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Design and Implementation Verification of Finite State Siste;ns I

by
Rajeev Kumar Ranjan

Doctor of Philosophy in Engineering
University of California, Berkeley
Professor Robert K. Brayton, Chair

WITH the increasing complexity of VLSI circuits, design and implementation
 verification have become important components in current day design flows
and can have major impact on the timely delivery of a functionally correct product. This
work investigates a spectrum of techniques targeted towards making the verification
process practical for real designs. The key contributions can be divided into three parts.

The first part exploits the architecture of a computer system for efficiently manipulat-
ing Binary Decision Diagrams (BDDs), the core technology in the symbolic techniques.
Various methods are presented to localize the memory accesses and thereby leverage
off the highly different access times for different levels of memory hierarchy in a work-
station. These are further extended to exploit the main memory of several worksta-
tions connected together in a network. It is also shown that the locality of breadth-first
manipulation can be merged with the parallel computing power of a shared-memory
multiprocessor to efficiently leverage the parallel architecture.

The second part presents efficient BDD-based schemes for the representation and
traversal of the state-space of large designs. Key contributions in this area include
efficient image and pre-image computations, the core tasks in symbolic synthesis and
verification algorithms. | _

The last part of this work targets the sequential equivalence problem which in its
most general form is much harder than the combinational equivalence problem. An
algorithm is presented to reduce the sequential equivalence problem to an extended



form of combinational equivalence problem for designs which have undergone itera-
tive retiming and resynthesis transformations. This allows the sequential équivalenge
checking process to leverage off the advancements in the combinational equivalence
" domain, making it viable for large designs. Further, the optimization potential and
the verification complexity of optimization transformations consisting of retiming and
combinational synthesis are formally characterized. ‘
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Preface

’ THIS thesis has evolved with an aim towards providing efficient techniques tar-

geting the functional verification (i.e., whether the design is specified correctly)
and implementation verification (i.e., whether the design is implemented correctly) of
finite-state systems.

The emphasis of the solutions proposed in this work has been more on the practical
aspects, in particular their usability and capacity. Keeping usability in mind we have
mainly focused on automatic techniques for verifying systems. The underlying moti-
vation behind our work on efficient manipulation of BDDs comes from the fact that
most of the current automated design verification algorithms use BDDs as basic data
structure.

To establish the capacity of the proposed techniques, we have performed comprehen-
sive experiments with reasonably big instances of designs. In particular, we have been
able to build very large BDDs in a order of two less time compared to the state-of-the-
art techniqugs. Our technique for sequential circuit verification can verify sequential
equivalence of two large ISCAS benchmarks in few minutes.

A significant amount of effort was put in the software implementation aspect of var-
jous techniques presented in this thesis. Most of them have been successfully imple-
mented and the software is available in public domain. In particular, our BDD package,
named CAL, has also been adopted inside a commercial EDA tool. The package is gen-
eral enough to be integrated inside any BDD-based system.

I was also involved in the development of the verification tool, VIS, as one of the
primary architects. The work on state-space traversal described in this thesis constitutes
a fundamental part of model-checking engine of this tool. Over the last 2 years, VIS
has been adopted by over 500 people all over the world and has been incorporated as a
core engine inside some commercial model checking tools.

—Rajeev Kumar Ranjan
Berkeley, California.
December 1997.
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Chapter 1

Introduction

As we move towards 215t century, integrated circuits (ICs) are becoming an inte-
gral part of our day-to-day lives, being embodied in various forms — micropro-
cessors in home computers, embedded controllers in automobile fuel-injection systems,
graphics controllers in video games, micro-controllers in toasters, answering machines
etc., automated data-acquisition and manipulation components in bio-medical systems,
etc. These complex electronic systems have requirements on their functionality, speed,
and reliability. Of these three, functional correctness is the most fundamental require-
ment because the speed and reliability of an incorrectly functioning electronic system
is of no interest. Moreover, of these three requirements, functional correctness is be-
coming the largest bottleneck in design [Keu96].

It has been widely estimated that over 70% of the design time for integrated circuits
is spent in performing various kinds of verification tasks and the effort devoted to this
process eclipses all other aspects of the design process. In addition, this problem is
likely to become increasingly worse due to the following two reasons:

1. The first one is the result of phenomenal growth in the design complexity. Tran-
sistor density increases by about 50% per year, quadrupling in just over three
years. The increasing number of transistors leads to larger number of compo-
nents to analyze in the verification problem making it more and more complex
and harder to solve. Also, with the growing complexity of the digital systems,
the complexity of protocols interacting between components and ensuring the
security and reliability of data being passed amongst them is also increasing at a
rapid rate. These factors combined together significantly affect the performance
demands on the verification technology.

Another way to look at the affect of increasing design complexity on verifica-
tion is by examining the following equation that gives the number of bugs per
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chip [Keu96]:
bugs _ logic_transistors y lines_in_design 9 bugs
chip chip logic_transistors ~ lines_in_design

Assuming that number of logic transistors per line of the high-level code is con-
stant, since the number of logic transistors doubles every 18 months, we must
reduce the number of bugs per line of HDL by half every 18 months to ensure
the correctness of the design.

2. The second factor is the shrinking time to market. It is common to turn around an
application specific integrated circuit (ASIC) design with few hundred-thousand
gates within a couple of months. Timely delivery of a product is the key to its
success and imposes additional performance demands on the verification tech-
nology.

These factors combined together have stressed the capabilities/capacity of functional
verification as never before.

1.1 Goals and Scope of the Thesis

The goal of this thesis is to investigate a spectrum of techniques targeted towards mak-
ing the verification process practical for real designs. Later in this chapter we will
precisely identify the nature of verification algorithms we are targeting in this work.
Note that we are only concerned with the computational aspects of functional verifi-
cation. We do not address the issue of the specification of the system or the correct
behavior. Also, the scope of this work includes finite state systems only. There are
similar (and more complex) verification problems in the area of infinite state systems
(e.g., hybrid systems).

Chapter Organization: In Section 1.2, we will review some trends in the area of
computer architecture and allude to areas of interest from the point of view of this work.
In Section 1.3, we describe various notions of verification and also provide the context
of our work. Sections 1.4 and 1.5 discuss various issues and solution approaches to
BDD-based verification techniques. In Section 1.6, we give background on sequential
circuit verification. Finally, we outline the organization of this thesis in Section 1.7.
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Microprocessor Clock Rate Improvement Over Years
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Figure 1.1 Clock rate improvement for microprocessors over last 27 years.

1.2 Computer Architecture Trends

We first analyze various components of computer architecture — microprocessor, mem-
ory, disks, etc. — to better understand how we can leverage from each of them to obtain
efficient algorithms for functional verification.*

1.2.1 Microprocessors

Over the last decade, microprocessor performance has grown at a tremendous pace.
The contributing factors to this growth are the following:

e The clock rates for the leading microprocessors increase by about 30% per year.
In Figure 1.1, we show the improvement in the clock frequency for several impor-
tant microprocessor families. In particular, the clock rate for x86 family from In-
tel has increased from 16MHz in 1986 for 1386 to 300MHz in 1997 for Pentium-
18

*Some of the material in this section has been derived from [HP90, San96, CSG97].
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o Transistor density: The rate of increase of number of transistors in a chip is about
40% per year. This leads to increased raw computing power per year.

e Architectural trends: To feed the increasing computing power of microprocessors
a lot of architectural advancements have been made. Some of the major contrib-
utors are — instruction level pipelining, superscalar instruction issue, out-of-order
execution, speculative execution, etc.

o Software technology: Compiler technology attempts to extract the total available
parallelism for a specific computer architecture by loop optimization, software
pipelining, and scheduling techniques.

These factors combined together lead to a significant rate of increase in performance
of microprocessors on standard benchmarks. SPEC integer performance has been in-
creasing at about 55% per year and SPEC floating-point performance at 75% per year.

1.2.2 Memories

One of the physical laws of computer architecture is that fast memories are small, large
memories are slow. This occurs as a result of many factors, including the increased ad-
dress decode time, delays on the increasingly long bit lines, small drive of increasingly
dense storage cells, and selector delays. This is why memory systems are constructed
as a hierarchy of increasingly larger, slower, and less expensive (per byte) memories
further away from the processor. A simplified memory hierarchy consists of processor
registers, several levels of on- and off-chip caches (SRAM), main memory (DRAM),
and a hard disk. The important characteristics of each memory system component are
given in Table 1.1. A large hierarchical memory system provides fast access on average
as long as the references exhibit good locality.

Main Memory (DRAMS)

The main memory satisfies the demands of caches and serves as the 1/O interface.
Performance measures of main memory emphasize both latency and bandwidth. The
DRAM capacity has quadrupled every three yems due to finer line-widths, larger chip
area, and advances in the design of basic DRAM cells. However, the performance of
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Level Registers Cache Main Memory Disk Storage
Typical Size < IKB < 4MB < 4GB > 1GB
Access time (in ns) 2-5 3-10 80400 10,000,000

Bandwidth 4000-32000  800-5000 400-2000 4-32

(in MB/sec)
Managed by Compiler Hardware Operating OS/User

System
Backed by Cache Main memory Disk Tape

Table 1.1 Typical levels in memory hierarchy.

DRAMs is growing at a much slower rate. Figure 1.2 shows a performance improve-
ment in row access time of about 7% per year.

To compensate for the low rate of access time and cycle time improvement for stan-
dard DRAMs, innovative operating modes, novel memory architectures, and application-
specific DRAMSs have emerged [KOKD96). Despite these advances, for memory ac-
cesses that show little or no correlation, the access time remains the measure of DRAM
performance that characterizes the main inemory performance.

Secondary Memory (Disks)

Disk capacity has grown at an enormous rate in the last ten years as shown in Figure 1.3.
In 1986 the largest commercial disk had a capacity of 20MB. These days we find disks
with capacity up to 8GB. However, the access time has improved by only one-third in
10 years. The average price per megabyte of magnetic disks has reduced from $35 per
megabyte in 1986 to $0.1 per megabyte in 1997.

1.2.3 Microprocessors vs DRAMs: Performance Gap

In Figure 1.5, we have shown the comparison between the performance trends of mi-
croprocessor and DRAMs. The trend shows a growing disparity between memory and
processor performance. This is because memory performance has increased at less than
10% per year whereas processor performance has increased at about 50% per year since
1986. Several researchers predict that memory bandwidth will limit the performance
of the future microprocessors.
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Figure 1.2 DRAM access time improvement over years.
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Figure 1.3 Trend in disk capacity over the last decade.
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Trend in Disk Price
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Figure 1.5 Performance trend comparison of microprocessors and DRAMs.
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The disparity between DRAM and processor performance is also evidenced by ex-
tensive use of caches. In 1980, most of microprocessor designs did not have caches. In
1996, most of microprocessor designs have two levels of caches. However, for appli-
" cation that exhibit little or no correlation between addresses, the caches serve no useful
purpose and the microprocessor may spend 75% of all CPU cycles waiting for memory
accesses.

1.2.4 Disks vs DRAM: Price vs Performance

In Figure 1.6, we have plotted the capacity ratio of disks vs DRAM per constant dollar.
It shows the trend in how much more disk capacity comapred ot the DRAM capacity
can be purchased for the same amount of money. The ratio has increased from about
8 in 1986 to about 160 in 1997 indicating that on average the rate of decrease in the
price of unit disk capacity has outpaced the rate of decrease in the price of unit DRAM
capacity by a factor of 20.

Dollars/MB Ratio: Disk to DRAM
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Figure 1.6 Disk to DRAM capacity ratio per constant dollar.
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1.2.5 Parallel Computing

In response to increasing chip capacity various functional units have been replicated to

increase the parallelism available in the processor. In order to utilize the parallelism
" in the hardware, superscalar execution, instruction-level pipelining, and out-of-order
execution have emerged as mainstream technologies.

Given the expected increases in chip-density, the natural question to ask is how far
will instruction-level parallelism go and at what point will the emphasis shift to thread-
level parallelism. Studies have shown that a 2-way superscalar architecture is very
profitable and 4-way offers substantial additional benefit, but wider issue widths, e.g.,
8-way superscalar, provide little additional gain. The design complexity increases dra-
matically since on average control transfers occur once every five instructions. Recent
works provide empirical evidence that to obtain significantly larger amounts of paral-
lelism, multiple threads of control must be pursued simultaneously.

Also, the performance of the highly integrated, single-chip CMOS microprocessor
is steadily increasing and is surpassing the larger, more expensive alternatives. The
advantages of using small, inexpensive, low power, mass-produced processors as the
building blocks for computer systems with many processors is now greater ever than
before. In particular, the shared-memory multiprocessor appear to be a promising direc-
tion that could have a wide impact. We are beginning to see the emergence of parallel
processing in the mainstream of computing as two to eight procesor shared-memory
multiprocessors.

1.2.6 Computer Architecture: Conclusions

From the analysis of the technology and architectural trends, we derive following con-
clusions which will serve as guidelines for our effort to develop computer architecture
based efficient functional verification techniques.

e A large hierarchical memory system provides fast access on average as long as
the references exhibit good locality.

e The performance gap between a microprocessor and DRAM is increasing rapidly
over the years. Hence maintaining locality of reference of memory accesses will
become more and more critical.
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e Although DRAM prices have reduced over the years, disk prices have fallen at a
much faster rate. Therefore the efficient usage of disks will prove to be econom-
ically advantageous.

o The ever increasing growth in the transistor density on a chip will serve as the
enabling technology for parallel computers. These days, 2- to 4-way shared-
memory multiprocessors have become a common presence on desktops.

1.3 Design and Implementation Verification

To put our work in perspective, let us consider the first few levels in a typical top-down
design methodology (illustrated in Figure 1.7). Consider the synthesis steps shown on
the left in Figure 1.7. The design starts with some formal or informal specification that
results from somebody’s idea about what the design is supposed to do. This specifica-
tion is manually translated to a register transfer level (RTL) description in high-level
language like Verilog or VHDL. A hardware compiler is used to synthesize this to a
gate-level design. The gate-level design can in turn be further optimized by manual
or automated transformations. The optimized gate-level net-list is placed, routed, and
converted to layout (not shown in the figure).

The verification steps corresponding to the various stages of the design flow are
shown on the right side of Figure 1.7. First of all, we need to establish if the manual
description in the Verilog or VHDL satisfies the specification we started with. We
can think of the specification consisting of a “set of properties”, and we would like to
check if our described design implements these properties. This verification problem is
known as design verification or property verification.

Next, we need to verify that the gate-level description has the same functionality
as the RTL description. This verification problem is known as implementation verifi-
cation, since we are checking if one description correctly implements the other. Im-
plementation verification is needed to check if the gate-level optimizations maintain
the functionality of the original design. Similar implementation verification steps are
required at lower levels in the design methodology.
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Synthesis Steps Verification Steps

Manual
Description
Hardware
Compiler

Design Verification:
Is what | specified what
| want?

Specificatiog\

High Level
Design

‘ Implementation Verification:
| Is what | synthesized what
| specified?

Gate-level

Implementation Verification:
Is the optimized design
functionally equivalent to
the original design

Design

Logic
Optimizer

Optimized
Gate-level Design

Figure 1.7 Typical top-down design methodology.
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Verification Methodology

The methodology used to verify designs has evolved from an event-driven simulator to

the use of a plethora of different techniques to reduce the simulation time and manage
the design complexity. An overview is given in Figure 1.8. We brieﬁy discuss few of

these technologies.

VERIFICATION )

N T

Simulation Hardware Emulation Formal Testbench Others
Acceleration Verification Generation
| Cycle / \
Based .
Implementation Design
. Event Verification Verification
Driven ———— STE
Compiled / \ / & Based
™ Code Model Language
Combinational  Sequential Checking Containment Theorem
/ / Proving

SAT ATPG | Structural Symbolic Others
.Based Based |Techniques| | Techniques

Figure 1.8 Overview of verification methodology. .

In simulation, a set of inputs are applied to a model of the system and the outputs are
checked for the correctness. Simulation still forms the backbone verification technol-
ogy in the current day design methodology. For complex designs, however, exhaustive
simulation exploring all behaviors is infeasible. -

In formal verification, rigorous analytical techniques are used to establish the re-
lationship between a mathematical model of a system and the system specification.
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Formal verification can be applied for both implementation verification and design ver-
ification.

Of the various formal verification methods, symbolic simulation is closest in spirit to
- current engineering practice. In a symbolic simulation of a circuit, initial values and in-
puts are given not as Boolean values (0 or 1), but instead as symbolic variables. At each
simulation step, the simulator computes the values of signals as Boolean functions of
these variables, rather than as definite Boolean values. The Boolean functions obtained
at the outputs of a circuit can be compared against the desired functions [Bry87]. This
technique is primarily used to verify the combinational equivalence of two designs.

Model checking is another method of property verification that is somewhat more
abstract than symbolic simulation. In this case, the desired properties to be verified
are written in some form of mathematical logic which supports temporal relation be-
tween the signals (also known as temporal logic [Pnu86]). Specifications of temporal
properties may also be described using finite automata instead of temporal logic. In
either case, a model checker translates the implementation model (the design) into a
finite state system, which is given by sets of states (defined by the values of memory
elements in the design) and the transition amongst the states based on the input. The
model checker then checks automatically that the specification is satisfied [CES86]. In
the last couple of years few commercial model checking tools have emerged — For-
mal Check from Lucent Technologies, RuleBase from IBM, CheckOff from Abstract
Hardware Ltd. to name a few.

The most general and powerful methods of verification are based on general pur-
pose theorem provers. A theorem prover is based on a logic — a formal language for
stating mathematical propositions. A logic is equipped with a proof system — a set
of axioms and inference rules that make it possible to reason in a step-by-step manner
from premises to conclusions. Most theorem provers are interactive, requiring guidance
from the user in order to generate proofs [McM94]. Due to this reason, theorem-provers
have not achieved the broad level of acceptance despite their impressive demonstration
in some government pilot projects [Kur97).7

In this thesis we will focus on the design verification (“Is what I specified what
I wanted?”) and the gate-level implementation verification (“Is the optimized gate-

TFor a survey on various formal techniques, refer to [Gup92].
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level design functionally equivalent to the original gate-level design?”’). We notice that
a large number of automated verification methods make use of symbolic techniques
as the core engine. Also, structural techniques are heavily used for implementation
- verification. Our work specifically targets these two techniques as indicated by the
boxes in Figure 1.8.

1.4 BDD-based Verification Methodology

In most automated verification techniques, the designs are modeled as finite state ma-
chines where the states are defined by the values of the latches in the circuit and the
transitions among the states are determined by the input values. The verification is
performed by appropriately traversing the states of the circuit.

A Binary Decision Diagram (BDD) is a graph-based data structure used for repre-
senting Boolean functions (refer Section 2.1 for a detailed description). In a BDD-
based verification set-up, entities (design behavior, sets of states, etc.) are represented
as BDDs and appropriate BDD manipulation is done to perform verification of the de-
sign.

In Figure 1.9, we present various BDD-based verification techniques and identify the
core operations and data structures.

Cycle-based simulation using decision diagrams is emerging as a new technology
for fast simulations of large designs. An example is [MSSS95] which uses the Multi-
valued Decision Diagram (MDD) [SKMB90], which is a wrapper around the BDD.

BDD:s play an important role in the implementation verification of combinational cir-
cuits, since they provide a canonical representation of the functions. Many successful
combinational verification techniques use BDDs as the basic data structure [RWK953,
Mat96, KK97, IMF97]. For sequential circuits, in addition to representing the behav-
ior of the circuit, we need to represent and traverse the state transition graph (STG).
States are represented and manipulated using BDDs. State enumeration forms the core
operation in this case.

For the two automated ways to perform design verification — model checking and
language containment — the core operation is state enumeration, which is based on
BDDs as mentioned above.

From the above analysis we observe that BDDs form the core data-structure for ver-
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(BDD Based Verification )

Formal Verification
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Figure 1.9 Overview of BDD-based verification methodology.
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ification of all digital circuits — combinational or sequential, and state enumeration is
the core operation for design/implementation verification of sequential circuits.

_ 1.5 BDD-based Techniques — Problems and Solution Ap-
proaches

The two main characteristics of BDD-based algorithms are:

Memory: The algorithms are memory intensive and involve little computation. For a
complex design the size of the BDD (the number of BDD nodes) gets too large
to fit in the memory. Due to organization of the memory hierarchy in a typical
computer, manipulating large BDDs results in large memory access time.

Computation: Even though computational complexity (in both space and time) of
BDD operations is linear in the product of the BDD sizes of the functions being
manipulated, for large BDDs, even polynomial complexity becomes excessive.

During the last decade or so, researchers have investigated various approaches to
- overcome these limitations. These can be classified under several categories described
next.

1.5.1 Computer Architecture Based Solutions

Computer architecture has been used in two ways to improve BDD manipulation.

Exploiting memory hierarchy: When the size of a BDD exceeds the main memory,
BDD nodes are swapped to the hard disk. The conventional depth-first BDD
manipulation algorithm results in random accesses to the memory leading to a
large number of page faults. Since a page access time is of the order of tens of
milliseconds, a large number of page faults leads to excessive wall clock time,
even though the time spent by the processor doing useful work is quite small.
Ochi et al. [OYY93] proposed the breadth-first implementation approach to reg-
ularize memory accesses, which leads to fewer page faults. As a result, BDDs
of very large size (up to 12 million nodes) can be handled. Ashar et al. [AC94]
have presented an improved breadth-first algorithm, which enables manipulation
of BDDs with up to 100 million nodes.
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Parallel computation: Kimura et al. [KC90] have presented a parallel algorithm to
.construct BDDs that uses a shared-memory multiprocessor to divide the tasks
-that can be performed concurrently on several processors. Shared-memory ma-

chine allows the use of a single global hash table to maintain canonicity. Ochi
et al. [OI'Y91] have proposed a breadth-first manipulation approach that uses a
vector processor to exploit the high vectorization ratio and long vector lengths by
performing a BDD operation on a level-by-level basis. Several other researchers
have made use of distributed shared memory architecture [PSC94, SB96] and
data-parallel architecture [CGRR94].

1.5.2 Application Specific Solutions

In this approach, particular domains are targeted and their characteristics are exploited
to limit BDD sizes and intermediate BDD size blow up. Some examples are:

Combinational verification: The goal in BDD-based combinational verification is to
create BDDs for the outputs of the designs to be compared and then check for
equality. However, the size of the output BDDs grows large for a complex design.
The BDD size can be controlled by creating a cutset in the circuit and treating
the intermediate signals as the primary inputs [Mat96, KK97]. This requires
.appropriate handling of false negatives. The other technique is to introduce inter-
mediate variables while building the BDDs and appropriately compose them at
the end [JNC*96]. This approach prevents the blowup in the intermediate BDD
sizes.

. Sequential verification: In BDD-based sequential verification the goal is to repre-
sent the behavior of the finite state machine and to traverse the corresponding
state-transition graph. Partitioned transition relations are used instead of mono-
lithic transition relation to control the BDD sizes [TSL*90, BCL91b, RAP+95].
The state-space traversal, which requires image/pre-image computation as the
core operations, can be made efficient by proper use of early variable quantifica-
tion [TSL*90, BCL91b, RAP+95, GB94, KHB96]. Approximation techniques
can also be used for reachability analysis [CHM*93, CHM+94, RS95, SRSB97]
where exact analysis is not feasible.
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Design verification: Partitioned transition relations and efficient image computation
techniques used for sequential implementation verification are also applicable in
design verification. In addition, appropriate abstraction of the original design can
be used to prevent the blow-up in BDD size [Gra94, Kur93]. Also, compositional
techniques can be used to break the original problem into tractable sub-problems
to keep the BDD size small [GL91].

1.5.3 Algorithmic Solutions

In this approach, various algorithmic techniques are used to control BDD size of the
functions obtained at the end of some manipulation. In addition, some techniques are
used to control the BDD size of functions which represent partial results in a complex
computation. In particular:

Variable ordering: The size of the BDD is critically dependent on the variable order.
In some cases, there could be an exponential difference in the BDD sizes of a
function for two different variable orders. Finding the optimal variable ordering
is co-NP complete. A lot of research has been done on this issue [MWBS88,
FFK88.]'and recently dynamic variable ordering [FMK91, Rud93] has emerged
as enabling technology in this area.

BDD partitioning: This approach is similar to the partitioned transition relation method
or to creating a cutset in the network. However, the techniques proposed in this
category are application independent. In particular, techniques are proposed to
represent a function as a set of BDDs [NJFS96, BW97].

Avoiding intermediate BDD computation: In many BDD applications (symbolic sim-
ulation, reachability, etc.), some intermediate BDDs are obtained on the way to
computing the final result. In some cases, the sizes of the intermediate BDDs
could be large even though the final BDD size is small. Some techniques are
proposed to avoid the computation of intermediate results. In [HDB96], new
variables are introduced (called operational variables) which capture the desired
operation to be performed on the operands. Then these variables are successively
moved down in order until they reach the bottom. The final result is obtained by
appropriately manipulating the pointers at the bottom and performing a reduction
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. operation. Even though no intermediate results are computed in this approach,
. the size of the whole BDD when the operational nodes are dynamically shifted
down can be large.

In other approaches [SBS93b, Hor96], a technique is proposed to compute the re-
sult of a Boolean expression by extending the traditional two-operand operations.
By maintaining an array of operands and operations, one can perform depth-first
traversal while computing the new operands and finding the terminal conditions
along the way. In this approach the difficulty lies in the complexity of detecting
the terminal conditions. Also in some cases, the overall memory consumption
can increase due to the overhead of maintaining arrays and large caches to store
the results.

1.5.4 Solutions Based on Modification of Decision Diagrams

In the last decade, research in the area of decision diagrams (DDs) has resulted in var-
ious kinds of DDs resulting in an alphabet soup [Bry95]. Different decision diagrams
target reduction in DD size, simpler DD manipulation, etc. However, in general there is
a trade-off between representation size and the manipulation complexity. Some meth-
ods of generating different decision diagrams are given below:

Changing decomposition method: By changing the interpretation of the decomposi-
tion method one can obtain a significantly smaller representation. Some of them
are OFDD [KSR92] and OKFDD [DST+94].

.Relaxing the ordering requirement: For some functions all variable orderings result
in exponential BDD sizes in the number of variables [Bry91]. In [ADG91],
the decision diagram is modified to allow variables to appear (possibly multiple
times) in different orders for different paths. However, with this generalization,
the canonicity of BDD:s is lost and the algorithmic complexity of some common
operations is exponential. A slightly less generalized version allows different
variable orderings along different paths but requires the variables to appear at
most once along any path. Even though efficient manipulation techniques were
presented in [GM94, SW95], this representation has not yet gained popularity.



20 'CHAPTER 1. INTRODUCTION

Representing numeric valued functions: For functions of Boolean variables with non-
Boolean ranges, a series of representation schemes have been proposed. In par-
ticular, allowing arbitrary values on the terminal nodes (MTBDD [CMZ*93],
ADD [BFG*93]), incorporating numeric weights on the edges (EVBDD [LS92]),
changing the function decomposition with respect to its variables (BMD and
*BMD [BC95]), or a combination of some of the above techniques (HDD [CFZ95])
have been proposed. These techniques differ in their representation sizes and the
manipulation complexity.

In general, any approach which targets BDD size, thereby reducing the memory con-
sumption will also reduce the computation time, since the operand sizes, which de-
termine the computation complexity, will reduce. Better variable ordering falls un-
der this category. Different decomposition schemes, and new decision diagrams how-
ever do not necessarily reduce the computation time since in some cases the corre-
| sponding manipulation complexity is much higher than for BDDs. Some approaches
keep the BDD sizes under control while increasing the number of BDD computa-
~ tions (e.g., network partitioning [Mat96, KK97, JNC*96}, partitioned transition re-
lation [TSL*+90, BCL91b, RAP*95], etc.). These approaches trade-off memory con-
sumption with computation time.

BDD-based techniques are quite general and they are applicable to a broad range
of problems. Since the underlying computation model for BDD-based techniques is a
finite state machine, these techniques cannot leverage the structural information in the
design. In some applications, it is sometimes advantageous to make use of techniques
which can efficiently exploit such information. In the next section, we discuss one such
application — sequential circuit verification.

1.6 Structural Technique Based Sequential Circuit Ver-
ification

Often it is required to make modification in the gate-level design description to achieve
certain objective, such as, engineering change orders, iterative refinements, re-synthesis,
retargeting to a different technology, optimization, test insertion, design reuse, etc. It
is important that the functionality of the design is preserved across these changes. Se-
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quential circuit verification refers to checking two sequential designs for equivalent
functionality. More specifically, given two designs C; and C,, we want to verify if for
any arbitrary input sequence, the output sequence produced by the designs is equal.
- Verifying this input-output equivalence is PSPACE-complete citeaziz93d.

Traditional simulation based methods apply a set of random input vector sequences
and check the equivalence of the designs for those sequences. However, for a com-
plex design this approach fails to provide any meaningful coverage of possible input
sequences.

A number of formal techniques based approaches have emerged in the last decade. A
popular approach is to “compose” the given designs together by appropriately connect-
ing the inputs and outputs. The composed design is modeled as a finite state machine
and starting from some initial state (defined by the values of the latches), all the states
are visited. At each state the equality of the outputs is checked. Explicit state enumer-
ation technique visits one state at a time [DMN88, DDHY92]. However, due to the
explicit nature of this technique, it is limited to only a small number of state elements.
Symbolic techniques, which model the sets of states and the transitions between them
as Boolean functions, bave been widely used [CBM89, Kuk89, BCMD90, TSL190]. A
salient feature of these techniques is that the size of the underlying data structure (some
form of decision diagram) does not depend on the number of states or the state ele-
ments in the circuit. However, the capability of the state-of-the-art symbolic methods
falls below the smallest size designs being optimized in industry.

All of the above solutions attempt to solve the general sequential equivalence prob-
lem. However, due to complexity of the problem, they are either limited to relatively
small size circuits or to circuits which have undergone relatively fewer optimization
transformations.

The second approach is to trade the optimization capability with the verification com-
plexity. In this approach, the sequential optimization is constrained in order to reduce
the verification complexity. In particular, by making all the latches observable, the
sequential synthesis reduces to combinational optimization leading to combinational
verification problem. Solution proposed in [AGM96] falls in this category.

We propose a practical verification technique for transformations which include ar-
bitrary combination of retiming and combinational optimization operations on a con-
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strained form of the circuit. In particular, we require certain constraints to be met on
the feedback paths of the latches involved in the retiming process. For a general circuit,
we can satisfy these constraints by fixing the location of some latches, €.g., by making
- them observable. We show that implementation verification after performing repeated
retiming and synthesis on this class of circuit reduces to a combinational verification
problem. Our methodology can also be viewed as offering another point in the tradeoff
curve between constraints-on-synthesis versus complexity of verification [AGM96].

1.7 Thesis Organization

This thesis is organized into three parts. In the first part of the thesis (Chapters 3, 4, 5,
and 6), we present a set of computer architecture based techniques which target the
efficient manipulation of BDDs. In second part of the thesis (Chapter 7), we present
some application specific techniques which target state transition graph representation
and state-space traversal of digital systems. Complexity issues in retiming and syn-
thesis transformations and a practical algorithm for sequential circuit verification are
described in the third part (Chapters 8 and 9).

In Chapter 2, we present the preliminary material and definitions for terminology
used in this thesis. In particular, the background on BDDs will be necessary to un-
derstand the material in Part I. Familiarity with finite state machines and various state
transition graph related manipulations will be helpful for the material in Chapter 7.

In Chapter 3, we discuss new algorithms for BDD manipulation that exploit the mem-
ory hierarchy by reorganizing the overall computation. The algorithms described in
this chapter extend the ideas presented by Ochi et al. [OIY91, OYY93] and Ashar et
al. [AC94). The new techniques based on the iterative breadth-first algorithm enable
manipulation of very large BDDs by localizing the memory accesses. The main contri-
butions of this chapter are i) new data structures and memory management techniques,
ii) techniques to exploit the memory hierarchy across several BDD operations, and iii)
a comprehensive set of high performance algorithms for different BDD operations. In
cases where the BDD size exceeds the main memory capacity, we have found perfor-
mance improvement of a factor of more than 10 compared to state-of-the-art packages
(Long’s [Lon93] and CUDD [Som97]).

In Chapter 4, we present distributed algorithms on a network of workstations that
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use a collection of main memories to improve the performance of the BDD algorithms
and a collection of disks to manipulate BDDs that exceed the disk capacity on one
workstation.

In Chapter 5, we propose techniques to improve the BDD manipulation performance
by using parallel architectures. After discussing previous work on paralle]l manipu-
lation of BDD nodes, we identify the key elements needed for a successful parallel
implementation of a BDD package. We establish that by combining the locality of ac-
cess of a breadth-first manipulation approach with the parallel computing power of a
shared-memory multiprocessor, one can achieve a high degree of performance over a
conventional BDD package.

In Chapter 6, we address the problem of dynamic reordering, which is an indispens-
able feature of a general-purpose BDD package. We propose techniques to preserve
the locality of reference during reordering. After identifying the computational and
memory overheads associated with implementing variable swapping (the core oper-
-ation in dynamic reordering) in breadth-first based packages, we propose techniques
to handle these problems. We show that the dynamic reordering performance inside
a breadth-first manipulation based package can be competitive with a state-of-the-art
conventional depth-first based packages.

Chapter 7 describes the second part of our work. We investigate application-specific
solutions for BDD-based verification algorithms. In particular, we look into the state-
transition graph representation and state-space traversal of finite-state systems. We
establish that the core operation in BDD-based state-space traversal is that of forming
the image and pre-image of a set of states under the transition relation characterizing
the system. For efficient computation of these core operations, we present several tech-
niques including clustering of transition relations, ordering of clustered relations for
early variable quantification, network partitioning, usage of don’t cares, and removal
of redundant latches.

In Chapter 8, we present a theoretical analysis of synthesis optimization potential
and the corresponding verification complexity of various retiming and combinational
synthesis transformations. In particular we make an’attempt to give formal notions for
the optimization capability of retiming and resynthesis operations. Also, we formally
establish the computational complexity of corresponding implementation verification
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problems. Our goal is to benefit from these observations in establishing practical re-
timing and resynthesis logic optimization and verification methodologies.

In Chapter 9, we investigate the sequential verification problem for circuits which
- have undergone repeated retiming and combinational synthesis transformation. We
present a practical algorithm for verifying equivalence of two sequential circuits one
of which is obtained from the other using a constrained form of repeated retiming and
combinational synthesis. We demonstrate that our methodology covers a large class of
circuits by applying it to a set of benchmarks and industrial designs.

Finally, Chapter 10 summarizes the work and outlines directions for future work.

Almost all of the algorithms presented in this thesis have been implemented and
experimental results are given in the corresponding chapters. In particular, the work on
breadth-first BDD manipulation has resulted in a comprehensive public domain BDD
. package — CAL. In Appendix A, we describe some of the software engineering aspects
of CAL and its integration with synthesis and verification tools. In addition, our work
. on efficient state-space traversal and has been integrated inside the verification tool
VIS [BSAT96a] as one of the core engines. In Appendix B, we briefly discuss the VIS
package and integration of our work inside it.



Chapter 2

Preliminaries

IN this chapter we will preview some background material required to understand
various chapters of this thesis. The knowledge of BDD (Section 2.1) will be essen-
tial for understanding Chapters 3, 4, and 6. The terms and definitions used in Chapter 7
are described in Sections 2.3 and 2.4. The notation and terminology used in the work
on sequential verification (Chapters 8 and 9) is described in Section 2.2.

2.1 Binary decision diagrams

The origin of Binary Decision Diagram (BDD) goes back to the seminal paper by Ak-
ers [Ake78], in which Boolean functions were represented by decision graphs. How-
ever their widespread usage has started only after 1986, when a set of algorithms were
proposed to construct and manipulate these data structures [Bry86). For a complete
description on various kinds of decision diagrams and the related terminology, please
refer to [BRB90, Bry91, DB97]. Here we present a brief description of the data struc-
ture and the relevant terminology.

The BDD of a function is a rooted, directed, acyclic graph. To illustrate the cre-
ation of a BDD for a function, let us first look at the ordered binary decision tree of a
function, f = x;x3 + x2x3. The ordered binary decision tree for this function is shown
in Figure 2.1. The tree consists of two types of nodes: terminal and non-terminal.
Each non-terminal node is labeled by a variable such that node labels on each path
from root to leaf node satisfy a particular order given by the ordering of variables (the
variable ordering for this example is x; < x2 < x3). Each non-terminal node has two
out-going edges (pointing to left child-node and right child-node) which correspond to
a truth assignment of 1 and O respectively to the associated variable. The child node
corresponding to the “1” assignment to the associate variable is also known as THEN
cofactor (also referred to as T'). The child node corresponding to the “0” assignment to
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Figure 2.1 BDD tree for function f = x;x3 +x2x3. The dotted edges indicate the 0 assignment
to the variable associated with the node.

the associate variable is also known as ELSE cofactor (also referred to as E).

A terminal node does not have any out-going edge and represents either a constant
ZERO or constant ONE. Along every path from root to leaf, each variable appears
- exactly once in the order specified by the variable ordering. The binary decision tree
has exponential size in the number of variables. Two reduction rules are applied to this
tree representation to make it compact:

1. The redundant nodes (nodes with same left and right child nodes) are eliminated.

2. The isomorphic nodes (nodes with identical sub-tree and variable labeling) are
merged.

By repeatedly applying these two reduction rules, we obtain a directed acyclic graph
shown in Figure 2.2. This graph is known as Reduced Ordered Binary Decision Di-
agram (ROBDD). In the rest of this work, we will use the term “BDD” to refer to
“ROBDD"”. Some important characteristics of this functional representation are given
below:

1. Although the size of a BDD can be exponenﬁa{l in the number of variables, func-
tions corresponding to real circuits do not typically exhibit that behavior (a well
known exception being the multiplier function).
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Figure 2.2 BDD graph for function f = x)x3 + x2x3.

2. The size of a BDD is a critical function of the ordering of variables. For some
functions, the BDD size can vary from exponential to linear in number of vari-
ables for different variable orders. However, obtaining the optimal order of vari-
ables for a given function is a hard problem.

3. BDD:s are canonical representation of Boolean functions. With proper imple-
mentation, the canonicity leads to constant time equality checks (satisfiability,
tautology, or equivalence) making them highly suitable for formal verification of
digital systems.

In Table 2.1 we compare the efficiency of representing and manipulating functions
using BDDs with other data structures (prime-irredundant sum-of-products and multi-
level network). In the last decade, extensive research has been done on variations of
BDD:s and the corresponding efficiency of representation and manipulation. A good
survey can be found in [Bry95]. Below we briefly describe some of the terminology
used in this work. For further details, refer to [BRB90].

Unique table: The unique table stores all the BDD nodes and facilitates the canonical
representation of a function. For a given variable order, each Boolean function
can be canonically represented by the top variable of the function and its two
child nodes. The unique table facilitates this process by maintaining a hash table
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Operation Complexity
Sop Multi-level BDD |
f+e NP o(1) O(|f1-lel)
f=0 0o(1) NP o(1)
f= o(1) co-NP o(1)
f=g NP NP o(1)
Size Exponential | Exponential | Exponential

Table 2.1 Comparing manipulation complexity and expressiveness of BDD, sum-of-products
and multi-level function representations.

of BDD nodes. Before creating a node for a function an associative look-up,
based on the value of the child nodes, is performed in the unique table.

Computed table: The polynomial complexity in the product of operand BDD sizes
for most BDD operations assumes that during a BDD operation, the result for
each pair of operand BDD nodes is evaluated at most once during the compu-
tation. This requires the presence of a computed table which stores information
about the operand BDDs and the result BDD. Theoretically, this would require
implementation of a lossless cache. On a practical note, a computed table is im-
plemented as a direct mapped or 2-way set associative. Without computed table,
the complexity of even simple Boolean operations will be exponential in operand
BDD sizes.

Index: Along each path in a BDD, variables (associated with the nodes along the path)
appear in the same order. The index of a variable (also referred to as its “level”) is
equal to its distance from the root node. Variables in BDDs are ordered from O to
n— 1, starting from root to the constant nodes, n being total number of variables.
A variable with “lower” value of index is “higher” in the order and vice versa.

Id: An id (identifier) is associated with each variable, and it also ranges from O to
n — 1. The identifier value for a variable remains constant throughout the life of
the variable, however its index changes during reordering.
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ITE: Given three Boolean functions F,G, and H, the if-then-else (ITE) operator is
defined as follows:

ITE(F,G,.H) = F-G+F-H

2.2 Synchronous Sequential Circuits

A sequential circuit is an interconnection of combinational gates and memory elements
along with input and output ports. Various notions of sequential circuits differ in the
definition of memory elements. We focus on sequential circuits where all the memory
elements are edge-triggered latches driven by the same clock. Formally, a sequential
circuit is given as C = (1,0, G,L,N), where I,0,G, L and N are sets of inputs, outputs,
gates, latches,* and nets respectively. Inputs, outputs, combinational gates, and latches
are collectively referred to as circuit elements. Each net n € N represents a directed
connection between a primary input / gate / latch and a gate / latch / primary output.
Often, for the purpose of analysis, it is convenient to represent a circuit using a directed
graph also known as Boolean network. Formally, a Boolean network N is a directed
graph G = (V, E), with a one to one correspondence between each node in the graph and
the circuit elements (inputs, outputs, gates, and latches). Edges in the graph correspond
to the nets in the circuit. An edge e;; € E indicates a fanout from the circuit element
corresponding to node i to that corresponding to node j. Nodes corresponding to com-
binational gates can have any number of fan-ins and fan-outs. Nodes corresponding to
primary inputs do not have any fan-ins and that corresponding to primary outputs do
have any fan-outs. Nodes representing latches have only one fan-in. Figure 2.3 shows
a sequential circuit and the corresponding Boolean network.

2.3 Finite State Machines

A finite state machine (FSM) is used to model the behavior of systems with finite
number of states. In general, an FSM is characterized by following elements:

o A finite set of states, S.

*In this thesis we will use the term “latch” as the short form for “edge-triggered latch” (also termed
as flip-flop), unless otherwise noted.
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Figure 2.3 Example of a sequential circuit and corresponding Boolean network.

o A set of initial states, S; C S.
o A finite input alphabet, Z;.
o A finite output alphabet, Zo.

o A transition relation, T C S X Z; X S. A tuple (x,a,y) € T implies that from state
x, on applying the input a, the machine can move to state y. If T can be written
as function, then the next state is deterministic, otherwise it is non-deterministic.
An FSM is completely specified if for each a € Z; and x € S, there existsa y € S,
such that (x,a,y) € T.

e An output relation, O, given as O C S x Zo for Moore machines (output is solely

defined by the state), and as O C S x Z; x Zg for Mealy machines (output is de-

-fined by the state and the input). For deterministic machines, O can be expressed
as a function (O : S — Zo for Moore and O : § x X; — 2o for Mealy).

A sequential circuit can be modeled by an FSM. The states are defined by the values of
the latches, the circuit inputs and outputs define the input and output alphabets respec-
tively, and the transition functions and output functions are defined by the logic of the
circuit. In particular,

e All the symbols of the FSM - §,%;, and 2o — are encoded in terms of binary
variables (variables on the domain B = {0, 1}).
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e A state is given as a minterm on the latch values.
o The input alphabet is determined by the minterms of the input variables.
o The output alphabet is determined by the minterms of the output variables.

e Since the circuit models a hardware, for any given state and the input value the
next state and the output are uniquely defined.

e The non-deterministic behavior for the FSM can be simulated by adding few
pseudo-inputs to the circuit.

Formally, for a sequential circuit with m inputs, k outputs, and n latches, the interpreta-
tion of FSM symbols is given as follows:

S=B" : Setofstates
S;CB" : Setof initial states,
Yy=B" : Setofinput alphabets
20 = B* : Setof output alphabets

Vector of transition functions §; : B* xB” = B, i=1,2,...,n

>l o>

Vector of output functions (Moore) A;: B* = B, i=1,2,...,k
Vector of output functions (Mealy) A; : B" xB™ —» B, i=1,2,...,k

Some more notation used in this dissertation are given below:
® X¥={x),x2,... ,%,} : Vector of binary state variables.
o ii={uy,uz,... ,un} : Vector of binary input variables.

= {z1,22,-.. ,2x} : Vector of binary output variables.

318

®
e 5;(%,#) : B x B" — B Transition function. At places, we use f; to indicate ;.

e y={y1,¥2,..-,yn} : Vector of binary variables used as a place holder for the
next-state values of the latches.
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e T;(%,i,y;) is used to indicate the transition relation for #” state bit and is given as
T; = f; ®y;. The vector of transition relation is given as T= {n,Dn,...,Th}.

o T(%,i,y):B* xB™ x B" — Bis the transition relation. It is given as [; T;(%, &, y;).
T(X,&,y) = 1 implies that in state ¥ there exists a transition to state y on input &.

2.3.1 State Transition Graph

An FSM can also be represented by a state transition graph (STG). An STG is a
directed graph G(V, E), where each vertex v € V corresponds to a state s € S. An edge
¢ij € E connects v; to v; if there exists a primary input a € ; such that (s;,a,s;) € T.

2.4 Implicit Boolean Set Manipulation

A Boolean function f from {0,1}" into {0,1} denotes a unique subset Sy of {0,1}"
that is defined by the equation

Sy = {¥e{0,1}"/fF) =1}

Conversely a subset S of {0,1}” is denoted by a unique Boolean function from {0,1}"
into {0, 1}, %5, that is defined by the equation

L@ =1 & XS,

and is called its characteristic function. Since any Boolean function from {0, 1}" into
{0,1} has a unique BDD representation for a given variable ordering, any subset of
{0, 1}" also has a unique BDD for this variable ordering. '
Characteristics functions are a very interesting representation of Boolean sets be-
cause there is no relation at all between the number of elements in a set and the size
of the BDD that denotes this set, so that huge Boolean sets can potentially be denoted
by small BDDs and vice versa there exists subsets of {0,1}" whose BDDs have an ex-
ponential size with respect to n. Boolean operators correspond with set operators, e.g.,
disjunction corresponds with union, and negation with complementation. All elemen-
tary set operations can thus be evaluated with a quadratic complexity on BDDs [CM95].



Part1

Computer Architecture and BDD
Manipulation

33



Chapter 3

Breadth-First BDD Manipulation

THE manipulation of very large BDDs is the key to success for BDD-based al-
gorithms for simulation [Bry91], synthesis [CBM89, TSL*90], and verifica-
tion [BCMD90, McM93, BSA*96a] of integrated circuits and systems. State-of-the-
art BDD packages, based on the conventional depth-first technique, limit the size of
the BDDs that can be manipulated due to disorderly memory access patterns that re-
sult in unacceptably high elapsed time when the BDD size exceeds the main memory
capacity. In this chapter we present the design and implementation of a high perfor-
mance BDD package that enables manipulation of very large BDDs by using an itera-
tive breadth-first technique directed towards localizing memory accesses to exploit the
memory organization in a computer system.

The basis of our work is the iterative breadth-first BDD manipulation algorithm pro-
posed by Ochi et al. [OYY93] and later improved by Ashar et al. [AC94]. Our main
contributions include i) an architecture-independent customized memory management
scheme, ii) the ability to issue multiple independent BDD operations simultaneously
(superscalarity), and iii) the ability to perform multiple BDD operations even when
the operands of some BDD operations are the result of some other operations yet to
be completed (pipelining). A comprehensive set of BDD manipulation algorithms are
implemented using the above techniques. The new package is faster than the state-of-
the-art depth-first BDD package by a factor of up to 100 for BDD sizes that do not
fit the main memory. Even for the BDD sizes that fit within the main memory, our
package outperforms depth-first manipulation based packages by a factor of 1.5. This
is in contrast to the breadth-first algorithms presented in the literature which paid a
performance penalty for smaller BDD sizes.

The rest of the chapter is organized as follows. We start with giving a background on
the usage of BDD in synthesis and verification algorithms and the BDD manipulation

35
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process in Section 3.1. In Section 3.2, we discuss the key features of the breadth-
first manipulation algorithm and describe the related work based on this algorithm. In
Section 3.3 we describe our approach and contrast it with the previous approaches.
- Section 3.4 describes the memory access pattern during breadth-first traversal. In Sec-

tions 3.5 and 3.6, we present the concepts of performing BDD operations in a super-
~ scalar and pipelined manner and discuss how it leads to better memory access patterns.
Section 3.7 shows how superscalarity and pipelining are exploited to obtain efficient
algorithms for common BDD operations, €.g., SUBSTITUTION and QUANTIFICATION.
In Section 3.8, we present some implementation details. Experimental results demon-
strating the effectiveness of our technique are presented in Section 3.9. Finally, we
conclude in Section 3.10 and give directions for future work. Most of the work pre-
sented in this chapter was first reported in [SRBS96].

3.1 Introduction

For a preview on the basics of BDDs, please refer to the Section 2.1.
3.1.1 BDDs in Synthesis and Verification Algorithms

BDDs are used in two contexts in synthesis and verification algorithms: i) to represent
Boolean functions which capture the functionality of the circuit under consideration,
and ii) to implicitly represent and manipulate sets of elements, e.g., sets of states are
represented using BDDs in verification algorithm.

In combinational verification, the BDDs representing the functionality of each pri-
mary output are built in terms of primary inputs. First, the BDD variables are created
for primary inputs and the gates of the circuit are processed in topological order. For
each gate, the BDD for its output is created by appropriately applying the logic function
of the gate to the BDD:s of its inputs. This process is repeated until the BDDs for the
primary outputs are created.

In design and impleinentation verification of sequential circuits, the functionality
of the circuit is represented by the BDDs for the outputs and the next-state functions
of the latches. In addition, we need to represent and manipulate set of states (state
traversal) which form the key operations in the sequential verification algorithm. The
state traversal is performed by two basic operations: image and pre-image computation,
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which in turn makes use of BDD operations: relational product, substitution, etc.
In synthesis, BDDs are used to obtain and manipulate sets of don’t cares. These sets
are implicitly represented using BDDs. The main operation again involves image and

. pre-image computation.

The application of BDD-based synthesis and verification algorithms to industrial
designs requires performing Boolean operations on very large BDDs with millions of
nodes.

3.1.2 BDD Manipulation

Let us now look at what is involved in manipulating functions using BDDs. Consider
two functions f and g. For illustration purposes assume that we want to compute the
“AND” of these two functions. Suppose x is the top variable in the BDDs for both
functions. The cofactors of functions f and g are given as: f, f, gx, gz Using Shannon
decomposition of the functions, the “AND” can be computed as follows:

f = xfxt+ifs

g = xgx+3igs

h = f-g
= x(fxgx) +X(f38)
= xhy+Xh;

This is illustrated in Figure 3.1.

We notice that to compute the “AND” of the two functions, we need to compute the
“AND” of the left cofactors (f; and g) and the “AND” of the right cofactors (fz and
gz). The natural implementation of this computation is recursive, i.e., the results for the
cofactors are recursively obtained.

3.1.3 Conventional BDD Manipulation and Limitations

Conventional BDD algorithms are based on a recursive formulation (shown in Fig-
ure 3.4) that leads to a depth-first traversal of the directed acyclic graphs representing
the operand BDDs. The depth-first traversal visits the nodes of the operand BDDs on a
path-by-path basis (Figure 3.2). In this traversal, a node is visited right after its parent
node is visited. The access pattern is illustrated with an example in Figure 3.3.



38 CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

8
h=f-g

hz= ff\%‘;: fe 8

Figure 3.1 Computing “AND” of two functions.

Figure 3.2 Operand access pattern during conventional manipulation.
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Figure 3.3 Depth-first traversal of operand BDDs in conventional manipulation.

df-op(op,F,G)
if (terminal case(op, F, G)) return result;

else{
let x be the top variable of F, G;
T =df.op (op, Fx, Gx);
E =df.op (op, Fy, Gx);
if (T equals E) return T,

}

return result;

else if (computed table has entry(op, F, G)) return result;

result = find or add in the unique table (x, T, E);
insert in the computed table ((op, F, G) , result);

Figure 3.4 Depth-first BDD manipulation algorithm.
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Figure 3.5 Problem in localizing memory accesses in depth-first traversal.

In order to keep the memory accesses local, we would need to put a node close to its
parents node in the memory. This is difficult due to two reasons:

1. The large in-degree of a typical BDD node makes it impossible to assign con-
tiguous memory locations for the BDD nodes along a path. This is illustrated in
Figure 3.5. Since node a is visited right after any of its parent nodes are visited,
it needs to be close in memory to all of them (including b). If b in turn has large
in-degree as well, it would require that all the nodes shown in the figure should
be located close in the memory, making it an infeasible task.

2. Even when the in-degree is not large for any node, the graph pattern correspond-
ing to all the BDDs change over time as the manipulation progresses. Due to
this, the number of parent nodes of a node cannot be predicted a priori and hence
local memory assignment is not possible.

Therefore, the recursive depth-first traversal leads to an disorderly memory access pat-
tern. Let us now look at the performance implications of the random memory access
pattern. ’

We refer to the data on various levels in memory hierarchy as presented in Table 1.1
on page 5. When the BDD size exceeds the capacity of a given level in the memory
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system, the disorderly pattern of the depth-first algorithms translates to a performance .
penalty. For example, when the BDD size exceeds the cache size, a slowdown by
a factor of 2-10 may be observed due to a high cache miss rate. When the BDD size
" measured in the number of memory pages exceeds the number of translation look-aside
buffer (TLB) entries, a further slowdown may be observed. However, the most dramatic
degradation in performance is observed when the BDD size exceeds the main memory
size; the depth-first algorithms thrash the virtual memory leading to unacceptably high
elapsed time even though the amount of CPU time spent doing useful work is low.
Therefore, the depth-first algorithms place a severe limit on the size of the BDD that
can be effectively manipulated on a given computer system.

To a first approximation, the performance of BDD manipulation algorithms is dom-
inated by the performance and capacity of each level in the memory system hierarchy.
Hence, the design of high performance BDD algorithms require a careful consideration
of memory related issues.

3.1.4 Breadth-first BDD Manipulation Technique

The iterative breadth-first technique for BDD manipulation attempts to fix the dis-
orderly memory access behavior of the recursive depth-first technique. Unlike the
depth-first algorithm that traverses the operand BDDs on a path-by-path basis, the it-
erative breadth-first algorithm traverses the operand BDDs on a level-by-level basis
(Figure 3.6), where each level corresponds to the index of a BDD variable. The BDD
nodes corresponding to a level are allocated from the same memory segment so that
temporally local accesses to the BDD nodes for a specific level are also spatially local.
The node access pattern is illustrated in Figure 3.7.

The basic iterative breadth-first technique consists of two phases: a top-down (from
root node to leaves) APPLY phase followed by a bottom-up REDUCE phase. The APPLY
and REDUCE phases are illustrated in Figures 3.8 and 3.9 respectively. In Figure 3.8,
suppose we want to compute “AND” of functions given by BDD nodes a and d. As an
initial step a temporary node is created which acts as a place holder for the final result.
In our exposition we will use the term REQUEST to indicate such temporary nodes or
place holders. The REQUEST is indicated by R = (AND, a,d). The appropriate operand
information is duplicated in this REQUEST. Next the top-down APPLY phase starts. In
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Figure 3.6 Operand access pattern during breadth-first manipulation.
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Figure 3.7 Operand nodes access pattern in breadth-first traversal.
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Figure 3.8 Illustration of APPLY phase in breadth-first manipulation.

this phase, REQUESTSs are accessed and processed to obtain the final result of applying
the Boolean function on the operands stored in the REQUESTs. In particular, to obtain
results for the REQUEST R1 = (AND, a,d), we need to obtain results for “AND”ing the
left cofactors of the operands (b and ¢), and the result of “AND”ing the right cofactors of
the operands (e and f). As opposed to computing these sub-results recursively, two new
REQUESTs are generated. The locations of these new REQUESTSs is determined by the
minimum index of the operands’ cofactors. In this example, the new REQUESTs, which
act as place holders for the cofactor results, are created at the next index. The content
of the original REQUEST R is overwritten and after the processing R contains pointers
to the cofactor results place holders. The APPLY phase proceeds with the processing of
REQUESTs at the next index and so on. We notice that in some cases no new REQUEST
is generated if a terminal condition is found (node c) or a similar REQUEST is already
created (request R4 = (AND, c,g)). The checking for duplicate REQUESTs is done by
maintaining the collection of REQUEST at each index in a hash table which we refer
to as REQUEST QUEUE. At the end of APPLY phase an unreduced BDD is obtained.
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Figure 3.9 Illustration of REDUCE phase in breadth-first manipulation.

This is because, node Ry is redundant (it has identical left and right child nodes). To
eliminate such redundant nodes, a bottom up REDUCE phase is applied. In this phase,
REQUESTSs are again accessed one by one, and after updating of cofactor contents are
either converted to a BDD node or are designated as redundant. In Figure 3.9, we
start with identifying node R4 as redundant. We put a forwarding pointer indicating
the location of the result in R4. Next REQUESTs R; and R3 are processed. we first
update their cofactor contents (by looking at the forwarding pointer of R4). Then the
corresponding UNIQUE TABLE is traversed to check if at that index a BDD node with
identical left and right child nodes exists or not. In this particular case, both R; and R3
get converted to BDD nodes 4 and i respectively.

The generic algorithm for a two-operand boolean operation is shown in Figures 3.10,
3.11, and 3.12.

During the APPLY phase, the outstanding REQUESTS are processed on a level-by-
level basis. The processing of a REQUEST R = (op, F, G), in general, results in issuing
two new REQUESTs which represent the THEN and the ELSE cofactors of the result
(F op G). Since certain isomorphism checks cannot be performed, the result BDD
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bf_op(op, F, G)
if terminal case (op, F, G) return result;
min_index = minimum variable index of (F, G)
create a REQUEST (F, G) and insert in REQUEST QUEUE[min_index];
/* Top down AprpLY phase */
for (index = min_index; index < num_vars; index++) bf_apply(op, index);
/* Bottom up REDUCE phase */
for (index = num_vars; index > min_index; index——) bf_reduce(index);
return REQUEST or the node to which it is forwarded;

Figure 3.10 Breadth-first BDD manipulation algorithm.

bf_apply(op, index)
x is variable with index “index”;
I* process each request queue */
while (REQUEST QUEUE[index] not empty)
REQUEST (F, G) = unprocessed request from REQUEST QUEUE[index};
I* process REQUEST by determining its THEN and ELSE */
if (NOT terminal case ((op, F, Gx), result)){
next_index = minimum variable index of (F;, G;);
result = find or add (F;, G,) in REQUEST QUEUE[next_index];
} REQUEST — THEN = result;
if(NOT terminal case ((op, Fz, Gz), result)){
next_index = minimum variable index of (F;,Gx);
result = find or add (F;, Gz) in REQUEST QUEUE[next.index];
} REQUEST — ELSE = result;

Figure 3.11 Breadth-first BDD manipulation algorithm — APPLY.
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bf_reduce(index)
x is variable with index “index”;
I* process each request queue */
while (REQUEST QUEUE[index] not empty)}{
I* process each request */
REQUEST (F,G) = unprocessed REQUEST from REQUEST QUEUE[index];
if (REQUEST—THEN is forwarded to T)
REQUEST— THEN =T,
if (REQUEST—ELSE is forwarded to E)
REQUEST— ELSE = E;
if (REQUEST—THEN equals REQUEST—ELSE)
forward REQUEST to REQUEST — THEN ;
else if (BDD node with (REQUEST— THEN ,
REQUEST — ELSE ) found in UNIQUE TABLE[index]){
forward REQUEST to that BDD node;
}
else{
insert REQUEST to the UNIQUE TABLE[index] with key
(REQUEST — THEN , REQUEST — ELSE )

Figure 3.12 Breadth-first BDD manipulation algorithm — REDUCE.
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obtained at the end of APPLY phase has redundant nodes. The REDUCE phase traverses
the result BDD from the leaves to the root on a level-by-level basis eliminating the
redundant nodes.

In the APPLY phase of the algorithm the following two things need to be determined
for each REQUEST: i) indices of the operand BDD:s to obtain the index of the variable
with respect to which the cofactors should be taken, ii) indices of the cofactor nodes
in order to place the new REQUESTS in the appropriate REQUEST QUEUE (see under-
lined in Figure 3.11). In order to preserve the locality of references, it is important to
determine the variable index of the cofactor nodes without actually fetching them from
the memory (i.e., without accessing them). In particular, the routine bf_apply called
with index i should access nodes only at index i. Similar issues arise during the RE-
DUCE phase. Also, the memory accesses to the REQUEST QUEUE during APPLY and
REDUCE phases play a role in the locality of the references.

3.2 Previous Work

In [OYY93], Ochi, Yasuoka, and Yajima use a variant of BDDs, namely, Quasi Re-
duced BDD (QRBDD) to address various issues about locality of reference. A QRBDD
is obtained from a binary decision tree by merging the isomorphic sub-graphs. The re-
dundant nodes, however, are not eliminated. The main property of this graph is that
along each path of the BDD, consecutive nodes differ in their indices by exactly one.
Using this approach, they could localize memory accesses as follows: i) there is no
need to determine the variable index of each operand BDD, since each has the same
index equal to the current index for which REQUESTs are being processed, ii) since
the indices of the cofactors is exactly one more than the current index, cofactor index
determination can be done without any memory accesses, iii) since the new REQUESTs
generated are always for the next higher index, checking for duplicate REQUESTs dur-
ing the APPLY phase is done by searching the corresponding REQUEST QUEUE, and
iv) similarly, during the REDUCE phase, isomorphic nodes are found by checking the
REQUEST QUEUE of only one level.

However, their approach has two disadvantages: i) it is observed that the QRBDD is
several times larger than the corresponding BDD [AC94], which makes this approach
impractical for manipulating very large BDDs, and ii) because of larger number of
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nodes in the operand BDDs, the total computation increases. Due to these problems,
this approach performed poorly compared to the conventional depth-first approach for
BDD sizes that fit the main memory.

Ashar and Cheong [AC94], use a BLOCK-INDEX table to determine the variable
index from a BDD pointer by performing an associative lookup. Since this solution
* employs BDDs (as opposed to QRBDDs)*, an attempt is made to preserve the locality
of reference during the check for duplicate requests during the APPLY phase and check
for redundant nodes during the REDUCE phase. This is done by sorted accesses to co-
- factor nodes based on their variable indices. This approach overcomes the size problem
of the previous approach by employing BDDs instead of QRBDDs. However, it suffers
from significant overhead (about a factor of 2.65) as compared to a depth-first based
algorithm for manipulating BDDs which fit within the main memory [AC94].

3.3 Our Approach

Our approach to handling the variable index determination problem differs from the
works of Ashar et al. and Ochi et al. in the following aspects:

l A new BDD node data structure is introduced to determine the variable index
while preserving the locality of accesses. We represent a BDD using (variable
index, BDD node pointer) pair (shown in Figure 3.20). Therefore a BDD node
contains pointers to its THEN and ELSE cofactors as well as their variable indices.
As aresult, we do not need to fetch the cofactors to determine their indices. The
BDD node data structure and related details are discussed in Section 3.8.1.

2. Optimized processing of REQUEST QUEUES for each level by eliminating the
sorted processing of REQUESTs during APPLY and REDUCE phases as proposed
by Ashar et al. Empirically, we have observed that this change does not affect
the performance of our algorithm for manipulating very large BDDs.

3. Use of a customized memory manager to allocate BDD nodes which are quad-
word aligned. The quad-word alignment improves the cache performance by

*Since the difference in the index of a node and its child node can be arbitrary in a BDD, strictly
speaking, the traversal proposed in [AC94] is “level-by-level” and not breadth-first. However, in this dis-
sertation, we overload the term “breadth-first manipulation” to mean “level-by-level” traversal [Shi97].
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mapping a BDD node to a single cache line.

These three techniques eliminate the overheads associated with the previous breadth-
_ first approaches. In addition we make use of multiple BDD operations (described next)
resulting in new algorithms that are faster than the corresponding recursive algorithms
even on those examples for which the BDD:s fit in the main memory.

We propose two new concepts — superscalarity and pipelining — to optimize the mem-
ory performance of the iterative breadth-first BDD algorithms by exploiting locality of
reference that exists among multiple BDD operations. The concepts of superscalarity
and pipelining have their roots in the field of computer architecture in which super-
scalarity refers to the ability to issue multiple, independent instructions and pipelining
refers to the ability to issue a new instruction even before completion of previously
issued instructions. We shall sec how these concepts can be applied in the context of
the breadth-first BDD algorithms to exploit the memory system hierarchy.

3.4 Memory Access Pattern

Let us first take a closer look at the memory access pattern of the basic breadth-first
algorithm. A custom memory manager assigns to each variable a memory segment that
consists of a set of pages; the memory segment is expanded on demand in units of a
page where each page holds PAGESIZE / NODESIZE number of nodes for a particular
variable. The overall paging behavior resulting from the memory access pattern is
determined by processing of a set of REQUESTs for each variable in the ascending
order of their indices during the top-down APPLY phase and in the descending order of
- their indices during the bottom-up REDUCE phase.

Apply phase: The following accesses take place to process each REQUEST R, for an
index i with associated variable x. Suppose REQUEST R = (op, F,G). Without loss of
generality, assume that Fyg., = min(Fingex; Gindex) = i-

First of all R is accessed to determine the operand BDDs (F and G). The next
step involves obtaining the cofactors of the operands, i.e., Fy, Fz, Gy, and Gz. Since
Findex == i, we need to access the UNIQUE TABLE BDD node of F to obtain the THEN
and ELSE BDDs that respectively represent the left cofactor (Fx) and right cofactor (Fx).
If Gindex > i, Gx = Gz = G and we do not need to perform any access on G. In the next
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step, the left and right cofactors of R is determined which are obtained as follows (we
explain the steps involved in obtaining the left cofactor, the right cofactor is obtained
along similar lines):

We first determine if the result of the cofactors can be trivially obtained, i.e., if the
result of (op,F;,Gy) is a terminal case. If it is indeed a terminal case, we make the
left cofactor of R point to appropriate result. Otherwise, we need to create a new RE-
QUEST R; = (op, F;, G;) which is a place holder for the result of the operation on left

- cofactors. The new REQUEST is placed in the REQUEST QUEUE for index k, where
k=min(F,_,_,Gx,,.). To avoid any duplicate computation, we perform an associate
lookup in the REQUEST QUEUE for index k to check if a REQUEST equivalent to R)
already exists.

Reduce phase: In this case, the THEN and ELSE fields of the REQUEST node are
accessed. These fields are appropriately updated if they point to a redundant node. If
the updated THEN and ELSE BDDs are not equal, the UNIQUE TABLE for the current
index i is associatively searched to identify a duplicate BDD node and if no duplicate
exists, a new BDD node is created. This leads to memory accesses to traverse the chain
in the hash table that represents the set of UNIQUE TABLE BDD nodes for the current
index i.

In summary, the following memory accesses take place for each index i in addition
to memory accesses to each processed REQUEST. During the APPLY phase, to process
each REQUEST for an index i, we have i) at least one and up to two pointer accesses
to UNIQUE TABLE BDD nodes for i, ii) up to two associative lookups in appropriate
REQUEST QUEUEs to check if the REQUESTSs have been issued previously. During the
REDUCE phase, to process each REQUEST for an index i, we have i) accesses to THEN
and ELSE BDD nodes to check for redundancy, ii) associative lookups in the UNIQUE
TABLE for the index i to determine if another node with the same attributes already
exists.

The next step is to determine the memory accesses that contribute significantly to the
total number of page faults when the BDD size exceed the main memory capacity. In
general, we have empirically observed the following:

1. The size of the set of REQUEST QUEUEs is smaller, sometimes much smaller,
than the size of the UNIQUE TABLE. Therefore, the UNIQUE TABLE for an
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index has significantly more pages assigned to it as compared to the REQUEST
QUEUE for that index.

2. Although for each cofactor, say (Fy, Gx), the cofactor index equal to the lower of
indices for F, and G, can be arbitrarily large (up to maximum number of vari-
ables) than the current index, the difference between the cofactor index and the
current index is small for most cofactors. Hence, we have the following: i) during
the APPLY phase, most of the associative lookups in the REQUEST QUEUEs to
identify or create cofactor REQUESTS are limited to REQUEST QUEUEs for next
few variables, and ii) during the REDUCE phase, most of the redundancy checks
for the THEN and the ELSE pointers are limited to nodes from next few variable
indices. Therefore, the number of page faults that result from memory accesses
to the REQUEST QUEUE constitute a small fraction of the total page faults when
the BDD size exceeds the main memory capacity.

3. Accesses to the UNIQUE TABLE for variable x — accesses to operand BDDs dur-
ing the APPLY phase and associative lookups that result in hash chain traversal
during the REDUCE phase — are relatively random; therefore, a large number of
pages assigned to the variable x is touched. The number of pages touched during
accesses to the UNIQUE TABLE for the variable x is significantly less than the
number in the absence of the memory management strategy. Nevertheless, even
in the presence of the custom memory management, a large fraction of the total
pages assigned to a variable determines the working memory set size. For very
large BDDs that exceed the main memory capacity, the capacity page misses
(page misses occurring because only a fraction of memory allocated to BDD

- nodes/REQUESTS can fit in the main memory) occur as computation progresses
from one variable to another in the top-down APPLY phase and the bottom-up
REDUCE phase.

The random accesses to the UNIQUE TABLE BDD nodes for each variable and accesses
to each UNIQUE TABLE on a variable-by-variable basis result in the major fraction of
the total page faults when the BDD size exceeds the main memory capacity. Therefore,
for a very large BDD, the number of page faults is dominated by the memory accesses to
the set of large UNIQUE TABLES. Superscalarity and pipelining attempt to amortize the
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cost of page faults for accessing UNIQUE TABLE pages for a specific variable among
several BDD operations. These concepts are detailed in the next two sections.

. 3.5 Superscalarity

In the previous section we established that, for BDDs that exceed the main memory
capacity, the performance is determined by the number of page faults, a major frac-
tion of which is caused by accesses to the UNIQUE TABLE BDD nodes. Since the
page faults to access the UNIQUE TABLE BDD nodes result from accesses to memory
segments on variable-by-variable basis, the elapsed time for a BDD manipulation ap-
plication depends on the number of passes of the APPLY and the REDUCE phases. To
improve the performance of the breadth-first BDD algorithm, it is important to min-
imize the number of passes of the APPLY and REDUCE phases. The goal is realized
by sharing a single pass of the APPLY and the REDUCE phases among several oper-
ations. The insight to perform several BDD operations simultaneously is obtained by
viewing multiple outstanding REQUESTSs during the APPLY phase as several BDD op-
erations. The processing of several BDD operations simultaneously is an inherent part
of the breadth-first paradigm; it does not have a natural counterpart in the depth-first
technique.

In the context of breadth-first BDD algorithms, superscalarity refers to the ability
to issue multiple, independent BDD operations simultaneously. Two BDD operations
are said to be independent if their operands are reduced ordered BDDs, i.e., the nodes
for the operand BDDs are in the UNIQUE TABLE. Intuitively speaking, a given set of
operations are independent if none of the operations depend on the result of some other
operation in the set.

This concept has been illustrated in Figure 3.13. In this example, we would like
to compute the results of three “AND” operations given as, k; = f;- gi, i=1,2,3. In
the conventional method, the results can be individually computed as three separate
operations. Using superscalarity, we issue REQUESTs for all three BDD operations
simultaneously. Next, at each index during the APPLY and REDUCE phases, the RE-
QUESTs generated from all three initial REQUESTS are processed. Hence we need only
one pass of APPLY and REDUCE phase.

Performing multiple, independent BDD operations concurrently during the single
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Performing pairwise "AND"

hi = figi

Figure 3.13 Multiple independent BDD operations using superscalarity.

APPLY and REDUCE phase amortizes the cost of page faults for accessing the UNIQUE
TABLE entries. By issuing several independent operations simultaneously, the num-
ber of REQUEST nodes in the REQUEST QUEUE increases. However, the number of
page faults for accessing UNIQUE TABLE nodes for a specific index does not increase
proportionately; it increases at a lesser rate. Empirically, we observe a significant per-
formance enhancement in the BDD algorithms by exploiting superscalarity.

Another major advantage of superscalarity is complete inter-operation caching of in-
termediate BDD results. A breadth-first algorithm for a single BDD operation provides
complete caching of intermediate results during the operation by virtue of the REQUEST
QUEUE. However, it is not possible to have inter-operation caching in the breadth-first
algorithm without expending additional memory resources to store the cached resuits.
It also requires additional computing resource to manage the complex caching scheme
since the contents of a REQUEST node are destroyéd after it is processed in the AP-
PLY phase and the correct result is unavailable until the REQUEST is processed in the
REDUCE phase. Superscalarity provides complete inter-operation caching for the set
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of independent BDD operations that are issued simultaneously, thereby enhancing the
performance of the breadth-first algorithm even further.

Superscalarity has few limitations. It is not guaranteed to reduce the number of page
" faults, in fact, it is possible that the number of page faults may actually increase. For
example, consider performing n independent BDD operations simultaneously for which
the number of memory pages required exceed the number of page frames in the main
memory. If however, each of the n BDD operations were performed independently
one after another, it may be possible to complete each of them such that maximum
number of péges accessed during any one BDD operation does not exceed the number
of page frames in the main memory. Assuming that same page is accessed during
both the APPLY and the REDUCE phases, it is possible under some page replacement
strategy to have twice as many page faults for n independent BDD operations performed
simultaneously as » operations performed one by one.

We have assumed that most page faults during the APPLY and the REDUCE phase
occur due to accesses to the BDD nodes in the set of UNIQUE TABLEs and only a
small fraction of total page faults occur due to accesses to REQUESTSs in the REQUEST
QUEUEs. Due to superscalarity the size of the REQUEST QUEUE gets larger and the
page fault balance may shift towards accesses to REQUESTS in the REQUEST QUEUEs.
This shift may slow down or limit gains due to superscalarity as the number of opera-
tions that are performed simultaneously is increased.

How much gain can we expect from superscalarity? The answer depends on several
factors. The most important is the number of independent operations available. How-
ever, several other interacting factors such as advantage due to inter-operation caching
and disadvantage due to potential increase in working memory make it difficult to quan-
tify or predict the potential gains. Except for some pathological cases, we have seen
consistent performance improvement due to superscalarity.

3.6 Pipelining

For a very large BDD that exceeds the main memory capacity, the dominant cause of
page faults, when using the breadth-first algorithm, is the sequential access to each set
of UNIQUE TABLE BDD nodes. The heuristic to amortize the page faults, shares a
single pass of the APPLY and the REDUCE phases among multiple BDD operations.
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If multiple BDD operations are independent, the superscalarity enables us to perform
them simultaneously in a single pass of the APPLY and the REDUCE phases. However,
what if BDD operations are not independent? Is it still possible to extend the breadth-
" first technique suitably to complete several BDD operations in a single pass of the
APPLY and the REDUCE phases? To answer these questions, let us first take a look at
some of the features of the breadth-first algorithm.

1. Unreduced BDDs as operands: An unreduced BDD has some isomorphic and
some redundant nodes. However, they can be used as an operarid in a compu-
tation without any problem. The only outcome is that the resulting BDD is also
unreduced. Therefore, the unreduced BDDs obtained at the end of the APPLY
phase can be operand BDDs of another Boolean operation.

Consider two unreduced BDDs R; and R, and an operation op which depends
on the result of R; and R,. The question is, do we need to wait until the end
of APPLY phase (when R; and R; are created)? How soon can we start another
Boolean operation op that uses the unreduced BDDs for R; and R3, which are
still under construction? This is answered by the next point.

2. Under what conditions can we use an unreduced node: Suppose R; and R are
the unreduced BDDs for functions F and G respectively. Let R be a REQUEST
that implements the function (F op G) in the unreduced BDD H. Let x be the top
variable of the REQUEST R. To process the node R in the unreduced BDD R, we
only need (Fz,G;) and (Fx, G;x) — cofactors of F and G with respect to x. Since
the top variable for the node R is x, the index of each of the operands F and G is

greater than or equal to the index of x. If the index of an operand, say F,is equal
to the index of x, then the right and the left cofactors of F with respect to x is equal
to the THEN and the ELSE BDDs of F respectively; since nodes for the variable
x for the operand unreduced BDD R; is already constructed, the THEN and the
ELSE BDDs of F are already known. If the index of F exceeds the index of x,
then the cofactors of F with respect to x equal F itself. In either case, cofactors of
F are known before processing a REQUEST R that uses F as one of the operands.
Therefore, the APPLY phase for a variable x in constructing the unreduced BDD
R can proceed as soon as the APPLY phases for the variable x in constructing the
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unreduced BDDs R; and R; are complete. However, we need to process requests
corresponding to R; and R, before processing those corresponding to R, i.e., we
need to keep a partial order in the processing of the REQUESTSs at each index
during APPLY and REDUCE phase.

Based on these observations, we state the following theorem.

Theorem 1 Let Fy,Gy,F>,G; be regular BDDs. Given REQUEST s R; = (op1, A,
G1), Rz = (op2, F», G2) and R = (op, R1, Rz), the breadth-first algorithm with the
modified APPLY and REDUCE phases, which processes the REQUESTS in level-by-level
order while maintaining the partial order implied by the dependencies of REQUESTS
for that index, correctly computes the reduced BDDs corresponding to the REQUESTS
Ry, Ry, and R.

Proof: The proof is based on the points discussed above. First, there is a one-to-one
correspondence between processed requests and the nodes in the unreduced BDD cre-
ated during the APPLY phase. Second, operand BDDs of a breadth-first BDD algorithm
can be unreduced. Third, in constructing unreduced BDDs R; and R», at the end of the
APPLY phase for variable x with index i, we have cofactors of each BDD node with
index greater than or equal to i with respect to variable x. Fourth, in constructing the
unreduced BDD R, processing a REQUEST Q = (op, @}, Q-) for index i during the AP-
PLY phase, we only need cofactors of operands Q) and Q> with respect to x. Hence,
nodes in the unreduced BDD R for index i can be constructed after constructing the
nodes in the unreduced BDDs R; and R,. This can be easily extended to the case with
multiple dependencies. ]

In the context of breadth-first BDD algorithms, pipelining refers to the ability to issue
multiple, dependent BDD operations simultaneously. A BDD operation op; is said to
be dependent on another BDD operation op, if the result BDD of op; is an operand
of op;. The pipelining algorithm issues several dependent operations simultaneously
using unprocessed requests to represent operands for the dependent operations. The
result BDDs for these requests are obtained by a single APPLY and REDUCE phase that
amortizes the cost of page faults for accessing the UNIQUE TABLE entries.

Consider the example shown in Figure 3.14. In this case, we would like to compute
the result of the following Boolean equation: y =e- (f - g). Conventionally, this is done
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Figure 3.14 Multiple dependent BDD operations using pipelining.




58 CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

in two steps: compute x = f - g in the first step and then compute y = x-e. Using the
pipelining approach, we issue REQUESTSs for both the operations simultaneously. Then
we perform a single pass of the APPLY and REDUCE phases. During these phases, at
- any given level, we process all the REQUESTs generated from the original REQUEST
corresponding to the operation x = f - g, before processing any REQUEST generated
from the operation y = x- . In other words, for each index, we maintain a partial order
while processing the outstanding REQUESTs. However, since partial order is on each
index, we need to perform just one pass of APPLY and one pass of REDUCE.

The concept of pipelining improves the performance of the breadth-first algorithm
by amortizing the cost of page faults across dependent BDD operations. However,
pipelining results in operations on unreduced BDDs. Hence, there is an increase in the
size of the working memory required and a corresponding increase in the amount of
computation. If the increase in the working memory is large, the number of page faults
will increase. The quantify the dependency amongst BDD operations by pipedepth. A
pipedepth value of k indicates a dependency chain of length k amongst operations.

Pipelining will improve the amount of caching, since the intermediate BDDs in the
dependent operation can use the cached result of all operations on which the current
REQUEST depends directly or indirectly. However, it introduces the penalty of perform-
ing associative lookups in several REQUEST QUEUES, which could offset the potential
gain due to improved caching.

3.6.1 Application

Superscalarity and pipelining find their applications whenever a set of dependent and/or
independent BDD operations needs to be performed. In this section we describe two
such applications. _

Creating Output BDDs of a Circuit: In many logic synthesis and verification appli-
cations we need to compute the BDDs for the outputs of a circuit. Given a network
representing a circuit, we try to compute the function of the outputs in terms of the
primary inputs. This requires computing the functions of the nodes of network starting
from the primary inputs to the primary outputs. Pipelining and superscalarity can be
employed to compute the output BDDs in several ways. Our algorithm is as follows:

1. Decompose the given network into two input NAND nodes.
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2. Levelize the nodes of the new network.

3. Create the BDDs for nodes belonging to a particular level concurrently (using
superscalarity), or

4. Create the BDDs for nodes belonging to two or more levels using pipelining.

The motivation behind decomposing the network into NAND nodes is to obtain as much
superscalarity as possible. In Section 3.9 we provide experimental results indicating the
effect of using superscalarity and pipelining while creating the output BDDs.

Multiway Operations: Applications of multiway operations arise when we want to
perform some BDD operation on a set of functions. For example, suppose {f; : B —
B,i = 1,---,m} represent a set of m Boolean functions over n variables. Suppose we
want to compute the BDD for function f given as f = IT=™f;. We could compute this
result by iteratively taking the product, at each step creating an intermediate result for
the function g¢ = gk—1 A fi, where gy = fi. In this case we make (m — 1) passes of
.the APPLY and REDUCE phases each involving access to UNIQUE TABLEs and RE-
QUEST QUEUEs. Using superscalarity and pipelining we can improve the performance
significantly. Our algorithm is given below:

1. From the given set of arguments we make a binary tree where leaves represent the
BDD arguments and the intermediate nodes represent the intermediate product
BDDs.

2. Create the BDDs for all the nodes belonging to a particular level using super-
scalarity.

3. Using pipelining and superscalarity, we can process all the nodes belonging to
two or more levels simultaneously.

This approach requires [logk] passes of APPLY and REDUCE phases. In Section 3.9.5
we present the performance comparison between computing a MULTIWAY AND itera-
tively and computing it employing superscalarity and pipelining.
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df_substitute(F)
if (terminal case(F)) return result;
if (computed table has entry(F)) return result;
let x be the top variable of F;
if (x is to be substituted){
g = function substituting x ;
}

elseg=x;

T = df_substitute(F;);
E = df_substitute(Fy);
return df_ite(g, T, E);

Figure 3.15 Depth-first algorithm for SUBSTITUTION.

3.7 Optimized BDD Algorithms

" We have incorporated iterative breadth-first technique, superscalarity, and pipelining
into a comprehensive set of high performance BDD algorithms for Boolean opera-
tions such as AND, OR, XOR, NAND, NOR, XNOR, ITE, COFACTOR, RESTRIC-
TION, COMPOSITION, SUBSTITUTION, EXISTENTIAL QUANTIFICATION, UNIVER-
SAL QUANTIFICATION, RELATIONAL PRODUCT, and VARIABLE SWAPPING. In the
following sections we describe a few of these algorithms. Each of these new algo-
rithms raises specific issues that must be addressed to obtain a high performance BDD
package. To the best of our knowledge, this is the first effort in this direction. In
Section 3.9.3, we demonstrate the performance of our algorithms.

3.7.1 Substitute

In this operation a set of variables in the argument BDD is simultaneously substituted
by a set of functions. Let F(x,...,x,) be a Boolean function. Without loss of gen-
erality, suppose variables x,x2,...,x in function F are to be substituted by functions
Gi(x1y..-yXn),i = 1,..,k. Then the result of the substitution operation is defined by the
function H(x1,X2,..yXn) = F(G1(X15.-+s%5)y G2(X1y ++esXn) s o0y Gk(X15 o3 Xn)s Xt 15 o3 Xn) -
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The conventional depth-first algorithm for SUBSTITUTION is given in Figure 3.15.
The algorithm recursively computes the BDD T and E that result from SUBSTITU-
TION operation on each of THEN and ELSE cofactors. However, unlike a simple BDD
" operation such as AND, each recursive call to SUBSTITUTION computes an ITE oper-
ation for BDDs. The need to perform an ITE operation on the results of the cofactors
makes the SUBSTITUTION operation computationally more complex than other BDD
operations. If the BDD size exceeds the main memory capacity, the SUBSTITUTION
operation results in a large number of page faults.

The important step of the breadth-first algorithm for performing SUBSTITUTION is
shown in Figure 3.16. At the end of the APPLY phase, the unreduced BDD constructed
is structurally identical to the BDD for the function F. While processing a REQUEST
during the REDUCE phase for an index i, we update its THEN and ELSE BDDs to
T and E, where T and E BDDs are results of SUBSTITUTION on THEN and ELSE
respectively. Next, we perform ITE operations. The result of the ITE operation is the
BDD obtained by performing SUBSTITUTION for the REQUEST under consideration.

Note that it is not necessary to perform ITE operations one at a time for each of
the REQUESTs at the given level. ‘The concept of superscalarity in the breadth-first
paradigm enables us to perform multiple ITE operations for all the REQUESTS for a
specific index simultaneously during the REDUCE phase for that index. Since a set of
- ITE operations are computed for each index, the maximum number of the APPLY and
the REDUCE passes are bounded by the number of variables. Employing superscalarity
on the ITE operations significantly improves the overall performance.

3.7.2 Existential Quantification

EXISTENTIAL QUANTIFICATION of a function f with respect to a variable x is given
by 3.f = fx+ fx. With respect to a set of variables X = {x1,X2,...X,}, this is given as,
Ixf=3x, (ax,._l tee (3x|f))-

The conventional depth-first algorithm for EXISTENTIAL QUANTIFICATION (given
in Figure 3.17) is quite similar to the depth-first recursive algorithm for other Boolean
operations such as AND OR, and XOR. However, it is different from other basic depth-
first algorithms in two aspects, both of which are related to the quantified variables.
First, during the recursion, if the current variable x is to be quantified from the func-
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bf_substitute_reduce(index)
x is variable with index “index”;
if (x is to be substituted){

elseg=x;
/* process each request queue */
while (request_queuefindex] not empty){

-REQUEST (F, G) = unprocessed request from REQUEST QUEUE[index];

Perform superscalar ITE ;

g = function substituting x ;

I* process each request */

Update THEN and ELSE cofactors;
if (THEN = ELSE ) forward REQUEST to THEN ;
else {

create an ITE REQUEST (g, T, E);

forward REQUEST to the ITE REQUEST;

Update the forwarding information of REQUESTS;

Figure 3.16 Breadth-first substitute operation algorithm - REDUCE phase.
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df_exist(F)
if (terminal case(F)) return result;
if (computed table has entry(F)) return result;
let x be the top variable of F;
T = df_exist(F;);
if (x is to be quantified and T == 1) return 1;
E = df_exist(Fy);
if (x is to be quantified) return df_or(T, E);
else result = find or add in the unique table (x, T, E);
return result;

Figure 3.17 Depth-first algorithm for existential quantification.

tion, we compute OR of the result of quantification on two cofactors. Since the OR
is performed for each REQUEST for all the quantified variables, the QUANTIFICATION
operation is usually more expensive than other basic Boolean operations. Second, if a
variable is quantified, the recursion can possibly terminate early. For a quantified vari-
able, if the result of one of the cofactors is 1, it is no longer necessary to recursively

- quantify the other cofactor, since in this case the BDD representing disjunction of quan-
tified cofactors is available immediately. Therefore, it is possible to significantly prune
the recursion for the QUANTIFICATION algorithm.

A naive breadth-first algorithm for QUANTIFICATION is as follows. During APPLY
phase, both the cofactors of a REQUEST are processed. At the end of the APPLY phase,
the unreduced BDD created is structurally identical to the BDD for the function f.
While processing a REQUEST during the REDUCE phase for an index i, we update then
and else cofactors (given by T and E). Next, if variable with index i is quantified, we
compute the BDD for the OR of T and E. If the variable is not quantified, the REQUEST
under consideration is the desired BDD. Superscalarity is employed in performing the
OR operations simultaneously for the quantified variables. However, since we process
both the cofactors during the APPLY phase, the pruning of recursion for the depth-
first QUANTIFICATION algorithm is not available for this naive breadth-first algorithm.
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The savings in computation due to pruning can be quite significant, and hence the
naive breadth-first QUANTIFICATION algorithm is expected to perform poorly against
the conventional depth-first algorithm, especially for BDDs that fit within the main

- memory.

To retain the advantage of the breadth-first algorithm while exploiting the prun-
ing feature of the depth-first QUANTIFICATION algorithm, we propose a new mixed
breadth- and depth-first approach. The essence of the new algorithm is to follow the
depth-first technique for the quantified variables and breadth-first technique for the un-
quantified variables. For REQUESTSs belonging to un-quantified variables, we process
both the cofactors, i.e., we process a REQUEST by issuing, in general, two new RE-
QUESTs. However, for each quantified variable, we process each REQUEST as in the
case of the depth-first algorithm, which means only one new REQUEST is issued —
a REQUEST that corresponds to one of the quantified cofactors. The result BDD for
each quantified cofactor REQUEST is obtained simultaneously (using superscalarity)
by recursively using the new breadth-first QUANTIFICATION algorithm. If the resulting

.. quantified cofactor is different from unity, a new REQUEST is issued to compute the

other quantified cofactor. This avoids redundant computation if the result is a tautol-
ogy. Once the result of QUANTIFICATION is available for both cofactors, we employ
superscalarity to compute the set of multiple independent OR operations for the quan-
tified variables. Note that processing of one cofactor at a time for quantified variable
does not amount to path-by-path traversal of BDD as in the depth-first technique. Since
we process the cofactors of all the REQUESTs at any index, we essentially are perform-
ing - multi-path traversal. The idea is to retain the locality of access of breadth-first
manipulation while leveraging the quantification efficiency of depth-first scheme.

The RELATIONAL PRODUCT of functions f and g with respect to a set of variables ¥
is the QUANTIFICATION of these variables from the product of f and g. Therefore the
RELATIONAL PRODUCT algorithm works along the same lines.

3.7.3 Compose

- The COMPOSE operation is a special case of SUBSTITUTION where in a function F,
variable y is substituted by another function. Hence COMPOSE can also be optimized
along the lines of the SUBSTITUTION algorithm. In a function F with top variable x,
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to substitute a variable y by a function G, we have three possibilities depending on the
values of yider (index of variable y) and x;4., (index of variable x).

1. Yindex = Xindex: In this case we compute ITE(G, F%, Fz).

2. Yindex < Xindex: In this case the function F is independent of the variable y and
hence no computation need to be performed.

3. Yindex > Xindex: In this case we need to compute the results of COMPOSE(F;,y, Gx)
and COMPOSE(F;, y, Gz). Unlike the SUBSTITUTION operation, we need to com-
pute ITE operations only for one variable that is substituted, which makes COM-
POSE computationally less complex than SUBSTITUTION. It exploits super-
scalarity by simultaneously computing multiple independent ITE operations for
the substituted variable.

3.7.4 Swapping Variables

Given the BDD for a Boolean function F(X1,X2, -+, Xiy ---sXjy ---s¥n), SWAP VARS func-
tion obtains a new Boolean function G(X1,X2y +ry Xjy oeey Xiy «eyXpn), i.€., the variables x;
and x; are swapped in function F. An optimized depth-first algorithm exists for SWAP
VARS. which is a special case of the SUBSTITUTION operation. However, the re-
cursive depth-first algorithm for SWAP VARS is conceptually complex because it calls
several different recursive functions. The depth-first algorithm is shown in Figures 3.18
and 3.19. Without loss of generality, the algorithm assumes that index of x is less than
that of y. The recursion considers the following three cases: i) If the index of the top
variable of F exceeds the index of x, then F does not contain x. Hence, compositions
of F with y =0 and y = 1, give the left and the right cofactors of the result BDD with
the top variable x. ii) If the index of the top variable of F is less than the index of x,
then we recursively call the SWAP VARS routine for THEN and ELSE cofactors. iii) If
the index of the top variable of F equals the index of x, then we call another auxiliary
recursive routine that computes the BDDs for the expressions y(Fxly=1) +¥(Fzly=1) and
¥(Fxly=0) + 7(Fxly=0) that give the left and the right cofactors of the result BDD with
the top variable x.

The design of the breadth-first algorithm from this relatively complex depth-first
algorithm proceeds by using the following principles: i) each different type of recursion
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SwapVars(f, x, Y{
if (f == Constant) return f;
if (CacheLookUp(f,x,y, result)) return result;
if (findex > Xindex){
1 = Compose (f£,y,0);
1, = Compose (f:y’ 1);
result = FindOrAddinUniqueTable(xindex, 11,12);
}  elseif (findex < Xindex){
1 = SwapVars(fihen,x,);
1, = SwapVars(feise, x,);
result = FindOrAddinUniqueTable(findex, 11,%2);
} else{
1 = SwapVarsAuX(finen, feise,¥:0);
n= SwapVarsAux(f,,,,,,, Setses Y l);
result = FindOrAddinUniqueTable(Xindex; 1,22);

Figure 3.18 Depth-first algorithm for swapping variables.

— (COMPOSITION, ITE as part of COMPOSITION, SWAPVARS, SWAPVARSAUX with
y=1and SWAPVARSAUX with y = 0) - is performed using a separate set of REQUEST
QUEUEs; therefore, a total of five separate set of REQUEST QUEUES are maintained, ii)
a depth-first recursive call is replaced by the processing of a REQUEST in the breadth-
first algorithm.

3.8 Implementation Details
3.8.1 Data Structure
The important issues in designing the BDD node data structure are the following:

Compact Representation The size of the BDD node should be as small as possible,
because most of the memory is used by BDD nodes. Further we need to effi-
ciently use the memory so as to fit as many nodes as possible in a given level of
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SwapVarsAux(fi, f2,h, flag){
if (flinda == hmda){
if (flag == 1) fi = fipen 5
else fi = fi,..

if (fzindex == hmdex){
if (flag == 1) f2 = fopn
else L= fz',“

}

if (fi == f){
if (flag == 1) return Compose(fi,h,1);
else return Compose( fi,4,0);

}

if (flyg == hindex) AND (f2,05. == hindex){
result = FindOrAddinUniqueTable(hingex, f1, f2);
return result;

if (CacheLookUp(swapVars, fi, f2, result)) return result;
minid = TopVar(fi, £2);

COfaCtor(fl ) minld, S, le);

COfaCtor(fzaminldr f21 1f22);

; = SwapVarsAux(fiy, f21, b, flag);

1, = SwapVarsAux(fi2, f22,h, flag);

result = FindOrAddinUniqueTable(minld, 7,, £2);
Cachelnsert(swapVars, fi, f2, result);

Figure 3.19 Auxiliary routine for SWAP VARS.
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" struct Bdd {
int bddindex; I* 2 Bytes */
struct BddNode *bddNode; /* 4 Bytes */
}
struct BddNode {
struct BddNode *next; /I* 4 Bytes */
struct Bdd thenBdd; I* 6 Bytes */
struct Bdd elseBdd,; I* 6 Bytes */
}

Figure 3.20 BDD and BDD node data structure.

the memory system hierarchy.

Variable Index Determination As mentioned in the section 3.2, the variable index
determination is crucial to regular memory accesses. In particular, we should
avoid fetching the BDD from memory to determine its index.

We propose the BDD data structure given in Figure 3.20. We represent a BDD using
{variable index, BDD node pointer} pair. Unlike the conventional BDD data structure
that stores its variable index in the BDD node, the new BDD data structure stores the
variable indices of its THEN and ELSE BDD nodes. The new BDD node data structure
is very compact: it requires 16 Bytes and 28 Bytes on 32-bit and 64-bit architectures
respectively, which is the same as the memory required to represent the conventional
BDD node structure. A customized memory allocator is used to align the BDD nodes
to quad-word boundaries so that a total of 12 bits (last four bits of THEN, ELSE, and
NEXT pointers) can be used to tag important data such as complement flags, marking
flags, and the reference count. The tag bits are assigned so as to minimize the amount
of computational overhead.
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3.8.2 Memory Management

We use a customized memory manager to allocate and free BDD nodes in order to
_ ensure locality of reference. We associate a node manager with each variable index.
A BDD node is allocated by the node manager associated with the index of the node.
The node manager maintains a free list of BDD nodes that belong to the same index.
Memory blocks are allocated to a node manager in such a way that all the BDD nodes
in the free list are aligned on a quad-word boundary. In addition to providing 12 free
bits as explained above, the quad-word alignment helps improve the cache performance
as it maps a BDD node to a single cache line.

3.8.3 Miscellaneous Details

Overloading of REQUEST data structure: A BDD node is obtained from a REQUEST
node that is not redundant. To overload the use of the REQUEST data structure with the
BDD node data structure [AC94], the REQUEST data structure is limited to 16 bytes.
Before the APPLY phase, each REQUEST represents operand BDDs, each of which
requires 6 bytes. Therefore, we allow only two operand operations. Three operand
operations such as ITE(f,g,h) are simulated by using indirect addressing and two
request nodes.

Hashing function: Since hash tables are used extensively in the breadth-first BDD
manipulation, it is important to optimize their performance. The analysis of source
code revealed that about 15% of the total CPU time is spent in computing the unsigned
remainder when using a prime number hashing function. A power of two hashing func-
tion reduces this time drastically without degrading the hash table access performance.

3.8.4 Repacking After Garbage Collection

Sometimes garbage collection results in a large number of free nodes. Since the mem-
ory pages containing the nodes are associated with a particular variable, it is possible
that after garbage collection, a large number of pages collectively contain small number
of nodes. This has the following disadvantages:

1. Because the idle pages cannot be used to allocate nodes for other variables, the
memory usage is increased.
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repack_after_gc{
for (index = numVariables; index > 0; index——){

if the current index does not need repacking{
update the cofactors of the nodes, if necessary;
continue;

}

N; = number of pages allocated for this index;

N, = number of pages required for this index;

-for (page = 1 through N2){

update the cofactors of the nodes, if necessary;

}

for (page = N, + 1 through N ){
update the cofactors of the nodes, if necessary;
copy the contents of the nodes on pages < N;;

}
free the pages from N>+ 1 through N;.

Figure 3.21 Repacking after garbage collection.

2. Since the free nodes cannot be used by another variable, it could possibly lead to
memory allocation problems for some other variables.

3. Since a small number of nodes are scattered on a large number of pages, it leads
to non-local memory access during the UNIQUE TABLE traversal.

To overcome this problem, we adopt the strategy of repacking the nodes after every
garbage collection which results in a large number of dead nodes. Essentially, we
perform a bottom-up traversal of the BDD; at each index after deciding on the number
of pages required, we copy the node contents from extra pages to make it as compact
as possible. The idle pages can then be recycled to be used by other variables. The
algorithm is shown in Figure 3.21. '

Notice that we need to perform just one bottom-up pass of BDD nodes and for each
_page, the nodes are touched in consecutive memory locations. Hence computational
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overhead of this algorithm is very low and due to excellent locality of access in the
algorithm, it leads to very small run-time overhead.

~ 3.8.5 Node Reallocation for Cache Locality

Before creating a new BDD node during the REDUCE phase of each operation, we
need to look-up in the UNIQUE TABLE for its existence. This leads to a traversal of the
collision chain in the table, if one exists. Often this chain contains nodes belonging to
different pages and most likely different cache lines. Hence during the chain traversal,

we incur a large number of cache misses and possibly page faults as well.

We propose a strategy where nodes are reallocated in the memory such that on an
average, the collision chain traversal does not result in more than one cache miss. This
strategy has no memory overhead (the reallocation is done in-place) and requires only
two passes of the whole BDD. The first pass is done on a page-by-page basis, leading to
local memory accesses. The second pass requires tracing the next pointers of the nodes
which could be on multiple pages. However, the resulting improvement in performance
due to cache locality far offsets this computational cost. The algorithm is shown in
Figure 3.22 and the node layout before and after reallocation is shown in Figure 3.23.
An important aspect of this technique is that it is useful for both depth-first and breadth-
first traversal based manipulations. In the current work we have not implemented this
algorithm.

3.9 Experimental Results

The algorithms described in this chapter were implemented in a comprehensive BDD
package — CAL. The architecture and some implementation details of this package are
briefly described in Appendix A. In this section we demonstrate the performance of our
package. For experimental purposes, we integrated our package within SIS [SSL*92],
and compared the performance against two depth-first manipulation based packages —
Long’s BDD package [Lon93] and Colorado decision diagram package [Som97].
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reallocate_nodes{
I* First pass, get the new address */
for (index = numVariables; index > 0; index——){
update the cofactors of the nodes;
find the collision chain length for each bin;
initialize the pointer for each bin;
traverse the nodes on page-by-page basis {
put the new address of the node in the NEXT pointer;
} -
}
I* Second pass, copy the nodes on to new addresses */
for (index = numVariables; index > 0; index——){
foreach page corresponding to the index{
while there are still nodes to be updated {
tmp = content of next pointer of node;
store the content of the node in the next pointer;
node = next pointer of the new location (tmp);

Figure 3.22 Reallocating nodes to achieve cache locality.

Page #

ORCRORO,

(a) Before reallocation (b) After reallocation

Figure 3.23 Node allocation before and after fixing collision chains.
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3.9.1 Experimental Setup

All our experiments were performed on a DEC5400 with 128KB processor cache, 64
_ MB main memory and 1GB of disk storage. An alpha version (0.1) of the CAL package
was used for the experiments presented here. The latest version for CAL (2.0), is much
more efficient, both computation and memory consumption wise. However, due to lack
of time all the experiments with the latest CAL package could not be reperformed.
Results in Section 3.9.8 use version 2.0 of CAL.

In addition to using standard ISCAS and MCNC benchmark examples for the set of
experiments, we use a series of sub-networks of the MCNC benchmark C6288 in order
to systematically analyze the performance of our algorithms as BDD size increases.
These artificially created examples have the property that the number of BDD nodes
needed to represent the BDDs corresponding to the outputs are roughly multiples of one
million. This enabled us to illustrate the gradual change in various performance metrics
with the change in example size. These examples are denoted as “C6288_iM.blif”,
implying that the total number of BDD nodes in the manager after computing the BDDs
for the outputs of C6288_iM.blif is i millions.

We use “dfs-ordering” in SIS to order the variables. The number of BDD nodes
needed to represent a particular circuit may be significantly different from those re-
ported in the literature (e.g. [AC94]) due to a different variable ordering. However,
this issue is orthogonal to demonstrating the performance of our package for a given
variable ordering. .

The following set of experiments were carried out to demonstrate the performance
of our BDD package:

1. For each of the benchmark examples, we create the BDDs for the outputs of the
circuit. The number of nodes in the BDDs range from a few thousands to tens of
millions.

2. We compare the performance of various BDD operations in our package with
those in Long’s package. We use the output BDDs as argument BDDs in our
experiments. For instance, to compare the performance of the AND operation, we
iteratively select random pairs from the output BDDs and compute the AND of
the pair. Similarly, to compare the performance of QUANTIFICATION operation,
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we randomly select one of the output BDDs and a set of variables to be quantified.
The same functions and variables are selected for both packages.

. To estimate the performance improvements from superscalarity, we compare the

time taken in performing independent BDD operations with and without employ-
ing superscalarity.

. Similarly, we compare the time taken in performing dependent BDD operations

with and without employing pipelining to assess the gains from pipelined opera-
tions.

. We also estimate the memory overhead in breadth-first manipulations with in-

creasing value of pipedepth.

. The improvement in memory usage due to repacking after garbage collection is

shown.

. Finally, we present few results from the latest CAL package (version 2.0) by com-

paring it against Long’s package and Colorado decision diagram package [Som97].

3.9.2 Creating Output BDDs for Circuits

Small and Medium Size Examples

From Table 3.1, We observe that our package has competitive performance for most
of the examples Long’s BDD package, and we achieve a performance improvement
upto a factor of 1.2 on some examples. However, for examples s15850, s35932, and
$35854 our package performs significantly worse than Long’s package. Upon analysis
we found that these examples share one property, which is that even though BDD sizes
were small, all three of them have a large number of primary inputs. This results in
small number of BDD nodes for each variable. In this case the penalty of traversing the
REQUEST QUEUE on a level by level basis becomes dominant and results in increased
computation time.

Large Size Examples

In Table 3.2 we present the performance for output BDD creation for large examples.
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CPU Time (in secs) | Ratio
Example | # Nodes | Long’s CAL
C1355 139998 | 15.30 13.57 | 1.13
C1908 56842 5.57 427 1.30
C432 193671 | 21.66 1729 | 1.25
C499 109685 | 12.78 1075 | 1.19
C5315 111798 | 10.39 11.13| 0.93
C880 38721 3.38 3.02| 1.12
s1423 56178 494 399 | 1.24
$15850 188035 | 19.36 33.09| 0.59
$35932 25557 3.13 2756 | 0.11
s38584 93055 | 10.10 3099 | 0.33

Table 3.1 Performance comparison for creating output BDDs with Long’s BDD package.

A: Long’s BDD package

B: Our package.
CPU Time Elapsed Time # Page Faults

| Example | # Nodes Long’sJ_ CAL | Long’s | CAL | Long’s | CAL

[C6288_1M | 1,001,855 | 112] 98] 127] 110 0 0
C6288 2M | 2,066,878 273 | 215 403 306 0 0
C6288.3M | 3,123,327 491 | 347 | 21281 | 1218 | 502059 | 17800
C6288_4M | 4,273,510 820 | 490 [ 106110 | 2433 | 2661738 | 42509
C6288_5M | 5,337,005 to. | 631 - | 4140 - | 80621
C6288.6M | 6,381,496 -| 804 -1 6295 - | 126977
C6288_7TM | 7,489,064 -1 981 - | 8454 — | 168794
C6288 9M | 9,193,222 - | 1147 — | 10864 - | 213976

Table 3.2 Performance comparison for creating output BDDs: Long’s BDD package (A) vs.
our package (B).

t.o:Process killed after 21.5 hours of elapsed time.
—: Not tried since.
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Performance Comparison between Long's Package and CAL
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Figure 3.24 Variation of elapsed time with example size.

When the number of BDD nodes becomes too large to fit in the main memory, the
number of page faults and the elapsed time increase drastically for Long’s package. In
Figures 3.24 and 3.25, we show the number of page faults and the elapsed time as a
function of example size. For Long’s package, an increase in the BDD size beyond the
main memory size results in a sharp increase in the number of page faults and explains
excessive elapsed time. This is in contrast to the page fault behavior of our package
which increases linearly with an increase in the example size.

Very Large Size Examples

Table 3.3 gives the performance of our package on building very large BDDs for some
benchmark examples. It is seen that BDDs with more than 23 million nodes are built
in less than nine hours.

We also made a “black box” comparison with the BFS algorithm (developed at
NEC) [AC94] on SUN Sparc2 workstation with 40MB main memory. The results for
creating output BDDs for C6288 sub-circuits are shown in Table 3.4. On average our
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Performance Comparison between Long’s Package and CAL
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Figure 3.25 Variation of number of page faults with example size.

| Example # Nodes Elapsed Time | # Page Faults |

[ C2670 1.04 x 105 | 4 hrs 4 mins 58 secs 357005
C3540 2.76 x 108 25 mins 26603
C6288_12M | 12.80 x 105 | 6 hrs 39 mins 54 secs 719697
38417 23.15 x 106 | 8 hrs 49 mins 26 secs 868442

Table 3.3 Performance comparison for creating output BDDs for some very large examples.
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Elapsed Time
Example | CAL | NEC | Ratio

C6288_1M 85| 298 3.5
C62882M | 180 | 631 35
C62883M | 506 | 2558 5.1
C6288.4M | 931 | 4603 4.9
C6288.5M | 1643 | 6284 38
C6288_6M | 2476 | 13361 54
C6288_7TM | 3386 | 16576 49

Table 3.4 Performance comparison with breadth-first approach by Ashar et al..

approach is faster by a factor of 4.4 for creating output BDDs for C6288 sub-circuits
with the number of BDD nodes ranging from one million to seven million. The perfor-
mance improvement is mainly due to the new implementation technique, and the use
of superscalarity, and pipelining. Note, however, due to slightly different orderings,
the number of BDD riodes were not exactly identical in the two cases which could also
have an impact on the performance.

3.9.3 Performance Comparison For Various BDD Operations

One of our objectives was to provide a comprehensive set of algorithms for all BDD
operations. In the following subsections we compare the performance of some of our
algorithms with those of Long’s package. We provide the comparison with respect to
small and medium sized examples only, since for large examples Long’s package will
have the obvious disadvantage of excessive page faults.

Performance Comparison for Small Size Examples

All examples considered in this category have less than 7000 BDD nodes. This implies
that with a processor cache size of 128KB, it is possible that all the nodes can reside
in the cache if node addresses are properly aligned. Since our node data structure is
quad word aligned, the node address does not overlap across cache lines. Hence we
can expect a significant cache hit rate during BDD manipulations. Long’s package,
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however, does not provide the word alignment and hence it is likely that the BDD
node addresses could overlap across cache lines. We ran experiments to compare the
performances of various BDD operations. We observed a performance ratio of 1.92
- over Long’s BDD package across all small sized examples and four BDD operations.

Performance Comparison for Medium Size Examples

In Table 3.5 we provide the performance comparison between packages for medium
size examples. In this case the number of nodes are of the order of tens of thousands
to hundreds of thousands, and the cache effect seen for the small size examples is not
dominant. However, in most of the cases, we observe a performance improvement over
Long’s package. Overall performance ratio over all medium sized examples and across
four BDD operations given in the tables, is about 1.5. The most significant is the rela-
tive performance on the SUBSTITUTE operation. We observe that on many examples,
Long’s package could not finish the SUBSTITUTION in 10,000 CPU seconds whereas
our package took just about 1000 CPU seconds to complete. This substantiates the sig-
nificant performance enhancement using superscalarity as mentioned in Section 3.7.1.

We notice that for the QUANTIFICATION operation (bdd_exist) our package consis-
tently performs worse than Long’s package by up to a factor of 0.6. Upon investigation
we found that this was caused by book-keeping overhead of the multi-path traversal
approach. It should be mentioned however that for large examples (ones which do not
fit the main memory), all our operations consistently perform better than Long’s pack-
age. Hence, for smaller sized examples we revert back to the depth-first strategy for
QUANTIFICATION.



CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

80

"Spu02as NdD 000 01 Ioe INO awWi], :°0%)

“(g) s8eyoed no sa () s8eyoed g s,3uoT :suonerado
Srepdemg,, pue ¢ uonesynuend) [enua)sIxg,, ¢,SIINASANS,, ¢ PUY,, 10J sajdurexa azis wnipaut uo uostredwiod soueuLIoNsd §°E AqeL

L9ofe [4 0L'0 |¥E'C £9'1 660 | 6T |LI|[6S0] €8T LSIT 1 XA4 Lt
wl|6 Il vo1 | 298 $9°01 780 |TC [8I|6L0861C|8CLI 088D
I 14 L4 LT'T | TS°E iy 60| LE |¥E|T60 | SISE | L6TE S1€SO
YA B 74 ot Tl | 18°¢C S1°6C 800|09 | I¥| 690 (8C6S | 0LOYV 66¥0
or't1 | 1¢e 142 vI'L | L9°6C 11 %22 650 |01 [ 09650 (0866 | 8065 evd
[ARNR:] 6 vI'L | TT8 ve'6 ¥9°0 (2T | ¥1 | ¥9°0 | OE'IT | T9El 80610
| VT'1 | ST £ 8T'1 | 8L¢T roe | TLO|S9 | Ly L0 | SO'E9 | 66'SY SCETD
sieadems ppq o ISIX37ppq ] ajdurexyy
9t | L6 0SE | £t £L°88 89°'C6C | L90| € C |160|8YT |STT X448
I 01 I 680 | 8I'T SO'1 SC1 (8 01 | ¥T1 |6TL | €06 088D
1 I I 69°S | 910 160 6CT|L oI | ¥8'1 | ¢S99 | 10°Cl SIESO
- 6vLYl | — - 12°C001 | "0 LOT | ST |91 |90°1 | ¥9°¥1 | £S°SI 66V0
L6'6 | 9LV ObLy | S1'TI | 68'8ST | S8'¥PIE [ 90T | 8T |61 | €0'T | LL'LT | €T8I (4278
- L9 - - 6929 ‘07 PIrL L 8 |II'T|SOL |08L 80610
- olpt [- |- ¢e's001 | "0 AN EY! SL SI'T | S¥'¥I | 89°91 SSEID
amnsqnsppq _ pueppq ]
v ! | \ av q V av| 94 |V|aV )| 4 \
pasdeig ndo - pasdejy ndd ajdurexy
uonesdO aad




3.9.' EXPERIMENTAL RESULTS 81

# Page Faults CPU Elapsed Ratio
Example | w/0SS | w/SS | w/oSS | w/SS | w/oSS | w/SS

C6288.4M | 485.82 { 436.94 | 2214 | 2452 | 53261 | 63272 0.85
C6288_5M | 630.37 | 602.50 | 5333 | 4648 | 172205 | 137004 | 1.26
C6288.6M | 81591 | 724.99 | 18354 | 7840 | 712868 | 252323 | 2.83
C6288_7TM | 956.89 | 831.30 | 24747 | 10267 | 970192 | 328086 | 2.96

Table 3.6 Performance improvement using superscalarity for creating output BDDs.

3.9.4 Performance Enhancement Due to Superscalarity

We demonstrate the power of superscalarity on three different applications: creating
output BDDs, ARRAY AND, and QUANTIFICATION.

Creating Output BDDs

In section 3.6.1 we described how superscalarity can be exploited for creating output
BDDs. In Table 3.6, we show the performance improvement achieved by employing
superscalarity. We observe that in all the cases, employing superscalarity results in bet-
ter performance. Also in all the cases except C6288_4M, we observe that the number
of page faults decreases with the use of superscalarity and we achieve a better perfor-
mance by a factor of more than 2.

ARRAY AND and QUANTIFICATION

In Table 3.7, we present the results of using superscalarity for ARRAY AND and QUAN-
TIFICATION. In ARRAY AND we are given an array of operand BDD pairs and we
need to compute the AND of each of the operand pair. These operands were randomly
chosen from the set of output BDDs of the circuit. For the quantification operation,
we perform OR operations one at a time during its REDUCE phase (see Section 3.7.2)
to illustrate the effect of superscalarity. For small circuits, superscalarity improves the
performance due to inter-operation caching. For largé circuits, superscalarity improves
the performance due to increased locality of memory accesses, resulting in fewer page
faults. We observe from Table 3.7 that for examples which fit in the main memory,



82 CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

BDD Operation
Array And Quantify
Example CPU Elapsed | # Page Faults CPU Elapsed
in secs in secs in 1000 in secs in secs

w X W X

C1355 134.03 | 119.41 137 123
C6288_1M | 411.35 | 403.90 | 847 | 740
C62882M | 290.55 | 283.41 595 | 581
51423 35.39 | 18.02 37 18 20.63 ] 19.13 31| 30
C6288_3M | 682.57 | 655.21 | 21005 | 7178 109 | 12.60 | 11.59 | 13| 12
minmax10 | 810.32 | 679.88 | 19304 | 1619 | 326 92| 66.0| 558 |91 81

X Y Z |\Y| Z

1340 (1230 | 13| 12
502 | 427| 5| 5
18.17 | 16.16 | 18 | 17

§OOOO£
o ©C © ©

Table 3.7 Performance improvement using superscalarity for ARRAY AND and QUANTIFI-
CATION BDD operations.

W: ARRAY AND performed iteratively.

X: ARRAY AND performed in superscalar manner.

Y: In REDUCE phase of QUANTIFICATION, OR operations performed one be one.

Z: In REDUCE phase of QUANTIFICATION, OR operations performed in superscalar
manner.
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Effect of Pipedepth on Elapsed Time
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Figure 3.26 Variation of elapsed time with pipedepth in creating output BDDs.

superscalarity helps with improved CPU time. For large examples a performance im-
provement of upto a factor of 10 (minmax10) is obtained.

3.9.5 Performance Enhancement Due to Pipelining

In this section, we demonstrate the effect of pipelining on two different applications.

Creating Output BDDs

We demonstrate the effect of pipelining on the performance of creating BDDs for out-
puts. We have described in Section 3.6, how pipelining technique can be exploited.
Figures 3.26 and 3.27 depict the effect of pipedepth on the elapsed time and the num-
ber of page faults for a series of C6288 sub-networks. As pipedepth is increased, we see
a decrease in the number of page faults (hence the decrease in elapsed time). However,
the memory overhead increases with increase in pipédepth since we are working with
unreduced BDDs. Hence, after a certain value of pipedepth, the decrease in page faults
due to pipelining is offset by the increase in page faults due to the memory overhead.
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Effect of Pipedepth on Elapsed Time
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Figure 3.27 Variation of number of page faults with pipedepth in creating output BDDs.

In most cases, a pipedepth of four gives the best results.

MULTIWAY AND

As described in-Section 3.6.1, the the MULTIWAY AND operation computes the con-
junction of an array of BDDs. We compute the result using i) the pipelined computation
approach and ii) the iterative approach (computing the product by successive AND op-
erations). For a MULTIWAY AND operation with n operands, the depth of the pipeline
is [log,n]. In Table 3.8, we present results for various values of 7, and hence various
pipeline depths.

Table 3.8 shows that the pipelining technique does not improve the performance for
“s1423”. This is due to the fact that output BDDs for “s1423” fit in the main memory
and hence pipelining cannot improve the memory accesses. However, for “C6288_3M”
and “C6288_4M”, we observe a performance improvement of up to a factor of 2. This
is attributed to the reduction in the number of page faults due to pipelining.
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CPU Time Elapsed Time # Page Faults
Example | # Nodes | n | Iterative | Pipelined | Iterative | Pipelined | Iterative | Pipelined
2 0.53 0.51 0 0 0 1
s1423 57524 | 4 4.17 4.03 4 4 0 0
8 6.00 599 7 6 0 0
2 0.57 0.58 23 26 603 762
C62883M | 3x10° |4 100.88 97.10 3449 802 83967 12796
8 112.68 169.36 8578 2304 | 212484 45537
2 0.80 0.63 97 66 2932 2213
C6288.4M | 4x10° |4 107.80 102.99 4602 2307 | 113325 53077
8 121.76 183.34 12808 5540 | 326127 130237

Table 3.8 Effect of pipelining on the performance of MULTIWAY AND.

3.9.6 Memory Overhead in the Breadth First Approach

As noted in Section 3.1, in the breadth-first (BF) technique the isomorphism checks
cannot be performed in the APPLY phase. As a result, some temporary BDD nodes
are created which are freed during the REDUCE phase. This results in memory over-
head inherent in the BF technique. Furthermore, due to operations on unreduced BDDs
(pipelining) the isomorphism check reduces even further. In Table 3.9, we give the
memory overhead involved in computing “AND” operation on two random BDDs se-
lected from BDDs for the outputs. The memory overhead is computed as the ratio of
extra nodes created during the APPLY phase (E) to the total number of nodes in the
unique table (U). In Table 3.10, we provide the overhead for the “Multiway-And” op-
eration, for various values of pipe-depth. We observe the memory overhead incurred
increases with increase in pipedepth. But generally the overhead is small, on average it
is about 5% (for pipedepth value of four).

3.9.7 Repacking After Garbage Collection

We performed some experiments to evaluate the viability of the repacking algorithm
as described in Section 3.8.4. In Table 3.11 we notice that up to 30% improvement
in memory consumption is achieved. The associated computational overhead is not
significant. As a matter of fact, due to repacking the locality of memory access in-
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Example | # Nodes | E/U for “AND”
apex6 3312 0.0000
i9 12423 0.0000
minmax5 | 4812 0.0009
s1196 5537 0.0047
s1238 5687 0.0046
s1494 2028 0.0142
s298 225 0.0103
s344 406 0.0051
s349 406 0.0034
s420 1039 0.0415
s641 2003 0.0025
tic 310 0.0372
x1 4305 0.0025
cbp.32.4 | 8234 0.0008
s1423 57254 0.0000
sbc 3008 0.0060
C1355 | 242732 0.0458

Table 3.9 Memory overhead involved with breadth first manipulation technique in performing
“AND” operation.

creased, leading to better memory access times which offset the computational cost of
repacking.

3.9.8 Some Results with CAL-2.0

We performed a selected set of experiments to compare the performance of the latest
CAL package (version 2.0) with Long’s package (CMU) and Colorado package (ver-
sion 2.1.1, denoted as CU in the table). These experiments were run on SUN Ultra
SPARC, with a 200MHz processor, 16KB/IMB L1/L2 caches, 256MB main memory
and 300MB swap space. A time limit of 3000 seconds was used.

From Table 3.12 we observe the following:



3.10. CONCLUSIONS, RELATED WORK, AND FUTURE DIRECTIONS 87
E /U ratio for various pipe-depths
Example | # Nodes 1 2 3 4 5
9 12423 | 0.0000 | 0.0004 | 0.0005 | 0.0011 | 0.0033
minmax5 | 4812 | 0.0006 | 0.0207 | 0.0356 | 0.0450 -
s641 2003 | 0.0100 | 0.0058 | 0.0122 | 0.0177 | 0.0295
cbp.32.4 | 8234 | 0.0008 | 0.0023 | 0.0040 | 0.0109 | 0.0157
s1423 57254 | 0.0009 | 0.0043 | 0.0664 | 0.0733 | 0.3465
sbe 3008 | 0.0043 | 0.0061 | 0.0106 | 0.0769 | 0.0651
C1355 | 242732 | 0.0465 | 0.0531 | 0.1333 | 0.1743 | 0.3566

Table 3.10 Memory overhead as a function of pipe-depth in “Multiway And” operation

1. For the examples which fit in the main memory CAL and CU have the similar
performance, both of which outperform CMU.

2. When the BDD size does not fit in the main memory, CAL outperforms both
CMU and CU. In particular for C6288_11M and C6288_12M, CAL takes little
over 200 seconds to build output BDDs, whereas both CMU and CU run out of
time (3000 seconds).

3.10 Conclusions, Related Work, and Future Directions

We have presented new techniques targeting the memory access problem for manipulat-
ing very large BDDs. These include i) an architecture independent customized memory
manager and new BDD data structures, ii) performing multiple BDD operations concur-
rently (superscalarity), and iii) performing a BDD operation even when the operand(s)
are yet to be computed (pipelining). A complete package consisting of an entire suite
of BDD operations based on these techniques has been built. We demonstrate the per-
formance of our package by i) comparing with state-of-the-art BDD package [Lon93],
and 2) performing a comprehensive set of experiments to substantiate the capability of
our package. We show that our package provides competitive performance on small
examples and a performance ratio of more than 100 on large examples.

Related work: Due to the nature of breadth-first traversal, sometimes memory blow-
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Example | Memory Consumed (in 8KB) Elapsed Time (in secs)
No Repacking | Repacking | No Repacking | Repacking

every 1627 1306 6.95 6.74
C1355 1971 1971 11.56 12.16
C2670 12582 12580 77.40 74.17
C3540 13671 13607 361.12 346.98
C5315 11419 11227 326.14 323.33
C880 1733 1733 14.62 14.16
abs_bdlc 4069 2833 62.06 59.21
biu 4094 2920 77.78 75.69
bdlc 4153 3109 83.60 80.60
minmax12 1276 1144 16.34 15.72

bigkey 6524 4913 13.36 8.20
s1423 2027 1509 41.18 39.34
54863 7614 4978 105.33 98.65
s5378 5895 3486 56.94 54.57
s6669 9483 5580 175.11 168.27

Table 3.11 Reduction in memory consumed due to repacking after garbage collection.

up can occur during the APPLY phase. In [YCBO97], a technique was proposed which
is based on partial breadth-first expansion. This technique tries to avoid the memory
blow-up by controlling the working set size. More specifically, in their approach, BDDs
are traversed in a breadth-first manner until the number of temporary nodes reaches a
threshold. At that point, these nodes are divided into several groups and further breadth-
first traversal is performed on a group-by-group basis. The power of this method comes
from the fact that it can leverage the locality of access of breadth-first traversal while
controlling the amount of memory used. It seems that with proper implementation,
this approach may outperform either the pure depth-first or breadth-first approaches for
BDD manipulation. .

Many researchers have looked into optimizing cache misses during BDD operations.
In [KR97], a new data structure is presented which minimizes cache misses during the
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CPU Time (secs) | Elapsed Time (secs) | # Memory Usage (MBytes)
Example #Nodes | CMU|CU |CAL|CMU|CU| CAL | CMU | CU CAL

C6288_IM 1001950 15 9 8 15| 10 8§ 22.81| 28.10 27.27
C62882M | 2066979 33| 20 20 351 22 21| 46.66 | 57.21 27.38
C6288.3M | 3123431 56| 33 33 581 35 34| 7117 | 96.36 65.41
C6288.4M | 4273617 751 45 46 78 | 48 48 | 109.18 | 117.07 85.81
C6288.5M | 5337118 | 105 56 61 108 | 59 63 | 134.35 | 135.17 105.28
C6288.6M | 6381609 | 128 71 73 131 | 135 76 | 149.03 | 195.79 122.51
C6288.7TM | 7489177 | 144 85 93| 149|107 98 | 171.77 | 215.29 144.96
C62889M | 9193337 | 174 |104| 113 | 178|274 117 | 218.23 | 244.43 180.22

C6288_10M | 10414238 | 220 | to.| 130 | 226 | to. 134 | 238.49 - 208.20
C6288_11M | 11812054 to.| to.| 149 to. | to. 153 - - 219.63
C6288_12M | 12828721 to.| to. | 167 to. | to. 228 - - 238.51

Table 3.12 Comparison between CMU, CU, and CAL-2.0 for creating output BDDs.

t.0. : Time out after 3000 seconds.

unique table and computed table look-ups. However, their technique is highly special-
ized and not amenable for integration in a general purpose BDD package. In [MGS97],
it has been empirically established that breadth-first manipulation does not have any
advantage over depth-first manipulation in terms of cache locality. A different result is
reported in [MQRK97] in which a study is done to benchmark various computer archi-
tectures for CAD applications. One of the outcome shown in that work is that cache
miss rate for CAL package is 50% less than that in Long’s package.

Future directions: In our work, we have observed that most of the non-local accesses
occur during the REDUCE phase of breadth-first manipulation. By reallocating nodes
for individual unique tables as described in Section 3.8.5, we can expect to reduce the
number of cache misses significantly. Interestingly, this technique of minimizing cache
misses can also be applied for depth-first traversal.

In the current work, we allow only one kind of operator for multiple BDD operations
(say NAND). This requires that all Boolean operations be decomposed as NAND oper-
ations. This can have significant overhead if there are many XOR operations (each of
which leads to two NAND operations). By al]owiné multiple operations types during
superscalarity and pipelining, we can avoid this overhead. This can be implemented by
maintaining different REQUEST QUEUEs for different operations.
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Chapter 4

BDDs on a Network of Workstations

IN Chapter 3, we proposed techniques to exploit the secondary memory of a work-
station for efficient BDD manipulation. In this chapter, we propose a technique
to manipulate BDDs on a network of workstations (NOW). A Now provides a large
amount of collective memory resources, both main memories and disks. The collec-
tive memory resources of NOW provide a potential to manipulate very large BDDs.
To make efficient use of memory resources of a Now, while completing execution in
a reasonable amount of wall clock time, extension of breadth-first technique is used
to manipulate BDDs. BDDs are partitioned such that nodes for a set of consecutive
variables are assigned to the same workstation. We present experimental results to
demonstrate the capability of such an approach and point towards the potential impact
for manipulating very large BDDs.

The rest of the chapter is organized as follows. We explain the relevant attributes
of the network of workstations in Section 4.1 and that of the BDD algorithm in Sec-
tion 4.2. After explaining the characteristics of the available resources and the algo-
rithmic requirements, we propose a new BDD algorithm on a network of workstations
in Section 4.3. We present the implementation details in Section 4.4 and experimental
results in Section 4.5. Most of the work presented in this chapter was first reported
in [RSBS96].

4.1 Network of Workstations

A network of workstations is a computing resource that uses as its building block, an
entire workstation. These building blocks are interconnected by a local area network
such as ethernet, FDDI, switched ethernet, or ATM. Using a network of workstations
as a large computer system to solve large scale problems is attractive, since it uses
the existing infrastructure as opposed to buying a dedicated scalable parallel computer,

91
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a server, or al shared-memory multiprocessor machine. Further, when the system is
upgraded to use faster processors, faster network, larger capacity DRAMs, or larger
capacity disks, a network of workstations leverages each of the enhancements.

Let us first understand the nature of NOW computing resource to exploit it fully to
match the requirements of BDD algorithms. An existing computing infrastructure with
two year old technology may consist of a network of workstations, each with 50 MHz
processor, 64KB cache, 64MB main memory, and 200MB of disk space. It takes about
0.1-0.6 microseconds to access data from the main memory and about 6 milliseconds to
move a page of memory from the disk to the main memory. The software overhead and
latency for a local area network is of the order of about 10 milliseconds and bandwidths
are 10 Mbits per second for ethernet and 100 Mbits per second for FDDI network.

From the above performance analysis, the time taken to access the data from the disk
or from across the network is about 1000050000 times more than the time to access the
data from the main memory. Over the next few years, the networks are expected to be-
come faster in terms of the latency, the software overhead, and the bandwidth [ACP94].
However, the ratio of time to access the remote memory which involves a network trans-
action vs. the time to access the main memory is still expected to be the order of 1000.
This qualitative analysis has important implication when distributing the BDD nodes
across the several workstation memories.

For developing distributed BDD algorithms on NOw, the message passing model of
computation is assumed for the following reasons: 1) it closely resembles the underly-
ing NOw architecture and 2) easy availability of robust message passing software in the
public domain. The message passing programming model makes the cost of commu-
nication explicit. The programmer has to worry about resource management, sending
and receiving messages, and overall orchestration of the collection of processes spread
across several workstations.

4.2 BDD Algorithms

To implement BDD algorithms using the message passing model over a Now, we need
to design distributed BDD data structures. However, it is important to understand the
requirements of BDD algorithms on a uniprocessor to help guide our design decision
about distributing the data and scheduling the interprocessor communication.
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The conventional depth-first recursive BDD manipulation algorithm performs a Boolean
operation by traversing the operand BDDs on a path-by-path basis (see Figure 3.4),
which results in extremely disorderly memory access pattern. The random memory
- access pattern with no spatial locality of reference translates into severe page faulting
behavior when the BDD does not fit the available main memory.

Since the access to the main memory of an another workstation involves a network
transaction, the aforementioned disk access behavior of the depth-first algorithm trans-
lates to a large number of network transactions for any distribution of the BDD nodes
among main memories of a NOW. Since it is very expensive to access the data across
the network compared to the workstation main memory, any attempt to use depth-first
manipulation algorithm on a NOW will meet limited success.

The breadth-first iterative algorithm [OYY93, AC94, SRBS96] (see Figures 3.10,
3.11, and 3.12) attempts to regﬁlarize the memory access pattern by traversing the
operand BDDs on a level-by-level basis and by using a customized memory allocator
that allocates the BDD nodes for a specific variable id from the same page. We make the
following observations to guide the implementation of breadth-first search algorithm
for a Now.

1. We need a mechanism to determine the variable id from the BDD node pointer
without accessing the BDD node.

2. While processing the REQUEST for a specific variable id during the APPLY
phase, we need to access only those BDD nodes that have the same variable
id.

3. The forwarding mechanism, which allows temporary creation of redundant nodes
can facilitate the creation of a REQUEST on one workstation and servicing of that
REQUEST on an another workstation.

4.3 BDDs on Network of Workstations
4.3.1 Issues:

The following issues need to be resolved before we can implement the breadth-first
BDD manipulation algorithm on a NOW.
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Node Distribution How to distribute the BDD nodes among the workstations on a
network? The number of nodes assigned per workstation should be proportional
to the memory resources available on the workstation. The high overhead and
latency of accessing a remote memory by performing network transaction im-
plies that performing a large number of communications which involve small
messages would result in unacceptably high performance penalty. Therefore, a
distribution that results in exchanging information at the level of a BDD node
would not be satisfactory.

Naming BDD Nodes How to uniquely identify each BDD node regardless of where it
resides on the network, i.e., regardless of workstation address space it belongs to?
For a single address space, each BDD node is uniquely identified by its pointer;
we need to extend the pointer mechanism to have a generalized address for a
BDD node.

Variable Id Determination How to determine the variable id of a BDD node given
its generalized address? In the breadth-first algorithm, we need to determine the
variable id from the BDD “pointer” to avoid random access to the BDD node.
However, the BDD node to index lookup table solution proposed by Ashar et al.
is unattractive for NOW case for three reasons: 1) each workstation will need to
maintain a private copy of the lookup table to determine the variable id from a
generalized address for all the nodes in the BDD, 2) this private copy will have to
be updated every time any workstation allocates a page of memory, and 3) since
generalized address would augment 32-bit address space, it may be necessary to
implement the node to index lookup table as hash table instead of an array.

We have designed a generalized addressing scheme that works in conjunction
with a partitioning scheme to solve these problems, while resulting in a very
compact representation for the BDD nodes.

4.3.2 Solutions:

Node Distribution The breadth-first algorithm constructs the result BDD one level
at a time by accessing the operand BDD nodes on a level-by-level basis, the
natural choice for the decomposition of the BDD is to partition it by levels. To
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make number of nodes in a partition (BDD section) proportional to the amount
of memory resources per workstation, we can use the flexibility of determining
the location of and the number of levels in the partition. For example, a BDD
section closer to the root nodes can have more levels than a BDD section at the
halfway between root and leaf nodes.

Naming BDD Nodes By assigning nodes for a set of consecutive variables to the same
workstation, it is possible to determine the workstation on which a BDD node
resides by knowing its variable id. Hence a (variable id, memory address) tuple
can serve as a generalized address that uniquely identifies each node in the BDD.

Variable Id Determination We could have used the pair (workstation number, mem-
ory address) to represent a generalized address that uniquely identifies each node
in the BDD. However, the reason for choosing (variable id, memory address) tu-
ple to represent the generalized address under the constraint of specific levelized
partitioning scheme is to solve the variable id determination problem for free.
Further, this choice of generalized address results in very. compact representation
for a BDD node.

Given the partitioning scheme and the mechanism to determine the variable id, we
need to address one more issue before we can perform computations related to the BDD
sections assigned to a workstation. Servicing a REQUEST in the APPLY phase may
result in creation of an another REQUEST, for which the corresponding variable id be-
longs to another workstation. The newly created REQUEST with a specific top variable

. id should now be serviced on the workstation that owns the BDD section containing
that variable id. REQUEST can be generated on a source workstation and processed on
a destination workstation, as long as the source workstation receives a correct general-
ized address that should result from processing the REQUEST. It is an easy matter to
use forwarding mechanism in the APPLY phase for the source workstation by forward-
ing the generated REQUEST to the generalized address. Since the REQUEST node that
gets generated on the source workstation is a shadow of the REQUEST node that gets
processed on the destination workstation, we call this as shadow node forwarding. By
using shadow nodes, a node which creates the shadow node can now be processed in
the APPLY phase without accessing the remote memory. Using the same shadow node
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now_bdd_op(op,F,G)
if(NOT a terminal case (op, F, G))

if(processor id = 0)
min_id = minimum variable id of (F, G)
create a REQUEST (F, G) and insert in request_queue[min_id];

for(proc.id = 0; proc.id < processor id; proc_id++)
bf_apply_recv(proc_id, set of requests);

bf_apply(op, first_var_id, last_var_id);

Figure 4.1 Breadth-first BDD algorithm on Now.

forwarding concept, a set of REQUEST, which belong to the set of consecutive variables
assigned to the processor, can be processed without accessing remote memories. The
mechanism of shadow node forwarding also helps to separate the computation and the
communication for the collection of sequential processes. The separation helps sim-
plify the development of the Now BDD package. The algorithm for manipulation of
BDDs on a NOW is presented in Figure 4.1.

The breadth-first BDD manipulation algorithm on a NOW is obtained by suitable
modifications of APPLY and REDUCE phase of the breadth-first algorithm for a single
address space. The assignment of BDD sections imposes a total order on the worksta-
tions. Each workstation receives a set of REQUEST from all its predecessor worksta-
tions before the beginning of the APPLY phase. The APPLY phase is now modified to
-process only those REQUESTS, for which the variable ids belong to the workstation.
The set of generated shadow requests are sent to appropriate successor workstations
for processing. The workstation then waits to receive from the successor workstation,
the generalized address to which each shadow REQUEST gets forwarded to. After the
REDUCE phase, the workstation sends a set of generalized addresses to each of its pre-
decessor workstations. The overall procedure can be viewed as top-down APPLY phase
followed with bottom-up REDUCE phase for a distributed BDD which is partitioned
into set of sections each of which is made up of set of consecutive levels. A graph-
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L ~ APPLY and Reduce phases for Pi ]

Receive request nodes Receive forwarded
from processors results from processors
Pk, k=0,1,..., i-1 P, k=n,n-1,...,i+1

Process request nodes Process request nodes

Send request nodes Send forwarded results
to processors to processors
Pk, k=i+1,...,n PK, k=i-1,...,0

Figure 4.2 Tllustration of BDD manipulation algorithm on a NOW.

ical representation of this concept which also illustrates the algorithm in Figure 4.1
has been given in Figure 4.2. The communication serves as a glue to hold together
the computations performed in different memories by using shadow node forwarding
concept.

4.4 Implementation Issues

The following issues are unique to the breadth-first implementation on NOw.

1. Shadow REQUEST duplication: Shadow REQUEST may have multiple shadow
REQUESTs on different workstations. However, the multiple shadow REQUEST
are identified before the REQUEST is processed, hence, only a single REQUEST
gets processed and the resulting generalized address is sent to all the workstations
with its shadow REQUEST.

2. Reference count management for nonlocal BDD nodes:

(a) Even if a REQUEST can be simplified without accessing the remote memory
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(e.g. F AND F), it is important to create a new shadow request and process
it on appropriate workstation so that the reference count of the node in the
unique table is maintained correctly.

(b) During the REDUCE phase if a redundant node is found for which one of
the THEN and or the ELSE generalized addresses point to a node on a suc-
cessor workstation, we need to adjust reference count of that remote BDD
node. This can be achieved by delayed evaluation to avoid communica-
tion to all successor workstations after completion of REQUEST phase on a
workstation. The delayed evaluation can be performed during the garbage
collection step when reference count for the remote nodes can be adjusted
appropriately.

3. Caching shadow REQUEST vs. on-line issue of remote requests: If the shadow
request are not cached, we need a network transaction for every shadow RE-
QUEST created during the APPLY phase. Given the high network overhead and
latencies this may not be acceptable. However, this may change if communi-
cation can be overlapped with computation and low latency, low overhead net-
works, which can pipeline several small messages, become available.

4.5 Experimental Results

We have used a heterogeneous network of workstations as the computing environment
to perform our experiments. This environment contains approximately 60 workstations
with 64MB (about 40MB available) main memory and 256MB (about 200MB avail-
able) disk space and MIPS-R4000 processor.

We have used PVM [GBD*94] (Parallel Virtual Machine) software to provide the
communication between the workstations in the cluster during a BDD operation. This
software permits a network of heterogeneous UNIX computers to be used as a single
large parallel computer by providing user level routines to send and receive messages
among clusters of workstations.

To evaluate the performance we integrated our BDD package with SIS [SSL192]. In
order to systematically analyze the performance of our algorithms with increase in the
BDD size, we have used a series of sub-networks of the ISCAS benchmark C6288. We
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Examples | # Nodes | Uniprocessor Scheme Now Scheme

# Page | Elapsed Time | # Maximum | Elapsed Time

Faults (in secs) Page Faults (in secs)
C6288_.1M | 1x 108 0 877 0 2589
C62882M | 2 x 108 0 1918 0 3743
C62883M | 3x10% | 4392 3587 280 4818
C6288.4M | 4x10° | 70184 7234 450 5530
C62885M | 5x10% | 187843 10676 3060 6454
C6288.6M | 6x 10% | 780361 15844 8090 10397

Table 4.1 Exploiting collective main memories.

have suitably taken sub-networks of this benchmark such that the shared BDD sizes of
the outputs are roughly multiple of one million. For instance, C6288_3M is one of such
examples, for which creating the BDD’s of all its outputs will involve creating about
three million nodes.

In the following subsections we describe the experiments that highlight the salient
features of our approach.

4.5.1 Exploiting Collective Main Memories

The main emphasis of our approach is to exploit the collective main memory available
across all the workstations. This would lead to less page faults and hence reduced wall
clock time to complete the computation. To observe this phenomenon, we have used a
virtual machine consisting of 4 workstations. The results have been given in Table 4.1.

From Table 4.1, we observe that for small BDDs, performance on uniprocessor out-
performs that on multiple workstations by about a factor of 2-3. The reason being
small examples did not result in significant number of page faults for a single processor
and network transaction overhead incurred in the network of workstations approach re-
sulted in large elapsed time. However, as the number of BDD nodes increase, causing
the uniprocessor implementation to page fault enormously, the multiple workstations
scheme outperforms uniprocessor scheme.
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C6288 subckts Elapsed Time

# Nodes One WS | Two WS | Four WS
9 x 10° 26098 | 24074 n.p.
10 x 10° s.o. | 24853 21617
11 x 106 so.| 36802 n.p.
12 x 108 so. | 49801 35652
13 x 10° so. | 47521 n.p.
14 x 106 so. | 58383 n.p.
15 x 108 so.| 60139 n.p.

Table 4.2 BDDs on multiple workstations.

s.o.: could not complete due to disk space limitation
n.p.: data could not be collected due to time constraint

4.5.2 Exploiting Collective Disk Space

Table 4.5.2 indicates the potential of a NOW in manipulating large BDDs. In this
experiment, we increased the number of BDD nodes to be manipulated increased to
the extent that it did not fit the disk space of a single workstation. We observe that we
are able to manipulate BDDs of much larger size using the collective disks of many
workstations.

The breadth-first algorithm implemented using PVM demonstrates the basic advan-
tages of using a NOw. However, remote memory paging using operating system sup-
port — network RAM (NRAM) - is a better alternative to managing network mem-
ory using user-level message passing. We show results for creating output BDDs on
Myrinet connected cluster of four SPARC10 workstations in Table 4.3. All the com-
parisons are with the fastest breadth-first code running on the MIPS DEC 5000 work-
stations. The NRAM uses four workstations; the client main memory is 30 MBytes
and 3 servers have main memory of 40 MBytes each. The remote memory pager for
NRAM uses active-messages [Eic93] as the basic communication primitive.

For C6288 sub-circuits with less than three million nodes, the speedup is due to
faster processing speed on SPARC10 used as a building blocks for NOW. For more
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Elapsed Time
Example | One WS | NRAM | Ratio
C6288_1M 94 39| 241
C6288 2M 258 119 | 2.17
C6288 3M 933 372 | 251

C6288.4M 2535 576 49
C6288_SM 6156 1003 [ 6.13
C6288_6M 10146 1469 | 6.19
| C6288.7TM 13598 2058 | 6.61

Table 4.3 Exploiting remote memory using network RAM (NRAM).

than 3 million nodes, we start seeing the effect of the disk accesses on the elapsed time
for MIPS code and achieve about 6-7x speedup. The CPU time for large problems is a
small fraction (< 10% and decreasing) of the elapsed time. Therefore, the speedups on
larger problems are mainly due to collective main memories of servers as a secondary
store and not due to faster processing speeds of SPRAC10s.

4.5.3 Analysis of Experiments

In previous two subsections we have presented results which demonstrate the two key
advantages of manipulating BDDs on a NOW, namely, exploiting collective main mem-
- ory for improved performance and using collective disk space to build large BDDs.
However, we note that the time taken to manipulate BDDs on a NOW is large. We
monitored the elapsed time in our algorithm and found that a large part of the elapsed
time is due to the network transaction. Hence, the performance of our approach is sig-
nificantly dominated by the penalty incurred during message transfers. The hope is that
with the ongoing research in NOW community [ACP94] which includes using asyn-
chronous transfer mode, parallel file server, and active message passing will result in
low network latency and overhead. Our approach will take advantage of performance
enhancements achieved by NOW research community.
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4.6 Related Work

Arunachalam et al. [ACM96] have presented a technique to manipulate BDDs on a

network of workstations. They also target alleviating the memory consumption prob-
" lem by exploiting the memory available in a cluster of workstations. However, in their
approach, the distribution of BDD nodes on the workstations is random. Since every
dereferencing of node for reading and writing purposes requires message passing, the
random nature of BDD node accesses leads to large amount of communication amongst
workstations. In order to optimize the number of message exchanges caching, pipelin-
ing, and pre-fetching is used.

4.7 Conclusions

We presented an algorithm for manipulation of binary decision diagrams (BDD) on a
network of workstations (NOW). A NOW provides a collection of main memories and
disks which can be used effectively to create and manipulate very large BDDs. We
use a breadth first manipulation technique to exploit the memory resources of a NOw
efficiently. The prototype implementation points to the potential impact this approach
can have in manipulating very large BDDs.

The effectiveness of our approach was demonstrated with experiments. This chapter
serves as a proof of concept for our approach. The current work can be extended with
following features:

1. Utilizing the computation power of a NOw: In the current approach, the compu-
tations are carried out one processor at a time. Hence, we have only exploited
the memory resources of workstations in the network. This approach can be ex-
tended to utilize the parallel computation power offered by Now. This will be
achieved by pipelined processing of REQUEST’s during the APPLY and REDUCE
phase. In the pipelined scheme, REQUEST’s are processed on more than one
processor concurrently. Hence, a processor need not wait to collect REQUEST'’s
from predecessor processors during the APPLY phase and from successor proces-
sors during the REDUCE phase. This will result in improved computation time
of the processing of the REQUESTs. However this scheme has two drawbacks: i)
on-line issue of remote requests will result in significant increase in the network
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transaction. We observed in Section 4.5 that the performance of our approach
was significantly hampered by the network latency and overhead. ii) it will re-
sult in duplication of effort due to inability to recognize a REQUEST after it is
processed in the APPLY phase. Consequently, it will also increase the working
memory requirements and amount of work during the REDUCE operation.

The benefits of this approach in view of these two drawbacks need to be inves-
tigated. A plausible solution could be to adopt a scheme in between the two
extremes and issue remote requests in a group only.

2. Dynamic load balancing: In the current scheme the variable indices are statically
distributed over several processors. This has the disadvantage that if the number
of nodes in certain levels grow very large then it leads to uneven distribution of
BDD nodes. A better approach would be to dynamically change the distribution
of a set of variables among the processors to balance the number of nodes on
each processor.
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Chapter 5

Paralle]l BDD Manipulation

N Chapters 3 and 4, we discussed how memory hierarchy in a computer system can

be exploited to expedite BDD manipulation when the data size exceeds the main
memory capacity. In particular Chapter 3 addressed the efficient use of the secondary
memory of a workstation to increase the available data memory without incurring a
significant memory access penalty. In Chapter 4, we extended this notion to a network
of workstations where the collective main memory of multiple workstations was used
for efficient BDD manipulation.

In this chapter, we consider an orthogonal technique to expedite BDD manipulations
— the use of concurrent computation. Parallelization offers a way to complement graph
reduction research efforts for enabling verification of larger problem sizes. In particular
we consider the use of shared-memory multiprocessors for efficient BDD manipulation.
We identify the key elements needed for a successful parallel implementation of a BDD
package. We argue that by combining the locality of access of a breadth-first manipula-
tion approach with the parallel computing power of a shared-memory multiprocessor,
one can achieve a high degree of performance improvement over a conventional BDD
package.

The organization of the chapter is as follows. Section 5.1 provides brief overview of
the popular parallel architectures and highlights their features.* In Section 5.4, we give
a brief introduction on multi-threaded programming and their advantages and disadvan-
tages.! In Section 5.2, we discuss the basic idea behind parallel computer application
in BDD manipulation and outline the requirements for efficient manipulation. In Sec-
tion 5.3, we discuss previous works on parallel manipulation of BDDs and analyze their
trade-offs in a common framework. We present our technique in Section 5.5. Due to

*Introductory material on parallel architectures and their performance has been obtained from [HP90,
San96, CSG97].
TMost of the material in this section has been taken from [Eng95, SS94].

105



106 CHAPTER 5. PARALLEL BDD MANIPULATION

lack of time we did not implement our technique. However, in Section 5.6 we present a
detailed analysis of closely related work by Yang et al. [YO97] that has been fully im-
plemented. Finally, we conclude by indicating the potential for further improvements.

5.1 Parallel Computer Architectures

The classic definition of a parallel computer is captured in following quote from [AG89]:
A parallel computer is a collection of processing elements that cooperate and commu-
nicate to solve large problems fast.

These days parallel architectures have become the mainstay of scientific computing,
including physics, chemistry, material science, biology, astronomy, earth sciences, and
others. In computer-aided design applications, parallel architectures are extensively
used for simulations at various levels (device, transistor, logic, etc) in the design flow.

The general taxonomy of parallel architecture is presented in Figure 5.1. In the next
few sections we briefly describe various categories of parallel architectures.

Data/instruction Physical Memory Logical Memory
Parallelism Organization Organization
— SISD | Centralized Shared
‘ SIMD Memory Memory
- MISD Distributed Message
Memory Passing
—— MIMD

Figure 5.1 Taxonomy of parallel architectures along various dimensions.

5.1.1 Parallelism in Instruction and Data Streams

Based on the parallelism in the instruction and data streams operated on, comput-
ers can be classified into four categories: i) Single instruction stream / single data
stream (SISD) — single processor computers; ii) single instruction stream / multiple
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data stream (SIMD) — multiple processors executing the same instruction stream on
different data streams; iii) Multiple instruction stream / single data stream (MISD) -
no present day computer falls in this class; iv) Multiple instruction stream / multiple
- data stream (MIMD) — each processor has its own instruction stream and operates on
its own data. '

SIMD machines are also known as processor arrays or data parallel architectures.
The key characteristics of the programming model is that operations can be performed
in parallel on each element of a large regular data structure, such as an array or matrix.
Some vector processors which operate on vectors of data out of a common memory,
also fall in this category.

MIMD is the most general parallel computer. In recent years it has emerged as the
architecture of choice for general-purpose multiprocessors. We discuss the various
manifestations of the MIMD architectures in the next section.

5.1.2 Memory Organization in Parallel Architecture

Based on the physical memory organization, MIMD architectures can be broadly di-
vided into following categories:

Centralized shared-memory architecture

In this architecture, processors share a single centralized memory and the processors
and memory are interconnected by a bus. Since there is a single main memory thathas a
uniform access time from each processor, these machines are sometimes called uniform
memory access (UMA) machines. Currently this type of centralized shared-memory
architecture is by far the most popular MIMD architecture. An illustration of such
architecture is shown in Figure 5.2. Parallel machines in this category are popularly
known as shared-memory multiprocessors. Examples of machines in this category are
Intel quad-processor Pentium-Pro multiprocessor and SGI Challenge multiprocessor.

Physically distributed memory architecture

In distributed memory architecture multiple memories are physically distributed with
the processors. A generic distributed memory architecture is shown in Figure 5.3.
Distributing the memory among the nodes has two major benefits. First, if most of the
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Processor Processor Processor

One or more One or more One or more
levels of cache levelsofcache| mmm levels of cache
Main Memory I/0 System

Figure 5.2 Basic structure of a centralized shared-memory multiprocessor.
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Figure 5.3 Basic architecture of a distributed-memory machine consists of individual nodes
containing a processor, some memory, typically some I/O, and an interface to an interconnection
network that connects all the nodes. Individual nodes may contain a small number of processors,
which may be interconnected by a small bus or a different interconnection technology.
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accesses are to the local memory in the node, this provides a cost-effective way to scale
the memory bandwidth. Second, it reduces the latency for accesses to the local memory.
Massively parallel processors are the most-popular machines in this category. Exam-
- ples include Cray T3E and IBM SP-2. The major architectural differences between
distributed-memory machines come from the logical organization of the memory and
the communication paradigm.

The physically separate memories can be addressed as one logically shared address
space, meaning that a memory reference can be made by any processor to any memory
location, assuming it has the correct access rights. These machines are called dis-
tributed shared-memory (DSM) or scalable shared-memory architectures (as opposed
to shared-memory multiprocessors). The term shared memory 1efers to the fact that
the address space is shared; that is, the same physical address on two processors refers
to the same location in memory. Shared memory does not mean that there is a sin-
gle, centralized memory. In contrast to the centralized memory machines, also known
as UMASs (uniform memory access), DSM machines are also called NUMAs, non-
uniform memory access, since the access time depends on the location of a data word
in memory. B

Alternatively, the address space can consist of multiple private address spaces that
are logically disjoint and cannot be addressed by remote processors. In such machines,
the same physical address on two different processors refers to two different locations
in two different memories. These employ complete computers as building blocks —
microprocessor, memory, and /O system.

5.1.3 Communication Paradigms in Distributed Memory Machines

Distributed memory machines call for a specific communication mechanism based on
the address space organizations. For a machine with a shared address space, that ad-
dress space can be used to communicate data implicitly via load and store operations.
In machines with multiple address spaces, communication of data is done by explicitly
passing messages among the processors.

In distributed shared memory machines the multi;;le processes can be configured so
that portions of their address space are shared. Threads within a process cooperate
and coordinate by reading and writing shared variables and pointers referring to shared
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addresses. -Writes to a logically shared address by one thread are visible to reads of
 other threads. The advantages of shared-memory communication include:

1. Compatibility with well-understood mechanisms in use in centralized shared-
memory multiprocessors.

2. Ease of programming when the communication patterns among processors are
complex or vary dynamically during execution.

3. Lower overhead for communication and better use of bandwidth when commu-
nicating small items.

4. The ability to use hardware-controlled caching to reduce the frequency of remote
communication by supporting automatic caching of all data, both shared and
private.

In message passing machines, communication occurs by sending messages that re-
quest an action or deliver data similar to simple network protocols. Compared to shared
memory, this architecture has a greater distance between the programming model and
the communication operations at the physical hardware level. Typically, user commu-
nication is performed through operating system or library calls. The major advantages
for message-passing communication include:

1. The hardware can be simpler, especially by comparison with a scalable shared-
memory implementation that supports coherent caching of remote data.

2. Communication is explicit, forcing programmers and compilers to pay attention
to communication.

5.1.4 Performance Issues in Parallel Computing

Performance of a parallel program for a specific data set on a particular parallel com-
puter is defined as the time required to complete the program on that machine. The
performance is usually quoted in terms of relative speedup, which is defined as the ra-
tio of time required to complete the program for a specific data set on a single processor
identical to one compute node of the parallel machine to the time required to complete
the program on a parallel machine with N compute nodes.
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Usually, the speedup is less than N. However, for some programs it is even possible
to obtain speedup greater than N. The reason for this super-linear speedup is availabil-
ity of multiple memory systems. If the program has very high degree of parallelism and
- very low or no communication overhead, there is performance gain due to availability
of multiple caches and main memories when the total data exceeds size of a particular
memory level (cache or main memory) but fits inside the aggregate size for N proces-
sors. A program running on a single processor requires much larger effective cache and
main memory to offset the advantage of multiple caches and main memories.

Every program has some serial part and some parallel parts. Ignoring the effect of
multiple caches and main memories, the total available speedup S is limited by Am-
dahl’s law [Amd67] which roughly states that the speedup cannot exceed the reciprocal
of fraction of serial computation

s = L+T)
(T +T,/N)

where T and T, represent time for serial and parallel computations, respectively. There-
fore,

1

S < LT+

The amount of parallelism in a given application, therefore, is the most obvious and
the most important issue that limits the performance of a parallel program. It should be
noted that the amount of parallelism exhibited by a parallel program is also a function
of the data size. The amount of serial work may be constant or increasing very slowly
with the problem size, hence increasing the problem size decreases the fraction of serial
computation, thereby improving the chances for obtaining high speedups [Bai91].

The amount of parallelism in the application depends on the level of abstraction that
determines the granularity. Usually, the finer the granularity the higher the parallelism.
However, finer granularity, usually results in higher volume of communication. Effec-
tive parallelization requires a good balance between amount of things that can be done
in parallel and associated overhead cost. '

For a given abstraction level, it is important to make sure that each processor does
roughly the same amount of work. Each processor may do an equal amount of total
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work, but may spend a lot of time waiting for results from other processors. It is impor-
tant for processors to do an equal amount of work at about the same time. Duplicating
computation may also help reduce dependencies and communication.

The next important issue is communication, which is an artifact of parallel comput-
ing and therefore, is an additional overhead over and above the work specified by the
underlying sequential algorithm. The startup cost of communication (latency), cost per
unit communication (bandwidth), and the frequency of communication determines the
. overall communication cost. It is important to minimize the communication cost as
much as possible. Overlapping computation is one means of hiding the communication
cost.

Another issue that is important from the practical stand-point is related to manage-
ment of parallelism. Parallel programs incur overheads in issuing computations and
migrating data so as to efficiently utilize the parallel computing resources. The man-
agement of parallelism needs to be effective — overheads should be far outweighed by
the efficiency achieved in utilizing parallel computing resources.

5.2 Usirig Parallel Architecture in BDD Manipulation

The basic idea behind parallel manipulation of BDD is the processing of multiple nodes
in parallel, i.e., the accessing memory locations in parallel. However, it is nontrivial
to parallelize BDD manipulation efficiently, because the manipulation process involves
numerous memory references to small data structures with little computational work
to amortize the cost of each reference. In addition, a conventional BDD manipulation
scheme has irregular control flows and memory access patterns. The control flow is
- irregular because the recursive expansion can terminate at any time when a terminal
case is detected or when the operation is cached by the computed table. The memory
access pattern is irregular because a BDD node can be accessed due to expansion on
any of its many parents and, since the BDD is traversed in the depth-first manner,
expansions on the parents are scattered in time citebwolen97.

Keeping these facts in mind and the performance. issues discussed in Section 5.1.4,
we present various aspects of parallel BDD manipulation that can potentially affect the
gains from a parallel architecture.
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Selection of the hardware: What is the underlying hardware — a vector processor, a
massively parallel processor, a distributed shared-memory multiprocessor, a cen-
tralized shared-memory multiprocessor etc. The selection of hardware restricts
the communication mechanism and also determines the.cost in dollars.

Distribution of data: How are BDD nodes representing various functions distributed
among the processing nodes and how uniform is the distribution?

- Generation of computation loads: How is the work generated for different proces-
sors?

Distribution of computational load: How the computational load is distributed amongst
the different processors? How balanced is the load distribution?

BDD traversal scheme: How the operand BDDs are traversed during computation?
Conventional BDD construction algorithms based on depth-first traversal of the
BDDs has poor memory behavior because of irregular control flows and memory
access pattern. Breadth-first traversal alleviates some of these problems.

Sharing of global data structures: How is the sharing of various global data struc-
tures, e.g., unique table, computed table, etc. done amongst processors? What
data structures are duplicated for each processor?

Communication paradigm: How is the validity of the shared data structures main-
tained? How do processors communicate with each other — message passing vs.
synchronizing primitives (lock, barrier, mutex, etc.)?

With this perspective, we analyze previous research efforts to parallelize BDD manip-
ulation in the following section.

5.3 Previous work

[KC90] used a shared-memory multiprocessor (Encore multimax). They used a two-
phase (Apply and Reduce) BDD traversal technique to generate the result. Parallel
jobs were created through either multiple Boolean operations or through unrolling of
recursive calls for few steps. Interlocks were used for process synchronization. Due
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to the nature of their job distribution amongst processors, they achieved very coarse
grain load balancing (a simple BDD operation on one processor could finish much ear-
lier than some complex operation on another processor), and even though their results
- indicated up to 10x speedup with 15 processors on multiplier examples, it would be
unlikely to observe the similar performance on general circuits.

[OIY91] used a vector processor (HITAC S-820/80). They chose a breadth-first
traversal scheme for BDDs (without any notion of locality of access). This allowed
them to vectorize the processing of temporary nodes at each index. They reported a
vector acceleration ratio of up to a factor of 14 in creating output BDDs.

[PSC94] used a distributed shared-memory multiprocessor (CM-5). They chose a
two-phase BDD traversal scheme. Unlike previous approaches which used a shared-
memory architecture, they used a distributed stack to achieve fine-grain balancing. Task
synchronization was done using global broadcast and the communication was imple-
mented using the active messages library. They presented results on small ISCAS ex-
amples with speed-ups of 20 to 32 on a 32-node CM-5.

[CGRR94] used a massively-parallel computer (CM-200) in a data parallel approach
where BDD nodes were distributed to the processing elements. Parallelism was achieved
by allocating one processing element for each BDD node. They did not give any re-
sults comparing the performance with a uniprocessor and indicated up to 5x speedup
in going from 4K processes to 32K processes configuration.

[SB96] used a distributed memory approach on Meiko CS-2 with 64 scalar nodes
(distributed shared-memory multiprocessor). The unique table was distributed across
all processors. Multiple threads of computation were used on a distributed BDD. Up to
7x speed-up was obtained for a 32-node configuration.
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A summary of the discussion on previous work has been provided in Table 5.1. We
analyze this summary below:

Load generation: Concurrency in BDD manipulation is achieved in three ways:

1. High level operations: If there are multiple Boolean operations to be per-
formed, they are started on different processors [KC90].

2. Concurrent processing of the cofactors: In this case a place holder for the
results of the cofactors is created and processing of the cofactors continues
in parallel on different processors [PSC94, CGRR94, SB96].

3. Breadth-first processing: In this case, breadth-first manipulation scheme is
used. The set of temporary nodes (similar to REQUESTS) are maintained at
each index, processors divide the set of temporary nodes equally.

Load distribution: The first approach of load generation leads to very coarse grain
parallelism which could be highly unbalanced. All other approaches apply par-
allelism at the level of processing of a node. This leads to fine grain distribution.

Amount of communication: This is related to the load distribution. Coarser distribu-
tion leads to less communication and vice-versa.

Sharing of data structures: All of the approaches share the UNIQUE TABLE as the
global data structure. Except [OI'Y91], others also share their work queues.

Distribution of BDD nodes: In both the distributed memory based approaches, the
“BDD nodes are divided randomly amongst the processors’ memories.

Cost of the hardware: The specialized hardwares (MPP, vector processors) cost the
most. Small- to medium-scale distributed memory multiprocessors cost lot less.
Small scale shared-memory multiprocessors have the best cost advantage.

5.4 Using Multi-threading on a Shared-Memory Multi-
processor

In this section, we provide a brief introduction on threads and multi-threaded program-
ming.
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A process is a program whose execution has started but is not yet complete (i.e.,
a program in execution). A process has a single address space and a single thread
of control to execute a program within that address space. To execute a program, a
- process has to initialize and maintain state information. The state information typically
is comprised of page tables, swap images, file descriptors, outstanding I/O requests,
saved register values, etc. This information is maintained on a per program basis, and
thus, a per process basis. The volume of this state information makes it expensive to
create and maintain processes as well as to switch between them. To handle situations
where creating, maintaining, and switching between processes occur frequently (e.g.,
parallel applications), threads or lightweight processes have been proposed.

A thread (also called thread of control) is a sequence of instructions executed by a
program. In the traditional UNIX model, a process contains a single thread. Threads
execute independently of each other and share a common address space. In a multi-
threaded system, two or more threads share a common UNIX process. Threads share
process instructions, process data, and process resources: open files, signals, user data.
These threads are managed by the threads library routines in the user space.

Computers with more than one processor provide multiple simultaneous paths of
execution. Multiple threads are an efficient way for application developers to uti-
lize the parallelism of the hardware. Multi-threading (MT) is the set of programming
paradigms, tools, and techniques that enable applications to take advantage of multi-
processing. It provides a powerful way for software developers to speed up applications
on uniprocessor or multiprocessor systems, transparently leveraging paralle] hardware.

Threads share process instructions and most of the process data. A change in data
by one thread can be seen by the other threads in the process. Threads also share most
of the operating system state of a process. Unique to every thread are: thread ID,
register state (including PC and stack pointer), stack, signal mask, scheduling priority,
and thread specific data.

Creating multiple threads within a process is inexpensive compared to forking new
processes. The reason is that creating a process requires creating a new address space.
The time needed for creating a new thread is typically 30 times less than for creating a
new, process.

Synchronization primitives, also known as locking mechanisms, are necessary for



5.5.:OUR APPROACH . 119

multi-threaded programming. They are variables in memory which are used to coordi-
nate threads and control the access to the memory shared by threads.

~ 5.4.1 Bottlenecks in Multi-threading

Performance hit when not enough done in a thread: Compute bound programs with
coarse-grained parallelism can benefit from multi-threading when run on multi-
processor hardware. While the overhead involved in synchronizing and context
'switching threads is significantly smaller than using processes, it is not zero.
Programs in which each thread does not execute enough code between synchro-
nizations or context switches will have performance problems.

Difficulty in programming multi-threaded applications: Multi-threaded applications
can be difficult to design and to debug. The memory, process state, and address
space are shared between threads. Since these shared resources are easy to ac-
cess or corrupt by any thread in the process, programming with multiple threads
requires more care and discipline than does single-threaded programming. The
errors in multi-threaded programming are caused by i) accessing global mem-
ory without the protection of a synchronization mechanism and ii) using a local
or global variable for assigning an argument to a new thread. However, the im-
proved performance and scalability are worth the effort.

5.5 Our Approach: Combining Locality of Access with
Parallel Computing

We propose a parallel BDD manipulation technique based on breadth-first travesal and
the use of multi-threading on a shared-memory multiprocessor.

Before we proceed to explain our strategy for parallel breadth-first BDD manipu-
lation, for ease in understanding, some important aspects of uniprocessor version of
breadth-first technique are briefly reviewed below.

o The breadth-first algorithm proceeds in two phases — top-down APPLY phase
followed by bottom-up REDUCE phase.
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o During APPLY phase, place holders are created to represent the results of co-
factors. These place holders, termed REQUESTS, are processed on an index-by-
index basis.

e At each index, all the REQUESTSs belonging to that index are stored in a hash
table. This is to allow fast check for the REQUESTS to avoid duplication.

o During the REDUCE phase, the REQUESTSs are processed on an index-by-index
basis, from bottom to top. If the REQUEST is not redundant, it is inserted in the
UNIQUE TABLE of the corresponding index.

Based on this basic technique, the parallel implementation is described below.

After the BDD manager is initialized by the main thread, several auxiliary threads are
created and bound to different CPUs for concurrent processing. The main thread (the
process itself), takes care of synchronizations amongst threads. The auxiliary threads
wait for a signal from the main thread to start processing. The amount of private data
associated with each thread is very small .

When a BDD operation needs to be performed, the main thread performs some ini-
tialization which sets up the type of the operation, the minimum index of the operand
BDDs, etc. This initialization is visible to all the auxiliary threads. Next the main thread
wakes up the auxiliary threads and the APPLY and REDUCE phases are performed by
all of them.

During the APPLY step, the work load is divided equally amongst processors. This
is achieved by dividing the set of bins of each REQUEST QUEUE amongst processors.
Empirically, we have observed a fairly equal distribution of REQUESTs amongst bins
of the REQUEST QUEUE.

Since the REQUEST QUEUE for a given index is shared amongst various threads,
we need to create a lock on the appropriate REQUEST QUEUE to avoid concurrent
modification of a REQUEST QUEUE by two different threads. Using a lock at the level
of each BDD node or REQUEST is not a feasible option. In our technique we prevent
the concurrent modification of the same data item by using a lock for each “id”.

During the REDUCE phase, the REQUEST QUEUE bins are again divided equally
amongst the different threads and the REQUESTSs are processed accordingly. If the RE-
QUEST is not redundant, we need to update the UNIQUE TABLE of the corresponding
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index. Since the REQUESTs are processed concurrently by various threads, to avoid
concurrent updating of the UNIQUE TABLE, each thread needs to lock it before making
any modification. This would result in significant locking overhead. To avoid this, we
- adopt a strategy where threads do not update the UNIQUE TABLE on an incremental
basis. Instead, each thread collects all the REQUESTs which are not redundant in a list,
which is later processed by the main thread.

Our algorithm is outlined in Figures 5.4, 5.5, 5.6, 5.7, and 5.8.

pre_process{
k = number of processors in the system;
Create and initialize the BDD manager;
Initialize k— 1 threads and attach them to different CPUs;
Initialize thread related data and store in the BDD manager;
Threads wait for the signal from the main thread;

Figure 5.4 Pre-processing step in multi-threaded BDD manipulation on a shread-memory
multi-processor.

5.5.1 Analysis

In our algorithm, we have made specific decisions with regard to the various issues
presented in Section 5.2. Below we analyze the impact of these choices.

1. Locality of access: Since the underlying manipulation paradigm is based on
breadth-first traversal of BDDs, we can benefit from the same locality of access
as in the case of uniprocessors (described in Chapter 3). In addition, the local
memory accesses leads to better cache locality and hence less bus contention.

2. Distribution of load: During APPLY phase, our load distribution strategy leads
to roughly equal amount of work for each thread. Hence the proposed technique
leads to fine grain load balancing.
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multi_thread_apply(op){

thread_num = unique self thread id;

minindex = minimum index of operands supplied by main thread

for (index = minindex; index < numVars; index++){
req.que = REQUEST QUEUE[index];
req.que.array = REQUEST QUEUE;
multi_thread_apply_aux(thread_num, req_que, req_que_array, op);
Synchronize;

Figure 5.5 APPLY step in multi-threaded BDD manipulation.

multi_thread_apply.aux(thread_num, req-que, req-que_array, op){
Calculate the set of bins to be processed by the thread based on thread_num.
Process REQUESTs belonging to these bins in req_que .
Create lock on appropriate req_-que before creating a new REQUEST.

Figure 5.6 Request processing during APPLY step in multi-threaded BDD manipulation.
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multi_thread._reduce{

thread_num = unique self thread id;

for (index = numVars; index > 0; index——){
req-que = REQUEST QUEUE[index];
unique_table = UNIQUE TABLE[index];
multi_thread_reduce_aux(thread_num, req_que, unique_table);
Synchronize;
Processing of the REQUESTS in the auxiliary lists by the main thread;

Figure 5.7 REDUCE step in multi-threaded BDD manipulation.

multi_thread_reduce_aux(thread_num, req.que,unique_table){
Calculate the set of bins to be processed by the thread based on thread.num.
for each REQUESTS belonging to these bins in req_que {
Update THEN and ELSE cofactors of the REQUEST;
If current REQUEST is redundant, put appropriate forwarding information;
Otherwise, put REQUEST in auxiliary list (to be processed by main thread);

}
}

Figure 5.8 Request processing during REDUCE step in multi-threaded BDD manipulation on
a shread-memory multiprocessor.
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3. All the data structures are shared. Hence there is no replication of data or com-
putation.

4. Multi-threaded programming: Instead of using processes to perform operations
concurrently on different processors, we make use of threads. This allows us to
share the global data structures without the overhead of remote memory access
or message passing.

5. The proposed strategy is best suited for a shared-memory multiprocessor where
global data structures can be accessed without any communication overhead.

6. During REDUCE phase, the updating of UNIQUE TABLE at each index is done by
the main thread which keeps all other threads idle. However, in all the previous
works proposed so far for parallel BDD manipulation, the same limitation arises
in one form or the other.

An important point to note is that unlike its counterpart in the uniprocessor domain,
the proposed breadth-first algorithm for shared-memory multiprocessor does not have
any memory overhead over conventional depth-first algorithm. This is because in the
parallelization of depth-first algorithm, the cofactors need to be processed in parallel
(otherwise there would not be any concurrency). This is done by following some variant
of two phase scheme — APPLY followed by REDUCE - as given in [Bry86]. This implies
that some place holder is used to store the information about the child nodes (identical
to the approach in breadth-first technique).

5.6 Related Work

In this section, we describe a related work presented in [YO97]# In that work the
authors propose a paralle] algorithm for BDD construction targeted at shared-memory
multiprocessor. The algorithm focuses on improving memory access locality through
specialized memory managers and partial breadth-first expansion, and on improving
processor utilization through dynamic load balancing.

The algorithm uses partial breadth-first expansion (equivalent to APPLY phase in our
terminology) that improves locality of reference by controlling the working set size

1 All the material in this section has been obtained from [YO97].
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-and thus reducing the overhead due to page faults, communication, and synchroniza-
tion. The algorithm also incorporates dynamic load balancing to deal with the fact that
the processing required for a BDD operation can range from constant to quadratic in
- the size of the BDD operands, and is impossible to predict before runtime. BDD con-
struction is parallelized by distributing operations among processors during the Ap-
PLY phase. Once the operations are assigned, each processor independently constructs
corresponding BDDs using partial breadth-first expansion, which carefully controls the
working set size in order to minimize accesses beyond a processor’s own local memory.
When a processor becomes idle, work loads are redistributed to keep the load balanced.
In the sequential world, good memory access locality results in good hardware cache
locality and reduced page faults. In the parallel world, memory access locality has the
additional advantage of minimizing communication and synchronization overhead.

5.6.1 Parallel Apply and Reduce

* For BDD construction, both the APPLY and the REDUCE phases have a large degree
of parallelism. However, to efficiently utilize this parallelism, careful memory layout
* is necessary to reduce synchronization cost. In this algorithm, each process indepen-
dently maintains its own copy of the BDD node managers, operator node managers,
and the compute cache. This data layout allows each process to proceed independently
of each other during the APPLY phase. During the REDUCE phase, synchronization is
necessary to prevent concurrent modification to the BDD unique tables.

In the APPLY phase, only operator nodes and their corresponding compute cache
entries are created. By requiring each process to maintain its own operator nodes and
compute cache, a process can expand its assigned share of operations without synchro-
nizing or communicating with other processors.

In the REDUCE phase, new BDD nodes are created and inserted into the unique
tables. To avoid concurrent modification of the unique tables, one semaphore lock is
associated with each variable’s unique table. Before creating a new BDD node and
inserting in into its unique table, a process must acquire the corresponding lock.

The main drawback of this data layout is that since the compute cache is not shared,
a process will not be able to take advantage of another’s compute cache. Thus, the same
work might be duplicated in different processes. Another drawback of the per-process
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data structures is that memory is used less efficiently as the free space in the blocks
allocated by one process is not available to other processes.

] 5.6.2 Work Distribution

As processing required for a BDD operation can range from constant to quadratic in
the size of the BDD operands, it is impossible to distribute the load evenly through
static allocation. In this algorithm, the load is dynamically balanced based on stealing
- unexpanded operations from processes’ context stacks. The processes’ context stacks
serve as distributed work queues. When a process is idle, it tries to steal unexpanded
operations from busy processes’ context stacks. If an idle process fails to find any
work, it notifies busy processes to create more sharable work by context switching.
Upon successfully stealing work, the thief process produces the results for the stolen
operations and return these results to the original owner. During the reduction phase, a
process stalls if the results it needed for the reduction have not yet been returned by the
thief processes. This stalled process then becomes a thief and tries to steal work from
other processes’ context stacks.

5.6.3 Results
Elapsed Time (seconds)

# Procs | C2670 | C3540 | mult-13 | mult-14

Seq 208 215 256 935

1 204 220 293 1092

2 120 132 173 633

4 76 81 114 383

8 52 58 96 301

Table 5.2 Elapsed time for building BDD for each circuit with different number of processors.
“Seq” represents the sequential case.

Performance results were obtained on a twelve processor SGI Power Challenge with
1GB of shared memory. Each processor is a 1995MHz MIPS R10000.
Table 5.2 shows the elapsed time for building BDDs with different number of proces-
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Total # of Operations (in millions)
# Procs | 2670 | €3540 | mult-13 | mult-14
Seq 925 681 728 245
1 925| 681 835 296
2 98.4| 688 842 294
4 1101 | 716| 867 297
8 1251 762 878 305

Table 5.3 Total number of operations in millions. “Seq” represents the sequential case.

Lock Tlme / Fleduction Tlme Vs Number of Processors

045 Lock Tlme / Reductlon Tlme

04 r
035
03
0.25
02}
0.15
0.1}
0.05

0

Ratio (Lock Time / Reduction Time) :-

0 1 2 3 4 5 6 7 8
Number of Processors

Figure 5.9 Ratio of lock acquiring time to the total time of the reduction phase for the mult-14
circuit.
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sors. The algorithm is able to achieve speedups of over a factor of 2 on four processors
and up to a factor of 4 on eight processors.

Table 5.3 shows the total number operations (i.e., number of the Shannon expansion
- steps) for different circuits. Results show that despite the compute cache not being
~ shared, the total number of operations does not increase in the same proportion as
number of processors.

To understand the effect of lock contention during the reduce phase, consider the
Figure 5.9. This figure plots the lock acquiring overhead as a fraction of the total cost
of the reduction phase. For the 8 processors case, the lock acquiring time is 50% of
the total reduction phase; i.e., over 20% of the total running time. This represents a
significant bottleneck in the performance improvement due to parallel manipulation.

5.7 Conclusion
We draw following conclusions from this study.

1. A trade-off can be made between avoiding duplicate computation and minimizing
communication while sharing global data structures. However, duplicating the
computation without reducing the communication is a lose-lose proposition.

2. The REDUCE step is the main bottleneck in all implementations of parallel BDD
manipulation.

3. A better distributed-hashing algorithm is necessary to reduce the unavoidable
synchronization cost incurred during REDUCE step.

4. In some BDD-based applications the non-canonicity of BDD nodes can be al-
lowed leading to better parallelization.



Chapter 6

Dynamic Ordering

AN important aspect of BDDs is that for a given variable ordering, they represent
Boolean functions canonically. The ordering plays a significant role in deter-
mining the size of BDDs, which is crucial for their efficient manipulation. The problem
of finding an optimal ordering is intractable and several heuristics have been proposed
which statically determine a good ordering of variables based on the circuit informa-
tion [FFK88, MWBS88]. Recently, dynamic ordering [Rud93] has become a popular
alternative to static ordering. The salient features of this technique are the transparent
nature of the algorithm (user need not be aware of it) and the in-place swapping of
variables. In fact, dynamic ordering is established as a critical component for any BDD
package to be used for practical-sized problems.

In the last three chapters (Chapters 3, 4, and 5), we saw how the breadth-first manip-
ulation [OYY93, AC94, SRBS96] techniques exploit memory hierarchy in a computer
system to efficiently manipulate very large BDDs which do not fit in the main memory.
Although breadth-first schemes outperform a conventional depth-first based scheme
when reordering is not performed, lack of reordering leads to its inability to finish
the application when the initial variable ordering results in very large BDDs {Sen96].
At first glance, it might seem that the reordering algorithm in a breadth-first scheme
would be identical to the one in a depth-first scheme. However, this would destroy the
locality of reference of BDD nodes which is critical to the performance of breadth-first
based packages. In this chapter we provide efficient techniques to address this issue.
We propose techniques to preserve the locality of reference during reordering. After
identifying the problems with implementing variable swapping (the core operation in
dynamic reordering) in breadth-first based package:s, we propose techniques to han-
dle the computational and memory overheads. We believe that combining dynamic
reordering with the powerful manipulation algorithms of a breadth-first based scheme

129
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can significantly enhance the performance of BDD-based algorithms.

The organization of this chapter is as follows. In Section 6.1, we briefly touch upon
the background material on dynamic reordering. In particular, we present the basic
- variable swapping technique. In Section 6.2, we discuss the problems and issues in
implementing the variable swapping algorithm in a breadth-first manipulation scheme.
In Section 6.3, we present our first solution approach. In Section 6.4, we discuss over-
head optimization techniques. Section 6.5 describes the “sifting” algorithm, Section 6.6
presents the “window” technique. We discuss the node packing scheme in Section 6.7.
We present our second approach in Section 6.8. Experimental results are given in Sec-
tion 6.9. Most of the work presented in this chapter was first reported in [RGBS97].

6.1 Dynamic Reordering: Background

Terminology: Variables in BDDs are ordered such that the variable at level i has index
i, i ranges from 0 to n— 1 (starting from root to the constant nodes, n being the total
number of variables). A variable with a lower value of index is “higher” in the order
and vice versa. An identifier (id) is associated with each variable, and it also ranges
from O to n — 1. The identifier value for a variable remains constant throughout the life
of the variable, however its index changes during reordering.

The basic operation in reordering is that of variable swapping. Variable swapping
involves moving all BDD nodes at level i to level i+ 1 and nodes at level i+ 1 to i.
Consider a node F = (x;, F1, Fp) at level i, where x; is the variable associated with level
i, F} is the positive cofactor with respect to x;, and Fp is the negative cofactor. Similarly,
let Fj; and Fjg be the two cofactors of Fj with respect to x;4 and Fo; and Foo be the
two cofactors of Fp. Using Shannon cofactor expansion,

F = xR[+%Fk 6.1
= x;(xip1F11 +Xip1Fr0) + Zi(xip1Fo1 + X1 Foo) 6.2)
= xip1(xiF11 + %iFo1) + %1 (xiFi0 + %:Foo) 6.3)

In short,

(xi,F1,Fo) = (xit1,(xi, Fi1,Fo1), (xi, Fro, Foo)) (6.4)
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The Eqn. 6.4 forms the basis of swapping variables between levels i and i + 1. Variable
swapping is the core operation of reordering and is the dominating factor in memory
and time consumption during reordering. The problem in swapping x; and x;+) with
- only local modifications lies in preserving the functionality of all nodes at indices i
and i+ 1. This is necessary to avoid updating the references to those nodes by their
parent nodes higher in the order. The updating of references is not efficient because the
“in-degree” of a node could be arbitrarily large, making it infeasible to maintain a back
pointer to all the parent nodes, and thereby making it necessary to traverse the graph.

6.1.1 Variable Swapping in Depth-First Implementation

Rudell [Rud93] proposed a scheme which forms the key idea for efficient variable
swapping. The success of his technique lies in the ability to overwrite the contents of
a node to maintain its functionality. This is illustrated in the Figure 6.1. Notice that

Fo Foo Fio Fn Fo Fo Fo Fn

Figure 6.1 Variable swapping: node distribution before swapping (left), after swapping (right).

by swapping variables x; and x;41, the contents of the original node (A) representing
function F are overwritten as the cofactor pointers are changed. This results in the
creation of two new nodes Fé (D) and F{ (E) (these may already be present in the
unique table). The important point to note is that this change is completely local since
the nodes above index x; and below index x;; need not be changed and only nodes of
levels i and i + 1 need to be traversed. This warrants an array of unique tables rather
than a single unique table for the whole BDD. In summary, the conventional variable
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swapping involves creating at most two new BDD nodes and overwriting an existing
BDD node.

: ~6.2 Variable Swapping in Breadth-First Inplementation:
Problems

Let us now see if the same paradigm could be applied to a breadth first based package.

Breadth-first schemes rely on two salient features: i) the increased locality of reference
-due to nodes belonging to an index beling located on the same page or set of pages,

and ii) the ability to determine the indices of the cofactor nodes without fetching them

from memory. To benefit from the locality of reference of the breadth-first scheme, it
is crucial that the BDD node allocations are still local after reordering.

The first implementation of breadth-first manipulation ([OYY93]) used padding nodes
to overcome the cofactor index determination problem, i.e., their algorithm manipu-
lated quasi-reduced BDDs and indices of cofactors were always one more than the
indices of the corresponding nodes. As reported in [AC94], this approach has sig-
nificant memory and computational overheads. Moreover, an arbitrary overwriting of
nodes during variable swapping would result in the loss of locality (nodes of an index
would belong to the several different pages in the memory, sharing with nodes of other
indices).

The approach in [AC94] uses a table which maps the page address of a node to its
index, i.e., each page address is uniquely associated to an index. This mapping breaks
down if we arbitrarily overwrite the content of an address during variable swapping.
Consider Figure 6.2, which represents the node distribution before and after swapping
x; and x;;1. Before swapping, nodes for variable x; reside on page #10 and those for
variable x; reside on page #20. In the process of swapping, if we simply overwrite
the node F, page # 10 contains nodes corresponding to both variables x; as well as x;;
and the index of a node is no longer uniquely identified by its page address. In addition,
by arbitrary overwriting a node, the locality of nodes is no longer preserved.

Next we look at the breadth-first implementation in CAL [SRBS96]. In this ap-
proach, a node is represented by an {id, node} pair (please refer to Figure 3.20 on
page 68). Also, the node contains the id as well as the address of its cofactor nodes.
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S Page # 10

Fo For Fio Fn Qd Page#20 Fo FoFon Fi

Figure 6.2 Variable swapping : node distribution before swapping (left), after swapping (right)
in the breadth-first implementation of Ashar et al.

This data structure avoids the need for cofactor fetching or for looking up any table
to determine the cofactor indices. However, like previous implementations, arbitrary
overwriting of a BDD node suffers from two problems. First, it would result in the loss
of locality. Second, since CAL uses a data structure for a node that stores both the id
as well as the address of the cofactor nodes, we need to update the id field of all parent
nodes of nodes at x; and x;; (similar problem arises if the node stores the index of the
cofactor nodes instead of their id ).

We see that directly employing the depth-first reordering technique leads to problems
in all breadth-first implementations. In the next section we propose our solutions.

6.3 Solution Approach A

Our first scheme is based on delayed updating, similar to garbage collection, to deal
with the problems discussed in the previous section. This avoids the non-local compu-
tation involved in updating the cofactors, We delay the cofactor updating by overwrit-
ing the node with a “forwarding address” to the new node at an appropriate location
and with proper functionality. Since the original node contains a forwarded address,
we call it a forwarding node. This approach results in both memory and computa-
tional overhead: memory overhead because we cannot immediately reuse the node be-
ing forwarded and the memory consumption increases temporarily; and computational
overhead because the information in the parent nodes of the forwarding node must be
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updated at some point which requires traversing the nodes at higher indices and updat-
ing the contents if necessary. Since variable swapping is the core operation, we would
like to optimize the cost of memory and computation overhead as much as possible. In
- sections 6.3.1 and 6.3.2, we explore two methods for variable swapping which preserve
the locality of nodes and discuss their memory and computational overhead.

6.3.1 Method 1: Keeping index <> page mapping constant

In the first method, pages in the memory are associated with the index, i.e., if the index
of a variable changes, all the nodes corresponding to that variable need to be reallocated
on the pages corresponding to the new index. Figure 6.3, shows an example of the
node distribution before and after the swapping. Nodes representing cofactors Fp and
F, (nodes B and C respectively before swapping) are reallocated on page #10 in order
to maintain the index <> page mapping. This approach has overhead of 2 forwarding
nodes (B, C) over the depth-first based swapping.

Page # 10
SWAP

Page # 20 ;
Forwarded node
Fo Fy Fio Fii S New node Fo FioFoi Fa

Figure 6.3 Variable swapping (keeping index «» page mapping constant) : node distribution
before swapping (left), after swapping (right).

In the worst case, nodes corresponding to (x;, Fio, Foo) and (x;, F11,Fp1) may already
be present before swapping. After the swapping, both of them will become forwarded
nodes on page #10 and will point to G and H respectively. In general, suppose there are
N; and N4 nodes at indices i and i+ 1 respectively. Further, suppose N] of N; nodes
have both the cofactors below index i+ 1. Then the memory overhead in this approach
consists of N1 +N; forwarded nodes.
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6.3.2 Method 2: Keeping id +» page mapping constant

In this method, pages in the memory are associated with an id, i.e., variable. Hence,
_ even if the index of a variable changes, all the nodes corresponding to that variable re-
main on the same set of pages. Again, consider the node for function F in Figure 6.4.

F R F R
Page #10 A Page #20
=Ry SWAP o o
g —= 0 il
Page #20 B C Page #10
€& Forwarded nodes
Fo Foi Fio Fn @ New nodes Fo Fo For Fin

Figure 6.4 Variable swapping (keeping id +> page mapping constant): node distribution before
swapping (left), after swapping (right).

In this approach, as a result of swapping, a new node (D) is created on page # 20 to
represent the function F. Node A which represented the function F before swapping,
becomes a forwarding node. Nodes Fyp and F; are simply moved to level i. We observe
that there is one new node created (D) and one node is forwarded (A) after the swap-
ping. In gener;ﬂ for N; nodes at level i, with N} of them having at least one cofactor at
level i+ 1, we have memory overhead of N; forwarded nodes as compared to depth-first
implementation.

Analysis

From the above two approaches we make the following observation. In Method 2,
swapping variables at level i and i+ 1, requires traversing only nodes at level i which is
not true for Method 1. This is an important advantage for Method 2 because traversing
all nodes at a level is computationally expensive. Moreover, the memory and compu-
tation overhead in Method 1 is significantly more than that in Method 2. For these
reasons we chose Method 2 for variable swapping in this approach (we refer to this as
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swap.variable(i, checkFlag){

foreach node in the unique table for index i {
get then and else cofactors;
if (checkFlag) update the cofactors;
if (thenCofactorindex > i + 1 && elseCofactorindex > i + 1) continue;
put the node in the processingList;

}

foreach node in the processingList {
get Foo, Foi, Fio, F11 cofactors (as shown in Figure 6.1);
create or find Fy and Fj;
create a new F’ and put a forwarding pointer in F;
Append the list of forwarded nodes for index i;

}

Perform some book-keeping;

Figure 6.5 Algorithm for swapping two variables.

the CAL-A approach).

6.4 Memory and Computational Overhead Minimiza-
tion

Since forwarding nodes do not represent any Boolean functions, they are essentially
the memory overhead of the swapping algorithm. They also bring in computational
overhead, since at some point during reordering BDD nodes need to be traversed and
the forwarded cofactors updated. In order to reduce memory overhead, we can reuse
the forwarded nodes. This requires fixing the cofactors of all BDD nodes which could
be pointing to those forwarding nodes resulting in computational overhead. Hence,
during variable swapping we need to be careful about fixing the cofactors (so as not to
perform unnecessary computations) and in controlling the number of forwarding nodes
(so that reordering does not run out of memory) resulting in memory and computational
overhead trade-off. This makes the process of overhead minimization quite complex.
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The algorithm for swapping two variables is given in Figure 6.5. We notice that all
the nodes for a particular index are traversed during swapping. Some of these nodes
become forwarding and are appended to the list of forwarding nodes for that index. At
- the end of each variable swapping we monitor the number of forwarding nodes. If this
npumber exceeds a threshold, we traverse the BDDs appropriately, fixing the cofactor
pointers and freeing the forwarding nodes.

Ideally, we would like to reduce memory overhead with little extra computation and
mitigate the computation overhead by integrating the cofactor updating operation in-
side the swapping operation. In the following we discuss various observations about
variable swapping (x; and x;41, at indices i and i+ 1 respectively) which let us mini-
mize the overheads. These observations are heavily used in optimizing the reordering
algorithms.

Observation 1: Consider a node F at level i which is independent of the variable at
level i+ 1. When the variables at level i and i+ 1 are swapped, no new node
is created by the algorithm. This is illustrated in Figure 6.6. In all other cases

F

level i ° F
level i+1 °
Fy F1 R 2

Swapping /
level i+2 @ @ x,,x,.,.] @ @
Fo Fn Fo Fn Fo Fo Fio Fn

Figure 6.6 Variable swapping: if the cofactors of a node are independent of x;.1, no new nodes
are created in swapping.

(when at least one cofactor of F is at index i+ 1), we need to create a new node
and the original node for F becomes forwarded (Figures 6.4 and 6.7). .
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Figure 6.7 Variable Swapping : If any cofactor of a node is dependent on x;3, a new node
and a forwarded node are created in swapping.

Observation 2: We need to traverse the unique table of variable x; only. In some cases,
it would be necessary to update the cofactors of nodes in x; (illustrated in Fig-
ure 6.8). (some of the cofactor pointers could be pointing to forwarded nodes).
However, upon careful analysis we can determine various stages in reordering al-
gorithms where checking for forwarded nodes (i.e., updating the cofactors) would
not be necessary, thereby avoiding the computational overhead.

Observation 3: Nodes corresponding to the variable x; (the one going down) can either
remain unchanged (Figure 6.6) or can become a forwarded node if they have
cofactors at the next index (i+ 1) (Figures 6.4 and 6.7).

Observation 4: Since the nodes at index i are cofactors of nodes at indices i — 1 or
lower, it implies from observation 1 that cofactors for some of the nodes at indices
i — 1 or lower become forwarded as illustrated in Figure 6.9).

Observation 5: The only change possible for the nodes corresponding to variable x;
(the one moving up in the order) is that their reference count might get decre-
mented by 1 (as shown in Figure 6.9 for nodes C and D).
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Figure 6.8 Variable swapping: if any cofactor of a node is forwarded, it needs to be updated
before swapping.
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Figure 6.9 Variable swapping: when x; and x;, are swapped, a node at higher index can get a
forwarded cofactor. :
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Observation 6: When the nodes at levels i and i+ 1 are being swapped, none of the
nodes for index i+ 1 or higher get affected.

_ Observation 7: During the swapping process, we need to traverse all nodes for vari-
able x; and update the cofactors if needed. Hence at the end of swapping, all
nodes for x; have valid cofactors.

Observation 8: Once a node becomes a forwarding node, we do not have to consider
that node anymore for swapping purposes. Once all the pointers to the forwarding
node are fixed, the node can be freed.

Figure 6.10 Double forwarding of nodes.

Observation 9: Sometimes a node, being pointed at by a forwarded node, becomes a
forwarded node. This occurs when two variables x and y are swapped (x going
down, y going up, Figure 6.10b), and at some later stage, y and x are swapped
(y going down, x going up, Figure 6.10c). This results in double forwarding.
By updating the first forwarded node we can get rid of the double forwarding
(Figure 6.10d). For efficiency reasons we would like to fix them as they occur.

In conclusion, we discussed the variable swapping algorithm in breadth first scheme
and related memory and computational overhead issues. We also looked at various
properties of variable swapping. We will use these properties in the different parts of
two reordering algorithms — sifting and window — to optimize the overheads.
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6.5 Dynamic Reordering: Sifting Technique

This “sifting” algorithm is based on finding the optimum position for a variable, assum-
_ ing all other variables remain fixed [Rud93). The basic algorithm for sifting remains
the same as the one given in [Rud93], but we have paid keen attention to minimizing
the overhead as much as possible. First, we make use of a simple observation in decid-
ing the initial direction (up or down) of swapping for the variable being sifted. Then,
we divide the sifting process in four phases and use the properties from the previous
section to optimize the overheads.

If the initial position of the variable is in the upper half then it is advantageous to sift
the variable upwards first. As an example, consider the case when a variable’s initial
position is in the upper half and its best position in the bottom half. In Figure 6.11, we

GOOD BAD GOOD BAD

Figure 6.11 Strategies for sifting variables.

illustrate the amount of variable swapping needed in moving the variable for upwards
first strategy as well as for downwards first strategy. Suppose i is the initial position of
the variable (i < n/2). And j is the best position of the variable (j > n/2). The number
of variable swappings needed if the variable is sifted upwards first is equal to (i — 1) +
(n—1)+ (n— j)=2n—(j —i+2). However, if the variable is sifted downwards first,
the number of swappings needed = (n—i)+ (n—1)+ (j— 1) =2n— (i — j+2). Since
(j—i) > 0, the number of swapping saved in a first :jipproach is 2(j —i). It is clear that
moving the variable upwards first results in the computational advantage. Similarly,
it can be shown that moving the variable in the lower half downward first can result
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in a computational advantage. Note that the same optimization can be achieved in the
depth-first implementation as well.

To minimize the overhead of fixing the cofactors during the variable swapping and

- to minimize the traversal of BDDs during fixing of forwarded nodes, we have divided

each variable “sifting” into four phases. These phases are shown in Figure 6.12. In

each phase we have established certain invariants which cut down on the computation
overhead, which we discuss below.

Phase |

4

I
| Phase IV Phase IV
P Initial
Phase |l : Position Best
i Bt Position
Position Position Phase |l Phase il
as

Phase |

Figure 6.12 Various phases of sifting a variable.

Case 1 Starting position of the selected variable, x, is in the bottom half: in this case,
the four phases of variable swapping are shown on the left in Figure 6.12.

Phase I: In this phase the variable x is successively swapped down to the bottom.
Hence for all the swappings only nodes corresponding to variable x are
traversed. At the start of phase I, there are no forwarded nodes and the only
forwarded nodes created are for variable x. Hence, in this phase we need
not update any cofactors. At the end of this phase: i) nodes corresponding
to x do not have any forwarded cofactors (from observation 3) and ii) nodes
corresponding to every other variable possibly have forwarded cofactors
(from observation 4).
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- | reorderingSift(srartIndex) :
if (startindex > numberVariables/2){
I’ Phase!*/
for(index = startindex; index < numVariables-2; index++)
swap_variables(index, 0)
Perform book-keeping
endfor
/* Phase Il */ .
for (index = numVariables-2; index > startindex; index——)
Fix cofactors of nodes
swap.variables(index, 1)
Fix the double forwarding
endfor
for (index = startindex-1; index > 0; index——)
Fix cofactors of nodes
swap_.variables(index, 1)
Perform book-keeping
endfor
Reclaim forwarding nodes
I Phase lil (need to move the variable to the best location)*/
for (index = 0; index < bestindex-1; index++)
swap.variables(index, 0)
I Phase IV {need to update the cofactors of variables) */
for (index = bestindex-2; index > 0; index——)
Fix cofactors of nodes
endfor

else { /* Variable's starting position is in the top half */
I Phase | */
for (index = startindex; index > 0; index—-)
Fix cofactors of nodes
swap.variables(index, 1)
Perform book-keeping
endfor
Fix the cofactors of all the nodes and reclaim forwarding nodes
I* Phase Il */
for (index = 0; index < startindex-1; index++)
swap.variables(index, 0)
Fix the double forwarding of variable moving up
endfor
for (index = startindex; index < numVariables-2; index++)
swap._variables{index, 0)
endfor
I Phase lll (need to move the variable to the best focation)*/
for (index = numVariables-1; index < bestindex; index—-)
swap_variables(index, 1)
Fix the double forwarding of variable moving up
endfor
I Phase IV (Fix the cofactors of higher indices) */
for (index = bestindex-1; index > 0; index——)
Fix the cofactors
endfor

Figure 6.13 Pseudo-code for sifting algorithm.
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Phase II: In this phase, the variables which are going down potentially can have
cofactors pointing to the forwarded nodes of x. Hence we need to update
the cofactors of the nodes being swapped down. Also, until x is brought
back to the original position i, it is reverse swapped with a variable it was
swapped in phase 1. Hence, we need to fix the double forwarding (from
observation 9). At the end of this phase, all the variables have moved down
at some point. From the observations 2, 3, 5, 6, and 7, the cofactors of
all the nodes have been updated. At this point, we can reclaim forwarded
nodes belonging to each index.

Phase III: In this phase, x is successively swapped down to the best position
found at the end of phase II. Since, by the end of phase II, we have per-
formed clean-up (updated forwarded cofactors, reclaimed forwarded nodes)
this phase is similar to phase I.

Phase IV: This is the final clean-up phase. We want to make sure that all the
nodes in the manager have proper cofactor nodes. For that purpose, we
need to fix the cofactors of nodes between O and best index.

Case 2 Starting position of the selected variable, x, is in the top half: in this case, the
four phases of variable swapping are shown to the right in Figure 6.12.

Phase I:. In this phase, the variable x moves all the way to the top. From obser-
vation 4, the variable going down in the swapping may become forwarded
nodes. Hence we would need to update the cofactors at each variable swap.
At the end of this phase, we can reclaim all forwarded nodes.

Phase II: This phase is exactly similar to phase I of the previous case.

Phase III: Similar to phase II of the previous case. However, we need to perform
swapping only till x gets to the best position.

Phase I'V: Same as previous case.

The resulting pseudo-code for the sifting algorithm is given in Figure 6.13.
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6.6 Dynamic Reordering : Window Technique

The window permutation algorithm proceeds by choosing a level i in the DAG and
exhaustively searching all k! permutations of the k adjacent variables starting at level
" i [FMK91, ISY91]. Typically this operation is repeated starting from each level until
no improvement in the size is seen.

Based on the observations in Section 6.3.2, we make the following optimizations:

1. When variables corresponding to indices i, i + 1 and i + 2 are being permuted in
a window, some of the cofactors of nodes belonging to indices i — 1 and lower
get forwarded.

2. At the end of one full pass (i.e., when the permutation window has been brought
from top to bottom), nodes corresponding to all the variables may have forwarded
cofactors.

3. Instead of starting the next pass again from the top, we start it at the bottom,
i.e., window slides from bottom to top (Figure 6.14). At the end of the bottom-

i

i+2
Window Window
moving moving
down up

v

Figure 6.14 Alternate top-down and bottom-up swapping.

up pass, all the cofactors of all the variables are updated (as observed in Sec-
tion 6.3.2).



146 » ‘CHAPTER 6. DYNAMIC ORDERING

4. For each top-down and bottom-up pass, we save the overhead of traversing all
the nodes fixing the cofactors.

5. If the reordering converges in a top-down pass, we perform a clean-up phase,
where all the cofactors are updated.

6.7 Node Packing

In the sifting and window algorithms for reordering, one or more variables are moved
up and down in the ordering. As a result, the number of BDD nodes corresponding
to those variable(s) change drastically (from one node at the bottom of the order to
tens of thousands of nodes in the middle of the order). To accommodate the large
number of nodes, a corresponding number of pages gets allocated for the variable being
moved in order. As a result, if the final position of a variable does not require too
many nodes, these nodes are scattered over many pages, i.e., memory fragmentation
occurs. This phenomenon has two side-effects. The first one is a loss of locality of
reference, because even for a small number of nodes, we need to access several pages.
The second problem is excessive memory consumption: if a large number of pages
are left allocated for a variable with few nodes, these pages cannot be used for other
memory allocations and it is possible that the application runs out of memory. To
address these problems, we use the technique of intermittent repacking of nodes. This
technique is transparent to the user (like garbage collection). We define the term Utility
Ratio (u.r.) for a variable at index i as u.r. = ;‘,%}v; where, n; is number of nodes at index
i, pi is number of pages allocated for nodes at index i, N, is number of nodes which
can fit in a page. In other words, Utility Ratio captures the memory fragmentation.
During dynamic reordering, we monitor the Utility Ratio of the variable moving in the
order. Whenever this ratio drops below a threshold, we stop the operation and repack
the nodes. This process requires copying the set of nodes onto a new set of pages,
leaving a forwarding address at the old nodes. Next, we traverse the BDD nodes at the
higher levels (lower indices) to fix their cofactors.

In the window scheme of reordering, we perform this packing for three (the width of
the window) consecutive variables at a time.
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6.8 Solution Approach B

After implementing the techniques described in approach A, we still noticed signifi-
cant computation and memory overhead compared to reordering schemes used in the

- depth-first approaches. In approach B, we evaluated the use of depth-first reordering

technique in a breadth-first based package. This approach consists of following steps:

1. Change the data structure to conform to conventional BDD nodes, i.e., a node
contains — reference count, id, then cofactor, else cofactor, and next pointers.

2. Perform a conventional reordering.
3. Reallocate nodes on pages to maintain the locality.
4. Change back to the original data structure.

The overhead in this approach is involved in (a) changing the data structures in steps 1
and 4, and (b) reallocating the nodes in step 3. We have formulated a strategy to perform
an in-place reallocation of nodes to achieve the local distribution of nodes in memory
(shown in Figure 6.15). This strategy has no memory overhead (the reallocation is
done in-place) and requires three passes of the BDD. The first pass is done on a page-
by-page basis, leading to local memory accesses. The second pass requires tracing the
next pointers of the nodes which could be on multiple pages. The third pass again is
done on a page-by-page basis leading to local accesses.

However, in the current implementation we simply duplicate the final set of nodes
into new memory locations, freeing the old space later on. This results in a temporary
memory overhead.

6.9 Experimental Results
6.9.1 Experimental Setup

We implemented our reordering scheme in the CAL BDD package [RS97]. This pack-
age has been chosen for three main reasons: (i) in [SRBS96], it has been clearly shown
- to outperform other breadth-first based implementations, (ii) CAL is integrated with the
synthesis tool SIS [SSL*92] and verification tool VIS [BSA+96a] making it easier to
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reallocate_nodes_in_place{
I* First pass, get the new addresses of the nodes */
initialize the pointers for each index;
traverse all the nodes on page-by-page basis;
for each node{
get the new address for the node by looking at the corresponding pointer;
put the new address in the next field;
update the pointer;
}
I* Second pass, update the cofactors of the nodes */
while there are still nodes to be updated {
tmp = content of next pointer of node;
store the content of the node in the next pointer;
node = next pointer of the new location;
}
[* Third pass, update the next pointer of the nodes by hashing them appropriately */
traverse all the nodes on page-by-page basis; for each node{
get the value of the next pointer by hashing it to appropriate unique table;
}

}

Figure 6.15 In-place reallocation of nodes to maintain locality.
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perform benchmarking, and (iii) as opposed to other implementations, CAL provides a
comprehensive set of high performance BDD algorithms. This makes the integration of
our work on dynamic reordering worthwhile, making it directly applicable to practical
" problems.

For comparison purposes we have used the CMU package developed by Long [Lon93]
and the CU package [Som97] developed at University of Colorado at Boulder. Both
of these packages are publicly available and are being widely used in industry and
academia. We have used the standard ISCAS and MCNC benchmark examples for our
experiments. In addition we have also used some industrial examples collected from
various sources. All our experiments were performed on a 250MHz DEC Alpha 21164
with 4MB L2 cache, 1GB RAM, and 3GB swap space. A time limit of 3000 CPU
seconds was used.

In the first experiment we used an artificially created example given below:

i=§-1
f= Z aii+3
i=0
We start with an initial variable ordering of ag,ay, ... ,a,—1. For this variable ordering,

the function f has exponential size in n. By changing n, we can do a performance
comparison with gradual increase in BDD size. In Table 6.1, we give the elapsed time
in performing the reordering to obtain the optimal variable order (ao,ag,al,ag_,_l...).
In all the cases the optimal order was obtained by all the BDD packages. We observe
that the approach B (column CAL-B), significantly outperforms approach A (column
CAL-A). Comparing CAL-B with other packages we observe that CAL-B outperforms
CMU package in all the cases; CU performs the best.

In the second experiment, we created output BDDs for combinational circuits and
partitioned transition relations for sequential circuits, and invoked dynamic reordering
to reduce the BDD sizes. In Table 6.2 and Table 6.3, the second column gives the total
number of nodes present in the manager when the reordering is invoked. We compare
the quality and the run time of reordering for both sift and window schemes. Under
the individual package columns, we give the number of nodes at the end of dynamic
ordering and the elapsed time in seconds. We observe that the CU package performs
the best. The performance of CAL-B is comparable in most cases. For window based
reordering we observe that due to different terminating conditions during reordering,



150 CHAPTER 6. DYNAMIC ORDERING

# Initial Sifting Window
Variables Size CMU | CU [ CAL-A [ CAL-B | CMU | CU [ CAL-A | CAL-B
‘ 32 131087 -3 1 2 2 3 2 5 2
34 262160 8 3 4 4 9 6 10 7
36 524305 19 7 11 9 22| 15 23 17
38 1048954 431 16 27 21 47| 32 54 40
40 2097171 95| 36 62 48 1051 71 128 91
42 4194324 208 | 78 141 108 223 | 157 279 206
44 8388629 431 | 168 323 246 | 471 | 334 629 | © 454
46 16777238 | 928 | 376 S.0. 524 s.0. | 743 5.0. 982

Table 6.1 Direct reordering performance comparison for an artificial set of examples.

s.0. : Space out

the quality and time for reordering for different packages differ, making the compar-
isons a bit difficult. For instance, CU takes longer for some examples and also results
in better quality. CAL-B performs better than CMU for similar quality results.
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In Table 6.4 we compare the memory consumption in each BDD package. These
numbers are reported in terms of number of pages (8KB size). For CAL-B we report
the peak memory usage (which includes the memory allocated for reallocating nodes),
- even though the final memory usage is much less. Notice the significant reduction in the
memory used in CAL-B compared to CAL-A. Also note that the memory consumption
in CAL-B is comparable with that in CU, both of which are larger than that in CMU. In
some cases, CAL-A has better memory performance than CAL-B. Upon investigation,
we found that this was due to the memory overhead incurred during the reallocation
of nodes in new memory space. We would like to mention here that in general this
memory overhead was not found to be significant compared to memory used before
reordering. The larger memory consumption in CAL can be taken care of with minor
changes in its implementation.
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6.9.2 Analysis

From the above set of experiménts, we observe a mixture of performance by our re-
_ ordering scheme. We make the following observations:

1. In the current experiments, we have compared the raw performance of reorder-
ing in the two schemes. For practical purposes, however, it is more important
to compare the overall performance of the packages embedded in applications
like sequential verification, design verification, etc. By leveraging the locality
of access, a breadth-first technique can manipulate large BDDs more efficiently
than a depth-first technique. Since invoking dynamic reordering introduces a per-
formance overhead in the breadth-first scheme, reordering techniques are needed
which have lower performance overhead, probably at the cost of smaller reduc-
tion in BDD sizes. However, this loss of quality can be offset by the higher
efficiency of breadth-first manipulation.

2. In the current reordering schemes, it is possible to get better performance by tun-
ing two parameters: the threshold value for invoking dynamic reordering (mini-
mum number of nodes needed to invoke reordering) and the maximum number
of forwarding nodes allowed during reordering (point at which the relevant BDD
nodes are traversed to update the cofactors and to free the forwarding nodes).
The optimum values of these parameters are system dependent. For instance, for
larger available memory we can set them at higher values. This leads to less fre-
quent invocation of reclaiming forwarded nodes (leading to better performance)
without getting into memory overflow problem. The behavior of the first param-
eter (when to invoke dynamic reordering), is a complex one. On the one hand
we do not want to invoke dynamic reordering too frequently (setting the limit
higher) to avoid the computational and memory cost; on the other hand invoking
dynamic reordering when the BDD size gets too large makes it expensive.

6.10 Conclusions

The goal of this work was to establish the feasibility’ of dynamic reordering in breadth-
first packages. In particular, we wanted to demonstrate that the memory and compu-
tation overhead in the core operation of variable swapping can be reduced with proper
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implementation. Our experimental results show that the reordering inside the CAL
package has comparable performance as that of CUDD package. The difference in the
performance can be explained by the fact that the CUDD package has better heuristics
- for dynamic reordering algorithms. However, these heuristics are not specific to the .
package and can be implemented in other packages. In the current implementation, we
have only incorporated the “interaction matrix” optimization as in [Som97]. It is our
belief that by adding other heuristics, the performance of CAL package can be further
improved and would be on a par with any other package. In the current experiments,
we have compared the raw performance of reordering in the two schemes. For prac-
tical purposes, however, it is more important to compare the overall performance of
the packages embedded in applications like sequential verification, design verification,
etc. By leveraging the locality of access, a breadth-first technique can manipulate large
BDDs more efficiently than a depth-first technique. Since invoking dynamic reorder-
ing introduces a performance overhead in the breadth-first scheme, there is a need to
investigate reordering schemes which have lower performance overhead, probably at
the cost of smaller reduction in BDD sizes. However, this loss of quality can be offset
by the higher efficiency of breadth-first manipulation.
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Chapter 7

Efficient Techniques for State Space Traversal

S o far we have presented the techniques which target the efficient manipulation of
binary decision diagrams as a data structure to represent Boolean functions. In
particular, we considered computer architecture based solutions for BDD manipulation
(Chapters 3, 4, and 5). In this chapter, we investigate application-specific solutions for
BDD-based verification algorithms. In particular, we address the issue of state transi-
tion graph representation and state-space traversal of finite-state systems. We establish
that the core computation in BDD-based state-space traversal is that of forming the
image and pre-image of a set of states under the transition relation characterizing the
system. In this chapter, we consider several solution approaches order to make this step
as efficient as possible.

Th chapter is organized as follows: Section 7.1 presents the preliminaries and moti-
vates the need for symbolic techniques for state enumeration. In the next five sections,
we describe various techniques which are targeted towards state-transition graph rep-
resentation and state enumeration. In Section 7.2, we describe our method for compact
FSM representation of a network. Section 7.3 discusses our technique for early variable
quantification for efficient image/pre-image computation. In Section 7.4, we discuss a
technique to compactly represent the behavior of the finite-state machine by partition-
ing the underlying combinational network. We describe our findings on efficient usage
of don’t cares in image/pre-image computation in Section 7.5. In Section 7.6 we present
a new technique to eliminate redundant latches, th.ereby improving the efficiency of
state-space traversal algorithms. We provide experimental results in Section 7.7. Most
of the work presented in this chapter was first reported in [RAP+95].

159
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7.1 Motivation

In this section we motivate the importance of efficiently computing the image and pre-
_ image of a set of states in various formal verification paradigms. We also introduce the
problem of state explosion to motivate the need for using BDDs for representing and
manipulating state space.

We start by defining the concepts of the image and pre-image of a set of states and
also the set of reachable states in a finite state system. Following definitions assume a
transition relation T'(%,#,y) : B* x B" xB* — B.*

Definition 1 Let P(X) € B". The forward image (also called image) of P under the
transition relation T is the set Q, such that,

FeQ « 3IWeP st TELY) =1 (7.1)

Definition 2 Let P(¥) € B". The pre-image of P under the transition relation T is the
set Q, such that,

€0 & FePIist TEEy) =1 (1.2)

Definition 3 Let I(X) be the set of initial states of the system. The set of reachable
states of the system, R(¥) is the least fixed point of

Ro(y) = I()
Rk+l (5’.) Rk(j") U 35:', i [Rk(f) AT(E’ ii,j’.)] (7-3)

7.1.1 Formal Design Verification

In this section we informally describe the CTL model checking and language con-
tainment approaches to formal design verification and indicate the core operations in
the underlying computation. In both cases the underlying design is characterized by a
Kripke structure [CES86].

*For a brief background on FSM and the terminology used in this chapter, please refer Section 2.3.
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{a}

Figure 7.1 An example illustrating a Kripke structure. S = {s0,51,52,53,54,55,56}, AP =
{a,b}. An edge from state s;.to s; indicates that (s;,s;) € T. States are labeled with the sub-
set of APs true at the state. A path through K is a sequence of states 6},02,--- such that
Vi(Gi,0i41) €T.

Definition 4 A Kripke structure X is a triple (S,T,L), where S is a finite set of
states, T C S X S is the transition relation, and L : AP — 25 is the labeling function
mapping atomic propositions (AP) (we view outputs as atomic propositions) to sets of
states. A pictorial representation of a Kripke structure is given in Figure 7.1.

CTL Model Checking Paradigm

In the CTL model checking paradigm, properties are expressed as formulae from an
inductively defined syntax. Truth of the formulae is interpreted over states in Kripke
structures; determining the truth value of a formula over a state in the structure is re-
ferred to as model checking and can be algorithmically performed using fixed point
calculations. Precise syntax and semantics are given in [Eme90]. As an example, state
5o in the Kripke structure of Figure 7.1 models the formula EF (a A b) (“there exists
a path to a state where both a and b hold”). This is because s, is labeled by a and b,
and there is a path from sg to s1, namely so — s2 — 53 — 55 — 51. This result can be
mathematically obtained by finding the least fixed point of

Ro(®) = p
Rit1(X) = Ri(X) U EXRy(R) (74)

where p denotes the set of states which satisfy the formula (a A b), i.e. set of states
labeled with “g” and “b”. Note that the set of states satisfying EX R(X), i.e. the set of
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states that can reach some states in R(¥) in one step, can be found by computing the
inverse image of R(X), with respect to the transition relation. Similarly, evaluation of
other CTL formulae require repeated image and pre-image computations.

- Language Containment Paradigm

In the language containment paradigm, the design is identified by the set of generated
output traces Lp, and a property is given by a set of acceptable traces Lp (typically spec-
ified by a set of states, also called fair states). Verification consists of checking whether
all design behavior is acceptable, i.e., checking Lp C Lp, which in turn is equivalent
to checking that Lp N Lp is empty. Kurshan [HK90] observed that for certain classes
of properties (namely deterministic L-automata) the set Lp is efficiently computable.
Both Lp and Lp are modeled as Kripke structures and a new Kripke structure is formed
by composing them appropriately. Verification consists of finding a path in a Kripke
structure which starts at the initial state and leads to a fair cycle i.e. a cycle which
includes at least one state from a designated subset of fair states F [EL85]. Conceptu-
ally, this check may be performed by first finding the set of states F* which reach a fair
cycle. Thus the property fails if and only if the initial state lies in F* (since we want
LpNLp = ¢, i.e., no fair cycles).

Suppose R..(¥) represents the set of reachable states. Limit the transition relation to
the set of reachable states by T(%,¥) = T (¥,¥)R(%).

The algorithm to find set of states F* is as follows:

1. Initialize Fp(¥) = Roo(%).
2. Compute A.. using the following fixed point computation:
Ao(%) = Fo(X)
A1(®) = AdX) 0 B[AG) AT ()] (7.5)

A..(9) gives the set of states which can reach some states of Fo(¥) which lie on a
cycle.

3. Compute B.. using the following fixed point computation:
Bo(X) = A=(X) N F(%)
Bi1(®) = Bi(®) U F[B(G)AT(E)] (7.6)
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B..(%) gives the set of states which can reach some states of Aw(¥) N F(%).
4&@:&@.’
5. Repeat (2-4) until convergence.

6. F* is given by the least fixed point of

Co(®) = FR()
Ci1(®) = G(®) U F[TEH)AGH)] 1.7

It is apparent from Equations [7.4, 7.5, 7.6, 7.7] that the core computation in verifica-
tion consists of taking the image or inverse image of sets of states under the transition
relation.

7.1.2 State Explosion

Often desighs are constructed by linking components together. The synchronous prod-
uct of components defines a single Kripke structure (also referred to as the product ma-
chine), the state space of which is the product of the components’ state spaces. Hence
algorithms that directly manipulate states will have time and space complexity that is
exponential in the size of the system description. Indeed, the computational complexity
of state transition graph related problems is known to be PSPACE—complete [ASB93].
The complexity introduced by concurrent interaction is popularly referred to as the state
explosion problem. The quest for heuristic solutions to this problem forms the forefront
of research in formal verification [ASS*94, BCMD90, CHM*93, CM90b, Gra94].

Transition relations and sets of states can be represented using BDDs of their charac-
teristic functions, which can be used for efficient fixed-point computations [BCMD90,
CMO90b, Pix90]. BDDs are now extensively used for both design and implementation
verification of hardware systems and many non-trivial design examples have been ver-
ified using BDDs [CYF94, McM93]. Still, there are many instances of medium sized
circuits that cannot be verified using existing BDD techniques.

In the next five sections, we describe various techniques which enable state transition
graph representation and state-space enumeration for large designs. These are:
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e Use of clustered transition relations — grouping parts of the design to reduce the
number of iterations required for each image and pre-image computation.

e Ordering of clustered transition relations for efficient image and pre-image com-
putation.

e Network partitioning for compact state-transition graph representation
e Use of don’t cares to reduce BDD sizes and computation times.

e Removal of redundant latches via constant propagation and retiming.
7.2 Clustered Transition Relations

A transition relation can be represented either as a monolithic relation or as a partitioned
one as described below.

Monolithic Transition Relation: In this representation, the transition relation of the
system is represented by a single BDD [BCMD90] which is the conjunction of
the transition relations of the individual latches. As the circuit complexity grows,
the size of the transition relation usually explodes. Hence this approach becomes
infeasible for large, complex circuits.

Partitioned Transition Relation: In this case, a vector of transition relations is used;
each element of the vector represents the next-state relation for a latch. Coud-
ert [CM90b] proposed reducing image computations to range computations by
exploiting the property of the constrain operator; the range computation is per-
formed by recursive co-factoring. The efficiency of this approach comes from
caching intermediate results and exploiting disjoint support. Touati [TSL*90]
suggested a similar approach based on forming the product as a balanced binary
tree. Image computation or pre-image computation is carried out iteratively using
transition relations for individual latches. Heuristically speaking, as the number
of latches in the system grows, the computation time increases.

We present a simple extension of these two approaclies which overcomes some of their
shortcomings. We represent the transition relation of the system by a vector of clus-
tered transition relations. First, the next-state relation of each latch is computed. Next,
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a group of transition relations are clustered together to form a vector of clustered tran-
sition relations. The idea is illustrated below.

Suppose the original vector of transition relations corresponding to individual latches
- is given by T; = T;(%,,y;) for i = 1,2,...n. Then the image of a set of states A(X) is
given by,

Image(A(%)) = 3%, @[AG) [ [ 1% %,7)] (7.8)

The transition relation of a clusters of latches is the product the transition relations
of corresponding latches. If there are K clusters Cy,C,, - - - Ci of latches, then the image
computation can be equivalently written as,

i=k
Image(A(%)) = 3%, i[A®) [ Tc] (7.9)

i=1
where T¢; = [1jec, T(%,4,y;)-

In [BCL91a], Burch also proposed the use of clustered transition relations to rep-
resent circuits more efficiently. Latches were grouped together to form clusters but
no automatic way to form clusters was given. Their technique possibly required user
expertise, based on circuit structure.

In our approach the user specifies a limit on the BDD size of individual clusters
(partition size limit). The next-state relations of latches are ordered using the heuristics
given in Section 7.3. Then the next-state relations of latches are conjoined in this order
until the product size surpasses the user specified limit. At this point the current cluster
is complete and is stored in an array. Then, the clustering continues starting from the
next latch. This is illustrated in Figure 7.2.

7.3 Ordering of Clustered Transition Relations

Since the system behavior is represented in terms of clusters of transition relations,
the core verification operations (image and reverse image computation) are performed
iteratively, one cluster at a time. Suppose A(X) represents the set of states, and T;(%, #, ;)
represents the transition relation of the # k cluster. Equation 7.9 can be rewritten as

Image(A('-x.)) = af’ﬁ [A('-x‘) A Tl(f)aayl) A TZ(i;iz’j"Z) A
oo A T(EE,5)] (7.10)
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Figure 7.2 Illustration of ordering and clustering.
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Notice that if we were to take the product of individual clustered transition relations
T;’s and finally with the set of states given by A(X) before quantifying out any variable,
the computation will amount to using a monolithic transition relation. As a result it will
suffer from the similar problems as the monolithic transition relation approach.

It has been empirically observed that quantifying out variable(s) from a function
leads to smaller BDD sizes. But existential quantification does not distribute over con-
junctions, i.e.,

= (Tl (x’y) : TZ(xa)')) # 3T (X,}') -Jx Tz(X,)’)

Hence, we cannot simplify individual clustered transition relations before taking the
product.

However, existential quantification does distribute over conjunction when one of the
conjuncts does not depend on the variable being quantified. Some examples are shown
below:

aw,x,y,zA*(W,x) 'B(}’a z) = (aw,xA(W)x)) : (3)’,23 (ya z))
3y AX,y,2) - Bx,y) = 3ry(B(xY) - (AR 7))

The technique of distributing the quantification over conjunction appropriately is pop-
ularly known as early variable quantification. In some cases there may be more than
one way to perform the-computation as shown in the following examples:

aw,x,y,le (W) x,y) : Tz(y’ Z) 'A(W, X, ) Z)
| = Juayliwmx,y) - (3 2(12) -A(w,x,3,2))
EIy,sz(y,z) : (aw,le (Wax,)’) -A(w,x,3,2))

JwxyTi (4, v, W, x) - (v X, ,2) - A(W, x,,2)

3w,le (ua Y, W,x) : (By,zﬁ(v,x,y,z) 'A(w’xs)'1 Z))

By,zTg(v,x,y, Z) - (aw,le (u’v7 Wax) 'A(Waxry’ Z))

In both the examples above, the existential quantification can be done in two ways
corresponding to two different permutations of 71 and 75. For a problem with n com-
ponents, there are n! permutations possible. The complexity of a computation of any of
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these permutations will depend on the amount of simplification performed during the
process.

We can apply this technique to Equation 7.10 by moving transition relations out of
- the scope of the existential quantification if they do not depend on any of the vari-
ables being quantified. For a given ordering of transition relations this equation can be
rewritten as,

Image(A(i)) = a:t‘k’l-illz (n(iaﬁ,ﬁ) A (azk—hﬁk—l H—l('-x:ﬁaykd—l) A
e A (a-x‘hﬁl Tl(i.’iia)?l) A A(i)))) (7.11)

7.3.1 Previous Work

Touati [TSL90] computes the image of a set of states by exploiting the property of
the generalized cofactor in converting the image computation into range computation
given by

i=k
3%, i [HTiA(f)(f,ﬁ,)"fi)]
i=1

where T;4(z) denotes the generalized cofactor of T;(%,#,y;) with respect to A(X). This
range computation is performed using a balanced binary tree — leaves correspond to
terms and variables at nodes of the tree that do not appear in the support of nodes
elsewhere are existentially quantified. Burch {BCL91a] criticized this approach on the
grounds that generalized co-factor may introduce new variables in the supports of the
terms and delay the ability to quantify out variables. Heuristically, this would lead to
larger BDD size of the intermediate product terms. Note that if 7;(X,#, ;) is conjoined
with the product term obtained so far, it introduces |¥;| new variables (the correspond-
ing next-state variables). We argue that the number of the variables that are existentially
quantified from the product term and the number of variables that are introduced in the
product term determine the computational efficiency of this operation. Thus the space
requirement and the efficiency of image and pre-image computations become depen-
dent on the order in which these clusters are procéssed. In [BCL91a], an ordering
scheme of the partitioned transition relation is proposed, based on the semantics of the
underlying model. However, this requires detailed understanding of the semantics of
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the model and hence is not easily automated. [CC93] introduces a new “exist” gener-
alized cofactor which allows for distribution of conjunction and quantification. Their
technique for the early quantification problem is quadratic in the number of relations,
and becomes impractical when the number of relations is large. [GB94] give a sim-
ple automated way to order the relations when each relation consists of the next-state
function of a single latch. The primary criterion used is to choose the relation next in
ordering for which the maximum number of variables can be quantified out from the
new product (unique variables belonging to that partition). In case of a tie, the relation
with the maximum support is chosen.

Since, in our approach, clusters do not necessarily consist of a single latch, the order-
ing criteria should also take into account the number of next-state variables introduced,
while choosing the next cluster in the order. It was found that the maximum depth in
the BDD ordering of any variable in a partition, referred to as the index of the variable,
also affects the performance. The reasoning behind this is that existentially quantifying
a variable from a function becomes computationally less expensive as the depth of the
variable in the ordering increases.

7.3.2 Our Heuristic

In our heuristic, four different factors were used to decide the order of the partitions. We
maintain two sets of clusters P and Q. The set P denotes the set of clusters which have
already been ordered and the set Q contains the clusters which are not yet ordered. Ini-
tially, P is an empty set and set Q contains all the clusters. In the following expressions,
PS, PI and NS denote the set of present state, primary input, and next-state variables,
respectively, a variable is denoted by v, S(T') represents the set of support variables of
T and || A || denotes the cardinality of the set A. For each cluster C; in the set Q, we
compute the following parameters:

Lovg=l1{v] (ve S(Tc)) A (ve PSUPI) A (v & S5(Ic;) Cj # Ci,C; € D}l ie.
the number of variables which can be existentially quantified when Tc; is multi-
plied in the product.

2. we;=||{v| (ve PSUPI) A (ve 8(Tc;)) } ||, i.e. the number of present state and
primary input variables in the support Tg;.
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3. xc;=||{v| (ve PSUPI) A (vE S(Ic;), C;j € Q) } |, i.e. the number of present
state and primary input variables which have not yet been quantified.

4. yo,=||{v| (ve S(Tg)) A (vE€NS) } ||, i.e. the number of next-state variables
that would be introduced in the product by multiplying Tg;.

5 z2c;=||{v| (ve NS) A (ve S5(T;),Cj € Q) } ||, i.e. the number of next state
variables not yet introduced in the product.

6. mc, = max{index(v),v € S(T¢;) A v € (PIUPS) }, i.e., the maximum BDD index
of all variable to be quantified in the support of Tc,.

1. Mc; = ma.x{mcj, Cj€ @}, ie. the maximum BDD index of a variable to be
quantified out in the remaining clusters.

In order to normalize the effect of parameters 1, 2, 5, and 6, we form the following
ratios.

1. RL = (v¢;/wc,).
2. RZ, = (we;/xc,)-
3. R}, = (v /zc)-

4. RE, = (mc,/Mc,).

The cost function is defined as a weighted sum of these four ratios. The order of the
clusters is obtained by greedily choosing the cluster with the best cost function value
at each step. The chosen cluster is moved from set Q to set P and the process is re-
peated until all the clusters are ordered (set Q becomes empty). The weights used can
be interactively varied. We performed a series of experiments to find a good combina-
tion of these weights. The above algorithm has a straightforward implementation with
O(k? - n) complexity, where k is number of clusters and » is number of latches. This
complexity can be reduced to O(k-n) with appropriafe book-keeping. Note that the cost
of finding an optimal ordering is paid only once. The same ordering can be used for
successive image and pre-image computations inside some fixed-point computation.
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7.4 Network Partitioning

The analysis in Sections 7.2 and 7.3 assume as a first step that the next-state functions of
the finite-state machine have been obtained. For large designs, it is often not possible to
build monolithic next state functions for latches in terms of primary inputs and present
state variables. In these cases, either the BDDs grow too large to be built or their
manipulation becomes extremely inefficient.

To contain the BDD size while building the next-state function, we adopt a simi-
lar strategy as in building the clusters of next-state relations. We build the next-state
functions by composing appropriate BDDs for the nodes in the network. After each
composition, we monitor the size of the BDDs and if the size of the BDD for that node
becomes larger than a threshold, we introduce an intermediate variable. The algorithm
is shown in Figure 7.3. The resulting structural partition is shown in Figure 7.4. A
related technique is also presented in [INC*96). The idea of controlling BDD sizes by
introducing variables has appeared in literature before [CM90a, CCQ94].

CreateNetworkPartition(N) {
nodeList = network nodes sorted in topological order;
foreach node in nodelList {
build function f for the node by composing the fan-ins;
if BDD size of f > threshold {
instantiate a new BDD variable and assign it to the node;
}

Figure 7.3 Algorithm for creating partitioned representation of the network.

After building the next-state functions of all the latches as described in Figure 7.3,
we assemble the next-state relations for all the latches as well as the relations for the
intermediate variables. This whole set of relations is then appropriately combined to
form clusters which are ordered as described in Section 7.3. For clustering and ordering
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Figure 7.4 Using intermediate variables to represent transition relation.
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purposes, we treat the intermediate variables as primary inputs.
In the following theorem, we establish that even for the partitioned network Equa-
tion 7.11 correctly computes the image of a set of states.

Theorem 2  Suppose, 21,22, ... ,2 are the intermediate variables introduced during
building of next-state functions. Suppose Tj(%,ii,Z) = f5 @z; represents the transition
relation corresponding to the j'" intermediate variable and T;(%,4,Z,y;) = iy rep-
resents the transition relation corresponding to the i k state variable. Further, suppose
T;(X,#,y;) represents the partitioned transition relation for the i'h state variable in the
finite state machine. Then,

Jaz (I'[TZ( ,y:)A(x)) = Jazz KH 1;(%,4,2) HT,(JH Z,yi ) A(x)]
i
Proof:
. _ 1
%7 I:(H]}(iaaaz) HZ(iaiz,zayl)) A(x) =
J i
Jiz [3~ (HT (%,u z)HT}(x i,y )A(x)
For the result of the image computation to be equal we need to show that
3 (HTJ(X"-“ )]_-IT(x i,yi) ) = Hﬂ(f,ﬁ,y,')
J i
This follows from the composition rule f(%)|x=¢ = Ix(f(X) (x: D g))- [

7.5 BDD Minimization Using Don’t Cares

At various steps of the verification algorithm, we often encounter flexibility in repre-
senting a set of states or the transition relation. In particular, we might have a choice
of adding or removing elements of a set S, between a given lower bound and an upper
bound. This can be expressed by the expression S; C S C Sy, where Sz and Sy are the
given lower and upper bounds respectively. Any S which respects these bounds will
be acceptable. Similarly, we might have a choice of adding or deleting a transition in
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the transition relation, i.e., given T.(¥, #, ) and Ty (%, &, ¥), any T (%,#,y) satisfying the
condition,

TL(:t"iiay) .g T(:Y., l-isy) Cc TU(fa ﬁaj’.

will be acceptable for the computation at that step.

These flexibilities can be alternatively represented as a pair (f,c), where f is the
function and c is the care-set of minterms, i.e., those points in Boolean space where we
care about the value of f. Essentially, we have the freedom to choose any function g
such that for every minterm in ¢, g matches the value of f. All other minterms (those
in ¢) belong to what is called the don’t-care set. On those minterms, we can pick any
value of g. For instance, the flexibility to represent a set given as 5§y C S C Sy, can
alternatively be represented as (Sz,S. + Su). A

Since the size of a BDD representing a set is not directly correlated to the number of
elements in the set, the presence of don’t care minterms leads to a BDD optimization
problem. This is illustrated in Figure 7.5. Figure 7.5(a) shows the original function.
The don’t care minterm is represented as terminal labeled “DC”. By choosing a value of
1, we get the BDD shown in Figure 7.5(b) and the BDD node count remains unchanged.
However, by choosing a value of 0 for the don’t care minterm, we get the BDD in
Figure 7.5(c), and the BDD size reduces by 1.

y Y
pcl |o| |1

(a) (b) (c)

Figure 7.5 BDD optimization using don’t care minterms.

The problem of finding the optimal assignment to the don’t care points is
NP-complete [TY93]. A lot of research work has gone into simplifying the BDD rep-
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resentation of a function f with respect to a care-set ¢ [TSL*90, CM90b, SHSB94,
HBBM97). By reducing the BDD sizes via usage of don’t cares, the computation time
of various BDD operations improves.

Here we outline various scenarios where the don’t cares arise in BDD-based formal
verification.

1. Model checking: In general, model checking algorithm consists of multiple fixed-
point computations. These computations in turn make use of image/pre-image
operations. If a reachability operation is performed on a system a priori, the
unreachable states could be used as don’t cares to simplify the operands for
image/pre-image operations. For instance, the least fixed point computation for
verifying the CTL formula EF (p) .Y Suppose, P represents the set of states where
proposition p is true and R represents set of reachable states, EF (p) can start with
the set of states S, suchthat P-RCSC P.

2. Reachability: Consider the following fixed point computation for finding the set
of reached states:
Ro(X¥) = Init(X)
Ri1(5) = R(3) U 33, [T(F4,5) AR(F)] (7.12)
Observe that in Equation 7.12, any set of states between Ry \ R¢—; and Ry can be
used in place of Ry while preserving the result for Rx,; [CM90b]. Thus R— can

be used as a don’t care set to minimize the BDD size of the states of which the
image is taken.

3. Simplification of the transition relation during image computation. Consider
Equation 7.11 which can be rewritten as

Image(A(%)) = 3%,4 [A®) A Ti(F,8,51) A REDF2) A ... A TlZ,6,5)]

Note that each 7; is a relation over the entire Boolean space of X. We can make
use of the following fact:

IXTEENAF) = 3% (T(REI)apAR) (7.13)

*For a detailed description on the syntax and semantics of CTL, please refer to [CES86).
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— =t =f

where T (%, %,5)|4(z) denotes the generalized cofactor of T (3, ,¥) with respect to
A(X). The generalized cofactor of a function f with respect to another function g
results in an incompletely specified function i = f|,, for which the onset, offset
and don’t care sets are given by f - g, f - g, and g respectively. For our purposes,
we will overload the “|" operator and use f|, to indicate the minimization of
BDD representation of the function f with respect to the don’t care set g. The
“constraint” method (proposed in [CM90b, TSL*90]) is “image” preserving, i.e.,
if “constraint” is employed to simplify the BDD of T(X,#,¥) in Equation 7.13
and the simplified BDD is given as T(%,&,¥), then Equation 7.13 simplifies to
the following:

IF(TEENAGF) = 3%(FE4,5)

Note that, there is no need to multiply the set A(X) with the simplified transition
relation. However, BDD simplification my introduce new variables in the support
of the function being simplified. The set of new variables will depend on A(X).

For a transition relation vector with k components, the corresponding simplifica-
tion is given as:

35:',1'4’ [A(f) A T](},l—l‘,j”l) A TZ(gaﬁaS;Z) AT 7}((},;“15"’()] =

3%, [A® A TiEE5) | A REET)ag A - A Te(Z 55 |ag ]

If we apply the “constraint” method to simplify the individual transition relations,
we would not need to multiply A(X) before performing the quantification. How-
ever, since our cluster ordering technique described in Section 7.3 makes use of
support variables of each cluster and the “constraint” method can potentially in-
troduce new variables in the supports of relations, we cannot have a static sched-
ule of early variable quantification. That means, we would need to pay the price
of finding the obtaining the optimal schedule for each different value of A(%).
This is found to be computationally expensive. Hence, in our approach we make
use of another BDD minimization technique — “restrict” (proposed in [CM90b]).
This method does not introduces any new variables. The overall motivation is
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that co-factoring and simplifying each transition relation will result in simpler
BDD:s and hence faster manipulation.

4. Simplification of the transition relation with respect to range care set: Sometimes
during an image (pre-image) computation, a care set is specified in the co-domain
(domain) which can be used to further simplify the transition relation. Suppose
we would like to compute the image of A(¥) and the range care set is specified as
B(¥). We can perform the following simplification of transition relations:

i
3%,4 ( [15E 4,5)amse) A(f)) (7.14)
i

5. Simplification of image/pre-image with respect to range/domain care set: After
obtaining the image (pre-image), the range (domain) care set can be used to sim-
plify it even further in the following way. Suppose, C(3) is the image of A(X)
with the range care set B(y) as obtained in Equation 7.14. We can further sim-

plify C(3) as C(3)|z)-

6. Simplification of the transition relation using approximate reachability analy-
sis: Conservative approximations to the unreached states also yield don’t cares.
Given a set of clusters {C},C3,...,Ck}, we can compute an upper bound on the
projection of reachable states in the product space to a component C;. Assign-
ments to the latches in component C; not corresponding to the above states can
never be attained in any environment.

In Section 7.7.4, we present results indicating the performance improvement achieved
via usage of don’t cares in minimizing BDDs.

7.6 Removing Redundant Latches

To a first approximation, the BDD sizes of transition relations and state sets depend on
the number of variables. The basic motivation behind removing redundant latches is to
simplify BDDs for transition relations and reached state sets by removing variables.
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L1 L3
- > ] L5
GND - 1 S
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>
L2 L4

= Vdd

Figure 7.6 Propagation of constants through latches: L;, L3, L4 and Ls are redundant.

A latch is redundant if it can be replaced by a wire without changing the functionality
of the circuit. Replacing a latch by a wire, reduces the number of BDD variables by
two and, heuristically speaking, would also reduce the size of the BDDs that depend on
these variables.

We describe two methods of finding redundant latches and removing them.

7.6.1 Constant Propagation

Sometimes latch inputs are tied to either VDD or GND. In our algorithm we detect such
latches and propagate their constant values to their fan-outs (hence the term “constant
propagation”). An example is shown in Figure 7.6.

A recursive algorithm for removing redundant latches is the following:

1. The input to the algorithm is the next-state functions of the latches.

2. Each latch has two flags — value (“constant” or “variable”) and status (“pro-
cessed” or “unprocessed”).

3. Mark all latches as “unprocessed”.
4. While there exists unprocessed latches, pick an “unprocessed” latch L.

5. Call the function find_redundant(L).



7.6. REMOVING REDUNDANT LATCHES 179

6. return

find_redundant(L):
1. If L is processed, then return its value (“constant” or “variable”).
2. Mark L as “processed”
3. If L is tied to VDD or GND assign value “constant” and return.
4. Assign value “variable” to L.
5. For each variable v in the support of the next-state function of the L,

(a) If v corresponds to a primary input, mark L as “variable” and return.

(b) If v represents a wire with constant value “0” or “1”, continue.

(c) Find latch L; for which v is the present state variable, and call find_redundant(L;).

6. Modify the next-state function of L by propagating the constant value of fan-ins.
7. If the next-state function becomes a constant, change the value of L to “constant”.
8. return value.

At the end of the algorithm, the next-state functions of latches do not contain present-
state variables corresponding to redundant latches. These variables are not considered
for further BDD manipulations.

In a related work Beer et al. [BBDG*94] also mentioned a “constant-elimination”
technique to reduce the number of inputs and memory elements.

7.6.2 Latch Removal by Retiming

Retiming rearranges the storage elements in a circuit to reduce its cycle time or to
reduce the number of storage elements, without changing its functionality. We use re-
timing to reduce the number of storage elements. A simple example to demonstrate this
is shown in Note that, the inputs of these two latches are fed by the same combinational
logic. Hence the next-state values of these latches will always be the same. The new
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(a) (b)

Figure 7.7 Removing latches by retiming.

(a) (b)

Figure 7.8 Removing latch by retiming, a more general case.

circuit with the redundant latch removed is presented in Figure 7.7(b). The example
in Figure 7.7 is a special case of one in Figure 7.8. In the more general case, latches
have feedback paths. However, if the combinational logic blocks feeding to the latches
have identical functionality (if C; = C3 in the Figure 7.8), we can substitute one of the
latches by wire.

Figure 7.7(a).

The following algorithm detects such general cases and removes redundant latches:

1. Sort all latches in increasing order of the support size of the corresponding next-
state functions.
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2. For each pair of latches L; and L;, with equal support size do the following:

(a) Suppose x;, x; denote the corresponding present-state variables (outputs of
latches) and F;, F; are the corresponding next-state functions.

(b) Find the co-factors Fi,, Fiz;, Fj

ey 20 Fig
(c) ¥Fy, = ijl, and Fiz, = F}'fj then remove L; from the circuit and replace it

by a “wire” instead (as illustrated in Figure 7.8).

The correctness of this algorithm is explained below:
Suppose F and G is a pair of functions such that all the support variables except one
are common to them. For example, F(x;,x2,... ,X,y) and G(x1,x2,... ,%,2) will be
such a pair. Now from Shannon decomposition,

F = yR+yF

F,, F3,G;, and G; have common support variables. Now, if F, = G, and 5 = Gj, then
except for the variable labeling, F and G are computing the same function. Hence, if
we substitute one variable (say y) by another variable (say z), we can replace F by G.
As shown in Figure 7.8, we are able to share the logic if C; = Cs.

A similar approach was proposed in [Lin91] who described an algorithm to remove
a maximal set of state variables without affecting the uniqueness of the reachable
states. The problem with that approach is that the set of reachable states has to be
pre-computed. In many big designs computing the reachable states becomes infeasible
due to the size of the BDD. In our technique, redundant latches are removed once the
next-state functions are calculated. Hence the size of the reached state set is reduced
before we need to compute it.

It is interesting to see that our approach is orthogonal to Lin’s. After minimizing
the transition relation using this approach, we can still apply Lin’s method to possibly
remove more latches and get a further reduction in BDD size after computing the set of
reachable states. '

Notice that retiming, in its more general form, can reduce the number of latches
significantly while preserving the I/O functionality of the circuit. However, since in
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this case, latches can change locations arbitrarily, the functionality of a latch may not

be preserved. By performing only simple retiming transformations, as shown in Fig-
ures 7.7 and 7.8, we preserve the functionality of each “Jatch”.

7.7 Experimental Results

To illustrate the effectiveness of these algorithms and to compare them with some pre-

vious approaches, we performed experiments using sequential ISCAS/MCNC bench-

marks and some industrial examples. Important characteristics of some of these exam-

ples along with a brief description are presented in Table 7.1. We perform reachability

analysis and model checking on these examples to demonstrate the effectiveness of

various techniques proposed in this chapter.

Unless otherwise noted the experiments were performed on a DEC5900/260 work-
station with 440 MBytes memory and a limit of 10000 seconds on CPU time and 400
MBytes on data size were used while running the experiments.

[ Example | #Latches | # Gates | Description
sbc 28 927 ISCAS’89 sequential benchmark (a snooping bus controller).
Gigamax 45 994 Cache coherency protocol description for hardware
implementation of Gigamax distributed multiprocessor [McM93].
Abstracted Byte Data Link Controller (BDLC);
BDOLC* Manages the transmit-receive protocol between microprocessor
144 4775 | and a serial bus. Contains the abstract description of
BIT module. Part of a commercial chip.
BDLC 172 6639 | Unabstracted version of the previous example.
[ 2MDLC 83 2596 | Two BIT modules interacting
via a serial bus using BDLC protocol.
BIU 154 3018 | Abstracted version of a Bus Interface Unit
from a commercial microprocessor.
Every 63 838 | Cache flush controller module
of a commercial microprocessor.

Table 7.1 Description of industrial examples.

7.7.1 Clustering

Table 7.2 shows our results on clustering by BDD size. We make the following obser-

vations. Setting higher limits obviously leads to fewer clusters but the total number of
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BDD nodes taken by the clusters increases. As shown in Equation 7.9, image compu-
tation is performed by taking the product of transition relations of clusters sequentially
(we will refer to them as sequential iterations). The time taken in forming this product
is a function of the number of clusters as well as the cluster sizes. This results in to-
tal CPU time being a convex function of partition-size limit. This can be reasoned as
follows.

Using a threshold limit of 1, results in a procedure which uses the least amount of
space but results in maximum number of clusters (equal to the number of latches in
the system) implying maximum number of sequential iterations. As the threshold is
raised, the number of iterations is reduced, while BDD sizes of the operands increase,
potentially leading to greater computational complexity. In the beginning, the effect of
reduction in the number of iterations dominates over the effect of increasing BDD sizes.
As a result, initially run time is reduced as the cluster size is increased. Later, the effect
of increasing BDD sizes (greater computational complexity) dominates the savings due
to decreasing number of iterations and we observe an increase in runtime. This is true
for all the examples, except ones for which the monolithic transition relation is not very
big (e.g. 2MDLC).
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7.7.2 Cluster Ordering

Table 7.3 compares the performance (CPU time in seconds) of our ordering heuristic
. with the heuristics proposed in [GB94, TSL*90). Specifically we report the time taken
in the reached state computation. The weights chosen after some experimentation in

our heuristic were W; =2, W =1, W3 =1,Wy=1.

Various Heuristics
Example | [TSL*90] | [GB94] | Proposed
BIU 305 326 315
Every 6087 5857 5788
2MDLC 176 244 179
BDLC* 140 191 144
BDLC | space out | 3023 2231
Gigamax 4.8 7.4 4.8
sbc 116 135 118

Table 7.3 Comparison of CPU time (in seconds) for different cluster ordering heuristics.

The above results indicate that the proposed approach always outperforms that in
[GB94]. Improvements up to 25% were achieved.
Although in some examples (BIU, BDLC*, 2MDLC, sbc) Touati’s heuristic [TSL*90]

performs marginally better than ours, on BDLC, Touati’s approach ran out of memory.

7.7.3 Network Partitioning

In Table 7.4, we present results on network partitioning based on BDD-size heuristic.
We make following observations from the data presented in the Table 7.4.

1. The number of partitions monotonically decreases with increase in threshold
value. This is obvious, since increasing threshold value allows us to compose
larger BDDs before creating a partition. -

2. The total number of BDD nodes in all partitions increases with the threshold
value. This is because at lower threshold values, intermediate variables are cre-
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O

Figure 7.9 Tlustration of effect of partition threshold on the overall BDD size.

ated more often which keeps the BDD size in control. However, in some cases,
the shared size of the BDDs might reduce with increased threshold value because
of the simplification resulting due to reconvergent signals. This is illustrated in
Figure 7.9. Consider the following scenario for the Figure 7.9.

(a) Two different threshold values: 11 and ty, with 11 < 5.
(b) The BDD sizes for nodes A and B is greater than #, but less than 7.

(c) Due to reconvergent fanout the AND of signals A and B consists of a single
minterm. The number of BDD nodes required to represent this minterm is
linear in the number of inputs.

(d) Since the nodes A and B do not fanout to any other node in the network,
BDD:s for nodes A and C can be freed after building the BDD for node C.

For the smaller threshold value, 7, we create two new variables a and b for
network nodes A and B, respectively. The correlation between the BDDs for A
and B is lost when we compute the BDD for node C. As a result, even though the
BDD size for C is small (2 BDD nodes), the total shared size which combines
the BDD sizes for A and B is large.

For the larger threshold value, ty, the composition of the BDDs for A and B and
later on freeing them results in overall smaller shared BDD size.
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3. With minor anomaly, the time required to build BDDs for the partitions increases
monotonically with increasing in threshold. This is because as the threshold
value is increased, larger BDDs are composed to compute the functionality of
each node in the network, leading to increased computation time.

7.7.4 Usage of Don’t Cares

In Table 7.5, we give results on computational and memory performance improvement
achieved by using don’t care during reachability analysis. A performance improvement
of a factor from 2 to 15 and a memory usage improvement of up to factor of 2 is
observed.

In Table 7.6, we give results on usage of don’t cares during model checking. We make
following observations:

1. Without any don’t care usage (Column D), we were unable to complete model
checking on 6 out of 11 examples (exceeded time limit of 1000 CPU seconds).

2. With simplification of pre-image using unreachable states as don’t cares (Col-
umn C) during model checking we could complete one more example (8-arbit).

3. The simplification of transition relation using don’t cares allows us to complete
all the examples (Column B).

4. Comparing the CPU times we observe that using don’t cares appropriately can
enable us to achieve performance improvement of up to 100 and more.

5. Using don’t cares also improves the memory usage during model checking. For
the cases where it was not possible to complete model checking in given time,
we observed memory usage improvement by a factor of 20.

6. The primary source of don’t cares during model checking is that derived from
unreachable states. Computing this set of don’t cares requires reachability anal-
ysis, thereby incurring some computational cost. In some cases, the performance
achieved by the don’t care set obtained via unreachable states cannot offset the
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Parameters

Threshold | P N T
100 | 175 | 400110 ( 1049
1000 | 40| 469501 | 11.12
8085 5000 30| 504546 | 14.62
10000 | 13| 509471 | 14.68
50000 8| 500738 | 15.07
100 | 93 25061 1.06
1000 | 29| 182724 3.82
C5315 5000 | 19| 949573 | 24.27
10000 | 13 [ 1979381 | 4891
50000 8 | 3589854 | 109.54
100 90| 122942 244
1000 | 44 | 1057659 | 53.03

C2670 5000 321187959 | 57.54
10000 | 22 | 1169287 | 56.66
50000 | - - t.o.

100 | 88 13580 0.46
1000 [ 59| 192882 4.13
C3540 5000 | 38 | 328742 8.58
10000 | 50 | 2581451 | 54.91
50000 | 39 | 8914776 | 315.67

Table 7.4 Partitioning of the network based on BDD size threshold.

P: Number of partitions
N: Total number of shared BDD nodes in all partitions
T: CPU time to build the partitions
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CPU Time (Secs) | Memory (MB)
A B A B

ethernet412 14.9 49| 5.8 49
biu 105.8 223|215 14.9
abs_bdlc 4743 31.1 | 18.0 10.7
ethernet213 | 696.5 98.9 | 29.6 14.9
sbc 611.8 361.7 | 26.5 25.7
slider 595.2 2574 1 52.5 33.5
every 1998.0| 1140.8 | 28.0 13.9

189

Table 7.5 Performance improvement with don’t care usage during reachability analysis.

A: Image computation for the set Ry.
B: Image computation for the simplified frontier set (Rk|g—)-

computational cost of reachability analysis. For example, in minMax30, we ob-
serve that model checking time is insignificant, but, reachability analysis takes
ten times as much time and leads to worse performance.

7.7.5 Redundant Latches

The results of redundant latch removal techniques on various examples are shown in
Table 7.7. We observe up to 30% reduction in the BDD size of the transition relation.
Also, a reduction of up to 25% in the BDD size of the reached set was obtained.

In the above analysis, reset values of the latches were ignored, i.e., we did not check
for consistency of the reset values. However, these optimization techniques can be
applied even if the reset values of the latches are taken into account. In the constant
propagation approach, the reset value of the latch must match the constant next-state
value it takes, for it to be made redundant. In the rétiming approach, the reset values
of the latches must be identical for either of them to be removed. This analysis can be
done very easily.
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CPU Time (Secs) Memory Usage (MBytes)
A B C D A| B C D

eisenberg 273283 152] 15116 1.7} 15 1.5
bakery 18.6 | 13.5 9.9 95|16} 26| 1.7 1.7
ethernetl12 | to.| to.| 63.4 56| - -1 77 43
ethernet212 | to. | t.o. | 222.0 85| - -1 9.1 44
ethernet312 | to.| to. | 5266 199 | - -111.1 5.5
ethernet412 | to. | to.|567.0| 606 - -124.1 6.9
elevator to.| to.| 18271113 - -1159 8.2
4-arbit 11.2| 35 12 0633 21| 15 14
8-arbit to.| 53 53 50 —-| 43| 43 4.3
abp 60| 3.6 1.7 18117 16| 16 1.6
minMax30 | 24 (197 199 21.7 85220220 22.1

Table 7.6 Performance improvement with don’t care usage during model checking.

o: Using reachable state set for creating don’t cares.

B: Simplification of the pre-image w.r.t. care set.

. Simplification of 7; during backward image computation w.r.t. care set.
A: No usage of don’t care.

B:a

C:a+8

D:a+B+y

t.0. : Time out after 1000 CPU seconds.
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examples| A |[B|C|D | E F G

17| | IRl | IT| | IR]

gigamax | 45 (90| 0 | 9 | 2018 | 402 | 1389 | 301

BDLC* | 144 | 1 24275 | 12208 | 23441 | 9984
BIU 154 | 6 | 2 | 26 | 34 | 30834 | 25276 | 20088 | 20956

o
W
(=)

A: Total # of latches

B: # of constant latches removed without constant propagation
C: # of latches removed after constant propagation

D: # of latches removed by re-timing

E: Total # of latches removed

F: Redundant latches not removed

G: Redundant latches removed

|T], |R|: Sizes of transition relation and reached states

Table 7.7 Effects of redundant latch removal on BDD sizes.

7.8 Summary

We have discussed a series of algorithms for efficient state-space traversal of a finite-
state machine. We established that the core computation in BDD-based formal verifi-
cation is that of forming the image and pre-image of a set of states under the transition
relation characterizing the system. To make this step efficient, we addressed use of par-
titioned transition relations, use of clustering, network partitioning, use of don’t cares,
and removal of redundant latches. The efficacy of these algorithms was demonstrated
on ISCAS/MCNC sequential circuits as well as some industrial designs. Almost all
the algorithms described in this chapter have been implemented in the verification tool
VIS [BSA*96a]. In particular, the image/pre-image computation techniques form the
core engine for model checking. A brief description of the tool is given in Appendix B.

Other BDD-based techniques which look promising include the “exists—cofactor”
of [CC93], and the “implicitly conjoined invariants” of [HYD94]. Certain limitations
of BDD-based formal design verification cannot be solved by the techniques described
in this work. For example, the BDD size of the reached set may be large under any
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variable ordering. Other data structures might be useful in these cases. There is also a
wide class of heuristics, orthogonal to the approaches we have taken, for coping with
the state explosion problem; such as property-specific reductions [ASS*94], abstrac-
- tions [Gra94], and conservative approximations to reached state sets [CHM*93].
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Chapter 8

Retiming and Resynthesis: Complexity Issues

S o far we have looked at the techniques which primarily target the functional
representation and manipulation of the designs for efficient verification — high
performance BDD manipulation for various Boolean operations, compact state tran-
sition graph representation, and efficient state-space traversal. An orthogonal set of
techniques, called structure-based techniques, use structural information about the cir-
cuit and the nature of transformations performed on it to obtain efficient verification
algorithms. It has been established that a combination of functional and structure-
based techniques provides a robust methodology for combinational verification [KK97,
Mat96, RWK95, Bra93]. For sequential circuits, however, attempts to combine struc-
tural and functional techniques have been limited to smaller size examples or relatively
minor transformations [HCC96b, HCC97].

In the next two chapters we investigate the implementation verification problem for
circuits which have undergone repeated retiming and combinational synthesis trans-
formations. In this chapter, we attempt to formalize the notions of the optimization
capability of rétiming and resynthesis operations. Also, we formally establish the com-
putational complexity of the corresponding implementation verification problems. Our
goal is to benefit from these results in establishing practical retiming and resynthesis
logic optimization and verification methodologies. In the next chapter we propose a
practical algorithm for this implementation verification problem.

8.1 Introduction

In combinational synthesis [BRSW87, SSL*92], the positions of the latches are fixed
and the logic is optimized. In retiming [LRS83, LS91], the latches are moved across
fixed combinational gates. The effects of retiming are — changes in the number of
latches (thereby leading to increase/decrease in area) and increase/decrease in the cycle

195
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time (leading to slower/faster clock rate). A side effect of retiming is that it enables
interaction between different combinational logic blocks. Hence retiming followed by
combinational synthesis enables logic optimization which is not possible by combina-
. tional optimization alone. Combinational synthesis generates new possibilities for the
latch locations perhaps leading to further optimization. A sequence of retiming and
combinational resynthesis steps can provide powerful optimization of a sequential cir-
cuit. In [MSBS91], it has been shown that retiming combined with synthesis can be
used to optimize sequential networks.

After the initial retiming algorithm proposed in [LS91] for a simple circuit contain-
ing single clock edge-triggered latches, many advancements have been made in terms
of efficient implementation and applicability of retiming with more complex memory
elements. In particular, techniques given in [SR94, MS97] can be applied to large se-
quential circuits. Retiming of level-sensitive latches was addressed in [SBS93a, LE92].
Recently, Legl et al. proposed retiming techniques for edge-triggered circuits with mul-
tiple clocks and load enables [LVW97]. They introduced the notion of a latch class
cl = (CLK,LE), which is all latches connected to clock signal CLK and load signal
LE. The retiming problem for multiple-class sequential circuits was reduced to an
equivalent retiming for single class sequential circuits, thereby exploiting performance
enhancements made in that domain. Since most industrial designs contain latches with
different load signals and multiple clocks, their technique further improves the applica-
bility of retiming to such designs.

Even though both retiming and synthesis techniques have been around for over a
decade, the optimization capability of a combination of these transformations and the
corresponding verification complexity have not been formally established. This chapter
addresses this issue.

The rest of the chapter is organized as follows: in Section 8.2, we establish the opti-
mization potential of various combinations of retiming and synthesis transformations.
In Section 8.3, we discuss simple extensions to traditional notions of combinational
optimization and retiming which can improve their optimization capability without a
significant increase in the algorithm complexity. The verification complexities of var-
ious combinations of transformations are discussed in Section 8.4. In Section 8.5, we
summarize our results and discuss the open problems in this area. In this and the next
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chapters, we will use the term “combinational optimization”, “‘combinational synthe-

6

sis”, “synthesis”, and “resynthesis” interchangeably.

8.2 Optimization Power

We attempt to characterize the optimization power of sequential synthesis using only re-
timing and combinational synthesis transformations. In that direction, we first start with
basic transformation steps and gradually move towards general retiming-resynthesis
transformations.

8.2.1 Synthesis

In synthesis, the latches in the circuit are untouched and the latch inputs and outputs are
treated as circuit outputs and inputs respectively. Since I/O functionality is preserved
during the optimization, the logic function feeding into each latch also remains the
same. The combinational logic block can be optimized for area or delay of the circuit
as shown in Figure 8.1 (taken from [Smi97]). The critical path is shown with bold lines.

8.2.2 Retiming

Retiming moves the latches across combinational blocks, leading to possible increase
or decrease in the number of latches. The effects of retiming are the following.

1. Change in cycle time: Due to movement of latches, the delay along the combina-
tional path between two latches can change. This might increase or decrease the
clock rate at which the circuit can function correctly (the delays through combi-
national gates along any path should be less than the cycle time). The reduction
in cycle time is shown in Figure 8.2(b).

2. Change in area: The increase/decrease in the number of latches leads to the in-
crease/decrease in the circuit area. An example of area optimization using retim-
ing is shown in Figure 8.2(c).

However, reducing the number of latches arbitrarily can increase the maximum
allowed clock period, leading to reduced clock speeds. Hence the typical use
of retiming has been for constrained area optimization. In this case, the area is
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Figure 8.1 Combinational optimization: area vs. delay trade-off — (a) circuit with minimum
area (b) circuit with minimum delay. The delay is measured in terms of levels of logic.
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Figure 8.2 Retiming: area vs cycle time trade-off — (a) original circuit (b) circuit with mini-
mum cycle time (c) circuit with minimum area.
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Figure 8.3 Retiming changes the state encoding. Circuit diagram and state-transition graph
for (a) Original circuit and (b) Retimed circuit.

minimized while keeping the maximum cycle delay below a given value. The
trade-off between reducing cycle time and area is seen in Figures 8.2(a),(b), and

(c).

3. Change in state encoding: Movement of latches across a combinational gate re-
sults in different encodings of the state transition graph. Retiming across a multi-
fanin/fanout can also lead to change in the number of state bits. Figure 8.3 shows
the state-encoding before and after retiming. In this case, retiming has performed
the following state encoding transformation:

00 10
10 01
01 1
11 00

Retiming can also change the number of state-bits as illustrated in Figure 8.4.
This fact can be exploited to optimize state-space-exploration based verification
and synthesis methods where number of state-bits plays a crucial role in the com-
plexity of the problem.
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Figure 8.4 Change in the number of state bits due to retiming: 2 state bits in the original circuit
(a) vs. 1 state bit in the retimed circuit (b).
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Figure 8.5 Optimization power of retiming followed by resynthesis: (a) original circuit (b)
retimed circuit (c) resynthesized circuit.

8.2.3 Retiming — Resynthesis

In this optimization, resynthesis is performed after retiming the latches. This method is
more powerful than simple retiming or synthesis because retiming exposes logic, thus
enabling logic optimization via synthesis which would not have been possible without
retiming.

For illustration purposes, consider the circuit given in Figure 8.5(a). By retiming
alone we obtain the circuit in Figure 8.5(b). Further logic optimization results in circuit
in Figure 8.5(c). The final circuit cannot be obtained by performing any amount of
synthesis on the original circuit.

8.2.4 Resynthesis — Retiming

In this optimization, retiming is performed after synthesis. This method is more power-
ful than simple retiming or synthesis because resynthesis can enable latch movement by
creating additional points for latch transfer or by adding or removing redundant logic.
Consider the circuit given in Figure 8.6(a). By resynthesis alone we obtain the circuit in
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Figure 8.6 Optimization power of synthesis followed by retiming: (a) original circuit (b) syn-
thesized circuit (c) retimed circuit.

out

Figure 8.6(b) while applying retiming after synthesis results in circuit in Figure 8.6(c).
The final circuit cannot be obtained by performing any amount of retiming operation
on the original circuit.

Retiming followed by resynthesis and synthesis followed by retiming have different
optimization power. For example, the circuit in Figure 8.6(a) cannot be optimized
by the former transformation sequence, whereas the circuit in Figure 8.5(a) cannot be
optimized by the latter.

8.2.5 Synthesis — Retiming — Synthesis

In Figure 8.7, we show an example of an optimization that can be obtained by two
synthesis steps with a retiming step in between. Essentially, the first synthesis step
duplicates the logic for the second input to the XOR gate which facilitates the backward
retiming of latches. The second synthesis step optimizes the logic. Note that trying to
perform retiming as the first step will be futile, since both the forward and backward
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Figure 8.7 Optimization power of synthesis—retiming-synthesis: (a) original circuit (b) opti-
mized circuit. This optimization cannot be done by retiming—synthesis—retiming.
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Figure 8.8 Optimization power of retiming-synthesis—retiming: (a) original circuit (b) opti-
mized circuit. This optimization cannot be done by synthesis-retiming—synthesis.

movements of latches are blocked.
8.2.6 Retiming — Synthesis — Retiming

In Figure 8.8, we show an example of an optimization that can be obtained by two re-
timing steps with a synthesis step in between. Essentially, the first retiming step allows
the simplification of Signal e (which reduces to constant 0). In second retiming, latches
are moved across the ex-nor gate at the output. Note that combinational optimization
at the first step will not achieve anything, since no simplification can be made.
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Figure 8.9 A circuit requiring “retiming — synthesis — retiming — synthesis — retiming” trans-
formations.

8.2.7 Iterative Retiming and Resynthesis

The next question arises whether a finite number of retiming and resynthesis moves is
sufficient, i.e., can the transformation obtained t . “bitrary number of retiming and
resynthesis operations always be captured by a finite number of such moves?

If we can come up with a parameterized versior: of the examples in the previc:-

section, that would suffice as a counter example to the above hvpothesis 1'ninmesoly,
we have not been able to come up with such an exar- =~ © ol in the
Figure 8.9 indicates that the sequence of “retiming —sy:..... . sctiming — synthesis —

retiming” transformations will be necessary to get the optimized design shown on the
right. The first four transformations are necessary to optimize Signal X to 0.

Analysis

Upon analysis of the illustrations we observe the following:
1. Forward movement of latches can get blocked due to an input.
2. Backward movement of latches can get blocked due to an output.
3. Retiming facilitates synthesis by exposing logic.
4. Synthesis facilitates retiming by: |

(a) making some inputs redundant and allowing forward movement
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(b) duplicating the logic for the output and allowing backward movement
(c) creating new cut-points for latches to move across

We now compare the optimization power of an arbitrary number of retiming-resynthesis
steps to general sequential optimization techniques.

8.2.8 Retiming-Resynthesis vs. General Sequential Optimization
General sequential-circuit optimization makes use of various techniques including:
1. State encoding
2. State minimization
3. Logic optimization using information about unreachable states
4. Logic optimization using input/output don’t care sequences

Let us now see which ones of these can be implemented using retiming and syn-
thesis transformations alone. In [Mal90], an attempt has been made to characterize
the optimization power of retiming and resynthesis transformations, which we discuss
next.

8.2.9 Exposition in Malik’s Thesis

The following theorem asserts the state encoding power of retiming and resynthesis
operations.

Theorem 3 [Mal90] Given a machine implementation M), corresponding to a state
transition graph G, with a state assignment S\, it is always possible to derive a machine
M, corresponding to the same state transition graph G, and a state assignment S, by
applying only a series of resynthesis and retiming operations on M.

The proof of the theorem makes use of one-to-one mapping between the states of
M, and M,, thereby transforming one state assignment to another using appropriate
logic. [Mal90] also discusses the case where the STGs of M, and M, are different. It
is asserted that under restricted state-transformations of the STG, the final circuit can
be obtained from the initial circuit using retiming and resynthesis operations.
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Figure 8.10 State-graph transformations (a) 2-way split and 2-way merge (b) switch (c) switch
using 2-way split and merge.

Suppose G and G; are STGs corresponding to M) and M respectively. G; may
be modified to obtain G, through a series of three basic transformations. These trans-
formations may create states that are equivalent to existing states, merge states that are
equivalent to each other, and modify state transitions to go to states equivalent to the
original destinations. The definitions of basic transformations are given below:

2-way split A state 5| in G is equivalent to two states in G2 (Figure 8:10(a)).

2-way merge Two equivalent states s1; and 52 in G are merged to a single state 57 in
G, (Figure 8.10(a)).
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Figure 8.11 Labeled cycle of equivalent states.

Switch A transition in G, to a state s1; is modified to go to an equivalent state 512 in
G (Figure 8.10b).

The 2-way split and 2-way merge constitute primitive transformations, a 2-way
switch, multi-way splits and merges can be accomplished by a sequence of 2-way splits
and merges (Figure 8.10c).

Definition 5 A labeled cycle of equivalent states in an STG is a directed cycle such
that all state vertices in the cycle are equivalent and all transition predicate vectors on
the edges in the cycle have the same label (Figure 8.11).

Definition 6 A cycle preserving (CP) transformation does not create or destroy a
labeled cycle of equivalent states.

A non cycle preserving transformation (NON-CP) creates or destroys a labeled cycle
of equivalent states.

Theorem 4 [Mal90] Let M, be an implementation corresponding to the state as-
signment S| and STG G| and M, be an implementation corresponding to the state
assignment Sy and STG G. If G is obtained from G, using only CP transformations
then M, can be obtained from M, using only a sequence of retiming and resynthesis
operations.
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The proof considered G to contain a CP 2-way split of some state 51 in G;. A
transition to s, in Gy comresponds to a transition to either s1) or 512 in M depending on
the primary input vector. It was stated that the primary input vector and state s1 uniquely
determine which of s or sy2 is the destination state in M>. Thus, the one-to-many
mapping between the state codes for M) and the state codes for M, is actually a one-
to-one mapping between the M state codes plus the primary input and M state codes.
This can be accomplished through a combinational circuit C. Circuit C’ performs many-
to-one mapping from M,’s state codes to M;’s state codes. The proof was illustrated
with a figure that is reproduced in Figure 8.12. The figure shows how the circuit may be
retimed resulting in a circuit that corresponds to G2. This may be further resynthesized
to any circuit M, that corresponds to state assignment .

8.2.10 Interpretation and Extensions

In the exposition given in [Mal90] of the synthesis capability of retiming and synthesis,
we came across some aspects that needed either correct interpretation or correction.
These are enumerated below:

1. The conditions under which merger of two states can be implemented with re-
timing and synthesis was not clearly stated.

2. An assertion is made that all valid transformations are some sequence or combi-
nations of splits, merges and switches. In particular all valid transformations can
be obtained using 2-way switch and 2-way merge.

3. The proof of the Theorem 4 states that the primary input vector and state s;
uniquely determine which of s1; or 512 is the destination state in M>.

4. The proof is given for the case where G contains a 2-way split of some state in
G1. The proof states that since each step in retiming and resynthesis is reversible,
2-way merges (obtaining M> given M) can be handled using retiming and resyn-
thesis. While this is theoretically possible, it is not possible to give a constructive
algorithm to obtain this transformation as shown later.

5. No condition is given for splitting a state with a self loop.
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Figure 8.12 Obtaining equivalent FSM implementations (proof for Theorem 4).
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Figure 8.13 Counterexample to the assertion in [Mal90): Original circuit in (a) cannot be
transformed to the final circuit in (b) using retiming and resynthesis.

6. The equivalence of old and new destination states is given as the condition for
making the “switch” transformation. This is not completely correct.

7. The illustrations of non-CP transformations are not valid.
Below we make our clarifications and provide extensions wherever possible.

Definition 7 Two states s\ and s, are 1-step equivalent, if for all inputs i, the next
state of sy on i is the same as the next state of s, on i and vice versa.

1. Upon investigation we found that the merger of two equivalent states so and s;
can be implemented using retiming and synthesis only if the states are 1-step
equivalent. Similarly, a switch can occur only if the new destination state is 1-
step equivalent to the original state.

2. With this restriction on the merger of two states, not all valid state-transition
graph transformations can be modeled. An example is shown in Figure 8.13.
The original circuit is shown on the left with the associated state transition graph
Gi. A sequentially equivalent circuit is shown on the right with corresponding
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Figure 8.14 Using CP transformations to obtain the final STG from initial STG.

state transition graph G2. A quick analysis shows that neither the latches can
be retimed nor can the logic be optimized indicating that a sequence of retim-
ing and resynthesis moves cannot make this circuit transformation. However, in
Figure 8.14, we show how G, can be obtained from G; by a sequence of CP
transformations. The transformation in Figure 8.14 involves merging the state
“01” with “10” and state “00” with “11”. However, since these states are not
1-step equivalent (they are 2-step equivalent), the STG transformation cannot be
implemented with retiming and synthesis transformation. This violates the asser-
tion [Mal90] that all valid transformations are some sequence or combination of
splits, merges and switches, where these terms are interpreted appropriately.

. In the proof of the Theorem 4, the assumption of the unique determination of the

destination state in M, (one of s1; or 512) given the primary input vector and state
51 is not correct. Consider the splitting of s; in G; as shown in the Figure 8.15.
Given i and 57, we do not know which of s1; or s)7 is the next state in G».

We can fix this problem by considering the transformation as shown in Fig-
ure 8.16. The main difference between the transformations shown in Figure 8.16
and Figure 8.12 is that we also make use of previous state information of M
in evaluating the state codes for M. By using information about previous state
in M), next state in M1, and the input, we uniquely determine the next state for
M,. The combinational logic C’ performs many-to-one mapping from M>’s state
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Figure 8.15 Counter-example to the proof of the Theorem 4. The next state in G, cannot be
determined solely by the next state in G; and the input vector.

codes to M;’s state codes. We notice that the counter-example shown in Fig-
ure 8.15 is trivially handled by the approach shown in Figure 8.16.

4. It is not straightforward to implement merger of two equivalent states. As shown
in Figure 8.17(b), the new next-state bits can be directly obtained using combi-
national logic. To get back the next-state bits for M; from the next-state bits of
M, however, requires information about the present state of M. As a result,
we cannot retime the latches across the logic D to put them at the boundary of
M3y’s code. This is because of the feedback path from the latch output to D'.
To overcome this problem, first we need to make the transformation as shown
in Figure 8.17(c). Notice that this transformation requires the knowledge of the
next-state function for M. Now we can retime the latches appropriately to ob-
tain Figure 8.17(d). Performing a final resynthesis step results in machine N as
shown in Figure 8.17(e). We should note, however, that this is a practical rather
than theoretical problem.

5. In [Mal90], no condition was given for splitting a state with a self-loop. In Fig-
ure 8.18 we show the transformation for splitting a state with a self-loop. The
rationale behind this transformation is that we want to be able to perform 2-way
merge of the states obtained via 2-way splitting. As shown in Figure 8.18, states
s11 and 512 on the right are 1-step equivalent and hence we can perform 2-way
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Figure 8.16 Illustration of STG transformation (splitting of states) which can be implemented
by retiming and combinational optimization: (a) Original machine M; (b) Generation of next
state bits for the new machine (c) Retiming to generate next state bits (d) Combinational opti-
mization to obtain new machine M.
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Figure 8.17 Illustration of STG transformation (merger of states) which can be implemented
by retiming and combinational optimization: (a) Original machine M (b) Generation of next-
state bits for the new machine (cannot be retimed to get M) (c) Reverse transformation to
generate M, and the encoding and decoding logic (d) Retiming to generate next-state bits (e)
Combinational optimization to obtain new machine M,.
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Figure 8.18 STG transformations involving splitting a state with a self-loop.

merge to obtain the STG shown on the left.

The splitting of states with self-loops as shown in Figure 8.18 can be imple-
mented using retiming and resynthesis with the transformations given in Fig-
ure 8.16.

Note that multi-way splitting of a state with self-loop can be achieved by further
splitting the states s1; and s12. Applying the condition of merging 1-step equiva-
lent states, it is obvious that we can merge two states each with a self-loop only
if they are of the form shown in Figure 8.18.

Since 2-way switch can be implemented using a combination of a 2-way merge
and a 2-way split, an obvious outcome of the correct interpretation of “merger”
of two states is that a “switch” can take place only if the new destination state
is 1-step equivalent to the old destination state. A switch between two 1-step
equivalent states can be obtained using similar. transformations.

An interesting observation can be made that with the correct interpretation on the
merging of two states — we do not need the condition of CP preserving trans-
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Figure 8.19 Non-CP transformations, as illustrated in [Mal90].

formations. The counter-example can be seen in Figure 8.18. In STG Gy, the
self-loop on s, is a labeled cycle of equivalent states (there is just one state in
the cycle). However, in STG Ga, due to the self-loops on s1) and s;2, we have
two labeled cycles of equivalent states, i.e., this STG transformation is non-CP.
However, as discussed earlier, we can implement this STG transformation using
retiming and resynthesis.

Next we look at the examples of non-CP transformation given in [Mal90] shown
in Figure 8.19. The merger of states s1; and 512 shown in Figure 8.19a is not
a valid 2-way merge because states s1; and 52 are not 1-step equivalent. This
invalidates the classification of this transformation as non-CP. In Figure 8.19b,
the transformation involves a switch. Notice that states sy} and s12 are 1-step
equivalent. However, after the switch, states s1) and s;2 are no longer 1-step
equivalent, making the switch transformation invalid.

Based on the above observations, we state the modified version of Theorem 4.
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Definition 8 A transformation of an STG G, into another STG G is a 1-step equiv-
alent transformation if G, has been obtained from G, by either splitting of a state, or
merger of two 1-step equivalent states, or switching between two states which are 1-step
equivalent.

Theorem 5 Let M; be an implementation corresponding to state assignment Sy and
STG G; and M, be an implementation corresponding to state assignment S and STG
G,. M3 can be obtained from M, using only a sequence of retiming and resynthesis
operations if and only if G, is obtained from G\ using only 1-STEP EQUIVALENT
TRANSFORMATIONS.

Proof:

P

Figures 8.16 and 8.17 illustrate how splitting and merging of 1-step equivalent states
transformations can be implemented using retiming and resynthesis. Switching be-
tween two 1-step equivalent states can be implemented by a combination of merging
the two states and splitting as shown in Figure 8.10.

=

As shown in Figure 8.14, the merger of 2-step equivalent states cannot be implemented
using retiming and resynthesis. We can extend this counter-example to indicate that a
merge of k-step equivalent states, Vk > 1 cannot be implemented using retiming and
resynthesis. =

8.2.11 Sequential Optimization Using Unreachable States

The general sequential circuit optimization extracts don’t cares by computing the set
of unreachable states. The don’t cares obtained in this manner are used to optimize
the logic. This optimization is not possible by retiming and resynthesis alone. This
is illustrated in in Figure 8.20. In Figure 8.20(a), we present a circuit, with the cor-
responding state transition graph in Figure 8.20(b). State “00” is the initial state. We
observe that state “11” is unreachable from the initial state. We can make use of this
information in optimizing the circuit resulting in circuit given in Figure 8.20 (c). Since
the above transformation uses information (the set of reachable states) not available
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Figure 8.20 Logic optimization using don’t cares derived from unreachable states.

to retiming and resynthesis we can conclude that the optimization power of retiming
and resynthesis transformations is strictly less than that of general sequential circuit
optimization.

8.3 Extending Notions of Retiming and Synthesis

The examples given in the previous section illustrated the limitations of retiming and
combinational transformations. By suitably extending the notions of conventional re-
timing and combinational optimization, we can increase the optimization capability of
these transformations.

8.3.1 Eliminating Floating Latches

The current combinational optimization techniques do little manipulation of latches
(e.g., latch removal via constant propagation). While gates which do not transitively
fanout to any primary output are eliminated during combinational optimization, latches
are treated as pseudo primary inputs and outputs and hence are not eliminated even
if they do not transitively fanout to any primary output. Such latches are not elimi-
nated during a retiming operation either. We can extend the notion of combinational
optimization to one which trivially gets rid of such latches before proceeding to reg-
ular combinational optimization. The process of removing latches that do not fanout
to any primary outputs is termed as floating latch elimination. It does not add to the
complexity of the synthesis algorithm. With this extended notion of synthesis, the cir-
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Figure 8.21 Circuit transformation using floating latch elimination.

cuit transformation shown in Figure 8.13 can be obtained. The transformation process
is shown in Figure 8.21. [Essentially, the first transformation re-encodes the circuit,
which can be implemented by retiming and resynthesis as explained in Theorem 3.
This is followed by floating latch elimination.

In general, this transformation will allow us to implement STG transformations,
where some redundant state bits are removed and the STG is reduced in size.

8.3.2 Allowing Negative Retiming

Retiming can be extended by introducing the concept of “negative” latch [Mal90]. Al-
lowing a negative edge weight n on a peripheral edge (an edge that connects either an
input pin to a logic block or connects a logic block that computes the value of an out-
put to the corresponding output pin) is equivalent to “borrowing” n latches from the
environment. The latches may be “returned” by a subsequent retiming step. Using this
concept, we will be able to deal with some of the examples presented in Section 8.2.
In particular, in Figure 8.22, we show how the circuit transformation of Figure 8.9, can
be done with synthesis — retiming — synthesis step (as opposed to retiming — synthesis
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— retiming — synthesis — retiming).

The question arises, whether negative retiming adds any optimization power to con-
ventional retiming, i.e., are there circuit instances where ‘optimization using negative
retiming combined with synthesis cannot be implemented with conventional retiming
and synthesis? In [Mal90], it is claimed that allowing negative edge weights on the
peripheral edges allows retiming operations and subsequent optimizations that would
otherwise not be possible. To illustrate this assertion, an example was given which is
reproduced in Figure 8.23. However, the same optimization can be achieved with-
out resorting to any negative retiming as shown in Figure 8.24. Essentially, instead
of borrowing a latch from the environment, we duplicate the logic that produces the
output, thereby allowing the backward propagation of latches. After combinational op-
timization, the duplicate logic can be appropriately removed. It is our conjecture that in
general, any optimization made possible by negative peripheral retiming can be imple-
mented by suitably duplicating the output logic that prevents the backward movement
of latches.

8.4 Verification Complexity

In the previous section, we discussed the optimization potential for various sequences
of retiming and synthesis transformations. In this section, we formalize the imple-
mentation verification complexity for each of these transformations. Intuitively, the
verification complexity should be proportional to the optimization power of the corre-
sponding transformation.

8.4.1 Verification After Retiming

The retiming moves the location of the latches leaving the topology of the combination
blocks unchanged. The implementation verification problem definition is:

Given two circuits C; and C, decide whether C; can be obtained from C) by simple
retiming moves.

This verification involves following two steps [SSBS92]: i) establish that the under-
lying graphs of the two circuits are isomorphic and fi) establish that the latch counts in
corresponding cycles in the two circuits remains the same. These steps are explained
in detailed below.
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1. First we need to verify that the two circuits have the same graph structure (as-
suming the correspondence of primary inputs and outputs). This is an instance of
directed graph isomorphism.

Formally, given a circuit C with combinational gates and latches, we create a
directed graph G = (V, E). We create a node corresponding to each combinational
gate. For simplicity, assume that all combinational gates are of the same kind.
Create an edge e;; between node v; and v; if the corresponding gate ¢; is a fanin
to gate c; (possibly through latches). To each edge e;j, assign a weight w;; equal
to the number of latches between the gates ¢; and c;. Suppose G and G are two
circuit graphs obtained from circuits Cy and C;, respectively.

Note that even though we have points of correspondences between G and G2,
i.e., nodes corresponding to input/output ports are matched, still the structural
matching between G, and G, remains a general isomorphism problem. This fact
is proved in following theorem.

Theorem 6 Given two circuits C) and C, with input/output correspondences,
to determine whether C, is structurally equivalent to C, is as hard as graph
isomorphism problem.

Proof: We prove this by reducing a general graph isomorphism problem to
structural equivalence problem of retimed circuits. From a given graph G we
create a circuit in the following way:

(a) For each node in the graph, we create a combinational gate.

(b) For an edge ¢;; in the graph, we create a net from gate i to gate j.

(c) We create a dummy input node / and a dummy output node O.

(d) We create a net from node 7 to each gate in the circuit.

(e) Finally, we create a net from each gate in the circuit to the output node O.
For two graphs G| and G,, we create two circuits C; and C,. It is trivial to

observe that G; and G are isomorphic iff the circuits C} and C; are structurally
equivalent. n
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2. We also need to validate the number of latches along each net. A necessary
and sufficient condition has been given in [SSBS92]. The condition states that
for a valid retiming, the number of latches in each cycle should be preserved.
Instead of enumerating all the cycles in the cyclic component (which could be
exponential in the circuit size), one can check only the fundamental cycles. An
O(m?log(n)) algorithm for enumerating the fundamental cycles is presented in
[SSBS92], where m is the number of edges and » is the number of nodes.

8.4.2 Verification After Retiming—Resynthesis

Refiming

|m—ccv-c c 0|
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Figure 8.25 Transformation sequence for retiming followed by resynthesis.

The transformation obtained using one retiming followed by resynthesis is shown in
Figure 8.25. The original circuit M is retimed to obtain M3, which is then resynthe-
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sized to obtain M3. The problem at hand is the implementation verification between M,
and M3. In the figure we notice that for both retiming and resynthesis, the input/output
ports function as fixed anchors. Moreover, for retiming, the locations of the combi-

- national blocks remain fixed (as shown in M;). And for resynthesis the location of

latches remain fixed (as shown in M3). Notice that the new latch location in M, are
also present in M) (which obviously has initial latch locations). Hence, given M) and
M3, we can appropriately retime the latches in M to obtain M». In order to determine
the new latch locations in M;, we will need to solve a variant of graph isomorphism
problem. The verification between M> and M3 is equivalent to a combinational equiv-
alence check. The complexity of these two steps is dominated by the combinational
equivalence check, hence the verification complexity is NP-complete.

8.4.3 Verification After Resynthesis—Retiming

The transformation obtained using resynthesis followed by retiming is shown in Fig-
ure 8.26. The original circuit M, is synthesized to obtain M3, which is then retimed
to obtain M3. The problem at hand is the implementation verification between M) and
M3. Notice that the initial latch location in M) are also present in M3 (which also con-
tains the new latch locations). Hence, given M; and M3, we can appropriately retime
the latches in M3 to obtain M>. The verification between M| and M is equivalent to a
combinational equivalence check. Hence the overall complexity is NP-complete. An-
other way to look at this is that the transformation M) — M, — M3 is just reversed
(M3 = M, — M) and hence result obtained Section 8.4.2 applies.

8.4.4 Verification After Resynthesis—Retiming—Resynthesis

The transformation obtained via resynthesis-retiming-resynthesis is shown in Fig-
ure 8.27. The original circuit M) is synthesized to obtain M3, which is then retimed
to obtain M3. Finally M3 is synthesized to obtain M4. The problem at hand is the
implementation verification between M; and My4. Notice that, unlike the previous two
cases, the initial and the final latch locations are not simultaneously present either in
the original circuit or in the final circuit. To verify M 1 against M4, we need to guess an
intermediate circuit (perhaps M>) which is obtained after resynthesis of M;. After per-
forming combinational equivalence check between M; and the guessed circuit, we can
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apply the technique given in Section 8.4.2. The complexity of the overall verification
problem falls in X class [GJ79] in the polynomial hierarchy.

~ 84.5 Verification After Retiming—Resynthesis-Resynthesis

The transformation obtained via retiming-resynthesis—resynthesis is shown in Fig-
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Figure 8.28 Transformation sequence for retiming followed by synthesis and retiming.

ure 8.28. The analysis follows along the lines of that in Section 8.4.4.

8.5 Summary and Open Issues

In summary we have been able to establish the following:
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1. STG transformations which involve splitting a state into equivalent states can be
implemented using retiming and resynthesis transformations.

2. Merging of two equivalent states can be implemented by retiming and resynthesis
only if these states are 1-step equivalent.

3. It is proven that STG transformations can be implemented using retiming and
synthesis if and only if they are 1-step equivalent.

4. The traditional notions of retiming and combinational synthesis can be modified
leading to improved optimization capability without any increase in the complex-

ity.
A number of issues are still unresolved. In particular:

1. The exact optimization potential of an arbitrary number of retiming and synthesis
transformations is unknown except for the fact that it is less than full sequential
optimization.

2. The number of retiming and synthesis transformations required to obtain the most
optimum circuit possible is unknown. More precisely: suppose S indicates the
optimization space of retiming and synthesis transformations; does there exist
a finite number k, such that k transformations of retiming and resynthesis can
explore all of S.

3. The complexity of establishing if a circuit C; has been obtained from C; using
only retiming and synthesis transformations is unknown. We conjecture that this
complexity will be dependent on Point 2.

8.6 Conclusion

Retiming and resynthesis are powerful tools to optimize a sequential circuit. How-
ever, so far their exact optimization potential and the complexity of the corresponding
verification problem has not been investigated. In this chapter, we have made an at-
tempt to formally characterize the optimization power of various flavors of retiming
and resynthesis transformations and also to characterize the exact complexity of the
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corresponding implementation verification problem. We have established and clarified
some results and have indicated some open issues.



Chapter 9

Verifying Retimed and Resynthesized Circuits

IN Chapter 8, we made an attempt to formally establish the sequential optimization
capability and corresponding verification complexity of retiming combined with
combinational optimization transformations. In this chapter, we propose a practical
verification technique for such transformations. We start with the notion that although
retiming combined with combinational optimization is a powerful sequential synthesis
method, this methodology has not found wide application because formal verification
of sequential circuits is not practical and current simulation technology requires the
correspondence of latches for ease in the detection of errors. We present a practical
verification technique which enables such sequential synthesis for a class of circuits. In
particular, we require certain constraints to be met on the feedback paths of the latches
involved in the retiming process. For a general circuit, we can satisfy these constraints
by fixing the location of some latches, e.g., by making them observable. We show
that implementation'veriﬁcation after performing repeated retiming and synthesis on
this class of circuits reduces to a combinational verification problem. We also demon-
strate that our methodology covers a large class of circuits by applying it to a set of
benchmarks and industrial designs.

This chapter is organized as follows: after a brief introduction in Section 9.1 we
present previous research works in the area of sequential verification in Section 9.2.
We establish the notation, terminology, and our notion of equivalence in Section 9.3. In
Section 9.4 we describe the basic idea behind our work and give appropriate definitions.
In Section 9.5 we discuss our technique for a circuit with no feedback latches. In
Section 9.6 we present the extension to include circuits containing feedback latches.
The details of the experimental setup and results are given in Sections 9.7 and 9.8,
respectively. Most of the work presented in this chapter was first reported in [RSSB97].

233



234 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

9.1 Introduction

Retiming and resynthesis, though less powerful in theory than full sequential optimiza-
tion (based on unreachable states, input/output don’t care sequences), cover a wide part
of the optimization space. However, this technique has not had much success in ob-
taining a place in traditional synthesis methodology. One of the main bottlenecks has
been the lack of efficient verification tools to verify the functionality of the optimized
design. The verification complexity of a retimed and resynthesized design is not for-
mally known. It is conjectured to be harder than the NP-hard class of problems. On the
other hand, the verification problem for combinational logic optimization is a relatively
easier problem in practice. Much work has gone into combining structural and func-
tional techniques to obtain verification algorithms that can deal with reasonably large
industrial circuits [Mat96, IMF97, KK97].

We propose a methodology which reduces a sequential verification problem into an
equivalent combinational verification problem for a class of circuits. This allows ex-
ploitation of the advancements made in the field of combinational verification and use
of its powerful techniques to perform verification. Our method requires that for each
latch with a feedback path, its next-state function should be positive unate in the latch
variable. Later we will show that the scope of this methodology allows i) the presence
of self-loops on latches, ii) pipelined circuits where the latches cannot be retimed to
the periphery, iii) the presence of latches trapped inside combinational blocks, iv) cir-
cuits with load-enabled latches, and v) circuits where latches conditionally update their
contents.

Typically, industrial designs consists of two kinds of latches. The first kind con-
stitutes small finite state machines. Each such state machines are strongly connected.
These machines interact with each other via the acyclic network of latches of the sec-
ond kind. In general, designers want to preserve the locations of the latches that hold
the states of FSM (the first kind), since they want to monitor simulation results. Fixing
some latch locations breaks the feedback paths and as a result the circuit might satisfy
our constraint. In case the given circuit still fails our constraint, we expose a mini-
mum number of latches making their locations fixed. Then we perform retiming and
resynthesis optimizations on the modified circuit. In general, making a latch observable
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can restrict some optimization transformations thus incurring a penalty in optimization
quality. In practice, our approach does not incur a significant optimization penalty due
to this modification.

9.2 Previous Work

Many researchers have investigated the problem of sequential equivalence checking
and in particular verification of retimed circuits. A popular approach is to compose the
machines together and traverse the state space of the product machine. The composed
circuit is modeled as a finite state machine and the outputs are evaluated as functions
of the present state and primary inputs. Equivalence between two circuits implies iden-
tical values of corresponding outputs in all reachable states. Explicit state enumeration
techniques perform an explicit traversal of the state space [DMN88, DDHY92]. Due
to the explicit nature of this technique, it is limited to only a small number of state
elements.

Symbolic techniques [CBM89, BCMD90] implicitly perform state-space traversal
on the product machine. A salient feature of these techniques is that the size of the
underlying decision diagram data structures does not depend on the number of states
or the state elements in the circuit. Although, the state-of-the-art symbolic methods
can deal with circuits with up to a few hundred latches, their capability falls below the
smallest size designs being optimized in industry.

In [AGMY6], a technique is described where sequential optimization is performed
on a modified circuit (where each pair of states can be distinguished by applying an
input in a single clock cycle). The modified circuit is obtained by making some latches
observable which in turn restricts the amount of optimization that can be performed.
The theoretical complexity of their verification problem remains PSPACE—complete
(the complexity of an arbitrary sequential equivalence check). However, on a practical
note, their technique requires state space traversal of individual machines as opposed
to the product machine. They produced results on relatively small MCNC and ISCAS
benchmarks because it was not possible to perform single machine state space traversal
for large ones. .

In [HCC96b], a technique for verifying the equivalence of two circuits after retiming
and synthesis transformations was given. Their technique relies on finding the corre-
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spondence between latches by retiming them appropriately. They presented results for
ISCAS benchmarks by comparing circuits which have undergone one step of retiming
after combinational optimization.

In [HCC97), a combination of BDD-based and ATPG-based technique is presented.
This approach relies on finding equivalent points in the two circuits and the symbolic
justification requires the computation of the transition relation for the product machine.
They gave results on circuits optimized by “script.rugged” inside SIS. This optimiza-
tion is mostly combinational and only redundancy identification and removal leads to
minor sequential changes.

In [SK97), a structural technique for sequential verification is presented. The equiv-
alence is performed by expanding the circuit into an iterative array and by proving
equivalence of each time frame by well-known combinational verification techniques.
Their technique relies on finding the logic transformations at each time frame. They
show results on ISCAS benchmarks, where an optimized circuit is obtained by just one
step of combinational optimization (using fx in SIS) followed by retiming. Applica-
tion of their approach to optimized circuits obtained by a sequence of retiming and
resynthesis operations seems difficult.

Proposed solutions to the sequential equivalence problem can be broadly divided
into two categories. The solutions in the first category attempt to solve the general
sequential equivalence problem [TSL*90, CM90b, HCC97, SK97]. However, due to
the complexity of the problem, the proposed solutions are either limited to relatively
small size circuits or to circuits which have undergone relatively fewer optimization
transformations.

The second approach is to trade off the optimization capability with the verification
complexity. In this approach, the sequential optimization is constrained in order to re-
duce the verification complexity. In the limit, by making all the latches observable, the
sequential synthesis reduces to combinational optimization leading to combinational
verification problems. The solution proposed in [AGM96] falls in this category. Our
methodology can also be viewed as offering another point in the tradeoff curve between
constraints-on-synthesis versus complexity-of-verification.

We propose a technique which reduces the sequential equivalence problem to an in-
stance of combinational equivalence; hence it can be applied in practical verification



9.3. PRELIMINARIES - 237

environments. For each latch, we impose certain constraints on the feedback path (if
one exists). If the constraints are not met in the original circuit, we make a minimum
number of latches observable in order to satisfy the constraints. We allow arbitrary
- sequences of retiming and synthesis operations for logic optimization. Also, unlike
structure-based approaches [HCC97, SK97], our technique does not rely on the struc-
tural similarity between the circuits and we can deal with circuits which have gone
through a sequence of retiming and synthesis optimizations. The techniques proposed
apply to circuits containing edge-triggered latches (both regular and load-enabled).

In industrial design environments, combinational verification is applied to sequential
circuits. However, this requires that little or no retiming be performed. These con-
straints limit the scope of retinﬁng and synthesis transformations drastically. By con-
trast, our approach allows an arbitrary number of retiming and combinational synthesis
transformations since it does not rely on structural similarity or matching state-bits.

9.3 Preliminaries

In this section we present our circuit model and notion of equivalence used in this work.
9.3.1 Circuit Model

A sequential circuit is an interconnection of combinational gates (no combinational
cycles) and memory elements along with input and output ports. Typically various
notions of sequential circuits differ in the definition of memory elements. We focus on
sequential circuits where all the memory elements are edge-triggered latches driven by
the same clock (single phase). However, these latches can have load-enable signals. A
sequential circuit is given as C = (1,0,G, L), where 1,0,G, and L are sets of inputs,
outputs, gates, and latches, respectively. Each latch ! € L is a pair [ = (x,¢), where x
is the output signal of the latch and e is the load-enable signal. For a latch without any
load-enable signal (also referred to as regular latch in this paper), we assume e = 1.
Similar to the notion in [LVW97], we define a latch.class ¢! = (e), which is all latches
that have the the same load-enable signal e. This classification is important during
retiming transformations, since latches can merge as the result of a move only if they
belong to the same class.
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9.3.2 Notion of Equivalence

Several notions of sequential equivalence are proposed in the literature. For circuits
with a unique initial state, the “reset” equivalence is checked for all the states reach-
able from the respective initial states. For multiple initial states, the following no-
tion of equivalence is used: two circuits C; and C; with initial states set S;, and Sp,
respectively are equivalent if and only if for each state s € Sy, there exists a state
t € S5, such that C; and C; are reset equivalent for these initial states and vice versa.
For circuits with an unknown initial state, several notions of equivalence have been
proposed: post-synchronization equivalence [Pix92], safe-replaceability [PSAB94],
circuit-covering [HCC96a], and 3-valued equivalence, to name a few.

Similar to 3-valued equivalence, we do not assume a power-up initial state for the
latches. Instead, we assume that at power-up, each latch has a non-deterministic Boolean
value. Note that, this does not prevent the design from having a reset state for some
latches which is activated when the reset line is pulled or a reset sequence is applied.

Since the power-up state is non-deterministic, the circuit behavior may not be de-
terministic for some input sequence. Given a circuit C with L latches and an input
sequence T, the output function O¢c(%t) = o if the circuit produces output o on input
sequence 7 from every power-up state (in 2lLly; if the circuit produces two different
outputs 0; and 0, on input sequence © from two different power-up states, we say that
Oc(m) = L, where L denotes an undefined value.

Definition 9 Two circuits Cy and C; are exact 3-valued equivalent if and only if for
any input sequence T: Oc, (T) = Oc, ().

Notice that L is somewhat similar to the value ‘X’ used in conservative 3-valued
logic simulation. However, L gets rid of the conservative effects of 3-valued simu-
lation: a 3-valued simulator may incorrectly say that a signal is ‘X’ because it does
not have the ability to correlate the various instances of X values as illustrated in Fig-
ure 9.1. Circuits 9.1(a) and 9.1(b) are not 3-valued equivalent, but are exact 3-valued
equivalent. |

In the next section we present our technique to derive a combinational representation
of the sequential circuits. In Sections 9.5 and 9.6 we apply it to sequential circuits
without and with feedback respectively.
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Figure 9.1 Example of circuits which are not 3-valued equivalent but are exact 3-valued equiv-
alent.

9.4 From Sequential to Combinational

We reduce the problem of sequential verification to an extension of combinational veri-
fication. The goal of our technique is to obtain a canonical acyclic combinational circuit
from a given sequential circuit. Towards that we introduce the following extensions of
regular Boolean functions.

t : t€Z Represents current time
T : {1€Z:1<1}

9.4.1 Clocked Boolean function

Definition 10 A clocked Boolean function (CBF) is defined for circuits containing
combinational gates and regular latches. Given a circuit C, the CBF for the circuit
represents the functionality of its outputs. This functionality is given in terms of input
values in multiple (but finite) clock cycles. Formally, a CBF for the output of a circuit,
with n inputs and latch depth d is a Boolean function F : B™4 — B. For a signal s in
the circuit, the CBF of the signal s(t) at time t is defined inductively as follows:

e If s is the output of a gate G, the corresponding CBF is the functional composi-
tion of the CBFs of its fanins at the same time instant, i.e., s(t) = fg(y1(¢),¥2(2),---,¥a(2)),
where y1,y2, ... ,Yn are the fanin signals of G, and fg represents its functionality.

o If s is the output of a latch, then the CBF is the value of its fanin after one clock
cycle, i.e., s(t) = y(t — 1), where y is the input of the latch.



240 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

)z/: X xlw y—Dxlw

(@) (b) ()

Figure 9.2 Functionality of AND gate and a latch.
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Figure 9.3 Example of a sequential circuit: latch trapped within a combinational block.

e If s is the primary input of the circuit, its CBF is an independent input variable
s(t). Note that s(t) and s(t') for t # t' are different independent variables.

We illustrate this concept using the following examples. The function f for the
output of the AND gate is nothing but the logical AND of the functions at the input,
i.e., x(t) = y(t)z(t). The function for the latch is interpreted as the function of the latch
input signal at the previous clock cycle, i.e., w(t) = x(¢ — 1). If we put the latch and the
AND gate together as shown in Figure 9.2(c), the functionality of the latch output in
terms of the primary inputs is given by,

w(t) =x(t—1) =y(t—1)z(r - 1)
Consider the circuit given in Figure 9.3. The output function is given as:

o(t) = c(t)d(r)

dit) = c(t—1)
c(t) = b(t)@a(r)
b(t) = a(t-1)

o(t) = [at-1)@a(t)]A]a(t-2)Da(t—1))
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Essentially, the output function depends on the value of input a in three different
clock cycles and we have obtained the CBF for the output.

Unlike the regular Boolean functions which give the value of a signal based on the
assignment of input values for one time instant only, the CBF gives the value of a signal
for input values delayed by a finite number of clock cycles. This notion is very sim-
ilar to the notion of Timed Boolean Function given in [Lam93). In [Lam93], similar
expressions are obtained for the signals which integrate both timing and logical func-
tionality and generalize the conventional Boolean functions to the temporal domain.
These expressions were used in timing analysis, analysis and optimization of wave-
pipelined circuits, and performance validation of circuits and systems. However, their
usage in representing and verifying the functionality of sequential circuit has not been
done before.

9.4.2 Event driven Boolean function

First we define some notation.

pi(t) : T—DB Boolean predicates over time
P = {pi(r)} Set of Boolean predicates
E = Uiso{E:E€ P} Setofevents

where elements of P* are denoted by [pi1,p2,... , k] and an event E € E is an ordered
set of timed Boolean predicates.

Next we establish the time instant defined by an event. We define the function 1 :
E — T as follows:

n([{]) = t empty eventdenotes the current time

_ —wifA([pth,n-,Pn]):q)
n([p1,p2s---,pPn)) = { max{t € A([p1,p2,--- ,Pn])} otherwise
where

A(lp1,p2,---»pa) = {v<n([p2,p3;---,Pn]) : P1(T)}

Intuitively, for an event E € E, consisting of Boolean predicates over time, 1(E)
gives the most recent time instant after which all the Boolean predicates in E have been
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active in the order in which they are listed. If the Boolean predicates in an event cannot
be active in the order they are listed, 1}(E) = —eo indicating an undefined value.

Using the 7 notation, we now define the next extension to a regular Boolean function.

Definition 11 An event driven Boolean function (EDBF) is defined for circuits con-
taining combinational gates and enabled latches. The EDBF for the output of a circuit
C, with n inputs and k distinct events, is a Boolean function f : B™* — B. For a signal
s in C, and an event E, the functionality of s at time W\(E) is defined inductively as
Sfollows:

e If s is the output of a gate G, the corresponding EDBF is the functional com-
position of the EDBF's of its fanins values associated with the same event, i.e.,

s(M(E)) = fe0n(M(E)),y2(N(E)); - .. ,ya(N(E))), where y1,y2,..- ,yn are the fanin
signals of G and f, represents its functionality.

e If s is the output of a latch with fanin signal y and enable signal e, then it takes
the most recent value of y at which e was active. This is given as sM(E)) =

y(n([e, E])).

e If s is the primary input of the circuit, it represents an independent input vari-
able.

Intuitively, for a signal s and an associated event E € E, the EDBF s(n(E)) gives the
value of s at the most recent time instant after which all the Boolean predicates in E
were active in the time order consistent with the listed order.

The following examples illustrate the concept. In Figure 9.4, the value of signal y,
can be represented as y(1([e])), since the value of y is equal to the value of x at the time
at which e was last active. In Figure 9.5, the functionality of signal z associated with
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g

Figure 9.4 Combinational functionality in the presence of enabled latches (illustration I).

' el e2
. g g
L1 L2
v i X ‘
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Figure 9.5 Combinational functionality in the presence of enabled latches (illustration II).
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in1 : out1 in2 out2

\ N

—00 O

Figure 9.6 An example of acyclic sequential circuit: pipelined circuit.

an event E can be obtained as follows:

zm(E)) = y(n(E))-x(n(E))
y(M(E)) = w(n([ez,E])
w(n([e2,E])) = u(n([e1,e2,E]))
x(m(E)) = v(n([es,E]))
z(E)) = u(n([er,e2,E]))-v(n([es,E])) 9.1

Equation 9.1 indicates that value of z is equal to the AND of value of 4 which has
been propagated through both latches L; and L, and of v which has been propagated
through L;.

In the next section we show how we make use of CBF and EDBF to obtain combi-
national functions for sequential circuits.

9.5 Sequential Circuits without Feedback

We consider sequential circuits without feedback paths (also known as “acyclic se-
quential circuits™). The typical circuits in this category include: pipelined circuits (Fig-
ure 9.6); and acyclic circuits with latches trapped within a combinational block (Fig-
ure 9.3). We first explain our technique for circuits with regular latches (no load-enable
signal) and then describe the case with load-enabled latches.
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9.5.1 Circuits with Regular Latches

In this class of circuits the latches update their contents at each clock cycle. The func-
tionality of the circuit depends on the input values possibly at multiple time instants.

We give the method to obtain the CBF for a general circuit. Given an acyclic sequen-
tial circuit C, in general, the value of a signal can be required for multiple time instants
corresponding to different delays (depending on the number of latches along different
paths between the signal and the primary outputs). Starting from primary outputs, we
recursively obtain the CBF for each signal as shown in the Figure 9.7. The result of
the CBF computation routine is a Boolean formula for each of the outputs in terms of
values of inputs in multiple cycles. By treating the input values at different time in-
stants as independent variables, we obtain a combinational function representation for
the outputs of the circuit. ‘

Definition 12  For an acyclic sequential circuit C, the sequential depth d is equal to
the largest delay for which an input affects the output. Note that d can be less than the
topological latch depth (maximum number of latches along a path between an input-
output pair) due to false dependencies.

Lemma 1 Given an acyclic circuit C with sequential depth d, suppose € is sequen-
tially equivalent to C. Then the sequential depth of Cisd.

Proof: Suppose the depth of € is d > d. Then there are sequences I; and I, of length
d and identical in the last d — 1 vectors such that some output of C differs on I; and I
after applying the last vector. However, the output of C will be the same. Hence C is
not equivalent to C, which leads to contradiction. The case when d > dis similar. =

Canonicity of the Formula

Theorem 7 Suppose C) and C; are two circuits and Fy and F their CBFs. Then
Fi = F & C) = C,, where equivalence between the ¢ircuits is exact 3-valued as defined
in Section 9.3.2, and equivalence between the CBFs is combinational.

Proof:
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Compute.CBF(C){
foreach primary output x {
Compute_CBF_Recursively (x,0);

}

}
Compute_CBF_Recursively(x,d){
if x is a primary input, return x(r — d);
if f(x,d) is already computed, return f(x,d);
if x is output of a latch {
y = corresponding latch input;
f(x,d) = Compute_CBF_Recursively(y,d +1);

else{
G, = Gate corresponding to signal x;
foreach fanin y of G, {
Compute_CBF_Recursively(y,d);

f(x,d) = Compose the fan-in functions appropriately;
}
Cache the result of f(x,d);
return f(x,d);

Figure 9.7 Computing CBF for outputs of a feedback free circuit.
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&=

Assume that F} # F>. Then there exists a CBF minterm m on the input values up to

d clock cycles such that Fj(m) # F>(m). Since the circuit has finite depth, using this

" minterm m we can generate an input sequence of length d such that when applied to

the two circuits, will produce different simulation results. This implies C) # C;.

=

Assume that C; # C,. Then there exists an input sequence 7t such that C) (r) # Cx(r).

Since the circuits are acyclic and have finite memory, © need not be longer than d.

Using this sequence we can generate a CBF minterm such that when applied to the two

formulae, will produce different results implying F # F>. Hence contradiction. [
Note that the above result are stated for any two sequential equivalent circuits not

just those obtained by retiming and combinational optimization.

9.5.2 Circuits with Load-enabled Latches

In the case where the latch output is controlled by an enable signal as well, the func-
tionality is as follows: if the enable signal is high, the latch propagates the data value
to the output, else the latch retains its old value. In [LVW97], a retiming technique was
proposed to handle latches with different enable signals and different clocks. In this
work, we propose a verification methodology where all the latches are driven by the
same clock but can have different enable signals. Extension to circuits with multiple
clocks is straightforward.

We obtain a Boolean function along the lines of the previous case (regular latches).
However, in this case we make use of event driven Boolean functions (EDBF) as de-
fined in Section 9.4.2. By instantiating separate Boolean variables for each unique
combination of primary input and event, we create a combinational representation of
the circuit.

Starting from primary outputs, we recursively obtain the EDBF for each signal as
shown in the Figure 9.8.

Canonicity of the Formula

Lemma 2 Given an acyclic sequential circuit with load-enabled latches, an input/output
pair a path between the pair, the number of latches and the event associated with the



248 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

Compute EDBF(C){
foreach primary output x
Compute_EDBF_Recursively (x,[])

}
Compute_.EDBF_Recursively(x, E){
if x is a primary input, return (x,E).
if F(x,E) is already computed, return F(x,E).
if x is a latch output {
y = latch input
e = enable signal
F(x,E) = Compute_EDBF_Recursively(y, e, E]).

else{
G, = Gate corresponding to signal x.
foreach fanin y of G, {
Compute_EDBF_Recursively(y,E)

F(x,E) = Compose the fan-in functions appropriately.

}
return F(x,E).

Figure 9.8 Computing EDBF for the outputs of a circuit.
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Figure 9.9 Topological arrangement of latches (black boxes) and combinational blocks
(ovals).

sequence of enabling signals of the latches along the path is invariant during retiming
(ala [LVW97]) and synthesis optimization steps.

Proof: Let us first consider the retiming transformation.

Suppose {Gi,Ga,...,Gi} is a path of gates between an input / and output O. As-
sume that the latches cannot be retimed across input and output ports. Suppose, during
a retiming move, x latches move across gate G;. If the latches are moved in the for-
ward direction, then x latches are moved from each fanin of G; (including G;-;) to
each fanout of G; (including Gi;1). Hence the number of latches between G;-; and
G4 along the path remains the same. Suppose €1, €2,. .., is the sequence of enable
signals of the latches along a path between input / and output O. For the forward or
backward movement of load-enabled latches, the latches being moved must belong to
the same enable class. Also, since the circuit is acyclic, a latch cannot jump over an-
other latch during retiming thereby changing the order of enable signals. It implies that
the sequence of the enable signals is preserved.

Since combinational synthesis keeps the latch positions fixed, the latch count and the
sequence of enable signals along any path in the circuit does not change. To establish
that a path pertaining to the true dependency is preserved during the transformation, we
make use of illustration in the Figure 9.9. Since the circuit is acyclic, we can arrange
the combinational logic and the latches as shown (for simplicity, only two layers of
latches are shown in the figure). Now the path / - x1 = x2 = x3 — x4 — O, from
input I to output O is shown in the figure. For combinational optimization x1,x3 and
X2,%4 are treated as primary outputs and primary inputs respectively. Hence to preserve
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the functionality of combinational blocks, paths from [ to x;, from x; to x3, and from
x4 to O, must be preserved. This implies that the number of latches and the sequence
of enable signals along the path is also preserved. [

Theorem 8 Given two acyclic sequential circuits Cy and C; with load-enabled latches,
such that Cy has been obtained from C; by retiming and combinational synthesis trans-
formations. Suppose F\ and F; are their EDBFs as computed by the algorithm of
Figure 98. Then L = K, & C =G,

Proof:
=
Assume C) # C,. Then there exists an input sequence =&, such that Cj(n) # C2(n).
Without loss of generality, we assume that for some output &, C, () # L and Cy, (%) #
C,,(m). Now, since Cy, () # L, it implies that for , all the enable signals for the Kh
output must be active in the sequence they appear in the circuit. Since the number
of latches and the enable sequence must be the same in C; and C; (from Lemma 2),
Cy, () # L. Hence using &, we can create an EDBF minterm m, such that Fi(m) #
F(m).
=
Assume Fj # F>. Since the number of latches and sequence of enable signals is same
for C; and C; (from Lemma 2), the support variable set is identical for F; and F>.
Consider an EDBF minterm m such that Fy(m) # F>(m). The minterm m can be used
to generate a sequence of events and input values such that when applied to the circuits,
C and C; will result in different outputs. [
Unlike the regular latch case, the result does not hold for any two sequentially equiv-
alent circuits. This is illustrated by following two examples.
In Figure 9.10, two sequentially equivalent circuits are presented. However, their
EDBFs would be different since the enable signal of latch L; is different in the two
circuits. The EDBF for the outputs O; and O, can be given as following:

01 = c(nfa(z),a(t-1)b(r-1)]) 9.2)

0, = c(nfl,a(t-1)b(tr-1)])
= c(ma(t—1)b(r-1))]) 9.3)
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Figure 9.10 EDBF can lead to false negatives: illustration 1.

Our technique will result in a false negative since the events defining the time instant
for the value of ¢ are syntactically different even though the definition is the same. We
can work around this problem by rewriting our events. For example, it can be proven
that,

p(t) 2q(t) = m[p(),q(r—1)]=mnlg(x—1)] 94)
Applying (9.4), on (9.2) (with p(t) = a(t) and g(1) = a(t)b(7)), we get,

01 = c(nfa(t—1)b(t—1)]) From (9.4)
= 02

This rewriting rule extends the applicability of our technique. However, this rule is
not complete, as shown by the next example. In Figure 9.11, (a) and (b) are two se-
quentially equivalent circuits. In this case, the enable signals to both the latches are the
same. However, the data inputs to the latches are different. The EDBF representation
for these two circuits are following:

01 = b(n(a+b))
02 = a(m(a+b))+b(n(a+b))
This results in a false negative. Essentially, in this Example there is some interaction

between the enable and the data signals of the latch, resulting in equivalent sequential
functionality even though the EDBFs are different. To handle these cases, we need
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o1 b 02
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Figure 9.11 EDBF can lead to false negatives: illustration II.

Figure 9.12 Modeling feedback path for a latch with enable and data signals.

to establish equwalence not only between different forms of events, but also between
different forms of event/data interaction. Until then, our methodology for circuits with
load enabled latches provides only a conservative check.

9.6 Sequential Circuits with Feedback

In these circuits there exists a feedback path for some latches. Our strategy is to model
a latch with feedback in the form of an enabled latch with appropriate enable and data
signals as shown in Figure 9.12. Next we derive the conditions under which this
modeling is feasible.

Lemma 3 Suppose the next-state function of a latch x given as F(x). Then F(x) =
e-d+éx < F; CF,, i.e., F(x) can be decomposed in the form of Figure 9.12 if and only
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if F (x) is positive unate in x. Note that e and d are independent of x.

Proof:

. =

F.=ed+é2ed=F;.
=
Let e = F;+ F; and d = F;. Then,

ed+éx = (Fi+F)F+xFF;
xFy + XFz + xF;
= F+xF;

F  (For a positive unate function)

As a matter of fact, any d, which satisfies,
Fr C dC K (9.5)

can be used as the data signal. The value of e, on the other hand, is unique as shown
below.
Since F is a positive unate function in x, we can represent F as F(x) = Ax+B.
Now, '

e-d+éx = Ax+B

Equating the cofactors with respect to x, we get,

é+d = A+B

=ed = AB

=>e D AB (9.6)
e-d = B

=>e O B ©.7)
=e¢ D A+B Adding9.6and9.7 (9.8)
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Figure 9.13 Modeling an enabled latch with extra logic.

Also, the flexibility in representing e is given by the following equation,

ABC é CA+B

=ABC e CA+B 9.9)
e = A+B From9.8and 9.9
= Fx“'}'}

Thus for latches whose next-state function is positive unate in the latch variable,
the feedback can be modeled via a multiplexer. The advantage of the model shown in
Figure 9.12, is that a latch fed by a multiplexer can be thought of as an enabled latch
as shown in the Figure 9.13. This gets rid of the feedback path and for our purposes
the circuit becomes acyclic. Now we can apply the analysis techniques developed in
Section 9.5.2 for acyclic circuits with enabled latches. However, we need to be aware
of following issues:

1. The data-input and the enable signal both need to be independent of the latch
signal, else it will create a cycle.

2. The data value d obtained from the function F = ed + éx is not unique as shown
in (9.5) since d has e as don’t care. Hence for two circuits C; and C; we can
come up with different decompositions leading to false negatives. This is the
basis behind the counterexample in Figure 9.11, where the decomposition of the
next-state function ax+ b is different for the two circuits. This can be handled in
following ways:
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(a) By fixing the latch modeling in the circuit, i.e., once we model the feedback
path of a latch by an enabled latch, we restrict the logic optimization of the
feedback logic by not using e as don’t care and also, we move the latch in
tandem with the logic for the enable signal. This will guarantee the event
correspondence in two circuits. However, by preserving the multiplexor
logic we incur some optimization penalty.

(b) By using the lower limit of the possible data signal, i.e., d = Fx. This guar-
antees the matching of the enable signals, but an optimization penalty may
be incurred.

(c) Perform a canonical decomposition of the enable and data signals. Below
we give a sufficient condition for such decomposition.

Lemmad Given a function F = Ax+ B, suppose (e,d) and (e,d) are two
decompositions such that e and d have disjoint Boolean supports. Then
d =d, i.e., there is a unique decomposition of F such that d and e have
different supports (if such decomposition exists).

Proof: We have,

ed+éx = ed+eéx
=edi = edx
=>ed = ed (9.10)

Equation 9.10 follows from the fact that ed is independent of x. Since e and
d have different supports (and so have e and d), from (9.10) d and d must
have the same support. Suppose X and Y are the support sets for e and d ,d
respectively.

Assume d # d. Then there exists a minterm y on the Y variables such that
d(y) # d(y). Choose an arbitrary minterm x on variables of X such that
e(x) = 1. Suppose (xUy) is the minterm on X and Y variables.

d(y) = d(xULy)

diy) = d(xuy)
e(x) = e(xUy)=1
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Figure 9.14 Conditional updating of the latch content.

Figure 9.15 Making some latches observable to meet the feedback criterion.

Since d(y) # d(y), thus e(xUy)d(xUy) # e(xUy)d(xUy). This contradicts
(9.10). ]

The feedback modeling as derived in Figures 9.12 and 9.13 is best suited for the
class of circuits where latches update their values when a set of conditions is met, else
they keep their previous values. This is illustrated in Figure 9.14. The latches with
feedback paths, for which we cannot derive the enabled latch model, are handled in
the following way. We find a minimum number of latches that need to be exposed,
i.e., need to be made observable, in order to remove the feedback path for these latches.
This is illustrated in Figure 9.15. By exposing latches, we treat their outputs as primary
inputs and hence the feedback paths are broken, i.e., we cut the latches from the circuit.
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After finding the minimal set of latches to be exposed, we impose constraints on the
synthesis step such that these latches cannot be moved during retiming.

9.7 Experimental Setup
9.7.1 Circuit Modification

Given a sequential circuit C, we create a directed graph G = (V, E) in the follow-
ing manner. For each combinational gate, latch, primary input and primary output
we create a node. An edge from node v; to v; is created if there is a fanout from
gate/latch/primary-input i to gate/latch/primary-output j. The graph in general has cy-
cles due to feedback paths to latches. In the current work we have not implemented
the technique to identify the latches with feedback paths that satisfy the criterion men-
tioned in the previous section. Instead, we obtain a minimal set of latches to expose
such that the circuit becomes acyclic*. The problem of finding the minimum set of
vertices to make the circuit acyclic “minimum feedback vertex set problem” which is
NP-complete. We used a modified version of the heuristics given in [LR90].

9.7.2 Retiming

Retiming was done using Minaret [MS97]. This tool only supports the constant delay
model (we could not find any efficient public domain retiming tools, which supported
better delay models). Retiming was performed in two modes. First, the minimum
feasible period was obtained and the area of the circuit was optimized for this period.
In the second mode, the delay obtained through combinational optimization was used
as the timing constraint and then constrained minimum area retiming was performed.

We could not find a public domain retiming tool which could handle latches with
enable signals as proposed in [LVW97] and shown in Figure 9.16.

9.7.3 Combinational Optimization

We perform combinational optimization to obtain a minimum delay circuit. SIS [SSL*92]
was used for synthesis purposes. A modified version of “script.delay” was used as

*Note that, in the presence of such a technique, we need to obtain the minimal set of latches to break
cycles for only remaining set of latches.
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Figure 9.16 Retiming enabled-latch across gates.

shown in Figure 9.17. The modifications were made because the original script was
not able to handle large designs (or took very long to complete).

As mentioned earlier, the unit delay model was used during retiming. Hence for
consistency we used the unit delay model during synthesis steps as well. To keep the
size of gates small, we created a library consisting of inverter, 2-input nand and 2-input
nor gates only. Also, for reasonable optimization results we limited the number of
fanouts for each gate to four. The delay models and the fanout limitation changes were
achieved by appropriately modifying the library.

9.7.4 Generating Equivalent Combinational Equivalence Problems

In order to leverage from the existing combinational equivalence tools, we mapped the
equivalence problem of CBF/EDBFs into combinational equivalence problems. This
was done by creating a combinational circuit with appropriate variables which repre-
sents the CBF or EDBF. An illustration is shown in Figure 9.18. The combinational
circuit Figure 9.18(b) represents the CBF for the sequential circuit Figure 9.18(a). Es-
sentiaily, if the circuit outputs depend on the value of a signal at k different time instants
(for a circuit with regular latches) or with k different enable signal paths (for a circuit
with enabled latches), the cone of logic for the signal is replicated k times. The size
of these circuits could become large due to replications. Note, however, that this step
is performed only for convenience (to treat the combinational equivalence checker as a
black box). In practice, a modified combinational equivalence checker could be used
which would not require generation of such circuits and hence no blow-up would occur.

The combinational verification was performed by an in-house tool similar to the ones
presented in [Mat96, KK97].
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sweep

decomp -qg

tech_decomp -0 2

resub -a -d

sweep

reduce_depth -b -r
eliminate -1 100 -1
simplify -1

sweep

decomp -g

fx -1

tech_decomp -o 2

rlib mylib2.genlib

rlib -a 1lib2_latch.genlib
map -s -n 1 -AFG -p -B -b 1000
print_delay -pl -a -m unit

Figure 9.17 Script for synthesizing minimum delay circuit.
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Figure 9.18 Generating equivalent combinational equivalence problems.




260

CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

9.8 Experimental Results

Our experiment consisted of following steps (see also Figure 9.19).

1.

Given the sequential circuit (A), modify it appropriately to satisfy constraints on
all feedback paths to obtain a new circuit (B). This is done by creating a circuit
graph and finding a minimal feedback vertex set. Due to lack of a retiming tool
which could handle load-enabled latches, we did not model any latches with
feedback path as load-enabled latches (as shown in Figure 9.12). In general, this
leads to fewer latches that need to be exposed.

Perform synthesis for delay optimization and min-period retiming on the modi-
fied circuit (B) to obtain a new circuit (C).

. To illustrate the advantage of combining retiming with combinational synthesis,

we also performed pure combinational optimization (using the same script) on
the original circuit (A) to obtain circuit (D).

. We also compared the saving in area by performing constrained minimum area

retiming. This was done on circuit (B) with the delay value of circuit (D) to
obtain a new circuit (E).

. To measure the loss in optimization due to modification in step 1, retiming and

synthesis optimization on the original circuit (A) was performed to obtain an
optimized circuit (F).

. Step 5 was repeated to measure the loss of optimization in circuit (E). This was

done by performing constrained minimum area retiming on (A) with the delay
value of circuit (D) to obtain a new circuit (G).

Combinational circuits (H and J) were created (as described in Section 9.7.4) to
obtain circuits (B) and (C) respectively.

. Perform combinational verification between (H) and (J). Verifying equivalence

of circuits (B) and (E) would be similar and is not done in the experiment.
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Figure 9.19 Flow chart indicating experimental set up.
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Figure 920 Feedback paths due to interaction with memory and communication layer.

The active area and delay numbers are obtained by the “map” command. The verifica-
tion was performed on an UltraSparc-1 with 256MB of memory.

In Table 9.1, we have given results comparing the optimization potential of our strat-
egy and also the corresponding verification times.

All the industrial circuits we investigated contained load-enabled latches. Since we
did not have access to a retiming tool for circuits with load-enabled latches, we could
not perform retiming on these circuits and hence could not get optimization and veri-
fication results. However, we did extensive analysis on them to understand the nature
of feedback paths to latches. After analyzing a set of circuits we observed that most
of the feedback paths exist due to interaction with memory and communication layer
as shown in Figure 9.20. Typically, designers want to keep the boundary between the
design and communication layer/memory preserved and they do not synthesize them
together. We can take advantage of this fact and can assume for our purposes that these
feedback paths do not exist. In Table 9.2, we have given the number of latches ex-
posed in order to satisfy the feedback path constraint. Currently we do only structural
analysis which can detect the kind of circuits as shown in Figure 9.14. A more de-
tailed functional analysis (based on the next-state function of the latches as explained
in Section 9.6) would lead to reduced number of exposed latches.
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Circuit A F C D G E Time
#L| #L|Area| 8| % | #L|Area| 3|Area| & #L |Area| #L {Area|Hvs]J
minmax10| 30| 30| 087]50| 66| 30| 0.74{50| 100} 56| 30| 0.87| 30| 074 2
minmax12| 36| 36| 087|54| 66| 36| 0.75|54| 1.00| 57| 36| 087 36| 0.75 2
minmax20| 60| 60| 083)55| 66| 60| 080|64| 100| 94] 60| 083| 60| 080 3
minmax32| 96| 96| 081 88| 66| 96| 072|96| 1.00|145| 96| 0.8] 9 | 0.72 5
prolog 65| 8] 106|15]43| 65) 097]17] 1.00| 18| 65] 1.00] 65| 0.97 7
s1196 18 18] 100|211 O 181 1.00(21] 1.00}| 21 18] 1.00 18| 1.00 5
s1238 18 18§ 1.00|19| O| 18] 099|19| 1.00| 19 18| 1.00 18| 0.99 7
51269 37| 69| 1.12|24] 75| 37| 098(32) 100 33| 37| 1.00| 37| 098 6
51423 74| 78] 10140 95| 74| 100{44| 100} 45| 74| 1.00| 74| 1.00 6
$3271 116 221 1.18|16| 94| 116| 099 (25| 1.00| 26| 116| 1.00| 116 | 0.99 7
s3384 183 174| 097|301 39| 154 095|56| 1.00| 57| 154| 095| 154| 0.95 34
s400 21 211711117 21| 098113| 1.00| 14 18| 0.95 21| 098 1
sd44 21 32| 117(10] TN 211 099]13| 1.00| 14 18 095 21| 0.99 1
s4863 88| 146 10532 18] 142 1.04|32( 1.00} 58| 78] 099 83| 099 | 425
s641 19 19| 1.00(24] 78 19 1.00(24| 1.00]| 24 19| 1.00 19] 1.00 1
$6669 231 272 1.02(32] 17| 234| 10055 1.00| 8| 193] 097 | 214] 098 | 1:54
s713 19 19] 1.00§25| 78| 19] 09624 ] 1.00| 25 19| 1.00 19| 096 1
$9234 135] 169 105121 66| 144 1.00|27| 1.00| 30| 128| 098 | 135| 098 22
$953 29| 22| 095(16| 20| 290{ 1.00|14| 1.00| 16| 22] 095 29| 1.00 3
$967 29| 22| 095|15| 20| 29§ 1.00}14]| 1.00| 15 22| 095 29| 1.00 3
$3330 65| 78) 1.04[15| 43| 65| 09617 1.00| 19} 65] 1.00] 65| 0.96 7
s15850 s515| 537 1.01 |34 72| 515| 1.00(46| 1.00]| 46| 495 099 | 515| 1.00| 11:24
s38417 | 1464 |1285| 096 ]33] 701463 | 1.03|36| 1.00| 37| 1248 | 095 | 1463 | 1.03 | 15:32

Table 9.1 Results on sequential optimization and verification.

A: Original circuit

B: Modified circuit (not shown in the table)

C: Obtained from B after retiming (for minimum period) and synthesis
D: Obtained from A after Combinational optimization only

E: Obtained from B after retiming (for delay in D) and resynthesis

F: Obtained from A after retiming (for minimum period) and synthesis
G: Obtained from A after retiming (for delay in D) and resynthesis

H: Combinational circuit for the CBF for circuit B

J: Combinational circuit for the CBF for circuit C

L: Latches

%: Percentage of latches exposed in B

Area/d: Area (normalized against D) / Delay of the circuit

H vs J: CPU time (in minutes:seconds) for combinational verification between H and J
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Example | # Latches | # Exposed |
exl 2157 934
ex2 100 16
ex3 146 56
ex4 1437 835
ex5 672 - 305
ex6 412 250
ex7 453 81
ex8 968 470
ex9 783 15
ex10 634 174
ex11 792 369
ex12 2206 691

Table 9.2 Number of latches exposed for some industrial circuits.

9.8.1 Analysis

By analyzing the data given in Tables 9.1 and 9.2 we make following observations:

1. Comparing & values in columns C and D, for most of the circuits the delay val-
ues obtained through our approach is better than that by purely combinational
optimization. In some cases delay values reduces by as much as 50%. The area
penalty incurred in the process is negligible.

2. Comparing area numbers in columns D and E, for the same delay, retiming allows
us to reduce the area.

3. The verification times were quite reasonable. Most of the examples took less
than a minute to verify. The maximum time taken is fifteen minutes. Note that,
for only a few of these sequential circuits the state-space can be traversed, and
for fewer yet the state-space of the product machine can be traversed. This makes
the proposed technique quite attractive.
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4. Comparing the area numbers in columns D and E, we observe that the penalty
paid in terms of reduced optimization capability was not significant in most of
the cases. h

5. Looking at the data for industrial circuits from Table 9.2, we observe that even
though these circuits are highly control intensive implying a relatively tight in-
teraction among latches, we did not need to expose more than 50% latches and
sometimes as few as 2% latches were exposed. As mentioned, these numbers
will decrease when positive unateness is used.

9.9 Conclusions, Related Work, and Future Directions

We proposed a practical verification technique for circuits which have undergone re-
timing and combinational synthesis transformations. In particular, we show that the
corresponding sequential verification can be reduced to an extension of combinational
verification. The proposed technique can deal with circuits with and without feedback
paths, and with regular and load-enabled latches. We impose a constraint on the feed-
back path (if one exists) of latches. If these constraints are not met by the original
circuit, we fix the position of some of the latches to cut the feedback paths. Experimen-
tal results indicate that imposing constraints does not result in significant optimization
penalty. Our strategy can be used to obtain faster circuits by allowing the retiming
transformations while performing fast verification as indicated by our experimental re-
sults.

In [BBJR97], implementation verification of the bus interface unit for the Alpha
21264 microprocessor is performed. More specifically, gate-level extraction of custom-
designed transistor level schematics is verified against the RTL. They used a “retiming”
comparison algorithm for verifying acyclic sequential circuits. In particular, they gave a
similar algorithm as that in Figure 9.8 for computing the output functionality. However,
no formal framework for such verification is presented and no technique to handle
circuits with feedback paths is presented (as given in Section 9.6). Nonetheless, their
work presents another application of our technique. .

To make our approach exact for arbitrary sequential optimizations, we need to de-
velop a complete technique to distinguish events and combination of events and signals.
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Also, a better technique could be used to find the latches to be exposed. The strategy of
finding the minimum latches may not always be optimum for area/delay optimizations.
The need would be to identify latches, such that the least amount of area/delay penalty
- is paid by exposing them.



Chapter 10

Conclusions and Future Directions

THE design and implementation verification of digital circuits is becoming a crit-
ical aspect of the design methodology. As the circuit complexity is growing the
need for efficient verification algorithms has increased dramatically. Simulation, which
has traditionally been employed for verification purposes, cannot be relied on by itself
due to its poor coverage of the system behavior. Formal verification, a technique which
uses mathematical analysis to establish relationships between appropriate mathematical
models of a design and its desired properties, has been emerging as a complementary
alternative to simulation. However, the current state-of-the-art formal verification tech-
niques are limited in their applicability to only small designs.

In this thesis we have presented a spectrum of techniques to radically improve the
efficiency of various verification algorithms. This is critical to meet the performance
demand on verification techniques and in particular to make formal verification a viable
technology for practical applications. Below we summarize the key contributions of
this work.

BDD manipulation For the underlying data-structure, binary decision diagram, we
have presented computer architecture based techniques for efficient manipula-
tion. In particular, exploiting memory hierarchy is shown to be a promising di-
rection to achieve high performance. Due to the large difference in access times
between various levels in memory hierarchy, the locality of access plays a critical
role in the overall run time.

The basic idea is to reorganize the computation to achieve memory locality, in
particular by converting a recursive procedure into an iterative one. The depth-
first traversal of operand BDDs is replaced bil the breadth-first traversal, which
when coupled with customized memory management shows improved locality.
Further performance improvements are obtained by identifying locality across
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several independent and several dependent BDD operations using the notions of
superscalarity and pipelining. Overall we observed a performance improvement
of up to 100 for BDD sizes that do not fit the main memory. Even for the BDD
sizes that fit within the main memory, about 50% performance improvement was
observed.

We also demonstrated that it is possible to use a collection of main memories and
disks on a network of workstations to improve the performance and build BDDs
that do not fit in the memory of one workstation. We see a performance improve-
ment by a factor of up to 6 on a Myrinet-connected cluster of four workstations
by using remote memory as a paging device for the local memory.

We have argued that a multi-threaded breadth-based manipulation based BDD
package running on a shared-memory multiprocessor has the highest potential
for effectively utilizing the parallel architecture.

Since dynamic ordering constitutes an essential component of a BDD package,
we have investigated dynamic ordering schemes inside a breadth-first manipula-
tion based package and shown its performance to be at par with reordering in a
depth-first manipulation based packges.

State space traversal State-traversal constitutes an important step in the verification

of sequential circuits. Towards that, we have presented techniques for compact
state-transition graph representation and traversal. We established that the core
computation in BDD-based formal verification is that of forming the image and
pre-image of a set of states under the transition relation characterizing the system.
To make this step efficient, we addressed the use of clustered transition relations,
ordering of clusters for early variable quantification, network partitioning, use of
don’t cares, and removal of redundant latches.

Sequential circuit verification The high complexity of general sequential circuit ver-

ification makes any sequential optimization in digital circuit unattractive. In this
work, we have shown that with appropriate constraints, the implementation ver-
ification of circuits which have undergone iterative retiming and combinational
synthesis transformations can be reduced to an extension of the combinational
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verification problem. This enables exploitation of the advancements made in the
field of combinational verification and use of its powerful techniques to perform
verification.

10.1 Analysis and Future Directions

Efficient BDD evaluation: The evaluation of a BDD for a particular input minterm
involves tracing one of the paths in BDD from the root node to the leaf. In
other words, performing simulation on a BDD requires accesses to memory loca-
tions holding BDD nodes. The ideas behind localizing memory accesses during
breadth-first BDD manipulation can be applied in this case as well. This can be
achieved in following two ways:

Evaluation of multiple input vectors: In many simulation environments, it is
required to simulate multiple input sequences. For a Boolean function on
n variables, simulating one vector requires # BDD node accesses. Suppose
we need to simulate k input sequences each of length m. If we simulate
each of k input sequences one after another one vector at a time, we need
to traverse paths in the BDD k- m many times. Each path traversal requires
accessing one node from each level. If these accesses are non-local, there
will be order of O(n - k- m) non-local accesses in the complete simulation.

The node allocation scheme of breadth-first BDD manipulation technique
combined with the simultaneous evaluation of all the input sequences will
lead to better locality. Essentially, the BDD nodes are laid out in the mem-
ory such that nodes of an index are on the same page or set of pages. By
maintaining an array of length k, and keeping track of evaluation nodes for
all k sequences, we can obtain simulation results of one vector for all k se-
quences in one pass of the BDD. Assuming that we incur a non-local access
in going from one level to another, there will be order of O(n - m) non-local
accesses in complete simulation.

Note that, since there will be overheads associated with the book-keeping
of multiple vectors, the technique will be useful if the number of input se-
quences to be simulated is large.
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Evaluation of single input vector: In those cases, where we need to simulate
one long input vector sequence, the above approach will lead to unnecessary
overhead. In this case we propose the following strategy.

The goal is to optimally layout the BDD nodes in the memory such that
some objective function based on non-local accesses along various paths of
the BDD is optimized.

We can treat the optimal layout of BDD nodes in the memory as a graph
problem by considering the whole BDD as a directed acyclic graph G=
(V,E). In a simplistic view, we would like to assign each BDD node to
a physical page in the memory. This corresponds to assigning a number
to each node in the graph G. Assume the possible range of such numbers
(based on the number of pages in the main memory) is N. Suppose f:V —
N, is an onto function, mapping each node to a particular page. Since there
is a limit on number of nodes that can fit in a page, appropriate constraints
can be imposed on the mapping process.

We define a distance metric d;; between two vertices v; and v; such that:

4 = {life,-,-GEandf(v;)yéf(vj)
i,j =

0 otherwise

A path in the graph is defined by an ordered list of vertices (vo,v1,V2,... ,Vn),
such thatVi,i =1,...n, v; is the child node of v;_;. Suppose P;j = (vi, Vi41,---,V})
is a path in the graph between vertices v; and v;. We define the path weight

as

k=j—1
We,; =Z, 2] dipa

=1

Note that there can be multiple paths between two vertices in the graph.
The weight for a path indicates the number of times page change will occur
in traversing the nodes along that path.

One plausible objective function is to minimize the maximum weight along
any path, i.e.,

Minimize (max WP;_)

i,j.k i
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The superscript k denotes the existence of multiple paths between the ver-
tices v; and v;.

The other objective function (but not so practical) could be to minimize the
weight along any path in the graph.

This paradigm of allocating nodes in the memory can be extended in two
ways.

1. We can attach probabilistic attributes to the edges reflecting the proba-
bility of traversing that path during simulation.

2. We can target various levels of memory hierarchy simultaneously. In
particular, we can formulate the node layout problem such that the
number of cache misses is minimized. We can also formulate a com-
bined objective function, which first tries to minimize the cache misses
and then targets the optimal page assignment. We can associate differ-
ent distance metrics to these assignments to reflect the large difference
in the miss penalties.

Minimizing cache misses: As we discussed in Section 1.2.3 on page 5 in Chapter 1,
the performance gap between the processor and the main memory is increasing
over the years. To deal with this gap, one can devise algorithms which lead
to fewer cache misses, reducing the need to access the main memory. In Sec-
tion 3.8.5 on page 71 in Chapter 3, we discussed one possible way to reduce the
cache misses during the REDUCE phase of the breadth-first BDD manipulation.
Some other possible avenues are using a different BDD node data structure and
unique table management.

Keeping BDD complexity under control: The performance demand on verification
algorithms is growing at a rate that outpaces the improvements in the semicon-
ductor technology. Roughly speaking, the complexity of BDD algorithms in-
crease at least quadratically with increase in the number of variables. This is
based on a conservative assumption that the sizes of BDDs grow linearly with
the number of variables and typical Boolean dperation complexity is of the order
of the product of the sizes of the operands. The trend in the number of transis-
tors has been that it quadruples every three years. This implies the number of
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variables for BDD representation also quadruples every three years. The BDD
complexity from a conservative estimation would grow at least sixteen times ev-
ery three years. The performance of a microprocessor improves by a factor of
only about 3.37 every three years. This indicates that a BDD based technique
which does not scale with the size of the system, will run out of steam over
years.

Therefore, the need is to find algorithms which apply the BDD-based techniques
after suitably scaling down the problem size — either by abstraction or by appro-

priate partitioning — such that the BDD size and hence the algorithm complexity
remains under control.

Complexity issues in retiming and synthesis transformations: A number of issues

are still unresolved. In particular:

1. The exact optimization potential of arbitrary number of retiming and syn-
thesis transformations is unknown.

2. The number of retiming and synthesis transformations required to obtain
the most optimum circuit possible is unknown. More precisely: suppose S
indicates the optimization space of retiming and synthesis transformations;
does there exist a finite number £, such that k transformations of retiming
and resynthesis can explore all of S.

3. The complexity of establishing if a circuit C; has been obtained from C; us-
ing only retiming and synthesis transformations is unknown. We conjecture
that this complexity will be dependent on the point 2.

Hybrid methods: One can take a hybrid approach in two directions. The first one

would be to combine theorem proving with automated techniques like model
checking. Thereby we can hope to take advantage of the best of both tech-
niques. Some effort has been made in this direction in the past however it did
not gain mainstream success. For a successful integration of techniques the driv-
ing paradigm should always be to keep the methodology as simple as possible.

Another useful observation is that formal verification and random simulation
present two extremes of the verification methodology. Both have serious draw-
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backs making them infeasible for verifying large designs. Another hybrid method
is to bring formal techniques into the world of simulation. Some effort in this di-
rection has been made by few researchers [HYHD9S, YSAA97].
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Appendix A

CAL BDD Package

THE work on breadth-first BDD manipulation and dynamic ordering (described
in Chapters 3 and 6 respectively) has been successfully implemented inside a
comprehensive BDD package named CAL [RS97].

In the following we give brief descriptions of the functions which are unique to the
CAL BDD package.

e Cal BddMultiwayAnd(Or/Xor): Given n functions fi, fa,...,fa, this function
computes []; f; or Z;f; or @ f; respectively.

e Cal_BddPairwiseAnd(Or/Xor): Given a two arrays of BDD operands f1, f2,... , fa

and gi,£2,. .- ,&n, this function computes [T;(figi) or Z;(fig:) or ®(figi) respec-
tively.

e Cal Pipelinelnit(op): This function initializes the pipeline engine with the des-
ignated operation. Until the current pipeline is executed and results are updated,
all the operations need to be of the “op” type.

e Cal PipelineCreateProvisionalBdd: Given the operands, this function creates a
provisional BDD representing the result of performing the current pipeline oper-
ation on the operands.

e Cal PipelineExecute: This function executes the current pipeline, evaluates all
the operations.

e Cal PipelineUpdateProvisionalBdd: Given the provisional BDD, it returns the
actual resulting BDD. This function should be called after executing the pipeline
for the provisional BDDs of interest.
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e Cal PipelineQuit: This function destroys the storage associated with the pipeline.
Any un-updated provisional BDDs are freed.

So far three versions of the package have been released in the public domain. The
latest version (2.0) is available at:
http://www-cad.eecs.berkeley.edu/Research/cal_bdd
The latest release of the package includes the dynamic reordering routines. This pack-
age has been successfully used inside a commercial FSM synthesis tool.
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Appendix B

'VIS: Verification Interacting with Synthesis

THE work on efficient state space representation and traversal (Chapter 7) was in-
tegrated inside a verification tool named VIS (Verification Interacting with Syn-
thesis). * VIS was developed as a joint effort by researchers at University of California
at Berkeley and University of Colorado at Boulder. This chapter gives a brief overview
of this tool and discusses its features.

The motivating factors behind the creation of VIS were:

1. To provide an integrated environment for synthesis and verification.
2. To create a symbolic model checker using state-of-the-art algorithms.
3. To provide a solid platform for research in verification and synthesis.

The overview of the VIS architecture is given in Figure B.1. Roughly speaking, the
front end for VIS allows the traversal in the hierarchy. The verification and synthesis
parts respectively allow one to perform verification and synthesis on the sub-tree rooted
at the current node in the hierarchy.

VIS was designed to be modular with well defined packages to handle various fea-
tures of the tool. In Figure B.2, we outline the flow of a work session inside VIS and
identify the corresponding packages (shown inside parentheses). The modularity al-
lows a developer to integrate and investigate new ideas for various algorithms inside
VIS in a clean fashion.

The VIS tool has been integrated with three different BDD packages [Som97, RS97,
Lon93]. So far three releases of VIS have taken place. The latest release of VIS can be
obtained from ’
http://www-cad.eecs.berkeley.edu/"vis

*For a detailed description of VIS architecture please refer to [BSA*96b, BSA*96a].

279



280 APPENDIX B. VIS: VERIFICATION INTERACTING WITH SYNTHESIS
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Figure B.1 VIS Overview.
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Read in the design (io)

|

Synthesis (via SIS) -=——— Hierarchy Traversal (hre, rst)

Restructuring

Symbolic Synthesis — Fiattening of hierarchy sub-tree  (ntk)

(synth)

Other Packages:
Command utilities: cmd
Image computation: img
Variable management: var
CTL formula parsing: ctip
Multi-valued variables: mvf
Network to mdd’s: ntm
Table management: tbl
Main package: vm
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r—> Residue verification (res)

Figure B.2 Verification and Synthesis inside VIS.




282 APPENDIX B. VIS: VERIFICATION INTERACTING WITH SYNTHESIS

VIS has found world-wide success in both industry and academic worlds. It forms the
core engine for some commercial verification tools. It is also used as part of the ver-
ification courses at various universities. To date, there have been over 500 downloads
from all over the world.



[AC94]

[ACM96]

[ACP94]

[ADG91]

[AG89]

[AGM9I6]

[Ake78]
{Amd67]

[ASB93]

[ASS*94]

[Bai91]

[BBDG*94]

Bibliography

P. Ashar and M. Cheong. Efficient Breadth-First Manipulation of Binary Decision Dia-
grams. In Proc. IEEE/ACM International Conference on Computer-Aided Design, pages
622-27, November 1994.

P. Arunachalam, C. Chase, and D. Moundanos. Distributed Binary Decision Diagrams for
Verification of Large Circuits. In Proc. IEEE/ACM International Conference on Computer
Design, pages 365-70, 1996.

T. E. Anderson, D. E. Culler, and D. A. Patterson. A Case for NOW: Network of Work-
stations. Technical Report UCB/ERL M94/58, Electronics Research Lab, Univ. of Cali-
fornia, Berkeley, CA 94720, November 1994.

P. Ashar, S. Devadas, and A. Ghosh. Boolean Satisfiability and Equivalence Checking
Using General Binary Decision Diagrams. In Proc. IEEE/ACM International Conference
on Computer Design, pages 259-64, 1991.

G. S. Almasi and A. Gottleib. Highly Parallel Computing. Benjamin/Cummings, Red-
wood, CA, 1989.

P. Ashar, A. Gupta, and S. Malik. Using Complete-1-Distinguishability for FSM Equiv-
alence Checking. In Proc. IEEE/ACM International Conference on Computer-Aided De-
sign, November 1996.

S. B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, C-37:509-16,
Jupe 1978.

G. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale Com-
puting Capabilities. In AFIPS Spring Joint Computer Conference, pages 483-85, 1967.

A. Aziz, V. Singhal, and R. K. Brayton. Verifying Interacting Finite State Machines:
Complexity Issues. Technical Report UCB/ERL M93/68, Electronics Research Lab, Univ.
of California, Berkeley, CA 94720, September 1993.

A. Aziz, T. R. Shiple, V. Singhal, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Formula-Dependent Equivalence for Compositional CTL Model Checking. In Computer
Aided Verification, volume 818 of Lecture Notes in Computer Science, pages 324-337.
Springer-Verlag, 1994.

D. Bailey. Twelve Ways to Fool the Masses When Giving Performance Results on Paraliel
Computers. In Supercomputing Review, August 1991.

1. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Methodology and System
for Practical Formal Verification of Reactive Hardware. In Computer Aided Verification,
volume 818 of Lecture Notes in Computer Science, pages 182-93. Springer-Verlag, 1994.

283



284

(BBJR97]

[BC95]

[BCL91a]

[BCL91b])

[BCMDS0]

[BFG*93)

[Bra93]
[BRB90]

[BRSW87]

[Bry86]
(Bry87]
[BryS1]

[Bry935)

[BSA*96a]

[BSA*96b]

BIBLIOGRAPHY

G. P. Bischoff, K. S. Brace, S. Jain, and R. Razdan. Formal Implementation Verifica-
tion of the Bus Interface Unit for the Alpha 21164 Microprocessor. In Proc. IEEE/ACM
International Conference on Computer Design, 1997.

R. E. Bryant and Y.-A. Chen. Verification of Arithmetic Circuits with Binary Momemt
Diagrams. In Proc. of the IEEE/ACM Design Automation Conf., pages 53541, June
1995.

J. R. Burch, E. M. Clarke, and D. E. Long. Representing Circuits More Efficiently in
Symbolic Model Checking. In Proc. of the IEEE/ACM Design Automation Conf., June
1991.

J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic Model Checking with Partitioned
Transition Relations. In Proc. Intl. Conf. on VLSI, August 1991.

J.R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Verification
Using Symbolic Model Checking. In Proc. of the IEEE/ACM Design Automation Conf.,
June 1990.

R.1. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A, Pardo, and F. Somenzi.
Algebraic Decision Diagrams and Their Applications. In Proc. IEEE/ACM International
Conference on Computer-Aided Design, pages 188-91, 1993.

D. Brand. Verification of Large Synthesized Designs. In Proc. IEEE/ACM International
Conference on Computer-Aided Design, pages 534-7, November 1993.

K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a BDD Package.
In Proc. of the IEEE/ACM Design Automation Conf., pages 40-45, June 1990.

R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R. Wang. MIS: A
Multiple-Level Logic Optimization System. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits, CAD-6(6):1062-81, November 1987.

R. Bryant. Graph-based Algorithms for Boolean Function Manipulation. JEEE Transac-
tions on Computers, C-35:677-91, August 1986.

R. E. Bryant. Boolean Analysis of MOS Circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits, pages 634—49, July 1987.

R. Bryant. A methodology for hardware verification based on logic simulation. Journal
of the Association for Computing Machinery, 38(2):299-328, April 1991.

R. E. Bryant. Binary decision diagrams and beyond: enabling technologies for formal
verification. In Proc. IEEE/ACM International Conference on Computer-Aided Design,
pages 236-43, November 1995.

R. K. Brayton, A. Sangiovanni-Vincentelli, A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri,
Y. Kukimoto, S. Qadeer, R. K. Ranjan, T. R. Shiple, G. Swamy, T. Villa, G. D. Hachtel,
F. Somenzi, A. Pardo, and S. Sarwary. VIS: A System for Verification and Synthesis. In
Proc. of the 8th International Conference on Computer Aided Verification, volume 1102
of Lecture Notes in Computer Science, pages 428—432. Springer-Verlag, 1996.

R. K. Brayton, A. Sangiovanni-Vincentelli, A. Aziz, S.-T. Cheng, S. Edwards, S. Kha-
tri, Y. Kukimoto, S. Qadeer, R. K. Ranjan, T. R. Shiple, G. Swamy, T. Villa, G. D.
Hachtel, F. Somenzi, A. Pardo, and S. Sarwary. VIS: Tutorial. In Proc. Formal Method
in Computer-Aided Design, volume 1166 of Lecture Notes in Computer Science, pages
248-56. Springer- Verlag, 1996.



BIBLIOGRAPHY S : 285

(BW97)]

[CBM89]

[CC93)

[CCQ94]

[CES86]

[CFZ95]

[CGRR94]

[CHM*93]

[CHM*94]

{CM90a]

[CM90b]

[CM95]

[CMZ193]

[CSG97]

B. Bollig and 1. Wegener. Partitioned BDDs vs. Other BDD Models. In Proc. IEEE/ACM
Intl. Workshop on Logic Synthesis, 1997.

O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based on
Symbolic Execution. In J. Sifakis, editor, Proc. of the Workshop on Automatic Verification
Methods for Finite State Systems, volume 407 of Lecture Notes in Computer Science,
pages 365-73, June 1989.

G. Cabodi and P. Camurati. Exploiting Cofactoring for Efficient FSM Symbolic Traver-
sal Based on the Transition Relation. In Proc. IEEE/ACM International Conference on
Computer Design, pages 299-303, October 1993.

G. Cabodi, P. Camurati, and S. Quer. Auxiliary Variables for Extending Symbolic Traver-
sal Techniques to Data Paths. In Proc. of the IEEE/ACM Design Automation Conf., pages
289-93, June 1994.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244-63, 1986.

E. Clarke, M. Fujita, and X. Zhao. Hybrid Decision Diagrams: Overcoming the Lim-
itations of MTBDDs and BMDs. In Proc. IEEE/ACM International Conference on
Computer-Aided Design, November 1995.

G. Cabodi, S. Gai, M. Rebaudengo, and M. S. Reordea. A Data Parallel Approach to
Boolean Function Manipulation using BDDs. In International Conference on Massively
Parallel Computer Systems, 1994.

H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi. Algorithms for Approximate
FSM Traversal. In Proc. of the IEEE/ACM Design Automation Conf., pages 25-30, June
1993.

H. Cho, G. D. Hachtel, E. Macii, M. Poncino, and F. Somenzi. A Structural Approach to
State Space Decomposition for Approximate Reachability Analysis. In Proc. IEEE/ACM
International Conference on Computer Design, October 1994.

E. Cerny and C. Mauras. Tautology Checking Using Cross-Controllability and Cross-
Observability Relations. In Proc. IEEE/ACM International Conference on Computer-
Aided Design, pages 34-37, November 1990.

0. Coudert and J. C. Madre. A Unified Framework for the Formal Verification of Sequen-
tial Circuits. In Proc. IEEE/ACM International Conference on Computer-Aided Design,
pages 126-9, November 1990.

0. Coudert and J. C. Madre. The Implicit Set Paradigm: A New Approach to Finite State
System Verification. In R. K. Brayton, E. M. Clarke, and P. A. Subrahmanyam, editors,
Formal Methods in System Design, pages 133-145, 1995.

E. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J.-Y. Yang. Spectral Transforms
for Large Boolean Functions with Application to Technology Mapping. In Proc. of the
IEEE/ACM Design Automation Conf., pages 54-60, 1993.

D. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A Harware/Software
Approach. Morgan Kaufmann, 1997.



286

[CYF94]

[DB97]

[DDHY92]

{DMN88]

[DST+94]

[Eic93]

[EL85]

[Eme90]

[Eng95]
[FFK88]

[FMK91]

[GBY%4]

[GBD*94]

[GI79]

[GL91]

BIBLIOGRAPHY

B. Chen, M. Yamazaki, and M. Fujita. Bug Identification of a Real Chip Design by Sym-
bolic Model Checking. In Proc. European Conf. on Design Automation, Paris, France,
February 1994.

R. Drechsler and B. Becker. Overview of Decision Diagrams. In JEE Proceedings-
Computers and Digital Techniques, pages 187-93, May 1997.

D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol Verification as a Hardware
Design Aid. In Proc. IEEE/ACM International Conference on Computer Design, pages
522-5, October 1992.

S. Devadas, H.-K. T. Ma, and A. R. Newton. On the Verification of Sequential Machines
at Differing Levels of Abstraction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits, pages 713-22, June 1988.

R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski. Efficient Repre-
sentation and Manipulation of Switching Functions Based on Ordered Kronecker Func-
tional Decision Diagrams. In Proc. of the IEEE/ACM Design Automation Conf., 1994.

T. H. V. Eicken. Active Messages: An Efficient Communication Architecture for Multi-
processors. PhD thesis, University of California Berkeley, 1993.

E. A. Emerson and C. L. Lei. Modalities for Model Checking: Branching Time Strikes
Back. In Proc. ACM Symposium on Principles of Programming Languages, pages 84-96,
1985.

E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Formal Models

“and Semantics, volume B of Handbook of Theoretical Computer Science, pages 996—

1072. Elsevier Science, 1990.
S. D. Engineering. Solaris Porting Guide. Sunsoft Press, 1995.

M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and Improvements of Boolean Com-
parison Method Based on Binary Decision Diagrams. In Proc. IEEE/ACM International
Conference on Computer-Aided Design, pages 2-5, November 1988.

M. Fujita, Y. Matsunaga, and T. Kakuda. On Variable Ordering of Binary Decision Di-
agrams for the Application of Multi-level Logic Synthesis. In Proc. European Conf. on
Design Automation, pages 50-54, March 1991.

D. Geist and 1. Beer. Efficient Model Checking by Automated Ordering of Transition
Relation Partitions. In Computer Aided Verification, volume 818 of Lecture Notes in
Computer Science, pages 52-71. Springer-Verlag, 1994.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3
User's Guide and Reference Manual. Oak Ridge National Laboratory, September 1994.

M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Co.,
1979.

O. Griimberg and D. E. Long. Model Checking and Modular Verification. In J. C. M.
Baeten and J. F. Groote, editors, Proc. of CONCUR '91: 2nd Inter. Conf. on Concur-
rency Theory, volume 527 of Lecture Notes in Computer Science. Springer-Verlag, Au-
gust 1991.



BIBLIOGRAPHY RS . 287

[GM94]

[Gra94]

[Gup92]

[HBBM97]

[HCC96a])
[HCCI6b]
[HCC97]

[HDB96]

[HK90]
[Hor96)
[HP90]

[HYD9%4]

[HYHD9S]

[ISY91)

[(IMF97]

[INC*96]

J. Gergov and C. Meinel. Efficient Boolean Manipulation with OBDDs can be Extended
to FBDD:s. In IEEE Transactions on Computers, pages 1179-1209, 1994.

S. Graf. Verification of a Distributed Cache Memory by Using Abstractions. In Computer
Aided Verification, volume 818 of Lecture Notes in Computer Science, pages 207-219.
Springer-Verlag, 1994.

A. Gupta. Formal Hardware Verification Methods: A Survey. In Formal Methods in
System Design, pages 151-238. Kluwer Academic Publishers, New York, 1992.

Y. Hong, P. A. Beerel, J. R. Burch, and K. L. McMillan. Safe BDD Minimization Using
Don’t Cares. In Proc. of the IEEE/ACM Design Automation Conf., pages 20813, June
1997.

S.-Y. Huang, K.-T. Cheng, and K.-C. Chen. An ATPG-based Framework for Verifying
Sequential Equivalence. In Proc. Intl. Test Conf., 1996.

S.-Y. Huang, K.-T. Cheng, and K.-C. Chen. On Verifying the Correctness of Retimed
Circuits. In Proceedings. The Great Lakes Symposium on VLSI, pages 277-80, 1996.

S.-Y. Huang, K.-T. Cheng, and K.-C. Chen. AQUILA: An Equivalence Verifier for Large
Sequential Circuits. In Proc. of Asian and South Pacific Design Automation Conf., 1997.

A. Hett, R. Drechsler, and B. Becker. MORE: An Alternative Implementation of BDD
Packages by Multi-Operand Synthesis. In Proc. European Design Automation Conf.,
pages 164-9, 1996.

Z. Har’El and R. P. Kurshan. Software for Analytical Development of Communication
Protocols. AT&T Technical Journal, pages 45-59, January 1990.

S. Horeth. Compilation of Optimized OBDD-Algorithms. In Proc. European Design
Automation Conf., pages 152-7, 1996.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufman, 1990.

A. J. Huy, G. York, and D. L. Dill. New Techniques for Efficient Verification with Im-
plicitly Conjoined BDD’s. In Proc. of the IEEE/ACM Design Automation Conf., pages
276-282, June 1994.

R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architectural Validation for
Processors. In Proc. of the International Symposium on Computer Architecture, June
1995.

N. Ishiura, H. Sawada, and S. Yajima. Minimization of Binary Decision Diagrams Based
on Exchanges of Variables. In Proc. IEEE/ACM International Conference on Computer-
Aided Design, pages 472-5, November 1991.

J. Jain, R. Mukherjee, and M. Fujita. FLOVER: Filtering Oriented Combinational Verifi-
cation Approach. In Proc. IEEE/ACM Intl. Workshop on Logic Synthesis, pages 26368,
May 1997. ’

J. Jain, A. Narayan, C. Coelho, S. Khatri, M. Fujita, and A. L. Sangiovanni-Vincentelli.
Decomposition Techniques for Rfficient ROBDD Construction. In Proc. Formal Method
in Computer-Aided Design, pages 419-34, 1996.



288

[KC90]

[Keu96]

[KHB96]

[KK97]

[KOKD96]

[KR97]

[KSR92)

[Kuk89]

[Kur93]

[Kur97]

[Lam93]

[LE92)

[Lin91]

{Lon93]

[LR90]

[LRS83]

(LS91]

BIBLIOGRAPHY

S. Kimura and E. M. Clarke. A Parallel Algorithm for Constructing Binary Decision
Diagrams. In Proc. IEEE/ACM International Conference on Computer Design, pages
220-223, November 1990.

K. Keutzer. The Need for Formal Methods for Integrated Circuit Design. In Proc. Formal
Method in Computer-Aided Design, November 1996.

S. Krishnan, R. Hojati, and R. K. Brayton. Early Quantification and Partitioned Transition
Relation. In Proc. IEEE/ACM International Conference on Computer Design, pages 12—
19, Austin, TX, October 1996.

A. Kuehimann and F. Krohm. Equivalence Checking Using Cuts and Heaps. In Proc. of
the IEEE/ACM Design Automation Conf., pages 263-8, June 1997.

M. Kumanoya, T. Ogawa, Y. Konishi, and K. Dosaka. Trends in High-Speed DRAM
Architectures. IEICE Transactions on Electronics, pages 47281, April 1996.

N. Klarlund and T. Rauhe. BDD algorithms and Cache Misses. In Dagstuhl Seminar,
Computer-Aided Design and Test, January 1997.

U. Kebschull, E. Schubert, and W. Rosentiel. Multilevel Logic Bsed on Functional Deci-
sion Diagrams. In Proc. European Conf. on Design Automation, pages 608-13, 1992.

J. H. Kukula. A Technique for Verifying Finite-state Machines. Technical Report 3A,
IBM Technical Disclosure Bulletin, 1989.

R. P. Kurshan. Automata-Theoretic Verification of Coordinating Processes. Princeton
University Press, 1993.

R. P. Kurshan. Formal Verification in a Commercial Setting. In Proc. of the IEEE/ACM
Design Automation Conf., pages 258-62, 1997.

W. Lam. Algebraic Methods for Timing Analysis and Testing in High Performance De-
signs. PhD thesis, University of California Berkeley, April 1993. Memorandum No.
UCB/ERL M94/19.

B. Lockyear and C. Ebeling. Retiming of Multi-phase, Level-clocked Circuits. In Ad-
variced Research in VLSI and Parallel Systems: Proceedings of the 1992 Brown/MIT
Conference, pages 265-280, March 1992.

B. Lin. Synthesis of VLSI Design with Symbolic Techniques. PhD thesis, University of
California Berkeley, 1991.

D. E. Long. BDD  Manipulation® Library. June  1993.
ftp://emc.cs.cmu.edu/pub/bdd/bddlib. tar. 2. '

D. H. Lee and S. M. Reddy. On Determining Scan Flip-Flops in Partial-Scan Designs.
In Proc. IEEE/ACM International Conference on Computer-Aided Design, pages 322-5,
1990.

C. E. Leiserson, FE. M. Rose, and J. B. Saxe. Optimizing Synchronous Circuitry by Re-
timing. In Advanced Research in VLSI: Proc. of the Third Caltech Conf., pages 86-116.
Computer Science Press, 1983.

C. E. Leiserson and J. B. Saxe. Retiming Synchronous Circuitry. In Algorithmica, pages
5-35, 1991.



BIBLIOGRAPHY o : : 289

{LS92]

[LVW97]

{Mal90]

[Mat96]

[McM93]
[McM94]

[MGS97]

[MQRK97]

[MS97]

[MSBS91]

[MSSS95]

[Mur93]

[MWBS88]

[NJFS96)

[OIY91]

Y-T. Lai and S. Sastry. Edge-valued Binary Decision Diagrams for Multi-level Hierar-
chical Verification. In Proc. of the IEEE/ACM Design Automation Conf., pages 608—613,
1992.

C.Legl, P. Vanbekbergen, and A. Wang. Retiming of Edge-Triggered Circuits with Mulit-
ple Clocks and Load Enables. In Proc. IEEE/ACM Intl. Workshop on Logic Synthesis,
1997.

S. Malik. Combinational Logic Optimization Techniques in Sequential Logic Synthe-
sis. PhD thesis, University of California Berkeley, November 1990. Memorandum No.
UCB/ERL M90/115.

Y. Matsunaga. An Efficient Equivalence Checker for Combinational Circuits. In Proc. of
the IEEE/ACM Design Automation Conf., pages 629-34, June 1996.

K. L. McMillan. Symbolic Mode! Checking. Kluwer Academic Publishers, 1993.

K. L. McMillan. Fitting Formal Methods into the Design Cycle. In Proc. of the IEEE/ACM
Design Automation Conf., pages 316-19, 1994.

S. Manne, D. C. Grunwald, and F. Somenzi. Remembrance of Things Past: Locality and
Memory in BDDs. In Proc. of the IEEE/ACM Design Automation Conf., pages 196-201,
June 1997.

A. Mehrotra, S. Qadeer, R. K. Ranjan, and R. H. Katz. Benchmarking and Analysis
of Architectures for CAD Applications. In Proc. IEEE/ACM Intl. Conf. on Computer
Design, Austin, Texas, USA, October 1997.

N. Maheshwari and S. S. Sapatnekar. An Improved Algorithm for Minimum-Area Retim-
ing. In Proc. of the IEEE/ACM Design Automation Conf., 1997.

S. Malik, E. M. Sentovich, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Retiming
and Resynthesis: Optimization of Sequential Networks with Combinational Techniques.
IEEE Transactions on Computer-Aided Design of Integrated Circuits, 10(1):74-84, Jan-
uary 1991.

P. McGeer, A. Saldanha, A. L. Sangiovanni-Vincentelli, and P. Scaglia. Fast Discrete
Function Evaluation Using Decision Diagrams. In Proc. IEEE/ACM International Con-
ference on Computer-Aided Design, 1995.

R. Murgai. Logic Synthesis for Field Programmable Gate Arrays. PhD thesis, University
of California Berkeley, December 1993. Memorandum No. UCB/ERL M93/98.

S. Malik, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Logic Ver-
ification using Binary Decision Diagrams in a Logic Synthesis Environment. In Proc.
IEEE/ACM International Conference on Computer-Aided Design, pages 6-9, November
1988.

A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-Vincentelli. Partitioned ROBDDs
— A Compact, Canonical and Efficiently Manipulable Representation for Boolean Func-
tions. In Proc. IEEE/ACM International Conference on Computer-Aided Design, 1996.

H. Ochi, N. Ishiura, and S. Yajima. Breadth-First Manipulation of SBDD of Boolean
Functions for Vector Processing. In Proc. of the IEEE/ACM Design Automation Conf.,
pages 413416, June 1991.



290

[OYY93]

[Pix%0}

[Pix92]

[Pnu86)

[PSAB94]

[PSC94]

[RAP*95]

[RGBS97]

[RS95]

[RS97]

[RSBS96]

[RSSB97]

[Rud93]

[RWK95]

BIBLIOGRAPHY

H. Ochi, K. Yasuoka, and S. Yajima. Breadth-First Manipulation of Very Large Binary-
Decision Diagrams. In Proc. IEEE/ACM International Conference on Computer-Aided
Design, pages 48-55, November 1993.

C. Pixley. A Computational Theory and Implementation of Sequential Hardware Equiv-
alence. In E. M. Clarke and R. P. Kurshan, editors, Proc. of the Workshop on Computer-
Aided Verification, volume 3 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 293-320. American Mathematical Society, June 1990.

C. Pixley. A Theory and Implementation of Sequential Hardware Equivalence. IEEE
Transactions on Computer-Aided Design of Integrated Circuits, 11(12):1469-1494, De-
cember 1992.

A. Pnueli. Applications of Temporal Logic to the Specification and Verification of Reac-
tive Systems: A Survey of Current Trends. In Lecture Notes in Computer Science, volume
224, pages 510-84. Springer Verlag, 1986.

C. Pixley, V. Singhal, A. Aziz, and R. K. Brayton. Multi-level Synthesis for Safe Replace-
ability. In Proc. IEEE/ACM International Conference on Computer-Aided Design, pages
442-9, November 1994.

Y. Parasuram, E. Stabler, and S.-K. Chin. Parallel Implementation of BDD Algorithms us-
ing a Distributed Shared Memory. In Hawaii Internation Conference on System Sciences,
pages 16-25, January 1994.

R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Brayton. Efficient BDD Algo-
rithms for FSM Synthesis and Verification. In Proc. IEEE/ACM Intl. Workshop on Logic
Synthesis, Lake Tahoe, California, USA, May 1995.

R. K. Ranjan, W. Gosti, R. K. Brayton, and A. Sangiovanni-Vincentelli. Dynamic Variable
Reordering in a Breadth-First Based BDD Package: Challenges and Solutions. In Proc.
IEEE/ACM Intl. Conf. on Computer Design, Austin, Texas, USA, October 1997.

K. Ravi and F Somenzi. High-density Reachability Analysis. In Proc. IEEE/ACM Inter-
national Conference on Computer-Aided Design, pages 154—8, November 1995.

R. K. Ranjan and J. Sanghavi. CAL-2.0: Breadth-first Manipulation Based BDD Library.
June 1997. http://www-cad.eecs.berkeley.edu/Research/cal.bdd.

R. K. Ranjan, J. V. Sanghavi, R. K. Brayton, and A. Sangiovanni-Vincentelli. Using
Network of Workstations for Efficient Binary Decision Diagram Manipulation. In Proc.
IEEE/ACM Intl. Conf. on Computer Design, Austin, Texas, USA, October 1996.

R. K. Ranjan, V. Singhal, F. Somenzi, and R. K. Brayton. Using Combinational Verifica-
tion for Sequential Circuit. Technical Report UCB/ERL, Electronics Research Lab, Univ.
of California, Berkeley, CA 94720, October 1997.

R. Rudell. Dynamic Variable Ordering for Binary Decision Diagrams. In Proc.
IEEE/ACM International Conference on Computer-Aided Design, pages 42-47, Novem-
ber 1993. :

S. M. Reddy and D. K. P. Wolfgang Kunz. Novel Verification Framework Combining
Structural and OBDD Methods in a Synthesis Environment. In Proc. of the IEEE/ACM
Design Automation Conf., pages 414-9, June 1995.



BIBLIOGRAPHY - : 291

[San96]
[Sﬁ96]

[SBS93a)
[SBS93b)

[Sen96]

{Shi97]
[SHSB94]

[SK97]
[SKMB90]

[Smi97]
[Som97]

[SR94]

[SRBS96]
[SRSB97]

[SS94]

[SSBS92]

J. Sanghavi. High Performance Verification Algorithms. PhD thesis, University of Cali-
fornia Berkeley, December 1996.

T. Stronetta and F. Brewer. Implementaion of an Efficient Parallel BDD Package. In Proc.
of the IEEE/ACM Design Automation Conf., pages 641-4, June 1996.

N. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Minimum Padding to Sat-
isfy Short Path Constraints. In Proc. IEEE/ACM International Conference on Computer-
Aided Design, pages 156-61, November 1993.

T. Shiple, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Computing Boolean Expres-
sion with OBDDs. Technical Report UCB/ERL M93/84, Electronics Research Lab, Univ.
of California, Berkeley, CA 94720, December 1993.

E. M. Sentovich. A Brief Study of BDD Package Performance. In Proc. Formal Method
in Computer-Aided Design, November 1996.

T.R. Shiple. Private communication, 1997.

T. R. Shiple, R. Hojati, A. L. Sangiovanni-Vincentelli, and R. K. Brayton. Heuristic
Minimization of BDDs Using Don’t Cares. In Proc. of the IEEE/ACM Design Automation
Conf., June 1994.

D. Stoffel and W. Kunz. A Structural Fixpoint Iteration for Sequential Logic Equiva-
lence Checking Based On Retiming. In Proc. IEEE/ACM International Conference on
Computer-Aided Design, 1997.

A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for Discrete Function
Manipulation. In Proc. IEEE/ACM International Conference on Computer-Aided Design,
pages 92-95, November 1990.

D. J. Smith. HDL Chip Design. Doone Publications, 1997.

F. Somenzi. CUDD: CU Decision Diagram Package. University of Colorado at Boulder,
1997.

N. Shenoy and R. Rudell. Efficient Implementation of Retiming. In Proc. IEEE/ACM
International Conference on Computer-Aided Design, pages 226-33, November 1994.

J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and A. Sangiovanni-Vincentelli. High Per-
formance BDD Package Based on Exploiting Memory Hierarchy. In Proc. of the Design
Automation Conf., June 1996.

T. R. Shiple, R. K. Ranjan, A. L. Sangiovanni-Vincentelli, and R. K. Brayton. Deciding
State Reachability for Large FSMs. Technical Report UCB/ERL, M97/73, Electronics
Research Lab, August 1997.

M. Singhal and N. Shivaratri. Advanced Concepts in Operating Systems. McGraw-Hill,
1994. :

N. Shenoy, K. J. Singh, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. On the Tem-
poral Equivalence of Sequential Circuits. In Proc. of the IEEE/ACM Design Automation
Conf., pages 405-9, June 1992.



292

[SSL*92]

[SW95]

[Swa96)

[TSL*90]

[TY93]

[YCBO97)

[YO97]

[YSAA97]

BIBLIOGRAPHY

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. SIS: A System for
Sequential Circuit Synthesis. Technical Report UCB/ERL M92/41, Electronics Research
Lab, Univ. of California, Berkeley, CA 94720, May 1992.

D. Sieling and I. Wegener. Graph-driven OBDDs — A New Data Structure for Boolean
Functions. Theoretical Computer Science, 1995.

G. M. Swamy. Incremental Techniques for Logic Synthesis and Verification. PhD the-
sis, University of California Berkeley, November 1996. Memorandum No. UCB/ERL
M96/115.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Implicit
State Enumeration of Finite State Machines using BDD's. In Proc. IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pages 130-133, November 1990.

Y. Takenaga and S. Yajima. NP-Completeness of Minimum Binary Decision Diagram
Identification. Technical Report COMP 92-99, Institute of Electronics, Information and
Communication Engineers (of Japan), March 1993.

B. Yang, Y.-A. Chen, R. E. Bryant, and D. R. O’Hallaron. Space- and Time-Efficient
BDD Construction via Working Set Control. Technical Report CMU-CS-97, Department
of Computer Science, Carnegie Mellon University, 1997.

B. Yang and D. O'Hallaron. Parallel Breadth-First BDD Construction. In Proc. of the
Sixth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), Las Vegas, NV, June 1997.

J. Yuan, J. Shen, J. Abraham, and A. Aziz. On Combining Formal and Informal Verifica-
tion. In Computer Aided Verification, volume 1254 of Lecture Notes in Computer Science,
pages 376-87. Springer-Verlag, 1997.



1-step equivalence, 206

1-step equivalent transformation, 212
2-way merge, 202

2-way split, 202

apply phase, 40, 48, 116
array and, 80
atomic propositions, 157

BDD, 25
canonical, 27
computed table, 28
else cofactor, 26
if-then-else, 28
isomorphic nodes, 26
ITE, see if-then-else
non-terminal node, 25
redundant nodes, 26
terminal node, 25
then cofactor, 25
unique table, 27
variable id, 28
variable index, 28
binary decision diagram, see BDD, 26
Boolean network, 29
breadth-first BDD manipulation, 40
apply phase, 40
reduce phase, 40
request, 40

C1D, 230

cache locality, 70
characteristic function, 32
clocked Boolean function, 234
cluster ordering, 181
clustering, 178

collective disk space, 98
collective main memory, 97
combinational synthesis, 190
compose, 63
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constant propagation, 174
constrained area optimization, 192
conventional BDD manipulation, 36
CTL model checking paradigm, 157
cycle preserving transformation, 203

dependent BDD operations, 54
design verification, 10

disk, 5

distributed shared-memory, 107
don’t care set, 170

DRAM, 4

dynamic ordering, 126
dynamic reordering, 127

early variable quantification, 163
event driven Boolean function, 237
exact 3-valued equivalence, 233
existential quantification, 60, 78, 80

fair states, 158
finite state machine, 29
initial state, 30
input alphabet, 30
Mealy machine, 30
Moore machine, 30
output alphabet, 30
output function, 30
state, 29
transition relation, 30
floating latch, 214
forward image, 156
forwarding node, 130
FSM, see finite state machine

generalized cofactor, 164
graph isomorphism, 220

image, 156
implementation verification, 10
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implicit set manipulation, 32
independent BDD operations, 51
intermediate variable, 167
iterative BDD manipulation, 40

kripke structure, 157

-main memory, 4

massively parallel processors, 107
memory hierarchy, 4

memory management, 68
message passing machine, 107
microprocessors, 3

MIMD, 103

model checking, 13

monolithic transition relation, 160
multi-threading, 115

multiway AND, 58, 83

multiway operations, 58

negative retiming, 215

network of workstations, 89

network partitioning, 167, 181

node packing, 143

non-cycle preserving transformation, 203
non-uniform memory access, 107
NRAM, 98

parallel computer, 103

parallel virtual machine, 96
partitioned transition relation, 160
pipedepth, 57

pipelining, 34, 53

pre-image, 156

process, 115

property verification, 10

PVM, 96

QRBDD, 46

reachable states, 156

recursive BDD manipulation, 36
reduce phase, 40, 49, 116
redundant latch, 174, 185
register transfer level, 10
repacking, 68

request, 40, 116

retiming, 190

ROBDD, see BDD

INDEX

RTL, see register transfer level

scalable shared-memory, 107
secondary memory, 5
sequential depth, 240

shadow node, 93

shared memory multiprocessor, 104
sifting technique, 138 '
SIMD, 103

SISD, 103

state encoding, 195

state explosion problem, 159
state transition graph, 14, 32
STG, see state transition graph
substitute, 59

substitution, 78

superscalarity, 34, 51
swapping variables, 64

switch, 203

symbolic simulation, 13
synchronous circuits, 29

theorem provers, 13
thread, 115
transition relation, 30, 32

uniform memory access, 104
utility ratio, 143

variable swapping, 128

window technique, 142
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