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structural Symmetries and Model Checking

Gurmeet Singh Manku

Abstract

We present a fully automatic framework for Identifying symmetries in structural

descriptions ofdigital circuits and CTL* formulas and using them in a model checker. We

show how the set of sub-formulas of a formula can be partitioned into equivalence classes so

that truth values for only onesub-formula in anyclass need be evaluated for model checking.

We unify and extend the theories developed by Clarke et al [CEFJ96] and Emerson and

Sistla [ES96] for symmetries in Kripke structures. We formalize the notion of structural

symmetries in net-list descriptions of digital circuits and CTL* formulas. We show how

they relate to symmetries in the corresponding Kripke structures. We also show how such

symmetries canautomatically beextracted by constructing a suitable directed labeled graph

and computing its automorphism group. We present a novel fast algorithm for solving the

graph automorphism problem for directed labeled graphs.
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Chapter 1

Introduction

As design cycles become ishorter, circuit size and complexity grow larger and costs

of design errors increase in magnitude [Hof95], traditional approaches like simulation are

being augmented by more complete techniques like formal verification [CW"'"96]. One pop

ular verification technique is model checking [Eme90], in which temporal logic formulas

are verified on a non-deterministic finite state machine that represents the system under

scrutiny. Model checking algorithms [CES86, CMB90, BCMD90, TSL"^90, BCL'''94] typi

cally explore the states of such a finite state machine. A major problem faced by state space

exploration techniques is due to the fact that the size of the machine could be exponential

in the size of the system description. This phenomenon is commonly referred to as State

Space Explosion.

Several techniques are being developed for countering the state space explosion

problem. Partial order methods [Pel93, God96], abstraction [Lon93], compositional ap

proaches [CLM89] and symmetries [Ip96, CEFJ96, ES96] appear to be most promising. To

date, none of these techniques has been fully automated.

1.1 Symmetries

Hardware circuits and distributed algorithms abound with symmetries. Hard

ware systems with symmetries include memories, caches, arithmetic circuits and distributed

memory architecture. Several distributed algorithms exhibit symmetry. The same holds

for concurrent programs. Typically all designs that have replicated subcomponents exhibit

symmetry.
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Huber, Jepsen and Jensen [HJJ84] and Starke [Sta91] have investigated the use

of symmetries for expediting reachability analysis for Petri nets. An algebraic approach

for reducing the cost of protocol analysis has been proposed by Kurshan [Kur87] and Attie

and Emerson [AE89]. The approach uses quotient structures induced by automorphisms

of the system. For example, symmetry between 0 and 1 in the alternating bit protocol

is factored out to reduce the size of the state space by one half. Verification of cache

consistency protocols has been shown to benefit from symmetries. See the survey by Pong

and Dubois [PD97] for details. Symmetries have proven useful even for transistor-level

verification of digital circuits [PB97].

1.1.1 CTL* Model Checking

Emerson and Sistla [ES96] and Clarke et al [CEPJ96] have developed a theory

of symmetries for CTL* model checking. Both papers show how symmetries in Kripke

structures and CTL* formulas allow the construction of a smaller sized quotient structure

such that the formula need be verified only for the quotient. Clarke et al focus on sym

bolic techniques and study the complexity of related BDDs. Using carefully constructed

formulas, they are able to verify the correctness of IEEE Futurebus-I- standard [CGH"^95].

Emerson and Sistla focus on systems composed of isomorphic subprocesses. In both works,

symmetries are specified manually. Theory for using symmetries in the presence of fair

ness constraints has been developed by Emerson and Sistla [ES95]. More recently, Gyuris

and Sistla [GS97] have developed an on-the-fly model checker that utilizes symmetries un

der fairness. Theory for combining partial orders and symmetries has been developed by

Emerson, Jha and Peled [EJP97].

1.1.2 Scalarsets

Ip and Dill [ID93, ID96] use symmetries for speeding up verification of safety

properties using explicit state exploration techniques for designs specified in a guarded

command language. They propose augmentation of the language itself by introducing a

new data type called scalarset A set of state variables is said to constitute a scalarset

if they are fully symmetric with respect to each other. The augmented language imposes

syntactic constraints on their usage. In [Ip96], it is shown how reflexive ring symmetries

like those found in the Dining Philosophers Problem ca.n similarly be handled.
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Scalarsets have two advantages. First, violation of syntactic constraints can be

detected during compile time. Second, since the types ofsymiiietries are limited in number
and well understood, algorithms for using symmetry information in a model checker get

simplified.

The ideaof introducing new data typesfor different kinds ofsymmetries has some

drawbacks. There would always be a limit on the kind of symmetries that a designer is

allowed to declare. A more serious flaw is that specification languages in the real world are

not amenable to modification. For example, Verilog [Ver97] and VHDL [VHD93] are two

IEEE Hardware Description Languages that cannot be modified easily.

1.2 New Ideas

We have developed a practical framework for automatically identifying symmetries

in CTL* formulas and structural descriptions of digital circuits and using them in a model

checker to speed up verification. The following are our key accomplishments:

1. We show that given a Kripke structure and a CTL* formula /, the set ofsub-formulas

of / can be partitioned into equivalence classes such that it suffices to compute the

truth values for any one sub-formula in a class. This idea is distinct from building a

quotient structure. The two can be used in conjunction.

2. We unify the theories for symmetries in Kripke structures and CTL* formulas, de

veloped by Emerson and Sistla [ES96] and Clarke et al [CEFJ96]. We extend their

fundamental theorems pertaining to quotient structures.

3. We formalize the notion of structural symmetries in net-list descriptions of digital

circuits and CTL* formulas. We show how these symmetries relate to those in the

corresponding Kripke structures. We propose algorithms for identifying these sym

metries automatically. The algorithm requires no assistance from the designer.

4. A major problem to be solved before existing symbolic or explicit model checkers can

successfully exploit quotient structures is the Canonical State Problem. We outline a

new algorithm for solving the problem using symbolic techniques.

5. We propose a novel fast algorithm for solving the graph automorphism problem for

directed labeled graphs. This problem arisesduring automatic extraction of structural
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symmetries.

We note that our framework can be extended to formulas in /i-calculus, as done

by Emerson and Sistla [ES96].

1.3 Organization of Report

In Chapter 2, we review background material. In Chapter 3, we show how the

set of sub-formulas of a CTL"' formula can be partitioned into equivalence classes. In

Chapter 4, we develop theory for quotient structures. In Chapter 5, we formalize the notion

of structural symmetries and show how such symmetries can automatically be identified.

The identification procedure requires computation of all automorphisms of a directed labeled

graph. In Chapter 6, we describe algorithms from computational group theory that solve

the graph automorphism problem. In Chapter 7, we tabulate results, draw conclusions and

list open research problems.



Chapter 2

Preliminaries

2.1 Kripke Structures

Let AP be a set of atomic propositions. A Kripke structure over AP is a triple

M = (5, A'), where

• 5 is a finite set of states.

• RC S XS is a. transition relation that is total, i.e. (Vs € 5)(3f € 5) ((«,<) € i2).

• K : S 2^^ is a labeling function.

The labeling function K associates with each state a set of atomic propositions

that are true in that state. Note that K could be many-to-one. Let states in S be encoded

such that there is a 1-1 mapping from S into 2^ for some L. Since each state corresponds

to a unique element in 2^, the labeling function K can be looked upon as a multi-output

boolean function K : 2^ -¥ 2^^.

In the context of hardware verification, L corresponds to the set of latches, AP

corresponds to the set of outputs of the circuit and K represents boolean predicates on

latches that generate the outputs.

A Kripke structure models the state transition graph of a Moore machine [HU79],

where the outputs are functions of the current state variables. In general, it cannot model a

Mealy machine, where the outputs could depend on the inputs as well. There are eflfective

procedures for converting a Mealy machine into a Moore machine. In general, such a

conversion changes the set of state variables.
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2.2 Temporal Logic CTL*

CTL* was first proposed by Emerson and Halpern [EH86]. It has two kinds of

boolean formulas: state formulas that evaluate to true in a specific state, and path formulas

that evaluate to true along a specific path.

2.2.1 Syntax

Let AP be a finite set of atomic propositions.

A state formula is either

• p, where p G AF,

• ->f or / Vp, where / and g are state formulas, or

• £•(/), where / is a path formula.

A path formula is either

• a state formula, or

• -»/, / Vp, X/ or fUg^ where / and g are path formulas.

CTL was proposed by Clarke and Emerson [CE81] much earlier than CTL*. It is

that subset of state formulas of CTL* in which the path formulas are restricted to be A/

and fUgy where / and g are CTL formulas.

2.2.2 Semantics

Let M = (5, R, K) be a Kripke structure. An infinite sequence of states V =

SojSi, •••, is said to be a path in M if (Vi. i > 0)((s,-,s,+i) G R). Let V' denote the suffix

of if) starting at Sj. Let (Af,s ^ /) denote that the state formula / is true for state s in

Kripke structure M. Similarly, let (Af, if) g) denote that path formula g is true for path

if) in Kripke structure M. Let fi and /2 be state formulas. Let gi and g2 be path formulas.

Then the relation [= is defined inductively as follows:

M,s ^ p p£ K(s).

Af,s 1= -i/i ^ M,sl^ fi.

Af,s|=/iV/2 Af,s|=/i or Af,sf=/2.

M,s 1= E(gi) <=> there exists a path ^ starting at s such that M, if) 1= Pi.
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s is the first state of rj) and M, s ^ /i.

->gi M,il;^gi.

M, ^ Pi V52 M,i{;\=gi or M,V't=P2.

M,^[=Xpi <=• \=gi.

M,'ip\= giUg2 {Bn > 0)((M, 0" 1= 52) A(Vj. 0 < j < n)(M, ^ |= pi)).

2.2.3 Logically Equivalent Formulas

We say that two CTL* formulas / and g are logically equivalentif their truth value

is the same for every state in any Kripke structure they are interpreted on.

2.2.4 Structurally Equivalent Formulas

We say that two CTL* formulas / and g are structurally equivalent if they not

only are logically equivalent but also have isomorphic parse trees. The latter condition can

be rephrased as follows: when written in postfix notation, the sequences of operators in

both formulas should be identical and there should exist a permutation defined on the set

AF such that replacing every occurrence of p € AF in formula / yields the sequence of

operands in formula p.

Intuitively, when / and g are structurally equivalent, g is the same formula as /

written in a structurally different way. The difference arises solely due to the commutativity

of some operators.

2.3 Model Checking Problem

The model checking problem is: Given a set of atomic propositions AP, a Kripke

structure M = (S, H, K), a CTL*formula f definedon AP and a set of initial states ICS,

does every state in I satisfy f?

Typically, M is not specified explicitly. It is derived from the system to be verified.

Common systems are hardware circuits, distributed protocols and concurrent programs.

The set 5 and the transition relation R are derived from the system specification. The

atomic propositions in AP correspond to outputs in a hardware circuit or state variables

in a protocol. What makes model checking challenging is the fact that the size of S can be
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exponential in the size of the specification.

Efficient procedures have been developed for solving the model checking problem.

Clarke, Emerson and Sistla [CES86] presented the first algorithm for CTL model checking

based on explicit state space exploration. Their algorithm is linear in the sizeof the formula

and the number of states.

In 1986, Bryant [Bry86] described an efficient implementation of Binary Decision

Diagrams (BDDs), a data structure for representing boolean functions first introduced by

Akers [Ake78]. Soon after Bryant announced the success of his BDD package, several

groups started adapting explicit state spaceexploration techniques for BDDs. Some of the

earliest symbolic techniques using BDDs were proposed by Coudert et al [CMB90], Burch et

al [BCMD90] and Touati et al [TSL''"90]. A symbolic model checker that can handle more

than 10^^° states on some pipelined circuits has been described by Burch et al [BCL"^94].

Both symbolic and explicit CTL model checking algorithms first compute the set

of states reachable from 7. They also construct a parse-tree of /. Leaves of the parse tree

correspond to atomic propositions in AP. Non-leaf nodes contain operators and correspond

to different sub-formulas of /. The parse tree is processed in post-order. When a state

sub-formula is encountered, its truth value for the set of reachable states is evaluated and

remembered. After the root is processed, the algorithms check whether / is true for all the

states in I or not.

CTL* model checking proceeds in a similar fashion. The parse tree is traversed

in post order. Evaluation of truth values for a path formula can be done by using a model

checkerfor LTL, another temporal logic. Modelcheckingof LTL formulas can be done using

language containment and tableau construction [VW86].

2.4 Permutation Groups

Aclassic reference for group theory is a textbook by Herstein [Her75]. Permutation

groups are studied in a book by Wielandt [Wie64]. Practical algorithms for manipulating

permutation groups are presented by Butler [But91].

2.4.1 Definitions

A permutation 7r is a bijective mapping w: S S defined over a finite non-empty

set S. Permutations are usually written in cycle form. Singleton cycles are ignored. For
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example, (1,4,2) (3,7) denotes a permutation on the set {1,2,3,4,5,6,7} where the images

of elements 1,2,3,4,5,6,7 are 4,1,7,2,5,6,3.

We denote the action of tt on an element s € 5 by its. Let a binary operator o be

defined on a pair of permutations as follows: tti o7r2 = tts, where (Vs G5) (ttss = 7r27ris).

It is easily verified that tts is a permutation.

A non-empty set of permutations G together with the operator o constitutes a

group if it satisfies the following properties:

1. Closure (V7ri,7r2 6 G')(7ri oir2 e G)

2. Associativity (Vtti, 7r2, tts e G)(7ri o (7r2 o tts) = (tti o 7r2) o tts)

3. Identity (3e € G) (Vtt g G)(e o tt = tt o e = tt)

4. Inverse (Vtt g G)(37r"^ GG)(7ro7r~^ = ott = e)

Strictly speaking, the set G along with the operator o together define a group.

However, in this report, we will use G as a convenient shorthand for denoting the group as

we deal only with permutation groups.

Let if be a subset of permutations in the group G. The set H generates G if every

element tt of G can be written as a composition tt,, o tTjj o ••*o of elements of H for

some k dependent on tt. Elements of H are also called generators of G.

A group if is a subgroup of G if fi is a group and every member of H belongs to

G. We use if < G to denote this relationship.

We use Gi nG2 to denote the intersection of the groups Gi and G2, which itself

is a group.

For a set T" C S, we define nT = {s | s = 7rt where t GT}. This overloads the

operator tt but buys us notational convenience.

For a set X C 5, such that ttX = X, we use 7r<x> : X —¥ X to denote the restric

tion of n to A.

2.4.2 Definition of G ^ H

We introduce a binary operator M to represent a function that we will encounter

several times in this report.

Let G denote a permutation group over Si US2 such that (Vtt GG)((7r5i = 5i)

A(7r52 = 52)). Let if denote a permutation group over 52U53 similarly. Then G t><J if
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is a permutation group over 5i US3. A permutation ir belongs to G tx H if and only

if there exists a pair of permutations g 6 G and h £ H such that (Vs € Si)(^s =

(Vs € S3)(/is = TTs) and (Vs 6 S2)(gs = /is).

Effectively, G ^ H joins permutations from G and H if and only if their action on

S2 is the same. The symbol tx has been borrowed from relational database literature, where

it denotes the join of two tables i.e. the operation of taking the cross product of two sets of

tuples (tables) and choosing those that satisfy some predicate. The predicate is commonly

the equality of some members (table columns) of the original tuples coming from the two

tables.

2.5 Graph Isomorphism Problem

The graph isomorphism problem is: Given a pair of directed graphs Ai= (Vi, Ei)

and A2 = (V2, £*2), is there a bijective mapping tt : Vi V2 such that

(Vui,U2 GVi)((i;i,t;2) G£1 ^ (7rt;i,7rt;2) G£2)?

The book by Hoffman [Hof82] and Section 2.6 ofthesurvey by van Leeuwen [vL90]
present a comprehensive summary of algorithmic results pertaiining to the graph isomor

phism problem. The problem has withstood all attempts at a solution to date. It is neither

known to be NP-complete nor known to be polynomially solvable. There issome theoretical

evidence that it is not NP-complete because if it were so, the Meyer-Stockmeyer polynomial

hierarchy would collapse. The problem remains hard for directed acyclic graphs, bipartite

graphs and regular graphs.

Polynomial algorithms are known for a few special cases. For rooted trees with

71 vertices, the problem can be solved in 0(7i) time (Theorem 3.3 in the book by Hopcroft

and Ullman [HU79]). For planar graphs with n vertices, Hopcroft and Wong [HW74]
present an 0(n) time algorithm. A linear time algorithm for interval graphs is due to
Lueker and Booth [LB79]. For random graphs, an 0(nlog ii) algorithm is due to Deo et

al [DDL77]. A polynomial time algorithm for graphs with bounded degree has been dis
covered by Luks [Luk82]. For general graphs, the best known algorithm is due to Babai
and Luks [BL83]. It has a worst-case time complexity of 0(0"''̂ *^° '̂').
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2.6 Graph Automorphism Problem

Given a directed graph A = (V, £*), a permutation tt : V —> V is said to be an

automorphism of A if it satisfies (Vit, v € V^)((tti v) € E^ (ttu,ttv) € E), The set of all such

permutations forms a group as it satisfies the four properties listed in Section 2.4.1. The

graph automorphism problem is to compute this group from a description of A.

The problem of computing whether a graph has a non-trivial automorphism is as

hard as graph isomorphism. See the survey byvan Leeuwen [vL90] for further results. Prac

tical algorithms, for computing the automorphism group of a directed graph have received

much attention in the last two decades. We discuss them in Chapter 6.



Chapter 3

Symmetric Sub-formulas

In this chapter, we develop theory for partitioning the set of sub-formulas of a

CTL* formula into equivalence classes such that it suffices to evaluate the truth values

for only one sub-formula in any class for model checking. We also outline a technique for

identifying these classes automatically.

3.1 Definitions

Let M = (5, A') be a Kripke structure with 2^ states.

3.1.1 Definition of AuIm L

Let TT : L L be a permutation. It induces a permutation 11 : 2^ —2^ naturally.

Let TT be such that 11 is an automorphism of the directed unlabeled graph (5, A). The set

of all such 7r forms a group, which we denote by AuIm L.

3.1.2 Definition of Aut^ L • AP

Consider a permutation jr : L U AP -¥ LU AP such that {kL = L) and (7r<£,> €

AutM L) and (Vx G 2^)(Vj/ € 2'̂ '')((A'(x) = y) •<=> (K{nx) = Try)). Recall that 7r<j[,>
denotes the restriction of tt to L. The set of all such permutations 7r forms a group which

we denote by Autj^ L •AP.
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3.1.3 Definition of AuIm L - X

Sometimes in later chapters, it will be convenient to consider a Kripke structure

M having additional labels drawn from a set X. In such a case, the new labels can be

looked upon as a mapping K': 2^ -¥ 2^.
Consider a permutation iriLuX—^LuX such that (ttL = L) and €

AutM L) and (Vx € 2^)(Vi/ € 2'̂ ^)((A''(x) = y) {K'i^nx) = Try)). Recall that ir<L>
denotes the restriction of n to L. The set of all such permutations ir forms a group which

we denote by Aut\f L - X.

3.2 Theory for Symmetric Sub-formulas

For s € 5 and n € Aut\f L •AP^ let irs denote the state obtained by applying 7r to

the encoding of s. Forany path tp in M, let nip denote the path obtained by applying n to

every state in rp. For a CTL* formula / defined on AP, let 7r/ denote the formula obtained

by replacing every occurrence of p € AP by irp.

Theorem 3.1 For a Kripke structure M = (5, R, K) and a permutation w€ Aut^ L AP,

(M, s 1= /) ^ (M, Trs 1= Tr/)

(M, 7p^g)c> (M, nip (= Try)

for any state s E S, any path ip in M, any CTL* state formula f and any CTL* path

formula g.

Proof:

The syntaxof CTL*, as described in Section 2.2, allows us to write path formulas

that are the same, as state formulas. To differentiate between the two, we will assume the

existence of an operator Path that explicitly converts state formulas into path formulas, as

allowed by the syntax. Then the shortest formulas are of the kind / = p, where / is a state

formula and p € AP.

We prove by induction on the length of the formula. We will use the easily proven

identities: (Tr(-i/) = -*(nf)), {n{fWg) = Tr/V Try), {n{Xf) = X(nf)), (n(Eg) = E(ng))
and (n(giUg2) = ngiUng2).
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Base case:

Let / = p where p € AF. Let (M, s\= f). Then p 6 ^(s). From the definition of.
AutM L•AF, we obtain np € /C(7rs). Thus (M, tts [= 7r/). We can prove the result in the
other direction similarly to obtain (M, s |= /) -^ (M, Trs |= 7r/).

Induction step:

We show that if the theorem holds for all formulas of length A:, then it holds for

all formulas of length fc + 1.

State formulas:

• ->f: Formula / has length k. By assumption, (M,s \= f) (MjTts |= wf). It readily
follows that (M,s |= -i/) <=>• (M,tts |= -itt/) ^ (Af, 7rs ^ ^(-"Z))-

• /i V/2: We have (M, s /i V/2) ((M, s [= fi) or (M,s \= /z)) ((M, tts |= nfi)

or (M, TTS ^ 7r/2)) ^ {M^irs |= (7r/i Vtt/z)) {M^ns ^ 7r(/i V/z)).

• By definition, (M,s |= ^(p)) there exists a path ^ starting at s such that

(M,^ [= p). Since g is of length k, {M^ij^ [= p) <=> (M,|= Trp). It follows that

(M,s 1= £?(p)) <=> (M, Trs 1= E(7rp)) (M, tts ^ 7r£'(p)).

Fath formulas:

• Formulas of the kind -^g and pi Vp2 can be handled in the same way as state formulas.

• Xg: By definition, Since g is of length Ar, (M,|= p) -«> (M^Trij)^ [=
Trp) <=> (M, \= Trp) (M, |= A"(7rp)) (M, Krl) ^ 7r(Ap)).

• 9iUg2- Let (M, V* N By definition, (3n > 0)((M,V'" N ^2) and (V^.O < i <

n)(M, V'-' t= Pi))- Both pi and p2 have length at most k. We have (Vi.i > 0)(7rV'' =
{irij;)*). Thus, (M,^" |= P2) <=> (M,7rV'" |= 7rp2) (M,(tt^)" |= 7rp2). Similarly,

(Vi-O < i < n)((Af,^-' t= Pi) ^ (M,(7r^)-' f= ngi)). Combining them, we obtain

(M, 1= 9iUg2) (M,wtl; |= irgiUng2) ^ (M^nip |= 7r(piC/p2)).

• Fath f: By definition, (M, ij) }= Fath f) ^ (M, s ^ /) where s is the first state of

rj). Since / is of length fc, (M,s |= /) <:> (M, tts |= tt/). It follows that (M, V* |=

Path /) (M,7r^ |= Path (Tr/)) ^ (M,7rV' |= 7r(Pai/i /)).
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3.3 Equivalence Classes of Sub-formulas

For a Kripke structure M and CTL* formula / defined on AP, let SF denote

the set of all sub-formulas of /, including any atomic propositions in AP that occur in /.

Recall the definitions of logical and structural equivalence from Sections 2.2.3 and 2.2.4. For

a subgroup G < AuIm L-AP, wedefine a relation C SFxSF as (V/i, /z € SF){{fi

/2) ^ (Btt 6 G)(7rfi and /2 are logically equivalent)). We also define a relation the

same way as but replacing logical equivalence by structural.

Theorem 3.2 ForG < Aut^ L •AP, the relations and wf are equivalence relations,

with inducing a partition coarser than that induced by

Proof:

Reflexivity: The identity permutation belongs to every permutation group G and

leaves any formula unchanged.

Symmetry: From the definition of permutation groups, n e G ^ G. If 7r is

a witness for (/i /2), then is a witness for (/2 /i). The same holds for also.

Transitivity: If 7ri 6 G is a witness for (/i /2} and 7r2 € G is a witness for

(/2 /a), then 7ri o 7r2 is a witness for (/i /a), where 7ri o Tra 6 G, from the definition

of permutation groups. A similar argument holds for as well. •

3.4 Model Checking with Equivalence Classes

How do Theorem 3.1 and Theorem 3.2 expedite model checking? Let us assume

that we have identified the equivalence classes induced by or Consider two sub-

formulas g and h in the same class. Let tt G AuIm L •AP be a witness that transforms h

into g. If the truth value of h has been evaluated for all states in 5, the truth value for g is

immediately available. In'a symbolic technique, the BDD for g can be computed from that

for h by variable substitution corresponding to n. Alternatively, we can obtain the BDD

for flf in a different variable ordering by simply renaming variables in h.

The truth values for only one formula in any equivalence class defined by or

need be evaluated; all others follow immediately. This could contribute to significant

savings if the formulas in the orbit are big or they are path formulas with a temporal
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operator at the top. For the latter case, some fixed point computations are obviated in a

symbolic technique.

3.5 Computing Equivalence Classes of Sub-formulas

Problem: Given G < Aut\f L •AP and a CTL* formula how do we find two

sub-formulas g and h such that h? This is a computationally hard problem even if /

is a simple boolean formula without path operators or temporal quantifiers [AT96].

Does the problem become easier if we replace by If we allow operators

with arbitrary arity (which isthe interesting case, in practice), we can show that the problem

is as hard as graph isomorphism. The reduction is simple. Given two undirected graphs, let

AP be a set ofatomic propositions with cardinality equal to the number of vertices in either

graph. Label the vertices of the first graph with AP such that each vertex has a unique

label. Now, label each edge (a:, y) with the sub-formula px APy, where Px and Py are the

labels of x and y respectively. Finally, construct the disjunction of all these sub-formulas.

Construct a similar formula for the other graph. The two graphs are isomorphic if and only

if the two formulas are structurally equivalent. We can also show that the problem remains

hard even if we restrict the arity of operators to 0(|AP|).

We now outlinean algorithm that is limited in the typesof symmetric sub-formulas

it can identify but can be very effective in practice.

3.5.1 Definition of Autj AP •SF

For a CTL* formula /, let SF denote the set of sub-formulas of /, including all

atomic propositions that occur in /. Consider the group consisting of permutations ir :

AP AP such that / and tt/ are structurally equivalent. Every permutation in this group

implicitly defines a permutation on the set APli SF. For example, let AP = {pi^Pi^Ps}

and / = V(/i,/2,/3) where fi = p\Up2, fi —P2Upz and fz = pzUpi. Then SF =

{/> /i 1/2» /a*PiiP2iPa}- The permutation ?r = (pi,p2»Pa) belongs to Aut/ AP and implicitly
defines the permutation (pi,P2»Pa)(/ii/2>/a)(/)- We denote this group on AP U SF by

Autj AP' SF.
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3.5.2 Definition of

Let G < AuIm L • AP. Let H < Autj AP • SF. Recall the definition of M

from Section 2.4.2. We see that the group G ^ H is well defined. We define a relation

SFxSF as (V/1,/2 € 5F)((/i A) ^ (Btt 6 G M H)(7rfi and /j are

structurally equivalent)). This is an equivalence relation. In general, the partition induced

by is finer than that induced by wf for G = Aut\j L •AP.

3.5.3 Putting It All Together

The overall idea is to compute a group G < AuIm L •i4P, a group H < Autj AP-

SF and then G M /f. In Chapter 5, we will show how all the three steps can be carried

out automatically by constructing a suitable graph and solving the graph automorphism

problem for it. The representation for G M/f would allow us to easily identify the partitions

induced by and produce witnesses that transform one sub-formula into another in

the same partition.

3.5.4 Critique

We concede that the technique outlined above would identify equivalent sub-

formulas only if the symmetry in the specification is reflected in the formula as well. It

appears that a coarser partition can be obtained by devising better heuristics, as the size

of formulas is small in practice. This could be the theme of a short research project.

3.6 Generating New Formulas

Having computed G < AuIm L-AP and proved the correctness of a CTL* formula

/, one can use Theorem 3.1 to generate new formulas whose truth value is already known.

These can be obtained by producing a non-trivial tt € G and constructing nf. A model

checker can present new formulas to a designer in a controlled fashion using an interactive

user interface.
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3.7 Summary

Theorem 3.1 and Theorem 3.2 show how sub-formulas of a CTL* formula can be

partitioned into equivalence classes such that the truth value for only one formula in any

class need be evaluated. In Section 3.5, we outlined a procedure for automatically identifying

these classes. Briefly, we need to compute G < AuIm L'AP, H < Autj AP-SF and G ^ H.

The idea of symmetric sub-formulas does not attack the state space explosion

problem. It expedites model checking on the original structure. In the next section, we

develop the notion of quotient structures, which are aimed directly at reducing the state

space. Once they are described, it will become clear that identification of symmetric sub-

formulas contributes to savings on top of quotient structures.
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Quotient Structures

In this chapter, we develop a theory of symmetries for Kripke structures, unifying

those developed by Clarke et al [CEFJ96] and Emerson and Sistla [ES96]. We first show

how a smaller sized quotient structure can be constructed from a Kripke structure and a

CTL* formula so that it suffices to check the formula on the quotient. We then show how a

model checker need be modified to use quotient structures. A major problem to be solved

before model checkers can successfully use quotients is the Canonical State Problem. We

propose a novel symbolic algorithm for this problem. Finally, we list areas requiring further

research.

4.1 Definitions

Let M = (5, ii, K) be a Kripke structure with 2^ states. Recall the definition of

AutM L ' X from Section 3.1.3.

4.1.1 Definition of Hg and fc

Let G < AutM L'X foT some set of labels X. Let two states s and t in 5 be related

if there exists k £ G such that 7rs = t. This defines an equivalence relation, partitioning

S into equivalent sets called orbits. We denote the orbit of a state s 6 5 by [s]g- We

pick a state from each orbit to obtain a set of representatives. We then define a function

' S -¥ S such that each state is mapped to the representative of the orbit it belongs to.

Note that ^g is not unique. The results in this chapter hold for any ^g-
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4.1.2 Definition of Quotient Structure Mq

For a Kripke structure M = (S, R, K) and G < Aut\f L ' X for some set of labels

X, the quotient structure is defined as Mq = (^g, Rg^ Xq)-, where

• Sg —{Hg I « € 5}

• Rg = {(Mg, Mg) 1(s>0 € -R}

• a:g(Wg) = RKgW)

4.2 Theory for Quotient Structures

An important relationship between a Kripke structure and its quotient is captured

by what is called the Path Correspondence Lemma.

4.2.1 The Path Correspondence Lemma

Lemma 4.1 [CEFJ96, ES96]

For a Kripke structure M and any group G < Aut^ L-X, there is a correspondence

between paths of M and its quotient structure Mg, characterized by

• //sqj• ••» I^olGt I5i]g» •••! is a path in Mg-

• If [so1g> [siIg? ••Mis a path in Mg, then for every state to € Iso]g» there exists a
path to,ti,..., such that ti € [s,1g for i > 0.

•

4.2.2 Label Preserving Quotients

The fundamental result in [CEFJ96] is captured by the following theorem:

Theorem 4.1 [CEFJ96]

For a Kripke structure M = (5, R, K) and a group G < Aut^ L •AP, if

(Vtp € C?)(Vp € AP){irp = p)

then

(Vs € S)((M,s 1= /) (Mg,[s]g N /))

for any CTL* formula /. ^
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Application of Theorem 4.1 requires that the truth value ofevery atomic proposi

tion be invariant under every permutation in G. In group-theoretic terminology, werequire

that each p € AP be centralized.

In the extreme case, we could have AP = L, giving each state a unique label.

As a consequence, G is trivial and the quotient structure is not smaller than the original.

Therefore, to use Theorem [CEFJ96], we should to be able to generate good outputs as

atomic propositions. This is possible in practice. See [CEFJ96] for examples.

A motivating example where Theorem 4.1doesnot allow reduction but symmetries

clearly exist, is a system consisting of n black-boxes interconnected in a ring topology. The

Dining Philosophers Problem is a good example ofsuch a system. Leteach black box have a

local output. Let / be a fully symmetric boolean formula on these n outputs. The quotient

structure implied by Theorem 4.1 would be trivial.

If we replace the old set of labels with a single label corresponding to the truth

value of the overall formula, we can leverage Theorem 4.1. This gives us a generalization

that we now develop.

4.2.3 Definition of Autj AP • MPS

A maximal propositional sub-formula is a sub-formula containing only the boolean

operators and V such that it is not an operand of another formula with topmost operator

-I or V.

For a CTL* formula /, let MPS be the set of its maximal propositional sub-

formulas. Let /mps be the corresponding multi-output boolean function 2^^ 2^^^.
We define Autj AP •MPS = {tt : AP UMPS AP UMPS | tt is a permu-

tation, itAP = AP, vMPS = MPS, (Vy € MPS)(Ky = y) and (Va: € (/mps(i) =

/mps(tx)}. This set forms a group.

4.2.4 Larger Label Preserving Quotients

Recall the definition of the operator M from Section 2.4.2. We see that for G <

AuIm L ' AP and H < Autj AP •MPS, the group G ^ H is well defined.

If we replace the labels of M with a set of labels corresponding to truth values of

sub-formulas in MPS, we can define AuIm L •X (see Section 3.1.2 for its definition) with

X = MPS. From the definitions in Section 4.1.1, we see that [sJgmh and are well
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defined since it is true that G ^ H < AuIm L - where X = MPS.

Theorem 4.2 For G < Autj^ L • AP and H < Autj AP •MPS,

(Vs € S){{M, s\= f)^ (Mgmh» Wgmh h /))

Proof: The crux of the proof lies in showing that G H < AuIm L •X, where X = MPS.

Then replacing labels of M by labels corresponding to evaluations of sub-formulas in MPS

allows a straightforward application of Theorem 4.1 to get the desired result.

•

It is clear that Theorem 4.1 is a special case of Theorem 4.2, which captures the

symmetries of the black-box system we outlined at the end of Section 4.2.2.

We note that the definition of H is along the same lines as that of Auto'f in [ES96].

However, their theory is built for a system composed of isomorphic processes such that all

states are uniquely labeled i.e. AP = L.

In Chapter 5, we will show how G, H and G M/f can be computed automatically

from a structural specification and CTL* formula.

4.2.5 An Extension of Emerson-Sistla Theorem

Emerson and Sistla [ES96] build their theory of Kripke structures for systems of

communicating isomorphic processes, with the set of atomic propositions being the set of

shared variables. In our terminology, it amounts to assuming AP = L and restricting the

number of initial states to one.

We have extended their fundamental theorem to the case where this assumption

is not true. Briefly, it amounts to introducing a new set of labels corresponding to all

maximal propositional sub-formulas along with all sub-formulas that have E,X or U as the

topmost operator. The proof proceeds along the same lines as Theorem 4.2. Due to lack of

time, we omit the extended theorem and its proof from this report. We however note that

computation of the corresponding H and G ^ H can indeed be automated.

4.2.6 Summary

Theorem 4.2 stipulates a set of sufficient conditions that a Kripke structure to

gether with a CTL* formula should satisfy in order to facilitate the construction of a smaller

sized quotient structure such that it suffices to check the formula on the quotient.
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To construct the quotient, we need to identify the groups G < AuIm L •AP and

H < Autf AP • MPS and construct G ^ H. In Chapter 5, we will show how the three

steps can be carried out automatically.

Once we have constructed G ^ H, how do we use it to expedite model checking?

We explore this in the next section.

4.3 Model Checking with Quotient Structures

From G < AuIm L • X, let us assume that we magically obtain the function

' S -¥ S, as defined in Section 4.1.1. The function maps each state in 5 to a representative

state in its orbit induced by G. How do we use in a model checker?

4.3.1 Explicit State Enumeration Using (g

In Figure 4.1 on the following page, we outline how an explicit search can be

modified using ^g- If the set Unexplored is maintained as a stack, the search becomesdepth

first. We have borrowed the algorithm from [CEFJ96].

4.3.2 Symbolic Model Checking Using ^g

In a symbolic technique, BDDs are used to store the transition relation R x

2^ -4 2^ and the set of initial states I : 2^ 2^. Assuming the existence of a HDD for

: 2^ 2^, the search step can be modified in any of several different ways.

First, we could compute a new transition relation :2^ x2^ -¥ 2^ as:

Ri^(x,y) = (3x',y'€2^)(R(i',y') A (fG(i') = i) A fe(»') = y))

The set of initial states can be modified to 1^:2^ —¥ 2^ as:

k^(x) = (3x'€2')(/(x') A fc(i') = »:))

BDDs for and can be computed from R and / simply by substituting

variables by functions. This operation is one of the BDD primitives. From the theory

developed in Section 4.2, it follows that model checking can be done using 7^^, R^^ and the

original CTL* formula. The space complexity of BDDs for R^ for interesting groups has

not yet been studied by researchers.
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Reached = (j>;

Unexplored = <f>;

For each initial state s Do

Append ^g(s) to Reached^

Append ^g(s) to Unexplored;

Endforloop

While (Unexplored ^ <f>) Do

Remove a state s from Unexplored;

For each successor state 9 of s Do

If ^ Reached U Unexplored)

Append ^0(9) to Reached;

Append ^0(9) to Unexplored;

Endlf

Endforloop

EndWhile

Figure 4.1: Modified explicit state enumeration algorithm using ^g-

Alternatively, given a BDDfor a set of representativestates which are Unexplored,

we could use to obtain a BDD for the next set of representative states as:

Next{z) = {3x\y' e2^)(Unexplored(x') A R(x',y') A (^gCj/O = ^))

This equation could be used at each step of the breadth first search. It does not require the

construction of R^q-

In [HAM97], it is argued that explicit methods should bepreferred to symbolic ones

for symmetric systems. They show that the BDD for the set of reachable states for some

real systems encountered in practice is exponential in size. However, implicit techniques

might benefit from R^^ by storing only the representatives ofstates reached. There are no

known results pertaining to the space complexity of R^^^.
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4.4 The Canonical State Problem

We now explore how can be computed. For s € 2^, Is said to be the

canonical state of s. The Canonical State Problem is to compute ^g from a description of

the system to be verified. Once we have computed G < AuIm L •X'm the form of a set of

generators, the crucial question is: How difficult is it to obtain ^g /rom a set of generators

for a group acting on L?

In [CEPJ96], it is shown that the following problem is as hard as graph isomor

phism: Given two states in 2^ anda set ofgenerators for a group G acting on the set L, do

the two states have the same canonical state? Therefore, the chances of devising a general

purpose fast algorithm using standard representations for generators are remote. However,

in an explicit model checker, we need to pose the query ^gC®) repeatedly for a set of states

which is ofsize 0(2^). Can we devise an algorithm that pre-processes the set ofgenerators

such that the cost of pre-processing gets amortized over a multitude of subsequent queries?

This is an open problem.

4.4.1 Equivalence Relation Approach

An idea suggested by [CEPJ96] is to construct a BDD for the equivalence relation

Og QS XS defined as (Vs,t € 5)(0g(s,O ^ (Hg = PIg))- The motivation is to use the

method of Lin [LN91] to construct ^g from 0g. However, it may be noted that once we

have a BDD for 0g, we can compute ^oi^o) for a state sq efficiently without constructing ^g

as follows: simply plug in s = sq and obtain a BDD for 0g(soi choose any element

from 0g(soj I) consistently. One choice could be the lexicographically largest/smallest value

for t. Thus evaluating ^g(®o) requires just one path traversal through the BDD for 0g-

Clarke et al [CEPJ96] have identified some interesting groups which are encountered in

practice and for which the space complexity of any BDD for 0g has an exponential lower

bound.

4.4.2 Direct Computation of ^g

We can attempt to construct ^g directly without constructing ©g- Note that

©G is a relation whereas ^g is a function. The complexity of BDDs for ^g is not known.

Intuitively, they should require less space because ^g Is a function. In Figure 4.2, we



28 CHAPTER 4. QUOTIENT STRUCTURES

Input: (tti, 7r2,..., TTp), a set of1-1 and onto functions 2^
Output: Canonical state function ^ : 2^ 2^.

^(x) = a;

for i = 1 to p do

r(x) = 7r,(x)

T}{x) = ^(x)

do

f(x) = t{x)

7?(X) = 7/(x)

•(r7(x)), if fi(x) < T(fi(x))

jj{x) otherwise.

r(x) = r(r(x))

while (77 ^ r?)

?>) ^
max {ri{y) \ $(j/) = i}, if |(i) = x
^(x) otherwise.

Ti(x) = I"\ n{

do

«(»:) = «(«»)
while ($ 54 i)

2^.

Figure 4.2: Algorithm for computing ^ from a set ofgenerators for a group acting on L.
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outline a technique that constructs from a set of generators without ever constructing

an intermediate BDD that resembles 0g«

In Figure 4.2 on the preceding page, = should belooked upon as a BDD operation.

The function max() takes a set T € 2^^ as its argument and returns the laryest element in
T according to some total order on elements of2^.

Thealgorithm processes elements from the set ofgenerators one by one. Thefirst

do-while loop computes 77, the canonical state function for the cyclic, group generated by

TT,-. This funccion is used to compute the new representing the canonical state function

for the group generated by theset ofpermutations (tti, 7r2, —, 7r,_i). It is easy to formally
prove the correctness of the algorithm and to show that each do-while loop takes 0{\L\)
iterations.

The exact complexity for this algorithm is yet to be determined. Does this one or

a variant of it work well in practice?

4.4.3 Other Ideas

In [HAM97], a heuristic procedure is used to compute ^(s) for individual states,

one at a time, for an explicit model checker. Another idea proposed by [CEFJ96] is the use

of multiple representatives for each orbit.

We can solve the problem for special classes of groups for which ^ is readily com

puted. This is the approach used by several authors [CEFJ96, ES96, ID96, HAM97]. For

example, if the system is composed of a hierarchy of fully symmetric subsystems, then ^ can

be computed for a given state by simply computing the canonical state for each subsystem

recursively and then sorting them.

4.5 Research Problems

Figure 4.3 on the following page is a flow diagram of a fully automatic setup that

extracts symmetries and exploits quotient structures.

The three black boxes correspond to the following three sub-problems:

1. How do we compute G ^ H from a system specification and logic formula?

2. How do we obtain ^ from a set of generators of a group G MH7
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Figure 4.3: Flow diagram for model checking using quotient structures.

3. How do we modify a model checker so that it takes advantage of

In Chapter 5, we outline how the first problem can be handled effectively for

structural specifications. It would be interesting to extend these ideas to higher level spec

ifications.

We need theoretical research for the second problem. It is very well defined. We

note that it seems unlikely that ^ can be computed directly without computing G txi H.

The third problem is of an experimental nature. We believe that the techniques

outlined in Section 4.3 would serve as a good starting point.
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Structural Symmetries

In this chapter, we develop theory for structural symmetries in hardware circuits

and CTL* formulas. We show the relationship between structural symmetries and sym

metries in the corresponding Kripke structure. We also show how such symmetries can

automatically be extracted from designs specified in a structural hardware description lan

guage like BLIF-MV [BCH+91].

5.1 Motivation

In Section 3.5, we saw how knowledge of groups G < AutM L • AP and H <

Autj AP •SF would help us partition sub-formulas of a CTL* formula / into equivalence

classes. In Section 4.2.4, we saw how knowledge of the same group G but a different

H < Autf AP' MPS would allow us to construct quotient structures. In both the cases,

we need to compute G ^ H.

In [CEFJ96, ES96, HAM97], a group similar to G Mi/ is specified by the designer

manually . In [HAM97], it is mentioned that a permutation specified by the designer can be

verified simply by checking that the transition relation BDD obtained by the corresponding

variable substitution is the same as the original one. In [ID96], the symmetries are ex

tracted from high-level descriptions having a new data type with restricted usage. A priori

knowledge of symmetries obviates the need for computing G ^ H.

In this section, we describe how G, H and G M i/ can be computed automati

cally, with no assistance from the designer. We start with a brief description of BLIF-MV

[BCH''"91, Ber93]. We then formally state what we mean by structural symmetries of a
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BLIF-MV circuit and how they relate to the symmetries of the corresponding Kripke struc

ture. We then show how a graph can be constructed from a BLIF-MV description so that

there is a 1-1 correspondence between structural symmetries of the circuit and automor

phisms of the graph. We do the same for CTL* formulas. Finally, we show how the two

can easily be combined.

5.2 BLIF-MV

BLIF-MV [BCH"^91, Ber93] is a structural hardware description language. It

allows specification of a circuit in terms of its primary inputs, primary outputs, latches,

tables and interconnection signals.

A latch has one output and two input ports. One of the input port specifies the

initial values for the latch.

Tables represent combinational functions. They could have multiple input and

output ports. The function implemented by a table is typically given in tabular form. See

Figure 5.1 for an example. There is one column corresponding to every input and output

port. A table description consists of entries. An entry is simply a subset of the values taken

by the domain of its column. In each row, the input entries define a cube in the input

domain space and the output entries define the output for that cube. Non-determinism can

be achieved by specifying more than one output for the same input. Default values for each

output can also be specified. The table in Figure 5.1 has three input ports, one output port

and twelve entries.

.table a b c -> carry

.default 0

11-1

1-11

- 1 1 1

Figure 5.1: A BLIF-MV table for the carryover bit in a 3-bit adder.
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Interconnections signals among primary inputs, primary outputs and ports of ta

bles and latches respect the constraint that at most one signal feeds any input port. We

assume that the circuit has no combinational cycles.

5.2.1 Characterizing a BLIF-MV Circuit

We model a BLIF-MV circuit as a five tuple C = {X,0,C,TyS)^ consisting of a

set of primary input ports I, a set of primary output ports O, a set of latches a set of

tables T and a set of interconnection signals S. Intuitively, C is a big black-box with I/O

ports (primary inputs and outputs) consisting of smaller black boxes (tables and latches)
whose I/O ports are interconnected with signals.

A table T G T has input ports tj',ij,... and output ports .... With
each output oj, we associate a function that takes the ordered tuple (ij', ...) as its
argument. Alatch L € £ has two input ports and one output port of. The second
input port specifies the initial value for the latch.

Source and Sink Ports

Let Psink = where PT = (JreT'• ••} and P/;^ =
Let Psource = Pjut^ where Pj^t = •••} and P^^t = DLeci^i}- Thus

Psink Is the set of primary outputs and input ports of tables and latches,.except those for
initial values for latches. And Psource is the set of all primary inputs and all output ports

of tables and latches.

We were motivated to use the sub-scripts sink and source because interconnection

signals emanate from some port in Psource and feed a set of ports in Psink-

Domains and Functions

Each port is associated with a domain. For p € Psink U Psource^ let the function

dom(p) compute its domain. For oj € Pjuu i®t the function Jj(if, if, •••) be the boolean
function specified in its table that corresponds to the output produced at oj. This function
that takes an ordered list of input ports as its arguments. It could be non-deterministic.
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Interconnection Signals

The interconnection signals S simply define a relation Sext Q Psource x Paink- We

also define a relation 5,nt = >•••} ^

captures the internal dependencies of input and output ports within a latch or a table. And

Sext captures the cxiema/dependencies between primary inputs, primary outputs and I/O
ports of tables and latches.

5.2.2 Definition of Structural Symmetries

A structural symmetryofC is an automorphism n : Paink^Paource Paink^Paource

of the directed unlabeled graph {Psink U Paourcet Sint U Sext) that satisfies the following

constraints:

1- ''(PD = PL "(PL) = PL, <PL = PL ^(PL) = pL, m = 2 and i,(o) = o.

2. (Vp GPaink U-Psource){do77l(p) = dom^T^p)).

3. (VoJ €PDUJ('T' 'L •••) =fri'V'• ••)) "here {oj,' =wof), (tj)' =mf), (t^/ =
T'l)

Condition 3 requires some explanation. From the first two conditions it can be

deduced that vertices corresponding to a table will be mapped onto vertices corresponding

to another table with the same number of inputs and outputs in such a way that their

domains match. Condition 3 stipulates that even the functionality of the two tables should

match. Note that no total ordering has been assumed on the table inputs or outputs.

It may be verified that the set ofstructural symmetries forms a group as it satisfies

all the four conditions specified in Section 2.4.1.

5.2.3 Relationship with AuIm L • AP

How are structural symmetries in C relatedto symmetries in some Kripke structure

M? For a circuit C, there exists a Kripke structure M = (5,P, K) with 2^ states and theset
of atomic propositions AP. The set L corresponds to the latches. The set AP corresponds

to outputs in O. The function K represents the boolean predicate on latches that generate

outputs. We assume that the outputs in Cdo not depend on the inputs i.e. C defined a
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Moore machine. However, we note that the basic ideas ofstructural symmetries developed

in this report are applicable to all circuits, in general.

Definition of Autc L • AF

For a structural symmetry tt, let ire '. LU —¥ L\J AP denote the permutation

naturally induced by ir. Let Autc L AP denote the setofall such permutations. It iseasily
verified that Autc L • AP forms a group.

Theorem 5.1 Autc L •AP < Autj^ L • AP.

5.2.4 Other Structural Languages

We have modeled a structural description as a black-box with I/O ports composed

of smaller black-boxes (latches or tables) with I/O ports connected via signals. Different

languages will allow the table functions to be expressed in different ways. This is where
Condition 3 in Section 5.2.2 comes into play.

Although we used BLIF-MV terminology to formalize the notion of structural

symmetries, we believe that our definition is general enough to be applicable to gate level

descriptions like those expressible in EDIF [EDI97], Verilog [Ver97] and VHDL [VHD93]. We

need be a little careful with a general language that involves if, for and while constructs.

5.3 Graphs for BLIF-MV Circuits

One problem with the definition of structural symmetries in Section 5.2.2 is that

Condition 3 cannot beexpressed in purely graph theoretic terms. In this section, we describe

how BLIF-MV circuits can be processed to generate a labeled directed graph such that

there is 1-1 correspondence between structural symmetries in the BLIF-MV circuit and

automorphisms of the graph. This allows us to leverage results from computational group

theory developed for identifying graph automorphisms.

5.3.1 Tables

Forevery table T 6 T, we havefour types of vertices, namely C, 5, Aand O, which

are acronyms for Copy^ Subset, And and Output respectively. Their intuitive meaning will
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soon become clear. The type of a vertex should not be confused with its label. The two are

distinct. Types have been introduced solely for ease of presentation.

We have one vertex of type C for every input port, labeled with the corresponding

input domain. We have one vertex of type S for each table entry in an input column. It

is labeled with the subset of domain values in that entry. We have one vertex of type A

for each entry in the output column. It is labeled with the subset of domain values in that

entry. Finally, we have one vertex of type O for each output port, which is labeled with

both the corresponding domain and the default value specified for that port.

Wedraw an edge from a vertex of type C to every vertex of type 5 that corresponds

to entries in that input column. We draw an edge into a vertex of type A from every vertex

that corresponds to the input entries in that row. Finally, we draw edges into a vertex of

type O from all vertices corresponding to entries in that output column. A special case

arises if the table has no entries at all. Then there are no nodes of type C or type A. and

none of the edges described above are drawn. Another special case is when there are no

table inputs. Then there are no vertices of type C or type S. At the same time, if there

are no rows, then there are no vertices of type A as well.

See Figure 5.2 on the next page for the graph corresponding to the BLIF-MV table

in Figure 5.1 on page 32. The intuitive meaning associated with the vertex types should

now be clear. The vertices capture the functional elements of a table and the edges capture

how signals arrive at the inputs, propagate through these functional elements and define

the output signals.

For simplicity, we have ignored how entries corresponding to the construct

[BCH''"91, Ber93] need be taken care of. These nodes are easy to handle. We will outline

the necessary changes in Section 5.3.6.

5.3.2 Latches

For every latch, we have a vertex of type C for the input and a vertex of type O.

Both are labeled with the domain of the latch. We draw an edge from the input to the

output vertex.
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1

Subset

Figure 5.2: Graph for a BLIF-MV table.

5.3.3 Inputs and Outputs

We have one vertex of type O for every primary input, labeled with its domain.

We have one vertex of type C for each primary output. All of these are labeled identically.

There are no vertices corresponding to initial values of latches. This essentially

leaves the circuit that defines initial values, floating i.e. disconnected from the rest of the

circuit.

5.3.4 Interconnection Signals

Interconnection signals emanate from a vertex of type O and feed vertices of type

C. We draw an edge between the two, coming out of the vertex of type O. At most one

edge is incident upon any vertex of type C. We assumed that the circuit is devoid of

combinational cycles. As a consequence, removal of all edges between the input and output

vertices of all the latches leaves the graph acyclic.

5.3.5 Relationship with AuIm L •AP

For a circuit C, let Ac denote the directed labeled graph whose construction we just

described. As before, let M = (5, i2, K) be the Kripke structure with 2^ states and a set of
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atomic propositions AP. The set L corresponds to the latches. The set AP corresponds to

the outputs in O. The function K represents the boolean predicate on latches that generate

outputs.

Definition of AuIaq L •AP

For an automorphism 7r of ^4^, let 7r>i : L UAP —> L UAP denote the 1-1 mapping

naturally defined by jr. Let AuIaq L • AP denote the set of all such permutations. It is

easily verified that AuIac L • AP forms a group.

We will leave it to the reader to verify that there is a 1-1 correspondence between

structural symmetries of C and automorphisms of the graph Ac. We will directly prove that

the set of automorphisms AuIac L •AP is a subset of AuIm L •AP.

Theorem 5.2 AuIac L •AP < AuIm L •AP.

Proof:

Recall the definition of Aut^ L • AP from Section 3.1.2. We need to show that

(Vjt e AutAc L•AP)((vL = L) A(*<£,> € AuIm L) A(Vi € 2'')(Vy 6 = y) •»
(K(irx) = iry))).

The condition irL = Lis easily seen to hold from the definition of AutAc ^

We now prove the second condition 7r<L> 6 AuIm L.

Let TT GAuIac L•AP and s G5. We will show that for every (s, t) G/?, if s' = ns

then (s\t') G R where t' = ttL This suffices to prove that AuIm L.

Remove all edges between input and output vertices of latches. For a circuit

without combinational cycles, the residual graph is acyclic. Since (s, i) G i2, there must

exist an assignment p to primary inputs in C such that when s appears at the latch outputs,

the latch inputs for the next clock cycle evaluate to t. In other words, the combinational

circuit corresponding to the residual graph evaluates to (t) when the input is (s,p>.

For the purposes of this proof, we associate functionality with each vertex in A

that depends on (s, p). Vertices of type C are Copiers. Their output is the same as the input

value. Note that all Copiers have in-degree at most one, which makes their behavior well

defined. Only Copiers corresponding to primary inputs, latch outputs and tables without

input columns (e.g. constants) have in-degree zero. Their output is derived appropriately

from (s,p).
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Vertices of type 5 always have in-degree one, with a vertex of type C incident

upon them. They have a boolean output which is True if and only if the incoming value

lies in the set which labels that vertex.

Vertices of type A output a 2-tuple. The first is simply the label of that vertex.

The second is boolean. It is True if and only if all inputs to the vertex are True. All

inputs to such a vertex are of type 5. Some vertices of type A have no input vertices. These

correspond to tables without input columns (pseudo inputs or constants). Their output is

simply the appropriate value from (p). Their second output is always True.

Vertices of type O have only vertices of type A incident upon them. If none of the

inputs is True, the default value is output. If any of the inputs is True, a domain value

from among those that the label of A represents, is output.

We claim that the functionality we just ascribed to vertices correctly captures the

semantics of tables and interconnections (something that we never formally stated).

Since tt € Aut^^ L •AP, by definition, 7r is derived from some automorphism 11 of

the graph Ac. Let p' be the assignment to primary and pseudo inputs obtained by applying

n to p. Similarly let t' be the assignment to latch inputs obtained by applying 11 to t.

Consider the circuit Ac with functionality associated with (s,p). At the same

time, consider the same circuit with the functionality associated with {s\p'). By definition,

n preserves the labels of vertices of Ac i.e. if v' = IIu, then t; and v' have the same label

and hence the same functionality.

It follows that if the output (at the latch inputs) corresponding to (s, p) is t, then

the output (at the latch inputs) corresponding to {s'^p') is t'. And since" there is an edge

between each individual latch input and latch output, we get t' = nt.

Thus we have proved that every tt € AuIac T •AF satisfies n € AuIm L.

The third condition that (Vx £ 2^)(Vy € 2^^)(K{x) = y) K{7rx) = ttj/))

remains to be shown to hold. The proof for this proceeds along the same lines as above.

•

5.3.6 The "=" Construct

For table entries of the form "= x", we simply add an edge from the vertex of

type C corresponding to the variable x, to the vertex corresponding to the entry "= x".

We leave it to the reader to prove that Theorem 5.2 still holds.
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5.3.7 Is Every Group Possible?

Let G C AuIm L • AP. Recall from Section 4.4 that the canonical state problem

takes G<L>i the restriction of G to L, into account. An interesting theoretical question

that comes to mind is: Is there any group G<l> that does not correspond to any BLIF-

MV circuit? If so, then we can focus on the remaining groups to solve the canonical state

problem, described in Section 4.4. However, the answer is negative. We defer the proof till

Section 6.4.6 because we require the notions of base and strong generating set, which we

will define in Chapter 6. In practice, the story might be different; we might come across

only a few types of groups.

5.3.8 Identifying Scalarsets

How difficult is it to identify scalarsets automatically?

A scalarset is an automorphism of the graph Ac such that the automorphism can

be written as a product of disjoint transpositions. Note that Ac is not an arbitrary directed

graph. It has been derived from a valid BLIF-MV circuit. We now show that the problem

of identifying scalarsets is as hard as graph isomorphism.

We are given a pair of connected directed graphs, each with n vertices. We say

that a vertex u belongs to the set of immediate predecessors of another vertex t; if there

is an edge from u to v. We construct a BLIF-MV circuit consisting of 2n latches, one for

each vertex in the two graphs. The input of a latch is produced by a circuit that chooses

ra-ndomly from among the outputs of other latches that correspond to its set of immediate

predecessors. The combinational logic for this circuit can be specified in such a way that the

resulting BLIF-MV table is fully symmetric with respect to all its inputs. It is easily shown

that the given graphs are isomorphic to each other if and only if the resulting BLIF-MV

circuit contains a scalarset that has a transposition of two latches, the two corresponding

to vertices in different graphs.

5.4 CTL* Formulas

5.4.1 Graphs for Computing H < Autj AP •SF

Recall the definition of Autj AP • SF from Section 3.5.1. To compute H <

Autj AP •5F, draw the parse tree for the formula /. Label each internal node with the
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operator it corresponds to. The leaf nodes correspond to propositions in AF.

For each internal node that corresponds to the Until operator, introduce two new

nodes labeled Left and Right. Replace the edge between Until and its left operand by two

edges: one from Until to Left and one from Left to the left operand. Replace the edge

between Until and its right operand similarly.

Collapse all leaf nodes which correspond to the same p € AP into a single node.

These nodes are labeled identically with a color, say White.

Introduce a new node for every proposition p € AP. These are labeled identically

with a new color, say Black. Now, draw an edge from a White node to a Black node if they

correspond to the same atomic proposition p. Some Black edges may not have any edge

incident upon them if / does not depend on that proposition.

Definition of AuIaj AP •SF

Let Aj denote the graph we constructed. It is clear that the nodes of A/, except

those labeled Left or Right, are in 1-1 correspondence with elements of AP U SF. For

every automorphism of the graph A, let tt denote its restriction to nodes corresponding to

AP USF. The set of all such tt forms a group, which we denote by AutAj AP •SF.

Theorem 5.3 AutAj AP •SF < Autj AP •SF. •

5.4.2 Graphs for Computing H < Aut/ AP • MPS

Recall the definition of Aut/ AP •-MPS from Section 4.2.4. To compute H <

Autf AP ' MPS from a CTL* formula /, we first identify MPS, the set of all maximal

propositional sub-formulas in /.

For each sub-formula g € MPS, construct the parse tree for g. Label each internal

node with the operator it corresponds to. The leaf nodes correspond to propositions in AP.

Collapse all leaf nodes which correspond to the same p 6 AP into a single node. Label

them identically with a new color, say White.

Introduce a new node for every proposition p € AP, all labeled identically with a

new color, say Black. Now, draw an edge from every White node to a Black node if they

correspond to the same atomic proposition p. Some Black edges may not have any edge

incident upon them if no tu € VF depends on that proposition.
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Finally, re-label each root node corresponding to a sub-formulag GMFS, with a

distinct new color.

Definition of Aut^f AF •MFS

Let Af denote the graph we constructed. Let n : AP UMFS —¥ AF UMFS

denote the permutation corresponding to the restriction of some automorphism of ^4/ to

the vertices corresponding to AP and MFS. The labels of Aj ensure that nAP = AF

and (ig G MFS)(i:g = g). The set of all such ir forms a group, which we denote by

Aut: AF 'MFS.

Theorem 5.4 Aut^^ AP-MFS < Autj AP-MPS. •

5.5 Computing G M

One approach is to compute the groups G and H separately and then compute

G H using group-theoretic algorithms for group intersection. An advantage of this

idea is that we would need to compute G only once. We can compute different groups

H for different formulas /. However, computing group intersections is as hard as graph

isomorphism [HofSO]. Polynomial time algorithms do exist for special cases [HofSO].

Another approach is to simply join the two graphs corresponding to G and H

together at the vertices corresponding to AP. Thiscan bedone by drawing an edge between

every pair of vertices that correspond to the same p GAF in both the graphs. The key to

correctness lies in the fact that the sets of labels in the two graphs, except for the vertices

corresponding to AP, are mutually exclusive.

5.6 The Big Picture

Given a BLIF-MV circuit C, a CTL* formula / and a set of initial states /,

we first compute sets of symmetric sub-formulas of /, as defined in Section 3.3. This

can be accomplished by constructing the graphs Ac and A/, described in Section 5.3 and

Section 5.4.1 respectively, joining them as described in Section 5.5 and solving the graph

' automorphism problem for the resulting graph. The data structure for representing graph

automorphisms will be described in Chapter 6. It will allow identification of partitions of

sub-formulas of / easily.
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We then compute H < Autj AF-MPS by constructing the graph Af described in

Section 5.4.2,join it with Ac as described in Section 5.5 and solve the graph automorphism

problem for the resulting graph. This would give us generators for the group G ^ H. We

are now ready to take advantage of Theorems 3.1 and 3.2. From the generatorsfor G M/f,

we compute the function

Finally, we feed the sets of symmetric sub-formulas and the function to a

modified model checker that understands symmetries. Model checking can be done on the

quotient using the techniques outlined in Section 4.3. It can also take advantage of Theorem

3.2 to avoid computing truth values for all sub-formulas.

After having evaluated the truth value of / for all initial states, the modified

model checker can start offering new formulas to the designer, whose truth value can be

deduced from the symmetry information already computed, as described in Section 3.6.

One can envisage an interactive user interface that presents new formulas to the designer

in a controlled fashion.



Chapter 6

Computing Graph Automorphisms

We start with definitions in Section 6.1. We then present a branch and bound

algorithm for computing a single automorphism of a graph in Section 6.2. We discuss the

notion of refinement in Section 6.3. It plays an important role in speeding up the branch

and bound algorithm. Then we show the necessary changes required in the algorithm for

computing all the automorphisms in Section 6.4. Finally, we provide justification for writing

our own graph automorphism program in Section 6.5.

We use A to denote a directed labeled graph (V,£"). The number of vertices and

edges of a graph will be denoted by n and m respectively.

6.1 Definitions

Bipartition

Let V be a set of vertices. A bipartition P is a set of ordered pairs Ui<,<jb{(Vi, Wi)},

where

1- Ui<,<ifeVi = Ui<,<ifeW,- = V

2. (VU<t<A:)(|V;| = |W,|#0)

3. (Vj.i <i<j< k)(VinVj = WinWj = 4>)

The set of edges of a graph or its labeling function play no role in the definition.
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Unipartition

A bipartition P is a unipartition if (Vi.l < i < k)(Vi = Wi). It is simply a partition

of the set of vertices V into disjoint non-empty sets.

Refinement

A bipartition Q = Ui<,<,{VJ^, is a refinement of another bipartition P —
if they are defined over the same set of vertices V and (Vt.l < i. <

9)(Vi.l < j < n Vj* = <f>)V (Vp CVfa CWf)). We denote this relationship
hy Q 4 P. We also say that P is coarser than Q and that Q is finer than P. The relation

is reflexive and transitive.

Compatibility

Two bipartitions P = Ui<.<p{(V;'', W/")} and Q= UKKjiCV;", Wf)} are com-
patible if (Vt.l <i <p)(Vj.l <j< g)(\Vi'' n vf | = \Wf' n IV9|).

Intersection

The intersection of two compatible bipartitions P and Q is defined as P XQ =

Ui<,<p,i<j<g{(v;^ nvf, nwf)} - {(<^, <^)}, which itself is a bipartition.

Note that among the definitions introduced so far, none involves the edges or labels

of a graph. The next one does.

Automorphism

Let A= {V,E) be &directed labeled graph with labeling function c. A bipartition

P is an automorphism of A if

1. (VU<t<A;)(|V;| = |W^t| = l)

2. (Vu, w G V)(Vi.l < i < k){{v 6 Vi A in G Wi) => (c(t;) = c(tn)))

3. (Vu, u', in,w' G F)(Vi.l < t < A:)(Vj.l < j < k){{v,v^ ^ E ^ (iy,w') G E)

This definition is no different from that given earlier in Section 2.6. We have presented it

in a slightly different notation to allow convenient presentation of algorithms.

The set of all automorphisms of A forms a group. We denote it by Aut A.
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Consistency

A bipartition P is consistent with an automorphism if there exists an automor

phism F' of A such that P* ^ F.

For notationaJ convenience, we will denote both a vertex v and a singleton

set {u} by simply v. This would allow us to write a set like {({«}, {v})} as (m, v).

6.1.1 Properties of Bipartitions

The following lemmas are immediate:

Lemma 6.1 If P^Q and R are bipartitions of A such that P ^ Q and P =4 R) then Q and

R are compatible and P ^ Q X R.

Lemma 6.2 For a directed labeled graph A, let Umax a unipartition such that two vertices

of A lie in the same set if and only if they have the same label. Then, Umax Is consistent

with every automorphism of A.

Lemma 6.3 For a directed labeled graph A, let Umin t)e a unipartition such that two vertices

u and Vlie in the same set if and only if (Btt 6 Aut A){Tru = u). Then, Umin is consistent

with every automorphism of A and is the finest such unipartition. •

Lemma 6.4 If P is a bipartition such that P € Aut A and (tt,u) € P, then P ^

{(succ(u), succ(u)), (V —succ(u),V —succ(t;))}, where succ{x) = {y [ (a;,y) € E], •

Lemma 6.5 If P is a bipartition such that P € Aut A and (u, u) € P, then P ^

{{pred(u),pred{v)), {V - pred{u),V - pred(v))], where pred(x) = {y \ (y,x) 6 E}. •

6.1.2 Problem Definition

Given a bipartition P for a directed labeled graph A = {V,E), produce an auto

morphism of A consistent with P, if one exists.

We now present a branch and bound solution for this problem.



48 CHAPTER 6. COMPUTING GRAPH AUTOMORPHISMS

SfcJARCH_AuTOMOKPHiSM(Graph A, Bipaxtition P)

Compute Umax't

U —Rj^FINE {Umax)]

if (Compatible (P, L^)

P^PXU;

else return 0;

return Bkanch-AND-Buund(>1, P,^);

Bkanch_anu_Bound (Graph A, Bipartition P, PairSet 5)

while ((3u, v € V')((u, u) € P A(u, v) ^ S))

5 = S U (u, i»);

Q = (succ(u),succ(u)) U {V —succ(u), V - succ(y));

• if (Compatible ((5»f))

P = PxQ;

else return 0;

Q = {pr€d{u),pr€d{v))\J{V - pr€d{u),V -pred{v));

if (Compatible (Q, P))

P=PxQ;

else return 0;

if (SET_COMPLETE(i4,5))

return 1;

(v, W) = Choose-Victim (P);

foreach (u: € W)

P' =:P- (V, W) U (u, w) U (V -v,W- ic)

5'= 5;

if Branch_and_Bound (A,P',5')

return 1;

return 0;

Figure 6.1: Algorithm for finding an automorphism, given graph A and bipartition P.
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6.2 Branch and Bound Algorithm

Pseudo-code for the algorithm is given in Figure 6.1 on the preceding page.

We start by computing Umaxi 2ts defined in Lemma 6.2, since Umax is consistent

with every automorphism of A. Ideally, we would like to start with Umint ss defined in

Lemma 6.3, as it is the finest such partition. However, computing Umin itself is as hard

as graph isomorphism [vL90]. Therefore, we compute an approximation to Umini namely a

unipartition Usuch that Umin 4U 4 Umax using the function Refine. We will describe this

function in more detail in Section 6.3. Note that U is consistent with every automorphism

of A.

After computing f/, we check whether P and U are compatible. If not, then from

Lemma6.1, we deduce that F is not consistent with any automorphism of A; the algorithm

terminates. If F and U are compatible, wecompute their intersection FxU. From Lemma

6.1, any automorphism consistent with F and U has to be consistent with F XU. Finally,

we invoke Branch_and_Bound.

6.2.1 The Bounding Step

The while loop in Branch_and_Bound is the bounding step. From Lemma 6.4,

we conclude that if (u, v) e F and if there existsan automorphism consistent with F, then it

has to beconsistent with Q = {(succ(u), succ(i;)), {V—succ{u), V—succ(u))}. From Lemma

6.1, we conclude that F and Q must be compatible and that the automorphism must be

consistent with F XQ as well. A similar argument holds for Q = {{pr€d(u)^pred(v))^ (V —

pred(u), V- pred(v))} also. Thus, the non-compatibility of F and Q is evidence that there

is no automorphism consistent with F and Branch_and_Bound terminates.

The bounding step also helps to refine F bycomputingFxQ^ which in turn might

generate new singleton pairs (u, u) € F. Intuitively, the implicationsof mapping u to u are

getting propagated. The set S remembers such pairs (u, u), thereby avoiding duplicate work.

The while loop terminates when no such pairs remain. At this point, all pairs in F which

have size one, lie in 5. The function Set_Complete checks whether all vertices in V have

found their way into S. If so, we have discovered an automorphism^. Otherwise, it is time

to branch.

' There is no need at this point to verify the three conditions laid down earlier for a bipartition to be eui
automorphism. See the proof of correctness.
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6.2.2 The Branching Step

The branching step is straightforward. The routine Choose_Victim first selects

a pair (V, W) in P such that |y| 1 using some heuristic. It then selects a vertex t; G V

using another heuristic and returns (u,W). The choice of t; and W is important for at least

two reasons. First, small sized W implies fewer branches to follow. Second, branches that

lead to dead ends need be avoided. Our implementation is not fancy: we simply choose the

smallest sized W available, breaking ties arbitrarily; our choice of t; € F is also arbitrary.

Having chosen v and VF, we try to discover w £W such that v maps to w in some

automorphism of A. To this end, we compute P' = P —(V, W) U(u,w)U {V —v,W —v)

and invoke Branch_and_Bound. Clearly, if all choices of w fail, there is no automorphism

consistent with P and the function terminates unsuccessfully.

6.2.3 Proof of Correctness

The correctness of Branch_and_Bound is obvious from the following lemma,

whose proof is simple.

Lemma 6.6 For a directed graph A —(V^E), a bipartition P = Ui<,<n{(Vi, VF,)} is an

automorphism of A if and only if

1. (Vi.l < i < 7i)(|V;| = \Wi\ = 1)

2. P ^ Umax

3. (Vi.l < i < n)l^v,w € F)((u € F Aty G IF,) (P ^ {(s«cc(t;),succ(u;)), (F-
succ(i;),F —succ(ti;))}

Condition 1 in Lemma 6.6 is true at the end of the algorithm, as we invoke

Set_Complete to verify it. Condition 2 follows from the fact that we compute P X U

in SearcH-Automorphism where U ^ Umax- Condition 3 is checked for each vertex pair

in the while loop. The entire branch and bound algorithm simply verifies Condition 3 for

each vertex pair generated by the branching step.
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6.2.4 Time Complexity

Compatibility of two bipartitions P and Q can be checked in 0(n) time, where

n = |V|. The intersection F XQ can also be computed in 0{n) time. Computing Umax is

trivial.

From Figure 6.1 on page 48, it might appear that each level of recursion requires a

different bipartition F and set S. However, this is not necessary. The trick lies in remember

ing set boundaries at each recursion level and quickly merging subsets when backtracking.

We have implemented the algorithm using only nine arrays of size n, apart from the usual

adjacency lists for graph edges.

Assuming that we never backtrack and that Choose_Victim returns sets of

bounded size (in our experiments, we rarely encountered sets of size three or four), our im

plementation runs in O(m-l-ra) time. Thus, we take optimal time provided Choose_Victim

makes good choices. In the case of a bad choice, the bounding step is expected to quickly

propagates its implications and produce evidence that no automorphism is consistent with

this choice.

Summary

The algorithm in Figure 6.1 on page 48 solves the problem of prqducing an auto

morphism, if one exists, given a graph A and a bipartition P. It is possible to produce all

such automorphisms by continuing the search even after discovering one. However, this is

not desirable as the total number of such automorphisms could be exponential in n. We

need a succinct representation of Aut A and an algorithm to compute it. We describe both

in the Section 6.4, where the algorithm in Figure 6.1 serves as a backbone.

Our initial motivation for implementing Algorithm 6.1 was to convince ourselves

that our modeling of the circuit is sufficient to allow discovering structural symmetries. As

it stands, it is useful in the following scenario: A circuit verifier might suspect that certain

symmetries exist in the circuit at hand. She can provide a bipartition using her intuition and

ratify it by running this algorithm. Then she can use the theory for symmetric sub-formulas

developed in Chapter 3.
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6.3 Refinement

Given a graph A = (V, E), the function Refine in Figure 6.1 on page 48 computes

a unipartition [/ such that C/min 4 U 4 Umax- Why is refinement useful? First, it might

generate singleton pairs whose implications can be propagated immediately in the

bounding step. Second, by shrinking the sizes of individual pairs of sets, fewer branches

may have to be taken later on. Ideally, for a graph that has no non-trivial automorphisms,

the refinement step should produce a bipartition all of whose sets are singletons.

6.3.1 Computing U using Vertex Invariants

A unipartition U can also be looked upon as a function that computes the same

value for two vertices if they lie in the same set. Some such functions are easy to compute

from a description of A = (V, E) with the guarantee that Umin 4 U. Having computed two

such functions Ui and U2, we can compute the intersection UiXU2^ which is also guaranteed

to be at least as coarseas Umin- A good exposition of these ideas can be found in [FHO+SS],

where such functions are called vertex invariants, Mittal [MitSS] also uses vertex invariants

to compute automorphisms.

Some vertex invariant that can be computed in 0{m-\- n) time are the in-degree

and out-degree of vertices, the set of degrees of vertices incident at a vertex and the set

of degrees of vertices which a vertex is incident upon. If the graph is acyclic, the levelsof

vertices constitute a vertex invariant.

6.3.2 Other Vertex Invariants

We can compute some more vertex invariants at the cost of more computation

by constructing the distance matrix for A [SD76]. Entries in the distance matrix are the

lengths of the shortest path between pairs of vertices. Let dij be the number of vertices that

are a distance j from i. Then, the function that computes the sequence (dii,di2) • •

for vertex i is a vertex invariant. It remdns so even under some other interpretations of

dij. One such interpretation is the number of edges that are at a distance j from vertex i.

Another is the number of vertices whose shortest path to i is of length j.

The distance matrix can be computed using an algorithm by Seidel [Sei95] in

0(n^ logn) expected time. In practice, graphs are sparse and the out-degree of any vertex
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can be bounded by a small constant. In such a case, we are better off using n different

breadth first searches to compute the distance matrix for a total time ofOiri^).

Several other vertex invariants, which are useful for special types of graphs can be

found in [McK90]. In practice, we should use only those that can be computed in linear

time.

6.3.3 Repeated Refinement

An important trick is to use a unipartition U to refine itself. Let U be looked upon

as a labeling function. Define a function U' as follows: for a vertex u, it computes the set

of labels of vertices incident upon v. Then U' is a unipartition and a vertex invariant such

that Umin U' [FHG+83]. We can now refine U by computing the intersection U X W.

This can be done repeatedly until U = C/'.

Computing W and U X U' requires 0(m + n) time. We stop after at most n

iterations. Thus repeated refinement requires polynomial time. In practice, we stop after

a few iterations. See Table 7.2 on page 63 for the number of iterations required for graphs

that we experimented with.

6.4 Computing the Automorphism Group of a Graph

What is a good representation for Aut A and how do we compute it?

6.4.1 Base and Strong Generating Set

Charles Sims [Sim70] introduced the idea of using a base and strong generating set

for representing a group. This is a key concept underlying essentially all polynomial-time

algorithms in computational group theory. A good exposition can be found in the book by

Butler [But91].

Let G be a permutation group acting on a set with cardinality n. Let x £ Q

be any point in the set. Let irx denote the image of x under the action of 7r € G. A

permutation n is said to stabilize an element x \I ttx = x. If ff < G and 7r € G, the set of

elements {ttx | a: G H} is said to be a right coset of H. Two right cosets of H are either

the same or disjoint. All right cosets have the same cardinality.

Define Gx = {^r | Trar = x, ;r € G} i.e. the set of permutations that stabilize x.
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This set is a subgroup. Let = {y | ttx = y, tt € G} i.e. the orbit of x under G. It turns

out that for each y € x*^, the set {tf | 7rx = y, 7r € G} is a right coset of G®. All these right

cosets have the same cardinality. Their union is the set G.

Multiplying the subgroup with a memberof a particular coset generates that coset.

Given a subgroup, a set of permutations consisting of exactly one member from each coset,

is said to be a set of coset representatives. For a group G and an element x, let Rx be the

set of coset representatives for Gx- Then, every permutation in G can uniquely be written

as a product of two permutations, one from Gx and the other from Rx' Effectively, wehave

factored G. Continuing in this fashion, we can factor Gx with respect to another point x'.

A given sequence (x = xi,X2,.. of points is said to be a base if the sequence of sets
Rj. = Rxi,Rx2^-"iRxn is such that Rx^ consists only of the identity permutation. The

union of all these sets is said to be a strong generating set. Note that any ordering of can

act as a base. In general, some Rxi might consist only of the identity permutation. The

corresponding x, can be removed from the base to obtain a reduced base.

Sims [Sim70, Sim71] presented an algorithm for constructing a base and strong

generating set from a set of generators of size s. The time complexity of the algorithm

was shown to be G(n® + sra^) by Furst, Hopcroft and Luks [FHL80] for a version of Sim's

algorithm. In a note in 1981 (a preliminary version of [Knu91]), Knuth gave a variant

with running time 0(n® + sn^). The same bound was also achieved by Jerrum [Jer86].

Subsequently, an 0(n^\og^ n sn^) algorithm was discovered by Babai, Luks and Seress

[BLS97].

6.4.2 Jerrum's Representation

Jerrum [Jer86] devised an elegant data structure called labeled branchings to store

a stronggenerating set in 0{n'̂ ) space. Essentially, a given stronggenerating set is reduced

to at most 71-1 permutations and stored in a certain way. Assuming that each permutation

7r is represented by storing the Images ofelements ofQ in an array, the bound ofG(7i^) is
optimal as there exist groups which require at least Q{n) generators [Jer86].

The data structuresupports fast membership testing in 0{n^) time. Given a base

(xi, X2,..., Xfc), computation ofthe orbits ofthe subgroup Gx,,x2,..jr, for ® also readily
accomplished.
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6.4.3 Graph Automorphism Algorithms

For several classes of combinatorial objects such as graphs, Latin squares, block

designs, Hadamard matrices and error-correcting codes, there is a notion of isomorphism

mapping one object into another. The problem of finding whether two objects are isomor-

phic and the related problem ofcomputing the automorphism group ofa single object, have

received considerable attention [Leo84, BL85]. Thepaper by Leon [Leo91] presents powerful

techniques for general combinatorial objects.

One of the first practical graph isomorphism algorithms was proposed by McKay

[Bre76, McK77]. It employed branch and bound and was soon improved [McK81]. Sub
sequently, Butler and Lam [BL85] presented a modification that prunes false branches by

dynamically changing the base andstrong generating set. Leon [Leo84] also discusses similar

techniques. All the algorithms employ backtrack search.

The overall idea is similar to the algorithm in Figure 6.1 on page 48, i.e. branch

by trying to map a point u to a set of candidates W and bound if we have evidence that

it is impossible to extend the current partial permutation to an automorphism. A new

automorphism is used to augment the subgroup discovered so far. This subgroup also

serves to prune search paths that lead only to those permutations that already lie in it.

Such a pruning mechanism is based on a lemma by Butler and Lam [BL85].

The lemma is useful when we are trying to extend a partial permutation by maj)-

ping r to some vertex in W and a subgroup G of Aut A is at hand. In such a case, it is not

necessary to try to map u to all the vertices in W. It suffices to try to map v to exactly

one member from each orbit of the subgroup GtjuuW2,...,wj where each tu, is such that some

vertex u, has been mapped to it. Formally,

Lemma 6.7 [BL85]

Let a bipartition Ui<,<fc{(Vt, W^,)} be such that every vertex in {tui, u;2,.. .tUj}

belongs to some singleton set. Let t; € V. Let G be a known subgroup of Aut A. Let

Gwi,w2 wj ^ subgroup ofG that centralizes each o/tui,u?2, •.., wj. Let x,y lie in some
orbit ofGtjji,w2,...,wj' Then x,y have to belong to some set W such that every automorphism
consistent with P - (V, I^) U(u, x)\J {V - v,W - x) can be obtained by composing some

automorphism in GxtJi,xiJ2....,%uj an automorphism consistent with P —{V.,W) U(u,y) U
{V-v,W-y). •

What operations need be supported by a data structure that represents groups
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using a base and strong generating set? First, the application of Lemma 6.7 requires

availability ofGwi,w2,...,wj and itsorbits at each search step. This is straightforward provided

we have the ability to efficiently change the base and the corresponding strong generating

set. Second, we need the ability to augment the group by adding a newly discovered

permutation.

6.4.4 Base Change Algorithms

Base change algorithms require elementary group theory but are somewhat in

volved. Sims proposed the first base change algorithm [SimTl]. Butler and Lam [BL85]

showed that Sim's base change algorithm has worst case time complexity 0(n^). The al

gorithm can transpose two adjacent points in the base in O(n^) time. Since O(n^) such

transpositions suffice to transform a base into any other, we get the time bound of 0(n®).

Brown, Finkelstein and Purdom [BFJ89] generalized this idea to computing a cyclic right

shift of any contiguous subset of the base in O(n^) time, using Jerrum's labeled branch

ings. Since 0{n) such cyclic shifts suffice to transform a base into another, the worst

case time complexity is 0{n^). Recently, Las Vegas algorithms have also been proposed

[CF94, BCF+95, BLS] with expected time an order of magnitude less.

6.4.5 Extending our Algorithm

How do weextend our algorithm to compute the automorphism group of a directed

labeled graph? The best algorithm appears to be the following: We run the algorithm in

Figure 6.1 on page 48 as before but do not stop upon discovering the first automorphism.

We also maintain the group formed by automorphisms discovered so far using Jerrum's

labeled branchings. As new automorphisms are discovered, we augment this group using

the technique described in [Jer86]. Alternatively, the randomized algorithm in [BLS] can be

employed. As we backtrack, we dynamically change base using the algorithms in [BFJ89] or

use the randomized algorithmdescribed in [CF94]. Aswebranch, weuseLemma6.7 to avoid

re-discovering any automorphism already in the group [BL85]. The structure of the group

can also prune out some branches that are guaranteed to not lead to any automorphism.

However, discovering them requires much computation [Leo84].

In practice, it might be useful to tailor our algorithm to perform really well on the

kind of symmetries that occur in practice. It might also be advantageous to compute only
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a sub-group of the automorphism group but save time.

6.4.6 Is Every Group Possible?

We take a short digression to answer a question that we posed in Section 5.3.7.

Given a group G on the set L, weshow how a BLIF-MV circuit can be constructed so that

the group G' = AuIm AP •L defined for the corresponding Kripke structure is such that

the group is exactly G.

We let L = AP. Let G be represented in the form of a base and strong generating

set. Let the sequence of coset representatives, as defined in Section 6.4.1, be i??? ••-i

where n = \AP\. We define n BLIF-MV sub-circuits Ci, C2,..., Cn, each with \L\ inputs and

\L\ outputs. The sub-circuit C,- simply permutes the inputs according to some permutation

chosen randomly from among those in Ri. For 1 < i < n, the outputs of Ci are the inputs

of Ci+i. The outputs of On are the inputs of the |L| latches. The outputs of the latches are

the inputs of Ci.

Let M be the Kripke structure corresponding to the BLIF-MV circuit we just

constructed. It can be shown that the G' = AuIm L • AP is such that is exactly the

group G.

6.5 Why a New Graph Automorphism Program?

There exist some software packages for manipulating graphs and groups. One

of the earliest graph automorphism programs was written by McKay [McKSl]. It is still

available as nauti [McK90] and can be used with a package called Grape [Soi90], which

provides routines for graphs and groups. Grape itself is oneof the several packages provided

by GAP [Gap], which is a general purpose software package for combinatorial objects.

Another general purpose package is MAGMA [W. 96], which has been derived from an

earlier package called CAYLEY [Can84].

What is the motivation for writing a new graph automorphism program? First,

existing packages are general purpose and carry around a lot of baggage. In our experience,

they are slow. We can specialize our algorithm for labeled graphs. The labels play a crucial

role in our branch and bound algorithm. Also, we do not expect the out-degree of vertices

to be very large. We can also specialize for the kinds of groups we expect to encounter in
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practice. The symmetric group, cyclic groups and their combinations are most common in

hardware circuits.

We now list some more compelling reasons for writing our own graph automor

phism program.

6.5.1 Domain Specific Optimizations

First, we expect our graphs to have tens of thousands of vertices. However, we are

interested in the group formed by only those vertices that correspond to latches and primary

outputs. See Chapter 5 for details. Therefore, it appears wasteful to first compute the group

over all the vertices and then restrict it to the vertices of interest. This is what existing

packages offer. We can modify our algorithm as follows: We maintain a group only on the

vertices of interest. The branching step always chooses t; from among the vertices of interest,

if one is available. At some point, all such vertices would have been exhausted. Then, we

are simply interested in discovering a single extension to the current partial permutation.

This discovery can be made by using the algorithm in Figure 6.1 without modification.

Second, some BLIF-MV tables could be very large. In Chapter 5, we described

our construction of a graph from a table, where we have vertices for all inputs, outputs and

entries of a table. Note that vertices of a table can be mapped only onto vertices of another

table with the same structure. The key idea is that the images of individual entries can

be inferred from the images of inputs, outputs and rows of a table. We need not store the

images of entries at all. This can be used to save space.

Third, structural languages like BLIF-MV allow hierarchical specification of the

circuit, with subcomponents instantiated multiple times. Our graph is essentially a rep

resentation of the flattened circuit. Thus several of its subgraphs are isomorphic to each

other. These can be identified a priori from the hierarchical structure of the specification.

We can develop techniques to store isomorphic subgraphs compactly. Intuitively, it is very

likely that these subgraphs will map only among themselves.

Fourth, we would like to extend our framework to hierarchical verification. A large

circuit is usually composed of several subcomponents. Having identified the symmetries

of a subcomponent and used them to verify its properties, we would like to re-use our

knowledge of symmetries for verifying the larger circuit. Using the techniques described so

far in this report, we would have to construct a flattened circuit, build a gigantic graph
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and solve the graph automorphism problem restricted to latches and primary outputs. An

alternative is to build machinery to handle the problem of computing the automorphisms

of a graph constructed with black boxes and interconnections, with known permutation

groups attached to each black box. Such a setup can also be useful when we use standard

libraries as building blocks. It is easy to identify the groups of fairly large sized blocks such

as multiplexers, register files, adders etc. in the library once and for all. We have some

preliminary ideas for solving this black-box graph problem and intend to explore them

further.

For completeness, we list some other optimizations that can be carried out, though

these are not justifications for writing a new automorphism program.

6.5.2 Further Optimizations

On severM occasions, by analyzing a table, we can infer that the only permutation

among its inputs is identity. If we can also reliably compute the set of tables that have the

same functionality as this one, we can build a graph much smaller in size than what we

described in Section 5.3. We still have vertices for input and output ports. However, there

are no vertices for entries. The labels of all vertices are distinct. Any other table with the

same structure has the same set of labels.

There is a tradeoff between the cycle form and the image form for storing permu

tations. The former requires us to store merely those cycles which have length at least 2.

Thus, finding the image of an element cannot be done in 0(1) time in general. Storing the

images of all elements requires 0(n) space but buys us 0(1) time image retrieval. The cycle

form can be useful if only a few elements are' affected by the action of a permutation.

As a closing remark, we wish to mention that the algorithms listed in Section 6.4

are far from being linear in the size of the set on which the permutations act. Thus, we

need some insight into their workings and employ implementation tricks to make them fast.

In practice, we need linear time algorithms as the graphs we deal with would have tens of

thousands of vertices.



Chapter 7

Results and Future Work

We have implemented an algorithm for constructing a graph from a BLIF-MV

[BCH'̂ 91, Ber93] description, as described in Chapter 5. We have also implemented the
search algorithm described in Chapter 6 to search for an automorphism. Our package is

integrated with VIS [BHSV'96], a verification system developed jointly by researchers at

University of California at Berkeley and University of Colorado. The source code for our

work is available at http://www-cad.Gecs.berkeley.edu/*'maiiku/syinmetries/.

7.1 Results

Our experiments deal with both sequential and combinational circuits. We start

with a Verilog description. We then obtain a BLIF-MV description using a compiler called
vl2mv written by Cheng [CYB93]. The BLIF-MV description isflattened using a standard

VIS command. The flattened description and a set of partial mappings is then fed to our

program. Our program first generates a suitable labeled directed graph, then refines the
labels using the techniques mentioned in Section 6.3 and finally runs the branch and bound

graph automorphism algorithm.

The graph obtained from a Verilog description ping-pong.v is drawn in Figure 7.1

on the following page.

Table 7.1 on page 63 shows n, m and c, the number of vertices, edges and colors

respectively, in the initial graph. Since refinement impacts the running timeof the algorithm

greatly, we also tabulate the number ofcolors after successive refinement steps. The value

ci denotes the number of colorsafter the in-degree and out-degrees have been used as vertex
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1

Figure 7.1: Labeled directed graph obtained from ping-pong.v. Rectangles correspond to
tables. The nodes for primary inputs and latches are drawn with differently. There are no
outputs. The numbers in vertices denote their labels.



7.1. RESULTS

Example n m c Cl C2 Cf iter

ctlp20 4920 6740 15 34 51 246 7

ping-pong 288 378 11 25 39 144 7

z4ml 527 929 5 14 19 108 4

4-arbit 3158 4000 19 52 105 3110 60

Table 7.1: Some statistics for graphs produced for different examples.

Example back-track maxset numchoices

ctlp20 0 20 19

ping-pong 0 2 1

z4ml 8 4 21

Table 7.2: Performance of branch and bound algorithm for different examples.

63

invariants. The value C2 denotes the number of colors after the set of in-degrees of fan out

vertices and the set of out-degrees of fan out vertices have been used as vertex invariants.

The value cj denotes the final number of colors after iterative refinement has been carried

out. The column iter is the number of iterations required.

Table 7.2 lists the number of times our branch and bound algorithm had to back

track, the number of times the routine Choose.Victim in Figure 6.1 on page 48 was invoked

and the maximum size of the set returned by this routine. Recall that our our algorithm

runs in linear time if we never backtrack and if the size of sets returned by ChoosE-Victim

is bounded. Table 7.2 clearly shows that the two conditions are almost satisfied.

We were able to identify symmetries in all the examples listed in Table 7.1. The

example ping-pong implements a game of ping-pong between two players. The players

form a set of fully symmetric system of size 2. The example ctlp20 is a solution for the

dining philosophers problem for 20 philosophers. The set of philosophers constitute a cyclic

group.

The example z4ml is an interesting combinational circuit with seven inputs, four

outputs and four tables, one for each output. A close examination of the tables shows that

the inputs can be partitioned into three sets of fully symmetric variables with different sizes.

The running time of our algorithm is small.
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7.2 Conclusions

We have developed a fully automatic framework for identifying and exploiting

symmetries in structural description of circuits and CTL* formulas. We have shown how

the set of sub-formulas of a formula can be partitioned into equivalence classes such that

it suffices to evaluate the truth value of only one member in each class for CTL* model

checking. This idea can be used by both implicit and explicit methods. We have alsoshown

how we can generate new formulas whose truth value is available at little cost. One can

envisage an interactive userinterface which provides users withsuch formulas in a controlled

manner. We can also use this theory for pruning sub-formulas from a big formula so that

it suffices to prove the resulting smaller sized formula.

We have cast the theory of symmetries developed for Kripke structures by Clarke

et al [CEFJ96] and Emerson and Sistla [ES96] into a common framework and generalized

their results. We have identified and describe some issues related to modifying a model

checker that exploits symmetries. To this end, we have outlined a new algorithm for solving

the canonical state problem using symbolic techniques.

We have formalized the notion of structural symmetries in a structural specification

language and a CTL* formula. We have shown how they relate to symmetries in Kripke

structures. We have also shown how they can be computed automatically, by constructing

suitable directed labeled graphs and solving the graph automorphism problem.

We have also developed and implemented an algorithm for finding whether a graph

has a non-trivial automorphism. It can be used for finding whether there exists an extension

of a partial permutation specified by a circuit designer. We have also described how our

algorithm can be extended to compute the entire set of automorphisms of the graph. This

brings considerable computational group-theoretic machinery into play.

A limitation of our framework is that it exploits only the structure of the speci

fication and the formula. Thus we can identify fewer symmetries than we would were we

to take their complete functionality into account. However, it is not clear how that can be

accomplished. We believe that structural symmetries are sufficient for several circuits that

occur in practice.
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7.3 Future work

Several hurdles need be crossed before quotient structures can routinely be used

in model checking algorithms.

Fundamental Problems

Recall the three subproblems described in Section 4.5. First, we need a mechanism

to identify the group that captures the symmetries in the specification. We have done this

for structural languages. It would be interesting to extend these ideas to higher level

specification languages. Second, we need to solve the canonical state problem. As a last

resort, we can solve it for special cases occurring in practice. Third, we need to integrate

knowledge of symmetries into existing model checkers.

Hierarchical Verification

We can extend these ideas to hierarchical verification. Having computed the sym

metries of subcomponents (and proved some properties thereof), we should be able to

leverage this knowledge when computing the symmetries of the entire circuit. This would

require major changes to our algorithm outlined in Figure 6.1 on page 48.

We might benefit from identifying symmetries in low level components completely,

taking not only their structure but also their functionality into account. One idea is to

build BDDs for small tables.

Programs for Graph Automorphism

The number of vertices in our graphs are of the order of tens of thousands. Hi

erarchical specification allows a priori identification of isomorphic subgraphs. It would be

useful to build machinery to exploit this knowledge.

We also need to get a good implementation of the algorithm for computing the

automorphism group of a graph. Some optimizations have been outlined in Chapter 6.

Debugging

An interesting situation arises when the designer believes that a certain symmetry

should hold in her circuit but our tool thinks otherwise. What do we tell the designer?
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A binary yes/no answer is clearly unsatisfactory. We need to present the reason for the

absence of some symmetry in a succinct way without assuming the designer to be proficient

in group theory or labeled graphs.

Speeding up Combinational Verification

Finally, we have an idea for speeding up functional verihcation of combinational

circuits by using symmetries. A straightforward algorithm would hrst build the BDDs for all

outputs of the two circuits and then compare the corresponding pointers pairwise. Let C be

a combinational circuit. Using the terminology of Chapter 5, assume that we can efficiently

compute the automorphism group Aut Ac for the graph Ac- If the group is non-trivial, we

need not build BDDs for all the outputs! Consider the orbits of outputs defined by Aut Ac.

For each orbit, we need construct only one BDD for any one output in that set and simply

remember permutations that take one output to another. Intuitively, this would allow for

a better variable ordering for that single BDD. We need to explore how to use this idea in

conjunction with existing functional verification algorithms.

A New Class of BDDs?

An extension to the above idea is to maintain some functions as traditional BDDs

and some others as 'BDD -|- permutation', a compressed representation. The latter one

need not be materialized unless required. We can thus define a new class of BDDs. We

need to develop theory for defining operations that take such BDDs as inputs and produce

them as outputs. We would also need theory for keeping the sets of permutations around.

Finally, we need to identify scenarios where this is useful.

Fairness and Partial Orders

We need to incorporate fairness constraints into our framework, as done by Emer-.

son and Sistla [ES95]. Recently, Gyuris and Sistla [GS97] have developed an on-the-fiy

. model checker that utilizes symmetries under fairness. It might also be interesting to study

how our framework can be extended to incorporate both partial orders and symmetries, as

accomplished by Emerson, Jha and Peled [EJP97].
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Symmetries Everywhere

Symmetric systems show up almost everywhere. From high level design to layout,

several CAD algorithms might benefit from a priori knowledge of symmetries in the circuit

under consideration. Pandey and Bryant [PB97] have demonstrated how transistor-level

verification ofdigital circuits can benefitfrom symmetries. It would be interesting to extend

the applicability of symmetries to other domains.
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