gi was chosen and gi was
derived from that choiceso as to be orthogonal to the columnsof Gi-i. In this case, on the
other hand, all possible gi are considered for the expansion, and the one which maximizes
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the metric $ is chosen. Given some Gj-i) the t-term approximation error resulting from

this choice of gi will always be less than or equal to the error of the t-term approximation
arrived at in the backward orthogonal matching pursuit.

Note that all of the atoms gi are orthogonal to Gi-i by construction. This
observation suggests an interpretation of this variation of orthogonal matching pursuit.
Specifically, this approachis equivalent to carryingout a Gram-Schmidt orthogonalization
on the dictionary at each stage. Once an atom is chosen from the dictionary for the
expansion, the dictionary is orthogonalized with respect to that atom; in the next stage,
correlations with the orthogonalized dictionary, namely {5, i), are computed to find the
atom that maximizes the metric 9. This orthogonalization process completely prevents
readmission, but at the cost of added computation to maintain the changing dictionary.

Greedy algorithms and computation-rate-distortion

In matching pursuit and its orthogonal variations, each iteration attempts to
improve the signal approximation as much as possible by minimizing some error metric.
In orthogonal pursuits, the metric depends on previous iterations; in any case, however,
the approximation is made without regard to future iterations. Matching pursuit is thus
categorized as a greedy algorithm. It is well known that such greedy algorithms, when
applied to overcomplete dictionaries, do not lead to optimal approximations, i.e. optimal
compact models; however, greedy approachesare justified given the complexity of optimal
approximation [39, 69]. Furthermore, it should be noted as in Section 6.1.2 that the useof
a greedy algorithm inherently leads to successive refinement, which is a desirable property
in signal models.

For the application of compact signal modeling, it is of interest to compare the
approximation errors of matching pursuit and the backward and forward orthogonal pur
suits. This comparison, however, can only be made in a definitive sense for the case where
each algorithm is initiated at stage t with the same first t —1 atoms; then, the energy
removed from the residual in the forward case is always greater than or equal to that in the

backward approach, which is in turn greater than or equal to that in the standard pursuit.
Conditioned on the first t —1 terms, the forward approach provides the optimal t-term

approximation. For the case of arbitrary t-term decompositions, however, no absolute
comparison can be made between the algorithms. While error bounds can be established

for the various greedy approximations, the relative performance for a given signal cannot

be guaranteed a priori since the algorithms use different strate^es for selecting atoms

[221, 222, 223]. Useful predictive comparisons of the algorithms can be carried out using
ensemble results based on random dictionaries [68].

In the preceding paragraph, as in most discussions of signal modeling, compar

isons between models are phrased in terms of the amount of information required to
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describe a certain model, t.e. the compaction, and the approximation error of the model.
This rate-dbtortion tradeoff b the typical metric by which modeb are compared. In
implementations, however, it b also important to account for the resources required for
model computation. In general, a model canachieve a better rate-dbtortion characterbtic
through increased computation. For example, recall from the earlier discussion that an
approximation provided by a standard pursuit can be improved after the last stage by
backward orthogonalbation of the full expansion; thb process results in a lower dbtortion
at a fixed rate at the expense of the computation of the subspace projection. Given the
preceding observation about the impact of computation and this supporting example, it
b reasonable to assert that computation considerations are important in model compar
isons. Examples of computation-dbtortion tradeoffs are given for the case of orthogonal
matching pursuit in [212]; a preliminary treatment ofgeneral computation-rate-dbtortion
theory b given in [224].

6.3 Time-Frequency Dictionaries

Matching pursuit yields a sparse approximate signal decomposition based on a
dictionary of expansion functions. In a compact model, the atoms in the expansion neces
sarilycorrespond to basic signal features. Thb b especially useful for anaJysb and coding
if the atoms can be described by meaningful parameters such as time location, frequency
modulation, and scale; then, the basic signal features can be identified and parameter
ized. In this light, parametric overcomplete dictionaries consbting of atoms that exhibit
a wide range of localbed time and frequency behaviors are of great interest; matching
pursuit then provides a compact, adaptive, and parametric time-frequency representation
of a signal [38]. Such localized time-frequency atoms were introduced by Gabor from a
theoretical standpoint and according to psychoacoustic motivations [71, 72].

6.3.1 Gabor Atoms

The literature on matching pursuit has focused on applications involving dictio
naries of Gabor atoms since these are appropriate expansion functions for general time-

frequency signal modeb [38]. ^ In continuous time, such atoms are derived from a single
unit-norm window function g{t) by scaling, modulation, and translation:

9{w}(f) = (^) (6-39)
Thb definition can be extended to discrete time by a sampling argument as in [38]; funda
mentally, the extension simply indicates that Gabor atoms can be represented in discrete

^Atoms corresponding to wavelet and cosine packets have also been considered [42, 212].
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Figure 6.3: Symmetric Gabor atoms. Sudi time-frequency dictionaiy elements are
derived from a symmetric window by scaling, modulation, and tranriation operations
as described in Equation (6.39).
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(6-40)

where fa[n] is a unit-norm window function supported ona scale s. Examples aredepicted
in Figure 6.3.

Note that Gabor atoms are scaled to have unit-norm and that each is indexed in

the dictionary by a parameter set {s,u;,r}. This parametric structure allows for a simple
description of a specific dictionary, which is useful for compression. When the atomic
parameters are not tightly restricted, Gabordictionaries are highly overcomplete and can
include both Fourier and wavelet-like bases. One issue to note is that the modulation

of an atom can be defined independently of the time shift, or dereferenced^ as it will be
referred to hereafter:

=^9[^] e''" =ei'̂ 9i,^,r}[n]. (6.41)
This simple phase relationship will have an impact in later considerations; note that this
distinction between models of time is analogous to the issue discussed in Section 2.2.1 in
the context of the STFT time reference.

In applications of Gabor functions, </[n] is typically an even-symmetric window.
The associated dictionaries thus consist of atoms that exhibit symmetric time-domain be

havior. This is problematic for modeling asymmetric features such as transients, which
occur frequently in natural signals such as music. Figure 6.4(a) shows a typical transient
from linear system theory, the damped sinusoid; the first stage of a matching pursuit
based on symmetric Gabor functionschooses the atom shown in Figure 6.4(b). This atom
matches the frequency behavior of the signal, but its time-domain symmetry results in
a pre-echo as indicated. The atomic model has energy before the onset of the original
signal; as a result, the residual has both a pre-echo and a discontinuity at the onset time
as shown in Figure 6.4(c). In later stages, then, the matching pursuit must incorporate
small-scale atoms into the decomposition to remove the pre-echo and to model the discon
tinuity. One approach to this problem is the high-resolution matching pursuit algorithm
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Figure 6.4: A pre-echo is introduced in atomics models of transient signals if the
atoms are symmetric. The plots show (a) a damped sinusoidal signal, (b) the first
atom chosen from a symmetric Gabor dictionary by matching pursuit, and (c) the
residual. Note the pre-echo in the atomic model and the artifact in the residual at

the onset time.

proposed in [213, 225], where symmetric atoms are generally still used but the selection
metric b modified so that atoms that introduce drastic artifacts are not chosen for the

decomposition. Fundamentally, however, symmetric functions are simply not well-suited
for modeling asymmetric events. With that in mind, an alternative approach to modeling
signab with transient behavior is to use a dictionary of asymmetric atoms, e,g. damped
sinusoids. Such atoms are physically sensible given the common occurrence of damped
oscillations in natural signab.

6.3.2 Damped Sinusoids

The common occurrence of damped oscillations in natural signals justifies con

sidering damped sinusoids as building blocks in signal decompositions. The application at
hand b further motivated in that damped sinusoids are better suited than symmetric Ga^
bor atomsfor modeling transients. Like the atoms in a general Gabor dictionary, damped
sinusoidal atoms can be indexed by characteristic parameters, namely the damping factor

a, modulation frequency w, and start time r:

9{a«r}H = 5. - r], (6.42)

or, if the modulation b dereferenced,

W}M = 5. - r], (6.43)

where the factor Sa is included for unit-norm scaling. Examples are depicted in Figure 6.5.
It should be noted that these atoms can be interpreted as Gabor functions derived from
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Figure 6.5: Damped sinusoids: Gabor atoms based on a one-sided exponential
window.

201

a one-sided exponential window; they are just differentiated from typical Gabor atoms
by their asymmetry. Also, the atomic structure is more readily indicated by a damping
factor than a scale parameter, so the dictionary index set {a,a;, r} is used instead of the
general Gabor set {s,a;,r}.

For the sake of realizability, a damped sinusoidal atom is truncated when its
amplitude falls below a threshold T; the corr^ponding length is L= 2<nd
the appropriate scaling factor is then Sa = ^(1 —o^)/(1 — Note that this truncar
tion results in sensible localization properties; heavily damped atoms are short-lived, and
lightly damped atoms persist in time. Also note that the atoms are one-sided; an atom
corresponds to the impulse response ofa filter with a single complex pole; this isa suitable
property given the intent ofrepresenting transient signals, assuming that the source ofthe
signal can be well-modeled by simpledinear systems.

Several approaches in the literature have dealt with time-frequency atomshaving
exponential behavior. In [226], damped sinusoids are used to provide a time-frequency
representation in which transients are identifiable. In the application outlined in [226],
some prior knowledge of the damping factor is assumed, which is reasonable for detection
applications but inappropriateforderiving decompositions ofarbitrary signals; extensions
of the algorithm, however, may prove useful for signal modeling. In [227], wavelets based
on recursive filter banks are derived; these provide orthogonal expansions with respect to

basis functions having infinite time support. This treatment focuses on the more general
scenario of overcomplete expansions; unlike in the basis case, the constituent atoms have
a flexible parametric structure.

6.3.3 Composite Atoms

The simple example of Figure 6.4 showsthat symmetric atoms are inappropriate
for modeling some signals. While the Figure 6.4 example is motivated by physical con
siderations, I.e. simple linear models of physical systems, it certainly does not encompass

the wide range of complicated behaviors observed in natural signals. It is of course triv-
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ial to construct examples for which asymmetric atoms would prove similarly ineflFective.

Thus, given the task of modeling arbitrary signals (that might have been generated by
complicated nonlinear systems), it can be argued that a wide range of both symmetric
and asymmetric atoms should be present in the dictionary. Such composite dictionaries
are considered here.

One approach to generating a composite dictionary b to simply merge a dictio
nary of symmetric atoms with a dictionary of damped sinusoids. The pursuit described
in Section 6.2 can be carried out using such a dictionary. One caveat to note is that the
atomic index set requires an additional parameter to specify which type of atom the set
refers to. Furthermore, the nonuniformity of the dictionary introduces some difficulties in
the computationand storageof the dictionarycross-correlations needed for the correlation
update of Equation (6.15). Such computation issues will be discussed in Section 6.4.3; it is
indicated there that the uniformity of the dictionary is coupled to the cost of the pursuit.

It is shown in Section 6.4.1 that correlations with damped sinusoidal atoms can

be computed with low cost without using the update formula of Equation (6.15). The
approach applies both to causal and anticausal damped sinusoids, which motivates con
sidering two-sided atomsconstructed bycoupling causal and anticausal components. This
constructioncan be used to generatesymmetric and asymmetric atoms;furthermore, these
atoms can be smoothed by simple convolution operations. Such atoms take the form

(6-«)

or, if the modulation is dereferenced, ,

where the amplitude envelope is a unit-norm function constructed using a causal and an
anticausal exponential according to the formula

f{a,b,J}[n] = - ^[ti]) * (6.46)

where <5[n] issubtracted because thecausal and anticausal components, aswritten, overlap
at n = 0. The function hj[n] is a smoothing window of length J; later considerations will
be limited to the caseof a rectangular window. A variety ofcomposite atomsare depicted
in Figure 6.6.

The unit-norm scaling factor 5{o,6,j} for a composite atom is given by

VT(o,4,J)'

where T(a, 6, J) denotes the squared-norm of the atom prior to scaling:

T(a, 6, J) = 531+h~^u[-n] - 5[n]) *hj[n]f , (6.48)
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Figure 6.6: Composite atoms: Symmetric and asymmetric atoms constructed by
rmipling caiiRal and AnHrAinaal damped sinusoids and using low-mrder smoothing.
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which can be simplified to

T(o,6,J) = + TTftJ +
isO ibsO

which does not take truncation of the atoms into account. This approximation does not

introduce significant errors if a small truncation threshold is used; furthermore, it should
be noted that if some error is introduced, the iterative analysis-by-synthesis structure of

matching pursuit corrects the error at a later stage. For the case of symmetric atoms
(a = 6), the squared-norm can be written in closed form as

[j(l - o") +2aJ(l - +a-') - 40(0' +o+1)(1 - o"')]T(o,o,J) - , (l +o)(l-a)» ' ^

where a rectangular smoothing window has been assumed in the derivation. This scale
factor affects the computational cost of the algorithm, but primarily with respect to pre-
computation. This issue will be examined in Sections 6.4.2 and 6.4.3.

The composite atoms described above can be written in terms of unit-norm

constituent atoms:

+ (6.51)

_ ^ t+A}M %.u,.t+A}W _ ^g g2)
JaA=0

where ^^^[n] is a causal atom and W^ anticausal atom defined as

9{W}M = Si - r)]. (6.53)

Note that atoms with dereferenced modulation are used in the construction of Equation

(6.52) so that the modulations add coherently in the sum over the time lags A; in the
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other case, the constituent atoms must be summed with phase shifts to achieve
coherent modulation of the composite atom. As will be seen in Section 6.4.2, this atomic
construction leads to a simple relationship between the correlationsof the signal with the
composite atom and with the underlying damped sinusoids, especially in the dereferenced
case. Also, Equation (6.52) indicates the interplay of the various scale factors. Both of
these issues will prove important for the computation considerations of Section 6.4.3.

The special case of symmetric atoms (a = 6), one example of which is shown in
Figure 6.6, suggests the use ofthis approach to construct atoms similar to symmetric Ga-
bor atoms based on common windows. Given a unit-norm windowfunction w[n], the issue
is to choose a damping factor a and a smoothing order J such that the resultant /{a,o,J}W
accurately mimics w[n]. Using the two-norm as an accuracy metric, the objective is to
minimize the error

<a,J) = ||/{....j}W-ti,[n]||2 (6.54)

by optimizing a and J. Since /{o,o,J}W ^.nd ii;[n] areboth unit-norm, this expression can
be simplified to:

e{a,J) =2̂ 1-5^j}[nMn]j- (6-55)
Not surprisingly, the overall objective of the optimization is thus to maximize the corre
lation of /{o.o,J}N and w[n],

c(a,J) = (6.56)
n

In an implementation, this would not be an on-line operation but rather a precomputation
indicating values of a and J to be used in the parameter set of the composite dictionary.
Interestingly, this precomputation itself resembles a matching pursuit. Note that the
values ofa and J for the /{o,o,J}W composite dictionary are based on the scales of
symmetric behavior to be included in the dictionary. Presumably, closed form solutions
for a and J can be found for some particular windows; such solutions are of course limited
by the requirement that J be an integer. The intent of this treatment, however, is not to
investigate the computational issue of window matching per se, but instead to provide an
e^tence proofthat symmetric atoms constructed from one-sided exponentials by simple
operations can reasonably mimic Gabor atoms based on standard symmetric windows.
Figure 6.7 shows anexample ofa composite atomthat roughly matches a Banning window
and a Gaussian window.

The upshot of the preceding discussion is that a composite dictionary containing
a wide range ofsymmetric and asymmetric atomscan be constructed from uniform dictio
naries of causal and anticausaJ damped sinusoids. Atoms resembling common symmetric
Gabor atoms can readily be generated, meaning that this approach can be tailored to
include standard symmetric atoms as a dictionary subset; there is no generality lost by
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Figure 6.7: Symmetric composite atoms: Anexample ofa smoothed composite atom
(solid) that roughly matches a Wanning window (dashed) and a Gaussian window
(dotted).
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constructing atoms in this fashion. As will be shown in Section 6.4.1, the pursuit com
putation for dictionaries of damped sinusoids are of low cost; this leads to the methods
of Section 6.4.2, namely low-cost algorithms for matching pursuit based on a composite
dictionary. Such dictionaries will be discussed throughout the remainder of this chapter.

6.3.4 Signal Modeling

In atomic modeling by matching pursuit, the characteristics of the signal esti
mate fundamentally depend on the structure of the time-frequency dictionary used in the
pursuit. Consider the model given in Figure 6.8, which is derived by matching pursuit
with a dictionary of symmetric Gabor atoms. In the early stages of the pursuit, the al
gorithm arrives at smooth estimates of the global signal behavior because the large-scale
dictionary elements to choose from ate themselves smooth functions. At later stages, the
algorithm chooses atoms of smaller scale to refine the estimate; for instance, small-scale
atoms are incorporated to remove pre-echo artifacts.

In the example of Figure 6.9, the model is derived by matching pursuit with
a dictionary of damped sinusoids. Here, the early estimates have sharp edges since the
dictionary elements are one-sided functions. In later stages, edges that require smoothing
are refined by inclusion of overlappingatoms in the model; also, as in the symmetric atom
case, atoms ofsmall scale are chosen in late stages to counteract any inaccuracies brought
about by the early atoms.

In the examples of Figures 6.8 and 6.9, the dictionaries are designed for a fair
comparison. Specifically, the dictionary atoms havecomparablescales, and the dictionaries
are structured such that the mean-squared errors of the respective atomic models have
similar convergence properties. A comparison of the convergence behaviors is given in
Figure6.10(a); the plot in Figure6.10(b) shows the energy ofthe pre-echo in the symmetric
Gabor model and indicates that the pursuit devotes atoms at later stages to remove the
pre-echo artifact. The model based on damped sinusoids does not introduce a pre-echo.
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Figure 6.8: Signal modeling with symmetric Gabor atoms. The original signal in
(a), which is the onset of a gong strike, is modeled by matching ptirsuit with a dic
tionary of symmetric Gabor atoms derived from a Hanning prototype. Approximate
reconstructions at various pursuit stages are given: (b) 5 atoms, (c) 10 atoms, (d) 20
atoms, and (e) 40 atoms.
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Figure 6.9: Signal modeling with damped sinusoidalatoms. The signal in (a), which
is the onset of a gong strike, is modeled by matching pursuit with a dictionary of
damped sinusoids. Approximate reconstructions at various pursuit stages are given:
(b) 5 atoms, (c) 10 atoms, (d) 20 atoms, and (e) 40 atoms.
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Figure 6.10: Mean-squared convergence of atomic models. Plot (a) shows the mean-

squared error of the atomic modelsdepicted in Figiuos 6.8 and 6.9. The dictionaries
of symmetric Gabor atoms (solid) and damped sinusoids (circles) are designed to
have similar mean-squared convergence for the mgnal in question. Plot (b) shows
the mean-squared energy in the pre-edio of the symmetric Gabor model; the pursuit
devotes atoms at later stages to reduce the pre-echo energy. The damped sinusoidal
decomposition does not introduce pre-echo.

Modeling with a composite dictionary is depicted in Figure 6.11. The dictionary
used here contains the same causal damped sinusoids as in the example of Figure 6.9,

plusan equal number of anticausal damped sinusoids and a few smoothing orders. Aswill
be seen in Sections 6.4 and 6.4.3, deriving 'the correlations with the underlying damped
sinusoids is the major factor in the computational cost of pursuit with composite atoms.

Compared to the pursuit based on damped sinusoids discussed earlier, then, the composite
atom model shown here requires roughly twice the computation; as shown in Figure 6.12,

however, this additional computation leads to a lower mean-squared error for the model.
Noting further that the parameter set for composite atoms is larger than that for simple
damped sinusoids or Gabor atoms, it is clear that fully comparing this composite model
to the earlier models requires computation-rate-distortion considerations such as those
described briefly in Section 6.2.4.

6.4 Computation Using Recursive Filter Banks

For arbitrary dictionaries, the cost of the matching pursuit iteration can be re
duced using the correlation update relationship in Equation (6.15). For dictionaries con
sisting ofdamped sinusoids or composite atomsconstructed as described in Section 6.3.3,
the correlation computation for the pursuit can be carried out with simple recursive filter
banks. This framework is developed in the following two sections; in Section 6.4.3, the
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Figure 6.11: Signal modeling with compositeatoms. The signal in (a), which is the
onset of a gong strike, is modeled by matching pursuit with a dictionary of composite
atoms. Approximate reconstructions at variouspursuit stages are given: (b) 5 atoms,
(c) 10 atoms, (d) 20 atoms, and (e) 40 atoms. The composite dictionary contains
the same causal damped sinusoids as those used in the example of Figure 6.9, plus
an equal number of anticausal damped rinusoids and a small number of smoothing
orders.
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Figure 6.12: The mean-squared error of an atomic model using composite atoms

(solid) and the mean-squared error of a model based on only the underlying causal
damped sinusoids (circles). This plot corresponds to the composite atomic modds
given in Figure 6.11 and the damped sinusoidal decompositions of Figure 6.9.

computation requirements of the filter bank approach and the correlation update method
are compared.

6.4.1 Pursuit of Damped Sinusoidal Atoms

For dictionaries of complex damped sinusoids, the atomic structure can be ex

ploited to simplify the correlation computation irrespective of the update formula in Equa

tion (6.15). It is shown here that the computation over the time and frequency parameters
can be carried out with simple recursive filter banks and FFTs.

Correlation with complex damped sinusoids

In matching pursuit using a dictionary ofcomplex damped sinusoids, correlations

must be computed for every combination of damping factor, modulation frequency, and

time shift. The correlation of a signal a:[7i] with a causal atom 5 is given by

V+(«,u,r) = Sa (6.57)

where the atoms are truncated to a length L that is a function of the damping factor a as

described in Section 6.3.2. In the following, correlations with unnormalized atoms will be

used to simplify the notation:

T+X»—1

/>+(a,«,r) = ^ x[n]
n=T

r)+[a,ui,T)

(6.58)

(6.59)

Furthermore, formulating the algorithm in terms of unnormalized atoms will serve to

reduce the cost of the algorithm developed in Section 6.4.2 for pursuing composite atoms.
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The structure of the correlations in Equations (6.57) and (6.58) allows for a

substantial reduction of the computation requirements with respect to the time shift and
modulation parameters. These are discussed in turn below. Note that the correlation
uses the atomsdefined in Elquation (6.42), in which the modulation is phase-referenced to
r; alternate results related to the atoms with dereferenced modulation pven in E)quation
(6.43) will be reviewed later.

Time-domain simplification

The exponential structure of the atoms can be used to reduce the cost of the
correlation computation over the time index; correlations at neighboring timesare related
by a simple recursion:

p+(a,a;,r-l) = ac~''^p+(a,a;,r) -|-ar[r—1] — + L —1]. (6.60)

This is just a one-pole filter with a correction to account for truncation. If truncation
effects are ignored, which is reasonable for small truncation thresholds, the formula be
comes

p^.(a,u;,r—1) = -|- a;[r —1]. (6.61)

Notethat this equationis operated in reversed time to make the recursion stable for causal
damped sinusoids; the similar forward recursion is unstable for a < 1. For anticausal
atoms, the correlations are given by the recursion

(4, w, r + 1) = b^p.(4, r) + a:[T + 1] - - L+1], (6.62)

or, if truncation is neglected,

p_(6,a;,r-l-1) = 6e '̂̂ p_(6, w,r) -f a:[r-|-1]. (6.63)

These recursions are operated in forward time for the sake of stability.
The equivalence of £)quations (6.61) and (6.63) to filtering operations suggests

interpreting the correlation computation over all possible parameters as an
application of the signal to a dense grid of one-pole filters in the 2-plane, which are the
matched filters for the dictionary atoms. The filter outputs are the correlations needed
for the matching pursuit; the maximally correlated atom is directly indicated by the
maximum magnitude output of the filter bank. Of course, pursuit based on arbitrary
atoms can be interpreted in terms of matched filters. In the general case, however, this
interpretation is not particularly useful; here, it provides a framework for reducing the
required computation. It should be noted that the dictionary atoms themselves correspond
to the impulseresponsesof a grid ofone-polefilters; as in the wavelet filter bank case, then,
the atomic synthesis can be interpreted as an application of the expansion coefiScients to a
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Figure 6.13: Filter bank interpretation and dictionary structures. The atoms in

a dictionary of d2unped sinusoids correspond to the impulse responses of a bank of
one-polefilters; for decaying causal atoms, the poles are inside the unit circle. These
dictionaries be structure in various ways as depicted above. The correlations

in the pursuit are computed by the corresponding matched filters, which are time-
reversed and thus have poles outside the unit circle.

synthesis filter bank. A depiction of the 2:-plane interpretation ofseveraldamped sinusoidal
dictionaries is given in Figure 6.13; the dictionaries are structured for various tradeoffs in
time-frequency resolution.

A recursion similar to Equation (6.60) can be written for the general case of
correlations separated by an arbitrary lag A:

/)+(a,a;,r-A) = (6.64)

A-l r A-i

+ Z) + ^- A] fl" a:[n + r - A+ L] o"
11=0 _ n=0

For w = 27rk/Kj the last two terms can be computed using the DFT:

p^{aj2wk/K,T —A) = a^e~''^/>+(a,a;,r) (6.65)

+ DFTk {i[» + t - A]o°} It - DFTr-{2[n+ t - A + ila"} jt,

where n € [0, A —1] in the latter terms, which could be combined into a single DFT. If
truncation effects are ignored, the second DFT term is neglected and the relationship is
again more straightforward. Similar simplifications have been reported in the literature
for short-time Fourier transforms using one-sided exponential windows [228] as well as

more general cases [229].

Frequency-domain simplification

A simplification of the correlation computations across the frequency parameter

can be achieved if the z-plane filter bank, or equivalently the matching pursuit dictionary,
is structured such that the modulation frequencies are equi-spaced for each damping factor.
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Ifthefilters (atoms) areequi-spaced angularly on circles inthe z-plane, thediscrete Fourier
transform can be used for the computation over w. For u = 2irk/K^ the correlation is
given by

L-i

p+{a,2irk/K,T) = ^ ®[n + (6.66)

= DFTjfWn+ r]o»}U, (6.67)

where n € [0, L —1] and K > L. Thus, FFT algorithms can be used to compute correlar
tionsover the frequency index. Note that such an FFT-based simplification can be applied
to any dictionary of harmonically modulated atoms.

At a fixed scale, correlations must be computed at every time-frequency pair
in the index set. There are two ways to cover this time-frequency index plane; these
correspond to the dual interpretations of the STFT depicted in Figure 2.1. The first
approach is to carry out a running DFT with an exponential window; windowing and
the DFT require L and KlogK multiplies per time point, respectively, so this method
requires roughly N(L -f if log/if) real multiplies for a signal of length N. The second
approach is to use a DFT to initialize the K matched filters across frequency and then
compute the outputs of the filters to evaluate the correlations across time; indeed, the
signal can be zero-padded such that the filters are initialized with zero values and no
DFT is required. Recalling the recursion of E)quation (6.60), this latter method requires
one complex multiply and one real-complex multiply per filter for each time point, so it
requires 6KN real multiplies, 2KN of which account for truncation effects and are not
imperative. For large values of if, this is significantly less than the multiply count for the
running DFT approach, so the matched filter approach is the method of choice.

Results for dereferenced modulation

The results given in the previous sections hold for an atom whose modulation
is referenced to the time origin of the atom as in Equations (6.39), (6.42), and (6.44).
This local time reference has been adhered to since it allows for an immediate filter bank

interpretation of the matchingpursuit analysis; also, synthesisbasedon such atoms can be
directly carried out using recursive filters. For the construction and pursuit of composite
atoms, however, the dereferenced atoms defined in Equations (6.41), (6.43), and (6.45) are
of importance. The correlationformulae for dereferenced damped sinusoids can be derived
by combining the relation in Equation (6.41) with the expression in Equation (6.58) to
arrive at:

p+(a,a;,r) = €'^'^p+(a,u;,T), (6.68)

so Ekjuations (6.61) and (6.63) can be reformulated as

p+(a,cj, r - 1) = ap+(o,w,r) -f - 1] (6.69)
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p_(6,w,r+l) = 6p+(6,u;,r) + c"''̂ +^)a;[r + l]. (6.70)

When the modulation depends on the atomic time origin, the pursuit can be interpreted
in terms of a modulated filter bank; for dereferenced modulation, however, the equivalent
filter bank has a heterodyne structure. This distinction was discussed at length with
respect to the STFT in Section 2.2.1. As will be seen in Section 6.4.2, dereferencing
the modulation simplifies the relationship between the signal correlations with composite
atoms and the correlations with underlying damped sinusoids; for this reason, future
considerations will be focus primarily on the case of dereferenced modulation.

Real decompositions of real signals

If dictionaries of complex atoms are used in matching pursuit, the correlations
and hence the expansion coefficients forsignal decompositions will generally be complex; a
given coefficient thusprovides botha magnitude anda phase for theatom in theexpansion.
For real signals, decomposition in termsofcomplex atomscan bemisleading. Forinstance,
for a signal that consists ofone real damped sinusoid, the pursuit does notsimply find the
constituent conjugate padr of atoms as might be expected; this occurs because an atom
and its conjugate are not orthogonal. For real signals, then, it is preferable to consider
expansions in terms of real atoms:

COS M"-'r) + ^]«["-T]>

or, in the case of dereferenced modulation,
r

= S{a,<.,T.«o'""'''«>s[fa)n+^]«[n-T]. (6.72)
The two cases differ by a phase offset which affects the unit-norm scaling as well as the
modulation.

In the case of a complex dictionary, the atoms are indexed by the three param
eters {a,a;,r} and the phase of an atom in the expansion is given by its correlation. In
contrast, a real dictionary requires the phase parameter as an additional index because
of the explicit presence of the phase in the argument of the cosine in the atom definition.
The phase is not supplied by the correlation computation as in the complex case; like
the other parameters, it must be discretized and incorporated as a dictionary parameter
in the pursuit, which results in a larger dictionary and thus a more complicated search.
Furthermore, the correlation computations are more difiicult than in the complex case
because the recursion formulae derived earlier do not apply for these real atoms. These
problems can be circumvented by using a complex dictionary and considering conjugate
subspaces according to the formulation of Section 6.2.3.

Conjugate subspace pursuit can be used to search for conjugate pairs ofcomplex
damped sinusoids; thederivation leading to Ekjuation (6.21) verifies that thisapproach will
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arrive at a decomposition in terms of real damped sinusoids if the original signal is real.
The advantage ofthis method is indicated byEquations (6.19) and (6.20), which show that
the expansion coefficients and the maximization metric in the conjugate pursuit are both
functions of the correlation of the residual with the underlying complex atoms; this means

that the computational simplifications for a dictionary of complex damped sinusoids can
be readily applied to calculation of a real expansion. The real decomposition found by
this approach, expressed in the general case in Ek)uation (6.23), can be written explidtly
as ^

x[n] «2 ]^5o,i4,aj""'̂ '̂ cos[a;in +^i], (6.73)
»=i

where = <*,(1) and the modulation is dereferenced. As in the complex case, the
phases of the atomsin this real decomposition are provided directlyby the computation of
the expansion coefficients; the phase is not required as a dictionary index, f.c. an explicit
search over a phase index is not required in the pursuit. By considering signal expansions
in terms ofconjugatepairs, the advantages of the complex dictionary are fully maintained;
furthermore, note that the dictionary for the conjugate search is effectively half the size
of the full complex dictionary since atoms are considered in conjugate pairs.

It is important to note that Equation (6.73) neglects the inclusion of unmodulated
exponentials in the signal expansion. Such atoms are indeed present in the complex
dictionary, and all of the recursion speedups apply trivially; furthermore, the correlation
of an unmodulated atom with a real signal is always real, so there are no phase issues to

be concerned with. An important caveat, however, is that the conjugate pursuit algorithm
breaks down if the atom is purely real; the pursuit requires that the atom and its conjugate

be linearly independent, meaning that the atom must have nonzero real and imaginary
parts. Thus, a fix is required if real unmodulated exponentials are to be admitted in the
signal model. The i-th stage of the fixed algorithm is as follows: first, the correlations /? =

{Sy n) for the entire dictionary of complex atoms are computed using the simplifications
described. Then, energy minimization metrics for both types of atoms are computed and
stored: for real atoms, the metric is |/3p as indicated in Equation (6.12); for conjugate
subspaces, the metric is /3*a(l) -|-i0a(l)* as given in Equation (6.20), where a(l) b as
defined in Equation (6.19) and T = (<7,^*) can be expressed as

(1 — \
These metrics quantify the amount of energy removed from the residual in the two cases;

masdmization over these metrics indicates which real component should be added to the

signal expansion at the t-th stage to minimize the energy of the new residual r,+i[n].
As a final comment on real decompositions, it is interesting to note that the de

scription of a signal in terms of conjugate pairs does not require more data than a model
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using conDiplex atoms. Either case simply requires the indices {a, a;, r} and the complex

number a(l] for each atom in the decomposition. There is of course additional compu
tation in both the analysis and the synthesis in the case of conjugate pairs. As discussed

above, this improves the ability to model real signals; in a sense, this improvement arises

because the added computation enables the model data to encompass twice as many atoms

in the conjugate pair case as in the complex case.

6.4.2 Pursuit of Composite Atoms

Using matching pursuit to derive a signal model based on compc^ite atoms re
quires computation of the correlations of the signal with these atoms. Recalling the form

of the composite atoms ^ven in Equations (6.51) and (6.52), these correlations have,
by construction, a simple relationship to the correlations with the underlying one-sided

atoms:

. r N r, ifi \V'i-(ay(^iT + A) . ^_(6,a;,r-|-A)p(a,6,J,a;,r) = [ 5^ + 5^ a:[r +AJJ (6.75)

j-i

= 5^ |p+(<i,w,t+A) + ^_(d,w,T + A) - a:[T + A]]. (6.76)
A=0

The correlation with any hybrid atom can thus be computed based on the correlations

derived by the recursivefilter banks discussed earlier; this computation is most straightfor

ward if dereferenced modulation is used in ^he constituent atoms and if these underlying

atoms are unnormalized. Essentially, any atom constructed according to Equation (6.52),
which includes simple damped sinusoids, can be added to the modeling dictionary at the

cost of one multiply per atom to account for scaling. Computation is discussed further in

Section 6.4.3.

For composite atoms, real decompositions of real signals take the form

/

« 2 53 - "Ti] COS (Win -|- <f>i), (6.77)
i=l

where /{oi,6„Jj} is as defined in Equation (6.46) and AiC^^* = Q!i(l) from Equation (6.19).

6.4.3 Computation Considerations

This section compares the computational cost of two matching pursuit imple

mentations: pursuit based on correlation updates [38] and pursuit based on recursive
filter banks. In this comparison, the cost is measured in terms of memory requirements

and multiplicative operations. Simple search operations, table lookups, and conditionals
are neglected in the cost measure. Furthermore, computation before the first iteration of
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either algorithm is allowed without a direct penalty; precomputation is considered only
with respect to the amount of memory required to store precomputed data. Startup cost
for the first iteration is considered separately; in cases where only a few atoms are to
be derived, the startup arithmetic in the update algorithm mayconstitute an appreciable
percentage oftheoverall computation. The results ofthese considerations aresummarized
in Table 6.1.

Notation

In the following comparisons, the signal is assumed to be real and of length N. A
composite dictionary based on damped sinusoids will be considered. The index set for this
dictionarywill consistof A different causaldampingfactors, B anticausal dampingfactors,
H smoothing orders, K modulations, and N time shifts, meaning that the dictionary has
M = ABHKN atoms; usingS to denote the number of scales present, namelyS = ABHj
the sizeof the dictionary can be expressed asM = SKN. The averagescaleor atom length
will be denoted by L; note that for atoms having average time support L, the correlation
(5, x) requires L real-complex multiplies on average. The following considerations of the
two matching pursuit algorithms focus on pursuit of complex atoms since the evaluation
of a real model based on a complex pursuit has equal cost in both implementations; note
also that deriving the correlation magnitudes requires the same amount of computation
in both approaches. The relevant point of comparison is the computation required to
calculate {g^ r^) for all of the complex atoms g ^ D aX some stage i of the algorithm. The
treatment in this section depends on,the damped sinusoidal structure, but this is not a
limiting restriction since composite atoms with a wide range of time-frequency behaviors
can be constructed based on damped sinusoids.

Precomputation in the update algorithm

To derive the correlations {g, r,+i) at stage t -|- 1 of the pursuit, the update
approach uses the equation

{g.n+i} = {g,ri) - ai{9,9i), (6-78)

which relates the correlations at stage i 1 to those computed at stage t. The update

method thus relies on precomputation and storage of the dictionary cross-correlations

{9i9i) reduce the computational cost of the pursuit. If this storage is done without
taking the sparsity or redundancy of the data into account, cross-correlations must
be stored.

A simple example shows that the brute force approach to cross-correlation storage

is prohibitive. Consider analysis of a 10ms frame of high-quality audio consisting of
roughly N = 400 samples. In a rather small dictionary with A" = 32, A = 10, B = 1,
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and = 1, there are roughly M = 10® atoms. Storage of the complex cross-correlations
then requires 2M^ = 2 x 10^® memory locations. This is altogether unreasonable, so it is
necessary to investigate the possibility of memory-computation tradeoffs; such tradeoffs
occur commonly in algorithm design.

The memory requirement can be relaxed by considering the sparsity and redun
dancy of the dictionary cross-correlation data. First, many ofthe atom pairs have notime
overlap and thus zero correlation; thesecases can be handled withconditionals. Foratoms
that do overlap, the correlation storage can be reduced using the following formulation.
Introducing the simplifying notation

ff(so,Wd,ro) = ^{ao,bo.Jo.«^.Tto}W = ~
^(si,wi,ri) = (6.80)

where so 3-*^^ Si serve as shorthand for the effective scales of the atoms and f[n\ is a unit-
norm envelope constructed as in Equation (6.46), the cross-correlation of two composite
atoms can be expressed as

<j(so,(Jo,To),9(si,w,,ri)) = X)/{«}[»(6.81)
n

{letting m= n - To} = " (^i - (6.82)
m

= (^(so,0,0),(7(si,a;i - ljq.ti - ro)), (6.83)

which shows that the cross-correlation, with Jheexception of a phaseshift, does not depend
on the absolute time locations of the atoms but rather on their relative locations. Also, the

correlation isonly a function of the frequency difference; moreover, it only depends on the
absolute difference since negative values of u)i —ljq can be accounted for by conjugation:

(^(5o,0,0),</(si,wi-wo,ri-ro)) = (p(so,0,0),flf(si,wo - a;i,ri - tq))* . (6.84)

Beyond these simplifications, there is also redundancy in the cross-correlations for scale
pairs:

(p(si,wi,ri),^(soiWo,ro)) = (p(so,wo,ro),<jf(si,a;i,ri))* (6.85)
_ gj>o-wi)To 0,0),<7(si, wi - Wo, Ti - To))*. (6.86)

This relationship can be exploited to reduce the memory requirements byroughly a factor
of two.

Theformulations given above drastically reduce the amount ofmemory required
to store the dictionary cross-correlations. With regards to the modulation frequencies,
there are K distinct possibilities for |wi —wo|. With regards to the time shifts, the
S different scales in the dictionary can be considered in pairs using L to approximate
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the number of lags that lead to overlap and nonzero correlation; there are roughly S^L
different configurations. In total, then, 2S^KL memory locations are required to store
the distinct cross-correlation values; taking the scale-pair redundancy into account, this
count is reduced to S^KL. For the simple audio example discussed above, this amounts

to roughly 6 x 10^ locations for L = 20. Noting the phase shift in E)quation (6.83),
this reduction in the memory requirements introduces a complex multiply, or three real
multiplies, for each correlation update.^

Precomputation in the filter bank algorithm

In the filter bank approach, the pursuit computation is based on correlations
with unnormalized atoms as formalized in Equation (6.76), which holds for the general
case of a composite dictionary as well as for the limiting case of a dictionary of damped
sinusoids, where J = 1 and 6 = 0. This correlation computation requires scaling by

To reduce the amount of computation per iteration, these scaling factors can be
precomputed and stored. The cost of this precomputation is not of particular interest
here; the important issue is the amount of memory required to store the precomputed
values. In the general case where the values of the damping factors a and 6 do not exhibit
any particular symmetry, storing the scaling factors requires S = ABH memory locations.

The first iteration of the update algorithm

In the first stage of the update algorithm, all of the correlations with the die-
r

tionary atoms must be computed. This exhaustive computation requires ML = SKL
real-complex multiplies, or 2ML real jnultiplies. Of course, this computation can be car

ried out with recursive filter banks at a lower cost, but such a merged approach will

not be treated here. In any event, these complex correlations must be stored, which re

quires 2M memory locations. The total memory needed in the update algorithm is then

S^KL + 2M. Note that the signal is needed in the first stage of the algorithm but is not
required thereafter.

Later iterations of the update algorithm

Once the dictionary cross-correlations have been precomputed and the correla

tions for the first stage of the pursuit have been calculated and stored, the cost of the

update algorithm depends only on the update formula. Each stage of the algorithm in

volves M complex-complex multiplies (3M real) to multiply the M cross-correlations by

a,-, plus another M complex-complex multiplies to carry out the phase shift given in

^The complex multiply (a -{- bj){c+ dj) = ac —bd+ j{ad + be) can be carried out using three multiplies
by computing c(a+&),b(c-|-d), and d{a —b). Then, ac —bd is given by the difference of the first two terms;
ad + he is the sum of the second and the third terms.
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Equation (6.83), for a total of 6M real multiplies per iteration. Note that in the update
algorithm it is not necessary to keep the mgnal in memory after the first iteration or to

ever actually compute the residual signal.

Iterations in the filter bank approach

In matching pursuit based on recursive filter banks, the scaling factors
are precomputed and available via lookup. In addition to the scaling factors, the residual
signal must be stored in this implementation; this requires N memory locations. The
final memory requirement is that in order to evaluate correlations with composite atoms,
correlations with the constituent unnormalized damped sinusoids must be stored. For a

smoothing order of J, this requires correlations wth J causal and J anticausal damped
sinusoids. Storing these underlying correlations in a local manner thus requires 2(A+
B)KJ locations; global storage requires 2{A-\- B)KN locations. Note that the memory
cost is scaled by a factor of two since the correlations are complex numbers. The worst
case memory requirement in the filter bank case is then S N 2(A+ B)KN.

With regards to computation, the algorithm uses (^4 + B)K recursive filters to
derive the correlations. In the dereferenced case given in Equations (6.69) and (6.69), each
recursion requires four real-real multiplies for eachof the N time points if atom truncation
is neglected; the count increases to six if truncation is included. As indicated in Equa
tion (6.76), correlations with composite atoms are computed by adding the correlations
with constituent unnormalized damped sinusoids and then scaling with the appropriate
factor; this construction process introduces 'S = ABH real-complex multiplies, or 25 real
multiplies. Thus, 6{A-\- B)KN ABH real multiplies are needed to compute the pursuit
correlations. Once an atom is chosen based on these correlations, the residual must be

updated; this requires roughly bL multiplies to generate the unit-norm atomic envelope,
modulate it to the proper frequency, and weight it with its expansion coefficient prior to
subtraction from the signal. The total computational cost per iteration for the filter bank
algorithm is thus bL + 6(A -t- B)KN -f 25.

6.5 Conclusions

Atomicmodels provide descriptions ofsignals in terms oflocalized time-frequency
events. Derivation of optimal models based on overcomplete sets of atoms is computer
tionally prohibitive, but effective models can be arrived at by greedy algorithms such as
matching pursuit and its variations. In thischapter, matching pursuit was developed asan
approach for deriving compact signal-adaptive parametric models based ondictionaries of
time-frequency atoms. Time-frequency dictionaries consisting ofsymmetric Gaboratoms,
damped sinusoids, and composite atoms constructed from underlying damped sinusoids



221

MEMORY

(real numbers)
COMPUTATION

(real multiplies)

Method Precomp. Algorithm
First

iteration

Later

iterations

Update S^KL
2M

= 2ABHKN

2ML

= 2ABHKNL

m

= 6ABHKN

Filter bank S N-\-2(A'¥B)KN hL + 2ABH + 6(A + B)KN

Table 6.1: Tabulation of computation considerations: memory and computation
requirements for matchingpursuit using the update algorithm and the recursive filter
bank method. N is the length of the signal; the dictionary index set contains A

damping factors, B causal damping factors, H smoothing orders, S —ABH
scales, K modulations, and N time shifts, meaning that the dictionary contains
M = SKN = ABHKN atoms. L is the average time support of a dictionary

atom.

were considered and compared. It was shown that the matching pursuit computation for
both damped sinusoidal atoms and composite atoms can be carried out effidently using

simple recursive filter banks.
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Chapter T

Conclusions

1^his thesis explores a variety of signal models, namely the sinusoidal model,
multiresolution extensions of the sinusoidal model, residual models, pitch-synchronous

wavelet and Fourier representations, and atomic decompositions. The key issues dealt
with in this text are summarized in the following section; thereafter, directions for further
research are discussed.

7.1 Signal-Adaptive Parametric Representations

In modeling a signal, it is of primary importance that the model be adapted to
the signal in question. Otherwise, the model will not necessarily provide a meaningful or
useful representation of the signal. T-he models considered in this thesis are examples of
such signal-adaptive models. In each case, the model is constructed in a signal-adaptive
fashion; this leads to compact modelswhich are useful for analysis, compression,denoising,
and modification. Some of these capabilities are enhanced by the parametric nature of the
models. If a signal is represented in terms of perceptually salient parameters, meaningful
modifications can be made by simple adjustment of the parameters; furthermore, percep

tual principles can be readily applied to achieve data reduction. The following sections
provide a review of the main issues discussed in each chapter.

7.1.1 The STFT and Sinusoidal Modeling

In Chapter 2, the sinusoidal model is developed as a parametric extension of

the short-time Fourier transform. The filter bank interpretation of the STFT is reviewed

and extended, and various perfect reconstruction criteria are developed. In Section 2.2.2,

however, it is shown by a simple example that such a rigid filter bank does not provide

a compact representation of an evolving signal. This motivates representing the subband

signals in terms of a parametric model based on estimating and tracking evolving sinu
soidal partials. Analysis methods for estimating the partial parameters are considered;
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the treatment includes a linear algebraic interpretation of spectral peak picking. Also,
time-domain and frequency-domain synthesis techniques are discussed.

7.1.2 Multiresolution Sinusoidal Modeling

If operated with a fixed framesize, the sinusoidal model has difficulties represent
ing nonstationary signals. Accurate reconstruction of dynamic behavior can be achieved
by carr3ring out the sinusoidal model in a multiresolution framework. In Chapter 3, two
multiresolution extensions based respectively on filter banks and adaptive time segmen

tation are discussed; the focus is placed primarily on the latter method, which is shown
to substantially mitigate pre-echo distortion. A dynamic program for deriving pseudo-
optimal segmentations isdeveloped; furthermore, globally exhaustive and simple heuristic
algorithms are both considered, and the various approaches arecompared with respect to
computational cost.

7.1.3 Residual Modeling

In parametric methods such as the sinusoidal model, the analysis-synthesis pro
cess generally does not lead to a perfect reconstruction of the original signal; there is a
nonzero difference between the original and the inexact reconstruction. For high-quality
synthesis, it is important to model this residual and incorporate it in the signal recon
struction; this accounts for salient features such as breath noise in a flute sound. In
Chapter 4, residual modeling for sinusoidal,analysis-synthesis is dbcussed. For multires
olution sinusoided models, the residual can be perceptually well-modeled as white noise
shaped by a filter bank with time-varying channel gains whose subbands are spaced in
frequency according to psychoacoustic considerations. The channel gains are determined
by analyzing the residual; these gains serve as anefficient parametric representation ofthe
residual. Strictly speaking, this residual analysis-synthesis is not signal-adaptive; however,
it is necessary to consider such methods for use with near-perfect reconstruction models
such as those described in this text. When used in conjunction with the sinusoidal model,
this approach leads to high-fidelity reconstruction of natural sounds.

7.1.4 Pitch-Synchronous Representations

For pseudo-periodic signals, compaction can be achieved by incorporating the
pitch in the signal model. In Chapter 5, pitch-synchronous modeling and processing is
discussed. It is shown that both the sinusoidal model and the wavelet transform can

be improved by pitch-synchronous operation when theoriginal signal is pseudo-periodic.
In either approach, periodic signal regions can be efficiently represented while aperiodic
regions, e.g. note onsets, can be modeled using the perfect reconstruction capability of
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the underlying transform, namely the discrete wavelet transform in the pitch-synchronous
wavelet case and the Fourier transform in the pitch-synchronous sinusoidal model.

7.1.5 Atomic Decompositions

In Chapter 3, the sinusoidal model is interpreted as a decomposition in terms of
time-frequency atoms constructed according to parameters extracted from the signal; this
interpretation motivates the various multiresolution extensions of the model. In Chap
ter 5, pitch-synchronous transforms are similarly interpreted as granulation methods; in
those approaches, a pseudo-periodic signal is decomposed into pitch period grains ac
cording to estimates of the signal periodicity, and these grains are further modeled using
Fourier or wavelet techniques. The atomic models discussed in Chapter 6 differ from these
representations in that the atoms for the model are not derived from signal parameters;
rather, parametric atoms that match the signal behavior are chosen from an overcomplete
dictionary.

Atomic models based on overcomplete dictionaries of time-frequency atoms can

be computed using the matching pursuit algorithm. Typically, such dictionaries consist of
Gabor atoms based on a symmetric prototype window; such atoms have difficulties repre

senting transient behavior, however. With the goal ofovercoming this problem, alternative
dictionaries are considered, namely dictionaries of damped sinusoids as well as dictionar
ies of general asymmetric atoms constructed based on underlying causal and anticausal
damped sinusoids. It is shown in Section 6.4 that the matching pursuit computation for

either type of atom can be carried out with low-cost recursive filter banks.

7.2 Research Directions

The work discussed in this thesis has a number of natural extensions. This section

describes extensions in audio coding and provides suggestions for further work involving

overcomplete expansions.

7.2.1 Audio Coding

The current standard methods in audio coding, namely MPEG and related coding

schemes, use cosine-modulated filter banks; perceptual criterion are applied to the subband

signals to achieve data reduction [12, 7, 9, 8]. Some signal adaptivity is achieved by
adjusting the filter lengths according to the signal behavior; in terms of the prototype

window for the filter bank, a short window is used in the vicinity of transients and a long

window is used for stationary regions. It is an open question whether the rate-distortion

performance of this industry standard can be rivaled by parametric methods such as the

sinusoidal model or overcomplete atomic models.
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Sinusoidal modeling

In the sinusoidal model, which has received recent attention for the application of
audio coding, quantization is a primary open issue [230,231]. For instance, it is of interest
to incorporate perceptual resolution limits in the amplitude and frequency quantization
schemes. Another important psychoacoustic consideration is the formal characterization
of distortion artifacts such as pre-echo; such characterizationsare required if the method
is to be compared to standard techniques.

For audio coding with the sinusoidal model, a number of data reduction tech
niques and modeling improvements are of possible interest. First, predictive models of the
partial tracks in time and frequency may be useful for data reduction; linear prediction
of the spectral envelope has been applied with some success to speech coding based on
the sinusoidal model [232]. Such prediction may also prove useful for assisting with the
estimation of sinusoidal parameters in upcoming signal frames. In this light, the sinu

soidal model holds some promisefor the application of audio transmission on packet-lossy
networks; signal segments corresponding to lost packets can be reconstructed by using
models of track evolution to interpolate the parameters from adjacent received packets.

Since compaction leads to coding gain, audio coding using the sinusoidal model
would benefit from the ability to derive the most compact sinusoidal representation of
a signal. Given that the expansion functions in an oversampled DFT correspond to a
tight frame, methods of obtaining optimal or pseudo-optimal sparse frame expansions
provide a means for obtaining such optimally compact sinusoidal models. In this sense,
someimprovements in sinusoidal modeling techniques may actually arise from the theory
of overcomplete expansions. Note that a procedure similar to matching pursuit is used
in [154] to estimate sinusoidal components; as discussed in Chapter 6, however, such
pursuit does not yield an optimal compact representation, so some improvement can be
achieved. In addition to improvements in compaction due to frame-theoretic approaches,
further investigations along such lines may indicate successive refinement frameworks for
the sinusoidal model that offer advantages over current techniques.

For audio coding based on the sinusoidal model, multiresolution methods are of
significant interest for a number of reasons beyond their improved signal representation
capabilities. For one, dynamic segmentation allows for optimization of the model in a
rate-distortion sense, which is of course useful for coding applications; furthermore, psy
choacoustic criterion such as the perceptual entropy used in MPEG can be incorporated
in the dynamic program to determine the optimal segmentation. Multirate filter bank
methods coupled with sinusoidal modeling are alsoof interest for audio coding since they
allow for modeling and synthesis at subsampled rates; such efficient synthesis is of great
importance given the applications of audio recording and broadcasting, both of which
demand real-time signal reconstruction.



227

The possible advances suggested above can be viewed as stej^ in the development
of a fully optimal sinusoidal model. In addition to an appropriate multiresolution scheme
such as dynamic segmentation, achieving a fully optimal model indeed requires global
consideration of the parameter estimation technique (e.g. spectral peak picking), the line
tracking method, and the parameter interpolation functions used forreconstruction. These
various components of sinusoidal analysis-synthesis are intrinsically interdependent; it is
an open question as to how these dependencies can be accountedfor in model optimization.

Finally, it should be noted that it is of interest in the multimedia community
to carry out signal modifications in the compressed dommn. Some modifications based
on MPEG audio compression have been developed, but these are somewhat restricted in
comparison to the rich class of modifications enabled by a sinusoidal signal model [231].

Atomic models

Whereas there are clear indications that the sinusoidal model may be useful as an

audio codingscheme, it has not yet been shownthat atomic modelsbased on overcomplete
dictionaries are similarly promising. One fundamental advance required for application of
atomic modeling to audio coding is the ability to carry out matching pursuit effectively in
a frame-by-frame manner so that signals of arbitrary length can be processed. Matching
pursuit usingfixed frames has been described in the literature [220], but such an approach
is unable to identify or model atomic components that overlap frame boundaries.

There are several additional noteworthy points regarding atomic models and

audio coding. First, an atomic signal model would allow complex time-frequency masking
principles to be incorporated in the coding scheme. Also, ^ven an atomic model, it can
be expected that some coding gain can be achieved based on the occurrence of redundant
structures in the atomic index sets; entropy coding of the indices may prove useful. Finally,
further capabilities for identifying basic signal behavior are of interest; for instance, pursuit
of atoms with harmonic structure may prove useful for audio signal modeling.

Beyond audio coding, another conceivable application of atomic modeling is to

represent the residual of some independent analysis-synthesis process such as the sinusoidal
model. An analogy is the compression technique described in [181], where matching
pursuit is used to derive a model of the residual in a motion-compensated video coder.
In that approach, many simplifications arise due to the structure of the residual and the

characteristics of vbual perception; these enable real-time analysis. It is an open question

whether similar improvements can be developed for audio residuals.

Finally, it should be noted that matching pursuit has received some attention

in the image coding literature [233, 234]. With regards to this application, it may be of
interest to use asymmetric atoms to improve modeling of edges in images, which b of

course analogous to modeling onsets in audio signab.



228

7.2.2 Overcomplete Atomic Expansions

In addition to further work in audio coding, the developments in this thesis

suggest extensions involving overcomplete signal expansions in terms of time-frequency

atoms. Such issues are described in the following.

Evolutionary models

The sinusoidal model can be interpreted as an atomic decomposition wherein

the atoms are related in an evolutionary fashion. This evolution model leads to synthesis

robustness, modification capabilities, and data reduction. It would be useful to establish
a similar evolution framework for atomic models based on overcomplete dictionaries.

Dictionary design and optimization

In matching pursuit and similar methods, the performance of the algorithm de
pends on the contents of the dictionary; such algorithms perform well if the dictionary
contains atoms that match the signal behavior. Of course, this condition is more likely
to hold for larger dictionaries, but increased dictionary sizeentails increased computation
in the algorithm. One approach to handling this tradeoff is to generate a signal-adaptive
dictionary which can be expected to perform well for a specific signal; this is onlyof inter
est, however, if such a dictionary can be arrived at by a simple heuristic analysis rather
than a high-cost optimization.

Dictionary design issues in matching pursuit relate to codebook design issues
for vector quantization. The primary difference is that vector quantization codebooks
do not typically have the parametric structure of time-frequency dictionaries. Methods
for codebook optimization are still of interest for matching pursuit, however, since the
codebook adaptation can be restricted to adhere to a parametric atomic structure. This
connection is briefly explored in [39]; given the extent of work that has been devoted to
vector quantization techniques, further investigations of applications to time-frequency
atomic models are clearly merited [216].

Variations of matching pursuit

Several variations of matching pursuit are described in Chapter 6; it is argued
that comparison of such approaches calls for computation-rate-distortion considerations.
Preliminary formalizations of such tradeoffs have appeared in the literature, but there
are many open questions [224]. With computation concerns in mind, it is of interest
to consider simplifications of matching pursuit. For instance, in [38], pursuit based on
small subdictionaries is discussed; if the subdictionaries are well-chosen, this helps to
reduce the computational requirements without substantially affecting the convergence of
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the atomic model. One possible way to generate useful subdictionaries is to employ a
pyramid multiresolution scheme in which large scale atoms are evaluated with respect to
subsampled versions ofthesignal; in thisprospective scenario, thecomputation is reduced
since some of the correlations are carried out in a subsampled domain.

Refinement and modification

In Chapter 1, the application of reassignment methods to time-frequency dis^
tributions is briefly discussed. Such techniques start with a standard distribution and
apply various refinements in order to achieve compaction in the time-frequency plane;
this improves the readability of the distribution since the nonlinear refinements lead to
enhancement of the peaks in the representation and attenuation of the cross terms [85].
In cases where the resources are available to derive a dispersed but exact overcomplete

expansion using the SVD pseudo-inverse (or some other method), some form of adaptive
refinement may prove useful for improving the compaction without sacrificing the accuracy
of the expansion. One example of such an approach is as follows. Since the dictionary
is overcomplete, some components in the expansion can be represented in terms of the
other components. Then, such representation vectors can be added to the expansion while
zeroing the corresponding components; in this way, the same signal reconstruction can be
arrived at from a more compact model. The caveat here is that optimal compaction is
still not feasible given the general complexity results presented in [39]; however, improved
models may be achieved in some cases using such a method.

In addition to refinement of overcomplete expansions to improve compaction,

other modifications are also of interest. In such efforts, the null space of the dictionary

matrix provides a significant caveat; in short, some modifications may indeed map to this
null space, meaning that a seemingly elaborate modification of the atomic components
may indeed have no effect on the signal reconstruction. The open question in this area is
that of establishing constraints on modifications to ensure robustness, f.c. predictability.
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Appendix .A.

Two-Channel Filter Banks

The discrete wavelet transform is fundamentally connected to two^hannel perfect

reconstruction filter banks. These connections are explored in Chapter 3. Here, the

relevant mathematical details involving two-channel perfect reconstruction filter banks
are given.

Two-channel critically sampled perfect reconstruction filter banks

The discrete wavelet transform can be derived in terms of critically sampled

two-channel perfect reconstruction filter banks such as the one shown in Figure 3.3. The
analysis of the system is carried out here in the frequency domain; the time-domain
interpretation will be discussed in the next section. In terms of the 2-transforms of the
signals and filters, the output of the filter bank is:

= \[Ho(z)GoCz) +Hi{z)Gi{z)]X(z) (A.l)
+ i [Ho{-z)Go(z) +Hi(-z)Gi(z)] X(-z) (A.2)

= T{z)X(z) + A(z)X{-z), (A.3)

where T{z) is the direct transfer function of the filter bank and A{z) characterizes the
aliasing —the appearance of the modulated version X{^z) in the output. The perfect
reconstruction conditions are then clearly

T(z) = 1 (A.4)

A{z) = 0, (A.5)

or, in terms of the filters,

Go(z)Ho{.z) + Gi(z)Hi(z) = 2 (A.6)

Go(z)Ho(-z) + Gi(z)Hi(-z) = 0, (A.7)
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which can be rewritten in matrix form as

Go(z) Gi{z) ] r Ho{z) Ho{-z)
Go{-z) Gii-z) J t Hi{z) Hi(-z)

o

0 2
(A.8)

This condition can be expressed in a shorthand form as

GJ;(2)H„(2) = 21 (A.9)

in terms of the modulation matrices and and the identity matrix I; such

modulation matrices are useful in multirate filter bank theory [2]. The design of a

perfect reconstruction filter bank then amounts to the derivation of four polynomials
Go{z)^Gi(z)yHo(z)^ and H\(z) that satisfy the condition above; this issue is considered
in detail in [2].

Equations (A.6) and (A.7) can be manipulated to yield a general expression
relating the constituent filters; this will be especially useful for interpreting the analysis-
synthesis filter bank in terms of a time-domain signal expansion. The first step in the

derivation, which basically mirrors the treatment given in [2], is to rewrite Equation (A.7)
as

Go(z) = (A-10)

Substituting this expression into Equation (A.6) and solving for G\{z) yields

^ -2Ho(-z) -2Ho{-z)
" Ho{z)Hi(-z) -'IIo(-z)Hi{z) detH„,W ^ ' '

Similarly,

Then, it is simple to establish the relationships

2Ho(z)Hi{-z) ^ -2Ho(-z)Hi(z) . .

Noting that detHm(2^) = —detHm(—^^)j

= «o(-)/^o(-). (A.14)

Equation (A.6) can then be transformed into

Go{z)Ho(z) -H Go{-z)Ho(-z) = 2 (A.15)

or

Gi(z)Hi(z) + Gi{-z)Hi{-z) = 2. (A.16)
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Equation (A.7) can also be readily manipulated using the result ofEquation (A.14). Mul
tiplying by Ho(z) yields:

Go(z)Ho{z)Ho{-z) + Gi(z)Hi(-z)Ho(z) = 0 (A.17)

Gi(-z)Hi(-'z)Ho{-'z) + Gi{z)Hi{-z)Ho(z) = 0 (A.18)

Gi(z)Ho(z) + Gi(-z)Ho(-2r) = 0, (A.19)

where the last expression must hold at least where Hi{z) is nonzero; indeed, no generality
is actually Ic^t here since the two-channel filter bank cannot achieve perfect reconstruction
if Ho{z) and Hi{z) have any common zeros [2]. Similarly,

Go(z)Hi(z) -H Go(-z)Hi{-z) = 0. (A.20)

The various z-transform relationships derived here for the critically sampled two-channel
perfect reconstruction filter bank can be summarized in one equation:

Gi(z)Hj(z) + Gi{-z)Hj{^z) = 2S[i^j]. (A.21)

In the next section, this leads to an interpretation of the filter bank in terms of a biorthog-
onal basis.

Perfect reconstruction and biorthogonality

By manipulating the perfect reconstruction condition in (A.21), it can be shown
that a perfect reconstruction filter bank derives a signalexpansion in a biorthogonal basis;
the basis is related to the impulse responses of the filter bank. This relationship is of
interest in that it establishes a connection between the filter bank model and the atomic

model that underlie the discrete wavelet transform.

The time-domain relationship corresponding to Equation (A.21) can be derived
using two properties of the z-transform: convolution and modulation. If

g[n]<^G(z) and ^ H(z), (A.22)

the properties are as follows:

Convolution 4=^ G(z)H{z)
k (A.23)

Modulation ("-1)"5W 4^ G(—z).

Using these properties to express Equation (A.21) in the time domain yields:

(A.24)
k k

53ffi[fc]/.,[m-fc]tl + (-ir] = (A.25)
k
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For odd m, the last expression simplifies trivially to 0 = 0. For even m, replaced here by
2n,

'£9ilk]hj[2n-k] = S[n]S[i-j]. (A.26)
k

Equivalently, the relationship can be derived as

'^hi[k]gj[2n- k] = (A.27)
k

by interchanging the filters in the convolution expression. In inner product notation,
Equations (A.26) and (A.27) can be written as

(gi[k]ihj[2n-k]) = 6[n]5[t-i] (A.28)

(hi[k],gj[2n-k]) = (A.29)

respectively. Theabove expressions show that the impulse responses ofthefilters andtheir
shifts by two, with one of the impulse responses time-reversed as indicated, constitute a
biorthogonal basis for discrete-time signals (with finite energy), namely the space
Note that real filters have been implicitly assumed; for complex filters, the first terms
in the inner product expressions would be conjugated. Also note that the analysis and
synthesis filter banks are mathematically interchangeable; this symmetry is analogous to
the equivalence of left and right matrix inverses discussed in Section 1.4.1.

The preceding derivation indicates that perfect reconstruction and biorthogonal-
ity are equivalent conditions; in the next section, this insight is used to relate filter banks
and signal expansions. '

Interpretation as a signal expansion in a biorthogonal basis

Given that the impulse responses in a two-channel perfect reconstruction filter
bank are related to an underlying biorthogonal basis, it is reasonable to consider the time-
domain signal expansion carried out by such a filter bank. Using the notation of Figure
3.3, the channel signals are given by convolution followed by downsampling:

yoH = ^x[m]ho[2n-m] = (x[m], ho[2n - m]) (A.30)
m

yiW = x[m]hi[2n - m] = {x[m]y hi[2n - m]). (A.31)
m

Upsampling followed by convolution gives the outputs of the synthesis filters, which can
be thought of as full-rate subband signals:

®oN = 5^ yo[m/2]go[n - m] = ^yo[k]go[n-2k] = (^o[k],go[n - 2k])fiL,Z2)
m even k

= y^yiWgi[^ "" = {yi[k],gi[n - 2k]). (A.33)
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The reconstructed output is thus given by

i[n] = (A.34)

= Y^yo[k]9o[n-2k] + ^yi[k]9i[n-2k] (A.35)
k k

= ^{x[m]jho[2k-'m])9o[n-2k] + ^ (x[m]^ hi[2k - m])9i[n - 2k] (A.36)
k k

2

= 5^ (A.37)
»=i k

Introducing the notation

~ 9i\P' 2&] and ocitk ~ ki\2k w^]), (A.38)

the signal reconstruction can be clearly expressed as an atomic model:

(A.39)
i,k

The coefficients in the atomic decomposition are derived by the analysis filter bank, and

the expansion functions are time-shifts of the impulse responses of the synthesis filter bank.
As noted earlier, the filter banks are interchangeable; the signal could also be written as

an atomic decomposition based on the impulse responses In any case, the atoms in

the signal model correspond to the synthesis filter bank.

In this appendix, it has beenrshown that a critically sampled two-channel perfect
reconstruction filter bank computes a signal expansion in a biorthogonal basis. Multires-

olution decompositions such as the discrete wavelet transform and wavelet packets can

be developed by iterating these two-channel structures. Here, it should simply be noted
that the development in Equations (A.34) through (A.37) indicates the aforementioned

connection between the interpretations of the wavelet transform as a filter bank model and

as an atomic model; a subband signal is derived as an accumulation of weighted atoms

corresponding to the impulse responses of the synthesis filter for that band. Such issues

are discussed at greater length in Section 3.2.1.
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Appendix B

Fourier Series Representations

In Chapter 5, the Fourier series is applied to a pitch-synchronous signal repre
sentation to arrive at a pitch-synchronous sinusoidal model. The details of Fourier series
methods are reviewed here.

Complex Fourier series and the discrete Fourier transform

The Fourier basis for is the set of harmonically related complex sinusoids:

=^ for A=0,l,2,...,iV-l}. (B.l)
The complex Fourier series expansion for a signal a:[n] € is then

x[n] = (B.2)
Jb=0

where the coefficients Ck are given by the formulation:

AT-l N-lN-1 N-1

= Y, X) = ^CkNS(k-l) = Nci (B.3)
n=0 n=0 A;=:0 ^=0

==«• c* =

^ n=0

This expression for Ck is closely related to the discrete Fourier transform (DFT), which is
given by the analysis and synthesis equations

JV-l

= X/ Analysis (B.5)
n=0

, N-l

X! Synthesis, (B.6)
^ fc=0

where the analysis equation derives the DFT expansion coefficients or spectrum and the
synthesis equation reconstructs the signal from those coefficients. Given the existence of
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fast aigorithms for computing the DFT (t.e. the FFT), it is useful to note the simple
relationship of the Fourier series coefficients and the DFT expansion:

Ck = (B-')

Real expansions of real signals

The Fourier expansion coefficients and the DFT spectrum are complex-valued

even for real signals. For real signals, a real-valued expansion of the form

N-l

x[n] = ^ajfecoswifen + bksincjkn (®*8)
k=:0

can be derived using Euler's equation:

e'® = cos© + jsin©. (B-9)

For real«[»],

x[n] = »{!:[»]} = + (BIO)
Rewriting this using the complex Fourier expansion gives:

cke^"'" + (B.ll)
^ JfesO
1

= - cjb (coswjtn -I- j sinWitn) + cJ(coswitn - jsmwjtn) (B.12)
2it=o
N-l_ ^ coswitn + j ^ sin Witn. (B.13)

The expansion coefficients in the Fourier cosine and sine series are thus given by:

Ck + Cl _ 1 «W*]}
(B.14)

h = •'(^4^) = = ~
Q{Xlk]}

N

Furthermore, the spectrum of a real signal is conjugate-symmetric:

X[k] = X[N-k]', (B.15)

which can be expressed in terms of the real and imaginary parts as

= Si{X[lV-fc]} =i. Ok = as-k

3{A'[fc]} = -9{X[1V-A:]} bk = -b^-k-
(B.16)
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This underlying symmetry can be used to halve the number of coeflScients needed to
represent a;[n]. For odd the simplification is:

= 51 flfccoswfcn + bkslnukn
k=0

^ r (2irkn\ . f27r{N - k)n\
= "0 +£ rc°s(—j + N ) (B.18)

. . /2irkn\ , . . f2ir{N-k)nW+itsin [-Jf-) + j;j jj
N-l

= Oo + (Oib + aN-k)cos + {h - frjv-jb) sin (B.19)
k—l

N-l

2=00 +2g atcos (^) +6*sin (^) . (B.20)
For even N, the result is:

iL-i

x[n] =tto +afff2COS7rn +^S (~7^) * (B.21)
Note that in either case the oq term corresponds to the average value of the signal. Also,

in the case ofeven iV, the af^f2 term corresponds to the Nyquist frequency, at which the
spectrum should have zero amplitude; for the remainder, it is assumed that fl;v/2 = 0 for
the sake of generalization.

Magnitude-phase representations

The complex spectrum is often expressed in terms of its magnitude and phase:

X[k] = »{X[fc]} + i3{X[fc]} = lX[fc]|e''*», (B.22)

where

\X[k]\ = +Q{A-[fc]P and =arctan (^S) • (B.23)
The magnitude-phase representation is often of interest in audio applications because the
ear is relatively insensitive to phase. With this as motivation, the sine-cosine expansion

of real signals discussed above can be rewritten in magnitude-phase form based on the
following derivation:

/gi© 4- g-J@\ / pi© _ p-i© \flcos© -I- 6sin0 = af j -|- hf — j (B.24)
. ^(£^) + (£±i)



240

= -e'̂ s/a' +V^e-''^' + ^e-'̂ V<^T^e>'̂ ' (B.26)
2 2

= \/a^ +6^ cos ^0 —arctan . (B.27)
Substituting LJkn for 0, where ufk = 2irk/Nf and incorporating a summationover k yields
another form for the sums in Equations (B.20) and (B.21):

x[n] = oo +2J^^J-T^cos ^Wifen-arctan(B.28)

= + ~5 |̂-X'[Ar]|cos(wjbn + ^jfe), (B.29)
k

where \X[k]\ and 4>k areasdefined in Equation (B.23) andk ranges over the halfspectrum.
As a check, note that:

X[fc] = JVK-jit) = = «{Xtfc]} + i3{X[fc]} (B.30)

= -arctan— = arctan (B.31)
fljfe A L«J)

This magnitude-phase form is suggestive of the sinusoidal model ofChapter 2. The connec
tion is discussed in Section 5.3, where it is shown that some of the difficulties in sinusoidal
modeling can be overcome by applying the Fourierseries in a pitch-synchronous manner.
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