

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DESIGN AND IMPLEMENTATION VERIFICATION

OF FINITE STATE SYSTEMS

by

Rajeev Kumar Ranjan

Memorandum No. UCB/ERL M97/99

18 December 1997

DESIGN AND IMPLEMENTATION VERIFICATION

OF FINITE STATE SYSTEMS

by

Rajeev Kumar Ranjan

Memorandum No. UCB/ERL M97/99

18 December 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Design and Implementation Verification of Finite State Systems

Please cite as

Copyright © 1997

by

Rajeev Kumar Ranjan

Rajeev Kumar Ranjan.

Design and Implementation Verification ofFinite State Systems.

PhD thesis, University of California, Berkeley, 1997.

Available as UCB/ERL M97/99.

http://www.eecs.berkeley.edu/''rajeev/publications/publications.html

Abstract • . i-r i:,. l.-

•I. • V'. ,• ,

Designand Implementation Verification of Finite State Systems , fi o

by

Rajeev Kumar Ranjan

Doctor of Philosophy in Engineering

University of California, Berkeley

Professor Robert K. Brayton, Chair

WITH the increasing complexity of VLSI circuits, design and implementation
verification have become importantcomponents in current day design flows

and canhave major impact onthetimely delivery ofafunctionally correct product. This
work investigates a spectrum of techniques targeted towards making the verification
process practical for realdesigns. Thekeycontributions canbe divided intothreeparts.

Thefirst partexploits thearchitecture of a computer system forefficiently manipulat
ingBinary Decision Diagrams (BDDs), thecoretechnology in thesymbolic techniques.
Various methods are presented to localize the memory accesses and thereby leverage
off thehighly different access timesfor different levels of memory hierarchy ina work
station. These are further extended to exploit the main memory of several worksta

tionsconnected together in a network. It is alsoshown that the locality of breadth-first
manipulation can be merged with the parallel computing power of a shared-memory

multiprocessor to efficiently leverage the parallel architecture.

The second part presents efficient BDD-based schemes for the representation and
traversal of the state-space of large designs. Key contributions in this area include

efficient image and pre-image computations, the core tasks in symbolic synthesis and

verification algorithms.

The last part of this work targets the sequential equivalence problem which in its
most general form is much harder than the combinational equivalence problem. An
algorithm is presented to reduce the sequential equivalence problem to an extended

fomi of combmational equivalence problem for designs which have undeigone itera
tive retiming and resynthesis transformations. This allows the sequential equivalence
checking process to leverage off the advancements in thecombinational equivalence
domain, making it viable for laige designs. Further, die optimization potential and
the verification complexity of optimization transformations consisting of retiming and
combinationalsynthesis are formally characterized.

v:

toRenu

.,v:

m

Table of Contents

Table of Contents v

List of Figures xiii

List of Tables xix

List of Definitions and Theorems xxi

Preface xxiii

Acknowledgements xxv

Introduction 1

1.1 Goals and Scope of the Thesis 2

1.2 Computer Architecture Trends 3

1.2.1 Microprocessors 3

1.2.2 Memories 4

1.2.3 Microprocessors vs DRAMs: PerformanceGap 5

1.2.4 Disks vs DRAM: Price vs Performance 8

1.2.5 Parallel Computing 9

1.2.6 Computer Architecture: Conclusions 9

1.3 Design and ImplementationVerification 10

1.4 BDD-based Verification Methodology 14

1.5 BDD-basedTechniques 16

1.5.1 Computer ArchitectureBased Solutions 16

1.5.2 Application Specific Solutions 17

vi TABLE OF CONTENTS

1.5.3 Algorithmic Solutions 18

1.5.4 Solutions Based on Modification of Decision Diagrams 19

1.6 StructuralTechnique Based SequentialCircuit Verification 20

1.7 Thesis Organization 22

2 Preliminaries 25

2.1 Binary decisiondiagrams 25

2.2 Synchronous Sequential Circuits 29

2.3 Finite State Machines 29

2.3.1 State Transition Graph 32

2.4 Implicit Boolean Set Manipulation 32

1 Computer Architecture and BDD Manipulation 33

3 Breadth-First BDD Manipulation 35

3.1 Introduction 36

3.1.1 BDDs in Synthesis and Verification Algorithms 36

3.1.2 BDDManipulation 37

3.1.3 Conventional BDD Manipulation and Limitations 37

3.1.4 Breadth-first BDD Manipulation Technique 41

3.2 Previous Work 47

3.3 OurApproach 48

3.4 Memory Access Pattern 49

3.5 Superscalarity 52

3.6 Pipelining 54
3.6.1 Application 58

3.7 Optimized BDD Algorithms 60
3.7.1 Substitute 60

3.7.2 Existential Quantification 61

3.7.3 Compose 64

3.7.4 Swapping Variables 65
3.8 Implementation Details 66

TABLE OF CONTENTS vii

3.8.1 Data Structure 66

3.8.2 Memory Management 69
3.8.3 Miscellaneous Details 69

3.8.4 Repacking After Garbage Collection 69
3.8.5 Node Reallocationfor Cache Locality 71

3.9 Experimental Results 71
3.9.1 Experimental Setup 73
3.9.2 Creating Output BDDs forCircuits 74
3.9.3 Performance Comparison ForVarious BDD Operations 78
3.9.4 Performance Enhancement Due to Superscalarity 81

3.9.5 Performance Enhancement Due to Pipelining 83

3.9.6 Memory Overhead in theBreadth First Approach 85
3.9.7 Repacking After Garbage Collection 85
3.9.8 Some Results with CAL-2.0 86

3.10 Conclusions, Related Work, and Future Directions 87

4 BDDs on a Network of Workstations 91

4.1 Network of Workstations 91

4.2 BDD Algorithms 92
4.3 BDDs on Network of Workstations 93

4.3.1 Issues: 93

4.3.2 Solutions: 94

4.4 Implementation Issues 97
4.5 Experimental Results 98

4.5.1 Exploiting Collective Main Memories 99
4.5.2 Exploiting Collective DiskSpace 100
4.5.3 Analysis of Experiments 101

4.6 Related Work 102

4.7 Conclusions 102

5 Parallel BDDManipulation 105
5.1 Parallel Computer Architectures 106

5.1.1 Parallelism in Instruction and Data Streams 106

viii TABLE OF CONTENTS

5.1.2 Memory Organization in Parallel Architecture 107

5.1.3 Communication Paradigms in Distributed Memory Machines ... 110

5.1.4 PerformanceIssues in ParallelComputing Ill

5.2 UsingParallelArchitecture in BDD Manipulation 113

5.3 Previous work 114

5.4 Using Multi-threading 117

5.4.1 Bottlenecks in Multi-threading 119

5.5 OurApproach 119

5.5.1 Analysis 121

5.6 Related Work 124

5.6.1 Parallel Apply andReduce 125

5.6.2 Work Distribution 126

5.6.3 Results 126

5.7 Conclusion 128

6 Dynamic Ordering 129

6.1 Dynamic Reordering: Background 130

6.1.1 Variable Swapping in Depth-First Implementation 131

6.2 Variable Swapping in Breadth-First Implementation: Problems 132

6.3 Solution Approach A 133

6.3.1 Method 1: Keeping index <-> page mapping constant 134

6.3.2 Method 2: Keeping id ^ page mapping constant 135

6.4 Memory andComputational Overhead Minimization 136

6.5 Dynamic Reordering: Sifting Technique 141

6.6 Dynamic Reordering: Window Technique 145

6.7 Node Packing 146
6.8 Solution Approach B 147

6.9 Experimental Results 147
6.9.1 Experimental Setup ! 147
6.9.2 Analysis 155

6.10 Conclusions 155

TABLE OF CONTENTS ix

II State Transition Graph Representation and lYaversal 157

7 Efficient Techniques for State Space Traversal 159

7.1 Motivation 160

7.1.1 Fonnal Design Verification 160

7.1.2 State Explosion 163

7.2 Clustered Transition Relations 164

7.3 Ordering of Clustered Transition Relations 165

7.3.1 Previous Work 168

7.3.2 Our Heuristic 169

7.4 Network Partitioning 171

7.5 BDD Minimization Using Don*t Cares 173

7.6 Removing RedundantLatches 177

7.6.1 Constant Propagation 178

7.6.2 Latch Removal by Retiming 179

7.7 Experimental Results 182

7.7.1 Clustering 182

7.7.2 Cluster Ordering 185

7.7.3 Network Partitioning 185

7.7.4 Usage of Don*t Cares 187

7.7.5 Redundant Latches 189

7.8 Summary 191

ni Sequential Circuit Verification 193

8 Retiming and Resynthesis: Complexity Issues 195

8.1 Introduction 195

8.2 Optimization Power 197

8.2.1 Synthesis 197

8.2.2 Retiming 197

8.2.3 Retiming - Resjmthesis 202

8.2.4 Resynthesis - Retiming 202

TABLE OF CONTENTS "

8.2.5 Synthesis - Retiming - Synthesis 203

8.2.6 Retiming - Synthesis - Retiming 204

8.2.7 Iterative Retiming and Resynthesis 205

8.2.8 Retiming-Resynthesis vs. General Sequential Optimization 206

8.2.9 Exposition in Malik's Thesis 206

8.2.10 Interpretation and Extensions 209

8.2.11 Sequential Optimization Using UnreachableStates 218

8.3 Extending Notions of Retiming and Synthesis 219

8.3.1 Eliminating Floating Latches 219

8.3.2 Allowing Negative Retiming 220

8.4 VerificationComplexity 221

8.4.1 Verification After Retiming 221

8.4.2 Verification After Retiming-Resynthesis 226

8.4.3 Verification After Resynthesis-Retiming 227

8.4.4 Verification After Resynthesis-Retiming-Resynthesis 227

8.4.5 Verification After Retiming-Resynthesis-Resynthesis 230

8.5 Summary and Open Issues 230

8.6 Conclusion 231

Verifying Retimed and Resynthesized Circuits 233

9.1 Introduction 234

9.2 Previous Work 235

9.3 Preliminaries 237

9.3.1 Circuit Model 237

9.3.2 Notion of Equivalence 238

9.4 FromSequential to Combinational 239

9.4.1 Clocked Boolean function 239

9.4.2 Event driven Boolean function 241

9.5 Sequential Circuits without Feedback 244

9.5.1 Circuits with Regular Latches 245

9.5.2 Circuits with Load-enabled Latches 247

9.6 Sequential Circuits with Feedback 252

TABLE OF CONTENTS xi

9.7 Experimental Setup 257
9.7.1 Circuit Modification 257

9.7.2 Retiming 257
9.7.3 Combinational Optimization 257
9.7.4 Generating Equivalent Combinational Equivalence Problems — 258

9.8 Experimental Results 260
9.8.1 Analysis 264

9.9 Conclusions, Related Work, and Future Directions 265

10 Conclusions and Future Directions 267

10.1 Analysis and Future Directions 269

IV Appendix 275

A CALBDD Package 277

B VIS: Verification Interacting with Synthesis 279

Bibliography 283

Index 293

xii TABLE OF CONTENTS

List of Figures

1.1 Microprocessor clockrate improvement 3

1.2 DRAM access time over years 6

1.3 Trendin disk capacity overthe last decade 6

1.4 Trend in disk price over the last decade 7

1.5 Performancetrend comparisonof microprocessors and DRAMs 7

1.6 Disk to DRAM capacity ratio per constant dollar. 8

1.7 Typical top-down design methodology 11

1.8 Overview of verification methodology 12

1.9 Overview of BDD-based verification methodology 15

2.1 BDD tree for function / = xixs -f X2Xs 26

2.2 BDD graph for function f = x\X3-\-X2X3 27

2.3 Example of a sequential circuit and corresponding Boolean network. ... 30

3.1 Computing "AND" of two functions 38

3.2 Operand access pattern during conventional manipulation 38

3.3 Depth-first traversal of operand BDDs in conventional manipulation 39

3.4 Depth-first BDD manipulation algorithm 39

3.5 Problem in localizing memory accesses in depth-first traversal 40

3.6 Operand access pattem during breadth-first manipulation 42

3.7 Operand nodes access pattem in breadth-first traversal 42

3.8 Illustration of Apply phase in breadth-first manipulation 43

3.9 Illustration of Reduce phase in breadth-first manipulation 44

3.10 Breadth-first BDD manipulation algorithm 45

3.11 Breadth-first BDD manipulation algorithm - APPLY 45

Xlll

xiv LISTOFHGURES

3.12 Breadth-first BDD manipulation algorithm - Reduce 46

3.13 Multiple independentBDD operationsusing superscalarity. 53

3.14 Multiple dependent BDDoperations usingpipelining 57

3.15 Depth-first algorithm for Substitution 60

3.16 Breadth-first substitute operation algorithm - REDUCE phase 62

3.17 Depth-first algorithm for existential quantification 63

3.18 Depth-first algorithm for swapping variables 66

3.19 Auxiliary routine for Swap Vars 67
3.20 BDD and BDD node data structure 68

3.21 Repacking after garbage collection 70

3.22 Reallocating nodes to achieve cachelocality. 72

3.23 Node allocation before and after fixing collision chains 72

3.24 Variation of elapsed timewithexample size 76

3.25 Page faults variation withexample size 77

3.26 Variation of elapsed timewithpipedepth in creating output BDDs 83

3.27 Number of page faults variation with pipedepth 84

4.1 Breadth-first BDD algorithm on Now 96

4.2 Dlustration of BDD manipulation algorithmon a NOW. 97

5.1 Taxonomy of parallel architectures 106

5.2 Basic structure of a centralized shared-memory multiprocessor. 108

5.3 Basic architectureof a distributed-memory machine 109

5.4 Pre-processing step in multi-threaded BDD manipulation 121
5.5 Apply stepin multi-threaded BDD manipulation 122
5.6 Request processing during APPLY step 122
5.7 Reduce stepin multi-threaded BDD manipulation 123

5.8 Request processing during Reduce step 123
5.9 Ratio of lock acquiring timeto the totaltime 127

6.1 Variable swapping by overwriting ofnodes 131
6.2 Variable swapping in theapproach by Ashar etal 133
6.3 Variable swapping while keeping index ^ pagemapping constant 134

LISTOFHGURES xv

6.4 Variable swapping while keeping id pagemapping constant 135
6.5 Algorithm for swapping two variables 136
6.6 Variable swapping with nonew node 137
6.7 Forwarded nodecreation during variable swapping 138

6.8 Cofactor updating during variable swapping 139
6.9 Forwarded cofactors during variable swapping 139
6.10 Double forwarding of nodes 140

6.11 Strategies for sifting variables 141
6.12 Various phases of siftinga variable 142

6.13 Pseudo-code for algorithm 143

6.14 Altemate top-down andbottom-up swapping 145
6.15 In-place reallocation of nodes to maintain locality 148

7.1 An example illustrating a Kripke structure 161

7.2 Illustration of ordering and clustering 166

7.3 Algorithm for creating partitioned representation of the network 171

7.4 Using intermediatevariables to represent transition relation 172

7.5 BDD optimization using don*t care minterms 174

7.6 Detecting redundant latches by constant propagation 178

7.7 Removinglatches by retiming 180

7.8 Removinglatch by retiming, a more general case 180

7.9 Illustrationof effect of partition threshold on the overall BDD size 186

8.1 Combinational optimization: area vs. delay trade-off. 198

8.2 Retiming: area vs cycle time trade-off. 199

8.3 Change in state-encodingduring retiming 200

8.4 Change in the number of state bits due to retiming 201

8.5 Optimization power of retiming followed by resynthesis 202

8.6 Optimizationpower of synthesis followedby retiming 203

8.7 Optimization power of synthesis-retiming-synthesis 204

8.8 Optimization power of retiming-synthesis^tiining 204
8.9 Retiming (R) - synthesis (S) - R - S - R transformations 205

8.10 State graph transformations: split, merge, and switch 207

xvi LISTOFHGURES

8.11 Labeled cycle of equivalent states 208

8.12 Obtaining equivalent FSM implementations (proof for Theorem 4) 210

8.13 Counter-example to the assertion in [Mal90] 211

8.14 Using CP transformations to obtain the final STG from initial STG. ... 212

8.15 Counter-example to the proof of the Theorem4 213

8.16 Illustration of STG transformation: splitting of states 214

8.17 Illustration of STG transformation: merger of states 215

8.18 Splittinga statewith a self-loop 216

8.19 Non-CP transformations 217

8.20 Logic optimizationusing don*t cares derived from unreachablestates.... 219

8.21 Circuit transformation using floating latch elimination 220

8.22 Retiming using negativelatches 222

8.23 Example illustratingoptimizationusing negativelatches 223

8.24 Normal retiming has same optimization power as negativeretiming 224

8.25 Transformation sequence for retimingfollowed by resynthesis 226

8.26 Transformationsequence for synthesis followed by retiming 228

8.27 Transformation sequence for synthesis (S) - retiming(R) - S 229

8.28 Transformation sequencefor retiming (R) - synthesis (S) - R 230

9.1 Exact3-valued equivalence: an illustration 239

9.2 Functionalityof AND gate and a latch 240

9.3 Example of a latchtrapped within a combinational block 240

9.4 Combinational functionality in the presence of enabled latches: 1 243

9.5 Combinationalfunctionality in the presenceof enabled latches: n 243

9.6 An example of acyclic sequential circuit: pipelined circuit 244

9.7 Computing CBF foroutputs of a feedback free circuit 246

9.8 Computing EDBF for theoutputs of a circuit 248
9.9 Topological arrangement of latches andcombinational blocks 249

9.10 EDBF can lead to false negatives: illustration1 251

9.11 EDBF can lead to falsenegatives: illustration n 252

9.12 Modeling feedback path for a latch withenableand data signals 252

9.13 Modeling an enabled latchwithextralogic 254

LISTOFHGURES xvii

9.14 Conditional updating of the latch content 256
9.15 Making some latches observable tomeet the feedback criterion 256
9.16 Retiming enabled-latch across gates 258
9.17 Script for synthesizing minimum delay circuit 259
9.18 Generating equivalent combinational equivalence problems 259
9.19 Flow chartindicating experimental setup 261
9.20 Feedback paths due to memory and conununication layer. 262

B.l VIS Overview 280

B.2 Verification and Synthesis insideVIS 281

xviii LISTOFHGURES

List of Tables

1.1 lypical levels in memory hierarchy. 5

2.1 Comparison of expressiveness vs. manipulation complexity 28

3.1 Performance comparison for creatingoutput BDDs 75

3.2 Performance comparison with Long's package 75

3.3 Performancecomparisonon very large sized examples 77

3.4 Performance comparison withbreadth-first approach by Asharet a/. 78

3.5 Performance comparison for various BDDoperations 80

3.6 Performance improvement using superscalarity 81

3.7 Performanceimprovementusing superscalarity 82

3.8 Effect of pipeliningon the performanceof Multiway And 85

3.9 Memory overheadinvolvedwith breadth-first manipulationtechnique... 86

3.10 Memory overhead as a function of pipe-depth 87

3.11 Reduction in memory consumption due to repacking 88

3.12 Comparisonbetween CMU, CU, and CAL-2.0 89

4.1 Exploiting collective main memories 99

4.2 BDDs on multiple workstations 100

4.3 Exploiting remote memory using network RAM (NRAM) 101

5.1 Previous work in parallel BDD manipulation: a summary. 116

5.2 Elapsed time for building BDDs with different number of processors.... 126

5.3 Total number of operations in millions.... 127

6.1 Direct reordering performance comparison 150

6.2 Sifting based reordering: performance and quality comparison 151

xix

XX LIST OF TABLES

6.3 Window based reordering: perfoimance and quality comparison 152

6.4 Memory consumption comparison for various packages 154

7.1 Description of industrial examples 182

7.2 Results on space-time trade off in clustering by the BDD size approach.. 184

7.3 Comparison of CPU time for different cluster ordering heuristics 185

7.4 Partitioning of the network based on BDD size threshold 188

7.5 Don't care usage during reachability analysis 189

7.6 Don't care usage during model checking 190

7.7 Effects of redundant latch removal on BDD sizes 191

9.1 Results on sequential optimization and verification 263

9.2 Number of latches exposed for some industrial circuits 264

List of Definitions and Theorems

Theorem 1 Correctness of pipelining 56

Definition 1 Image 160

Definition 2 Pre-image 160

Definition 3 Reachable states 160

Definition 4 Kripke structure 160

Theorem 2 Correctness of image computation 173

Theorem 3 Encoding power of retiming and resynthesis206

Definition 5 Labeled cycle of equivalent states208

Definition 6 Cycle preserving (CP) transformation208

Theorem 4 STG transformation via retiming and resynthesis....208

Definition 7 1-step equivalence211

Definition 8 1-step equivalent transformation217

Theorem 5 STG transformation via retiming and resynthesis....218

Theorem 6 Isomorphism condition225

Definition 9 Exact 3-valued equivalence238

Definition 10 Clocked Boolean Function239

Definition 11 Event Driven Boolean Function242

Definition 12 Sequential depth245

Lemma 1 Preservation of latch count and enable sequence245

Theorem 7 Canonicity of CBF245

Lemma 2 Latch count and enable sequence247

Theorem 8 Canonicity of EDBF250

Lemma 3 Decomposition condition.'252

Lemma 4 Data-enable decomposition255

XXI

xxii LIST OFDEFINITIONS AND THEOREMS

Preface

This thesis has evolved with an aim towards providing efficient techmques tar
geting the functional verification (i.e., whether thedesign is specified correctly)

and implementation verification (i.e., whether the design is implemented correctly) of
finite-state systems.

The emphasis of the solutions proposed in this work has been more on thepractical
aspects, in particular their usability and capacity. Keeping usability in mind we have
mainly focused on automatic techniques for verifying systems. The underlying moti
vation behind our work on efficient manipulation of BDDs comes from the fact that

most of the current automated design verification algorithms use BDDs as basic data

structure.

Toestablish thecapacity of the proposed techniques, wehave performed comprehen
sive experiments withreasonably big instances of designs. In particular, we have been
able to buildverylargeBDDsin a orderof twoless time compared to the state-of-the-

art techniques. Our technique for sequential circuit verification can verify sequential
equivalence of two large ISCAS benchmarks in few minutes.

A significant amount of effortwasput in the software implementation aspect of var
ious techniques presented in this thesis. Most of them have been successfully imple
mented and the software is available in public domain. In particular,our BDD package,

namedCAL, Has also been adopted inside a commercialEDAtool. The packageis gen

eral enough to be integrated inside any BDD-based system.

I was also involved in the development of the verification tool, VIS, as one of the

primary architects. The workon state-space traversal described in thisthesisconstitutes

a fundamental part of model-checking engine of this tool. Over the last 2 years, VIS
has been adoptedby over 500 people all over the world and has been incorporatedas a

core engine inside some conmiercial model checking tools.

—^Rajeev Kumar Ranjan

Berkeley, California.

December 1997.

XXlll

xxiv PREFACE

Acknowledgements

WHEN Iwas making plans to write my thesis, Ithought that the acknowledg
ment section would be the easiest one to write. After all, there is a standard

format - first of all acknowledge youradvisor, othermembers of yourqualifying exam

inationcommittee, someother faculty members / colleaguesyou collaboratedwith, the

funding sources - followed by the acknowledgment of yourfriends for theirgoodcom
pany during the long stayfor Ph.D. - and finally some sentimental lines for spouse /
partner/ parents. Mine too would pretty much follow the similar outline. However,
what made this process difficult was my intention of succinctly capturing the true
essence of my interactions with friends, coUeagues, people, and the environment at

Berkeley.

In any case, here I go ...*

First and foremost, I would like to thank my advisor. Prof. Robert K. Brayton, for

his guidance, inspiration, encouragement, and support during my graduate years at

Berkeley. I consider myself very fortunate to have worked with Bob. His ability to

patiently listen to **uncooked ideas** and suggest useful directions is remarkableand so

are his perseverance, commitment to work, intellectual curiosity, and technical depth.

His constant enthusiasm for everything that the graduate students were involved in is

what kept us motivated to achieve higher and higher goals.

I would like to thank Prof. Alberto Sangiovanni-\^ncentelli for being the chair ofmy

qualifying examination committee and for his valuable comments on the draft of my

thesis. I would like to thank the third reader of this dissertation. Prof. Dan Adler from

lEOR department, for timely review of the thesis. Prof. Paul Hilfinger from Computer

Science department and Prof. Adler agreed to serve in my qualifying at a very short

notice. I am thankful to them for their consideration.

The continuous sources of funding during the last 5 years have been essential for my

survival as a graduate student. First of all, I would like to acknowledge the fellowship

*As a true researcher and to pre-empt any criticism of plagiarism, I would like to mention that similar
sentiments have been expressed in the past. In particular [Mur93] and [Swa96] (I got paid to refer to
these theses) are worth mentioning.

XXV

xxvi ACKNOWLEDGEMENTS

from Motorola under the URP program. I would also like to acknowledgethe funding

from California Micro, Fujitsu, and Cadence.

I would like to mention Prof. M. A. Pai from University of Ulinios at Urbana-

Champaign. He was my advisor at U of I and it was due to his undivided attention

to my program that I could finish my M.S. thesis and publish a couple of conference
and journal papers, all in less than a year. He always supported me in all my deci
sions includingmy transfer to Berkeley. Even after I came to Berkeley, he was always

concerned about me and would keep track of my progress throughout my Ph.D.

I take this opportunityto thank my alma-materIndian Institute of Technology, Kan-

pur. Getting a Bachelors degree from DT Kanpur was a turning point in my career,

since it opened up a multitude of exciting opportunities.

During my stay at Berkeley, I got a chance to collaboratewith a lot of smart people

and had the privilegeto learn from them. I wouldlike to take this opportunityto express

my thanks to my research collaborators.

The work on breadth-firstBDD manipulationwas done with Jagesh Sanghavi. From

himI learned the technique of developing complex software packages using**unit-level
debugging". It was'with this philosophy that we were able to develop and release an
industrial-strength BDD package. Wilsin and I collaborated on the dynamic reorder

ing workinside the CALpackage. Oftenhe and I would get together to discuss other
research issues. The work on state-space traversal started at Motorola, Austin, where

I was an intern in the summer of 1994. I collaborated with Bernard Plessier and Carl

Pixley andlaterwith Adnan Aziz. The lastpartof this dissertation (sequential circuit
verification), is the resultof my internship at Cadence Berkeley Labs. There I collab

orated with Vlgyan Singhal and Prof. Fabio Somenzi from University of Colorado at
Boulder. I thank them forputting in longhours in brain-storming sessions anddiscus
sions.

It was a pleasure being part of the VIS team and I would like to acknowledge the
members: Adnan Aziz, Szu-Tsung Cheng, StephenEdwards, Sunil Khatri, Yuji Kuki-

moto, Abelardo Pardo, Shaz Qadeer, Sriram Rajamani, Tom Shiple, Gitanjali Swamy,

and Tiziano Villa. It was with the group chemistry and team spirit that we managedto

puttogether a high quality model checking tool injust about sixmonths. The success
of this project is evidenced by over 500 downloads from various parts of the world in

ACKNOWLEDGEMENTS xxvu

the last 2 years. I would also like to thank them for their support and collaboration in
organizing the VIS technology-transfer course. It was a great learning experience.

During my stay at Berkeley, going through the myriad of academic requirements
would have been very difficult, had it not been for an excellent set of adnumstrative
staff to help us. I would like to express my heartfiil appreciation to the staff at the
graduate office. Heather Brown (now Levien), Ruth Gjerde, Mary Byrnes, and Pat
Heman have done an excellent job in patiently dealing with the graduate students*
problems and explaining the various intricacies ofdepartmental requirements on aday-
to-day basis, r would also like to acknowledge the CAD Group staff for assisting usin
various reimbursements, registrations toconferences, business travel, etc. In particular,
I would like to mention FloraOviedo, Kia Cooper, Elise Mills,GwynHorn,and Pearl.

ThelastI heard, I was Baby # 3 intheFlora'sfavorite babies' list. I guess I was bumped
down since I moved to the South Bay. During my work at Cadence Berkeley Labs, I
solicited the assistance of our administrator Kris Lamanno. She is by far the best sys-

admin I have come across. I would remember her for her superb efficiencyin managing

day-to-day activities at thelabsandfor hersensitive gesture in throwing an impromptu
birthday party,for me. Thanks to our system administrators Brad and Judd who have
donean excellent job in maintaining our hugenetwork of workstations.

I would like to acknowledge all my friends / colleagues / seniors who made work
environmenta fun place (at 550 Cory,Cadence BerkeleyLabs, Synopsys).

Tom Shiple wasoneof thefirst few seniorgraduate students I metin theCAD group.
Starting from the daysof the logic-synthesis courseprojectfor whichhe was my men

tor, we became very goodfriends. I have always been amazed at his methodical ways
in life. I have learned a lot from him. He always found time to listen to my problems -

academic or personal - and provide advice as a friend, coUeague, or mentor.

I haveknown Fabiofor over3 years,but it wasonlyduringhis sabbatical at Cadence
Berkeley Labs that I got a chance to closely collaborate withhim. Besides himbeing

a true BDD guru, I was quite impressed with his finesse and expertisein Perl, Emacs,

deep understanding of ISCAS/MCNC benchmarks, to name a few. Justrecently, during
ICCAD he askeda question afterone of the paper presentation - "Howcome sl269 is

not in the table of results?" I think most of the people in the audience would have been

amazed, I was.

xxviii ACKNOWLEDGEMENTS

"Pre-doctoral qualifying examination** - also known as "prelims** - was the first

stressful academic experience I had to go through at Berkeley. I would like to thank

my preparation team members - Yuji Kukimoto, Serdar Ta§u:an, and Harry Hsieh. It

would have been difficult going through the whole bunch of conference and journal

papers (some of them very boring and irrelevant) without sharing the workload.

Yuji, Serdar, Harry, and I have been good fiiends since the beginning of graduate

years. I admire Yuji*s sense of responsibility and ability to deliver on time. So far I

have not met anyone else who would consistently tum in the DAC/ICCAD submissions

on the advertised date. Serdar was kind enough to bring *T\irkishDelights** after every

visit to his native country, Turkey. At times, he provided us accompaniment on guitar

in our informal singing sessions. Harry enjoyed eating Indian food, and we enjoyed

watching him eat. He would love eating spicy food while sweating all over his body.

I would like to acknowledge my cubicle mates. Sriram Krishnan always had passion

ate ideas on all issues - religion, politics, research - to name a few. Often his outbursts

at the tennis court and politically incorrect statements used to be our source of enter

tainment. Adrian Isles has been a good cubicle mate to me. I was truly impressed by

his ability to work long hours in CoryHall and to combine community service with

that. I haveknownGitanjali Swamy since lUK days. When she was in the cubicle, she

providedus a lot of entertainmentin variouscontroversial discussionson feminism, In

dian politics,etc., especially those with SriramKrishnan. After moving to Boston she

would call us West coast folks at 7:00am Pacific time. She has done this with me many

times and she would start with - "Hope I did not wake you guys up...**. Regardless, it

is always a pleasure chatting with her.

I also had the privilege of sharing my office space with Dominique Borrione from

Grenoble, France. It was great fun celebrating "Bastille Day** at her place. The best

partwaswhen people from different countries sangtheirnational anthems. Earlier this

year, I had an opportunity to go to Grenoble to teach a VIS tutorial. I will remember
Dominique for her hospitality, inviting me over for French cuisine, taking timeoff to
take me around Grenoble and vicinity areas, taking me to the music festival, and not to

forget, helping meout in shopping forRenu (my wife).

I had many useful discussions with Desmond Kirkpatrick on various computer re

lated issues - emacs, tcsh, IntePs performance - to name a few. It was refreshing to

ACKNOWLEDGEMENTS xxix

tflllc withhimabout myresearch, since healways brought ina new perspective. I will re

memberChrisLennardfor his Australian ways(cometo thinkof it, he IS Australian!!).

I remember thetimewhen he threw a party andhe andhisfellow bandmembers played
somerock numbers for the guests. Stephen Edwards was a good sourceof knowledge

about various computer-related things. Arrogant as his attitude may be, we did not
hesitate calling him over for dinner andgetting some fundamentals on issues like Java
vs. javascript vs. hotjava. It would always betime effective toknow about these things
from him (taking into account cooking time, etc.).

Rajeev Murgai, an "All Time Berkeley Resident", hasbeen a very good firiend. His
pet peeve with me has been my login name —"rajeev". I would often receive emails
fromhis friends inviting meforsomedelicious dinnerandsuchandsometimes unpleas

ant notes from his bosses (hnun... am I lying here?). Anyways, I will rememberhim

most as a wonderful host in parties and for his passion for ballroomdancing. Marco

Sgroi was our "Maestro Italiano". I thank himfor taking the initiative to teach Italian
to some of the enthusiasts in the CAD group. Shaz Qadeer and Amit Mehrotra pro

vided company during bridge sessions. I thank Drs. Alpa and Jagesh Sanghavi for
their wonderful Diwali parties which typically involved innumerable delicious dishes.
Thanks also to Premal Buch, Luca Carloni, Wilsin Gosti, Harry Hsieh, Sunil Khatri,

Gurmeet SinghManku, AmitNarayan, Roberto Passarone, MukulRanjan Prasad, Sub-

ama Rekha, for making 550-Cory a lively place.

Thanksto Vijay (wife) and Kamal (husband) for being wonderful hosts at Berkeley,

Santa Cmz, and now in Milpitas. Thanks to Zeina and Enrico for all the wonderful

times we have had at various parties (surprise or otherwise) and not to mention for

throwing the annual barbecue parties. Satyajit Ranganathan (aka Satya) has been a

goodfriendof mine for overa decadenow(boy, do I soundold...). He and I sharemany

common interests —movies, Hindi songs, football, philosophical discussions about life

- to name a few. At times, he has given me advice on various issues which helped

me see things more clearly. Chamtosh was always a good host when we would go to

his big house in MountainView (that used to be our weekend getaway). I was always

impressed with his dedication to Hindustani Classical music.

It was one of the rare instances in Cory Hall (may be it was first), that Renu and

I were doing Ph.D. together and were concurrently occupying desks in 550 Cory for

XXX ACKNOWLEDGEMENTS

about 5 years. As a result, I had a chanceto interactwith manyof Renu*s close friends

and sometimes take their sides in troubling her.

Varghese Geoige (hmm... just now I realized that I always called him by his last

name) was my tennis Guru at Berkeley. Whenever we would play doubles, he would

pick me as partner even though that would mean losing all the sets. It was fiin chat
ting with him about latest movies. MarleneWan was always a cheerful victim of my

continuous small-time pranks. After moving to South Bay, wheneverI would go up

to Berkeley and meet her in Cory Hall, she would greet me in her unique way - a

scream,followed by a long "helloooooo", and then "Rajeeeev". This picturewouldnot

be complete without JeffGilbert. I wouldreferto the "Jeff* and "George" duo as "Jeff

George" (for the football deficient, the only quarterbackto use expletivesfor his coach

on national TV during a game, not that they ever did the same to their advisors). I will

remember Jeff for his wittiness and for his ability to act innocent after playing pranks

on Marleneand Renu. KathyLu has been a goodfriendsince the time I was a T.A. for

one of her courses.

' During the last phases of this dissertation, I was working at Synopsys. The folks at

Synopsys werequite supportive of me in this effort. In particular, J.C. Madreprepared
coffee on a regular basis and helped me out in locating documentation-related soft

wares. Others who wished me luck at one point or other include - Dinesh Ramnathan,

Jim Kukula, Randy Allen, Tony Ma, Kurt Keutzer, Tom Shiple, Robert Damiano,

Stephanie Aitken, TheresaBotha,Ramsey Haddad, Joe Hutt, and Narendra Shenoy.

Like manyIndianstudents, I learned cooking only after coming to US (ratherafter

coming to Berkeley). After couple of years of trial and error, I learned how to cook
what I think is reasonably well. More than cookingand enjoyingthe meal afterwards,

I tookpleasure in feeding otherpeople. It always gave mesatisfaction when people ate
withgoodappetite andwithgratifying pleasure. The list of people whoI would like to
acknowledge includes (notquitein order) - Satya, Stephen, Gitanjali, Gurmeet, Rajeev

(the other one). \^ce versa, I would be quite disappointed if the guest did not follow

the above protocol. This list contains just oneperson who shallremain nameless.

Walking through the Sproul Plazaon a sunny aftemoon would always enlighten my

day. I remember that I would deliberately delay my departure to school on Friday
mornings soas to be able to seeand heartheunique **Berkeleyan Sounds ofMusic". In

ACKNOWLEDGEMENTS xxxi

particular, I was highly enchanted bythe socalled "Piano Man" playing piano endlessly
under his pink umbrella. The UC Berkeley octet's performance onWednesdays used to
be a treat. I was always amazed bytheirvocal numbers combined withsome innovative
sounds serving as accompaniment in perfect harmony. The Sanponia (a variation of
flute) bandfrom Peru who played Quitus music from South America (I amnotmaking
this allup, I actually took notes one day) used tobearegular presence attheintersection
of Bancroft and Telegraph. It was a pleasure listening to their numbers played on
Sanponias of various sizes. And not to forget the lonesome drummer, Larry Hunt,
drununing away (sometimes on a set of buckets) on the upper plaza, day in and day
out. He got a notice from campus authorities against his "noise-making practice". I
was quite happy to sign in his support book. And last but not the least was the the
Irish Celtic Harp player, Aryeh Frankfurter. He would play just beside Sather gate
towards Wheeler Hall, oblivious to all the conunotion at Sproul Plaza. With all these

distractions, it would often be the case that the twenty minutes walk from home to Cory

Hall would tum into an hour or more.

Finally, it's time to get a tissue handy.

I thankmy parents, brother Sandeep, and sister Rimjhim for having faith in me for
all these years.

Aboveall, I would like to expressmy gratitude to my wife Renu Mehra. Words can

not express my feeling. We have been through a greatdeal together and I am indebted
to her forever for being so supportive of me through thicks and thins of life. With
out her help, encouragement, and criticismI would not havebeen what I am today. I
thank her for her constant love and support and for being so patient with me. Renu

spent innumerable hours helping me prepare for preliminary exam, qualifying exam,

and various conference talks. Needless to say, she has played a crucial role in my being

able to finish this dissertation on time. Without the millions of red marks made by her

on various drafts, it could not have taken this shape today. I dedicate this thesis to her.

xxxu ACKNOWLEDGEMENTS

Chapter 1

Introduction

AS we move towards 21®^ century, integrated circuits (ICs) are becoming an inte
gral part ofour day-to-day lives, being embodied in various forms —micropro

cessors inhome computers, embedded controllers inautomobile fuel-injection systems,
graphics controllers invideo games, micro-controllers intoasters, answering machines
etc.,automated data-acquisition andmanipulation components inbio-medical systems,
etc. These complex electronic systems have requirements ontheir functionality, speed,
and reliability. Of these three, functional correctness is the most fundamental require
ment because the speed and reliability of an incorrectly functioning electronic system
is of no interest. Moreover, of these three requirements, functional correctness is be

coming the largest bottleneck in design [Keu96].

It hasbeenwidely estimated thatover70%of the design timefor integrated circuits

is spent in p>erforming various kinds of verification tasks and the effort devoted to this
process eclipses all other aspects of the design process. In addition, this problem is
likely to becomeincreasingly worse due to the following two reasons:

1. The first one is the resultof phenomenal growth in the design complexity. Tran
sistor density increases by about 50% per year, quadrupling in just over three
years. The increasing number of transistors leads to larger number of compo
nents to analyze in the verification problem making it more and more complex
and harder to solve. Also, with the growing complexity of the digital systems,

the complexity of protocols interacting between components and ensuring the
security and reliability of databeing passedamongst themis also increasing at a

rapid rate. Thesefactors combined together significantly affect the performance
demands on the verification technology.

Another way to look at the affect of increasing design complexity on verifica
tion is by examining the following equation that gives the number of bugs per

CHAPTER 1. INTRODUCTION

chip [Keu96]:

bugs logicJransistors linesJnJiesign ^ bugs
chip chip logicJransistors linesJnJlesign

Assuming that numberof logic transistors per line of the high-level code is con

stant, since the number of logic transistors doubles every 18 months, we must

reduce the number of bugs per line of HDL by half every 18 months to ensure

the correctness of the design.

2. The second factor is the shrinking time to market. It is common to tum around an

application specific integrated circuit (ASIC) design withfew hundred-thousand
gates within a couple of months. Timely delivery of a product is the key to its
success and imposes additional performance demands on the verification tech

nology.

These factors combined together have stressed the capabilities/capacity of functional

verification as never before.

1.1 Goals and Scope of the Thesis

The goal of this thesisis to investigate a spectrum of techniques targeted towards mak
ing the verification process practical for real designs. Later in this chapter we will
precisely identify the nature of verification algorithms we are targeting in this work.
Note that we are only concerned with the computational aspects of functional verifi

cation. We do not address the issue of the specification of the system or the correct

behavior. Also, the scope of this work includes finite state systems only. There are

similar(and more complex) verification problems in the area of infinite state systems

(e.g., hybrid systems).

Chapter Organization: In Section 1.2, we will review some trends in the area of
computer architecture and allude toareas of interest from thepoint ofview of this work.
In Section 1.3, we describe various notions of verification and also provide the context

of our work. Sections 1.4 and 1.5 discuss various issues and solution approaches to

BDD-based verification techniques. In Section 1.6, we give background on sequential

circuit verification. Finally, we outlinethe organization of this thesis in Section 1.7.

J.2. COMPUTER ARCHITECTURE TRENDS

MicroprocessorClock Rate Improvement Over Years

500

1970 1980 1990 2000 2010
Year

Figure 1.1 Clock rate improvement for microprocessors over last 27 years.

1.2 Computer Architecture IVends

We first analyze various components ofcomputer architecture- microprocessor, mem

ory,disks,etc. - to betterunderstand howwe can leverage fromeachof themto obtain
efficient algorithms for functional verification.*

1.2.1 Microprocessors

Over the last decade, microprocessor performance has grown at a tremendous pace.

The contributing factors to this growth are the following:

• The clock rates for the leading microprocessors increase by about 30% per year.

In Figure 1.1,we show the improvementin the clock frequencyfor several impor

tant microprocessorfamilies. In particular, the clock rate for x86 family from In

tel has increased fi'om 16MHz in 1986 for i386 to 300MHz in 1997 for Pentium-

n.

*Some of the material in this section has been derived from [HP90, San96, CSG97].

CHAPTER 1. INTRODUCTION

• Transistordensity: The rate of increaseof number of transistorsin a chip is about

40% per year. This leads to increased raw computing power per year.

• Architecturaltrends: Tofeed the increasingcomputingpowerof microprocessors

a lot of architectural advancements have been made. Some of the major contrib

utorsare- instruction level pipelining, superscalar instruction issue,out-of-order
execution, speculative execution, etc.

Software technology: Compiler technology attempts to extractthe totalavailable
parallelism for a specific computer architecture by loop optimization, software
pipelining,and schedulingtechniques.

These factorscombinedtogetherlead to a significantrate of increasein performance

of microprocessors on standard benchmarks. SPEC integer performance has been in
creasing at about55%per year andSPEC floating-point performance at 75% per year.

1.2.2 Memories

Oneof thephysical laws of computer architecture is thatfastmemories are small, large
memories are slow. This occurs as a result of many factors, includingthe increasedad

dress decode time, delays on the increasingly longbit lines, smalldrive of increasingly
dense storage cells, andselector delays. This is why memory systems areconstructed
as a hierarchy of increasingly larger, slower, and less expensive (perbyte) memories
further away from the processor. A simplified memory hierarchy consists of processor
registers, several levels of on- and off-chip caches (SRAM), main memory (DRAM),
and a hard disk. The important characteristics of each memory system component are

given inTable 1.1. A large hierarchical memory system provides fast access onaverage
as longas the references exhibitgoodlocality.

Main Memory (DRAMs)

The main memory satisfies the demands of caches and serves as the I/O interface.
Performance measures of main memory emphasizeboth latency and bandwidth. The

DRAM capacity has quadrupled every three years due tofiner line-widths, larger chip
area, and advances in the design of basic DRAM cells. However, the performance of

J.2. COMPUTERARCHITECTURE TRENDS

Level Registers Cache Main Memory Disk Storage

Typical Size < 1KB < 4MB <4GB > 1GB

Access time (in ns) 2-5 3-10 80-400 10,000,000

Bandwidth 4000-32000 800-5000 400-2000 4-32

(in MB/sec)

Managed by Compiler Hardware Operating

System

OS/User

Backed by Cache Main memory Disk Tape

Table 1.1 Typical levels in memory hierarchy.

DRAMs is growing at a much slower rate. Figure 1.2shows a performance improve
ment in row access time of about 1% per year.

Tocompensate for the lowrateof access time andcycle timeimprovement for stan
dardDRAMs, innovative operating modes, novel memory architectures, andapplication-
specific DRAMs have emerged [KOKD96]. Despite these advances, for memory ac
cesses that show little or no correlation, the access time remains the measure of DRAM

performance that characterizesthe main memory performance.

Secondary Memory (Disks)

Diskcapacity hasgrown atanenormous ratein thelast tenyearsas shown in Figure 1.3.

In 1986 the largest commercial disk had a capacity of 20MB. Thesedays we find disks
with capacity up to 8GB. However, the access time has improved by only one-third in
10years. The average priceper megabyte of magnetic diskshas reduced from$35 per

megabyte in 1986 to $0.1 per megabyte in 1997.

1.2.3 Microprocessors vs DRAMs: Performance Gap

In Figure 1.5, we have shown the comparisonbetween the performance trends of mi

croprocessor and DRAMs. The trend showsa growing disparity between memory and

processorperformance. This is becausememoryperformance has increasedat less than

10%per year whereas processorperformance has increased at about50%per yearsince

1986. Several researchers predict that memory bandwidth will limit the performance

of the future microprocessors.

o

E
♦3

0)
(0
o
0

s

1
CC

CHAPTER 1. INTRODUCTION

180
Trend in DRAM Access Time

Low End
High End

80 82 84 86 88 90 92 94 96

Figure 1.2 DRAM access time improvement over years.

16384
Trend in Disk Capacity

Disk Capacity

4096

1024
o
CS
a.
CS

O 256

1986 1988 1990 1992 1994 1996 1998
Year

Figure 13 Trend in disk capacity over the last decade.

1.2. COMPUTER ARCHITECTURE TRENDS

CD

rt

o
Q

a>
o
•c
0.

o
ti
(D
Q.

Trend in Disk Price

Disk Pnce

1986 1988 1990 1992 1994 1996 1998
Year

Figure 1.4 Trend in disk priceover the last decade.

Performance Comparison Between Microprocessorand DRAMs
10000

1000 -

100 •

1 tn

1980

Microprocessor Performance
DRAM Performance

1985 1990
Year

1995 2000

Figure 1.5 Performance trend comparison of microprocessors and DRAMs.

8 CHAPTER 1. INTRODUCTION

The disparity between DRAM and processor performance is also evidenced by ex

tensiveuse of caches. In 1980,most of microprocessor designs did not havecaches. In

1996, most of microprocessor designs have twolevels of caches. However, for appli
cation that exhibit little or no correlation between addresses, the caches serve no useful

purpose andthemicroprocessor may spend75% of all CPUcycles waiting formemory
accesses.

1.2.4 Disks vs DRAM: Price vs Performance

InFigure 1.6, wehave plotted thecapacity ratio of disks vs DRAM perconstant dollar.
It shows the trend in how much more disk capacity comapred ot the DRAM capacity

can be purchased for the sameamount of money. The ratio has increased from about
8 in 1986 to about 160 in 1997 indicating that on average the rate of decrease in the

price of unitdiskcapacity hasoutpaced therate of decrease in theprice of unitDRAM
capacity by a factor of 20.

CO

iS
o

o

03
QC

Dollars/MB Ratio: Disk to DRAM
256

Capacity Ratio

128

1986 1988 1990 1992 1994 1996 1998
Year

Figure 1.6 Diskto DRAM capacity ratioperconstant dollar.

1.2. COMPUTER ARCHTTECrURE TRENDS 9

1.2.5 Parallel Computing

In response to increasing chipcapacity various functional units havebeen replicated to

increase the parallelism available in the processor. In order to utilize the parallelism

in the hardware, superscalar execution, instruction-level pipelining, and out-of-order

execution have emerged as mainstream technologies.

Giventhe expected increases in chip-density, the natural question to ask is how far

will instruction-level parallelismgo and at what point wiU the emphasis shift to thread-

level parallelism. Studies have shown that a 2-way superscalar architecture is very
profitable and4-way offers substantial additional benefit, but widerissuewidths, e.g.,
8-way superscalar, provide little additional gain. The designcomplexity increases dra
matically since on average control transfersoccur once every five instructions. Recent

works provideempirical evidence that to obtain significantly larger amounts of paral
lelism, multiple threads of control must be pursued simultaneously.

Also, the performance of the highly integrated, single-chip CMOS microprocessor

is steadily increasing and is surpassing the larger, more expensive alternatives. The

advantages of using small, inexpensive, low power, mass-produced processors as the

building blocks for computer systems with many processors is now greater ever than

before. In particular, theshared-memory multiprocessor appear to be a promising direc

tion that could have a wide impact. We are beginning to see the emergence of parallel

processing in the mainstream of computing as two to eight procesor shared-memory

multiprocessors.

1.2.6 Computer Architecture: Conclusions

From the analysis of the technology and architectural trends, we derive following con

clusions which will serve as guidelines for our effort to develop computer architecture

based efficient functional verification techniques.

• A large hierarchical memory system provides fast access on average as long as

the references exhibit good locality.

• The performancegapbetween a microprocessorand DRAM is increasingrapidly

over the years. Hence maintaining locality of reference of memory accesseswill

become more and more critical.

10 CHAPTER 1, INTRODUCTION

• Although DRAM prices have reduced overthe years, diskprices have fallen at a
much faster rate. Therefore the efficient usage of disks will prove to be econom

ically advantageous.

• The ever increasing growth in the transistor density on a chip will serve as the
enabling technology for parallel computers. These days, 2- to 4-way shared-
memory multiprocessors have become a common presence on desktops.

1.3 Design and Implementation Verification

Toput ourworkin perspective, let us consider the first few levels in a typical top-down
designmethodology (illustrated in Figure 1.7). Consider the synthesis steps shown on

the left in Figure 1.7. The design startswith someformal or informal specification that

results from somebody's idea aboutwhat the design is supposed to do. This specifica
tion is manually translated to a register transfer level (RTL) description in high-level

language likeVerilog or VHDL. A hardware compiler is used to synthesize this to a
gate-level design. The gate-level design can in turn be further optimized by manual

or automated transformations. The optimized gate-level net-list is placed, routed, and

converted to layout (not shown in the figure).

The verification steps corresponding to the various stages of the design flow are

shown on the right side of Figure 1.7. First of all, we need to establish if the manual

description in the Verilog or VHDL satisfies the specification we started with. We

can think of the specification consisting of a "set of properties", and we would like to
checkif our described design implements theseproperties. This verification problem is

known as design verification or property verification.

Next, we need to verify that the gate-level description has the same functionality

as the RTLdescription. This verification problem is known as implementation verifi
cation, since we are checking if one description correctly implements the other. Im

plementation verification is needed to check if the gate-level optimizations maintain
the functionality of the original design. Similar implementation verification steps are
requiredat lowerlevelsin the designmethodology.

1,3. DESIGN AND IMPLEMENTATION VERIHCATION

Synthesis Steps

Manual

Description

Hardware

Compiler

Logic
Optimizer

Specification

High Level
Design

Gate-level

Design

Optimized
Gate-level Design

Verification Steps

Design Verification:
Is what I specified what
I want?

Implementation Verification:
Is what I synthesized what
I specified?

Implementation Verification:
Is the optimized design
functionally equivalent to
the original design

Figure 1.7 Typical top-down design methodology.

11

12 CHAPTER 1. INTRODUCTION

Verification Methodology

The methodology used to verify designshas evolved fi*om an event-driven simulator to

the use of a plethora of different techniques to reduce the simulation time and manage
the design complexity. An overview is given in Figure 1.8. We briefly discuss few of
these technologies.

VERIFICATION

Simulation Hardware

Acceleration

Emulation Formal

Verification

Cycle
Based

Event

Driven

Compiled
Code

Implementation
Verification

Combinational Sequential

SAT

Based

ATRG Structural

Techniques
Symbolic
Techniques

Testbench Others

Generation

Design

Verification

STE

Based
Model Language

Checking Containment Theorem
Proving

Others

Figure 1.8 Overviewof verification methodology.

In simulation, a set of inputsare applied to a model of thesystemandthe outputs are
checked for the correctness. Simulation still forms the backbone verification technol

ogy in thecurrent day design methodology. Forcomplex designs, however, exhaustive
simulation exploring allbehaviors is infeasible.

In formal verification, rigorous analytical techniques are used to establish the re

lationship between a mathematical model of a system and the system specification.

1,3. DESIGNAND IMPLEMENTATION VERIHCAnON 13

Formal verification canbeapplied for both implementation verification and design ver
ification.

Of the various formal verification methods, symbolic simulation is closestin spiritto

current engineering practice. Ina symbolic simulation ofacircuit, initial values and in
puts are given not as Boolean values (0or 1), but instead as symbolic variables. At each
simulation step, the simulator computes the values of signals as Boolean functions of
thesevariables, ratherthan as definite Booleanvalues. The Booleanfunctions obtained

at the outputs ofa circuit can becompared against the desired functions [Bry87]. This
technique is primarily used toverify the combinational equivalence oftwo designs.

Model checking is another method of property verification that is somewhat more
abstract than symbolic simulation. In this case, the desired properties to be verified
are written in some form of mathematical logic which supports temporal relation be
tween the signals (also known as temporal logic [Pnu86]). Specifications of temporal
properties may also be described using finite automata instead of temporal logic. In
either case, a model checker translates the implementation model (the design) into a
finite state system, which is given by sets of states (defined by the values of memory
elements in the design) and the transition amongst the states based on the input. The
model checker thenchecks automatically that the specification is satisfied [CES86]. In

the last couple of years few commercial model checking tools have emerged - For
mal Checkfrom LucentTechnologies, RuleBase fi*om IBM, Checkoff fi*om Abstract
Hardware Ltd. to name a few.

The most general and powerful methods of verification are based on general pur
pose theorem provers. A theorem prover is based on a logic —a formal language for
stating mathematical propositions. A logic is equipped with a proof system - a set
of axioms and inference rules that make it possible to reason in a step-by-step manner

from premises toconclusions. Most theorem provers areinteractive, requiring guidance
from the user in order to generate proofs IMcM94]. Due to this reason, theorem-provers

havenot achieved the broadlevelof acceptance despitetheir impressive demonstration

insome government pilot projects [Kur97].^
In this thesis we will focus on the design verification ("Is what I specified what

I wanted?") and the gate-level implementation verification ("Is the optimized gate-

^For a survey on various fonnal techniques, referto [Gup92].

14 CHAPTER 1. INTRODUCTION

level design functionally equivalent to the original gate-level design?"). We notice that
a large number of automated verification methods make use of symbolic techniques
as the core engine. Also, structural techniques are heavily used for implementation
verification. Our work specifically targets these two techniques as indicated by the
boxes in Figure 1.8.

1.4 BDD-based Verification Methodology

In most automated verification techniques, the designs are modeled as finite state ma

chines where the states are defined by the values of the latches in the circuit and the

transitions among the states are determined by the input values. The verification is
performedby appropriately traversing the statesof the circuit.

A Binary Decision Diagram (HDD) is a graph-based data structure used for repre
senting Boolean functions (refer Section 2.1 for a detailed description). In a BDD-
based verification set-up, entities(design behavior, sets of states, etc.) are represented

as BDDs and appropriate BDDmanipulation is doneto perform verification of the de
sign.

In Figure 1.9, wepresent various BDD-based verification techniques andidentify the
core operations and data structures.

Cycle-based simulation using decision diagrams is emerging as a new technology
for fast simulations of large designs. An example is [MSSS95] which uses the Multi
valued Decision Diagram (MDD) [SKMB90], which is a wrapper around the BDD.

BDDs playanimportant role in theimplementation verification ofcombinational cir
cuits, sincethey provide a canonical representation of the functions. Many successful
combinational verification techniques use BDDs as the basic data structure [RWK95,

Mat96, KK97, JMF97]. For sequential circuits, in addition to representing the behav

ior of the circuit, we need to represent and traverse the state transition graph (STG).

States arerepresented and manipulated using BDDs. State enumeration forms thecore
operation in this case.

For the two automated ways to perform design verification - model checking and
language containment - the core operation is state enumeration, which is based on
BDDs as mentioned above.

From the above analysis we observe that BDDs formthe core data-structure for ver-

1.4. BDD-BASED VERIFICATION METHODOLOGY

Simulation

[bDD Based Verificati^

Implementation

verification

Formal Verification

Design

Verification

15

Cycle Combinational Sequential
Based |

Symbolic
Simulation

Modei Language

Core Operation: State Enumeration

Data structure: Binary Decision Diagram (BDD)

Figure 1.9 Overviewof BDD-basedverification methodology.

16 CHAPTER 1. INTRODUCTION

ification of all digital circuits - combinational or sequential, and state enumeration is

the core operation for design/implementation verificationof sequential circuits.

1.5 BDD-based Techniques - Problems and Solution Ap
proaches

The two main characteristics of BDD-based algorithms are:

Memory: The algorithms are memory intensive and involve little computation. For a

complexdesign the size of the BDD (the numberof BDD nodes) gets too large

to fit in the memory. Due to organization of the memory hierarchy in a typical

computer,manipulating large BDDs results in large memory access time.

Computation: Even though computational complexity (in both space and time) of

BDD operations is linear in the productof the BDD sizes of the functions being

manipulated, for largeBDDs,evenpolynomial complexity becomes excessive.

During the last decade or so, researchers have investigated various approaches to

overcome these limitations. These can be classified under several categories described

next.

1.5.1 Computer Architecture Based Solutions

Computer architecture hasbeen usedin two ways to improve BDDmanipulation.

Exploiting memory hierarchy: When the size of a BDD exceeds the main memory,

BDD nodes are swapped to the hard disk. The conventional depth-first BDD

manipulation algorithm results in random accesses to the memory leading to a

large number of page faults. Since a page access time is of the order of tens of
milliseconds, a large number of page faults leads to excessive wall clock time,

even though the time spent by the processor doing useful work is quite small.

Ochi et al. [OYY93] proposedthe breadth-first implementation approach to reg

ularize memory accesses, which leads to fewer page faults. As a result, BDDs

of very large size (up to 12million nodes) can be handled. Asharet al. [AC94]
have presented animproved breadth-first algorithm, which enables manipulation
of BDDs with up to 100 million nodes.

1,5. BDD'BASEDTECHNIQUES 17

Parallel computation: Kimura et al. [KC90] have presented a parallel algorithm to
construct BDDs that uses a shared-memory multiprocessor to divide the tasks

thatcanbe performed concurrently on several processors. Shared-memory ma
chine allows the use of a single global hash table to maintain canonicity. Ochi
et al [0IY91] have proposed a breadth-first manipulation approach that uses a
vector processor toexploit thehigh vectorization ratio andlong vector lengths by
performing a BDD operation ona level-by-level basis. Several other researchers
have made use of distributed shared memory architecture [PSC94, SB96] and

data-parallel architecture [CGRR94].

1.5.2 Application Specific Solutions

In this approach, particular domains are targeted andtheircharacteristics areexploited
to limit BDD sizes and intermediate BDD size blow up. Some examples are:

Combinational verification: The goal in BDD-based combinational verification is to

create BDDs for the outputs of the designs to be compared and then check for
equality. However, thesizeof theoutput BDDs grows largefora complex design.
The BDD size can be controlled by creating a cutset in the circuit and treating

the intermediate signals as the primary inputs [Mat96, KK97]. This requires

appropriate handling of false negatives. Theothertechnique is to introduce inter
mediate variables while building the BDDs and appropriately compose them at

the end [JNC"'"96]. This approach prevents the blowupin the intermediate BDD

sizes.

•Sequential verification: In BDD-based sequential verification the goal is to repre

sent the behavior of the finite state machine and to traverse the corresponding

state-transition graph. Partitionedtransitionrelations are used instead of mono

lithic transitionrelation to control the BDD sizes ITSL'^90,BCL91b, RAP'^95].

The state-space traversal, which requires image/pre-image computation as the

core operations, can be madeefficient by properuse of early variable quantifica

tion [TSL+90, BCL91b, RAP+95, GB94, KHB96]. Approximation techniques

can alsobe usedforreachability analysis [CRM"'"93, CHM'̂ 94, RS95, SRSB97]
where exact analysis is not feasible.

18 CHAPTER 1. INTRODUCTION

Design verification: Partitioned transition relations and efficient image computation

techniquesused for sequential implementation verification are also applicablein

design verification. In addition,appropriateabstraction of the originaldesigncan

be usedto prevent theblow-up in BDDsize [Gra94, Kur93]. Also,compositional

techniquescan be used to break the original probleminto tractable sub-problems

to keep the BDD size small [GL91].

1.5.3 Algorithmic Solutions

In this approach, various algorithmic techniques are used to control BDD size of the

functions obtained at the end of some manipulation. In addition, some techniques are

used to control the BDD size of functions which represent partial results in a complex

computation. In particular:

Variable ordering: The size of the BDD is critically dependent on the variable order.

In some cases, there could be an exponential difference in the BDD sizes of a

function for two different variable orders. Finding the optimal variable ordering

is co-NP complete. A lot of research has been done on this issue [MWBS88,

FFK88] and recently dynamic variableordering [FMK91, Rud93] has emerged

as enabling technology in this area.

BDD partitioning: Thisapproach is similarto the partitioned transitionrelationmethod

or to creating a cutset in the network. However, the techniques proposed in this
category are application independent. In particular, techniques are proposed to

represent a functionas a set of BDDs [NJFS96,BW97].

Avoiding intermediate BDDcomputation: Inmany BDDapplications (symbolic sim
ulation, reachability, etc.), some intermediate BDDs are obtainedon the way to

computing the final result. In some cases, the sizes of the intermediate BDDs
could be large even though the final BDD size is small. Some techniques are

proposed to avoid the computation of intermediate results. In [HDB96], new
variables are introduced (called operational variables) which capture the desired

operation to be performed ontheoperands. Thenthese variables aresuccessively
moved down in order until they reach the bottom. The final result is obtained by

appropriately manipulating the pointers atthebottom and performing a reduction

1.5, BDD-BASED TECHNIQUES 19

' operation. Even though no intermediate results are computed in this approach,
the size of the whole BDD when the operational nodes are dynamically shifted

down can be large.

Inother approaches [SBS93b, Hor96], a technique isproposed tocompute the re
sultof aBoolean expression byextending thetraditional two-operand operations.
Bymaintaining anarray ofoperands and operations, one can perform depth-first
traversal while computing thenew operands and finding the terminal conditions
along the way. In this approach thedifficulty lies in thecomplexity of detecting
the terminal conditions. Also in some cases, the overall memory consumption

can increase due to the overhead of maintaining arrays and large caches to store

the results.

1.5.4 Solutions Based on Modification of Decision Diagrams

In the last decade, research in the area of decision diagrams (DDs) has resulted in var

ious kinds of DDs resulting in an alphabet soup [Bry95]. Different decisiondiagrams

target reduction in DDsize, simpler DDmanipulation, etc. However, ingeneral there is
a trade-off between representation size and the manipulation complexity. Some meth
ods of generating differentdecision diagrams are given below:

Changing decomposition method: By changing the interpretation of the decomposi
tion methodone can obtaina significantly smallerrepresentation. Someof them

are OFDD[KSR92] and OKFDD pST+94].

.Relaxingthe ordering requirement: For some functions all variable orderings result
in exponential BDD sizes in the number of variables [Bry91]. In [ADG91],
the decision diagram is modified to allowvariables to appear (possibly multiple
times) in different orders for different paths. However, with this generalization,

the canonicity of BDDs is lost and the algorithmiccomplexityof some common

operations is exponential. A slightly less generalized version allows different
variable orderings along different paths but requires the variables to appear at

most once along any path. Even though efficient manipulation techniques were

presented in [GM94, SW95], this representation has not yet gainedpopularity.

20 CHAPTER L INTRODUCTION

Representing numeric valued functions: Forfunctions ofBoolean variables withnon-
Booleanranges, a series of representation schemes havebeen proposed. In par

ticular, allowing arbitrary values on the terminal nodes (MTBDD [CMZ'̂ 93],
ADD [BFG"'"93]), incorporating numeric weights ontheedges (EVBDD [LS92]),
changing the function decomposition with respect to its variables (BMD and
*BMD[BC95]), or a combination of someof the abovetechniques (HDD[CFZ95])

have beenproposed. These techniques differ in theirrepresentation sizesandthe
manipulation complexity.

In general, any approach which targets BDD size, thereby reducing the memory con
sumption will also reduce the computation time, since the operand sizes, which de
termine the computation complexity, will reduce. Better variable ordering falls un

der this category. Different decomposition schemes, and newdecision diagrams how
ever do not necessarily reduce the computation time since in some cases the corre
sponding manipulation complexity is much higher than for BDDs. Some approaches
keep the BDD sizes under control while increasing the number of BDD computa
tions (e.g., network partitioning [Mat96, KK97, JNC*^96], partitioned transition re
lation [TSL+90, BCL91b, RAP'''95], etc.). These approaches trade-off memory con

sumption with computation time.

BDD-based techniques are quite general and they are applicable to a broad range

of problems. Since theunderlying computation model for BDD-based techniques is a
finite state machine, these techniques cannotleverage the structural information in the

design. In some applications, it is sometimes advantageous to make useof techniques
which canefficiently exploit such information. In thenext section, wediscuss onesuch
application - sequential circuitverification.

1.6 Structural Technique Based Sequential Circuit Ver
ification

Often it is required tomake modification in thegate-level design description toachieve
certain objective, such as, engineering change orders,*iterative refinements, re-synthesis,
retargeting to a different technology, optimization, test insertion, design reuse, etc. It
is important that the functionality of the design is preserved across these changes. Se-

1.6. STRUCTURAL TECHNIQUEBASEDSEQUENTIALCIRCUIT VERMCATIONll

quential circuit verification refers to checking two sequential designs for equivalent
functionality. More specifically, given twodesigns C\ and C2, we wantto verify if for

any arbitrary input sequence, the output sequence produced by the designs is equal.
Verifying this input-output equivalence is PSPACE-complete citeaziz93d.

Traditional simulation based methods apply a set of random input vector sequences

and check the equivalence of the designs for those sequences. However, for a com
plex design this approach fails to provide any meaningful coverage of possible input
sequences.

A number of formal techniques basedapproaches haveemerged in thelastdecade. A
popular approach is to"compose" thegiven designs together byappropriately connect
ing the inputs and outputs. The composed design is modeled as a finite state machine
andstarting from some initial state(defined by the values of the latches), all thestates
are visited. At each state the equality of the outputs is checked. Explicit state enumer

ation technique visits one state at a time PDMN88, DDHY92]. However, due to the
explicit nature of this technique, it is limited toonly a small number of state elements.
Symbolic techniques, which model thesets of states andthe transitions between them
asBoolean fimctions, have been widely used [CBM89, Kuk89, BCMD90, TSL"''90]. A
salientfeature of thesetechniques is thatthe sizeof the underlying datastructure (some
form of decision diagram) does not depend on the number of states or the state ele
ments in the circuit. However, the capability of the state-of-the-art symbolic methods
falls below the smallest size designs being optimized in industry.

All of the above solutions attempt to solve the general sequential equivalence prob
lem. However, due to complexity of the problem, they are either limited to relatively
small size circuits or to circuits which have undergone relatively fewer optimization

transformations.

Thesecond approach isto trade theoptimization capability withtheverification com
plexity. In thisapproach, the sequential optimization is constrained in order to reduce
the verification complexity. In particular, by making all the latches observable, the
sequential synthesis reduces to combinational optimization leading to combinational
verification problem. Solution proposed in [AGM96) falls in this category.

We propose a practical verification technique for transformations which include ar
bitrary combination of retiming and combinational optimization operations on a con-

22 CHAPTER L INTRODUCTION

strained form of the circuit. In particular, we require certain constraints to be met on

thefeedback paths of thelatches involved in theretiming process. Fora general circuit,
we can satisfy these constraints by fixing the location of some latches, e.g.,by making
themobservable. We show that implementation verification after performing repeated
retiming and synthesis on this class of circuit reduces to a combinational verification
problem. Ourmethodology canalso be viewed asoffering another pointin thetradeoff
curve betweenconstraints-on-synthesis versuscomplexity of verification [AGM96].

1.7 Thesis Organization

This thesis is organized into three parts. In the first part of the thesis (Chapters 3,4,5,
and 6), we present a set of computer architecture based techniques which target the
efficient manipulation of HDDs. In second part of the thesis (Chapter 7), we present

someapplication specific techniques which target state transition graph representation
and state-space traversal of digital systems. Complexity issues in retiming and syn

thesis transformations and a practical algorithm for sequential circuit verification are

described in the third part (Chapters 8 and 9).

In Chapter 2, we present the preliminary material and definitions for terminology

used in this thesis. In particular, the background on BDDs will be necessary to un

derstand the material in Part I. Familiarity with finite state machines and various state

transition graph related manipulations will be helpful for the material in Chapter 7.

In Chapter3, we discuss newalgorithms forBDDmanipulation thatexploitthemem

ory hierarchy by reorganizing the overall computation. The algorithms described in

this chapter extend the ideas presentedby Ochi et al. [0IY91, OYY93] and Ashar et

al [AC94]. The new techniques based on the iterative breadth-first algorithm enable

manipulation of verylargeBDDsby localizing the memory accesses. The maincontri

butions of this chapterare i) newdata structures and memory management techniques,

ii) techniques to exploit the memory hierarchy across several BDDoperations, and iii)

a comprehensive set of high performance algorithms for different BDD operations. In
cases where the BDD size exceeds the main memory capacity, we have found perfor

manceimprovement of a factorof more than 10compared to state-of-the-art packages

(Long's [Lon93] and CUDD [Som97]).

In Chapter 4, we present distributed algorithms on a network of workstations that

1.7, THESIS ORGANIZATION 23

use a collectionof main memories to improvethe performance of the BDD algorithms

and a collection of disks to manipulate BDDs that exceed the disk capacity on one

workstation.

InChapter 5,wepropose techniques to improve theBDD manipulation performance
by using parallel architectures. After discussing previous work on parallel manipu
lation of BDD nodes, we identify the key elements needed for a successfiil parallel
implementation of a BDD package. We establish that bycombining thelocality of ac
cess of a breadth-first manipulation approach with the parallel computing power of a
shared-memory multiprocessor, one can achieve a high degree of performance overa
conventional BDD package.

InChapter 6,weaddress theproblem ofdynamic reordering, which is an indispens
able feature of a general-purpose BDD package. We propose techniques to preserve
the locality of reference during reordering. After identifying the computational and
memory overheads associated with implementing variable swapping (the core oper
ation in dynamic reordering) in breadth-first based packages, we propose techniques
to handle these problems. We show that the dynamic reordering performance inside
a breadth-first manipulation based package can be competitive with a state-of-the-art
conventional depth-first based packages.

Chapter 7 describes the second part of ourwork. We investigate application-specific
solutions for BDD-based verification algorithms. In particular, we look into the state-

transition graph representation and state-space traversal of finite-state systems. We
establish that thecore operation in BDD-based state-space traversal is thatof forming
the image and pre-image of a set of states under the transition relation characterizing
thesystem. Forefficient computation of these core operations, wepresent several tech
niques including clustering of transition relations, ordering of clustered relations for
early variable quantification, network partitioning, usage of don*t cares, and removal
of redundant latches.

In Chapter 8, we present a theoretical analysis of synthesis optimization potential
and the corresponding verification complexity of various retiming and combinational
synthesis transformations. In particular we make an' attempt to give formal notions for
the optimization capability of retiming and resynthesis operations. Also, we formally
establish the computational complexity of corresponding implementation verification

24 CHAPTER 1. INTRODUCTION

problems. Ourgoal is to benefit from these observations in establishing practical re
timing andresynthesis logicoptimization andverification methodologies.

In Chapter 9, we investigate the sequential verification problem for circuits which
have undergone repeated retiming and combinational synthesis transformation. We
present a practical algorithm for verifying equivalence of two sequential circuits one
of which is obtained from the other using a constrained form of repeated retiming and

combinational synthesis. We demonstrate thatour methodology covers a large classof

circuitsby applyingit to a set of benchmarks and industrial designs.

Finally, Chapter 10summarizes the workandoutlines directions for future work.
Almost all of the algorithms presented in this thesis have been implemented and

experimental results aregiven in thecorresponding chapters. In particular, thework on
breadth-first BDD manipulation has resulted in a comprehensive public domainBDD

package - CAL. In Appendix A, wedescribe someof the software engineering aspects
of CAL and its integration with synthesis and verification tools. In addition, our work

on efficient state-space traversal and has been integrated inside the verification tool
VIS [BSA'^96a] as one of the core engines. In AppendixB, we brieflydiscuss the VIS

package and integrationof our work inside it.

Chapter 2

Preliminaries

IN this chapter we will preview some background material required to understand
various chapters of this thesis. The knowledge ofBDD (Section 2.1) will beessen

tial forunderstanding Chapters 3,4, and6. Thetermsanddefinitions usedin Chapter 7
are described in Sections 2.3 and 2.4. The notation and terminology used in the work

on sequential verification (Chapters 8 and9) is described in Section 2.2.

2.1 Binary decision diagrams

The origin ofBinary Decision Diagram (BDD) goes back to theseminal paper byAk-
ers [Ake78], in which Boolean functions were represented by decision graphs. How
evertheirwidespread usage has started onlyafter 1986, when a set of algorithms were
proposed to construct and manipulate these data structures [Bry86]. For a complete
description on various kinds of decision diagrams and therelated terminology, please
refer to [BRB90, Bry91, DB97]. Herewe present a brief description of the data struc
ture and the relevant terminology.

The BDD of a function is a rooted, directed, acyclic graph. To illustrate the cre

ation of a BDD for a function, let us first look at the ordered binary decision tree of a

function, / = xixs +X2Xs. The ordered binary decision tree for this function is shown

in Figure 2.1. The tree consists of two types of nodes: terminal and non-terminal.
Each non-terminal node is labeled by a variable such that node labels on each path

firom root to leaf node satisfy a particularorder givenby the orderingof variables (the

variable ordering for this example is •<X2< x^). Each non-terminal node has two
out-going edges (pointing to left child-node andrightchild-node) which correspond to
a truth assigiunent of 1 and 0 respectively to the associated variable. The child node
corresponding to the "1" assignment to the associate variable is also knownas Then
cofactor (also referred to as T). The child node corresponding to the "0" assignment to

25

26 CHAPTER 2. PRELIMINARIES

/ \ / X /
0 0 0 10 1 0 1

Figure 2.1 BDD tree for function / = xix^+ jc2Ji:3. The dottededges indicate the 0 assignment
to the variable associated with the node.

the associate variable is also known as Else cofactor (also refened to as £).

A terminal node does not have any out-going edge and represents either a constant

ZERO or constant ONE. Along every path from root to leaf, each variable appears

exactly once in the order specified by the variable ordering. The binary decision tree

hasexponential size in the numberof variables. Two reduction rulesare applied to this
tree representation to make it compact:

1. The redundant nodes (nodes with same left and right child nodes) are eliminated.

2. The isomorphic nodes (nodes with identical sub-tree and variable labeling) are

merged.

By repeatedly applying these two reduction rules, we obtain a directed acyclic graph

shown in Figure 2.2. This graph is known as Reduced Ordered Binary Decision Di

agram (ROBDD). In the rest of this work, we will use the term "BDD" to refer to

"ROBDD". Some important characteristics of this functional representation are given
below:

1. Althoughthe size of a BDDcan be exponential in the numberof variables, func

tions corresponding to real circuits do not typically exhibit that behavior (a well
known exception being the multiplier function).

2.1. BINARY. DECISION DIAGRAMS 27

Figure 22 BDD graph for fiinction / = X]X3 + X2X3.

2. The size of a BDD is a critical function of the ordering of variables. For some

functions, the BDD size can vary from exponential to linear in number of vari
ables for different variable orders. However, obtaining the optimal order of vari

ables for a given function is a hard problem.

3. BDDs are canonical representation of Boolean functions. With proper imple
mentation, the canonicity leads to constant time equality checks (satisfiability,
tautology, orequivalence) making them highly suitable for formal verification of
digital systems.

In Table 2.1 we compare the efficiency of representing and manipulating functions
using BDDs with other data structures (prime-irredundant sum-of-products and multi
level network). In the lastdecade, extensive research has been done on variations of
BDDs and the corresponding efficiency of representation and manipulation. A good
survey can be found in [Bry95]. Below we briefly describe some of the terminology
used in this work. For further details, refer to [BRB90].

Unique table: The unique table stores alltheBDD nodes and facilitates thecanonical
representation of a function. For a given variable order, each Boolean function
can be canonically represented by the top variable of the function and its two
child nodes. Theunique table facilitates this process by maintaining a hash table

28 CHAPTER 2. PRELIMINARIES

Operation Complexity

SOP Multi-level BDD

f-^g NP o(i) 0(1/1•\g\)
f=0 0(1) NP 0(1)

0(1) co-NP 0(1)

f = g NP NP 0(1)

Size Exponential Exponential Exponential

Table2.1 Comparing manipulation complexity and expressiveness of BDD, sum-of-products
and multi-level function representations.

of BDD nodes. Before creating a node for a function an associative look-up,

based on the value of the child nodes, is performed in the unique table.

Computed table: The polynomial complexity in the product of operand BDD sizes

for most BDD operations assumes that during a BDD operation, the result for

each pair of operand BDD nodes is evaluated at most once during the compu

tation. This requires the presence of a computedtable which stores information

about the operand BDDs and the result BDD. Theoretically, this would require

implementation of a lossless cache. On a practical note, a computed table is im

plemented as a direct mappedor 2-wayset associative. Without computedtable,

the complexityof even simpleBooleanoperationswill be exponentialin operand

BDD sizes.

Index: Alongeach path in a BDD,variables(associated with the nodes along the path)

appear in the same order. The indexof a variable(alsoreferredto as its "level") is

equal to its distancefrom the root node. Variables in BDDs are ordered from 0 to

71—1, starting from root to the constant nodes, n being total number of variables.

A variable with "lower" value of index is "higher" in the order and vice versa.

Id: An id (identifier) is associated with each variable, and it also ranges from 0 to

71—1. The identifier value for a variable remains constant throughout the life of

the variable, however its index changes during reordering.

2.2. SYNCHRONOUS SEQUENTIAL CIRCUTrS 29

ITE: Given thiee Boolean functions F,G, and H, the if-then-else (TTE) operator is
defined as follows:

ITE(F,G,H) = FG+FH

2.2 Synchronous Sequential Circuits

Asequential circuit is an interconnection ofcombinational gates and memory elements
along with input and output ports. Various notions of sequential circuits differ in the
definition of memory elements. We focus on sequential circuits where all thememory
elements are edge-triggered latches driven by the same clock. Formally, a sequential
circuit is given asC = (/, O,G,L,A^), where /, G,G,L andN are setsof inputs, outputs,
gates, latches,* and nets respectively. Inputs, outputs, combinational gates, and latches
are collectively referred to as circuit elements. Each netn € N represents a directed
connection between a primary input / gate / latch and a gate / latch / primary output.

Often, for the purpose ofanalysis, it isconvenient torepresent a circuit using a directed
graph also known as Boolean network. Formally, a Boolean network N is sl directed
graph G= (V,E), with aone toone correspondence between each node inthe graph and
thecircuit elements (inputs, outputs, gates, and latches). Edges in thegraph correspond
to the nets in the circuit. An edge etj € E indicates a fanout from the circuit element
corresponding to node i to thatcorresponding to node j. Nodes corresponding to com
binational gates canhave any number of fan-ins andfan-outs. Nodes corresponding to
primary inputs do nothave any fan-ins and that corresponding to primary outputs do
have anyfan-outs. Nodes representing latches have onlyone fan-in. Figure 2.3 shows
a sequential circuitand the corresponding Boolean network.

2.3 Finite State Machines

A finite state machine (FSM) is used to model the behavior of systems with finite

number of states. In general, an FSM is characterizedby following elements:

• A finite set of S.

•In this thesis we will use the term "latch" as the short form for "edge-triggered latch" (also termed
as flip-flop),unless otherwise noted.

30 CHAPTER 2. PRELIMINARIES

D-iG1

G3

G2

Figure 2.3 Example of a sequential circuitand corresponding Boolean network.

• A set of initial states, SjCS.

• A finite input alphabet, E/.

• A finite output alphabet,

• A transition relation, T QSx'LjxS. h tuple {x^a^y) € T impliesthat fromstate

X, on applying the inputa, the machine can move to statey. If T can be written
as function, then the next state is deterministic, otherwise it is non-deterministic.

An FSMis completely specified if for eacha € X/andx€S, thereexistsa y € 5,
such that (x,a,y) € T.

• An outputrelation, O, given as O C 5 x Xo forMoore machines (output is solely
defined by the state), and as 0 C 5 x X/ x Xo for Mealy machines (output is de
fined by thestateandthe input). Fordeterministic machines, Ocanbe expressed
as a function (0:5Xo for Moore and 0:5 x X/ n-f Xo for Mealy).

A sequential circuit canbemodeled byanFSM. The states aredefined by thevalues of
the latches, the circuit inputsand outputsdefine the input and outputalphabets respec

tively, and the transition functions andoutput functions aredefined by the logic of the
circuit. In particular,

• All the symbols of the FSM —5,X/, and Xo —are encoded in terms of binary
variables (variables on the domain B = {0,1}).

2.3. FINITE STATE MACHINES 31

• A state is given as a minterm on the latch values.

• The inputalphabet is determined by the minterms of the inputvariables.

• The outputalphabet is determined by the minterms of the outputvariables.

• Since the circuit models a hardware, for any given state and the input value the

next state and the output are uniquely defined.

• The non-deterministic behavior for the FSM can be simulated by adding few

pseudo-inputs to the circuit.

Formally, for a sequentialcircuit with m inputs, k outputs, and n latches, the interpreta

tion of FSM symbols is given as follows:

S = W

SiQW

Xi = W

Zo= B'

5

X

Set of states

Set of initial states.

Set of input alphabets

Set of output alphabets

Vector of transition functions 6/: B" x B, i = 1,2,...,n

Vectorof output functions (Moore) X,-: B" —> B, i = 1,2,...,^

Vector of output functions (Mealy) A./: B" x B*" —B, i = 1,2,...,^

Some more notation used in this dissertation are given below:

• x={xi ,X2,... ,Xn} : Vector of binary statevariables.

• i? = {mi ,112,...,Um} : Vector of binary inputvariables.

• z = {zi,Z2j ' •• >Zit} • Vector of binaryoutputvariables.

• 6|(3c, m) : B" XB*" B Transition function. At places, we usefi to indicate 5,-.

• y = {jhyzi ••• ♦ Vector of binary variables used as a place holder for the

next-state values of the latches.

32 CHAPTER 2. PRELIMINARIES

• Ti(x, ii^yi) is used to indicate the transitionrelationfor state bit and is given as

Ti = fiByh The vector oftransition relation isgiven as f = {Ji,72,..., 7^,}.

• 7(3c, M, 5): B" X XB" ->Bisthe transition relation. It isgiven asHiTi% m, yt).
7(jc, u,y) = 1implies that in statex thereexists a transition to statey on inputu.

2.3.1 State Ti-ansition Graph

An FSM can also be represented by a state transition graph (STG). An STG is a
directed graph where each vertex veV corresponds to a stateseS. Anedge
Cij £ E connects v/ to vj if there exists aprimary input a e X/ such that {si,a,Sj) € 7.

2.4 Implicit Boolean Set Manipulation

A Boolean function / from {0,1}" into {0,1} denotes a unique subset 5/ of {0,1}"
that is defined by the equation

Sf = {x6{0,1}7/(x) = 1}

Conversely a subset Sof{0,1}" isdenoted by a unique Boolean function from {0,1}"
into {0,1}, Xsy that is defined by the equation

Xs(x) = 1 xeS,

andis called its characteristicfunction. Since any Boolean function from {0,1}" into
{0,1} has a unique BDD representation for a given variable ordering, any subset of
{0,1}" alsohasa unique BDD for thisvariable ordering.

Characteristics functions are a very interesting representation of Boolean sets be

cause there is no relation at all between the number of elements in a set and the size

of the BDD that denotes this set, so that huge Boolean sets can potentially be denoted

bysmall BDDs and vice versa there exists subsets of {0,1}" whose BDDs have anex
ponential sizewith respect to n. Boolean operators correspond with set operators, e.g.,

disjunction corresponds withunion, and negation withcomplementation. All elemen

tary setoperations canthus beevaluated with aquadratic complexity onBDDs [CM95].

Parti

Computer Architecture and BDD
Manipulation

33

Chapter 3

Breadth-First BDD Manipulation

The manipulation of very large BDDs is the key to success for BDD-based al
gorithms for simulation [Bry91], sjmthesis [CBM89, TSL'''90], and verifica

tion [BCMD90, McM93, BSA''"96a] of integrated circuits and systems. State-of-the-

art BDD packages, based on the conventional depth-first technique, limit the size of
the BDDs that can be manipulated due to disorderly memory access patterns that re

sult in unacceptably highelapsedtime whenthe BDD size exceeds the mainmemory
capacity. In this chapter we present the design and implementation of a high perfor
mance BDD package that enables manipulation of very largeBDDsby using an itera

tivebreadth-first technique directed towards localizing memory accesses to exploitthe
memory organization in a computer system.

The basis of our work is the iterative breadth-first BDD manipulation algorithm pro

posed by Ochi et al [OYY93] and later improved by Ashar et al. [AC94]. Our main
contributions include i) an architecture-independent customized memory management

scheme, ii) the ability to issue multiple independent BDD operations simultaneously

(superscalarity), and iii) the ability to perform multiple BDD operations even when

the operands of some BDD operations are the result of some other operations yet to
be completed(pipelining). A comprehensive set of BDD manipulation algorithms are

implemented usingthe above techniques. The newpackage is faster than the state-of-
the-art depth-first BDD package by a factor of up to 100 for BDD sizes that do not
fit the main memory. Even for the BDD sizes that fit within the main memory, our

package outperforms depth-first manipulation based packages by a factor of 1.5. This

is in contrast to the breadth-first algorithms presented in the literature which paid a

performance penalty for smaller BDD sizes.

The rest of the chapter is organizedas follows. We start with givinga backgroundon

the usage of BDD in synthesis and verificationalgorithms and the BDD manipulation

35

36 CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

process in Section 3.1. In Section 3.2, we discuss the key features of the breadth-

first manipulation algorithm and describe the related workbased on this algorithm. In

Section 3.3 we describe our approach and contrast it with the previous approaches.

Section3.4 describes the memoryaccesspatternduring breadth-first traversal. In Sec

tions 3.5 and 3.6, we present the concepts of performing BDD operations in a super

scalar and pipelinedmanner and discuss how it leads to better memory access pattems.

Section 3.7 shows how superscalarity and pipelining are exploited to obtain efficient
algorithmsfor commonBDD operations,e.g., SUBSTITUTION and QUANTIFICATION.

In Section 3.8,we present someimplementation details. Experimental results demon

strating the effectiveness of our technique are presented in Section 3.9. Finally, we
conclude in Section 3.10 and give directions for future work. Most of the work pre

sented in this chapter was first reported in [SRBS96].

3.1 Introduction

For a preview on the basicsof BDDs, pleaserefer to the Section 2.1.

3.1.1 BDDs in Synthesis and Verification Algorithms

BDDs are used in two contexts in synthesis and verification algorithms: i) to represent

Boolean functions which capture the functionality of the circuit under consideration,

and ii) to implicitly represent and manipulate sets of elements, e.g., sets of states are
representedusing BDDs in verification algorithm.

In combinational verification, the BDDs representing the functionality of each pri

mary output are built in terms of primary inputs. First, theBDD variables arecreated
for primary inputs and the gates of the circuit are processed in topological order. For
each gate, theBDD foritsoutput iscreated byappropriately applying thelogic function
of the gate to the BDDs of its inputs. This process is repeated until theBDDs for the
primary outputs are created.

In design and implementation verification of sequential circuits, the functionality
of the circuit is represented by the BDDs for the outputs and the next-state functions
of the latches. In addition, we need to represent and manipulate set of states (state

traversal) whichform the key operations in the sequential verification algorithm. The

statetraversal is performed bytwobasic operations: image andpie-image computation.

3.1. INTROpUCTION 37

which in turnmakes useof BDDoperations: relational product, substitution, etc.
In synthesis, BDDs are used to obtain and manipulate sets of don'tcares. These sets

are implicitly represented using BDDs. The main operation again involves image and
pre-image computation.

The application of BDD-based sjmthesis and verification algorithms to industrial
designs requires performing Boolean operations on very large BDDs with millions of
nodes.

3.1.2 BDD Manipulation

Let us now look at what is involved in manipulating functions using BDDs. Consider

two functions / and g. For illustration purposes assume that we want to compute the
"AND" of these two functions. Suppose x is the top variable in the BDDs for both

functions. The cofactors of functions / and g are given as: fxifx^gxigx- Using Shannon

decomposition of the functions, the "AND"can be computedas follows:

/ = Xfx+Xfx

g = Xgx+ Xgx

h = fg

= X{fxgx)+X(fxgx)

= xhx-^xhx

This is illustrated in Figure 3.1.

Wenotice that to compute the "AND" of the two functions, we need to compute the

"AND" of the left cofactors {fx and gx) and the "AND" of the right cofactors {fx and

gx). The natural implementation of thiscomputation is recursive, i.e., the results for the
cofactors are recursively obtained.

3.1.3 Conventional BDD Manipulation and Limitations

Conventional BDD algorithms are based on a recursive formulation (shown in Fig

ure 3.4) that leads to a depth-first traversal of the directed acyclic graphs representing

the operand BDDs. Thedepth-first traversal visits thenodes of the operand BDDs on a
path-by-path basis (Figure 3.2). In this traversal, a node is visited right after its parent

node is visited. The access pattern is illustrated with an example in Figure 3.3.

38

Index

CHAPTER 3. BREADTH-FmSTBDDMANIPULATION

h = fg

—fx'gs hx~fx'8x

Figure 3.1 Computing "AND" of two functions.

Figure 3.2 Operand access pattern during conventional manipulation.

3.1. INTRODUCTION

x1

x2

x3

Depth-first access pattern

(a.b)

(e.g)

(f.D

(d.e)

(f.g)

(g.O

Figure 33 Depth-first traversal of operandBDDs in conventional manipulation.

df.Op(op,F,G)
If (terminal case(op, F, G)) return result;

. else if (computed table has entry(op, F, G)) return result;
else{

let Xbe the top variable of F, G;
T = df-op (op, Fx, GJ;
E = df_op (op, Fy, Gy);
if (F equals F) return T;
result = find or add in the unique table (x, T, E);
insert in the computed table ((op, F, G), result);

}
return result;

Figure 3.4 Depth-first BDD manipulation algorithm.

39

40 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

Figure3.5 Problem in localizing memory accesses indepth-first traversal.

Inorder tokeep thememory accesses local, wewould need toput a node close to its
parents nodein the memory. This is difficult due to tworeasons:

1. The large in-degree of a typical BDD node makes it impossible to assign con
tiguous memory locations for the BDD nodes along a path. This is illustrated in
Figure 3.5. Since node a is visited right after any ofitsparent nodes are visited,
it needs to be close in memory to all of them(including b).llbm tum has large
in-degree as well, it would require that all the nodes shown in the figure should
be located close in the memory, making it an infeasible task.

2. Even when thein-degree is notlarge forany node, thegraph pattem correspond
ing to all the BDDs change over time as the manipulation progresses. Due to
this, the number ofparent nodes ofa node caimot bepredicted a priori and hence
local memory assigrunent is not possible.

Therefore, the recursive depth-first traversal leadsto an disorderly memory access pat
tem. Let us now look at the performance implications of the random memory access
pattem.

Werefer to the data on various levels in memoryhierarchyas presented in Table 1.1

on page 5. When the BDD size exceeds the capacity of a given level in the memory

3.1. INTRODUCTION 41

system, the disorderly pattem ofthe depth-first algorithms translates toaperformance
penalty. For example, when the BDD size exceeds the cache size, a slowdown by
a factor of 2-10 may be observed due to a high cache miss rate. When the BDD size
measured in the number ofmemory pages exceeds thenumber oftranslation look-aside
buffer (TLB) entries, a further slowdown maybeobserved. However, themostdramatic
degradation in performance is observed when theBDD size exceeds themain memory
size; thedepth-first algorithms thrash thevirtual memory leading tounacceptably high
elapsed time even though the amount of CPU time spent doing useful work is low.
Therefore, the depth-first algorithms place a severe limiton the sizeof the BDD that
can be effectively manipulated on a given computer system.

To a first approximation, theperformance ofBDD manipulation algorithms is dom
inated by theperformance andcapacity of each level in the memory system hierarchy.
Hence, thedesign of high performance BDD algorithms require a careful consideration
of memory related issues.

3.1.4 Breadth-first BDD Manipulation Technique

The iterative breadth-first technique for BDD manipulation attempts to fix the dis

orderly memory access behavior of the recursive depth-first technique. Unlike the
depth-first algorithm that traverses the operand BDDs on a path-by-path basis, the it
erative breadth-first algorithm traverses the operand BDDs on a level-by-level basis
(Figure 3.6), where each level corresponds to the index of a BDD variable. The BDD
nodes corresponding to a level are allocated from the same memory segment so that
temporally local accesses to theBDD nodes for a specific level arealsospatially local.
The node access pattem is illustrated in Figure 3.7.

The basic iterativebreadth-first techniqueconsists of two phases: a top-down (from

rootnodeto leaves) Apply phasefollowed by a bottom-up Reduce phase.The Apply
and Reduce phasesare illustrated in Figures3.8 and 3.9 respectively. In Figure3.8,

suppose we want to compute "AND" of functions given by BDDnodes a andd. As an
initial step a temporary nodeis created which acts as a placeholder for the final result.
In our exposition we will use the term REQUEST to indicatesuch temporary nodes or

place holders. TheREQUEST is indicated byR= {AND,a,d). Theappropriate operand
information is duplicated in this REQUEST. Next the top-down APPLY phase starts. In

42

index

x1

x2

x3

CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

Figure 3.6 Operand access pattern during breadth-first manipulation.

Breadth-first access pattern

(a.b)

(c.d,e)

(t.g)

Figure 3.7 Operand nodes access pattern inbreadth-fiist traversal.

3.1. INTROmCriON 43

Top-down apply phase

©

Figure 3.8 Illustration of Apply phasein breadth-first manipulation.

thisphase, REQUESTS areaccessed andprocessed to obtain the final result of applying
theBoolean function on the operands storedin the Requests. In particular, to obtain
resultsfor the REQUEST Rl = {AND^a,d), we need to obtainresults for "AND**ing the

leftcofactors of theoperands (bande),andtheresult of "AND"ing therightcofactors of
theoperands (e and/). Asopposed to computing thesesub-results recursively, twonew
Requests are generated. The locations of thesenew Requests is determined by the

minimum indexof the operands' cofactors. In thisexample, the newRequests, which
act as place holdersfor the cofactorresults,are created at the next index. The content

of the original REQUEST R is overwritten and after the processing R contains pointers
to the cofactor resultsplaceholders. The Apply phaseproceeds with the processing of

Requests at the next index and so on. We notice that in some cases no new Request

is generated if a terminal condition is found (nodec) or a similar REQUEST is already
created(request R4 = (AiVD,c,g)). The checking for duplicate REQUESTS is done by

maintaining the collection of REQUEST at each index in a hash table which we refer

to as Request Queue. At the end of Apply phase an unreduced BDD is obtained.

44 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

Bottom-up reduce phase

R2 R3 R2 R3

R4 OQ,

Figure 3.9 Illustration of Reduce phase in breadth-first manipulation.

This is because, node R4 is redundant (it has identical left and right child nodes). To

eliminate such redundantnodes, a bottom up Reduce phase is applied. In this phase.

Requests are again accessed one by one, and after updating of cofactor contents are

either converted to a BDD node or are designated as redundant. In Figure 3.9, we

start with identifying node R4 as redundant. We put a forwarding pointer indicating
the location of the result in R4. Next Requests R2 and R3 are processed, we first

update their cofactor contents (by looking at the forwarding pointer of R4). Then the
corresponding Unique Table is traversed tocheck if at that index a BDD node with
identical leftand right child nodes exists or not. In thisparticular case, bothR2 andR3
get converted to BDD nodesh and i respectively.

The generic algorithm for a two-operand boolean operation isshown inFigures 3.10,
3.11, and 3.12.

During the APPLY phase, the outstanding REQUESTS areprocessed on a level-by-
level basis. Theprocessing of a REQUEST R= (op, F, G), in general, results in issuing
two new Requests which represent the Then and the Else cofactors of the result
(F op G). Since certain isomorphism checks cannot be performed, the result BDD

3.1. INTRODUCnON 45

bf_op(op, F, G)
ifterminal case (op, F, G) return result;
minJndex = minimum variable index of (F, G)
create a Request (F, G) and insert in Request QuEUE[minJndex];
/*Top down Apply phase */
for (index = minJndex; index < num>vars; index++) bf^pply(op, index);
r Bottom up Reduce phase V
for (index = num.vars; index > minJndex; index—) bf_reduce(index);
return Request or the node to which it is fonwarded;

Figure 3.10 Breadth-first HDD manipulation algorithm.

bf^pply(op, index)
X is variable with index "index";
F process each request queue V
while (Request QuEUEpndex] not empty)

Request (F, G) = unprocessed request from Request QuEUE[indexl;
/* process Request bydetermining its Then and Else /
if (NOT terminal case ((op, F^, G*), result)){

nexUndex = minimum variable index of (Fx, G;c);
result = find or add (F^, GJ in Request QuEUE[nexLindex];

} Request -¥ Then = result;
if(NOT terminal case ((op. Fx, Gx), result)){

nexUndex = minimum variable index of {Fx,Gx)',
result = find or add {Fx, Ox) in Request QuEUE[nexLindex];

} Request Else = result;

Figure 3.11 Breadth-first BDD manipulation algorithm- APPLY.

46 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

bfj'educe(index)
X is vanabie with index "index";
/* process each request queue */
while (Request QuEUE[index] not empty){

r process each request V
Request (F,G) = unprocessedRequest from Request QuEUE[index];
if (Request^Then is fon/varded to T)

Request-)- Then = T;
if (Request-^Else is forwarded to E)

Request-^ Else = £;
if (Request-)^Then equals Request->Else)

-forward Request to Request Then ;
else if (BDD node with (Request-)^ Then ,

Request Else) found in Unique TABLE[index]){
fon/vard Request to that BDD node;

}
else{

insert Request to the Unique TABLE[index] with key
(Request -y Then , Request Else)

}
}

Figure 3.12 Breadth-first BDDmanipulation algorithm - Reduce.

3.2. PREVIOUS WORK 47

obtained at theendof APPLY phase hasredundant nodes. TheReduce phase traverses
the result BDD from the leaves to the root on a level-by-level basis eliminating the

redundant nodes.

IntheApply phase of thealgorithm thefollowing two things need tobe determined
foreach REQUEST: i) indices of the operand BDDs to obtain the index of the variable
with respect to which the cofactors should be taken, ii) indices of the cofactor nodes
in order to place the new Requests in theappropriate Request Queue (see under
lined in Figure 3.11). In orderto preserve the locality of references, it is important to
determine the variable index of the cofactor nodes without actually fetching them from

the memory (i.e., without accessing them). In particular, the routine bfjapply called
with index i should access nodes only at index i. Similar issues arise during the RE

DUCE phase. Also, the memory accesses to the REQUEST QUEUE during APPLY and
Reduce phasesplay a role in the localityof the references.

3.2 Previous Work

In [OYT93], Ochi, Yasuoka, and Yajima use a variant of BDDs, namely. Quasi Re

ducedBDD (QRBDD) to addressvarious issuesaboutlocalityof reference. A QRBDD

is obtainedfrom a binary decision tree by merging the isomorphic sub-graphs. The re

dundant nodes, however, are not eliminated. The main property of this graph is that

along eachpath of the BDD, consecutive nodes differ in their indices by exactly one.
Using this approach, they could localize memory accesses as follows: i) there is no

need to determine the variable index of each operand BDD, since each has the same

index equal to the current index for which Requests are being processed, ii) since

the indices of the cofactors is exactly one more than the current index, cofactor index

determination can be done without any memory accesses, iii) since the new REQUESTS

generated are always for the nexthigherindex, checking for duplicate Requests dur
ing the Apply phase is done by searching the corresponding Request Queue, and

iv) similarly,during the Reduce phase, isomorphic nodes are found by checking the

Request Queue of only one level.

However, their approach has two disadvantages: i) it is observed that the QRBDD is

several times larger than the corresponding BDD [AC94], which makes this approach

impractical for manipulating very large BDDs, and ii) because of larger number of

48 CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

nodes in the operand BDDs, the total computation increases. Due to these problems,

this approach performed poorly compared to the conventional depth-first approach for

BDD sizes that fit the main memory.

Ashar and Cheong [AC94], use a Block-Index table to determine the variable

index from a BDD pointer by performing an associative lookup. Since this solution

employs BDDs (as opposed to QRBDDs)*, an attempt is made to preserve the locality

of reference during the check for duplicate requests during the APPLY phase and check

for redundant nodes during the REDUCE phase. This is done by sorted accesses to co-

factor nodes based on their variable indices. This approach overcomes the size problem

of the previousapproachby employingBDDs insteadof QRBDDs. However, it suffers

from significant overhead (about a factor of 2.65) as compared to a depth-first based

algorithm for manipulating BDDs which fit within the main memory [AC94].

3.3 Our Approach

Our approach to handling the variable index determination problem differs from the

works of Ashar et al. and Ochi et al. in the following aspects:

1. A new BDD node data structure is introduced to determine the variable index

while preserving the locality of accesses. We represent a BDD using (variable

index, BDD node pointer) pair (shown in Figure 3.20). Therefore a BDD node

containspointersto its Then and Else cofactorsas well as their variableindices.

As a result, we do not need to fetch the cofactors to determine their indices. The

BDD node data structure and related details are discussed in Section 3.8.1.

2. Optimized processing of REQUEST QUEUES for each level by eliminating the
sortedprocessing of Requests duringApply and Reduce phasesas proposed

by Ashar et al Empirically, we have observed that this changedoes not affect

the performance of our algorithmfor manipulating very largeBDDs.

3. Use of a customized memory manager to allocate BDD nodes which are quad-

word aligned. The quad-word alignment improves the cache performance by

*Since the difference in the index of a node and its child node can be arbitrary in a BDD, strictly
speaking, thetraversal proposed in [AC94] is "level-by-level" and notbreadth-first. However, inthisdis
sertation, we overloadthe term "breadth-firstmanipulation" to mean "level-by-level" traversal [Shi97].

3.4. MEMORYACCESS PATTERN 49

mapping a BDDnode to a single cacheline.

These three techniques eliminate the overheads associated with the previous breadth-
first approaches. In addition we make use ofmultiple BDD operations (described next)
resulting innew algorithms that are faster than the corresponding recursive algorithms
evenon thoseexamples for which theBDDsfit in the mainmemory.

We propose two new concepts —superscalarity and pipelining—to optiimze the mem
ory performance ofthe iterative breadth-first BDD algorithms by exploiting locality of
reference that exists among multiple BDD operations. The concepts of superscalarity
and pipelining have their roots in the field of computer architecture in which super
scalarity refers to the ability to issue multiple, independent instructions and pipelining
refers to the ability to issue a new instruction even before completion of previously
issued instructions. We shall see how these concepts can be applied in the context of
the breadth-first BDDalgorithms to exploitthe memory system hierarchy.

3.4 Memory Access Pattern

Let us first take a closer look at the memory access pattern of the basic breadth-first

algorithm. Acustom memory manager assigns toeach variable a memory segment that
consists of a set of pages; the memoiy segment is expanded on demand in units of a
page where each page holds PageSize / NodeSize number ofnodes for a particular
variable. The overall paging behavior resulting fi-om the memory access pattern is
determined by processing of a set of REQUESTS for each variable in the ascending
order of theirindices during thetop-down APPLY phase andin thedescending order of
their indices during the bottom-up Reduce phase.

Apply phase: Thefollowing accesses take place toprocess each Request R, for an
index i withassociated variable x. Suppose Request R = {op,F,G). Without lossof
generality, assume thatFi,uiex = min(Fj;„fe*» Gi„dex) =

First of all R is accessed to determine the operand BDDs (F and G). The next

step involves obtaining the cofactors of the operands, i.e., Fx^Fx^Gx, and Gjf. Since

Findex == Lweneedto access the Unique Table BDDnodeof F to obtain theThen
andElse BDDs thatrespectively represent theleftcofactor (Fx) andrightcofactor (Fe).
If Gi^ex> UGx = Gx = G and we do not need to perform any access on G. In the next

50 CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

step, the left and right cofactors ofR is determined which are obtained as follows (we

explain the steps involved in obtaining the left cofactor, the right cofactor is obtained

along similar lines):

We first determine if the result of the cofactors can be trivially obtained, i.e., if the

result of {op^FxiGx) is a terminal case. If it is indeed a terminal case, we make the

left cofactor of R point to appropriate result. Otherwise, we need to create a new Re

quest R\ = {op^Fx-i Gx) which is a placeholderfor the resultof the operation on left

cofactors. The new Request is placed in the Request Queue for index k, where

k = i^ti(Fxi^„iGxi^„)' To avoid any duplicate computation, weperform an associate
lookup in the Request Queue for index k to check if a Request equivalent to Ri
already exists.

Reduce phase: In this case, the THEN and Else fields of the Request node are

accessed. These fields are appropriately updated if they point to a redundant node. If

the updated THEN and Else BDDs are not equal, the Unique Table for the current
index i is associatively searched to identify a duplicate BDD node and if no duplicate

exists, a new BDD node is created. This leads to memory accesses to traverse the chain

in the hash table that represents the set of Unique Table BDD nodes for the current

index i.

In summary, the following memory accesses take place for each index i in addition
to memory accesses to each processed Request. During the Apply phase, to process

each Request for an index /, we have i) at least one and up to two pointer accesses

to Unique Table BDD nodes for i, ii) up to two associative lookups in appropriate

Request Queues to check if the Requests have been issued previously. During the

Reduce phase, to process eachRequest for an index z, wehave i) accesses to Then
and Else BDD nodes to check for redundancy, ii) associative lookups in the Unique

Table for the index i to determine if another node with the same attributes already

exists.

Thenextstepis to determine thememory accesses thatcontribute significantly to the
totalnumberof page faults when the BDD size exceed the main memory capacity. In
general, we haveempirically observed the following-:

1. The size of the set of REQUEST Queues is smaller, sometimes much smaller,

than the size of the UNIQUE Table. Therefore, the UNIQUE Table for an

3.4. MEMORYACC^S PATTERN 51

index has significantly more pages assigned to it ascompared to the REQUEST
Queue for that index.

2. Although for each cofactor, say {Fx, Gx)^ the cofactor index equal to the lower of
indices for Fx and Ox can be arbitrarily large (up to maximum number of vari
ables) than the current index, thedifference between thecofactor index and the
current index is small for most cofactors. Hence, we have the following: i) during

the Apply phase, most of the associative lookups in the Request Queues to
identify or create cofactor REQUESTS are limited to REQUEST Queues fornext
few variables, and ii) during the REDUCE phase, mostof the redundancy checks
for the Then and the Else pointers are limitedto nodes from next few variable
indices. Therefore, the number of page faults that result from memory accesses

to the Request Queue constitute a smallfraction of the totalpage faults when

the BDD size exceeds the main memory capacity.

3. Accesses to the Unique Table for variable x - accesses to operand BDDs dur

ing the Apply phase and associative lookups thatresult in hash chain traversal
during the REDUCE phase - are relatively random; therefore, a large number of
pages assigned to the variable x is touched. Thenumber ofpages touched during
accesses to the Unique Table for the variable x is significantly less than the

number in the absence of the memory management strategy. Nevertheless, even

in thepresence of thecustom memory management, a large fraction of the total
pages assigned to a variable determines the working memory set size. For very
large BDDs that exceed the main memory capacity, the capacity page misses
(page misses occurring because only a fraction of memory allocated to BDD
nodes/REQUESTs can fit in the main memory) occur as computation progresses

from one variable to another in the top-down Apply phase and the bottom-up

Reduce phase.

The random accesses to the UNIQUE Table BDD nodes for each variable and accesses

to each UNIQUE Table on a variable-by-variable basis result in the major fraction of

thetotalpagefaults when theBDD sizeexceeds themainmemory capacity. Therefore,
for a very largeBDD, the numberof pagefaultsis dominatedby the memoryaccesses to

the set of large Unique Tables. Superscalarityandpipeliningattemptto amortizethe

52 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

cost of page faults foraccessing UNIQUE Table pages for a specific variable among
several BDDoperations. These concepts are detailed in the next twosections.

3.5 Superscalarity

Li the previous section we established that, for HDDs that exceed the main memory
capacity, the performance is determined by the number of page faults, a major frac
tion of which is caused by accesses to the Unique Table BDD nodes. Since the
pagefaults to access the UNIQUE TABLE BDD nodes result firom accesses to memory
segments on variable-by-variable basis, theelapsed time for a BDD manipulation ap
plication depends onthe number ofpasses of the Apply and the Reduce phases. To
improve the performance of the breadth-first BDD algorithm, it is important to min
imize the number of passes of the Apply and Reduce phases. The goal is realized
by sharing a single pass of the APPLY and the REDUCE phases among several oper
ations. The insight to perform several BDD operations simultaneously is obtained by
viewing multiple outstanding Requests during the Apply phase as several BDD op
erations. Theprocessing of several BDD operations simultaneously is an inherent part
of the breadth-first paradigm; it does not have a natural counterpart in the depth-first
technique.

In the context of breadth-first BDD algorithms, superscalarity refers to the ability

to issue multiple, independent BDD operations simultaneously. Two BDD operations
are saidto be independent if theiroperands are reduced ordered BDDs, i.e., the nodes
for the operand BDDs are in the UNIQUE Table. Intuitively speaking, a given setof
operations are independent ifnone ofthe operations depend onthe result ofsome other
operation in the set.

This concept has been illustrated in Figure 3.13. In this example, we would like
to compute the results of three "AND" operations given as, hi = fi •g/, i = 1,2,3. In
the conventional method, the results can be individually computed as three separate

operations. Using superscalarity, we issue Requests for ail three BDD operations
simultaneously. Next, at each index during the Apply and REDUCE phases, the Re
quests generated fi^om all three initial REQUESTS aie processed. Hence we need only
one pass of APPLY and REDUCE phase.

Performing multiple, independent BDD operations concurrently during the single

3.5. SUPERSCALARTTY

Performing pairwise "AND"

hi = figi

@ ©
©

Figure 3.13 Multiple independent BDD operations using superscalarity.

53

Apply andReduce phase amortizes thecostof pagefaults foraccessing the Unique
Table entries. By issuing several independent operations simultaneously, the num

ber of Request nodes in the Request Queue increases. However, the number of

page faults for accessing UNIQUE TABLE nodes for a specific index does notincrease
proportionately; it increases at a lesser rate. Empirically, we observe a significant per
formance enhancement in the BDD algorithms by exploiting superscalarity.

Another major advantage ofsuperscalarity iscomplete inter-operation caching ofin
termediate BDD results. A breadth-firstalgorithmfor a single BDD operationprovides

complete caching of intermediate results during theoperation byvirtue of theRequest
Queue. However, it is notpossible to have inter-operation caching in thebreadth-first
algorithm without expending additional memory resources to store thecached results.
It alsorequires additional computing resource to manage thecomplex caching scheme
since the contents of a Request node are destroyed after it is processed in the Ap

ply phase and the correct result is unavailable until the REQUEST is processed in the
Reduce phase. Superscalarity provides complete inter-operation caching for the set

54 CHAPTER 3, BREADTH-FIRST BDD MANIPULATION

of independent BDD operations that are issued simultaneously, thereby enhancing the
performance of the breadth-iirstalgorithm even further.

Superscalarity has few limitations. It is not guaranteed to reduce the number of page

faults, in fact, it is possible that the numberof page faults may actually increase. For

example, consider performing n independent BDD operations simultaneously forwhich
the numberof memory pages required exceedthe number of page frames in the main

memory. If however, each of the n BDD operations were performed independently

one after another, it may be possible to complete each of them such that maximum

number of pages accessed during anyone BDDoperation does not exceedthe number

of page frames in the main memory. Assuming that same page is accessed during
both the Apply and the Reduce phases, it is possible under some page replacement

strategyto havetwiceas manypagefaultsfor n independent BDDoperations performed

simultaneously as n operations performed one by one.

We have assumed that most page faults during the APPLY and the Reduce phase

occur due to accesses to the BDD nodes in the set of Unique Tables and only a

small fraction of total page faults occur due to accesses to Requests in the Request

Queues. Due to superscalarity the size of the Request Queue gets larger and the

page fault balance may shift towardsaccesses to Requests in the Request Queues.

This shift may slow down or limit gains due to superscalarity as the number of opera

tions that are performed simultaneously is increased.

How much gain can we expect from superscalarity? The answer depends on several

factors. The most important is the number of independent operations available. How

ever, several other interacting factors such as advantage due to inter-operation caching

and disadvantage due to potential increase in working memoiy make it difficult to quan

tify or predict the potential gains. Except for some pathological cases, we have seen

consistent performance improvementdue to superscalarity.

3.6 Pipelining

For a very large BDD that exceeds the main memoiy capacity, the dominantcause of

page faults, when using the breadth-first algorithm, is the sequential access to each set

of Unique Table BDD nodes. The heuristic to amortize the page faults, shares a

single pass of the Apply and the Reduce phases among multiple BDD operations.

3,6. PIPELINING 55

If multiple BDD operations are independent, the superscalarity enables us to perform
them simultaneously in a single pass of the Apply andtheReduce phases. However,
what if BDD operations are not independent? Is it still possible to extend the breadth-
first technique suitably to complete several BDD operations in a single pass of the
Apply and the Reduce phases? To answer these questions, let us first take a look at
some of the features of the breadth-first algorithm.

1. Unreduced BDDs as operands: An unreduced BDD has some isomorphic and
some redundant nodes. However, they can be used as an operand in a compu

tation without any problem. The only outcome is that the resulting BDD is also
unreduced. Therefore, the unreduced BDDs obtained at the end of the APPLY

phase can beoperand BDDs ofanother Boolean operation.

Consider two unreduced BDDs R\ and R2 nnd an operationop which depends

on the result of R\ and R2. The question is, do we need to wait until the end
ofApply phase (when R\ and R2 are created)? How soon can we start another
Boolean operation op that uses the unreduced BDDs for R\ and R2, which are
still under construction? This is answered by the next point.

2. Under what conditions can we use an unreduced node: Suppose /?i and R2 are

the unreduced BDDs for functions F and G respectively. Let R be a REQUEST

that implements the function (Fop G) in the unreduced BDDif. Let xbe the top
variable of the Request R. To process thenode Rin theunreduced BDD R,we
only need {Fx, Ox) and {Fx,Gx) - cofactors ofF and Gwith respect to x. Since
the top variable for the node Ris x, the index ofeach ofthe operands F and Gis
greater than or equal to the index ofx. Ifthe index ofan operand, say F, is equal
tothe index ofx,then the right and the left cofactors ofF with respect toxisequal
to the Then andtheElse BDDs of F respectively; sincenodes for the variable
Xfor the operand unreduced BDD Ri is already constructed, the THEN and the
Else BDDs of F are already known. If the index of F exceeds the index of x,
then the cofactors ofF with respect toxequal F itself. Ineither case, cofactors of
F are known before processing a Request Rthat uses F asone ofthe operands.
Therefore, theApply phase for a variable x inconstructing the unreduced BDD
Rcan proceed as soon as the Apply phases for the variable xinconstructing the

56 CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

unreduced BDDs Ri and R2 are complete. However, we need to process requests

corresponding to Ri andR2 before processing those corresponding to /?, i.e., we
need to keep a partial order in the processing of the Requests at each index
during APPLY and Reduce phase.

Based on these observations, we state the following theorem.

Theorem 1 Let Fi,Gi,F2,G2 be regular BDDs. Given REQUEST s Ri = (opi, Fi,

Gi), R2 - (op2, F2, G2) and R = (op, Ri, R2), the breadth-first algorithm with the
modified APPLY and REDUCE phases, whichprocesses theREQUESTS in level-by-level
order while maintaining the partial order implied by the dependencies ofREQUESTS

for that index, correctlycomputes the reduced BDDscorresponding to the REQUESTS
Rl, R2, and R.

Proof: The proof is based on the points discussed above. First, there is a one-to-one

correspondence betweenprocessedrequests and the nodes in the unreduced BDD cre

atedduringthe Apply phase. Second, operandBDDsof a breadth-first BDDalgorithm

can be unreduced. Third, in constructing unreduced BDDs Ri and R2, at the end of the

Apply phase for variable jc with index i, we have cofactors of each BDD node with

index greater than or equal to i with respect to variable x. Fourth, in constructing the

unreduced BDDR, processing a REQUEST Q = (op, Q\, Qf) for indexi duringthe AP

PLY phase, we only need cofactors of operands Q\ and Q2 with respect to x. Hence,

nodes in the unreduced BDD R for index i can be constructed after constructing the

nodes in the unreduced BDDs R\ and R2. This can be easily extended to the case with

multiple dependencies. •

In the context ofbreadth-first BDD algorithms,pipe/ining refers to the ability to issue

multiple, dependent BDD operations simultaneously. A BDD operation op\ is said to

be dependent on another BDD operation op2 if the result BDD of op2 is an operand

of op\. The pipelining algorithm issues several dependent operations simultaneously

using unprocessed requests to represent operands for the dependent operations. The

result BDDs for these requests are obtained by a single Apply and Reduce phase that

amortizes the cost of page faults for accessing the Unique table entries.

Consider the example shown in Figure 3.14. In this case, we would like to compute

the resultof the following Booleanequation: y = e •(/• g). Conventionally, this is done

3.6. PIPELINING

x = (ef)g -> y = (ef); x = (yg) y *

0 0

57

o o o oo o o

O O O 00 o o

Figure3.14 Multiple dependent BDD operations using pipelining.

58 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

intwo steps: compute jc = /• g in the first step and then compute y= X'e. Using the
pipelining approach, we issue Requests for both the operations simultaneously. Then
we perform a single pass ofthe APPLY and Reduce phases. During these phases, at
any given level, we process all the Requests generated from the original Request
corresponding to the operation x = f' S* before processing any REQUEST generated
from the operation y= X'e. In other words, for each index, we nniaintain apartial order
while processing the outstanding Requests. However, since partial order is on each
index, we need to perform just onepass of APPLY andonepass of REDUCE.

The concept of pipelining improves the performance of the breadth-first algorithm
by amortizing the cost of page faults across dependent BDD operations. However,
pipelining results inoperations onunreduced BDDs. Hence, there is an increase in the
size of the working memory required and a corresponding increase in the amount of
computation. If the increase intheworking memory is large, thenumber ofpage faults
will increase. Thequantify thedependency amongst BDD operations bypipedepth. A
pipedepth value of k indicates a dependency chain of length k amongst operations.

Pipelining will improve theamount of caching, since the intermediate BDDs in the
dependent operation can use the cached result of all operations on which the current
Request depends directly orindirectly. However, it introduces thepenalty ofperform
ingassociative lookups in several REQUEST Queues, which could offset thepotential
gain due to improved caching.

3.6.1 Application

Superscalarity and pipelining find their applications whenever a setofdependent and/or
independent BDD operations needs to be performed. In this section we describe two

such applications.

Creating Output BDDs of a Circuit: In many logic synthesis and verification appli

cations we need to compute the BDDs for the outputs of a circuit. Given a network

representing a circuit, we try to compute the function of the outputs in terms of the
primary inputs. Thisrequires computing the functions of thenodes of network starting
from the primary inputs to the primary outputs. Pipelining and superscalarity can be
employed tocompute theoutput BDDs in several ways. Ouralgorithm is as follows:

1. Decompose the givennetworkinto two input Nand nodes.

3.6. PIPELINING 59

2. Levelize the nodes of the new network.

3. Create the BDDs for nodes belonging to a particular level concurrently (using

superscalarity), or

4. Create the BDDs for nodes belonging to two or more levels using pipelining.

The motivation behinddecomposing the networkinto Nand nodesis to obtainas much

superscalarity aspossible. InSection 3.9weprovide experimental results indicating the
effect of usingsuperscalarity andpipelining while creating the outputBDDs.

Multiway Operations: Applications of multiway operations arise when we want to

perform some BDD operation on a set offunctions. For example, suppose {fi: B" i->
B,i = 1,••• ,m} represent a setof m Boolean functions over n variables. Suppose we
want to compute the BDD for function f given asf = We could compute this
result by iteratively taking the product, at each step creating an intermediate result for
the function gk = gk-\ A/i, whereg\ = f\. In this case we make (m- 1) passes of
the Apply and Reduce phases each involving access to Unique Tables and Re
quest Queues. Using superscalarity andpipelining wecan improve theperformance
significantly. Our algorithmis givenbelow:

1. From thegiven setofarguments we make abinary tree where leaves represent the
BDD arguments and the intermediate nodes represent the intermediate product
BDDs.

2. Create the BDDs for all the nodes belonging to a particular level using super

scalarity.

3. Using pipelining and superscalarity, we can process all the nodes belonging to
two or more levels simultaneously.

This approach requires flog^] passes of Apply andReduce phases. In Section 3.9.5
wepresent theperformance comparison between computing a Multiway And itera
tively and computing it employing superscalarity and pipelining.

60 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

dfjsubstitute(F)
if (terminal case(F)) retum result;
if (computed table has entry(F)) return result;
let Xbe the top variable of F;
if (jc is to be substituted)!

g = function substituting x;
}
else g = X;
T = df^ubstitute(Fj;
E = df^ubstitute(/v);
return dfJte(g. T, E);

Figure 3.15 Depth-first algorithm for Substitution.

3.7 Optimized BDD Algorithms

We have incorporated iterative breadth-first technique, superscalaiity, and pipelining

into a comprehensive set of high performance BDD algorithms for Boolean opera

tions such as AND, Or, Xor, Nand, Nor, Xnor, ITE, Cofactor, Restric

tion, Composition, Substitution, Existential Quantihcation, Univer

sal QUANTinCATION, RELATIONAL PRODUCT, and VARIABLE SWAPPING. In the

following sections we describe a few of these algorithms. Each of these new algo

rithms raises specific issues that must be addressed to obtain a high performance BDD

package. To the best of our knowledge, this is the first effort in this direction. In

Section 3.9.3, we demonstrate the performance of our algorithms.

3.7.1 Substitute

In this operation a set of variables in the argumentBDD is simultaneously substituted

by a set of functions. Let F(jci,...,jCn) be a Boolean function. Without loss of gen
erality, supposevariables xifX2,...,Xi in function F are to be substituted by functions

G,(jci,...,x„),i = 1,..,ik. Then the result of the substitution operation is defined by the

function//~ •^(^l (-^l 1 ^2('̂ 11 •••! i

3.7. OPTIMIZED BDD ALGORITHMS 61

The conventional depth-first algorithm for SUBSTITUTION is given in Figure 3.15.

The algorithm recursively computes the BDD T and E that result from SUBSTITU

TION operation on eachof Then andElse cofactors. However, unlike a simple BDD
operation such as And, eachrecursive call to SUBSTITUTION computes an ITEoper
ation for BDDs. The needto perform an iTE operation on the resultsof the cofactors

makes the SUBSTITUTION operation computationally more complex than otherBDD

operations. If the BDD sizeexceeds the main memory capacity, the SUBSTITUTION
operation results in a largenumberof page faults.

The important step of thebreadth-first algorithm forperforming SUBSTITUTION is
shown in Figure 3.16. At theendof the APPLY phase, theunreduced BDD constructed
is structurally identical to the BDD for the function F. While processing a REQUEST
during the REDUCE phase for an index i, we update its THEN and Else BDDs to
T and F, where T and F BDDs are results of SUBSTITUTION on THEN and Else

respectively. Next, we perform ITE operations. The result of the ITE operation is the
BDD obtained byperforming SUBSTITUTION for theREQUEST under consideration.

Note that it is not necessary to perform ITE operations one at a time for each of
the Requests at the given level. The concept of superscalarity in the breadth-first
paradigm enables us to perform multiple li t operations for all the REQUESTS for a
specific index simultaneously during the REDUCE phase for that index. Since a set of
ITE operations are computed for each index, the maximum number ofthe APPLY and
the Reduce passes are bounded by the number ofvariables. Employing superscalarity
on the PTE operations significantly improves the overall performance.

3.7.2 Existential Quantification

Existential Quantihcation of a function / with respect to a variable x is given
by 3xf= fx-^fx!' With respect toaset ofvariables X = {xi ,X2,.. .a:„}, this isgiven as,
3xf=Bx„(^x„,r"My

Theconventional depth-first algorithm for EXISTENTIAL QUANTIHCATION (given
in Figure 3.17) is quite similar to the depth-first recmsive algorithm for other Boolean
operations such asAnd Or, and XOR. However, it isdifferent from other basic depth-
first algorithms in two aspects, both of which are related to the quantified variables.
First, during the recursion, if the current variable jc is to be quantified from the fiinc-

62 CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

bfjsubstitutejreduce(index)
X is variable with index "index";
if {x is to be substituted){

g = function substituting x;

}
else g = x',
/* process each request queue V
while (request.queue[index].not empty){

process each request V
Request (F, G) = unprocessed request from Request QuEUEpndex];
Update Then and Else cofactors;
if (Then = Else) forward Request to Then ;
else {

create an Ite Request (g, T, E);
fonward Request to the Ite Request;

}
Perform superscalar Ite ;
Update the fonvarding information of Requests;

Figure 3.16 Breadth-iirst substitute operation algorithm - Reduce phase.

3.7. OPTIMIZED BDDALX30RITHMS

df>exist(F)
if (terminal case(F)) return result;
if (computed table has entry(F)) return result;
let Xbe the top variable of F;
T = df_exist(F,);
if {x is to be quantified and r == 1) return 1;
E = df-exist(/v);
if (jc is to be quantified) return df_or(r, E);
else result = find or add in the unique table (x, 7, E);
return result;

Figure 3.17 Depth-first algorithm forexistential quantification.

63

tion, we compute Or of the result of quantification on two cofactors. Since the Or
isperformed for each REQUEST for all the quantified variables, the QuANTinCATlON
operation isusually more expensive than other basic Boolean operations. Second, if a
variable isquantified, the recursion can possibly terminate early. For a quantified vari
able, if the result of one of the cofactors is 1, it is no longer necessary to recursively
quantify the other cofactor, since in this case the HDD representing disjunction ofquan
tified cofactors is available immediately. Therefore, it is possible to significantly prune

the recursion for the QUANTincATiON algorithm.

A naive breadth-first algorithm for QUANTIHCATION is as follows. During APPLY
phase, both the cofactors ofa REQUEST are processed. At the end ofthe APPLY phase,
the unreduced BDD created is structurally identical to the BDD for the function f.
While processing a REQUEST during the REDUCE phase for an index i,we update then
and elsecofactors (given by T and £). Next, if variable with index i is quantified, we
compute the BDD for the Or ofTand E. Ifthe variable isnot quantified, the REQUEST
underconsideration is the desired BDD. Superscalarity is employed in performing the

Or operations simultaneously for the quantified variables. However, since we process
both the cofactors during the APPLY phase, the pruning of recursion for the depth-
first Quantification algorithm isnotavailable forthisnaive breadth-first algorithm.

64 CHAPTER3. BREADTH-FIRSTBDD MANIPULATION

The savings in computation due to pruning can be quite significant, and hence the
naive breadth-first Quantification algorithm is expected to perform poorly against
the conventional depth-first algorithm, especially for BDDs that fit within the main
memory.

To retain the advantage of the breadth-first algorithm while exploiting the prun

ing feature of the depth-first QUANTinCATlON algorithm, we propose a new mixed
breadth- and depth-first £q)proach. The essence of the new algorithm is to follow the
depth-first technique for thequantified variables andbreadth-first technique for theun-
quantified variables. For Requests belonging to un-quantified variables, we process

both the cofactors, i.e., we process a REQUEST by issuing, in general, two new Re

quests. However, for each quantified variable, we process each REQUEST as in the

case of the depth-first algorithm, which means only one new REQUEST is issued -

a Request that corresponds to one of the quantified cofactors. The result BDD for

each quantified cofactor REQUEST is obtained simultaneously (using superscalarity)

by recursivelyusing the new breadth-firstQUANTIFICATION algorithm. If the resulting

quantified cofactor is different from unity, a new REQUEST is issued to compute the

other quantified cofactor. This avoids redundant computation if the result is a tautol

ogy. Once the result of Quantification is available for both cofactors, we employ

superscalarity to compute the set of multiple independent Or operations for the quan

tified variables. Note that processing of one cofactor at a time for quantified variable

does not amount to path-by-path traversal ofBDD as in the depth-first technique. Since

we process the cofactors of all the Requests at any index, we essentially are perform

ing - multi-path traversal. The idea is to retain the locality of access of breadth-first

manipulation while leveraging the quantification efficiency of depth-first scheme.

The Relational Product of functions / and g with respect to a set of variables x

is the Quantification of these variables from the product of / and g. Therefore the

Relational Product algorithm works along the same lines.

3.7.3 Compose

The Compose operation is a special case of Substitution where in a function F,

variable y is substituted by another fimction. Hence COMPOSE can also be optimized

along the lines of the SUBSTITUTION algorithm. In a function F with top variable x.

3J, OPTIMIZED BDDALGORmiMS 65

to substitute a variable 3^ by a function G, we have threepossibilities depending on the
valuesof yutdex (indexof variabley) and Xi„dex (indexof variablex).

1- yindex = Ximiex' In this casewecompute rrE(G,i^,i^).

2. yuidex < Xindex' In this case the function F is independent of the variable y and
hence no computation need to be performed.

3. yindex > Xindex' In this case we need to compute the results ofCOMPOSE(iv,y, Gx)
and COMPOSE(i^,y, Gx). Unlike the SUBSTITUTION operation, weneed tocom
pute HE operations only for one variable that issubstituted, which makes COM
POSE computationally less complex than SUBSTITUTION. It exploits super-
scalarity by simultaneously computing multiple independent ITB operations for
the substituted variable.

3.7.4 Swapping Variables

Given theBDD for a Boolean function F{xi,X2, SWAP Vars func
tion obtains a new Boolean function G(xi,X2»"-j^>»«",»-*i»*"»-*n)» variables Xi
and Xj are swapped in function F. An optimized depth-first algorithm exists for Swap
Vars. which is a special case of the SUBSTITUTION operation. However, the re
cursive depth-first algorithm for Swap Vars is concepmally complex because it calls
several different recursive functions. Thedepth-first algorithm is shown inFigures 3.18
and 3.19. Without loss ofgenerality, the algorithm assumes that index ofx is less than
that ofy. The recursion considers the following three cases: i) If the index ofthe top
variable of F exceeds the indexof x, then F does not containx. Hence, compositions

ofF with y= 0 and y= 1, give the left and the right cofactors ofthe result BDD with
the top variable x. ii) If the index ofthe top variable ofF is less than the index ofx,
then we recursively call the Swap Vars routine for Then and Else cofactors. iii) If
the index of the top variable ofF equals the index ofx, then we call another auxiliary
recursive routine that computes the BDDs for the expressions y(Fx|y=i) +y(i^jc|y=i) and
y(Fx|y=o) +y(i^i|y=o) that give the left and the right cofactors of the result BDD with
the top variable x.

The design of the breadth-first algorithm from this relatively complex depth-first
algorithm proceeds by using the following principles: i)each different type ofrecursion

66 CHAPTERS. BREADTH-FmSTBDDMANIPULATION

SwapVars(/, x, >>){
if (/ s= Constant) return /;
if (CacheLookUp(/,jc,y, result)) return result;
1^ {.findex ^ ^index){

ti = Compose (/,y,0);
r2 = Compose (/,y,l);
result = RndOrAddlnUniqueTable(xMjex,rbr2);

} else if {/index ^ ^index){
ti = SwapVars(/,ten,jr,y);
t2 = SwapVars(/e/,e,jc,y);
result = FindOrAddlnUniqueTable(/jmfex)^i)^2);

} else {
ti = SwapVarsAux(/,te„,/./„,)',0);
t2 = SwapVarsAux(/,Ae„,1);
result = FindOrAddlnUniqueTable(jCj^ex,fi,^2);

}
}

Figure 3.18 Depth-first algorithm for swapping variables.

- (Composition, PTE as part of Composition, SwapVars, SwapVarsAux with

y = 1 and SwapVarsAux with y = 0) - is performed using a separate set of Request

Queues; therefore, a total of five separate set of REQUEST QUEUES are maintained, ii)

a depth-first recursive call is replaced by the processing of a Request in the breadth-

first algorithm.

3.8 Implementation Details

3.8.1 Data Structure

The important issues in designing the BDD node data structure are the following:

Compact Representation The size of the BDD node should be as small as possible,

because most of the memory is used by BDD nodes. Further we need to effi

ciently use the memory so as to fit as many nodes as possible in a given level of

3.8. IMPLEMENTAnON DETAILS

SwapVarsAux(/i,/2,/i, flag){

^ (/linrfct f^mdex){
if(flag==1)/i=/u„ ;
else/!=/,„„

(/2,to/« hi„dex){
lf(flag=:1)/2 = /2,,„
eise/2 = /2„„

}
if(/i==/2){

if (flag == 1) return Compose(/i,/i,l);
else return Compose(/i,/i,0);

}
(flindex —~ ^index) AND

result = FindOrAddlnUniqueTable(/ii,ufex, f\, /a);
return result;

If (CacheLookUp(swapVars, fu /a. result)) return result;
minid = TopVar(/i,/2);
Cofactor(/i,minId,fwJnY
Cofactor(/2,mm/J,/2i ,/22);
t\ = SwapVarsAux(/n,/2i,/i, flag);
t2 = SwapVarsAux(/i2,/22,^. flag);
result = FlndOrAddlnUnlqueTable(mlnld, fi,
Cachelnsert(swapVars, /i, /2, result);

}

Figure 3.19 Auxiliary routine for Swap Vars.

67

68 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

struct Bdd {
int bddlndex;
struct BddNode *bddNode; /* 4 Bytes V

struct BddNode {
struct BddNode *next;
struct Bdd thenBdd;
struct Bdd elseBdd;

r 2 Bytes V

T 4 Bytes */
r 6 Bytes V
r 6 Bytes V

Figure 3.20 BDD and BDD node data structure.

the memory system hierarchy.

Variable Index Determination As mentioned in the section 3.2, the variable index

determination is crucial to regular memory accesses. In particular, we should

avoid fetching the BDD from memory to determine its index.

We propose theBDD datastructure given in Figure 3.20. We represent a BDD using
{variable index, BDD node pointer} pair. Unlike theconventional BDD data structure
that stores its variable index in the BDD node, the new BDD data structure stores the

variable indices of its Then and Else BDD nodes. The new BDD node data structure

is verycompact: it requires 16 Bytes and 28 Bytes on 32-bitand 64-bitarchitectures
respectively, which is the same as the memory required to represent the conventional
BDD node structure. A customized memory allocator is used to align the BDD nodes

to quad-word boundaries so thata total of 12bits (last four bits of Then, Else, and
Next pointers) can be used to tag important datasuch as complement flags, marking
flags, and the reference count. The tagbits are assigned so as to minimize the amount
of computational overhead.

3.8, IMPLEMENTATION DETAILS 69

3.8.2 Memory Management

We use a customized memory manager to allocate and free BDD nodes in order to

ensure locality of reference. We associate a node manager with each variable index.

A BDD node is allocated by the node manager associated with the index of the node.

The node manager maintains a free list of BDD nodes that belong to the same index.

Memory blocks are allocated to a nodemanager in sucha way that all the BDD nodes

in the free list are aligned on a quad-word boundary. In addition to providing 12 free

bitsasexplained above, thequad-word alignment helps improve thecache performance
as it maps a BDD node to a single cache line.

3.8.3 Miscellaneous Details

Overloadingof Request data structure: ABDDnodeis obtained from a Request
node that is not redundant. To overload the use of the REQUEST data structure with the

BDD node data structure [AC94], the REQUEST data structure is limited to 16bytes.

Before the APPLY phase, each REQUEST represents operand BDDs, each of which
requires 6 bytes. Therefore, we allow only two operand operations. Three operand
operations such as ITE[f^g^h) are simulated by using indirect addressing and two
request nodes.

Rflshing frmction: Since hash tables are used extensively in the breadth-first BDD
manipulation, it is important to optimize their performance. The analysis of source
coderevealed that about15% of the totalCPUtimeis spentin computing the unsigned

remainder when using a prime number hashing function. Apower oftwo hashing func
tion reduces this time drastically without degrading thehash table access performance.

3.8.4 Repacking After Garbage Collection

Sometimes garbage collection results in a large number of free nodes. Since the mem
ory pages containing the nodes are associated with a particular variable, it is possible
that after garbage collection, a large number ofpages collectively contain small number
of nodes. This has the following disadvantages:

1. Because the idlepages caimot be used to allocate nodes for other variables, the
memory usage is increased.

70 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

repackjafter.gc{
for (index = numVariables; Index > 0; index—){

ifthe current index does not need repacking!
update the cofactors of the nodes, ifnecessary;
continue;

}
= number of pages allocated for this index;

N2 = number of pages required for this index;
for (page = 1 through A^2){

update the cofactors of the nodes, if necessary;
}
for (page = N2 + 1 through Ni){

update the cofactors of the nodes, ifnecessary;
copy the contents of the nodes on pages < N2\

}
free the pages from Af,+1 through Ni.

}
}

Figure 3JZ1 Repacking after garbage collection.

2. Since the free nodes cannot be used by another variable, it could possibly lead to

memory allocation problems for some other variables.

3. Since a small number of nodes are scattered on a large number of pages, it leads

to non-local memory access during the UNIQUE Table traversal.

To overcome this problem, we adopt the strategy of repacking the nodes after every

garbage collection which results in a large number of dead nodes. Essentially, we

perform a bottom-up traversal of theBDD; at eachindex afterdeciding on thenumber
of pages Inquired, we copy the node contents from extra pages to make it as compact

as possible. The idle pages can then be recycled to be used by other variables. The
algorithm is shown in Figure 3.21.

Noticethat we needto performjust one bottom-up pass of BDD nodesand for each

page, the nodes are touched in consecutive memory locations. Hence computational

3.9. EXPERIMENTAL RESULTS 71

overhead of this algorithm is very low and due to excellent locality of access in the

algorithm, it leads to very small run-time overhead.

3.8.5 Node Reallocation for Cache Locality

Before creating a new BDD node during the Reduce phase of each operation, we

need to look-up in the UNIQUE Table for its existence. This leadsto a traversal of the
collision chain in the table, if one exists. Often this chain contains nodes belonging to

different pages and most likely different cache lines. Hence during thechain traversal,
we incura large number of cache misses andpossibly page faults as well.

We propose a strategy where nodes are reallocated in the memory such that on an
average, thecollision chain traversal does not result in more than one cache miss. This
strategy has no memory overhead (the reallocation is done in-place) and requires only
two passes ofthe whole BDD. The first pass is done ona page-by-page basis, leading to
local memory accesses. The second pass requires tracing the next pointers of the nodes
which couldbe on multiple pages. However, theresulting improvement in performance
due to cache locality far offsets this computational cost. The algorithm is shown in
Figure 3.22 and the node layout before and after reallocation is shown in Figure 3.23.
An important aspect ofthis technique isthat it isuseful for both depth-first and breadth-
first traversal l?ased manipulations. In the current work we have not implemented this
algorithm.

3.9 Experimental Results

The algorithms described in thischapter were implemented in a comprehensive BDD
package - CAL. The architecture and some implementation details of this package are
briefly described in Appendix A. In thissection we demonstrate theperformance of our
package. For experimental purposes, we integrated our package within SIS [SSL"'"92],
and compared the performance against two depth-first manipulation based packages —
Long's BDDpackage [Lon93] andColorado decision diagram package [Som97].

72 CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

reallocatejiodes{
r First pass, get the new address V
for (index = numVariables; index > 0; index—){

update the cofactors of the nodes;
find the collision chain length for each bin;
initialize the pointer for each bin;
traverse the nodes on page-by-page basis {

put the new address of the node in the Next pointer;
} •

}
P Second pass, copy the nodes on to new addresses V
for (index = numVariables; index > 0; index—){

foreach page corresponding to the index{
while there are still nodes to be updated {

tmp = content of next pointer of node;
store the content of the node in the next pointer;
node = next pointer of the new location (tmp);

}
}

Figure 3.22 Reallocating nodes to achieve cache locality.

Page#

20) 120) (20) (20

(a) Before reailocation (b) After reallocation

Figure 3.23 Node allocation before and after fixing collision chains.

3.9. EXPERIMENTAL RESULTS 73

3.9.1 Experimental Setup

All ourexperiments were performed on a DEC5400 with 128KB processor cache, 64
MB main memory and 1GB ofdiskstorage. Analphaversion (0.1) oftheCALpackage
was usedfor theexperiments presented here. The latestversion forCAL (2.0), is much
more efficient, bothcomputation andmemory consumption wise. However, dueto lack

of time all the experiments with the latest CAL package could not be reperformed.
Results in Section 3.9.8 use version 2.0 of CAL.

Inaddition tousing standard ISCAS and MCNC benchmark examples for the setof
experiments, we use a series ofsub-networks ofthe MCNC benchmark C6288 inorder
to systematically analyze the performance of our algorithms as BDD size increases.
These artificially created examples have the property that the number of BDD nodes
needed torepresent the BDDs corresponding to the outputs are roughly multiples ofone
million. Thisenabled us to illustrate thegradual change invarious performance metrics
with the change in example size. These examples are denoted as "C6288JM.blif',
implying that the total number ofBDD nodes in the manager after computing the BDDs
for the outputs of C6288JM.blif is i millions.

We use "dfs-ordering" in SIS to order the variables. The number of BDD nodes
needed to represent a particular circuit may be significantly different from those re
ported in the literature (e.g. [AC94]) due to a different variable ordering. However,
this issue is orthogonal to demonstrating the performance of our package for a given
variable ordering.

The following set of experiments were carried out to demonstrate the performance
of our BDD package:

1. For each of the benchmark examples, we create the BDDs for the outputs of the
circuit. The number of nodes in the BDDsrangefroma fewthousands to tens of
millions.

2. We compare the performance of various BDD operations in our package with
those in Long's package. We use the output BDDs as argument BDDs in our
experiments. For instance, tocompare the performance ofthe AND operation, we
iteratively select random pairs from the output BDDs and compute the And of
the pair. Similarly, tocompare the performance of QUANTIFICATION operation.

74 CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

we randomly select one oftheoutput BDDs and asetofvariables tobequantified.
The same functions and variables are selected for both packages.

3. To estimate theperformance improvements finom superscalarity, wecompare the
time taken inperforming independent BDD operations with and without employ
ing superscalarity.

4. Similarly, we compare the timetaken in performing dependent BDDoperations

with and withoutemploying pipelining to assessthe gainsfrompipelined opera
tions.

5. We also estimate the memoiy overhead in breadth-first manipulations with in

creasing value of pipedepth.

6. The improvementin memoiy usage due to repacking after garbage collection is

shown.

7. Finally, we present few results from the latest CAL package (version 2.0) by com

paring it againstLong*s package and Coloradodecision diagrampackage [Som97].

3.9.2 Creating Output BDDs for Circuits

Small and Medium Size Examples

From Table 3.1, We observe that our package has competitive performance for most

of the examples Long*s BDD package, and we achieve a performance improvement

upto a factor of 1.2 on some examples. However, for examples si5850, s35932, and

s35854 our package performs significantly worse than Long's package. Upon analysis

we found that these examples share one property, which is that even though BDD sizes

were small, all three of them have a large number of primary inputs. This results in

small number ofBDD nodes for each variable. In this case the penalty oftraversing the

Request Queue on a level by level basis becomes dominant and results in increased

computation time.

Large Size Examples

In Table 3.2 we present the performance for output BDD creation for large examples.

3.9. EXPERIMENTAL RESULTS

Example # Nodes

CPU Time (in sees) Ratio

Long's CAL

C1355 139998 15.30 13.57 1.13

C1908 56842 5.57 4.27 1.30

C432 193671 21.66 17.29 1.25

C499 109685 12.78 10.75 1.19

C5315 111798 10.39 11.13 0.93

C880 38721 3.38 3.02 1.12

S1423 56178 4.94 3.99 1.24

S15850 188035 19.36 33.09 0.59

S35932 25557 3.13 27.56 0.11

S38584 93055 10.10 30.99 0.33

75

Table 3.1 Performance comparison for creating output HDDs with Long*s BDD package.

A: Long's BDD package

B: Our package.

Example # Nodes

CPU Time Elapsed Time # Page Faults

Long's CAL Long's CAL Long's CAL

C6288_1M 1,001,855 112 98 127 110 0 0

C6288-2M 2,066,878 273 215 403 306 0 0

C6288_3M 3,123,327 491 347 21281 1218 502059 17800

C6288.4M 4,273,510 820 490 106110 2433 2661738 42509

C6288_5M 5,337,005 to. 631 - 4140 — 80621

C6288-6M 6,381,496 - 804 — 6295 — 126977

C6288-7M 7,489,064 - 981 - 8454 — 168794

C6288..9M 9,193,222 — 1147 — 10864 — 213976

Table 3.2 Performance comparison for creating output BDDs: Long's BDD package (A) vs.
our package (B).

t.o:Process killed after 21.5 hours of elapsed time.

Not tried since.

76 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

Performance Comparison between Long'sPackage and

100000

GAL

80000

60000

40000

LU 20000

123456789
Number of BDD nodes (in miliions)

Figure 3.24 Variationof elapsed time with example size.

When the number of BDD nodes becomes too large to fit in the main memory, the

number of page faults and the elapsed time increase drasticallyfor Long's package. In

Figures 3.24 and 3.25, we show the number of page faults and the elapsed time as a

function of example size. For Long's package, an increase in the BDD size beyond the

main memory size results in a sharp increase in the number of page faults and explains

excessive elapsed time. This is in contrast to the page fault behavior of our package

which increases linearly with an increase in the example size.

Very Large Size Examples

Table3.3 gives the performanceof our package on buildingvery large BDDs for some

benchmark examples. It is seen that BDDs with more than 23 million nodes are built

in less than nine hours.

We also made a *'black box" comparison with the BFS algorithm (developed at

NEC) [AC94] on SUN Sparc2 workstation with 40MB main memory. The results for

creating output BDDs for C6288 sub-circuits are shown in Table 3.4. On average our

3.9. EXPERIMENTAL RESULTS

Performance Comparison between Long's Package and

2.5e+06

S^1.5e+06
Q.

1e+06

500000

GAL

1 23456789
Number of BDD nodes (In millions)

Figure3^ Variation ofnumber of page faults with example size.

Example # Nodes Elapsed Time # Page Faults

C2670 1.04x10* 4 hrs 4 mins 58 sees 357005

C3540 2.76 X 10* 25 mins 26603

C6288-12M 12.80 X 10* 6 hrs 39 mins 54 sees 719697

S38417 23.15x10* 8 hrs 49 mins 26 sees 868442

11

Table 3.3 Performance comparison forcreating output BDDs for some very large examples.

78 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

Example

Elapsed Time

CAL NEC Ratio

C6288.1M 85 298 3.5

C6288J2M 180 631 3.5

C62883M 506 2558 5.1

C6288.4M 931 4603 4.9

C6288_5M 1643 6284 3.8

C6288-6M 2476 13361 5.4

C6288.7M 3386 16576 4.9

Table 3.4 Peifoimance comparison withbreadth-first approach by Asharet al.

approach is faster by a factor of 4.4 for creating outputBDDs for C6288 sub-circuits
with the number of BDD nodes ranging from one million to seven million. The perfor

mance improvement is mainly due to the new implementation technique, and the use

of superscalarity, and pipelining. Note, however, due to slightly different orderings,

the number ofBDD nodes were not exactly identical in the two cases which could also

have an impact on the performance.

3.9.3 Performance Comparison For Various BDD Operations

One of our objectives was to provide a comprehensive set of algorithms for all BDD

operations. In the following subsections we compare the performance of some of our

algorithms with those of Long*s package. We provide the comparison with respect to

small and medium sized examples only, since for large examples Long*s package will

have the obvious disadvantage ofexcessive page faults.

Performance Comparison for Small Size Examples

All examples considered in this category have less than7000BDDnodes. This implies
that with a processor cache size of 128KB, it is possible that all the nodes can reside

in the cache if node addresses are properly aligned.' Since our node data structure is

quad word aligned, the node address does not overlap across cache lines. Hence we
can expect a significant cache hit rate during BDD manipulations. Long*s package.

3.9. EXPERIMENTAL RESULTS 79

however, does not provide the word alignment and hence it is likely that the BDD

node addresses could overlap across cache lines. We ran experiments to compare the

performances of various BDD operations. We observed a performance ratio of 1.92

overLong's BDDpackage across all smallsizedexamples and fourBDD operations.

Performance Comparison for Medium Size Examples

In Table 3.5 we provide the performance comparison between packages for medium
size examples. In this case thenumber of nodes are of the order of tens of thousands
to hundreds of thousands, and the cache effect seen for the small size examples is not

dominant. However, in most of the cases, we observe a performance improvement over

Long's package. Overall performance ratio over all medium sized examples and across
four BDD operations given in the tables, is about 1.5. The most significant is the rela
tive performance on the Substitute operation. We observe that onmany examples.
Long's package could not finish the SUBSTITUTION in 10,000 CPU seconds whereas
our package took justabout 1000 CPU seconds tocomplete. This substantiates the sig
nificant performance enhancement using superscalarity as mentioned inSection 3.7.1.

We notice that for the QUANTinCATlON operation (bdd_exist) our package consis
tently performs worse than Long's package by up toafactor of0.6. Upon investigation
we found that this was caused by book-keeping overhead of the multi-path traversal
approach. It should bementioned however that for large examples (ones which do not
fit the main memory), all our operations consistently perform better than Long's pack
age. Hence, for smaller sized examples we revert back to the depth-first strategy for
QUANTinCATION.

B
D

D
O

p
er

at
io

n

E
x

am
p

le
C

P
U

E
la

p
se

d
C

P
U

E
la

p
se

d

A
B

A
/B

A
B

A
/B

A
B

A
/B

A
B

A
/B

b
d

d
-a

n
d

b
d

d
-s

u
b

st
i[

tu
te

C
1

3
5

5
1

6
.6

8
1

4
.4

5
1

.1
5

1
7

1
5

1
.1

3
to

.
1

0
0

5
.3

2
—

-
1

4
7

1
0

—

C
1

9
0

8
7

.8
0

7
.0

5
1

.1
1

8
7

1
.1

4
to

.
6

2
.6

5
-

—
6

7
-

C
4

3
2

1
8

.2
3

1
7

.7
7

1
.0

3
1

9
1

8
1

.0
6

3
1

4
4

.8
5

2
5

8
.8

9
1

2
.1

5
4

7
4

6
4

7
6

9
.9

7

C
4

9
9

1
5

.5
3

1
4

.6
4

1
.0

6
1

6
1

5
1

.0
7

to
.

1
0

0
2

.2
1

-
—

1
4

7
4

9
-

C
5

3
1

5
1

2
.0

1
6

.5
2

1
.8

4
1

6
7

2
.2

9
0

.9
1

0
.1

6
5

.6
9

1
1

1

C
8

8
0

9
.0

3
7

.2
9

1
.2

4
1

0
8

1
.2

5
1

.0
5

1
.1

8
0

.8
9

1
1

.0
1

S
1

4
2

3
2

.2
5

2
.4

8
0

.9
1

2
3

0
.6

7
2

9
2

.6
8

8
8

.7
3

3
.3

3
5

0
9

7
3

.6

E
x

am
p

le
b

d
d

.e
x

is
t

b
d

d
^

w
ap

v
ar

s

C
1

3
5

5
4

5
.9

9
6

3
.0

5
0

.7
2

4
7

6
5

0
.7

2
3

0
.4

2
2

3
.7

8
1

.2
8

3
1

2
5

1
.2

4

C
1

9
0

8
1

3
.6

2
2

1
.3

0
0

.6
4

1
4

2
2

0
.6

4
9

.3
4

8
.2

2
1

.1
4

9
8

1
.1

2

C
4

3
2

5
9

.0
8

9
9

.8
0

0
.5

9
6

0
1

0
2

0
.5

9
3

3
.9

4
2

9
.6

7
1

.1
4

3
4

3
1

1
.1

0

C
4

9
9

4
0

.7
0

5
9

.2
8

0
.6

9
4

1
6

0
0

.6
8

2
9

.1
5

2
3

.8
1

1
.2

2
3

0
2

4
1

.2
5

C
5

3
1

5
3

2
.9

7
3

5
.6

5
0

.9
2

3
4

3
7

0
.9

2
4

.1
2

3
.5

2
1

.1
7

4
4

1

C
8

8
0

1
7

.2
8

2
1

.9
8

0
.7

9
1

8
2

2
0

.8
2

1
0

.6
5

8
.6

2
1

.2
4

11
9

1
.2

2

s
l4

2
3

1
6

.5
7

2
8

.3
1

0
.5

9
1

7
2

9
0

.5
9

1
.6

3
2

.3
4

0
.7

0
2

3
0

.6
7

Ta
bl

e
3.

5
Pe

rfo
rm

an
ce

co
m

pa
ris

on
on

m
ed

iu
m

siz
e

ex
am

pl
es

fo
r"

An
d*

*,
"S

ub
sti

tut
e*

*,
"E

xi
ste

nt
ia

lQ
ua

nt
ifi

ca
tio

n,
an

d
"S

wa
pV

ar
s*

op
er

at
io

ns
:

L
on

g'
s

H
D

D
pa

ck
ag

e
(A

)v
s.

ou
rp

ac
ka

ge
(B

).

to
.:

T
im

e
o

u
ta

ft
er

1
0

,0
0

0
C

P
U

se
co

n
d

s.

0
0

o !»

3.9. EXPERIMENTAL RESULTS

Example

Page Faults CPU Elapsed Ratio

w/oSS w/SS w/oSS w/SS w/oSS w/SS

C6288_4M 485.82 436.94 2214 2452 53261 63272 0.85

C6288^M 630.37 602.50 5333 4648 172205 137004 1.26

C6288_6M 815.91 724.99 18354 7840 712868 252323 2.83

C6288.7M 956.89 831.30 24747 10267 970192 328086 2.96

Table3.6 Performance improvement using superscalaiity forcreating output BDDs.

81

3.9.4 Performance Enhancement Due to Superscalarity

We demonstrate the power of superscalarity on three different applications: creating
outputBDDs,Array And, and Quantihcation.

Creating Output BDDs

In section 3.6.1 we described how superscalarity can be exploited for creating output
BDDs. In Table 3.6,we show the performance improvement achieved by employing
superscalarity. We observe that inall the cases, employing superscalarity results inbet
ter performance. Also in all the cases except C6288_4M, we observe that the number
ofpage faults decreases with the use of superscalarity and we achieve a better perfor
mance by a factor of more than 2.

Array And and Quantihcation

InTable 3.7, we present the results ofusing superscalarity for ARRAY AND and QUAN
TIHCATION. In Array And we are given an array of operand BDD pairs and we
need to compute the And ofeach of theoperand pair. These operands were randomly
chosen from the set of output BDDs of the circuit. For the quantification operation,
we perform OR operations one at a time during its REDUCE phase (see Section 3.7.2)
to illustrate theeffect of superscalarity. For small circuits, superscalarity improves the
performance due to inter-operation caching. Forlarge circuits, superscalarity improves
theperformance due to increased locality of memory accesses, resulting in fewer page
faults. We observe from Table 3.7 that for examples which fit in the main memory.

82 CHAPTER 3. BREADTH-FIRST BDD MANIPULATION

BDD Operatioii

Array And Quantify

Example CPU Elapsed # Page Faults CPU Elapsed

in sees in sees in 1000 in sees in sees

W X W X W X Y Z Y Z

C1355 134.03 119.41 137 123 0 0 13.40 12.30 13 12

C6288-1M 411.35 403.90 847 740 0 0 5.02 4.27 5 5

C6288^M 290.55 283.41 595 581 0 0 18.17 16.16 18 17

sl423 35.39 18.02 37 18 0 0 20.63 19.13 31 30

C62883M 682.57 655.21 21005 7178 406 109 12.60 11.59 13 12

minmaxlO 810.32 679.88 19304 1619 326 9.2 66.0 55.8 91 81

Table 3.7 Performance improvement using superscalarity for Array And and Quantifi
cation BDD operations.

W: Array And performed iteratively.

X: Array And performed in superscalar manner.

Y: In Reduce phase of Quantification, OR operations performed one be one.

Z: In Reduce phase of Quantification, OR operations performed in superscalar

manner.

3.9. EXPERIMENTAL RESULTS

18000

16000

CO
Si 14000
3

i5
(D 12000
o>
cd
Q. 10000
O

(D 8000

E
3

z 6000

4000

2000

Effect of Pipedepth on Elapsed Time

• \
V

C6288_4M
C6288_5M
C6288_6M - o.
C6288_7M
C6288 9M —

1 2 3 4 5 6
Pipedepth value

Figure 3.26 Variation ofelapsed time with pipedepth increating output BDDs.

83

superscalarity helps with improved CPU time. For large examples a performance im
provement of upto a factor of 10(minmaxlO) is obtained.

3.9.5 Performance Enhancement Due to Pipelining

In thissection^ we demonstrate theeffect of pipelining on twodifferent applications.

Creating Output BDDs

We demonstrate theeffect of pipelining on theperformance of creating BDDs forout
puts. We have described in Section 3.6, how pipelining technique can be exploited.
Figures 3.26 and 3.27 depict theeffect ofpipedepth onthe elapsed time andthe num
berofpage faults for aseries ofC6288 sub-networks. Aspipedepth isincreased, wesee
a decrease in the number of pagefaults (hence the decrease in elapsedtime). However,
thememory overhead increases with increase in pipedepth since we areworking with
unreduced BDDs. Hence, aftera certain valueof pipedepth, the decrease in pagefaults

due to pipelining is offset by the increase in page faults due to thememory overhead.

84

450000

400000

« 350000

M 300000
a>

ffl 250000 f
Q.

o 200000 h

f 150000 f

2 100000

50000

CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

Effect of Pipedepth on Elapsed Time

C6288_4M
C6288_5M
C6288_6M •o
C6288_7M
C6288 9M

3 4
Pipedepth value

Figure 327 Variation of number of page faults with pipedepth in creating output BDDs.

In most cases, a pipedepth of four gives the best results.

Multiway And

As described in Section 3.6.1, the the Multiway And operation computes the con

junction of an array ofBDDs. We compute the result using i) the pipelined computation

approach and ii) the iterative approach (computing the product by successive AND op

erations). For a Multiway And operation with n operands, the depth of the pipeline

is [log2n1. In Table 3.8,we present results for various values of n, and hence various
pipeline depths.

Table 3.8 shows that the pipeliningtechnique does not improve the performancefor

"sl423". This is due to the fact that output BDDs for "sl423" fit in the main memory

and hence pipeliningcaimot improvethe memory accesses. However, for "C6288-3M''

and "C6288_4M", we observe a performance improvement of up to a factor of 2. This

is attributed to the reduction in the number of page faults due to pipelining.

3.9. EXPERIMENTAL RESULTS 85

CPU Time Elapsed Time # Page Faults

Example # Nodes n Iterative Pfpelined Iterative Pipelined Iterative Pipelined

2 0.53 0.51 0 0 0 1

S1423 57524 4 4.17 4.03 4 4 0 0

8 6.00 5.99 7 6 0 0

2 0.57 0.58 23 26 603 762

C62883M 3x10® 4 100.88 97.10 3449 802 83967 12796

8 112.68 169.36 8578 2304 212484 45537

2 0.80 0.63 97 66 2932 2213

C6288-4M 4x10® 4 107.80 102.99 4602 2307 113325 53077

8 121.76 183.34 12808 5540 326127 130237

Table3.8 Effect of pipelining on the performance of Multiway And.

3.9.6 Memory Overhead in the Breadth First Approach

As noted in Section 3.1, in the breadth-first (BF) technique the isomorphism checks

cannot be performed in the APPLY phase. As a result, some temporary BDD nodes
are created which are freed during the REDUCE phase. This results in memory over

head inherent in theBFtechnique. Furthermore, duetooperations onunreduced BDDs
(pipelining) the isomorphism check reduces even further. In Table 3.9, we give the
memory overhead involved in computing "AND" operation on two random BDDs se
lected from BDDs for the outputs. The memory overhead is computed as theratio of
extra nodes created during the APPLY phase (£) to the total number of nodes in the
unique table ([/). InTable 3.10, we provide the overhead for the "Multiway-And" op
eration, for various values of pipe-depth. We observe the memory overhead incurred
increases with increase inpipedepth. Butgenerally theoverhead is small, onaverage it
is about 5% (for pipedepth value of four).

3.9.7 Repacking After Garbage Collection

We performed some experiments to evaluate the viability of the repacking algorithm
as described in Section 3.8.4. In Table 3.11 we notice that up to 30% improvement

in memory consumption is achieved. The associated computational overhead is not
significant. As a matter of fact, due to repacking the locality of memory access in-

86 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

Example # Nodes E/Ufor«AND''

apex6 3312 0.0000

i9 12423 0.0000

minmaxS 4812 0.0009

si 196 5537 0.0047

S1238 5687 0.0046

sl494 2028 0.0142

s298 225 0.0103

s344 406 0.0051

s349 406 0.0034

s420 1039 0.0415

s641 2003 0.0025

tic 310 0.0372

xl 4305 0.0025

cbp.32.4 8234 0.0008

sl423 57254 0.0000

she 3008 0.0060

C1355 242732 0.0458

Table 3.9 Memoiy overheadinvolved with breadth firstmanipulation technique in performing
"AND" operation.

creased, leadingto better memory access times which offset the computational cost of

repacking.

3.9.8 Some Results with CAL-2.0

We performed a selected set of experiments to compare the performance of the latest

CAL package (version 2.0) with Long's package (CMU) and Colorado package (ver
sion 2.1.1, denoted as CU in the table). These experiments were run on SUN Ultra

SPARC, with a 200MHz processor, 16KB/1MB LI/L2 caches, 256MB main memory

and 300MBswap space. A time limit of 3000 seconds was used.

From Table 3.12 we observe the following:

3.10, CONCLUSIONS, RELATED WORK, AND FUTURE DIRECTIONS

Example # Nodes

E/U ratio for various pipe-depths

1 2 3 4 5

i9 12423 0.0000 0.0004 0.0005 0.0011 0.0033

minmaxS 4812 0.0006 0.0207 0.0356 0.0450 —

s641 2003 0.0100 0.0058 0.0122 0.0177 0.0295

cbp.32.4 8234 0.0008 0.0023 0.0040 0.0109 0.0157

S1423 57254 0.0009 0.0043 0.0664 0.0733 0.3465

sbc 3008 0.0043 0.0061 0.0106 0.0769 0.0651

Ci355 242732 0.0465 0.0531 0.1333 0.1743 0.3566

87

Table3.10 Memory overhead as a function of pipe-depth in "Multiway And"operation

1. For the examples which fit in the main memory CAL and CU have the similar
performance, both of which outperform CMU.

2. When the BDD size does not fit in the main memory, CAlL outperforms both

CMU and CU. In particular for C6288-1IM and C6288_12M, CAL takes little
over 200 seconds to build outputBDDs,whereas both CMU and CU run out of
time (3000 seconds).

3.10 Conclusions, Related Work, and Future Directions

We have presented new techniques targeting thememory access problem formanipulat
ingverylargeBDDs. Theseinclude i) an architecture independent customized memory
manager andnew BDDdatastructures, ii)performing multiple BDDoperations concur
rently (superscalarity), andiii)performing a BDD operation even when the operand(s)
areyet to be computed (pipelining). A complete package consisting of an entire suite
of BDD operations based on these techniques has beenbuilt. We demonstrate the per
formance of ourpackage by i) comparing withstate-of-the-art BDDpackage P^n93],

and2) performing a comprehensive set of experiments to substantiate the capability of
our package. We show that our package provides competitive performance on small
examples and a performanceratio of more than 100 on large examples.

Related work: Due to the nature of breadth-first traversal, sometimes memory blow-

88 CHAPTERS. BREADTH-FIRSTBDDMANIPULATION

Example Memory Consumed (in 8KB) Elapsed Time (in sees)

No Repacking Repacking No Repacking Repacking

every 1627 1306 6.95 6.74

C1355 1971 1971 11.56 12.16

C2670 12582 12580 77.40 74.17

C3540 13671 13607 361.12 346.98

C5315 11419 11227 326.14 323.33

C880 1733 1733 14.62 14.16

abs-bdlc 4069 2833 62.06 59.21

biu 4094 2920 77.78 75.69

bdlc 4153 3109 83.60 80.60

mitunaxl2 1276 1144 16.34 15.72

bigkey 6524 4913 13.36 8.20

S1423 2027 1509 41.18 39.34

S4863 7614 4978 105.33 98.65

S5378 5895 3486 56.94 54.57

s6669 9483 5580 175.11 168.27

Table 3.11 Reduction in memory consumed due to repacking after garbage collection.

up can occur during the Apply phase. In [YCB097], a techniquewas proposed which

is based on partial breadth-first expansion. This technique tries to avoid the memory

blow-upby controllingthe workingset size. Morespecifically, in their approach,BDDs

are traversed in a breadth-first manner until the number of temporary nodes reaches a

threshold. At that point, these nodes are dividedinto severalgroupsand further breadth-

firsttraversal is performed on a group-by-group basis. The powerof this methodcomes

from the fact that it can leverage the locality of access of breadth-first traversal while

controlling the amount of memory used. It seems that with proper implementation,

this approach mayoutperform eitherthe puredepth-first or breadth-first approaches for
BDD manipulation.

Many researchers havelooked into optimizingcache missesduringBDD operations.

In [KR97], a new data structure is presented which minimizes cache misses during the

3.10. CONCLUSIONS/REUiTED WORK, Am FUTURE DIRECTIONS 89

CPU Time I[sees) Elapsed Time (sees) # Memory Usage (MBytes)

Example # Nodes CMU CU CAL CMU CU CAL CMU CU CAL

C6288.1M 1001950 15 9 8 15 10 8 22.81 28.10 27.27

06288^ 2066979 33 20 20 35 22 21 46.66 57.21 27.38

C6288-3M 3123431 56 33 33 58 35 34 71.17 96.36 65.41

C6288.4M 4273617 75 45 46 78 48 48 109.18 117.07 85.81

C6288-5M 5337118 105 56 61 108 59 63 134.35 135.17 105.28

C6288.6M 6381609 128 71 73 131 135 76 149.03 195.79 122.51

C6288.7M 7489177 144 85 93 149 107 98 171.77 215.29 144.96

C6288^M 9193337 174 104 113 178 274 117 218.23 244.43 180.22

C6288J0M 10414238 220 to. 130 226 to. 134 238.49 - 208.20

C6288.11M 11812054 to. to. 149 to. to. 153 - - 219.63

C6288_12M 12828721 to. to. 167 to. to. 228 - - 238.51

Table3.12 Comparison between CMU, CU,andCAL-2.0 for creating output BDDs.

to.: Time out after 3000 seconds.

unique table and computed table look-ups. However, their technique is highly special
izedand not amenable for integration in a general purpose BDDpackage. In [MGS97],
it has been empirically established that breadth-first manipulation does not have any
advantage over depth-first manipulation in terms of cache locality. A different result is
reported in [MQRK97] inwhich a study is done tobenchmark various computer archi
tectures for CAD applications. One of the outcome shown in that work is that cache
miss rate for GALpackage is 50% less than that in Long*s package.

Future directions: In our work, we have observed that most of the non-local accesses

occur during the REDUCE phase of breadth-first manipulation. By reallocating nodes
for individual unique tables as described in Section 3.8.5, we can expect to reduce the
numberof cachemissessignificantly. Interestingly, this technique of minimizing cache

misses can also be applied for depth-first traversal.

In the current work, we allow only one kind of operator for multipleBDD operations

(say NAND). This requiresthat all Booleanoperations be decomposed as NANDoper

ations. This can have significant overheadif there are many XOR operations (each of

which leads to two NAND operations). By allowing multipleoperations types during

superscalarity andpipelining, we can avoid thisoverhead. Thiscan be implemented by
maintaining different Request Queues for different operations.

90 C3IAPmtl3. BREADTH-HRSTBDDMANIPULAnON

Chapter 4

BDDs on a Network of Workstations

IN Chapter 3, we proposed techniques to exploit the secondary memory ofawork
station for efficient BDD manipulation. In this chapter, we propose a technique

to manipulate BDDs on a network of workstations (Now). A Now provides a large
amount of collective memory resources, both main memories and disks. The collec
tive memory resources of Now provide a potential to manipulate very large BDDs.
To make efficient use of memory resources of a Now, while completing execution in
a reasonable amount of wall clock time, extension of breadth-first techmque is used

to manipulate BDDs. BDDs are partitioned such that nodes for a set of consecutive
variables are assigned to the same workstation. We present experimental results to
demonstrate the capability ofsuch an approach and point towards the potential impact
for manipulating very large BDDs.

The rest of the chapter is organized as follows. We explain the relevant attributes
of the network of workstations in Section 4.1 and that of the BDD algorithm in Sec

tion 4.2. After explaining the characteristics of the available resources and the algo
rithmic requirements, we propose a new BDD algorithm on a network ofworkstations
inSection 4.3. We present the implementation details inSection 4.4 and experimental
results in Section 4.5. Most of the work presented in this chapter was first reported
in [RSBS96].

4.1 Network of Workstations

A network of workstations is a computing resource that uses as its building block, an
entire workstation. Thesebuilding blocks are intercoimected by a local area network
such as ethemet,FDDI, switched ethemet, or ATM. Using a networkof workstations

as a large computer system to solve large scale problems is attractive, since it uses
theexisting infrastructure asopposed tobuying a dedicated scalable parallel computer,

91

92 CHAPTER 4. BDDS ONA NETWORK OF WORKSTATIONS

a server, or a shared-memory multiprocessor machine. Further, when the system is
upgraded to use faster processors, faster network, larger capacity DRAMs, or larger
capacity disks, a network of workstations leverages each ofthe enhancements.

Let us first understand the nature of NOW computing resource to exploit it fully to
match the requirements ofBDD algorithms. An existing computing infrastructure with
two year oldtechnology may consist ofa network ofworkstations, each with 50MHz
processor, 64KB cache, 64MB main memory, and 200MB ofdisk space. It takes about
0.1-0.6 microseconds to accessdata from the mainmemoryand about6 millisecondsto

move a page ofmemory from thedisk tothemain memory. Thesoftware overhead and
latency fora local areanetwork is oftheorder ofabout 10milliseconds andbandwidths
are 10Mbitsper second for ethemetand 100Mbits per second for FDDInetwork.

Fromtheabove performance analysis, the time taken to access thedatafrom thedisk
or from across the network is about 10000-50000 times more than the time to access the

data from the main memory. Over the next fewyears, the networks are expected to be

come faster in terms of the latency,the softwareoverhead, and the bandwidth [ACP94].

However,the ratio of time to access the remote memory which involvesa network trans

action vs. the time to access the main memory is still expected to be the order of 1000.

This qualitative analysis has important implication when distributing the BDD nodes

across the several workstation memories.

For developing distributed BDD algorithms on Now, the message passingmodelof

computation is assumedfor the following reasons: 1) it closelyresembles the underly

ing Now architectureand 2) easy availabilityof robust message passing softwarein the

public domain. The messagepassing programming model makes the cost of commu

nication explicit. The programmer has to worry about resource management, sending

and receivingmessages,and overall orchestration of the collectionof processes spread

across several workstations.

4.2 BDD Algorithms

ToimplementBDD algorithms using the message passingmodelovera Now, we need

to design distributed BDD data structures. However, it is important to understand the

requirements of BDD algorithms on a uniprocessor to help guideour designdecision

about distributing the data and scheduling the interprocessor communication.

4.3. BDDS ONNETWORK OF WORKSTATIONS 93

Theconventional depth-first recursive BDDmanipulation algorithmperformsaBoolean

operation by traversing the operand BDDs on a path-by-path basis (see Figure 3.4),

which results in extremely disorderly memory access pattern. The random memory

access pattem with no spatial locality of reference translates intosevere page faulting
behavior when the BDD does not fit the available main memory.

Sincethe access to the main memory of an another workstation involves a network

transaction, the aforementioned disk access behavior of the depth-first algorithm trans

lates to a large number of network transactions for any distribution of theBDD nodes
among main memories of a Now. Since it is very expensive to access thedata across
the network compared to the workstation main memory, any attempt to use depth-first
manipulation algorithm on a Now willmeetlimited success.

The breadth-first iterative algorithm [OYY93, AC94, SRBS96] (see Figures 3.10,
3.11, and 3.12) attempts to regularize the memory access pattem by traversing the
operand BDDs on a level-by-level basis and by using a customized memory allocator
that allocates the BDD nodes for a specific variable idfirom thesame page. We make the
following observations to guide the implementation of breadth-first search algorithm
for a Now.

1. We need a mechanism to determine the variable id from the BDD node pointer

without accessing the BDD node.

2. While processing the REQUEST for a specific variable id during the APPLY
phase, we need to access only those BDD nodes that have the same variable
id.

3. The forwarding mechanism, which allows temporary creation ofredundant nodes
can facilitate the creationof a REQUEST on one workstation and servicing of that

Request on an another workstation.

4.3 BDDs on Network of Workstations

43.1 Issues:

The following issues need to be resolved before we can implement the breadth-first
BDD manipulationalgorithm on a NOW.

94 CHAPTER 4, BDDS ONA NETWORK OFWORKSTATIONS

Node Distribution How to distribute the BDD nodes among the workstations on a

network? The number ofnodes assigned perworkstation should beproportional
to the memory resources available on the workstation. The high overhead and
latency of accessing a remote memory by performing network transaction im
plies that performing a large number of communications which involve small
messages would result in unacceptably high performance penalty. Therefore, a
distribution that results in exchanging information at the level of a BDD node

would not be satisfactory.

NamingBDDNodes How to uniquely identify eachBDDnoderegardless of where it
res^es onthenetwork, i.e.,regardless ofworkstation address space it belongs to?
For a singleaddress space,each BDD node is uniquely identified by its pointer;
we need to extend the pointer mechanism to have a generalized address for a

BDD node.

Variable Id Determination How to determine the variable id of a BDD node given

its generalized address? In the breadth-first algorithm, we need to determine the

variable id from the BDD "pointer" to avoid random access to the BDD node.

However, the BDD node to index lookup table solution proposed by Ashar et al.

is unattractive for Now case for three reasons: 1) each workstation will need to

maintain a private copy of the lookup table to determine the variable id from a

generalized address for all the nodes in the BDD, 2) this private copy will have to

be updated every time any workstation allocates a page of memory, and 3) since

generalized address would augment 32-bit address space, it may be necessary to

implement the node to index lookup table as hash table instead of an array.

We have designed a generalized addressing scheme that works in conjunction

with a partitioning scheme to solve these problems, while resulting in a very

compact representation for the BDD nodes.

4.3.2 Solutions:

Node Distribution The breadth-first algorithm constructs the result BDD one level

at a time by accessing the operand BDD nodes on a level-by-level basis, the

natural choice for the decomposition of the BDD is to partition it by levels. To

4.3. BDDS ON NETWORK OF WORKSTATIONS 95

make number of nodes in a partition (BDD section) proportional to the amount

of memory resources per workstation, we can use the flexibility of determining

the location of and the number of levels in the partition. For example, a BDD

section closer to the root nodes can have more levels than a BDD section at the

halfway between root and leaf nodes.

NamingBDD Nodes Byassigning nodes fora setof consecutive variables to thesame
workstation, it is possible to determine the workstation on which a BDD node

resides by knowing its variable id. Hence a (variable id, memory address) tuple
canserve as a generalized address thatuniquely identifies each node in theBDD.

Variable Id Determination We could have used the pair (workstation number, mem

ory address) torepresent a generalized address that umquely identifies each node
in the BDD. However, the reason for choosing (variable id, memory address) tu

ple torepresent the generalized address under the constraint ofspecific levelized
partitioning scheme is to solve the variable id determination problem for free.
Further, this choice ofgeneralized address results invery compact representation
for a BDD node.

Given the partitioning scheme and the mechanism to determine the variable id, we
need toaddress onemore issuebefore wecanperform computations related to theBDD
sections assigned to a workstation. Servicing a REQUEST in the APPLY phase may
result in creation of an another REQUEST, for which the corresponding variableid be

longs to another workstation. The newly created REQUEST with a specific top variable
id should now be serviced on the workstation that owns the BDD section containing

thatvariable id. Request canbe generated ona source workstation andprocessed on
a destination workstation, as long as the source workstation receives a correct general
ized address that should result from processing the REQUEST. It is an easy matter to
useforwarding mechanism in theAPPLY phase for thesource workstation byforward
ing the generated Request to the generalized address. Since theRequest node that
gets generated on the source workstation is a shadow of the REQUEST node that gets
processed onthe destination workstation, we call this asshadow nodeforwarding. By
using shadow nodes, a node which creates the shadow node can now be processed in
theApply phase without accessing theremote memory. Using the same shadow node

96 CHAPTER4. BDDS ONA NETWORK OF WORKSTATIONS

now-bdd.op(op,F,G)
if(NOT a terminal case (op, F, G))

if(processor id = 0)
minJd = minimum variable id of (F, G)
create a Request (F, G) and insert in requesLqueue[minJd];

f6r(procJd = 0; procJd < processor id; procJd++)
bf^ppiyj'ecv(procJd, set of requests);

bfjippiy(op, firsLvarJd, lasLvarJd);

Figure 4.1 Breadth-first HDD algorithm on Now.

forwardingconcept, a set of REQUEST, which belong to the set of consecutivevariables

assigned to the processor, can be processed without accessing remote memories. The

mechanism of shadow nodeforwarding also helps to separate the computation and the

communication for the collection of sequential processes. The separation helps sim

plify the development of the Now HDD package. The algorithm for manipulation of

HDDs on a Now is presented in Figure 4.1.

The breadth-first HDD manipulation algorithm on a Now is obtained by suitable

modifications of APPLY and Reduce phase of the breadth-first algorithm for a single

address space. The assignment of BDD sections imposes a total order on the worksta

tions. Each workstation receives a set of REQUEST from all its predecessor worksta

tions before the beginning of the Apply phase. The Apply phase is now modified to

process only those REQUESTS, for which the variable ids belong to the workstation.

The set of generated shadow requests are sent to appropriate successor workstations

for processing. The workstation then waits to receivefirom the successorworkstation,

the generalized address to which each shadow Request gets forwarded to. After the

Reduce phase, the workstation sends a set of generalizedaddressesto each of its pre

decessor workstations. The overall procedure can be viewed as top-down Apply phase

followed with bottom-up Reduce phase for a distributed BDD which is partitioned

into set of sections each of which is made up of set of consecutive levels. A graph-

4.4. IMPLEMENTATIONISSUES

WS#1

WS#2

97

APPLY and Reduce phases for Pi

Apply Reduce

Receive request nodes Receive forwarded
from processors results from processors
Pk, k=0,1,..., i-1 P, k=n,n-1 i+1

Process request nodes Process request nodes

Send request nodes
to processors
Pk, k=i+1,...,n

Send forwarded results

to processors
Pk. k=l-1 0

Figure4.2 Hiustration ofBDD manipulation algorithm ona NOW.

ical representation of this concept which also illustrates the algorithm in Figure 4.1
has been given in Figure 4.2. The communication serves as a glue to hold together
the computations performed in different memories by using shadow nodeforwarding
concept.

4.4 Implementation Issues

Thefollowing issues areunique to thebreadth-first implementation on Now.

1. Shadow Request duplication: Shadow Request mayhave multiple shadow
Requests on different workstations. However, the multiple shadow Request

are identified before the Request is processed, hence, only a single Request

gets processed and the resulting generalized address issent toall the workstations
with its shadow Request.

2. Reference count management for nonlocal BDD nodes:

(a) Even if a REQUEST can be simplified without accessing the remote memory

98 CHAPTER 4. BDDS ONA NETWORK OF WORKSTATIONS

(e.g. F AND F), it is important tocreate a new shadow request and process
it on appropriate workstation sothat the reference count of the node inthe
unique table is maintained correctly.

(b) During the REDUCE phase if a redundant node is found for which one of
the Then and or the Else generalized addresses point to a nodeon a suc
cessor workstation, we need to adjust reference countof that remote BDD
node. This can be achieved by delayed evaluation to avoid communica

tion to all successorworkstationsafter completionof REQUEST phase on a

workstation. The delayed evaluation can be performed during the garbage
collection step when reference count for the remote nodes can be adjusted
appropriately.

3. Caching shadow Request vs. on-line issue of remote requests: If theshadow
request are not cached, we need a network transaction for every shadow Re
quest created during the APPLY phase. Given the high networkoverhead and

latencies this may not be acceptable. However, this may change if conununi-

cation can be overlapped with computation and low latency, low overhead net
works, which can pipeline several small messages, become available.

4.5 Experimental Results

We have used a heterogeneous network of workstations as the computing environment

toperform ourexperiments. Thisenvironment contains approximately 60workstations
with 64MB (about 40MB available) main memory and 256MB (about 200MB avail

able) disk space and MIPS-R4000 processor.

We have used PVM [GBD*^94] (Parallel Virtual Machine) software to provide the

communication between the workstations in the cluster during a BDD operation. This

software permits a network of heterogeneous UNDC computers to be used as a single
large parallel computer by providing user level routines to send and receive messages
among clusters of workstations.

To evaluate the performance we integrated our BDD package with SIS [SSL'̂ 92]. In
orderto systematically analyze the performance of our algorithms with increase in the

BDD size, we have used a series of sub-networks of the ISCAS benchmark C6288. We

4.5. EXPERIMENTAL RESULTS 99

Examples # Nodes Uniprocessor Scheme Now Scheme

Page Elapsed Time # Maximum Elapsed Time

Faults (in sees) Page Faults (in sees)

C6288.1M 1x10® 0 877 0 2589

C6288_2M 2x10® 0 1918 0 3743

C62883M 3x10® 4392 3587 280 4818

C6288.4M 4x 10® 70184 7234 450 5530

C6288^M 5x10® 187843 10676 3060 6454

C6288.6M 6x10® 780361 15844 8090 10397

Table 4.1 Exploiting collective main memories.

have suitably taken sub-networks ofthis benchmark such that the shared BDD sizes of
the outputs are roughly multiple ofone million. For instance, C62883M isone ofsuch
examples, for which creating the HDD's of all its outputs will involve creating about
three million nodes.

In the following subsections we describe the experiments that highlight the salient
features of our approach.

4.5.1 Exploiting CollectiveMain Memories

The main emphasis ofour approach is toexploit the collective main memory available
across all the workstations. Thiswould leadto lesspagefaults and hence reduced wall
clock tirne toComplete the computation. To observe this phenomenon, we have used a
virtual machine consisting of4 workstations. Theresults have beengiven in Table 4.1.

From Table4.1, we observe that for small HDDs, performance on uniprocessor out

performs that on multiple workstations by about a factor of 2-3. The reason being
small examples didnotresult insignificant number ofpage faults for a single processor
and network transaction overhead incurred in the network of workstations approach re

sulted in large elapsed time. However, as thenumber of BDD nodes increase, causing
theuniprocessor implementation to page fault enormously, the multiple workstations
scheme outperforms uniprocessor scheme.

100 CHAPTER 4. BDDS ON A NETWORK OF WORKSTATIONS

C6288 subckts Elapsed Time

#Nodes OneWS TwoWS FourWS

9x10* 26098 24074 n.p.

10x10* s.o. 24853 21617

11x10* s.o. 36802 n.p.

12x10* s.o. 49801 35652

13x10* s.o. 47521 n.p.

14x10* s.o. 58383 n.p.

15 X 10* s.o. 60139 n.p.

Table 4.2 BDDs on multiple workstations.

S.O.: could not complete due to disk space limitation

n.p.: data could not be collected due to time constraint

4.5.2 Exploiting Collective Disk Space

Table 4.5.2 indicates the potential of a NOW in manipulating large BDDs. In this

experiment, we increased the number of BDD nodes to be manipulated increased to

the extent that it did not fit the disk space of a single workstation. We observe that we

are able to manipulate BDDs of much larger size using the collective disks of many

workstations.

The breadth-first algorithm implemented using PVM demonstrates the basic advan

tages of using a Now. However, remote memory paging using operating system sup

port - network RAM (NRAM) - is a better alternative to managing network mem

ory using user-level message passing. We show results for creating output BDDs on

Myrinet connected cluster of four SPARCIO workstations in Table 4.3. All the com

parisonsare with the fastest breadth-first code runningon the MIPS DEC 5000 work

stations. The NRAM uses four workstations; the client main memory is 30 MBytes

and 3 servers have main memory of 40 MBytes each. The remote memory pager for

NRAM uses active-messages [Bic93] as the basic communication primitive.

For C6288 sub-circuits with less than three million nodes, the speedup is due to

faster processing speed on SPARCIO used as a building blocks for NOW. For more

4.5. EXPERIMENTAL RESULTS

Example

Elapsed Time

OneWS NRAM Ratio

C6288-1M 94 39 2.41

C6288..2M 258 119 2.17

C6288_3M 933 372 2.51

C6288.4M 2535 576 4.9

C6288^M 6156 1003 6.13

C6288.6M 10146 1469 6.19

C6288-7M 13598 2058 6.61

Table4.3 Exploiting remote memory usingnetwork RAM(NRAM).

101

than 3 million nodes, westart seeing theeffect of thedisk accesses ontheelapsed time
forMIPS code andachieve about 6-7x speedup. TheCPU timefor large problems is a
small fraction (< 10% and decreasing) ofthe elapsed time. Therefore, the speedups on
larger problems are mainly due tocollective main memories ofservers as a secondary
storeand not due to fasterprocessing speedsof SPRAClOs.

4.5.3 Analysis of Experiments

In previous two subsections we have presented results which demonstrate the two key
advantages ofmanipulating BDDs onaNow, namely, exploiting collective main mem
ory for improved performance and using collective disk space to build large BDDs.
However, we note that the time taken to manipulate BDDs on a Now is large. We
monitored the elapsed time in our algorithm and found that a large part of the elapsed
time is due to the network transaction. Hence, the performance of our approach is sig
nificantly dominated bythe penalty incurred during message transfers. The hope isthat
with the ongoing research in NOW corrununity [ACP94] which includes using asyn
chronous transfer mode, parallel file server, and active message passing will result in
low network latency and overhead. Ourapproach will take advantage of performance
enhancements achieved by NOW research corrununity.

102 CHAPTER 4, BDDSONANETWORKOFWORKST/iTIONS

4.6 Related Work

Arunachalam et al [ACM96] have presented a technique to manipulate BDDs on a
network ofworkstations. They also target alleviating the memory consumption prob
lem by exploiting the memory available in acluster ofworkstations. However, in then-
approach, the distribution ofBDD nodes on the workstations is random. Since every
dereferencing ofnode for reading and writing purposes requires message passing, the
random nature of BDDnodeaccesses leadsto largeamount of communication amongst
workstations. In order tooptimize the number of message exchanges caching, pipelin
ing, and pre-fetching is used.

4.7 Conclusions

We presented an algorithm for manipulation of binary decision diagrams (BDD) on a
network of workstations (Now). A Now provides a collection of main memories and

disks which can be used effectively to create and manipulate very large BDDs. We

use a breadth first manipulation technique to exploit the memory resources of a Now
efficiently. The prototype implementation points to the potential impact this approach

can have in manipulatingvery large BDDs.

The effectiveness of our approachwas demonstratedwith experiments. This chapter

serves as a proofof concept for our approach. The currentworkcan be extended with

following features:

1. Utilizingthe computationpower of a Now: In the current approach, the compu

tations are carried out one processor at a time. Hence, we have only exploited

the memory resources of workstations in the network. This approach can be ex
tended to utilize the parallel computation power offeredby Now. This will be

achieved bypipelined processingof Request's during the APPLY and Reduce

phase. In the pipelined scheme. Request's are processed on more than one
processor concurrently. Hence, a processor neednot wait to collect Request's
frompredecessor processors duringthe Apply phaseand fromsuccessorproces

sors during the Reduce phase. Thiswill resiilt in improved computation time
of theprocessing of the REQUESTS. However thisscheme hastwodrawbacks: i)
on-lineissue of remoterequests will result in significant increasein the network

4.7. CONCLUSIONS 103

transaction. We observed in Section 4.5 that the performance of our approach

was significantly hampered by the network latency and overhead, ii) it will re

sult in duplication of effort due to inability to recognize a Request after it is

processed in the Apply phase. Consequently, it will also increase the working

memoryrequirements and amountof workduring the Reduce operation.

The benefits of this approach in view of these two drawbacks need to be inves

tigated. A plausible solution could be to adopt a scheme in between the two
extremes and issue remote requests in a group only.

2. Dynamic load balancing: In the current scheme thevariable indices arestatically
distributed overseveral processors. Thishas thedisadvantage that if the number

of nodes in certain levels grow very largethen it leads to uneven distribution of
BDDnodes. A better approach would be to dynamically change the distribution

of a set of variables among the processors to balance the number of nodes on
each processor.

104 CHAPTER 4. BDDSONA NETWORKOPWORKSTATIONS

Chapter 5

Parallel BDD Manipulation

IN Chapters3and 4, we discussed how memory hierarchy inacomputer system can
be exploited to expedite BDD manipulation when the data size exceeds the main

memory capacity. In particular Chapter 3 addressed the efficient useof the secondary
memory of a workstation to increase the available data memory without incurring a
significant memory access penalty. In Chapter 4, we extended this notion to a network
of workstationswhere the collective main memory of multiple workstations was used

for efficient BDD manipulation.

Inthis chapter, we consider anorthogonal technique toexpedite BDD manipulations
—theuseofconcurrent computation. Parallelization offers a way tocomplement graph
reduction research efforts forenabling verification of larger problem sizes. Inparticular
weconsider theuseofshared-memory multiprocessors forefficient BDD manipulation.
We identify the key elements needed for asuccessful parallel implementation ofaBDD
package. We argue that by combining the locality ofaccess ofabreadth-first manipula
tion approach with the parallel computing power of a shared-memory multiprocessor,
one can achieve a high degree of performance improvement over a conventional BDD
package.

The organization ofthe chapter is as follows. Section 5.1 provides brief overview of
the popular parallel architectures and highlights their features.* InSection 5.4, we give
a briefintroduction onmulti-threaded programming andtheir advantages anddisadvan
tages.^ In Section 5.2, we discuss the basic idea behind parallel computer application
in BDD manipulation and outline therequirements for efficient manipulation. In Sec
tion 5.3, wediscuss previous works onparallel manipulation ofBDDs and analyze their
trade-offs in a common framework. We present our techniquein Section 5.5. Due to

^Introductory material onparallel architectures andtheir performance has been obtained from [HP90,
San96, CSG97],

^Most of the material in this section has been taken from [Eng95, SS94].

105

106 CHAPTERS. PARALLELBDDMANIPULATION

lack oftime we didnotimplement ourtechnique. However, inSection 5.6wepresent a
detailed analysis ofclosely related work by Yang etal. [Y097] that has been fully im
plemented. Finally, we conclude by indicating the potential for further improvements.

5.1 Parallel Computer Architectures

The classic definition ofaparallel computer iscaptured infollowing quote fi^om [AG89]:
Aparallelcomputer is a collection ofprocessing elements that cooperate and conunu-
nicate to solve large problems fast.

These days parallel architectures have become themainstay of scientific computing,
including physics, chemistry, material science, biology, astronomy, earthsciences, and
others. In computer-aided design applications, parallel architectures are extensively
used for simulations at various levels (device, transistor, logic, etc) in the design fiow.

The general taxonomy of parallelarchitecture is presented in Figure5.1. In the next

few sections we briefly describe various categories of parallel architectures.

Data/instruction

Parallelism

SISD

SIMD

MISD

MIMD

Physical Memory
Organization

Centralized

Memory

Distributed

Memory

Logicai Memory
Organization

Shared

Memory

Message
Passing

Figure 5.1 Taxonomy of parallel architectures along various dimensions.

5.1.1 Parallelism in Instruction and Data Streams

Based on the parallelism in the instruction and data streams operated on, comput

ers can be classified into four categories; i) Single instruction stream / single data

stream (SISD) - single processor computers; ii) single instruction stream / multiple

5.1. PARALLEL COMPUTER ARCHITECTURES 107

data stream (SIMD) - multiple processors executing the same instruction stream on

different data streams; iii) Multiple instruction stream / single data stream (MISD) -

no present day computer falls in this class; iv) Multiple instruction stream / multiple
data stream (MIMD) —each processorhas its own instructionstream and operateson

its own data.

SIMD machines are also known as processor arrays or data parallel architectures.

The key characteristics of theprogranuning model is that operations canbeperformed
inparallel oneach element ofa large regular data structure, such as an array ormatrix.
Some vectorprocessors which operate on vectors of data out of a common memory,
also fall in this category.

MIMD is the most general parallel computer. In recent years it hasemerged as the
architecture of choice for general-purpose multiprocessors. We discuss the various
manifestations of the MIMD architectures in the next section.

5.1.2 Memory Organization in Parallel Architecture

Based on the physical memory organization, MIMD architectures can be broadly di
vided into following categories:

Centralized shared-memory architecture

In this architecture, processors share a single centralized memory and the processors
and memory are interconnected by abus. Since there isasingle main memory that has a
uniform access time from each processor, these machines are sometimes called uniform
memory access (UMA) machines. Currently this type ofcentralized shared-memory
architecture is by far the most popular MIMD architecture. An illustration of such
architecture is shown in Figure 5.2. Parallel machines in this category are popularly
known as shared-memory multiprocessors. Examples of machines in thiscategory are
Intel quad-processor Pentium-Pro multiprocessor and SGI Challenge multiprocessor.

Physically distributed memory architecture

In distributed memory architecture multiple memories are physically distributed with
the processors. A generic distributed memory architecture is shown in Figure 5.3.
Distributing the memory among the nodes has two major benefits. First, if most of the

108 CHAPTER 5. PARALLEL BDD MANIPULATION

Processor

One or more

levels of cache

Processor

One or more

levels of cache

Main Memory I/O System

Processor

One or more

levels of cache

Figure 5.2 Basic structure of a centralized shared-memory multiprocessor.

5.1. PARAIXEL COMPUTER ARCHITECTURES 109

Processor Processor Processor

Cache Cache Cache

Memory I/O Memory I/O Memory I/O

Interconnect Network

Memory I/O Memory I/O Memory I/O

Processor Processor Processor

Cache Cache Cache

Figure 5.3 Basic architecture of a distributed-memory machine consists of individual nodes
containing a processor* somememory* typically someI/O* andaninterface toan interconnection
network that connects all the nodes. Individual nodes may contain a small number of processors*
which may be interconnected by a small bus or a different intercoimection technology.

110 CHAPTERS. PARALLELBDDMANIPULATION

accessesare to the local memoryin the node, this providesa cost-effective way to scale

the memorybandwidth. Second,it reducesthe latencyfor accessesto the local memory.

Massively parallel processors are the most popular machines in this category. Exam

ples include Cray T3E and IBM SP-2. The major architectural differences between
distributed-memory machines come from the logical organization of the memory and
the communication paradigm.

The physically separate memories can be addressed as one logically shared address
space,meaning that a memoryreferencecan be made by any processorto any memory

location, assuming it has the correct access rights. These machines are called dis
tributedshared-memory (DSM) or scalable shared-memory architectures (as opposed

to shared-memory multiprocessors). The term shared memory refers to the fact that
theaddress spaceis shared; that is, thesamephysical address on two processors refers
to the same location in memory. Shared memory does not mean that there is a sin
gle, centralized memory. In contrast to the centralized memory machines, also known
as UMAs (uniform memory access), DSM machines are also called NUMAs, non-

uniform memory access^ since the access timedepends on the location of a dataword
in memory.

Alternatively, the address spacecan consist of multiple private address spaces that

arelogically disjoint and cannot be addressed by remote processors. In such machines,
the same physical address on twodifferent processors refers to two different locations
in two different memories. These employ complete computers as building blocks -

microprocessoir, memory, and I/Osystem.

5.1.3 Communication Paradigms in Distributed Memory Machines

Distributed memory machines call for a specific communication mechanism based on
the address space organizations. For a machine witha shared address space, that ad
dress space canbe used to communicate dataimplicitly via load and store operations.
In machines withmultiple address spaces, communication of datais done by explicitly
passing messages among the processors.

In distributed shared memory machines the multiple processes can be configured so

that portions of their address space are shared. Threads within a process cooperate
and coordinate byreading and writing shared variables and pointers referring toshared

5.1. PARALLEL COMPUTER ARCHITECTURES 111

addresses. Writes to a logically shared address by one thread are visible to reads of

other threads. The advantagesof shared-memory communicationinclude:

1. Compatibility with well-understood mechanisms in use in centralized shared-
memory multiprocessors.

2. Ease of programming when the communication patterns among processors are

complexor vary dynamically duringexecution.

3. Lower overhead for communication and better use of bandwidth when commu

nicating small items.

4. The ability touse hardware-controlled caching toreduce thefrequency ofremote
conununication by supporting automatic caching of all data, both shared and
private.

In message passing machines, conununication occurs by sending messages that re
quest an action ordeliver data similar to simple network protocols. Compared to shared
memory, this architecture has a greater distance between the programming model and
the communication operations at the physical hardware level. Typically, user commu
nication isperformed through operating system orlibrary calls. The major advantages
for message-passing conununication include:

1. The hardware can be simpler, especially bycomparison with a scalable shared-
memory implementation that supports coherent caching ofremote data.

2. Conununication is explicit, forcing programmers and compilers to pay attention
to conunimication.

5.1.4 Performance Issues in Parallel Computing

Performance of a parallel program for a specific data seton a particular parallel com
puter is defined as the time required to complete the program on that machine. The
performance isusually quoted in terms ofrelative speedup, which isdefined as the ra
tiooftime required tocomplete the program for a specific data setona single processor
identical toone compute node ofthe parallel machine tothe time required tocomplete
theprogram on a parallel machine withN compute nodes.

112 CHAPTER 5. PARALLEL BDD MANIPULATION

Usually, the speedup isless than N. However, for some programs it iseven possible
to obtain speedup greater than N. The reason for this super-linear speedup isavailabil
ity ofmultiple memory systems. Ifthe program has very high degree ofparallelism and
very low orno communication overhead, there isperformance gain due toavailability
ofmultiple caches and main memories when the total data exceeds size ofa particular
memory level (cache or main memory) butfits inside theaggregate size forN proces
sors. Aprogram running ona single processor requires much larger effective cache and
mainmemory to offsetthe advantage of multiple caches andmainmemories.

Every program has some serial part and some parallel parts. Ignoring theeffect of
multiple caches and main memories, the total available speedup S is limited by Am
dahl's law [Amd67] which roughlystates that the speedupcaimotexceedthe reciprocal

of fraction of serial computation

(r,+rp)
(Ts + Tp/N)

where 7^ andTp represent timeforserial andparallel computations, respectively. There
fore,

S < ^
Ts/{Ts + Tp)

The amount of parallelism in a given application, therefore, is the most obvious and

the most important issue that limits the performance of a parallel program. It should be

noted that the amount of parallelism exhibited by a parallel program is also a function

of the data size. The amount of serial work may be constant or increasing very slowly

with the problem size, hence increasing the problem size decreases the fraction of serial

computation, thereby improving the chances for obtaining high speedups [Bai91].

The amount of parallelism in the applicationdepends on the level of abstraction that

determines the granularity. Usually,the finer the granularity the higher the parallelism.

However, finer granularity, usually results in higher volume of communication. Effec

tive parallelizationrequires a good balance between amount of things that can be done

in parallel and associated overhead cost.

For a given abstraction level, it is important to make sure that each processor does

roughly the same amount of work. Each processor may do an equal amount of total

5.2. USING PARALLEL ARCmiECTURE IN BDD MANIPULATION 113

work, but mayspenda lot of timewaitingfor results fromotherprocessors. It is impor

tantfor processors to do an equal amount of workat about the sametime. Duplicating
computationmay also help reduce dependenciesand communication.

The next important issue is conununication, which is an artifact of parallelcomput

ing and therefore, is an additional overhead over and above the work specified by the

underlyingsequential algorithm. The startupcost of communication (latency), cost per

unit conununication (bandwidth), and the frequency of conununication determines the

overall conununication cost. It is important to minimize the communication cost as

muchas possible. Overlapping computation is one means of hidingtheconununication

cost.

Another issue that is important firom the practical stand-point is related to manage

ment of parallelism. Parallel programs incur overheads in issuing computations and

migrating data so as to efficiently utilize the parallel computing resources. The man

agement of parallelism needs to be effective- overheadsshould be far outweighed by

the efficiency achieved in utilizing parallel computing resources.

5.2 Using Parallel Architecture In BDD Manipulation

The basic ideabehindparallelmanipulation of BDDis theprocessing of multiplenodes

in parallel, i.e., the accessing memory locations in parallel. However, it is nontrivial

to parallelize BDDmanipulation efficiently, because the manipulation process involves

numerous memory references to small data structures with little computational work

to amortize the cost of each reference. In addition, a conventional BDD manipulation

scheme has irregular control flows and memory access pattems. The control flow is

irregular because the recursive expansion can terminate at any time when a terminal

case is detected or when the operation is cached by the computed table. The memory

access pattem is irregular because a BDD node can be accessed due to expansion on

any of its many parents and, since the BDD is traversed in the depth-first marmer,

expansions on the parents are scattered in time citebwolen97.

Keeping these facts in mind and the performance issues discussed in Section 5.1.4,

we present variousaspects of parallel BDD manipulationthat can potentially affect the

gains from a parallel architecture.

114 CHAPTERS. PARALLELBDDMANIPULATION

Selection of the hardware: What is the underlying hardware - a vector processor, a

massively parallel processor, a distributed shared-memory multiprocessor, a cen
tralized shared-memory multiprocessor etc. The selection of hardware restricts
the communication mechanism and also determines the cost in dollars.

Distributionof data: How areBDD nodes representing various functions distributed
among theprocessing nodes andhow uniform is the distribution?

Generation of computation loads: How is the work generated for different proces
sors?

Distribution of computationalload: How thecomputational loadisdistributed amongst
the different processors? How balanced is the loaddistribution?

BDDtraversal scheme: How the operand HDDs are traversed during computation?
Conventional BDD constructionalgorithmsbased on depth-firsttraversal of the

BDDs haspoormemory behavior because of irregular control flows andmemory
access pattern. Breadth-first traversal alleviates some of these problems.

Sharing of globaldata structures: How is the sharing of various global data struc
tures, e.g., unique table, computed table, etc. done amongst processors? What
data stmctures are duplicated for each processor?

Communication paradigm: How is the validity of the shared data structures main
tained? Howdo processors communicate witheach other- message passing vs.
synchronizing primitives Gock, barrier, mutex, etc.)?

With this perspective, weanalyze previous research efforts to parallelize BDD manip
ulation in the following section.

5.3 Previous work

[KC90] used a shared-memory multiprocessor (Encore multimax). They used a two-

phase (Apply and Reduce) BDD traversal technique to generate the result. Parallel
jobs were created through either multiple Boolean operations or through unrolling of
recursive calls for few steps. Interlocks were used for process synchronization. Due

.5.3. PREWOUS WORK 115

to the nature of their job distribution amongst processors, they achieved very coarse

grain loadbalancing (a simple BDD operation on oneprocessor could finish much ear
lier than somecomplex operation on another processor), and even though theirresults
indicated up to lOx speedup with 15 processors on multiplier examples, it would be
unlikely to observe the similar performanceon general circuits.

[0IY91] used a vector processor (HTTAC S-820/80). They chose a breadth-first
traversal scheme for BDDs (without any notion of locality of access). This allowed

them to vectorize the processing of temporary nodes at each index. They reported a
vector accelerationratio of up to a factor of 14 in creating output BDDs.

[PSC94] used a distributed shared-memory multiprocessor (CM-5). They chose a

two-phase BDD traversal scheme. Unlike previous approaches which used a shared-
memory architecture, theyuseda distributed stackto achieve fine-grain balancing. Task

synchronization was done using global broadcast and the communication was imple
mented using the active messages library. They presented results on small ISCAS ex

amples with speed-ups of 20 to 32 on a 32-node CM-5.

[CGRR94] used a massively-parallel computer (CM-2(X)) in a data parallel approach

whereBDD nodeswere distributed to the processingelements. Parallelism was achieved

by allocating one processing element for each BDD node. They did not give any re

sults comparing the performance with a uniprocessor and indicated up to 5x speedup

in going from 4K processes to 32K processes configuration.

[SB96] used a distributed memory approach on Meiko CS-2 with 64 scalar nodes

(distributed shared-memory multiprocessor). The unique table was distributed across

all processors. Multiplethreadsof computation were used on a distributedBDD.Up to

7x speed-up was obtained for a 32-node configuration.

R
e
fe

re
n

c
e

H
a
rd

w
a
re

S
e
le

c
ti

o
n

T
V

av
er

sa
!

S
c
h

e
m

e

L
o

a
d

G
e
n

e
ra

ti
o

n

L
o

a
d

D
is

tr
ib

u
ti

o
n

C
o

m
m

u
n

ic
a
ti

o
n

P
ar

ad
ig

m
C

o
m

m
u

n
ic

a
ti

o
n

V
o

lu
m

e

[K
C

90
]

S
ha

re
d-

m
em

or
y

m
ul

ti
pr

oc
es

so
r

($
)

V
ec

to
r

pr
oc

es
so

r
($

$$
$$

$$
$$

)

A
pp

ly
-R

ed
uc

e
H

ig
h

le
ve

lB
D

D
op

er
at

io
ns

H
ig

hl
y

co
ar

se
L

o
c
k

s
L

ig
ht

[0
IY

91
]

B
re

ad
th

-f
ir

st
T

em
po

ra
ry

no
de

s
pr

oc
es

s-
in

g
B

D
D

n
o

d
e
s

B
D

D
n

o
d

e
s

B
D

D
n

o
d

e
s

Fi
ne

gr
ai

n
L

o
c
k

s
M

e
d

iu
m

[P
S

C
94

]

[C
G

R
R

94
]

[S
B

96
]

D
is

tr
ib

u
te

d

S
ha

re
d

M
em

or
y

($
$$

$)
M

as
si

ve
ly

pa
r

al
le

l
pr

oc
es

so
r

($
$$

$$
$)

D
is

tr
ib

u
te

d

sh
ar

ed
-m

em
or

y
m

ul
ti

pr
oc

es
so

r
($

$$
$)

A
pp

ly
-R

ed
uc

e

A
pp

ly
-R

ed
uc

e

A
pp

ly
-R

ed
uc

e

Fi
ne

gr
ai

n

Fi
ne

gr
ai

n

Fi
ne

gr
ai

n

M
es

sa
ge

pa
ss

in
g

M
es

sa
ge

Pa
ss

in
g

M
es

sa
ge

pa
ss

in
g

H
ea

vy

H
ea

vy

H
ea

vy

T
ab

le
5.

1
Pr

ev
io

us
w

or
k

in
pa

ra
lle

lB
D

D
m

an
ip

ul
at

io
n:

a
su

m
m

ar
y.

$:
In

di
ca

te
s

th
e

re
la

ti
ve

co
st

o
ft

he
ha

rd
w

ar
e.

O
s

5.4. USING MULTI-THREADmG 117

A summary of the discussion on previous work has been provided in Table 5.1. We

analyze this summary below:

Load generation: Concurrency in BDD manipulation is achieved in three ways:

1. High level operations: If there are multiple Boolean operations to be per

formed, they are started on different processors [KC90].

2. Concurrent processing of the cofactors: In this case a place holderfor the
results of the cofactors is created and processingof the cofactors continues

in parallel ondifferent processors [PSC94, CGRR94, SB96].

3. Breadth-first processing: In this case, breadth-first manipulation scheme is
used. The set of temporary nodes (similar to Requests) are maintained at
each index, processors dividethe set of temporary nodesequally.

Load distribution: The first approach of load generation leads to very coarse grain
parallelism which could be highly unbalanced. All other approaches apply par
allelism at the level of processing of a node. Thisleads to fine grain distribution.

Amount of communication: This is related to the load distribution. Coarser distribu

tion leads to less communication and vice-versa.

Sharing of data structures: All of the approaches share the UNIQUE Table as the
global datastructure. Except [OIY91], others alsoshare theirworkqueues.

Distribution of BDD nodes: In both the distributed memory based approaches, the

BDD nodesare dividedrandomlyamongstthe processors' memories.

Cost of the hardware: The specialized hardwares (MPP, vector processors) cost the
most. Small- to medium-scaledistributed memory multiprocessorscost lot less.

Small scale shared-memory multiprocessorshave the best cost advantage.

5.4 Using Multi-threading on a Shared-Memory Multi
processor

In thissection, weprovide a briefintroduction on threads andmulti-threaded program
ming.

118 CHAPTER 5. PARALLEL BDDMANIPULATION

Aprocess is a program whose execution has started but is not yet complete (i.e.,
a program in execution). A process has a single address space and a single thread
of control to execute a program within that address space. To execute a program, a
process has to initialize and maintain state information. The state information typically
is comprised of page tables, swap images, file descriptors, outstanding I/O requests,
saved register values, etc. This information ismaintained on a per program basis, and
thus, a per process basis. The volume of this state information makes it expensive to
create and maintain processes aswell as to switch between them. To handle situations
where creating, maintaining, and switching between processes occur firequently (e.g.,
parallel applications), threads or lightweight processes have been proposed.

A thread (alsocalled thread of control) is a sequence of instructions executed by a
program. In the traditional UNIX model, a process contains a single thread. Threads
execute independently of each other and share a common address space. In a multi
threaded system, two or more threads share a common UNIX process. Threads share
process instructions, process data, and process resources: open files, signals, user data.
These threads are managed by the threads libraiy routines in the user space.

Computers with more than one processor provide multiple simultaneous paths of
execution. Multiple threads are an efficient way for application developers to uti
lize the parallelism of the hardware. Multi-threading (MT) is the set of programming
paradigms, tools, and techniques thatenable applications to take advantage of multi
processing. Itprovides apowerful way forsoftware developers tospeed upapplications
onuniprocessor or multiprocessor systems, transparently leveraging parallel hardware.

Threads share process instructions and most of the process data. A change in data

by one thread can be seenby the other threads in the process. Threads also sharemost

of the operating system state of a process. Unique to every thread are: thread ID,
register state(including PC andstackpointer), stack, signal mask, scheduling priority,
and thread specific data.

Creating multiple threads within a process is inexpensive compared to forking new
processes. The reason is thatcreating a process requires creating a newaddress space.
The time needed for creating a newthreadis typically 30 timesless than for creating a
new, process.

Synchronization primitives, also known as locking mechanisms, are necessary for

5,5. OUR APPROACH 119

multi-threaded programming. They are variables in memory whichare used to coordi

nate threads and control the access to the memory shared by threads.

5.4.1 Bottlenecks in Multi-threading

Performance hit when not enough done in a thread: Compute boimd programs with
coarse-grained parallelism can benefit from multi-threading when run on multi
processor hardware. While theoverhead involved in synchronizing andcontext
'Switching threads is significantly smaller than using processes, it is not zero.
Programs in whicheach thread does notexecute enough codebetween synchro
nizations or context switches will have performance problems.

Difficulty in programming multi-threaded applications: Multi-threaded applications
can be difficult to design and to debug. The memory, process state, and address
space are shared between threads. Since these shared resources are easy to ac

cess or corrupt by any thread in theprocess, programming with multiple threads
requires more care and discipline than does single-threaded programming. The
errors in multi-threaded programming are caused by i) accessing global mem
orywithout the protection of a synchronization mechanism and ii) using a local
or global variable for assigning an argument to a new thread. However, the im
proved performance and scalability are worththe effort.

5.5 Our Approach: Combining Locality of Access with
Parallel Computing

We propose a parallel BDD manipulation technique based onbreadth-first travesal and
the use of multi-threading on a shared-memory multiprocessor.

Before we proceed to explain our strategy for parallel breadth-first BDD manipu
lation, for ease in understanding, some important aspects of uniprocessor version of
breadth-first technique are briefly reviewed below.

• The breadth-first algorithm proceeds in two phases - top-down APPLY phase

followed by bottom-up REDUCE phase.

120 CHAPTER 5. PARALLEL BDD MANIPULATION

• During Apply phase, place holders are created to represent the results of co-
factors. These place holders, termed Requests, are processed on an index-by-
index basis.

• At each index, all the Requests belonging to that index are stored in a hash

table. This is to allow fast check for the Requests to avoid duplication.

• During the REDUCE phase, the Requests areprocessed on an index-by-index
basis, from bottom to top. If the REQUEST is not redundant, it is inserted in the
Unique Table of the corresponding index.

Basedon this basic technique, the parallel implementation is described below.
Afterthe BDDmanageris initialized by the mainthread,several auxiliary threads are

created and bound to different CPUs for concurrent processing. The main thread (the

process itself), takes careof synchronizations amongst threads. The auxiliary threads
wait for a signal from the main thread to start processing. The amountof private data
associated with each thread is very small.

When a BDD operation needs to be performed, the mainthreadperforms someini

tialization which sets up the type of the operation, the minimum indexof the operand
BDDs, etc. This initialization is visible to all the auxiliary threads. Next the main thread

wakes up the auxiliary threads and the APPLY and REDUCE phases are performed by

all of them.

During the APPLY step, the workload is divided equally amongst processors. This

is achieved by dividing the set of bins of each Request Queue amongst processors.

Empirically, we have observed a fairly equal distribution of REQUESTS amongst bins
of the Request Queue.

Since the REQUEST QUEUE for a given index is shared amongst various threads,

we need to create a lock on the appropriate Request Queue to avoid concurrent

modificationof a Request Queue by two different threads. Using a lock at the level

of each BDD node or REQUEST is not a feasible option. In our technique we prevent

the concurrent modification of the same data item by using a lock for each "id".

During the REDUCE phase, the REQUEST QUEUE bins are again divided equally
amongst thedifferent threads andthe Requests areprocessed accordingly. If the Re
quest is not redundant, we need to update the Unique Table of the corresponding

5.5. OUR APPROACH 121

index. Since the Requests are processed concurrently by various threads, to avoid
concurrent updating of the UNIQUE Table, each thread needs tolock it before making
any modification. This would result in significant locking overhead. To avoid this, we
adopt a strategy where threads do not update the Unique Table on an incremental
basis. Instead, each thread collects all the Requests which are not redundant in a list,

which is later processedby the main thread.

Ouralgorithm is outlined in Figures 5.4,5.5,5.6,5.7, and5.8.

pre4)rocess{
k = number of processors in the system;
Create and initialize the BDD manager;
Initialize k-\ threads and attach them to different CPUs;
Initialize thread related data and store in the BDD manager;
Threads wait for the signal from the main thread;

}

Figure 5.4 Pre-processing step in multi-threaded BDD manipulation on a shread-memory
multi-processor.

5.5.1 Analysis

In our algorithm, we have made specific decisions with regard to the various issues
presented in Section 5.2. Below weanalyze the impact of these choices.

1. Locality of access: Since the underlying manipulation paradigm is based on
breadth-first traversal of HDDs, we can benefit firom the same locality of access

as in the case of uniprocessors (described in Chapter 3). In addition, the local
memory accesses leads tobetter cache locality andhence less bus contention.

2. Distribution of load: During APPLY phase, our load distribution strategy leads
to roughly equal amount of work foreach thread. Hence theproposed technique
leads to fine grain load balancing.

122 CHAPTER 5. PARALLEL BDD MANIPULATION

multi-threadjapply(op){
threadjium = unique self thread Id;
minlndex s minimum index of operands supplied by main thread
for (index= minlndex; index < numVars; index++){

req-que = Request QuEUE[index];
req.que^rray = Request Queue;
multi-thread_applyjiux(thread_num, req-que, req_que^rray, op);
Synchronize;

}
}

Figure 5^ Apply step in multi-threaded BDD manipulation.

multi-thread_apply-aux(thread_num, req-que, req-que^rray, op){
Calculate the set of bins to be processed by the thread based on thread-num.
Process Requests belonging to these bins in req.que.
Create lock on appropriate req-que before creating a new Request.

}

Figure 5.6 Requestprocessing duringAPPLY step in multi-threaded BDDmanipulation.

5.5. OUR APPROACH 123

multi-threadj'educe{
threadjium = unique self thread Id;
for (index = numVars; Index> 0; index—){

req.que = Request QuEUEpndex];
uniqueJable = Unique TASLEpndex];
multi_threadj'educeuaux(thread_num, req.que, uniqueJtable);
Synchronize;
Processing of the Requests inthe auxiliary lists bythe main thread;

}
}

Figure 5.7 Reduce step in multi-threaded BDD manipulation.

multi.thread.reduce^ux(threadJium, req.que,uniqueJable){
Calculate the set of bins to be processed by the thread based on threadjium.
for each Requests belonging to these bins in req-que {

Update Then and Else cofactors of the Request;
If current Request is redundant, put appropriate forwarding information;
Otherwise, put Request in auxiliary list (tobe processed bymain thread);

}
}

Figure 5.8 Request processing during Reduce step in multi-threaded BDD manipulation on
a shread-memory multiprocessor.

124 CHAPTER 5. PARALLEL BDD MANIPULATION

3. All the data structures are shared. Hence there is no replication of data or com

putation.

4. Multi-threaded programming: Instead of using processes to perform operations
concurrently on different processors, we make use of threads. This allows us to
share the global data structures without the overhead of remote memory access

or message passing.

5. The proposed strategy is best suitedfor a shared-memory multiprocessor where
globaldatastructures can be accessed without anycommunication overhead.

6. DuringReduce phase, the updating of Unique Table at each indexis doneby

the main thread which keeps all other threads idle. However, in all the previous

works proposed so far for parallelBDD manipulation, the same limitation arises

in one form or the other.

An important point to note is that unlikeits counteipart in the uniprocessor domain,

the proposedbreadth-first algorithm for shared-memory multiprocessor does not have

any memory overhead over conventional depth-first algorithm. This is because in the

parallelization of depth-first algorithm, the cofactors need to be processed in parallel

(otherwise therewouldnot be any concurrency). This is done by followingsomevariant

of twophasescheme- APPLY followed by Reduce - as givenin [Bry86]. This implies

that someplaceholderis used to store the information aboutthe child nodes(identical

to the approach in breadth-firsttechnique).

5.6 Related Work

In this section, we describe a related work presented in [Y097].^ In that work the
authorsproposea parallel algorithmfor BDD construction targetedat shared-memory

multiprocessor. The algorithm focuses on improving memory access locality through

specialized memory managers and partial breadth-first expansion, and on improving
processorutilization throughdynamic load balancing.

The algorithm usespartial breadth-first expansion (equivalent to Apply phase in our

terminology) that improves locality of reference by controlling the working set size

^All the material in this section has been obtained from [YC)97].

5,6. RELATED WORK 125

and thus reducing the overhead due to page faults, communication, and synchroniza

tion. The algorithm also incorporates dynamic load balancing to deal with the fact that

the processing required for a BDD operation can range from constant to quadratic in

the size of the BDD operands, and is impossible to predict before runtime. BDD con

struction is parallelized by distributing operations among processors during the Ap

ply phase. Once the operations are assigned, each processor independentlyconstructs

correspondingBDDs using partial breadth-first expansion,which carefullycontrols the

working set size in order to minimize accesses beyond a processor's own local memory.

When a processor becomes idle, work loads are redistributed to keep the load balanced.

In the sequential world, good memory access locality results in good hardware cache

locality and reduced page faults. In the parallel world, memory access locality has the

additional advantage of minimizing communication and synchronization overhead.

5.6.1 Parallel Apply and Reduce

For BDD construction, both the Apply and the Reduce phases have a large degree

of parallelism. However, to efficiently utilize this parallelism, careful memory layout

is necessary to reduce synchronizationcost. In this algorithm, each process indepen

dently maintains its own copy of the BDD node managers, operator node managers,

and the computecache. This data layout allowseach process to proceed independently

of each other during the APPLY phase. During the REDUCE phase, synchronization is

necessary to prevent concurrent modificationto the BDD unique tables.

In the Apply phase, only operator nodes and their corresponding compute cache

entries are created. By requiring each process to maintain its own operator nodes and

compute cache, a process can expand its assignedshare of operationswithout synchro

nizing or communicating with other processors.

In the Reduce phase, new BDD nodes are created and inserted into the unique

tables. To avoid concurrent modification of the unique tables, one semaphore lock is

associated with each variable's unique table. Before creating a new BDD node and

inserting in into its unique table, a process must acquire the corresponding lock.

The main drawback of this data layout is that since the compute cache is not shared,

a process will not be able to take advantage of another's compute cache. Thus, the same

work might be duplicated in different processes. Another drawback of the per-process

126 CHAPTERS, PARALLELBDDMANIPULATION

data structures is that memory is used less efficiently as the free space in the blocks
allocated by one processis not available to otherprocesses.

5.6.2 Work Distribution

As processing required for a BDD operation can range from constant to quadratic in
the size of the BDD operands, it is impossible to distribute the load evenly through
static allocation. In thisalgorithm, the loadis dynamically balanced basedonstealing
unexpanded operations from processes* context stacks. Theprocesses* context stacks
serve as distributed work queues. When a process is idle, it tries to steal unexpanded
operations from busy processes* context stacks. If an idle process fails to find any
work, it notifies busy processes to create more sharable work by context switching.
Upon successfully stealing work, the thief process produces the results for the stolen
operations andreturn these results to the original owner. During thereduction phase, a
process stalls if theresults it needed forthe reduction have notyetbeen returned by the
thiefprocesses. Thisstalled process then becomes a thiefand tries to steal work from
other processes* context stacks.

5.6.3 Results

Elapsed Time (seconds)

#Procs C2670 €3540 mult-13 mult-14

Seq 208 215 256 935

1 204 220 293 1092

2 120 132 173 633

4 76 81 114 383

8 52 58 96 301

Table5.2 Elapsed timeforbuilding BDDforeach circuit with different number ofprocessors.
Seq represents the sequential case.

Performance results wereobtainedon a twelveprocessor SGI PowerChallenge with

1GBof shared memory. Each processor is a 195MHz MIPS RIOOOO.

Table 5.2shows theelapsed timeforbuilding BDDswithdifferent numberof proces-

5.6. RELATED WORK

Total # of Operations (in millions)

#Procs C2670 C3540 miilt-13 miilt-14

Seq 92.5 68.1 72.8 245

1 92.5 68.1 83.5 296

2 98.4 68.8 84.2 294

4 110.1 71.6 86.7 297

8 125.1 76.2 87.8 305

127

Table 5.3 Total number of operations in millions. "Seq" represents thesequential case.

a>

E
1=
c
o

'•s
•o
Q>

CC

0)

E
F

u
o

CO
CC

Lock Time / Reduction Time vs Number of Processors

Lock Time / Reduction Time

2 3 4 5 6
Number of Processors

Figure 5.9 Ratio oflock acquiring time tothe total time ofthe reduction phase for the mult-14
circuit.

128 CHAPTER 5. PARALLEL BDD MANIPULATION

sors. The algorithm is ableto achieve speedups of overa factorof 2 on fourprocessors

and up to a factor of 4 on eight processors.

Table 5.3 shows the totalnumber operations (i.e.,numberof the Shannon expansion

steps) for different circuits. Results show that despite the compute cache not being
shared, the total number of operations does not increase in the same proportion as
number of processors.

To understand the effect of lock contention during the reduce phase, consider the

Figure5.9. This figure plots the lock acquiring overhead as a firaction of the total cost

of the reduction phase. For the 8 processors case, the lock acquiring time is 50% of

the total reduction phase; i.e., over 20% of the total running time. This represents a

significant bottleneck in the performance improvement due to parallel manipulation.

5.7 Conclusion

We draw following conclusions from this study.

1. A trade-off can be made between avoiding duplicate computation and minimizing

communication while sharing global data structures. However, duplicating the

computationwithout reducing the conununication is a lose-loseproposition.

2. The Reduce step is the main bottleneckin all implementations of parallelBDD

manipulation.

3. A better distributed-hashing algorithm is necessary to reduce the unavoidable

synchronization cost incurred during REDUCE step.

4. In some BDD-based applications the non-canonicity of BDD nodes can be al

lowed leading to better parallelization.

Chapter 6

Dynamic Ordering

Animportant aspect ofBDDs is that foragiven variable ordering, they represent
Boolean functions canonically. The ordering plays a significant role in deter

mining thesize ofBDDs, which iscrucial fortheir efficient manipulation. Theproblem
of finding an optimal ordering is intractable andseveral heuristics have beenproposed
which statically determine a goodordering of variables based on the circuit informa
tion [FFK88, MWBS88]. Recently, dynamic ordering [Rud93] has become a popular
alternative to static ordering. The salient features of this technique are the transparent

nature of the algorithm (user need not be aware of it) and the in-place swapping of
variables. In fact, dynamic ordering is established as a critical component for anyBDD
packageto be used for practical-sized problems.

In the last three chapters (Chapters 3,4, and5), we saw how thebreadth-first manip
ulation [OYY93,AC94, SRBS96] techniques exploit memory hierarchy in a computer

system to efficiently manipulate verylargeBDDswhichdo not fit in the main memory.
Although breadth-first schemes outperform a conventional depth-first based scheme

when reordering is not performed, lack of reordering leads to its inability to finish
the application when the initial variable ordering results in very large BDDs [Sen96].
At first glance, it might seem that the reordering algorithm in a breadth-first scheme
would be identical to the one in a depth-first scheme. However, this would destroy the

locality of reference of BDD nodes which is critical to theperformance of breadth-first
based packages. In this chapter we provide efficient techniques to address this issue.

We propose techniques to preserve the locality of reference during reordering. After
identifying the problems with implementing variable swapping (the core operation in
dynamic reordering) in breadth-first based packages, we propose techniques to han

dle the computational and memory overheads. We believe that combining dynamic

reordering with the powerfiil manipulationalgorithms of a breadth-firstbased scheme

129

130 CHAPTER 6. DYNAMIC ORDERING

can significantly enhance the performanceof BDD-based algorithms.

The organization of this chapteris as follows. In Section 6.1, we briefly touch upon
the background material on dynamic reordering. In particular, we present the basic
variable swapping technique. In Section 6.2, we discuss the problems and issues in
implementing thevariable swapping algorithm in a breadth-first manipulation scheme.
In Section 6.3, we presentour first solution approach. In Section6.4, we discuss over

head optimization techniques. Section 6.5describes the"sifting'* algorithm. Section 6.6
presents the **window" technique. We discuss thenode packing scheme in Section 6.7.
We present our second approach in Section 6.8. Experimental results are given in Sec

tion 6.9. Mostof the workpresented in this chapter was first reported in [RGBS97].

6.1 Dynamic Reordering: Background

Terminology: Variables in BDDsareordered suchthat the variable at leveli hasindex

I, i ranges from 0 to n - 1 (starting from root to the constant nodes, n being the total
number of variables). A variable with a lower value of index is "higher" in the order

and vice versa. An identifier (id) is associated with each variable, and it also ranges

from 0 to n -1. The identifier value for a variable remains constant throughout the life

of the variable, however its index changes during reordering.

The basic operation in reordering is that of variable swapping. Variable swapping
involves moving all BDD nodes at level i to level i -I-1 and nodes at level i + 1 to i.
Consider a node F = (x/,Fi ,Fo) at level i, where x,- is thevariable associated with level
I,F] is thepositive cofactor withrespect tox/, and Fq is thenegative cofactor. Similarly,
let Fii and Fio be the two cofactorsof Fi with respect to X|+i and Fqi and Fqq be the

two cofactors of Fq. Using Shannon cofactor expansion,

F = x,FiH-jC|Fo (6.1)

= Xi(xi+iFu -i-Xi+iFw) +^i(xi+iFoi -l-x,+iFoo) (6.2)

= Xi+i(xiFn +XiFoi) -hXi+i(xiFio-i-XiFoo) (6.3)

In short.

(x/,Fi,Fo) = (^i+i,(-«i,^ihJpbi),(^i»^io,^oo)) (6.4)

6.1. DYNAMIC REORDERING: BACKGROUND 131

TheEqn. 6.4fonns thebasis of swapping variables between levels i andi+1. Variable
swapping is the core operation of reordering and is thedominating factor in memory
and time consumption during reordering. The problem in swapping Xi and jcf+i with
only local modifications lies in preserving the functionality of all nodes at indices i
and 1+1. This is necessary to avoid updating the references to those nodes by their
parent nodes higher in the order. Theupdating of references is notefficient because the
"in-degree" ofa node could be arbitrarily large, making it infeasible to maintain aback
pointer to alltheparent nodes, and thereby making it necessary to traverse thegraph.

6.1.1 Variable Swapping in Depth-First Implementation

Rudell [Rud93] proposed a scheme which forms the key idea for efficient variable
swapping. Thesuccess of his technique lies in the ability to overwrite the contents of
a node to maintain its functionality. This is illustrated in the Figure6.1. Notice that

Foo Foi Fio Fii Foo Fio Fqi F\\

Figure 6.1 Variable swapping: node distribution before swapping (left), afterswapping (right).

by swapping variables Xi andJCi+i, the contents of the original node (A) representing
function F are overwritten as the cofactor pointers are changed. This results in the

creation of two new nodes Fq (D) and F{ (E) (these may already be present in the
unique table). The important pointto note is that this change is completely local since
the nodes above index Xi and below index jC|+i need not be changed and only nodes of

levels I and i + 1 need to be traversed. This warrants an array of unique tables rather

than a single unique table for the wholeBDD. In summary, the conventional variable

132 CHAPTER6. DYNAMIC ORDERING

swapping involves creating at most two new BDD nodes and overwriting an existing
BDD node.

6.2 Variable Swapping in Breadth-First Implementation:
Problems

Let US nowsee if the sameparadigm couldbe applied to a breadth first basedpackage.
Breadth-first schemes relyon two salient features: i) the increased locality of reference

due to nodes belonging to an index beling located on the same page or set of pages,

and ii) the ability to determine the indicesof the cofactornodes withoutfetching them

from memory. To benefit from the locality of reference of the breadth-first scheme, it

is crucial that the BDD node allocations are still local, after reordering.

Thefirst implementation ofbreadth-first manipulation ([OYY93]) used padding nodes
to overcome the cofactor index determination problem, i.e., their algorithm manipu

lated quasi-reduced BDDs and indices of cofactors were always one more than the
indices of the corresponding nodes. As reported in [AC94], this approach has sig
nificant memory and computational overheads. Moreover, an arbitrary overwriting of

nodes during variable swapping would result in the loss of locality (nodes of an index

wouldbelongto the several different pages in the memory, sharingwith nodesof other

indices).

The approach in [AC94] uses a table whichmaps the page address of a node to its
index, i.e., each page address is uniquely associated to an index. This mapping breaks
down if we arbitrarily overwrite the content of an address during variable swapping.

Consider Figure6.2, which represents the nodedistribution before and after swapping

Xi and Xi+i. Before swapping, nodes for variable x/ reside on page #10 and those for
variable X|+i reside on page #20. In the process of swapping, if we simply overwrite

the nodeF, page#10 contains nodes corresponding to bothvariables x/ as wellas Xi+i
and the indexof a node is no longeruniquelyidentifiedby its page address. In addition,

by arbitrary overwriting a node, the locality of nodesis no longerpreserved.

Next we look at the breadth-first implementation in GAL [SRBS96]. In this ap

proach, a node is represented by an {id, node} pair (please refer to Figure 3.20 on
page 68). Also, the node contains the id as well as the address of its cofactor nodes.

6.3, SOLUTION APPROACH A

Page# 10

Page # 20

^00 ^01 ^10 ^11

SWAP

® Page# 10

O Page#20

133

^00 FioFoi Fii

Figure 6J2 Variable swapping: node distribution before swapping (left), after swapping (right)
in the breadth-first implementation of Ashar et al.

This data structure avoids the need for cofactor fetching or for looking up any table

to determine the cofactor indices. However, like previous implementations, arbitrary
overwriting of a BDD node suffers from two problems. First, it would result in theloss
of locality. Second, since CAL uses a data strucmre for a node that stores both the id
as well as the address of the cofactor nodes, we need to update the id field of all parent

nodes of nodes at Xi and jCi+i (similar problem arises if thenodestores the index of the
cofactor nodes instead of their id).

We seethatdirectly employing the depth-first reordering technique leads toproblems
in allbreadth-first implementations. In thenext section wepropose oursolutions.

6.3 Solution Approach A

Our first scheme is based on delayed updating, similar to garbage collection, to deal
with theproblems discussed in theprevious section. This avoids thenon-local compu
tation involved in updating the cofactors. We delay the cofactor updating by overwrit
ing the node with a "forwarding address" to the new node at an appropriate location
andwithproper functionality. Since the original node contains a forwarded address,
we call it sl forwarding node. This approach results in both memory and computa
tional overhead: memory overhead because wecannot immediately reuse thenode be
ing forwarded andthe memory consumption increases temporarily; andcomputational
overheadbecause the information in the parent nodes of the forwarding node must be

134 CHAPTER 6. DYNAMIC ORDERING

updated at some pointwhich requires traversing thenodes at higher indices andupdat
ing the contents if necessary. Since variable swapping is the coreoperation, wewould

like tooptimize thecostof memory and computation overhead as much aspossible. In
sections6.3.1 and 6.3.2,we exploretwo methods for variableswapping whichpreserve

the locality of nodes and discuss their memory and computationaloverhead.

6.3.1 Method 1: Keeping index ^ page mapping constant

In the first method, pagesin the memory are associated withthe index, i.e., if the index

of a variable changes,all the nodescorresponding to that variable needto be reallocated

on the pages corresponding to the new index. Figure 6.3, shows an example of the

node distributionbefore and after the swapping. Nodes representingcofactors Fq and

F\ (nodes B and C respectively before swapping)are reallocated on page #10 in order

to maintain the index <-)• page mapping. This approach has overheadof 2 forwarding

nodes (B, C) over the depth-first based swapping.

Page# 10

Page # 20

^00 ^01 ^10 F\i

Page# 10
SWAP

Page # 20

® Forwarded node
® New node ^00 ^10 ^01 ^11

Figure 6.3 Variable swapping (keeping index page mapping constant): node distribution
before swapping (left), after swapping (right).

In the worstcase,nodescorresponding to (x,-,Fio,Foo) and (x/jFuj/'bi) niayalready

be presentbeforeswapping. After the swapping, both of them will become forwarded

nodes on page#10 and will point to G and H respectively. In general, supposethere are

Ni and Ni+i nodes at indices i and i-l-1 respectively. Further, suppose N- .ofNi nodes

have both the cofactors below index i -H1. Then the memory overhead in this approach

consists of Ni+\ H-Nj forwarded nodes.

6.3. SOLUTION APPROACH A 135

6.3.2 Method 2: Keeping id page mapping constant

In this method, pages in the memory are associated with an id, i.e., variable. Hence,
evenif the index of a variable changes, all the nodescorresponding to that variable re

main on the same set of pages. Again, consider the nodeforfunction F in Figure 6.4.

Page#10^Q

Page#20

n
Foo ^01 ^10 ^11

OXT7AT. Page #20 [Xi+iSWAP pt

Page #10

® Forwardednodes
® New nodes ^00 ^10 ^01 ^11

Figure 6.4 Variable swapping O^eeping id page mapping constant): nodedistribution before
swapping (left), after swapping (right).

In this approach, as a result of swapping, a new node (D) is created on page # 20 to
represent the function F. Node A whichrepresented the function F before swapping,

becomes a forwarding node. Nodes Fqand Fi are simply moved to level i. We observe

that there is one new node created (D) and one node is forwarded (A) after the swap

ping. In general for Ni nodes at level i, withN[of themhaving at leastone cofactor at
level i+1, wehave memory overhead ofN\ forwarded nodes ascompared todepth-first
implementation.

Analysis

From the above two approaches we make the following observation. In Method 2,

swappingvariablesat level i and i+1, requires traversingonly nodes at level i which is

not true for Method 1. This is an important advantage for Method 2 because traversing

all nodes at a level is computationally expensive. Moreover, the memoiy and compu

tation overhead in Method 1 is significantly more than that in Method 2. For these

reasons we chose Method 2 for variable swapping in this approach (we refer to this as

136 CHAPTER 6. DYNAMIC ORDERING

swap.variable(i, checkFlag){
foreach node in the unique tat)ie for index i {

get then and else cofactors;
if (checkFlag) update the cofactors;
if (thenCofactorlndex > i+1 && elseCofactorlndex > i+1) continue;
put the node in the processingList;

}
foreach node in the processingList {

get Foo,Foi,Fio,Fii cofactors (as shown in Figure6.1);
create or find Fq and F/;
create a new F' and put a fonvarding pointer in F;
Append the list of fonvarded nodes for index i;

}
Perform some book-keeping;

}

Figure 6.5 Algorithm for swapping two variables.

the CAL-A approach).

6.4 Memory and Computational Overhead Minimiza
tion

Since forwarding nodes do not represent any Boolean functions, they are essentially
the memory overhead of the swapping algorithm. They also bring in computational
overhead, since at some point during reordering HDD nodes need to be traversed and
the forwarded cofactors updated. In order to reduce memory overhead, we can reuse

theforwarded nodes. This requires fixing thecofactors of allHDD nodes which could
be pointing to those forwarding nodes resulting in computational overhead. Hence,
during variable swapping weneed to be careful about fixing thecofactors (so asnotto
perform unnecessary computations) and incontrolling the number offorwarding nodes
(so that reordering does not run out ofmemory) resulting inmemory and computational
overhead trade-off. This makes the process of overhead minimization quitecomplex.

6.4. MEMORYAND COMPUTATIONAL OVERHEAD MINIMIZATION 137

The algorithm for swapping two variables is givenin Figure 6.5. Wenotice that all

the nodes for a particular index are traversed during swapping. Some of these nodes
become forwarding and are appended to the list of forwarding nodesfor that index. At

the endof eachvariable swapping we monitor the number of forwarding nodes. If this
number exceeds a threshold, we traverse the BDDs appropriately, fixing the cofactor

pointers and freeing the forwarding nodes.

Ideally, we wouldlike to reducememory overhead with little extracomputation and

mitigate the computation overhead by integrating the cofactor updating operation in
side the swapping operation. In the following we discuss various observations about
variable swapping (j:/ and X|+i, at indices i and i-H 1 respectively) which let us mini
mize the overheads. These observations are heavily used in optimizing the reordering

algorithms.

Observation 1: Consider a node F at level i which is independent of the variable at

level i-l-1. When the variables at level i and i4-1 are swapped, no new node

is created by the algorithm. This is illustrated in Figure 6.6. In all other cases

level i

level i+1

level i+2

Fqo Fbi Fio Fu

Swapping
XhXi+l

Fqo Fo\ Fio

Figure 6.6 Variable swapping: if thecofactors of anodeare independent ofXi+i, nonew nodes
are created in swapping.

(when at least one cofactor of F is at index i H-1),we need to create a new node

and the original node for F becomes forwarded (Figures 6.4 and 6.7)..

138 CHAPTER 6. DYNAMIC ORDERING

SWAP

Poo Foi

Figure 6.7 Variable Swapping : If any cofactor of a node is dependent on Xi+i^ a new node
and a forwarded node are created in swapping.

Observation 2: We need to traverse the unique table ofvariable Xi only. In some cases,

it would be necessary to update the cofactors of nodes in x,- (illustrated in Fig

ure 6.8). (some of the cofactor pointers could be pointing to forwarded nodes).

However, uponcareful analysis wecandetermine various stages in reordering al
gorithms where checking forforwarded nodes (i.e., updating thecofactors) would
not be necessary, thereby avoiding the computational overhead.

Observation 3: Nodes corresponding to thevariable x/ (theonegoingdown) caneither

remain unchanged (Figure 6.6) or can become a forwarded node if they have

cofactors at the next index (iH-1) (Figures 6.4 and 6.7).

Observation 4: Since the nodes at index i are cofactors of nodes at indices i —1 or

lower, it implies from observation 1thatcofactors forsome of thenodes at indices
I —1 or lower become forwarded as illustrated in Figure 6.9).

Observation 5: The onlychangepossiblefor the nodescorresponding to variable x,+i

(the one moving up in the order) is that their reference count might get decre

mented by 1 (as shown in Figure 6.9 for nodes C and D).

6.4. MEMORYAND COMPUTATIONAL OVERHEAD MINIMIZATION 139

Forwarded

Cofactor

Cofactor Update

Figure6.8 Variable swapping: if any cofactor of a node is forwarded, it needs to beupdated
before swapping.

Foo Foi Fio Fii

Reference
count gets —^
decremented ^
by 1 ^

SWAP

Forwarded
Cofactor

Reference
count gets ,

f decremented
by 1

00 Fio jPqj jTjj

Figure 6.9 Variable swapping: when Xi andjc,+i areswiped, a node at higher index canget a
forwarded cofactor.

140 CHAPTER 6, DYNAMIC ORDERING

Observation 6: When the nodes at levels i and i + 1 are being swapped, none of the

nodes for index i +1 or higher get affected.

Observation 7: During the swapping process, weneed to traverse all nodes for vari
able JC{ and update the cofactors if needed. Hence at the end of swapping, all
nodes for x/ have valid cofactors.

Observation 8; Once a node becomesa forwarding node, we do not have to consider

thatnode anymore forswapping purposes. Once allthepointers totheforwarding
node are fixed, the node can be freed.

(b) (c)

Figure 6.10 Double forwarding of nodes.

Observation 9: Sometimes a node, being pointed at by a forwarded node, becomes a

forwarded node. This occurs when two variables x and y are swapped (x going

down, y going up. Figure 6.10b), and at some later stage, y and x are swapped
(y going down, x going up. Figure 6.10c). This results in double forwarding.

By updating the first forwarded node we can get rid of the double forwarding
(Figure 6.10d). Forefficiency reasons we would liketo fix themas theyoccur.

In conclusion, we discussed the variable swapping algorithm in breadth first scheme

and related memory and computational overhead issues. We also looked at various

properties of variable swapping. We will use these properties in the different parts of
two reordering algorithms - siftingand window - to optimize the overheads.

6.5. DYNAMICREORDERING: SIFTING TECHNIQUE 141

6.5 Dynamic Reordering: Sifting Technique

This"sifting** algorithm isbased onfinding theoptimum position fora variable, assum

ing all othervariables remain fixed [Rud93]. The basic algorithm for sifting remains
the same as the one given in [Rud93], but we havepaid keen attention to minimizing

the overhead as muchas possible. First,we makeuse of a simple observation in decid

ing the initial direction (upor down) of swapping for the variable being sifted. Then,
we divide the sifting process in four phases and use the properties from the previous

section to optimize the overheads.

If the initial position of thevariable is in theupperhalfthen it is advantageous to sift
the variable upwards first. As an example, considerthe case when a variable's initial
position is in theupperhalfandits bestposition in thebottom half. In Figure 6.11, we

GOOD BAD GOOD BAD

Figure 6.11 Strategies for sifting variables.

illustrate the amount of variable swapping needed in moving the variable for upwards

first strategy aswell as fordownwards first strategy. Suppose i is theinitial position of
the variable (i< n/2). And j isthe best position ofthe variable (j > n/2). The number
ofvariable swappings needed if the variable is sifted upwards first isequal to (i—1) 4-
(n—1) -I- (n—j) = 2n—(y —I-f2). However, if thevariable is sifted downwards first,
thenumber of swappings needed = (n—/)+ (n—1)+ (y—1)= 2n—(i—y+2). Since
(y —i) > 0, the number ofswapping saved in a first approach is 2(y —i). It isclear that
moving the variable upwards first results in the computational advantage. Similarly,
it can be shown that moving the variable in the lower half downward first can result

142 CHAPTER 6. DYNAMIC ORDERING

in a computational advantage. Note thatthesame optimization canbe achieved in the
depth-first implementationas well.

To minimiTe the overhead of fixing the cofactors during the variable swapping and

to minimizethe traversal of BDDs duringfixing of forwarded nodes, we havedivided

each variable "sifting" into four phases. These phases are shown in Figure 6.12. In
each phase we have established certain invariants which cutdown onthe computation
overhead, which we discuss below.

Phase

Initial

Position

Phase I

Phase III♦

Best

Position

Phase IV

Phase

Initial

Position

Phase II

Figure 6.12 Various phases of sifting a variable.

Phase IV

Best

Position

Phase III

Case 1 Starting positionof the selectedvariable, x, is in the bottom half: in this case,

the four phases of variable swappingare shown on the left in Figure 6.12.

Phase I: In this phase the variablex is successively swappeddownto thebottom.

Hence for all the swappings only nodes corresponding to variable x are

traversed. At the start of phase I, there are no forwardednodes and the only

forwarded nodes created are for variable x. Hence, in this phase we need

not update any cofactors. At the end of this phase: i) nodescorresponding

to Xdo not haveany forwarded cofactors (fromobservation 3) and ii) nodes

corresponding to every other variable possibly have forwarded cofactors

(from observation 4).

6.5. DYNAMICREORDERING: SIFTING TECHNIQUE

reorderingSift(5ron//u/ex)
if (startlndex > numbeiVariabIes/2){

/• Phase I */

for(index s startlndex; index < numVariabie8-2; index-H-)
swap.variab(es(index. 0)
Perform book-keeping

endfor

r Phase IIV

for(index s numVariables-2; index> startlndex; index—)
Fix cofactors of nodes
swap.variables(index, 1)
Fix the double forwarding

endfor

for (index= startlndex-1; index > 0; index—)
Rx cofoctors of nodes
swap.vanabies(index. 1)
Perform book-keeping

endfor

Reclaim forwarding nodes
/*Phase III (need to movethe variable to the best location)*/
for(index= 0; index< bestlndex-1; index++)

swap.variables(index, 0)
/*Phase IV (need to update the cofactorsofvariables) */
for(index = bestlndex-2; index> 0; index—)

Fix cofactors of nodes
endfor

else {/* Variable's startingposition is inthe top half */
r Phase I */

for (index = startlndex; index> 0; index—)
Rx cofactors of nodes
swap.variables(index, 1)
Perform book-keeping

erfofor

Rx the cofactors of all the nodes and reclaim forwarding nodes
r Phase II */
for(index = 0; index < startlndex-1; index++)

swap.variables(index. 0)
Rx the double fonwarding of variable moving up

endfor

for (index =startlndex; index < numVariables-2; index++)
swap.variables(index, 0)

endfor

r Phase III (needto move the variable to tfiebest location)*/
for(index = numVariables-1; index < t>estlndex; index—)

swap.variables(index, 1)
Fixthe double forwarding ofvariable movingup

endfor

/*Phase IV(Fixthe cofactorsof higherindices)*/
forfindex = bestIndex-1; index> 0; index—)

Rx the cofactors

endfor

)

Figure 6.13 Pseudo-code for sifting algorithm.

143

144 CHAPTER 6. DYNAMIC ORDERING

Phasen: In this phase, thevariables which are going down potentially can have
cofactors pointing to the forwarded nodes of x. Hence we need to update
the cofactors of the nodes being swapped down. Also, until x is brought
back to the original position /, it is reverse swapped with a variable it was
swapped in phase I. Hence, we need to fix the double forwarding (from
observation9). At the end of this phase, all the variableshave moveddown

at some point. From the observations 2, 3, 5, 6, and 7, the cofactors of

all the nodes have been updated. At this point, we can reclaim forwarded
nodes belonging to each index.

Phase ni: In this phase, x is successively swapped down to the best position
found at the end of phase n. Since, by the end of phase n, we have per

formed clean-up (updated forwarded cofactors, reclaimed forwarded nodes)

this phase is similar to phase I.

Phase rV: This is the final clean-up phase. We want to make sure that all the

nodes in the manager have proper cofactor nodes. For that purpose, we

need to fix the cofactors of nodes between 0 and best index.

Case 2 Starting position of the selected variable, jc, is in the top half: in this case, the

four phases of variable swapping are shown to the right in Figure 6.12.

Phase I:. In this phase, the variable x moves all the way to the top. From obser

vation 4, the variable going down in the swapping may become forwarded

nodes. Hence we would need to update the cofactors at each variable swap.

At the end of this phase, we can reclaim all forwarded nodes.

Phase 11: This phase is exactly similar to phase I of the previous case.

Phase ni: Similar to phase n ofthe previous case. However, we need to perform

swapping only till jc gets to the best position.

Phase IV: Same as previous case.

The resulting pseudo-code for the sifting algorithm is given in Figure 6.13.

6.6. DYNAMICREORDERING :WnSfDOW TECHNIQUE 145

6.6 Dynamic Reordering: Window Technique

The window permutation algorithm proceeds by choosing a level i in the DAG and
exhaustively searching all k\ permutations of the k adjacent variables starting at level
i [FMK91, ISY91]. Typically this operation is repeated starting from each level until
no improvement in the size is seen.

Based on the observations in Section 6.3.2, we make the following optimizations:

1. When variables corresponding to indices i, / +1 and i+ 2 are being permuted in

a window, some of the cofactors of nodes belonging to indices i —1 and lower

get forwarded.

2. At the end of one fiill pass (i.e., when the permutation window has been brought

fromtoptobottom), nodes corresponding to all thevariables mayhave forwarded

cofactors.

3. Instead of starting the next pass again from the top, we start it at the bottom,

i.e., window slides from bottom to top (Figure 6.14). At the end of the bottom-

Window
moving
down

1+2 L

i-2

Window
moving
up

Figure 6.14 Alternate top-down and bottom-up swapping.

up pass, all the cofactors of all the variables are updated (as observed in Sec

tion 6.3.2).

146 CHAPTER 6. DYNAMIC ORDERING

4. For each top-down and bottom-up pass, we save the overhead of traversing all
the nodes fixing the cofactors.

t

5. If the reordering converges in a top-down pass, we perform a clean-up phase,
where all the cofactors are updated.

6.7 Node Packing

In thesifting and window algorithms for reordering, one or more variables are moved
up and down in the ordering. As a result, the number of BDD nodes corresponding
to those variable(s) change drastically (firom one node at the bottom of the order to
tens of thousands of nodes in the middle of the order). To accommodate the large

number ofnodes, a corresponding number of pages gets allocated forthevariable being
moved in order. As a result, if the final position of a variable does not require too

many nodes, these nodes are scattered over many pages, i.e., memory fragmentation
occurs. This phenomenon has two side-effects. The first one is a loss of locality of
reference, because even for a small number of nodes, we need to access severalpages.

The second problem is excessive memory consumption: if a large number of pages
are left allocated for a variable with few nodes, these pages cannot be used for other

memory allocations and it is possible that the application runs out of memory. To
address these problems, we use the technique of intermittent repacking of nodes. This
technique is transparent tothe user (like garbage collection). We define the term Utility
Ratio (u.r.) for avariable atindex i asu.r. = where, n, isnumber ofnodes atindex
i. Pi is number of pages allocated for nodes at index i, Np is number of nodes which
can fit in a page. In other words. Utility Ratio captures the memory fragmentation.
During dynamic reordering, we monitor the Utility Ratio of the variable moving in the
order. Whenever this ratio drops below a threshold, we stop the operation andrepack
the nodes. This process requires copying the set of nodes onto a new set of pages,
leaving a forwarding address at the oldnodes. Next, wetraverse the BDD nodes at the
higher levels (lower indices) to fix theircofactors.

In the window scheme of reordering, we performthis packing for three (thewidthof

the window) consecutive variables at a time.

6,S. SOLUTIONAPPROACH B 147

6.8 Solution Approach B

After implementing the techniques described in approach A, we still noticed signifi
cantcomputation and memory overhead compared to reordering schemes used in the
depth-first approaches. In approach B, we evaluated theuse of depth-first reordering
technique in a breadth-first based package. This ^proach consists of following steps:

1. Change the data structure to conform to conventional HDD nodes, i.e., a node
contains - reference coimt, id, then cofactor, else cofactor, and next pointers.

2. Perform a conventional reordering.

3. Reallocate nodes on pages to maintain the locality.

4. Change back to the original data structure.

The overhead in this approach is involved in (a)changing the data structures in steps 1
and4, and(b)reallocating the nodesin step3. Wehaveformulated a strategy to perform

an in-place reallocation of nodes to achieve the local distribution of nodes in memory
(shown in Figure 6.15). This strategy has no memory overhead (the reallocation is
done in-place) and requires three passes of the BDD. The first pass is done on a page-
by-page basis, leading to local memory accesses. Thesecond pass requires tracing the
next pointers of the nodes which could be on multiple pages. The third pass again is
done on a page-by-pagebasis leading to local accesses.

However, in the current implementation we simply duplicate the final set of nodes
into new memory locations, freeing the old spacelater on. This results in a temporary

memory overhead.

6.9 Experimental Results

6.9.1 Experimental Setup

We implemented our reordering scheme in theCAL BDD package [RS97]. Thispack
agehasbeenchosen for three main reasons: (i) in [SRBS96], it hasbeenclearly shown
tooutperform otherbreadth-first based implementations, (ii)CALis integrated withthe
synthesis tool SIS [SSL'̂ 92] and verification tool VIS [BSA'̂ 96a] making it easier to

148 CHAPTER 6. DYNAMIC ORDERING

realiocatejiodesJn43lace{
/* First pass, get the new addresses of the nodes V
initialize the pointers for each index;
traverse all the nodes on page-by-page basis;
for each node{

get the newaddress forthe node by looking at the corresponding pointer;
put the new address in the next field;
update the pointer;

}
/*Second pass, update the cofactors of the nodes V
while there are still nodes to be updated {

tmp = content of next pointer of node;
store the content of the node in the next pointer;
node = next pointer of the new location;

}
r Third pass, update the nextpointer of the nodes byhashingthem appropriately V
traverse all the nodes on page-by-page basis; for each node{

get the value of the next pointer by hashing itto appropriate uniquetable;
.}

}

Figure 6.15 In-place reallocation of nodes to maintain locality.

6.9, EXPERimNTAL RESULTS 149

perform benchmarking, and (ill) as opposed toother implementations, CAL provides a
comprehensive set ofhigh performance BDD algorithms. This makes the integration of
ourwork ondynamic reordering worthwhile, making it directly applicable to practical
problems.

Forcomparison purposes we have used the CMU package developed byLong [Lon93]
and the CU package [Som97] developed at University of Colorado at Boulder. Both
of these packages are publicly available and are being widely used in industry and
academia. We have used the standard ISCAS and MCNC benchmark examples for our

experiments. In addition we have also used some industrial examples collected from
various sources. Allourexperiments were performed on a 250MHz DEC Alpha 21164
with 4MB L2 cache, 1GB RAM, and 3GB swap space. A time limit of 3000 CPU

seconds was used.

In the first experiment weusedan artificially created example given below:

*'=5-1

/= X "'"i+i
i=0

We start with an initial variableorderingof ao> j•••»• For Ihisvariableordering,

the function / has exponential size in n. By changing n, we can do a performance
comparison with gradual increase inBDD size. InTable 6.1, wegive theelapsed time
in performing the reordering to obtain the optimal variable order
In all the cases the optimal orderwas obtained by all the BDD packages. We observe
that the approach B (colunm CAL-B), significantly outperforms approach A (colunm
CAL-A). Comparing CAL-B with other packages weobserve thatCAL-B outperforms
CMU package in all the cases; CU performs the best.

In the second experiment, we created output BDDs for combinational circuits and
partitioned transition relations for sequential circuits, and invoked dynamic reordering
to reduce the BDD sizes. In Table 6.2 and Table 6.3, the second column gives the total

number of nodes present in the manager when the reordering is invoked. We compare

the quality and the run time of reordering for both sift and window schemes. Under
the individual package columns, we give the number of nodes at the end of dynamic
ordering and the elapsed time in seconds. We observe that the CU package performs

the best. The performance of CAL-B is comparable in mostcases. For window based
reordering we observe that due to different terminating conditions during reordering.

150 CHAPTER 6. DYNAMIC ORDERING

#

Variables

Initial

Size

Sifting Window

CMU CU CAL-A CAL-B CMU CU CAL-A CAL-B

32 131087 3 1 2 2 3 2 5 2

34 262160 8 3 4 4 9 6 10 7

36 524305 19 7 11 9 22 15 23 17

38 1048954 43 16 27 21 47 32 54 40

40 2097171 95 36 62 48 105 71 128 91

42 4194324 208 78 141 108 223 157 279 206

44 8388629 431 168 323 246 471 334 629 ' 454

46 16777238 928 376 S.O. 524 S.O. 743 S.O. 982

Table 6.1 Directreordering perfoimance comparison for an artificial setof examples.

S.O.: Space out

the quality and time for reordering for different packages differ, making the compar
isons a bit difficult. For instance, CU takes longer for some examples and also results

in betterquality. CAL-B performs better than CMU for similar quality results.

E
x

am
p

le
In

it
ia

l
F

in
a
l

S
iz

e
E

la
p

se
d

T
im

e

S
iz

e
C

M
U

C
U

C
A

L
-A

C
A

L
-B

C
M

U
C

U
C

A
L

-A
C

A
L

-B

C
1

9
0

8
3

0
9

3
3

7
9

1
2

7
3

5
5

7
9

6
0

7
9

5
5

6
3

4
3

C
1

3
5

5
2

3
9

0
3

0
1

3
4

3
8

1
1

1
2

9
1

3
2

8
6

1
3

2
8

6
1

7
6

1
5

11

C
2

6
7

0
1

1
6

9
3

6
1

3
9

9
0

2
7

0
5

5
8

2
1

5
8

2
1

1
5

6
3

9
1

2
3

7
8

C
3

5
4

0
2

5
8

1
4

9
4

6
7

6
4

8
6

0
3

2
7

6
8

5
6

8
6

8
7

3
3

3
4

9
2

2
8

5
3

0
3

6
4

C
5

3
1

5
1

9
8

0
4

8
7

7
8

1
9

3
7

5
9

9
6

7
4

9
9

0
4

6
5

0
1

7
3

5
4

6
3

3
6

C
8

8
0

1
8

6
4

9
3

9
0

4
3

8
9

4
0

9
1

2
3

9
1

2
3

2
4

1
0

1
9

1
4

e
v

e
ry

4
7

3
9

0
3

7
4

6
4

0
3

8
5

4
7

5
3

6
7

9
11

6
1

2
9

ab
s_

b
d

lc
1

3
2

0
9

6
3

8
7

8
7

3
7

1
8

9
5

5
9

9
7

3
9

8
5

1
1

1
5

4
3

9
4

5
9

b
iu

1
2

4
0

1
5

2
6

3
5

3
2

7
1

6
5

3
1

8
7

7
2

6
5

0
1

1
3

6
3

9
9

8
7

3

b
d

ic
1

3
6

0
0

2
3

8
4

2
5

4
2

9
5

1
3

9
8

1
8

3
8

5
0

4
1

5
3

5
5

1
1

8
8

1

in
in

m
a
x

l2
4

3
3

1
5

8
6

0
7

9
5

2
0

6
6

1
7

8
6

5
2

2
5

6
2

1
1

5

bi
gk

ey
1

0
4

6
4

7
6

8
9

7
6

1
4

7
5

6
2

7
7

2
9

2
3

1
0

2
5

1
2

S
1

4
2

3
6

1
3

9
2

1
4

8
8

2
1

5
9

7
2

1
5

8
9

0
1

4
9

5
1

6
5

2
0

4
2

3
9

s4
8

6
3

3
0

6
0

7
0

1
4

9
7

2
3

1
6

5
1

3
2

1
4

3
8

5
5

1
3

5
8

5
6

2
5

8
8

8
1

7
3

1
0

0

s5
3

7
8

2
0

4
5

9
8

3
5

0
0

7
3

4
6

7
4

2
1

9
3

4
3

4
9

0
4

1
3

1
4

3
7

2
5

4

s6
6

6
9

3
6

8
4

5
7

1
4

7
7

2
3

1
3

2
8

2
3

1
2

0
6

1
6

1
5

8
3

7
9

5
6

5
8

4
2

5
2

1
6

8

T
ab

le
6.

2
Si

fti
ng

ba
se

d
re

or
de

rin
g:

pe
rf

or
m

an
ce

an
d

qu
al

ity
co

m
pa

ris
on

.

9
^ 1 I 1

E
x

am
p

le
In

it
ia

l
F

in
a
l

S
iz

e
E

la
p

se
d

T
im

e

S
iz

e
C

M
U

C
U

C
A

L
-A

C
A

L
-B

C
M

U
C

U
C

A
L

-A
C

A
L

-B

C
1

9
0

8
3

0
9

3
3

8
6

1
4

8
6

1
7

7
4

8
3

7
4

8
3

3
2

4
2

C
1

3
5

5
2

3
9

0
3

0
1

2
2

0
6

1
2

2
0

9
1

3
8

3
5

1
3

8
3

6
7

5
1

1
7

C
2

6
7

0
1

1
6

9
3

6
1

1
1

3
9

9
3

0
1

1
3

9
9

0
5

1
1

5
9

9
0

5
1

1
5

9
9

0
5

5
4

2
3

3
9

2
0

C
3

5
4

0
2

5
8

1
4

9
4

5
6

2
1

8
2

5
6

2
1

4
8

4
3

8
3

7
8

4
3

8
3

7
8

4
2

5
3

7
2

5
6

4
2

9
4

C
5

3
1

5
1

9
8

0
4

8
7

1
5

3
1

1
1

0
1

5
3

1
1

1
3

1
4

3
5

7
2

1
1

4
3

5
7

2
1

1
0

3
4

4
1

3
1

5
2

C
8

8
0

1
8

6
4

9
3

3
5

9
2

6
3

5
9

2
8

3
5

2
3

9
3

5
2

3
9

1
7

1
0

1
9

1
0

e
v

e
ry

4
7

3
9

0
8

5
5

5
4

0
3

8
2

4
5

8
0

1
1

4
0

6
5

6
4

3

a
b

s.
b

d
lc

1
3

2
0

9
6

1
1

2
5

8
3

3
7

1
8

9
1

2
2

4
0

1
1

0
8

7
3

6
1

4
4

2
4

11

b
iu

1
2

4
0

1
5

1
0

6
2

2
7

2
7

1
6

5
1

0
9

6
3

3
1

0
4

1
2

6
8

3
9

7
3

b
d

lc
1

3
6

0
0

2
1

0
7

8
5

3
4

2
9

5
1

1
2

7
1

5
1

1
0

9
3

2
4

1
2

5
5

8
7

'm
in

m
a
x

l2
4

3
3

1
5

1
8

7
7

9
9

5
5

2
3

2
5

2
0

1
5

3
5

9
9

6
2

4

bi
gk

ey
1

0
4

6
4

8
0

0
9

7
6

1
4

1
0

2
7

2
1

0
4

2
0

2
1

0
1

1

S
1

4
2

3
6

1
3

9
2

5
2

5
9

7
1

5
9

9
6

5
4

5
5

0
5

1
0

1
4

6
2

0
2

3

s4
8

6
3

3
0

6
0

7
0

2
3

0
6

0
2

1
6

1
2

4
2

2
4

9
5

2
3

2
4

0
5

6
3

4
5

7
8

4
6

2
5

s5
3

7
8

2
0

4
5

9
8

1
4

1
5

6
8

4
2

8
5

8
1

5
6

4
2

5
1

3
0

6
5

0
1

7
4

7
7

9

S
6

6
6

9
3

6
8

4
5

7
2

9
0

3
7

3
1

4
6

0
7

8
3

4
7

8
9

7
2

9
8

4
3

0
4

2
6

1
8

1
6

T
ab

le
6.

3
W

in
do

w
ba

se
d

re
or

de
rin

g:
pe

rf
or

m
an

ce
an

d
qu

al
ity

co
m

pa
ris

on
.

t
o O D O

6.9. EXPERIMENTAL RESULTS 153

In Table 6.4 we compare the memory consumption in each BDD package. These
numbers are reported in terms of number of pages (8KB size). For CAL-B we report
the peak memory usage (which includes the memory allocated for reallocating nodes),
even though the final memory usage ismuch less. Notice thesignificant reduction inthe
memory used inCAL-B compared toGAL-A. Also note that thememory consumption
in CAL-B iscomparable withthatinCU, bothofwhich arelarger than thatin CMU. In
somecases, CAL-A has bettermemory performance thanCAL-B. Upon investigation,

we found that this was due to the memory overhead incurred during the reallocation

of nodes in new memory space. We would like to mention here that in general this
memory overhead was not found to be significant compared to memory used before
reordering. The larger memory consumption in CAL canbe taken care of with minor
changes in its implementation.

E
x

am
p

le
S

if
ti

ng
W

in
d

o
w

C
M

U
C

U
C

A
L

-A
C

A
L

-B
C

M
U

C
U

C
A

L
-A

C
A

L
-B

C
1

9
0

8
5

6
6

9
5

5
1

3
9

1
8

2
7

5
6

6
9

5
5

1
1

4
1

8
2

7

C
1

3
5

5
1

2
6

4
1

9
0

7
3

6
6

9
1

9
7

1
1

2
6

4
1

7
0

6
2

2
1

8
1

9
7

1

C
2

6
7

0
8

6
5

1
1

1
9

7
2

2
1

8
1

8
1

2
5

8
2

8
6

5
1

1
2

2
3

7
1

4
7

9
3

1
7

0
6

2

C
3

5
4

0
1

4
8

2
8

2
2

6
9

6
4

0
4

5
5

1
3

7
3

5
1

4
8

2
8

2
2

9
7

1
1

8
0

6
9

1
5

1
4

3

C
5

3
1

5
1

0
5

8
7

1
5

8
4

2
3

7
2

0
0

1
1

4
1

9
1

0
5

8
7

1
6

3
0

9
1

2
7

6
4

1
6

9
2

3

C
8

8
0

1
2

4
3

1
6

5
0

3
3

0
8

1
7

3
3

1
2

4
3

1
6

7
3

2
0

9
9

1
7

9
7

e
v

e
ry

3
8

4
1

1
5

5
2

8
3

5
1

3
7

8
3

8
4

1
1

5
5

1
6

2
4

1
3

7
8

a
b

s.
b

d
lc

9
1

2
2

6
5

1
1

4
9

6
9

2
7

7
3

9
1

2
2

6
5

1
3

1
1

9
3

0
2

9

b
iu

8
1

1
2

4
1

9
1

1
4

7
3

2
9

2
7

8
1

1
2

4
1

9
3

0
8

9
3

1
8

3

b
d

lc
1

0
6

7
2

7
4

8
1

4
8

0
1

3
1

1
1

1
0

6
7

2
7

4
8

3
4

6
0

3
3

6
7

m
in

m
a
x

l2
3

0
9

7
1

4
4

9
1

8
1

0
1

6
3

0
9

7
1

4
1

5
9

0
1

0
1

6

bi
gk

ey
2

0
1

3
5

1
6

0
4

1
4

3
4

9
8

1
2

0
1

3
5

1
6

0
4

1
9

7
4

9
8

1

S
1

4
2

3
5

9
7

1
2

5
4

8
4

2
5

1
5

1
4

5
9

7
1

2
5

4
1

8
9

3
1

6
4

2

S
4

8
6

3
2

8
0

2
5

5
2

8
2

2
1

5
9

5
0

2
5

2
8

0
2

5
5

4
4

4
4

8
8

5
4

0
9

s5
3

7
8

1
3

4
9

4
2

5
5

8
1

2
8

3
9

4
5

1
3

4
9

4
2

7
7

4
0

6
4

4
3

2
9

S
6

6
6

9
2

8
2

0
8

4
7

6
2

8
9

5
2

5
5

9
1

2
8

2
0

8
4

8
6

4
7

4
9

6
1

0
3

T
ab

le
6.

4
M

em
or

y
co

ns
um

pt
io

n
co

m
pa

ris
on

fo
rv

ar
io

us
pa

ck
ag

es
.

U
l

4
^ n D O

6,10. CONCLUSIONS 155

6.9.2 Analysis

From the above set of experiments, we observe a mixture of performance by our re
ordering scheme. We make the following observations:

1. In the current experiments, we have compared the raw performance of reorder
ing in the two schemes. For practical purposes, however, it is more important
to compare the overall performance of the packages embedded in applications
like sequential verification, design verification, etc. By leveraging the locality
of access, a breadth-first technique can manipulate large HDDs more efficiently
thana depth-first technique. Sinceinvoking dynamic reordering introduces a per

formance overhead in the breadth-first scheme, reordering techniques are needed

which have lowerperformance overhead, probably at the cost of smallerreduc

tion in HDD sizes. However, this loss of quality can be offset by the higher

efficiency of breadth-first manipulation.

2. In the current reorderingschemes, it is possible to get better performanceby tun

ing two parameters: the threshold value for invoking dynamic reordering (mini

mum number of nodes needed to invoke reordering) and the maximum number

of forwarding nodes allowedduring reordering (point at which the relevantHDD

nodes are traversed to update the cofactors and to free the forwarding nodes).

The optimum values of theseparameters are systemdependent. For instance, for
larger available memorywe can set them at higher values. This leads to less fre

quent invocation of reclaiming forwarded nodes (leading to betterperformance)

without getting into memory overflow problem. The behavior of the first param

eter (when to invoke dynamic reordering), is a complex one. On the one hand

we do not want to invoke dynamic reordering too frequently (setting the limit

higher) to avoid the computational and memory cost; on the other hand invoking

dynamic reordering when the HDD size gets too large makes it expensive.

6.10 Conclusions

The goal of this work was to establish the feasibility of dynamic reordering in breadth-

first packages. In particular, we wanted to demonstrate that the memory and compu

tation overhead in the core operation of variable swapping can be reduced with proper

156 CHAPTER 6. DYNAMIC ORDERING

implementation. Our experimental results show that the reordering inside the CAL

package hascomparable performance as thatof CUDD package. Thedifference in the
performance canbe explained by the fact thattheCUDD package hasbetter heuristics
for dynamic reordering algorithms. However, these heuristics are not specific to the
package andcanbe implemented inotherpackages. In thecurrent implementation, we
have only incorporated the "interaction matrix" optimization as in [Som97]. It is our
belief thatby adding other heuristics, theperformance of CAL package canbe further
improved and would be on a parwith any other package. In the current experiments,
we have compared the raw performance of reordering in the two schemes. For prac
tical purposes, however, it is more important to compare the overall performance of
the packages embedded inapplications like sequential verification, design verification,
etc. Byleveraging thelocality of access, a breadth-first technique can manipulate large
HDDs more efficiently than a depth-first technique. Since invoking dynamic reorder

ing introduces a performance overhead in thebreadth-first scheme, there is a need to
investigate reordering schemes which have lower performance overhead, probably at
the cost of smaller reduction in HDD sizes. However, this loss of quality can be offset

by the higher efficiency of breadth-first manipulation.

Part II

State Transition Graph Representation
and Traversal

157

Chapter 7

Efficient Techniques for State Space Traversal

SO far we have presented the techniques which target the efficient manipulation of
binary decision diagrams as a data structure to represent Boolean functions. In

particular, we considered computer architecture based solutions for HDD manipulation
(Chapters 3,4, and 5). In this chapter, we investigate application-specific solutions for
BDD-based verification algorithms. In particular, we address the issue of state transi
tion graph representation and state-space traversal of finite-state systems. We establish
that the core computation in BDD-based state-space traversal is that of forming the
image and pre-image of a set of states under the transition relation characterizing the
system. In this chapter, weconsider several solution approaches order to make this step
as efficient as possible.

Thchapter is organized as follows: Section 7.1 presents the preliminaries and moti
vates the need for symbolic techniques for state enumeration. In thenext five sections,
we describe various techniques which are targeted towards state-transition graph rep
resentation and state enumeration. In Section 7.2, we describe our method for compact

FSM representation ofanetwork. Section 7.3discusses ourtechnique forearly variable
quantification forefficient image/pre-image computation. In Section 7.4,wediscuss a
technique tocompactly represent thebehavior of the finite-state machine by partition
ingtheunderlying combinational network. We describe our findings on efficient usage
of don*t caresin image/pre-image computation in Section 7.5. In Section 7.6 wepresent
a new technique to eliminate redundant latches, thereby improving the efficiency of
state-space traversal algorithms. We provide experimental results in Section 7.7. Most
of thework presented inthis chapter was first reported in [RAP"'"95].

159

160 CHAPTER 7. EFHCIENT TECHNIQUES FOR STATE SPACE TRAVERSAL

7.1 Motivation

In this section we motivate the importance of efficiently computing the image and pre-

image of a set of states in variousformal verification paradigms. We also introducethe

problem of state explosion to motivate the need for using BDDs for representing and

manipulating state space.

We start by defining the concepts of the image and pre-image of a set of states and

also the set of reachable states in a finite state system. Following definitions assume a

transition relation r(3c, M,y): B" x B'" x B" B.*

Deiimtion 1 Let P(x} e B". The forward image (also called image) of P under the

transition relation T is the set Q, such that,

yeQ <=> 3xeP,3u s.t. T(x,uJ) = 1 (7.1)

Definition 2 Let P{y) 6 B". The pre-image ofP under the transition relation T is the

set Q, such that,

xeQ 3yeP,3us.t.T{x,u,y) = l (7.2)

Definition 3 Let I(x) be the set of initial states of the system. The set o/reachable
states ofthe system, R(y) is the leastfixedpoint of

Ro(y) = /(?)

Rk+\(y) = Rk{y)^ 3x,u[Rk{x)AT{x,u,y)] (7.3)

7.1.1 Formal Design Verification

In this section we informally describe the CTL model checking and language con

tainment approaches to formal design verification and indicate the core operations in
the underlying computation. In bothcases the underlying design is characterized by a
Kripkestructure [CES86].

Tor a brief background on FSMand the terminology used in thischapter, pleaserefer Section 2.3.

7.1. MOTIVATION 161

{}

Figure 7.1 An example illustrating a Kripke structure. S = {so,sijS2,S3yS4jS5,S6}y AP —
{a^b}. An edge from state toSj indicates that (si^sj) GT. States are labeled with the sub
set of APs true at the state. A path through K is a sequence of states ai,02,-" such that
Vi(a/,a/+i)G7'.

Definition 4 A Kripke structure is a triple (S,r,L), where S is a finite set of

states, T cSxS is the transition relation, and L.AP -^2^ is the labeling function
mapping atomic propositions (AP) (we view outputs as atomic propositions) tosets of

states. Apictorial representation of a Kripkestructure is given in Figure 7.1.

CTL Model Checking Paradigm

In the CTL model checking paradigm, properties are expressed as formulae from an

inductively defined syntax. Truth of the formulae is interpreted over states in Kripke

structures; determining the truth value of a formula over a state in the structure is re

ferred to as model checking and can be algorithmically performed using fixed point

calculations. Precise syntax and semantics are given in [Eme90]. As an example, state

so in the Kripke structure of Figure 7.1 models the formula EF (a Ab) ("there exists
a path to a state where both a and b hold"). This is because s\ is labeledby a and b,

and there is a path from sq to ^i, namely sq S2 S3 -y ss s\. This result can be

mathematically obtained by finding the least fixed point of

^o(^) = P

Rk+m = Rkip^UEXRkix) (7.4)

where p denotes the set of states which satisfy the formula (aAb), i.e. set of states
labeled with "a" and Note that the set of states satisfying EXR{x)y i.e. the set of

162 CHAPTER?. EFHCIENT TECHNIQUES FOR STATE SPACE TRAVERSAL

states that can reach some states in /?(3c) in one step, can be found by computing the

inverse image of R(x), with respect to the transition relation. Similarly, evaluation of

other CTL formulae require repeated image and pre-image computations.

Language Containment Paradigm

In the language containment paradigm, the design is identified by the set of generated
output traces Lo,and aproperty isgiven byasetofacceptable traces Lp (typically spec
ified bya setofstates, also called/air states). Verification consists ofchecking whether
all design behavior is acceptable, i.e., checking Lp C Lp, which in turn is equivalent
to checking that LpHLp is empty. Kurshan [HK90] observed that for certain classes
of properties (namely deterministic L-automata) the set Lp is efficiently computable.
BothLd andLpare modeled as Kripke structures and a new Kripke structure is formed

by composing them appropriately. Verification consists of finding a path in a Kripke
structure which starts at the initial state and leads to a fair cycle i.e. a cycle which

includes at least one state from a designated subset offair states F [EL85]. Conceptu

ally, this check may beperformed byfirst finding the setof states F* which reach a fair
cycle. Thus the property fails if and only if the initial state lies in F* (since we want
LdC[Lp = <|), i.e., no fair cycles).

Suppose Roo{x) represents thesetof reachable states. Limit thetransition relation to
thesetof reachable states by f{x,y) —r(3c,y)/?oo(3?).

The algorithmto find set of states F* is as follows:

1. Initialize Fo(jc) = Foo(^).

2. Compute Aoo usingthe following fixed pointcomputation:

Ao(x) = Fq{x)

Am{x) = Ak{x) n 3y[Ak{y)Af{xJ)] (7.5)

Aoo(y) gives the set ofstates whiich can reach some states ofFo(y) which lie on a
cycle.

3. Compute Boo using the following fixed pointcomputation:

Bo(x) = Aoo(x) n F{x)

U 3y[5t(y)Af(S,5')] (7-6)

7.1. MOTIVATION 163

Boo(x) gives the set ofstates which can teach some states ofA,^(x) n F(x).

4. Fo(S) = B„(x).

5. Repeat (2-4) until convergence.

6. F* is given by the least fixed point of

Co(3c) = Fo(x)

Q+,(3c) = Q(3c) U 3ylT(x,y)AQ(y)] (7.7)

It is apparent from Equations [7.4,7.5, 7.6, 7.7] thatthecore computation in verifica
tion consists of taking the imageor inverse imageof sets of states under the transition

relation.

7.1.2 State Explosion

Often designs areconstmcted by linking components together. The synchronous prod
uctof components defines a single Kripke structure (also referred to as theproductma
chine), the state spaceof which is the product of the components* state spaces. Hence

algorithms that directly manipulate states will have time and space complexity that is
exponential in thesizeof thesystem description. Indeed, thecomputational complexity

of state transition graphrelated problems is known to be PSPACB-complete [ASB93].
The complexity introduced by concurrentinteraction is popularlyreferred to as thestate

explosion problem. Thequestfor heuristic solutions to thisproblem forms the forefront

of research in formal verification [ASS"'"94, BCMD90, CHM'*"93, CM90b, Gra94].

Transition relations and sets of states can be represented using BDDs of their charac

teristic functions, which can be used for efficient fixed-point computations [BCMD90,

CM90b, Pix90]. BDDs are now extensively used for both design and implementation

verificationof hardware systems and many non-trivial design examples have been ver

ified using BDDs [CYF94, McM93]. Still, there are many instances of medium sized

circuits that cannot be verified using existing BDD techniques.

In the next fivesections, we describe various techniques which enable state transition

graph representation and state-space enumeration for large designs. These are:

164 CHAPTER?. EFHCIENT TECHNIQUES FOR STATE SPACE TRAVERSAL

• Use of clustered transition relations - grouping parts of the design to reduce the

number of iterations required for each image and pre-image computation.

• Ordering of clustered transition relations for efficient image and pre-image com

putation.

• Network partitioning for compact state-transition graphrepresentation

• Use of don't cares to reduce BDD sizes and computation times.

• Removal of redundant latches via constant propagation and retiming.

7.2 Clustered Transition Relations

Atransition relation canberepresented eitherasa monolithic relation oras a partitioned
one as described below.

Monolithic IVansition Relation: In this representation, the transition relation of the

system is represented by a single BDD [BCMD90] which is theconjunction of
the transition relations of the individual latches. As the circuit complexity grows,

the size of the transition relation usually explodes. Hence this approach becomes

infeasible for large, complex circuits.

Partitioned Transition Relation: In this case, a vector of transition relations is used;

each element of the vector represents the next-state relation for a latch. Coud-

ert [CM90b] proposed reducing image computations to range computations by
exploiting the property of the constrain operator; the range computation is per
formed by recursive co-factoring. The efficiency of this approach comes from
caching intermediate results and exploiting disjoint support. Touati ITSL'̂ 90]
suggested a similar approach based onforming the product asa balanced binary
tree. Image computation orpre-image computation iscarried outiteratively using
transition relations for individual latches. Heuristically speaking, as the number

of latches in the system grows, the computation time increases.

We present a simple extension ofthese two approaches which overcomes some oftheir
shortcomings. We represent the transition relation of the system by a vector of clus
tered transition relations. First, the next-state relation of each latch is computed. Next,

7.3. ORDERING OF CLUSTERED TRANSITION RELATIONS 165

a group oftransition relations are clustered together toform a vector ofclustered tran
sition relations. The idea is illustrated below.

Suppose the original vector oftransition relations corresponding toindividual latches
is given by 7} = 7/(3c, M,y,) for i = 1,2,.. .n. Then the image ofa set ofstates A{x) is
given by,

Image{A{x)) = 3x, u[A{x)YlTi{x,M,y,)] (7.8)
I

The transition relation of a clusters of latches is the product the transition relations

of corresponding latches. If there areK clusters Ci,C2, •••Q of latches, then theimage
computation can be equivalently written as,

Image(A{x)) = 3x, u[A(x)flTci] (7.9)
1=1

where Tq = Y[jecjj{x,i*^yj)'
In [BCL91a], Burch also proposed the use of clustered transition relations to rep

resent circuits more efficiently. Latches were grouped together to form clusters but

no automatic way to form clusters was given. Their technique possibly required user

expertise, based on circuit structure.

In our approach the user specifies a limit on the BDD size of individual clusters

(partition sizelimit). Thenext-state relations of latches areordered using theheuristics
given in Section 7.3. Thenthe next-state relations of latches are conjoined in thisorder
until theproduct sizesurpasses theuserspecified limit. At thispointthecurrent cluster
is complete and is stored in an array. Then, the clustering continues starting from the
next latch. This is illustrated in Figure 7.2.

7.3 Ordering of Clustered TVansition Relations

Since the system behavior is represented in terms of clusters of transition relations,
the core verification operations (image and reverse image computation) are performed

iteratively, one cluster atatime. SupposeA(jc) represents thesetofstates, and 7}(3c, i?,yi)
represents the transition relationof the cluster. Equation7.9 can be rewritten as

Image{A{x)) = 3x,u [A(3c) A Ti{x,u,y\) A 72(x,M,y2) A

... A r*(^,M,yit)] (7.10)

166 CHAPTER 7. EFFICIENT TECHNIQUES FOR STATE SPACE TRAVERSAL

Order New cluster

TV\ /T2'\

(D Clustering Clustering

TCI \ /TC2 \

® Order clusters

TC1'\ /TC2'\

®

Figure 7J2 Illustration of orderingand clustering.

7.3. ORDERING OF CLUSTERED TRANSITION RELATIONS 167

Notice thatif we were to taketheproduct of individual clustered transition relations

T/'s and finally with the setof states given byA{x) before quantifying outany variable,
the computation will amount tousing amonolithic transition relation. As aresult itwill
suffer from thesimilar problems as the monolithic transition relation approach.

It has been empirically observed that quantifying out variable(s) firom a function
leads to smaller BDD sizes. But existentialquantification does not distribute over con

junctions, i.e.,

3x{T\{x,y)'T2{x,y)) / 3;c7i(x,y) -BxTiix.y)

Hence, we cannot simplify individual clustered transition relations before taking the
product.

However, existential quantification doesdistribute overconjunction whenone of the

conjuncts does not depend on thevariable being quantified. Some examples areshown
below:

3w,;c,y,zA(H',x)-5(^,2) = (3w,xA(w,x)) •(3y,zB(y,z))

3;c,y,zA(A:,y,z)-B(x,y) = 3;c,y(fi(^,>') •(3zA(x,y,z)))

The technique of distributing the quantification overconjunction appropriately is pop
ularly known as early variable quantification. In some cases there may be more than
one way to perform the computation as shown in the following examples:

^w^,y,zT\ {w,x,y) •Tiiy.z) •A(w,x,y,z)

= ^w^,yT\ (w,x,y) •{3zT2(y,z) •A(w,x,y,z))
= 3y^T2{y,z)' (w,x,y) •A(w,x,y,z))

^w^,y^Ti{u,v,w,x) 'T2(v,x,y,z) •A(w,x,y,z)

= ^w^Ti (w, V, w,x) •(3y^r2(v,x,y,z) •A(w,x,y,z))

= 3y,z72(v,x,y,z) •(3w,x7i(M,v,w,x) •A(w,x,y,z))

In both the examples above, the existential quantification can be done in two ways

corresponding to two different permutationsof T\ and 72. For a problem with n com

ponents, thereare n\ permutations possible. The complexity of a computation of anyof

168 CHAPTER?. EFHOENT TECHNIQUES FOR STATESPACE TRAVERSAL

these permutations will depend on the amount of simplification performed during the
process.

We can apply this technique to Equation 7.10 by moving transition relations out of
the scope of the existential quantification if they do not depend on any of the vari
ables being quantified. For a given ordering of transition relations this equation can be
rewritten as,

Image{A{x)) = 3xk,Uk (Tk{x,u,yk) A (3xk-\,Uk-\ Tk-\{x,u,yk-\) A
... A (33c,,5, ri(x,M,y,) AA(x)))) (7.11)

7.3.1 Previous Work

Touati [TSL+90] computes the image of a set of states by exploiting the property of
the generalized cofactor in converting the image computation into range computation
given by

3x, u
i=k

1=1

where Ti^^x) denotes the generalized cofactor of 7/(x,M,y/) with respect to A(x). This
range computation is performed using a balanced binary tree - leaves correspond to
terms and variables at nodes of the tree that do not appear in the support of nodes

elsewhere are existentially quantified. Burch [BCL91a] criticized this approach on the
grounds that generalized co-factor may introduce new variables in the supports of the
terms and delay the ability to quantify outvariables. Heuristically, this would lead to
larger BDD size ofthe intermediate product terms. Note that if 7/(x,M,yi) isconjoined
with the product term obtained sofar, it introduces |y,j new variables (the correspond
ing next-state variables). We argue that the number ofthe variables that are existentially
quantified from the product term and the number ofvariables that are introduced inthe
product term determine the computational efficiency ofthis operation. Thus the space
requirement and the efficiency of image and pre-image computations become depen
dent on the order in which these clusters are processed. In [BCL91a], an ordering

scheme ofthe partitioned transition relation isproposed, based on the semantics ofthe
underlying model. However, this requires detailed understanding of the semantics of

7.3. ORDERING OF CLUSTERED TRANSITION RELATIONS 169

the model and hence is not easily automated. [CC93] introduces a new "exist" gener
alized cofactor which allows for distribution of conjunction and quantification. Their

technique for theearly quantification problem is quadratic in the number of relations,
and becomes impractical when the number of relations is large. [GB94] give a sim
pleautomated way to order the relations when each relation consists of thenext-state
function of a single latch. The primary criterion used is to choose the relation next in
ordering for which the maximum number of variables can be quantified out from the
new product (unique variables belonging to that partition). Incase ofa tie, therelation
with the maximum support is chosen.

Since, inourapproach, clusters donotnecessarily consist of a single latch, theorder
ingcriteria should also take into account thenumber of next-state variables introduced,
while choosing the next cluster in the order. It was found that the maximum depth in
theBDD ordering of any variable in a partition, referred to as the index of the variable,
also affects theperformance. Thereasoning behind thisis thatexistentially quantifying
a variablefrom a function becomes computationally less expensiveas the depth of the

variable in the ordering increases.

7.3.2 Our Heuristic

In our heuristic, four different factors were used to decide the order of the partitions. We

maintain two sets of clusters P and Q. The set P denotes the set of clusters which have

already been ordered and thesetQcontains the clusters which are not yetordered. Ini
tially, P is anempty setand setQcontains allthe clusters. Inthefollowing expressions,
PSy PI and NS denote the set of present state,primary input, and next-state variables,
respectively, a variable is denoted by v, S(T) represents the setof support variables of
T and || A || denotes thecardinality of the setA. For each cluster Q in the set Q, we
compute the following parameters:

1. vc, =11 {v |(v G5(7c,)) A(v GPSUPI) A(v ^ S(Tcj) Cj ^ Q.Cj GQ)} ||, i.e.
the number of variables which can be existentially quantified when Tq is multi

plied in the product.

2. WQ =11 {VI (vGPSUPI) A(vG5(7c,.))} ||, i.e. the number ofpresent state and
primary input variables in the support Tq.

170 CHAPTER?. EFHCIENT TECHNIQUES FOR STATE SPACE TRAVERSAL

3. xci =11 {VI (v € PSUPI) A(v € S{Tcj), Cj € 0 } ||, i.e. the number ofpresent
state and primary input variables which have not yet been quantified.

4. yQ =11 {v I (v € S(Tci)) A (v GNS)} |1, i.e. the number of next-state variables

that would be introduced in the product by multiplying Tq.

5. zci =11 {v I (v € NS) A(v GS{Tcj), Cj G0)} |1, i.e. the number of next state
variables not yet introduced in the product.

6. mc, = max{index(v), VG5(7c,) AvG(PIUPS)}, i.e., themaximumBDD index
of all variable to be quantified in the support of Tq.

7. Mq = max{mcy, Cj G0 }, i.e. the maximum BDD index of a variable to be
quantified out in the remaining clusters.

In order to normalize the effect of parameters 1, 2, 5, and 6, we form the following

ratios.

1- Rq = ("Ci/wc,)-

2. Rq = i^c,/xci)-

3- Rq = (yci/zci)-

4. 4 = (mcJMc,).

The cost function is defined as a weighted sum of these four ratios. The order of the

clusters is obtained by greedily choosing the cluster with the best cost function value

at each step. The chosen cluster is moved from set Q to set P and the process is re

peated until all the clusters are ordered (set Q becomes empty). The weights used can

be interactively varied. We performed a series of experiments to find a good combina

tion of these weights. The above algorithm has a straightforward implementation with

0(k^•n) complexity, where k is number of clusters and n is number of latches. This
complexity canbe reduced to 0{k-n) withappropriate book-keeping. Notethatthecost

of finding an optimal ordering is paid only once. The same ordering can be used for

successive image and pre-image computations inside some fixed-point computation.

7.4. NETWORK PARTITIONING 171

7.4 Network Partitioning

The analysis inSections 7.2and 7.3assume asafirst step that thenext-state functions of
the finite-state machinehavebeen obtained. For largedesigns,it is oftennot possibleto

build monolithic next state functions for latches in terms of primary inputs and present

state variables. In these cases, either the BDDs grow too large to be built or their

manipulationbecomes extremelyinefficient.

To contain the BDD size while building the next-state function, we adopt a simi
lar strategy as in building the clusters of next-state relations. We build the next-state
functions by composing appropriate BDDs for the nodes in the network. After each
composition, wemonitor the size of the BDDs and if thesize of theBDD forthat node
becomes larger than a threshold, weintroduce an intermediate variable. The algorithm

is shown in Figure 7.3. The resulting structural partition is shown in Figure 7.4. A
related technique is also presented in [JNC'*"96]. Theidea of controlling BDD sizes by
introducing variables has appeared in literature before [CM90a, CCQ94].

CreateNetworkPartition(N) {
nodeList = network nodes sorted in topological order;
foreach node in nodeList {

build function / for the node by composing the fan-ins;
if BDD size of / > threshold {

instantiate a new BDD variable and assign it to the node;

}
}

}

Figure 7.3 Algorithm for creatingpartitioned representation of the network.

After building the next-state functions of all the latches as described in Figure 7.3,

we assemble the next-state relations for all the latches as well as the relations for the

intermediate variables. This whole set of relations is then appropriately combined to

form clusters which are ordered as described in Section 7.3. For clustering and ordering

172 CHAPTER?. EFHCIENT TECHNIQUES FOR STATE SPACETRAVERSAL

Inputs

Intermediate
Variables

present state

Outputs

next state

Figure 7.4 Using intermediate variables to represent transition relation.

7.5. BDD MINIMIZATION USING DON'T CARES 173

purposes, we treat the intermediate variables as primary inputs.

In the following theorem, we establish that even for the partitioned network Equa
tion 7.11 correctly computes the image of a set of states.

Theorem 2 Suppose, Zi,Z2) •••>2* are the intermediate variables introduced during
building ofnext-statefunctions. Suppose tj(XiUjZ) = represents the transition
relation corresponding to the intermediate variable and 7/(x, = P*0yi rep
resents the transition relation corresponding to the i'̂ state variable. Further, suppose
Ti{x,u,yi) represents the partitioned transition relationfor the i'̂ state variable in the
finite state machine. Then,

—

S,z) n ?;(X, i/.Z,)-,))A(jr)

Proof:

3--

Y\tj(x,u,z)Yy'i(x,u,z,yi)j A{x)

3? Vw
For the result of the image computationto be equal we need to show that

3| (=n7;(5,2.)'/)

Thisfollows from the composition rulef{x) = 3jc,. (/(x){xi®g)). •

7.5 BDD Minimization Using Don't Cares

At various steps of the verification algorithm, we often encounter flexibility in repre

senting a set of states or the transition relation. In particular, we might have a choice

of adding or removing elementsof a set S, between a given lower bound and an upper

bound. This can be expressedby the expression SlQS CSuj whereSl and Su are the

given lower and upper bounds respectively. Any S which respects these bounds will
be acceptable. Similarly, we might have a choice of adding or deleting a transition in

174 CHAPTER?. EFHCIENT TECHNIQUES FOR STATESPACE TRAVERSAL

thetransition relation, i.e., given 7i,(3c,M,3') and Tu{x^u^y), any T{x,u,y) satisfying the
condition,

TdxAy) Q T(x,uJ) C Tu{x,u,y)

will be acceptable for the computation at that step.

These flexibilities can be alternatively represented as a pair (/,c), where / is the

function and c is the care-set of minterms, i.e., those points in Boolean space where we

care about the value of /. Essentially, we have the freedom to choose any function g

such that for everymintermin c, g matches the value of /. All other minterms (those

in c) belong to what is called the don't-care set. On those minterms, we can pick any

value of g. For instance, the flexibility to represent a set given as 5l C 5 C 5i/, can

alternatively be represented as (5l,Sl-\-Su).
Since the size of a HDD representing a set is not directly correlated to the numberof

elements in the set, the presence of don't care minterms leads to a HDD optimization
problem. This is illustrated in Figure 7.5. Figure 7.5(a) shows the original function.
Thedon't careminterm is represented as terminal labeled "DC".Bychoosing a value of
1,wegettheBDD shown inFigure 7.5(b) andtheBDD node count remains unchanged.
However, by choosing a value of 0 for the don't care minterm, we get the BDD in
Figure 7.5(c), and the BDD size reduces by 1.

DC [±i m [3 m
(a) (b) (c)

Figure 7.5 BDD optimization using don*t care minterms.

The problem of finding the optimal assignment to the don't care points is
NP-complete [TY93]. A lotof research work has gone into simplifying theBDD rep-

7.5. BDD MINIMIZATION USING DONT CARES 175

resentation of a function f with respect to a care-set c [TSL"''90, CM90b, SHSB94,
HBBM97]. Byreducing theBDD sizes viausage of don't cares, thecomputation time
of various BDD operations improves.

Here we outline various scenarios where the don't cares arise in BDD-based formal

verification.

1. Model checking: Ingeneral, model checking algorithm consists ofmultiple fixed-
point computations. These computations in turn make use of image/pre-image
operations. If a reachability operation is performed on a system a priori, the
unreachable states could be used as don't cares to simplify the operands for

image/pre-image operations. For instance, the least fixed point computation for
verifying the CTL formula EF(p)^ Suppose, P represents the set ofstates where
proposition p istrue and Rrepresents set ofreachable states, EF{p) can start with
the set of states S, such that P-RC S C P.

2. Reachability: Consider the following fixed point computation for finding the set
of reached states:

Ro{x) = Init(x)

RkMy) = Rk{y)0 3x,u[T%uJ)ARk{x)] (7.12)

Observe that inEquation 7.12, any setof states between Rk\Rk-] and Rk canbe
used inplace ofRk while preserving theresult for [CM90b]. Thus Rk-\ can
be used as a don't care set to minimize the BDD size of the states of which the

image is taken.

3. Simplification of the transition relation during image computation. Consider
Equation7.11 whichcan be rewritten as

Image{A{j^) = 3x,u [A(x) A ri(x,3,yi) A 72(x,m,5'2) A ... A 2]fc(x,M,yft)]

Note that each 7/ is a relation over the entire Boolean space of x. We can make

use of the following fact:

35(1(2,2,50^(5)) = 35 (r(5,a,50U(j)A(5)) (7.13)

^For a detailed description on the syntax andsemantics of CTL, please referto [CES86].

176 CHAPTER?. EFHCIENT TECHNIQUESFOR STATE SPACE TRAVERSAL

where T{Xy u,y) denotes thegeneralized cofactor of T(x,u,y) with respect to
A(x). The generalized cofactor of a function / with respect toanother function g
results in an incompletely specified function h = /|g, for which the onset, offset
and don't care sets are given by / •g, /• g, and g respectively. For our purposes,

we will overload the operator and use f\g to indicate the minimization of
BDD representation of the function / with respect to the don't care set g. The
"constraint" method (proposed in [CM90b, TSL"^90]) is"image" preserving, i.e.,
if "constraint" is employed to simplify the BDD of T{x,u,y) in Equation 7.13
and the simplified BDD is given as r(3c,M,y), then Equation 7.13 simplifies to
the following:

3x{T{x,u,y)A(^) = 3?(f(J,5,J))

Note that, there is no need to multiply the set A(3c) with the simplified transition

relation. However, BDD simplificationmy introducenew variablesin the support

of thefunction being simplified. The setof new variables will depend onA(^).

For a transition relation vector with k components, the corresponding simplifica

tion is given as:

3x,u [A(x) A T]{x,u,y\) A T2{x,u,y2) A ... A Tk{x,u,yk)] =

3x,u [A(x) a 7i(3c,M,y])U(je) AT2{x,u,y2)\A{x) A... A7]t(^,«,yik)U(jc)]

If we apply the "constraint"method to simplify the individual transitionrelations,

we would not need to multiplyA(3c) before performingthe quantification. How

ever, since our cluster ordering technique described in Section 7.3 makes use of

support variables of eachcluster and the "constraint" method can potentially in
troduce new variables in the supports of relations, we cannot have a static sched

ule of early variable quantification. That means, we would need to pay the price

of finding the obtaining the optimal schedule for each different value of A{x).
This is found to becomputationally expensive! Hence, in ourapproach wemake
use of another BDD minimization technique - "restrict" (proposed in [CM90b]).

This method does not introduces any new variables. The overall motivation is

7.6. REMOVINO REDUNDANT LATCHES 177

that co-factoring and simplifying each transition relation will result in simpler
BDDs and hence faster manipulation.

4. Simplification ofthe transition relation with respect torange care set: Sometimes
during an image (pre-image) computation, acare set isspecified inthe co-domain
(domain) which can be used to further simplify the transition relation. Suppose
we would like tocompute theimage ofA(^) and the range care setis specified as
jB(y). We can perform the following simplification oftransition relations:

3S,S fn7;(3E,«,y,) A(7)j =
3x,u fn7;(5,3,yi)U(D8(50 ^{2)j (^.14)

5. Simplification of image/pre-image with respect to range/domain care set: After
obtaining the image (pre-image), therange (domain) care setcan beused tosim
plify it even further in the following way. Suppose, C(y) is the image ofA{x)
with the range care set5(y) as obtained in Equation 7.14. We can further sim
plify C(y) asC(y)|fi(j;).

6. Simplification of the transition relation using approximate reachability analy
sis: Conservative approximations to the unreached states also yield don't cares.
Given a setof clusters {Ci,C2,...,Cjt}, wecancompute an upper bound on the
projection of reachable states in the product space to a component Q. Assign
ments to the latches in component Q not corresponding to the above statescan
never be attained in any environment.

In Section 7.7.4, wepresent results indicating theperformance improvement achieved
via usage of don't cares in minimizing BDDs.

7.6 Removing Redundant Latches

To a first approximation, the BDD sizes of transitioii relations and state sets depend on
the number of variables. The basic motivation behind removing redundant latches is to

simplify BDDs for transition relations andreached state setsby removing variables.

178 CHAPTER?. EFHCIENT TECHNIQUES FOR STATE SPACE TRAVERSAL

L1
L3

GND

L2
L4

Vdd

Figure 7.6 Propagation of constants through latches: Li, L3, L4 and L5 are redundant.

A latch is redundant if it can be replacedby a wire withoutchangingthe functionality

of the circuit. Replacing a latch by a wire, reduces the numberof BDD variables by

two and, heuristically speaking, wouldalso reduce the size of the BDDs that dependon

these variables.

We describe two methods of finding redundant latches and removing them.

7.6.1 Constant Propagation

Sometimes latchinputsare tied to either VDD or GND. In our algorithm wedetectsuch

latches and propagate their constantvalues to their fan-outs (hence the term "constant

propagation")- An example is shown in Figure7.6.
A recursive algorithm for removing redundant latches is the following:

1. The inputto the algorithm is the next-state functions of the latches.

2. Bach latch has two flags - value ("constant" or "variable") and status ("pro

cessed" or "unprocessed").

3. Mark all latches as "unprocessed".

4. While there exists unprocessed latches, pick an "unprocessed"latch L.

5. Call the functionjmdjredundant(L).

7.6. REMOVING REDUNDANT LATCHES 179

6. return

findj-edundant{L):

1. If L is processed, thenreturn its value ("constant" or "variable").

2. Mark L as "processed"

3. If L is tied to VDD or GND assign value "constant" and return.

4. Assign value "variable" to L.

5. For each variable v in the support of the next-state function of the L,

(a) If Vcorresponds to a primaryinput, markL as "variable" and return.

(b) If Vrepresents a wirewith constant value"0" or "1", continue.

(c) Find latch L,- for which vis the present state variable, and callftndjredundant{Li).

6. Modify thenext-state function of L by propagating the constant value of fan-ins.

7. If the next-state function becomes a constant, change the value ofL to "constant".

8. return value.

At the end of the algorithm, the next-state functions of latches do not contain present-

state variables corresponding to redundant latches. These variables are not considered
for further BDD manipulations.

In a related work Beer et al. P3BDG''"94] also mentioned a "constant-elimination"

technique to reducethe numberof inputs and memory elements.

7.6.2 Latch Removal by Retiming

Retiming rearranges the storage elements in a circuit to reduce its cycle time or to

reduce the number of storage elements, without changing its functionality. We use re

timing to reduce thenumber of storage elements. A simple example todemonstrate this
is shownin Note that, the inputs of these two latchesare fed by the samecombinational

logic. Hence the next-state values of these latches will always be the same. The new

180 CHAPTER?. EFFICIENT TECHNIQUES FOR STATE SPACETRAVERSAL

y Retiming

(a) (b)

Figure 7.7 Removing latches by retiming.

(a) (b)

Figure 7.8 Removing latch by retiming, a more general case.

circuit with the redundant latch removed is presented in Figure 7.7(b). The example

in Figure 7.7 is a special case of one in Figure 7.8. In the more general case, latches

havefeedback paths. However, if the combinational logicblocks feeding to the latches

have identical functionality (if C2 = C3 in the Figure 7.8), we can substitute one of the

latches by wire.

Figure 7.7(a).

The following algorithmdetects such general case^and removes redundant latches:

1. Sort all latches in increasing order of the support size of the corresponding next-

state fimctions.

7.6. REMOVING REDUNDANT LATCHES 181

2. Foreach pair of latches Li and Lj, with equal support size dothe following:

(a) Suppose jc/, xj denote the corresponding present-state variables (outputs of
latches) and f/, Fj are the corresponding next-state functions.

(b) Find the co-factors ^ixi* Pjxj* and %'

(c) If Fixi - ^Jx- =Fjxj remove Lj from the circuit and replace it
by a "wire" instead(as illustrated in Figure7.8).

The correctness of this algorithm is explained below:

Suppose F and G is a pair of functions such that all the support variables except one
are common to them. For example, F(x\ ,X2,... ,x„,y) and G(xi ,X2,... ,x„,z) will be
such a pair. Now from Shannon decomposition,

F = yFy+yFy

0 = zGi + zGf

Fy.Fy, Gz, and Gf have common support variables. Now, ifFy = Gz and Fy = Gf, then
except for the variable labeling, F and G are computing the same function. Hence, if
we substitute one variable (sayy) by another variable (say z), we can replace F by G.
As shownin Figure 7.8, we are able to share the logic if C2 = C3.

A similarapproach was proposed in [Lin91] who described an algorithm to remove
a maximal set of state variables without affecting the uniqueness of the reachable

states. The problem with that approach is that the set of reachable states has to be
pre-computed. In many bigdesigns computing thereachable states becomes infeasible
due to the size of the BDD. In our technique, redundant latches are removed once the

next-state functions are calculated. Hence the size of the reached state set is reduced

before we need to compute it.

It is interesting to see that our approach is orthogonal to Lin*s. After minimizing

the transition relation using this approach, we can still applyLin's methodto possibly
remove morelatches andget a further reduction in BDDsize aftercomputing the set of

reachable states.

Notice that retiming, in its more general form, can reduce the number of latches

significantly while preserving the I/O functionality of the circuit. However, since in

182 CHAPTER?. EFHCIENT TECHNIQUES FOR STATE SPACE TRAVERSAL

this case, latches can change locations arbitrarily, the functionality of a latch may not

be preserved. By performing only simple retiming transformations, as shown in Fig

ures 7.7 and 7.8, we preserve the functionality of each "latch".

7.7 Experimental Results

To illustrate the effectiveness of these algorithms and to compare them with some pre

vious approaches, we performed experiments using sequential ISCAS/MCNC bench

marks and some industrial examples. Important characteristics of some of these exam

ples along with a brief description are presented in Table 7.1. We perform reachability

analysis and model checking on these examples to demonstrate the effectiveness of

various techniques proposed in this chapter.

Unless otherwise noted the experiments were performed on a DBC5900/260 work

station with 440 MBytes memory and a limit of 10000 seconds on CPU time and 400

MBytes on data size were used while running the experiments.

Example # Latches # Gates Description

sbc 28 927 ISCAS*89sequential benchmark (a snooping bus controller).
Gigamax 45 994 Cache coherency protocol description for hardware

implementationof Gigamax distributedmultiprocessor[McM93].

BDLC*

144 4775

Abstracted Byte Data Link Controller (BDLC);
Manages the transmit-receive protocol between microprocessor
and a serial bus. Contains the abstract description of
BIT module. Part of a commercial chip.

BDLC 172 6639 Unabstracted version of the previous example.
2MDLC 83 2596 Two BIT modules interacting

via a serial bus using BDLC protocol.
BlU 154 3018 Absuacted version of a Bus Interface Unit

from a commercial microprocessor.
Every 63 838 Cache flush controller module

of a commercial microprocessor.

Table 7.1 Description of industrial examples.

7.7.1 Clustering

Table 7.2 shows our results on clustering by BDD size. We make the following obser

vations. Setting higher limits obviouslyleads to fewer clusters but the total number of

7.7. EXPERIMENTAL RESULTS 183

BDD nodes taken by theclusters increases. As shown in Equation 7.9, image compu
tation isperformed by taking the product oftransition relations ofclusters sequentially
(we will refer to them assequential iterations). The time taken in forming this product
is a function of the number of clusters as well as the cluster sizes. This results in to

tal CPU time being a convex function of partition-size limit. This can be reasoned as
follows.

Using a threshold limit of 1, results in a procedure which uses the least amount of
space but results in maximum number of clusters (equal to the number of latches in
the system) implying maximum number of sequential iterations. As the threshold is
raised, the number of iterations is reduced, while BDD sizes of the operands increase,

potentially leading togreater computational complexity. Inthe beginning, the effect of
reduction in the number of iterations dominates over the effect of increasing BDD sizes.

Asa result, initially runtime is reduced asthecluster size is increased. Later, the effect
of increasing BDD sizes (greater computational complexity) dominates thesavings due
to decreasing number of iterations and weobserve an increase in runtime. This is true
forall theexamples, except ones for which themonolithic transition relation is not very
big (e.g. 2MDLC).

E
x

am
p

le
s

P
a
rt

it
io

n
2

M
D

L
C

(L
=

8
3

)
B

D
L

C
*

(L
=

14
4)

B
D

L
C

(L
=

1
7

2
)

B
IU

(L
=

1
5

4
)

S
iz

e
L

im
it

N
|T

|
T

im
e

N
\T

\
T

im
e

N
\T

\
T

im
e

N
\T

\
T

im
e

1
8

3
2

7
4

4
7

2
8

1
4

4
5

1
1

4
4

3
2

1
7

2
7

0
4

2
9

2
4

8
1

5
4

3
9

4
3

5
6

4

1
0

0
1

6
2

9
4

3
3

4
8

4
9

8
4

5
4

2
3

5
5

7
1

3
2

5
9

3
9

0
5

4
8

9
9

5
0

4
3

0

1
0

0
0

5
3

4
3

4
2

0
3

1
4

1
9

6
1

3
1

2
5

2
0

2
4

9
6

6
2

0
1

4
1

8
3

0
5

1
1

2
6

6

2
0

0
0

3
3

2
3

8
1

7
1

1
1

2
7

7
6

2
1

1
5

1
4

3
4

7
7

4
1

6
6

2
1

5
3

5
7

4
6

2
4

5

5
0

0
0

2
6

6
1

2
1

6
7

8
4

4
0

3
3

1
0

6
8

4
6

9
9

4
1

4
4

3
1

0
7

6
5

6
3

2
2

8

1
0

0
0

0
1

6
8

5
3

1
4

2
6

5
6

4
1

0
1

0
6

6
6

1
7

0
4

1
2

4
3

9
1

8
0

9
1

4
2

2
7

2
0

0
0

0
-

-
-

5
8

8
9

8
4

1
1

6
5

9
0

1
7

9
1

1
2

1
7

2
1

7
3

9
5

1
7

1

•
3

0
0

0
0

-
-

-
4

1
1

1
8

6
7

1
2

9
4

9
9

0
2

0
1

1
8

5
7

2
8

4
4

5
0

1
9

8

N
:

N
um

be
r

o
fp

ar
ti

ti
on

s

U
lr

l,
T

im
e

T
ab

le
7.

2
R

es
ul

ts
on

sp
ac

e-
tim

e
tr

ad
e

of
f

in
cl

us
te

ri
ng

by
th

e
B

D
D

si
ze

ap
pr

oa
ch

.

C
o i C
o i E2 Q i <
0

C
o

7.7. EXPERIMENTAL RESULTS 185

7J.2 Cluster Ordering

Table 7.3 compares the performance (CPU time in seconds) of ourordering heuristic
with theheuristics proposed in [GB94, TSL'**90]. Specifically wereport the time taken
in the reached state computation. The weights chosen after some experimentation in
our heuristic were Wi = 2, W2 = 1,W3 = 1, W4 = 1.

Example

Various Heuristics

[TSL+90] [GB94] Proposed

BIU 305 326 315

Every 6087 5857 5788

2MDLC 176 244 179

BDLC* 140 191 144

BDLC space out 3023 2231

Gigamax 4.8 7.4 4.8

sbc 116 135 118

Table 7.3 Comparison ofCPU time (in seconds) fordifferent cluster ordering heuristics.

The above results indicate that the proposed approach always outperforms that in
[GB94]. Improvements up to 25% were achieved.

Although in some examples (BIU, BDLC*, 2MDLC, she) Touati's heuristic 1TSL"*"90]
performs marginally better than ours, on BDLC, Touati's approach ran out ofmemory.

7.7.3 Network Partitioning

In Table 7.4, we present results on network partitioning based on BDD-size heuristic.
Wemakefollowing observations fromthe data presented in the Table 7.4.

1. The number of partitions monotonically decreases with increase in threshold
value. This is obvious, since increasing threshold value allows us to compose

larger BDDs before creating a partition.

2. The total number of BDD nodes in all partitions increases with the threshold

value. This is because at lower threshold values, intermediate variables are ere-

186 CHAPTER?. EFHCIENT TECHNIQUESFOR STATESPACETRAVERSAL

Figure 7.9 Illustration of effect of partition threshold on the overall BDD size.

ated more often which keeps the BDD size in control. However, in some cases,

the shared size of the HDDs might reduce with increased threshold value because

of the simplification resulting due to reconvergent signals. This is illustrated in
Figure7.9. Considerthe following scenario for the Figure 7.9.

(a) Two different threshold values: ti and f//, with tL<tH-

(b) The BDD sizes for nodes A and B is greater than fi, but less than tn-

(c) Dueto reconvergent fanout the AND of signals A andB consists of a single
minterm. The number of BDD nodes required to represent this minterm is

linear in the number of inputs.

(d) Since the nodes A and B do not fanout to any other node in the network,

BDDs for nodes A and C can be freed after building the BDD for node C.

For the smaller threshold value, tt, we create two new variables a and b for

network nodes A and B, respectively. The correlation between the BDDs for A

and B is lost when we computethe BDD for node C. As a result, even thoughthe

BDD size for C is small (2 BDD nodes), the total shared size which combines

the BDD sizes for A and B is large.

For the largerthreshold value, f//, the composition of the BDDs forA andB and
later on freeing them results in overall smaller shared BDD size.

7.7. EXPERIMENTAL RESULTS 187

3. With minor anomaly, thetime required tobuild BDDs forthepartitions increases
monotonically with increasing in threshold. This is because as the threshold
value is increased, larger BDDs are composed to compute the functionality of
each node in the network, leading to increased computationtime.

7.7.4 Usage of Don't Cares

In Table 7.5, we giveresults on computational and memory performance improvement
achieved by usingdon*t careduring reachability analysis. A performance improvement

of a factor from 2 to 15 and a memory usage improvement of up to factor of 2 is

observed.

In Table 7.6, we give results on usage of don't caresduring model checking. We make
following observations:

1. Without any don't care usage (Column D), we were unable to complete model
checking on 6 out of 11 examples (exceeded timelimitof 1000 CPU seconds).

2. With simplification of pre-image using unreachable states as don't cares (Col
umn C) duringmodel checking we couldcomplete one moreexample (8-arbit).

3. The simplification of transition relation using don't cares allows us to complete
all the examples (Column B).

4. Comparing the CPU times we observe that using don't cares appropriately can
enable us to achieveperformance improvementof up to 100 and more.

5. Usingdon't cares also improves the memory usageduring model checking. For
the cases where it was not possible to complete model checking in given time,

we observed memory usage improvement by a factor of 20.

6. The primary source of don't cares during model checking is that derived from
unreachable states. Computing this set of don't cares requires reachability anal

ysis, thereby incurring some computationalcost. In some cases, the performance

achieved by the don't care set obtained via unreachable states cannot offset the

188 CHAPTER?. EFHCIENT TECHNIQUES FOR STATE SPACE TRAVERSAL

Parameters

Threshold P N T

100 175 400110 10.49

1000 40 469501 11.12

8085 5000 30 504546 14.62

10000 13 509471 14.68

50000 8 500738 15.07

100 93 25061 1.06

1000 29 182724 3.82

C5315 5000 19 949573 24.27

10000 13 1979381 48.91

50000 8 3589854 109.54

100 90 122942 2.44

1000 44 1057659 53.03

C2670 5000 32 1187959 57.54

10000 22 1169287 56.66

50000 - - t.o.

100 88 13580 0.46

1000 59 192882 4.13

C3540 5000 38 328742 8.58

10000 50 2581451 54.91

50000 39 8914776 315.67

Table 7.4 Partitioning of the network based on HDD size threshold.

P: Number of partitions

N: Total number of shared BDD nodes in all partitions

T: CPU time to build the partitions

7.7. EXPERIMENTAL RESULTS

CPU Time (Sees) Memory (MB)

A B A B

ethemet412 14.9 4.9 5.8 4.9

biu 105.8 22.3 21.5 14.9

abs-bdlc 474.3 31.1 18.0 10.7

ethemet213 696.5 98.9 29.6 14.9

sbc 611.8 361.7 26.5 25.7

slider 595.2 257.4 52.5 33.5

every 1998.0 1140.8 28.0 13.9

189

Table 7.5 Performance improvement with don*t care usageduring reachability analysis.

A: Image computation for the set R^.

B: Image computation for the simplified frontier set (RklRj^)-

computational costof reachability analysis. Forexample, in minMax30, we ob
serve that model checking time is insignificant, but, reachability analysis takes

ten times as much time and leads to worse performance.

7.7.5 Redundant Latches

The results of redundant latch removal techniques on various examples are shown in

Table 7.7. Weobserve up to 30%reduction in the HDD size of the transition relation.

Also, a reduction of up to 25%in the HDD sizeof the reached set wasobtained.

In the above analysis, resetvalues of the latches were ignored, i.e.,we did notcheck
for consistency of the reset values. However, these optimization techniques can be

applied even if the reset values of the latches are taken into account. In the constant
propagation approach, the reset value of the latch must match the constant next-state

value it takes, for it to be made redundant. In the retiming approach, the reset values

of the latches must be identical for either of them to be removed. This analysis can be

done very easily.

190 CHAPTER?. EFFICIENT TECHNIQUES FOR STATE SPACE TRAVERSAL

CPU Time (Sees) Memory Usage (MBytes)

A B C D A B C D

eisenberg 27.3 28.3 15.2 15.1 1.6 1.7 1.5 1.5

bakery 18.6 13.5 9.9 9.5 1.6 2.6 1.7 1.7

ethemetll2 to. to. 63.4 5.6 - - 7.7 4.3

ethemet212 to. to. 222.0 8.5 -
- 9.1 4.4

ethemet312 to. to. 526.6 19.9 -
- 11.1 5.5

ethemet412 to. to. 567.0 60.6 - - 24.1 6.9

elevator to. to. 182.7 111.3 - - 15.9 8.2

4-arbit 11.2 3.5 1.2 0.6 3.3 2.1 1.5 1.4

8-arbit to. 5.3 5.3 5.0 - 4.3 4.3 4.3

abp 6.0 3.6 1.7 1.8 1.7 1.6 1.6 1.6

minMax30 2.4 19.7 19.9 21.7 8.5 22.0 22.0 22.1

Table 7.6 Performance improvement with don't care usage during model checking.

a: Using reachable state set for creating don't cares.

p: Simplification of the pre-image w.r.t. care set.

7; Simplification of 7} during backward image computation w.r.t. care set.

A: No usage of don't care.

B: a

Ci ot+P

D:a+P+Y

to.: Time out after 1000 CPU seconds.

7.8. SUMMARY

examples A B C D E F G

171 1^1 |71 \R\

gigamax 45 9 0 0 9 2018 402 1389 301

BDLC* 144 1 0 5 6 24275 12208 23441 9984

BIU 154 6 2 26 34 30834 25276 20088 20956

A: Total # of latches

B: # of constant latches removed without constant propagation

C: # of latches removed after constant propagation

D: # of latches removed by re-timing

E: Total # of latches removed

F: Redundant latches not removed

G: Redundant latches removed

IT], [Rl: Sizes of transition relation and reachedstates

Table 7.7 Effects of redundant latch removal on BDD sizes.

191

7.8 Summary

We have discussed a series of algorithms for efficient state-space traversal of a finite-

state machine. We established that the core computation in BDD-based formal verifi

cation is that of forming the image and pre-imageof a set of states under the transition

relationcharacterizingthe system. Tomake this step efficient, we addresseduse of par

titioned transition relations, use of clustering, network partitioning, use of don't cares,

and removal of redundant latches. The efficacy of these algorithms was demonstrated

on ISCAS/MCNC sequential circuits as well as some industrial designs. Almost all

the algorithms described in thischapter have beenimplemented in the verification tool
VIS [BSA'̂ Qfia]. In particular, the image/pre-image computation techniques form the

coreenginefor model checking. Abrief description of the tool is givenin Appendix B.

Other BDD-based techniques which look promising include the "exists-cofactor"

of [CC93], and the "implicitly conjoined invariants" of [HYD94]. Certain limitations

of BDD-basedformal design verification cannot be solvedby the techniques described

in this work. For example, the BDD size of the reached set may be large under any

192 CHAPTER?. EFHCIENT TECHNIQUES FOR STATE SPACE TRAVERSAL

variable ordering. Other data structures might be useful in these cases. There is also a

wide class of heuristics, orthogonal to the approaches we have taken, for coping with

the state explosion problem; such as property-specific reductions [ASS*'"94], abstrac
tions [Gra94], and conservative approximations to reached state sets [CHM'''93].

Part III

Sequential Circuit Verification

193

Chapter 8

Retiming and Resynthesis: Complexity Issues

SO far we have looked at the techniques which primarily target the functional
representation and manipulation of the designs for efficient verification - high

performance BDD manipulation for various Boolean operations, compact state tran
sition graph representation, and efficient state-space traversal. An orthogonal set of
techniques, called structure-based techniques, use structural information about the cir
cuit and the nature of transformations performed on it to obtain efficient verification
algorithms. It has been established that a combination of functional and structure-
based techniques provides a robust methodology forcombinational verification [KK97,
Mat96, RWK95, Bra93]. For sequential circuits, however, attempts to combine struc

tural andfunctional techniques have been limited to smaller sizeexamples or relatively
minor transformations [HCC96b, HCC97].

In the next two chapters we investigate the implementation verification problem for
circuits which have undergone repeated retiming and combinational synthesis trans
formations. In this chapter, we attempt to formalize the notions of the optimization
capability ofrfetiming and resynthesis operations. Also, we formally establish the com
putational complexity ofthe corresponding implementation verification problems. Our
goal is to benefit from these results in establishing practical retiming and resynthesis
logic optimization and verification methodologies. In the next chapter we propose a
practical algorithm for thisimplementation verification problem.

8.1 Introduction

In combinational synthesis [BRSW87, SSL'''92], thepositions of the latches are fixed
and the logic is optimized. In retiming [LRS83, LS91], the latches are moved across
fixed combinational gates. The effects of retiming are - changes in the number of
latches (thereby leading to increase/decrease in area) andincrease/decrease in thecycle

195

196 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

time (leading to slower/faster clock rate). A side e^ect of retiming is that it enables
interaction between different combinational logic blocks. Hence retiming followed by

combinational synthesis enables logic optimization which is not possible by combina

tional optimization alone. Combinational synthesis generates new possibilities for the
latch locations perhaps leading to further optimization. A sequence of retiming and
combinational resynthesis stepscan provide powerful optimization of a sequential cir

cuit. In [MSBS91], it has been shown that retiming combined with synthesis can be

used to optimize sequential networks.

After the initial retiming algorithm proposed in PLS91] for a simple circuitcontain
ing single clock edge-triggered latches, many advancements have been made in terms

of efficient implementation and applicability of retiming with more complex memory

elements. In particular, techniques given in [SR94, MS97] can be applied to large se

quential circuits. Retiming of level-sensitive latcheswasaddressed in [SBS93a, LE92].

Recently, Leglet al. proposedretimingtechniques for edge-triggered circuits withmul

tiple clocks and load enables [LVW97]. They introduced the notion of a latch class

cl = (CLKyLE)^ which is all latches connected to clock signal CLK and load signal
LE. The retiming problem for multiple-class sequential circuits was reduced to an

equivalent retiming for singleclass sequential circuits, thereby exploiting performance

enhancements made in that domain. Since most industrial designs contain latches with

different load signals and multipleclocks, their techniquefurther improvesthe applica

bility of retiming to such designs.

Even though both retiming and synthesis techniques have been around for over a

decade, the optimization capability of a combination of these transformations and the

corresponding verification complexity havenotbeenformally established. Thischapter

addresses this issue.

The rest of the chapter is organizedas follows: in Section 8.2, we establish the opti

mization potential of various combinations of retiming and synthesis transformations.

In Section 8.3, we discuss simple extensions to traditional notions of combinational

optimization and retiming which can improve their optimization capability without a
significant increase in the algorithm complexity. The verification complexities of var

ious combinations of transformations are discussed in Section 8.4. In Section 8.5, we

summarize our results and discuss the open problems in this area. In this and the next

8.2. OPTIMIZATION POWER 197

chapters, we will use the term "combinational optimization", "combinational synthe
sis", "synthesis", and "resynthesis" interchangeably.

8.2 Optimization Power

We attempt tocharacterize the optimization power ofsequential synthesis using only re
timing and combinational synthesis transformations. In that direction, we first start with
basic transformation steps and gradually move towards general retiming-resynthesis
transformations.

8.2.1 Synthesis

Insynthesis, the latches inthecircuit are untouched and the latch inputs and outputs are
treated as circuit outputs and inputs respectively. Since I/O functionality is preserved
during the optimization, the logic function feeding into each latch also remains the
same. The combinational logic block can be optimized for area or delay of the circuit
asshown inFigure 8.1 (taken from [Smi97]). The critical path is shown with bold lines.

8.2.2 Retiming

Retiming moves the latches across combinational blocks, leading to possible increase
or decrease in the number of latches. The efrects of retiming are the following.

1. Change incycle time: Due tomovement oflatches, the delay along thecombina
tional path between two latches can change. This might increase or decrease the
clock rate at which the circuit can function correctly (the delays through combi

national gates along any path should be less than the cycle time). Thereduction
in cycle time is shown in Figure 8.2(b).

2. Change in area: The increase/decrease in the number of latches leads to the in
crease/decreasein the circuit area. An example of area optimizationusing retim

ing is shown in Figure 8.2(c).

However, reducing the numberof latches aibitrarily can increase the maximum

allowed clock period, leading to reduced clock speeds. Hence the typical use
of retiming has been for constrained area optimization. In this case, the area is

198 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

(b)

Figure 8.1 Combinational optimization: area vs. delay trade-off - (a) circuit with minimum
area (b) circuit with minimum delay. The delay is measured in terms of levels of logic.

8.2. OPTIMIZATION POWER 199

1 o<
(a)

^E>

(C)

Figure 8.2 Retiming: area vs cycle time trade-off - (a) original circuit (b) circuit with mini
mum cycle time (c) circuit with minimum area.

200 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

out RETIMING out

(a) (b)

Figure 8.3 Retiming changes the state encoding. Circuit diagram and state-transition graph
for (a) Original circuit and (b) Retimed circuit.

minimized while keeping the maximum cycle delay below a given value. The

trade-off between reducing cycle time and area is seen in Figures 8.2(a),(b), and

(c).

3. Change in state encoding: Movement of latches across a combinational gate re

sults in different encodings of the state transition graph. Retiming across a multi-

fanin/fanout can also lead to change in the number of state bits. Figure 8.3 shows

the state-encoding before andafter retiming. In this case, retiminghas performed

the following state encoding transformation:

00 10

10 01

01 11

11 00

Retiming can also change the number of state-bits as illustrated in Figure 8.4.

This fact can be exploited to optimize state-sp'ace-exploration based verification

andsynthesis methods where number of state-bits playsa crucial rolein thecom

plexity of the problem.

8.2. OPTIMIZATION POWER 201

RETIMING

(a) (b)

Figure 8.4 Change in the number ofstate bits due to retiming: 2state bits in the original circuit
(a) vs. 1 state bit in the retimed circuit (b).

202 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

out

out

a

out

(b)

Figure 8,5 Optimization power of retiming followed by resynthesis: (a) original circuit (b)
retimed circuit (c) resynthesized circuit.

8.2.3 Retiming - Resynthesis

In this optimization, resynthesis isperformed after retiming thelatches. Thismethod is
more powerful than simple retiming or synthesis because retiming exposes logic, thus
enabling logic optimization via synthesis which would not have beenpossible without
retiming.

For illustration purposes, consider the circuit given in Figure 8.5(a). By retiming

alonewe obtain the circuit in Figure 8.5(b). Further logic optimizationresults in circuit

in Figure 8.5(c). The final circuit cannot be obtained by performing any amount of
synthesis on the original circuit.

8.2.4 Resynthesis - Retiming

In thisoptimization, retiming is performed aftersynthesis. This method is morepower

ful thansimple retiming or synthesis because resynthesis canenable latchmovement by
creating additional points for latch transfer or by adding or removing redundant logic.
Consider thecircuitgiven in Figure 8.6(a). By resynthesis aloneweobtainthecircuitin

8.2. OPTIMIZATION POWER

(a)

out b

(b)

\ • out
iy^

(c)

203

Figure 8.6 Optimization power ofsynthesis followed by retiming: (a) original circuit (b) syn
thesized circuit (c) retimed circuit.

Figure 8.6(b) while applying retiming after synthesis results incircuit inFigure 8.6(c).
The final circuit cannot be obtained by performing any amount of retiming operation
on the original circuit.

Retiming followed by resynthesis and synthesis followed by retiming have different
optimization power. For example, the circuit in Figure 8.6(a) cannot be optimized
by the former transformation sequence, whereas the circuit inFigure 8.5(a) cannot be
optimized by the latter.

8.2.5 Synthesis - Retiming - Synthesis

In Figure 8.7, we show an example of an optimization that can be obtained by two
synthesis steps with a retiming step in between. Essentially, the first synthesis step
duplicates the logic for the second input tothe XOR gate which facilitates the backward
retiming of latches. The second synthesis step optimizes the logic. Note that trying to
perform retiming as the first step will be fiitile, since both the forward and backward

204 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

in1
in2 out

in1

t
out

Figure 8.7 Optimization power of sy^thesis-^«timing-synthesis: (a) original circuit (b) opti
mized circuit. This optimization cannotbe done by netiming-synthesis-retiming.

out

Figure 8.8 Optimization power of retiming-synthesis-retiming: (a) original circuit (b) opti
mized circuit. This optimization cannot be done by synthesis-retiming-synthesis.

movements of latches are blocked.

8.2.6 Retiming - Synthesis - Retiming

In Figure 8.8, we show an example of an optimization that can be obtained by two re

timing steps with a synthesis step in between. Essentially, the first retiming step allows

the simplification ofSignal e (which reduces to constant 0). In second retiming, latches

are moved across the ex-nor gate at the output. Note that combinational optimization

at the first step will not achieve anything, since no simplification can be made.

8.2. OPTIMIZATION POWER 205

out2

^LM-'

Figure 8.9 A circuit requiring "retiming- synthesis - retiming- synthesis - retiming"trans
formations.

8.2.7 Iterative Retiming and Resynthesis

The next question arises whether a finite number of retiming and resynthesis moves is

sufficient, i.e., can the transformation obtained b Ditrary number of retiming and

resynthesis operations always be captured by a finite number of such moves?

If we can come up with a parameterized versior. of the examples in the previoi

section, that would suffice as a counter example to the above hypothesis I V t: iy,

we have not been able to come up with such an exar/ . in the

Figure 8.9 indicates that the sequence of "retiming- sy; . rctinung - syntliesis -

retiming" transformations will be necessary to get the optimized design shown on the

right. The first four transformations are necessary to optimize Signal X to 0.

Analysis

Upon analysis of the illustrations we observe the following:

1. Forward movement of latches can get blocked due to an input.

2. Backward movement of latches can get blocked due to an output.

3. Retiming facilitates synthesis by exposing logic.

4. Synthesis facilitates retiming by:

(a) making some inputs redundant and allowing forward movement

206 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

(b) duplicating the logic for the output and allowing backward movement

(c) creating new cut-points for latches to move across

Wenowcompare theoptimization powerof an arbitrary numberofretiming-resynthesis

steps to general sequential optimization techniques.

8.2.8 Retiming-Resynthesis vs. General Sequential Optimization

General sequential-circuit optimizationmakes use of varioustechniquesincluding:

1. State encoding

2. State minimization

3. Logic optimization using information about unreachable states

4. Logic optimization using input/output don't care sequences

Let us now see which ones of these can be implemented using retiming and syn

thesis transformations alone. In [Mal90], an attempt has been made to characterize

the optimization power of retiming and resynthesis transformations, which we discuss

next.

8.2.9 Exposition in Malik's Thesis

The following theorem asserts the state encoding power of retiming and resynthesis

operations.

Theorem 3 [Mal90] Given a machine implementation M\, corresponding to a state

transition graph G, witha state assignmentSi, it is alwayspossible to derive a machine

Ml corresponding to the same state transition graph G, and a state assignment $2 by

applying onlya series of resynthesis and retimingoperations on Mi.

The proof of the theorem makes use of one-to-one mapping between the states of

Ml and 3^2, thereby transforming one state assignment to another using appropriate

logic. [Mal90] also discusses the case where the STGs of Mi and M2 are different. It

is asserted that under restricted state-transformations of the STG, the final circuit can

be obtained from the initial circuit using retiming and resynthesis operations.

8.2. OPTIMIZATION POWER

G1

2-way
Split

2-way
Merge

(a)

s11

si 2

G1

©

12.
s12

G2

2-way merge

(c)

s11

s12

G1

2-way
Switch

2-way split

(b)

207

s11

si 2

G2

s11

S12

G2

Figure8.10 State-graph transformations (a)2-way split and 2-way merge (b)switch (c) switch
using 2-way split and merge.

Suppose Gi and G2 are STGs corresponding to Mi and M2 respectively. Gi may
be modified to obtain G2 through a series of three basic transformations. These trans

formations maycreate states that are equivalent to existing states,merge statesthat are
equivalent to each other, and modify state transitions to go to states equivalent to the
original destinations. The definitions of basictransformations are given below:

2-waysplit A state .si in Gi is equivalent to twostatesin G2 (Figure 8:10(a)).

2-way merge Twoequivalent states and 512 in Gi are merged to a singlestatesi in

G2 (Figure 8.10(a)).

208 CHAPTERS, RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

Figure 8.11 Labeled cycle of equivalent states.

Switch A transition in Gi to a state Jn is modified to go to an equivalent state si2 in

G2 (Figure 8.10b).

The 2-way split and 2-way merge constitute primitive transformations, a 2-way

switch, multi-way splitsand merges can be accomplished by a sequence of 2-way splits

and merges (Figure 8.10c).

Definition 5 A labeled cycle of equivalent states in an STG is a directed cyclesuch

that all state vertices in the cycle are equivalent and all transition predicate vectors on

the edges in the cycle have the same label (Figure 8.11),

Definition 6 A cycle preserving (CP) transformation does not create or destroy a

labeled cycle ofequivalent states.

A non cycle preserving transformation (NON-CP) creates or destroys a labeled cycle

of equivalent states.

Theorem 4 [Mal90] Let M\ be an implementation corresponding to the state as

signment S\ and STG G\ and M2 be an implementation corresponding to the state

assignment S2 and STG G2. If G2 is obtainedfrom G\ using only CP transformations
then M2 can be obtainedfrom M\ using only a sequence of retiming and resynthesis

operations.

8.2. OPTIMIZATION POWER 209

The proof considered G2 to contain a CP 2-way split of some state s\ in Gi. A
transition to5i in Gi corresponds to a transition to either or 512 in M2 depending on

the primary input vector. Itwas stated that the primary input vector and state si uniquely
determine which of .sn or J12 is the destination state in M2. Thus, the one-to-many

mapping between the state codes for M\ and the state codes for M2 is actually a one-
to-one mapping between theM\ state codes plus theprimary input and M2 state codes.
This can beaccomplished through acombinational circuit C. Circuit C'performs many-
to-one mapping from M2's state codes to Mi's state codes. Theproofwas illustrated
with a figure that is reproduced inFigure 8.12. Thefigure shows how thecircuit may be
retimed resulting in a circuit thatcorresponds to G2. Thismaybe further resynthesized
to any circuit M2 that correspondsto state assignment52-

8.2.10 Interpretation and Extensions

In theexposition given in [Mal90] of the synthesis capability of retiming andsynthesis,

we came across some aspects that needed either correct interpretation or correction.
These are enumerated below:

1. The conditions under which merger of two states can be implemented with re

timing and synthesis was not clearly stated.

2. An assertion is made that all valid transformations are some sequence or combi

nations of splits,merges and switches. In particular all valid transformations can

be obtained using 2-way switch and 2-way merge.

3. The proof of the Theorem 4 states that the primary input vector and state s\
uniquely determinewhich of or sn is the destinationstate in M2.

4. The proof is given for the case where G2 contains a 2-way split of somestate in
Gi. The proof states that since each step in retimingand resynthesis is reversible,

2-way merges(obtainingM2 givenMi) can be handledusing retiming and resyn

thesis. While this is theoretically possible, it is not possible to give a constructive

algorithm to obtain this transformation as shown later.

5. No condition is given for splitting a state with a self loop.

210 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

Output

M1's code

(a) Machine M1

M1's code Output

M2's code

M1's code

(b) Resynthesize

M1's code

M2's code

M1's code

/''^Jnput

\ Output

Input

(c) Retime to get M2

Figure 8.12 Obtaining equivalentFSM implementations(proof for Theorem 4).

8.2. OPTIMIZATION POWER 211

LV
out

out

0 10 1

(a) (b)

Figure 8.13 Counterexample to the assertion in [Mal90]: Original circuit in (a) cannot be
transformed to the final circuit in (b) using retimingand resynthesis.

6. The equivalence of old and new destination states is given as the condition for
making the "switch" transformation. This is not completely correct.

7. The illustrations of non-CP transformations are not valid.

Below we make our clarificationsand provide extensions wherever possible.

Definition 7 Two states and S2 are 1-step equivalent, iffor all inputs i, the next

state of s\ on i is the same as the nextstate ofS2 on i and vice versa.

1. Upon investigation we found that the merger of two equivalent states sq and s\
can be implemented using retiming and synthesis only if the states are 1-step
equivalent. Similarly, a switch can occur only if the new destination state is 1-
step equivalent to the original state.

2. With this restriction on the merger of two states, not all valid state-transition

graph transformations can be modeled. An example is shown in Figure 8.13.

The original circuit is shownon the left with the associated state transition graph

G\. A sequentially equivalent circuit is shown on the right with corresponding

212 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

G1 G2

OOW 01>-M11)-*H10

1 0 1 0

Merge 01,10 Relabel

Merge 00.11

Figure 8.14 Using CP transformations to obtain the Anal STG from initial STG.

state transition graph G2. A quick analysis shows that neither the latches can

be retimed nor can the logic be optimized indicating that a sequence of retim

ing and resynthesismoves cannot make this circuit transformation. However, in

Figure 8.14, we show how G2 can be obtained from Gj by a sequence of CP

transformations. The transformation in Figure 8.14 involves merging the state

"01" with "10" and state "00" with "11". However, since these states are not

1-stepequivalent (theyare 2-stepequivalent), the STG transformation cannotbe

implementedwith retimingand synthesistransformation. This violates the asser

tion [Mal90] that all valid transformations are some sequence or combination of

splits, merges and switches, where these terms are interpreted appropriately.

3. In the proofof the Theorem 4, the assumption of the unique determination of the

destination state in A/2 (one of si 1or 512) given the primary input vector and state

Si is not correct. Consider the splitting of si in Gi as shown in the Figure 8.15.

Given i and si, we do not know which of si \ or sn is the next state in G2.

We can fix this problem by considering the transformation as shown in Fig

ure 8.16. The main difference between the transformations shown in Figure 8.16

and Figure 8.12 is that we also make use of previous state information of M\
in evaluating the state codes for Af2. By using information about previous state

in Ml, next state in Mi, and the input, we uniquely determine the next state for

M2. The combinational logicC' performs many-to-one mapping fromM2's state

8,2. OPTIMIZATION POWER 213

Split

Merge

G1 G2

Figure 8.15 Counter-example to theproofof theTheorem 4. The next state in G2 cannot be
determined solely by the next state in G\ and the input vector.

codes to Ml's state codes. We notice that the counter-example shown in Fig

ure 8.15 is trivially handled by the approach shown in Figure 8.16.

4. It is not straightforward to implementmergerof two equivalentstates. As shown

in Figure 8.17(b), the new next-state bits can be directly obtained using combi

national logic. To get back the next-state bits for Mi from the next-state bits of

M2, however, requires information about the present state of Mi. As a result,
we cannot retime the latches across the logic D to put them at the boundary of

M2's code. This is because of the feedback path from the latch output to Z)'.
To overcome this problem, first we need to make the transformation as shown

in Figure 8.17(c). Notice that this transformationrequires the knowledge of the

next-state function for M2. Now we can retime the latches appropriately to ob

tain Figure 8.17(d). Performing a final resynthesis step results in machine N as

shown in Figure 8.17(e). We should note, however, that this is a practical rather

than theoretical problem.

5. In [Mal90], no condition was given for splitting a state with a self-loop. In Fig

ure 8.18 we show the transformation for splitting a state with a self-loop. The

rationale behind this transformation is that we want to be able to perform 2-way

merge of the states obtained via 2-way splitting. As shown in Figure 8.18, states

Jii and 512 on the right are 1-step equivalent and hence we can perform 2-way

214 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

Present

State (M1)

Next

State (M1)

Next

State (M2)

M1

(a)

Output

Input

Output

Present .

State (M2)

Next

State (M2)

Present .

State (M2)

Next

State (M2)

Input

M1

Output

(c)

Input

M2

Output

(d)

Figure 8.16 Slustration ofSTG transformation (splitting ofstates) which can beimplemented
by retiming and combinational optimization: (a) Original machine Mi (b) Generation of next
statebits for the new machine (c) Retiming to generate next statebits (d) Combinational opti
mization to obtain new machine M2.

8.2, OPTIMIZATION POWER

input

Output

(a)

^ Present -
State (M1)

(M1 I
j/ Present _

State (M2)

Output

(b)

Present

State (M2)

Next

State (M2)

Next

State (M2)

Next

State (M1)

Present

State (M2)

Next

State (M2)

215

Input

Output

Figure 8.17 Illustration of STG transformation (merger of states) which can be implemented
by retiming and combinational optimization: (a) Original machine M\ (b) Generation of next-
state bits for the new machine (cannot be retimed to get Mi) (c) Reverse transformation to
generate Mi and the encoding and decoding logic (d) Retiming to generate next-state bits (e)
Combinational optimization to obtain new machine Mi.

216 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

self-loop splitting

G1
b

(a) (b)

Figure 8.18 STG transformations involving splitting a state with a self-loop.

merge to obtain the STG shown on the left.

The splitting of states with self-loops as shown in Figure 8.18 can be imple

mented using retiming and resynthesis with the transformations given in Fig

ure 8.16,

Note that multi-way splitting of a state with self-loop can be achieved by further

splittingthe states5ii and 512. Applyingthe condition of merging 1-stepequiva

lent states, it is obvious that we can merge two states each with a self-loop only

if they are of the form shown in Figure 8.18.

6. Since 2-way switch can be implemented using a combination of a 2-way merge

and a 2-way split, an obvious outcome of the correct interpretationof "merger"

of two states is that a "switch" can take place only if the new destination state

is 1-step equivalent to the old destination state. A switch between two 1-step

equivalent states can be obtained using similar, transformations.

7. An interesting observation canbe made that with the correct interpretation on the

merging of two states - we do not need the condition of CP preserving trans-

8.2. OPTIMIZATION POWER 217

2-way split (?) (?)

2-way merge
switch

0 .s12 .s12

G1 G2 G1 G2

(a) (b)

Figure 8.19 Non-CP transformations, as illustrated in [Mal90].

formations. The counter-example can be seen in Figure 8.18. In STG Gi, the
self-loop on is a labeled cycle ofequivalent states (there is just one state in
the cycle). However, in STG G2, due to the self-loops on su and 512, we have
two labeled cycles ofequivalent states, i.e., this STG transformation is non-CP.
However, as discussed earlier, we can implement this STG transformation using
retiming and resynthesis.

Next we look at the examples ofnon-CP transformation given in [Mal90] shown
in Figure 8.19. The merger of states 5ii and sn shown in Figure 8.19a is not
a valid 2-way merge because states and 512 are not 1-step equivalent. This
invalidates the classification of this transformation as non-CP. In Figure 8.19b,

the transformation involves a switch. Notice that states 5ii and 512 are 1-step

equivalent. However, after the switch, states 5ii and s\2 are no longer 1-step
equivalent, making the switch transformation invalid.

Based on the above observations, we state the modified version of Theorem 4.

218 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

Definition 8 Atran^ormation ofan STGG\ into another STG G2 isa 1-stepequiv
alent transformation ifGi has been obtainedfrom G\ byeithersplitting ofa state, or
merger oftwo I-step equivalentstates, orswitching between two states which areI-step
equivalent.

Theorem 5 LetM\ be an implementation corresponding to state assignment S\ and
STG G\ and M2 bean implementation corresponding tostateassignment S2 and STG

G2. M2 can be obtainedfrom M\ using only a sequence of retiming and resynthesis
operations if and only if G2 is obtained from G\ using only 1-STEP EQUIVALENT
Transformations.

Proof:

Figures 8.16 and 8.17 illustrate how splitting and merging of 1-step equivalent states

transformations can be implemented using retiming and resynthesis. Switching be

tween two 1-stepequivalent states can be implementedby a combination of merging

the two states and splitting as shown in Figure 8.10.

As shownin Figure 8.14, the mergerof 2-step equivalentstates cannotbe implemented

using retiming and resynthesis. We can extend this counter-exampleto indicate that a

merge of ik-step equivalent states, V/: > 1 cannot be implementedusing retiming and

resynthesis. •

8.2.11 Sequential Optimization Using Unreachable States

The general sequential circuit optimization extracts don*t cares by computing the set

of unreachable states. The don't cares obtained in this manner are used to optimize

the logic. This optimization is not possible by retiming and resynthesis alone. This

is illustrated in in Figure 8.20. In Figure 8.20(a), we present a circuit, with the cor

responding state transition graph in Figure 8.20(b). State "00" is the initial state. We

observe that state "11" is unreachable from the initial state. We can make use of this

information in optimizingthe circuit resulting in circuit given in Figure 8.20 (c). Since

the above transformation uses information (the set of reachable states) not available

8.3. EXTENDING NOTIONS OF RETIMING AND SYNTHESIS 219

(a) (b) (c)

Figure 8^0 Logic optimization using don't cares derived from unreachable states.

to retiming and resynthesis we can conclude that the optimization power of retiming
and resynthesis transformations is strictly less than that of general sequential circuit
optimization.

8.3 Extending Notions of Retiming and Synthesis

The examples given in the previous section illustrated the limitations of retiming and
combinational transformations. By suitably extending the notions of conventional re

timing and combinational optimization, we can increase theoptimization capability of
these transformations.

8.3.1 Eliminating Floating Latches

The current combinational optimization techniques do little manipulation of latches
(e.g., latch removal via constant propagation). While gates which do not transitively
fanout to any primary output areeliminated during combinational optimization, latches
are treated as pseudo primary inputs and outputs and hence are not eliminated even
if they do not transitively fanout to any primary output. Such latches are not elimi
nated during a retiming operation either. We can extend the notion of combinational
optimization to one which trivially gets rid of such latches before proceeding to reg

ular combinational optimization. The process of removing latches that do not fanout

to any primary outputs is termed asfloating latch elimination. It does not add to the
complexity of the synthesis algorithm. With this extended notion of synthesis, the cir-

220 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

0 10 1

(a)

Re-encoding

0 10 1

(b) «=)

Eliminate floating latch (L2')

Figure 8.21 Circuit transformation using floating latch elimination.

cuit transformation shown in Figure 8.13 can be obtained. The transformation process

is shown in Figure 8.21. Essentially, the first transformation re-encodes the circuit,

which can be implemented by retiming and resynthesis as explained in Theorem 3.

This is followed by floating latch elimination.

In general, this transformation will allow us to implement STG transformations,

where some redundant state bits are removed and the STG is reduced in size.

8.3.2 Allowing Negative Retiming

Retiming canbe extended by introducing the concept of "negative" latch[Mal90]. Al

lowing a negative edgeweight n on a peripheral edge(anedgethatconnects either an
input pin to a logic block or connects a logic block thatcomputes the value of an out
put to the corresponding output pin) is equivalent to "borrowing" n latches from the
environment. The latches may be "returned" by a subsequentretiming step. Using this

concept, we will be able to deal with some of theexamples presented in Section 8.2.
Inparticular, inFigure 8.22, weshow how thecircuit transformation of Figure 8.9, can
be done withsynthesis - retiming - synthesis step(as opposed to retiming - synthesis

8.4. VERMCATION COMPLEXITY 221

- retiming - synthesis - retiming).

The question arises, whether negative retiming adds anyoptimization powerto con

ventional retiming, i.e., are there circuit instances where optimizationusing negative

retiming combined with synthesis cannot be implemented with conventional retiming
and synthesis? In [Mal90], it is claimed that allowing negative edge weights on the
peripheral edges allows retiming operations and subsequent optimizations that would
otherwise not be possible. To illustrate this assertion, an example was given which is
reproduced in Figure 8.23. However, the same optimization can be achieved with
out resorting to any negative retiming as shown in Figure 8.24. Essentially, instead

of borrowing a latch from the environment, we duplicate the logic that produces the
output, thereby allowing thebackward propagation of latches. After combinational op
timization, theduplicate logic canbeappropriately removed. It is ourconjecture that in
general, any optimization made possible by negative peripheral retiming can be imple
mented by suitably duplicating the output logic that prevents the backward movement

of latches.

8.4 Verification Complexity

In the previous section, we discussed the optimization potential for various sequences
of retiming and synthesis transformations. In this section, we formalize the imple
mentation verification complexity for each of these transformations. Intuitively, the
verification complexity should be proportional to the optimization power of the corre
sponding transformation.

8.4.1 Verification After Retiming

The retiming moves the location of the latchesleaving the topology of the combination

blocks unchanged. The implementation verification problem definitionis:

Given two circuits Ci and C2, decide whether C2 can be obtained from Ci by simple

retiming moves.

This verification involves following two steps [SSBS92]: i) establish that the under

lyinggraphs of the two circuits are isomorphic and ii) establish that the latchcountsin

corresponding cycles in the two circuits remains the same. These steps are explained

in detailed below.

222 CHAPTERS. RETMINa AND RESYNTHESIS: COMPLEXTTY ISSUES

Negative
Latch

Retiming

Synthesis

f
out2

Figure 8.22 Retiming using negative latches.

out1

8 A. VERIHCATION COMPLEXITY 223

gi

g3

g2
a

g2

(a) (c)

gi

g2

[7=^)+'
e c

z~^
g3

e

(a) (d)

Figure 8.23 Example illustrating optimization using negative latches: (a) original circuit (b)
peripheral retiming with negative edge-weights (c) optimization (d) final retiming.

224 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

gi

a g3

(a)

gi

g3

g4

(b)

gi

g3

g2

g4

(c)

e a

b
g2

g4

(d)

g4

(e)

Z^rf

(f)

g3

g3

Figure 8.24 Normal retiming has same optimization power as negative retiming (negative
latches are shown as dashed boxes): (A) original circuit (B) duplicating output logic (C) re
timing (D) optimization (E) retiming(F) removing duplicate logic.

8A. VERMCATJON COMPLEXITY 225

1. First we need to verify that the two circuits have the same graph structure (as
suming thecorrespondence of primary inputs and outputs). Thisis an instance of
directed graph isomorphism.

Formally, given a circuit C with combinational gates and latches, we create a

directed graph G= (V, E). We create anode corresponding toeach combinational
gate. For simplicity, assume that all combinational gates are of the same kind.
Create an edge eijbetween node v,- and vj if the corresponding gate Ci isa fanin
togate Cj (possibly through latches). To each edge etj, assign a weight Wij equal
to thenumber of latches between thegates c/ andcj. Suppose G\ and G2 aretwo
circuitgraphs obtained from circuits Ci andC2, respectively.

Note that even though we have points of correspondences between Gi and G2,

i.e., nodes corresponding to input/output ports are matched, still the structural
matching between G\ andG2 remains a general isomorphism problem. This fact
is proved in following theorem.

Theorem 6 Given two circuits C\ and C2 with input/output correspondences,

to determine whether €2 is structurally equivalent to C\ is as hard as graph

isomorphism problem.

Proof: We prove this by reducing a general graph isomorphism problem to
structural equivalence problem of retimed circuits. From a given graph G we
create a circuit in the following way:

(a) For each node in the graph, we create a combinational gate.

(b) Foran edge eij in the graph, wecreate a net from gatei to gate j.

(c) We create a dummy input node / and a dummy output node O.

(d) We create a net from node 7 to each gate in the circuit.

(e) Finally, we createa net from each gate in the circuit to the outputnode O.

For two graphs Gi and G2, we create two circuits C\ and C2. It is trivial to
observe that G\ and G2 are isomorphic iff the circuits C\ and C2 are structurally

equivalent. •

226 CHAPTER 8. RETMING AND RESYNTHESIS: COMPLEXITY ISSUES

2. We also need to validate the number of latches along each net. A necessary

and sufficient condition has been given in [SSBS92]. The condition states that

for a valid retiming, the number of latches in each cycle should be preserved.

Instead of enumerating all the cycles in the cyclic component (which could be

exponential in the circuit size), one can check only the fundamental cycles. An

0(m^log(n)) algorithm for enumerating the fundamental cycles is presented in
[SSBS92], where m is the number of edges and n is the number of nodes.

8.4.2 Verification After Retiming-Resynthesis

Ml M2

Retiming
C2

C3

90

Figure 8.25 Transformation sequence for retiming followed by resynthesis.

L o
4 "" *

u

L T
3 P

U
L T
5

S

The transformation obtained using one retiming followed by resynthesis is shown in

Figure 8.25. The original circuit Mi is retimed to obtain Mi, which is then resynthe-

8.4. VERMCATION COMPLEXITY 227

sized to obtainMs. The problem at hand is the implementationverificationbetween Mi

and M3. In the figurewe notice that for both retiming and resynthesis, the input/output

ports function as fixed anchors. Moreover, for retiming, the locations of the combi

national blocks remain fixed (as shown in M2). And for resynthesis the location of

latches remain fixed (as shown in Ms). Notice that the new latch location in M2 are

also presentin Mi (which obviously has initial latch locations). Hence, givenMi and

Msy we can appropriately retime the latches in Mi to obtain M2. In order to determine
the new latch locations in Mi, we will need to solve a variant of graph isomorphism

problem. The verification between M2 andMs is equivalent to a combinational equiv
alence check. The complexity of these two steps is dominated by the combinational

equivalence check, hence the verificationcomplexity is NP-complete.

8.4.3 Verification After Resynthesis-Retiming

The transformation obtained using resynthesis followed by retiming is shown in Fig

ure 8.26. The original circuit Mi is synthesized to obtain M2, which is then retimed

to obtainMs. The problemat hand is the implementation verification betweenMi and

Ms. Notice that the initial latch location in Afi are also present in Ms (which also con

tains the new latch locations). Hence, given Mi and Ms, we can appropriately retime

the latches in Ms to obtain M2. The verification between Mi and M2 is equivalent to a

combinational equivalence check. Hence the overall complexity is NP-complete. An

other way to look at this is that the transformation Mj —> M2 Ms is just reversed

(Ms -> M2 Ml) and hence result obtained Section 8.4.2 applies.

8.4.4 Verification After Resynthesis-Retiming-Resynthesis

The transformation obtained via resynthesis-retiming-resynthesis is shown in Fig

ure 8.27. The original circuit Mi is synthesized to obtain M2, which is then retimed

to obtain Ms. Finally Ms is synthesized to obtain M4. The problem at hand is the

implementationverification between Mi and M4. Notice that, unlike the previous two

cases, the initial and the final latch locations are not simultaneously present either in

the original circuit or in the final circuit. To verify Mi against M4, we need to guess an

intermediate circuit (perhaps M2) which is obtained after resynthesis ofMi. After per

forming combinational equivalence check between Mi and the guessed circuit, we can

228 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

Ml

o 1 1

N
L

u 1

T
Resynthesis P

P U
U

T T

S S

M2

M3

D2

Figure 8.26 Transformation sequencefor synthesis followed by retiming.

8.4, VERMCATION COMPLEXITY 229

Ml M2

Resynthesis

M4 M3

Resynthesis D2

Figure SJ17 Transformation sequence for synthesis followed by retiming and resynthesis.

230 CHAPTERS. RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

apply the technique given in Section 8.4.2. The complexity of the overall verification

problem falls in S2 class [GJ79] in the polynomial hierarchy.

8.4.5 Verification After Retiming-Resynthesis-Resynthesis

The transformation obtained via retiming-resynthesis-resynthesis is shown in Fig-

M1

Retiming

Retiming

Figure 8.28 Transformation sequence for retiming followedby synthesis and retiming.

ure 8.28. The analysis follows along the lines of that in Section 8.4.4.

8.5 Summary and Open Issues

In summary we have been able to establish the following:

8.6. CONCLUSION 231

1. STG transformations which involve splittinga state into equivalent statescan be

implemented usingretiming and resynthesis transformations.

2. Merging oftwo equivalent states canbeimplemented byretiming and resynthesis
only if these states are 1-step equivalent.

3. It is proven that STG transformations can be implemented using retiming and
synthesis if and only if they are 1-stepequivalent.

4. The traditional notions of retiming and combinational synthesis can be modified
leading toimproved optimization capability without any increase in thecomplex
ity.

A number of issues are still unresolved. In particular:

1. The exact optimization potential ofanarbitrary number of retiming and synthesis
transformations is unknown except for the fact that it is less than fiill sequential

optimization.

2. Thenumber of retiming andsynthesis transformations required to obtain themost
optimum circuit possible is unknown. More precisely: suppose S indicates the
optimization space of retiming and synthesis transformations; does there exist
a finite number k, such that k transformations of retiming and resynthesis can

explore all of S.

3. The complexity of establishing if a circuit C2 has been obtained from Ci using
only retiming and synthesis transformations is unknown. We conjecture that this
complexity will be dependent on Point 2.

8.6 Conclusion

Retiming and resynthesis are powerful tools to optimize a sequential circuit. How

ever, so far theirexactoptimization potential and the complexity of the corresponding
verification problem has not been investigated. In this chapter, we have made an at
tempt to formally characterize the optimization power of various flavors of retiming
and resynthesis transformations and also to characterize the exact complexity of the

232 CHAPTERS, RETIMING AND RESYNTHESIS: COMPLEXITY ISSUES

corresponding implementation verification problem. We have established andclarified
some results and have indicated some open issues.

Chapter 9

Verifying Retimed and Resynthesized Circuits

IN Chapter 8, we made an attempt to formally establish the sequential optimization
capability and corresponding verification complexity of retiming combined with

combinational optimization transformations. In this chapter, we propose a practical
verification technique for such transformations. We startwith thenotion thatalthough
retiming combined with combinational optimization is a powerful sequential synthesis
method, this methodology has not found wide application because formal verification
of sequential circuits is not practical and current simulation technology requires the
correspondence of latches for ease in the detection of errors. We present a practical
verification technique which enables such sequential synthesis fora class of circuits. In
particular, we require certain constraints tobemet onthe feedback paths of the latches
involved in the retiming process. Fora general circuit, we can satisfy these constraints
by fixing the location of some latches, e.g., by making them observable. We show
that implementation verification after performing repeated retiming and synthesis on
this class of circuits reduces to a combinational verification problem. We also demon

strate that our methodology covers a large class of circuits by applying it to a set of
benchmarks and industrial designs.

This chapter is organized as follows: after a brief introduction in Section 9.1 we
present previous research works in the area of sequential verification in Section 9.2.
Weestablish the notation, terminology, and our notion of equivalence in Section 9.3. In

Section 9.4 we describe the basic idea behind our work and give appropriate definitions.

In Section 9.5 we discuss our technique for a circuit with no feedback latches. In

Section 9.6 we present the extension to include circuits containing feedback latches.

The details of the experimental setup and results are given in Sections 9.7 and 9.8,
respectively. Most of thework presented in thischapter was first reported in [RSSB97].

233

234 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUrrS

9.1 Introduction

Retiming andresynthesis, though lesspowerful in theory thanfiill sequential optimiza
tion (basedon unreachable states, input/outputdon't care sequences),cover a widepart

of the optimization space. However, this technique has not had much success in ob
taining a place in traditional synthesis methodology. One of the main bottlenecks has

been the lack of efficient verification tools to verify the functionality of the optimized

design. The verification complexity of a retimed and resynthesized design is not for
mally known. It is conjecturedto be harder than the NP-hardclass of problems. On the

other hand, the verification problemfor combinational logic optimizationis a relatively

easier problem in practice. Much work has gone into combining structural and func

tional techniques to obtain verification algorithms that can deal with reasonably large

industrial circuits [Mat96, JMF97, KK97].

We propose a methodology which reduces a sequential verification problem into an

equivalent combinational verification problem for a class of circuits. This allows ex

ploitationof the advancements made in the field of combinational verification and use

of its powerful techniques to perform verification. Our method requires that for each

latch with a feedback path, its next-state function should be positive unate in the latch

variable. Later we will show that the scope of this methodology allows i) the presence

of self-loops on latches, ii) pipelined circuits where the latches cannot be retimed to

the periphery, iii) the presence of latches trapped inside combinational blocks, iv) cir

cuits with load-enabled latches, and v) circuits where latches conditionally update their

contents.

Typically, industrial designs consists of two kinds of latches. The first kind con

stitutes small finite state machines. Each such state machines are strongly connected.

These machines interact with each other via the acyclic network of latches of the sec

ond kind. In general, designers want to preserve the locations of the latches that hold

the states ofFSM (the first kind), since they want to monitor simulation results. Fixing

some latchlocations breaks the feedback pathsand ^ a result the circuitmight satisfy

our constraint. In case the given circuit still fails our constraint, we expose a mini

mum number of latches making their locations fixed. Then we perform retiming and

resynthesisoptimizations on the modifiedcircuit. In general,makinga latch observable

9.2. PREVIOUS WORK 235

can restrict some optimization transformations thus incurring a penalty inoptimization
quality. In practice, our approach does not incur a significant optimization penalty due
to this modification.

9.2 Previous Work

Many researchers have investigated the problem of sequential equivalence checking
and inparticular verification ofretimed circuits. Apopular approach is tocompose the
machines together and traverse thestate space of theproduct machine. Thecomposed
circuit is modeled as a finite state machine and the outputs are evaluated as functions

ofthe present state and primary inputs. Equivalence between two circuits implies iden
tical values ofcorresponding outputs in all reachable states. Explicit state enumeration
techniques perform an explicit traversal of the state space [DMN88, DDHY92]. Due
to the explicit nature of this technique, it is limited to only a small number of state
elements.

Symbolic techniques [CBM89, BCMD90] implicitly perform state-space traversal
on the product machine. A salient feature of these techniques is that the size of the
underlying decision diagram datastructures does not depend on the number of states
or the state elements in the circuit. Although, the state-of-the-art symbolic methods

can deal withcircuits withup to a few hundred latches, theircapability falls below the
smallest size designs being optimized in industry.

In [AGM96], a technique is described where sequential optimization is performed
on a modified circuit (where each pair of states can be distinguished by applying an
input in a single clock cycle). The modified circuit is obtained bymaking some latches
observable which in turn restricts the amount of optimization that can be performed.

The theoretical complexity of their verification problem remains PSPACEr-complete
(thecomplexity of an arbitrary sequential equivalence check). However, on a practical
note, their technique requires state space traversal of individual machines as opposed

to theproduct machine. They produced results on relatively small MCNC andISCAS
benchmarks becauseit wasnot possibleto performsinglemachinestate space traversal

for large ones.

In [HCC96b], a technique for verifying the equivalence of twocircuitsafterretiming
and synthesis transformations was given. Their technique relies on finding the corre-

236 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

spondence between latches by Fetiming them appropriately. They presented results for

ISCAS benchmarlcs by comparing circuits which have undergone one step of retiming

after combinational optimization.

In [HCC97], a combination of BDD-based and ATPG-based technique is presented.

This approach relies on finding equivalentpoints in the two circuits and the symbolic

justification requires the computationof the transitionrelation for the product machine.

They gave results on circuits optimized by "script.rugged" inside SIS. This optimiza

tion is mostly combinational and only redundancy identification and removal leads to

minor sequential changes.

In [SK97], a structural technique for sequential verification is presented. The equiv

alence is performed by expanding the circuit into an iterative array and by proving

equivalence of each time frame by well-known combinational verification techniques.

Their technique relies on finding the logic transformations at each time frame. They

show results on ISCAS benchmarks, where an optimized circuit is obtained by just one

step of combinational optimization (using fx in SIS) followed by retiming. Applica

tion of their approach to optimized circuits obtained by a sequence of retiming and

resynthesis operations seems difficult.

Proposed solutions to the sequential equivalence problem can be broadly divided

into two categories. The solutions in the first category attempt to solve the general

sequential equivalence problem ITSL'*"90, CM90b, HCC97, SK97]. However, due to
the complexity of the problem, the proposed solutions are either limited to relatively

small size circuits or to circuits which have undergone relatively fewer optimization

transformations.

The second approach is to trade off the optimization capability with the verification

complexity. In this approach, the sequential optimization is constrained in order to re

duce the verification complexity. In the limit, by making all the latches observable, the

sequential synthesis reduces to combinational optimization leading to combinational

verification problems. The solution proposed in [AGM96] falls in this category. Our

methodology can alsobe viewed as offeringanotherpointin the tradeoffcurvebetween
constraints-on-synthesis versus complexity-of-verification.

Wepropose a technique whichreduces the sequential equivalence problem to an in

stance of combinational equivalence; hence it can be applied in practical verification

9.3. PRELIMINARIES 237

environments. For each latch, we impose certain constraints on the feedback path (if
one exists). If the constraints arenotmetin the original circuit, wemake a minimum
number of latches observable in order to satisfy the constraints. We allow arbitrary

sequences of retiming and synthesis operations for logic optimization. Also, unlike
structure-based approaches [HCC97, SK97], ourtechnique does not rely on the struc
tural similarity between the circuits and we can deal with circuits which have gone
through a sequence ofretiming and synthesis optimizations. The techniques proposed
apply to circuits containing edge-triggered latches (both regular and load-enabled).

Inindustrial design environments, combinational verification isapplied tosequential
circuits. However, this requires that little or no retiming be performed. These con
straints limit the scope of retiming and synthesis transformations drastically. By con
trast, our approach allows an arbitrary number ofretiming and combinational synthesis
transformations since it does not relyon structural similarity or matching state-bits.

9.3 Preliminaries

Inthis section we present our circuit model and notion ofequivalence used inthis work.

9.3.1 Circuit Model

A sequential circuit is an interconnection of combinational gates (no combinational
cycles) and memory elements along with input and output ports. Typically various
notions ofsequential circuits differ in the definition ofmemory elements. We focus on
sequential circuits where all the memory elements are edge-triggered latches driven by
thesame clock (single phase). However, these latches can have load-enable signals. A
sequential circuit is given as C= (/,0,G,L), where /,0,G, and L are sets of inputs,
outputs, gates, and latches, respectively. Each latch I e Lisa pair I= (x,e), where x
is the output signal of the latch and e is the load-enable signal. For a latch without any
load-enable signal (also referred to as regular latch in this paper), we assume e = 1.
Similar to the notion in [LVW97], we define a latch.class cl = (e), which is all latches
that have the the same load-enable signal e. This classification is important during
retiming transformations, since latches can merge as theresult of a move only if they
belong to the same class.

238 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

9.3.2 Notion of Equivalence

Several notions of sequential equivalence are proposed in the literature. For circuits

with a unique initial state, the "reset" equivalence is checked for all the states reach
able from the respective initial states. For multiple initial states, the following no
tion of equivalence is used: two circuits C\ and C2 with initial states set S/, and S/j
respectively are equivalent if and only if for each state j GS/,, there exists a state

t € 5/2 such that Ci and C2 are reset equivalent for these initial states and vice versa.
For circuits with an unknown initial state, several notions of equivalence have been

proposed: post-synchronization equivalence [Pix92], safe-replaceability [PSAB94],
circuit-covering [HCC96a], and 3-valued equivalence, to name a few.

Similar to 3-valued equivalence, we do not assume a power-up initial state for the

latches. Instead, we assume that at power-up,each latch has a non-deterministic Boolean

value. Note that, this does not prevent the design from having a reset state for some

latches which is activated when the reset line is pulled or a reset sequence is applied.

Since the power-up state is non-deterministic, the circuit behavior may not be de

terministic for some input sequence. Given a circuit C with L latches and an input

sequence the output function Oc{k) = o if the circuit produces output o on input
sequence n from every power-up state (in 2'̂ '); if the circuit produces two different
outputsO] and 02 on input sequence n from two different power-up states, we say that

Oc(k) = ±, where X denotes an undefinedvalue.

Definition 9 Two circuits Ci and C2 are exact 3-valued equivalent ifand only iffor

any input sequence n: Oc^ (tc) =

Notice that X is somewhat similar to the value *X' used in conservative 3-valued

logic simulation. However, X gets rid of the conservative effects of 3-valued simu

lation: a 3-valued simulator may incorrectly say that a signal is because it does

not have the ability to correlate the various instances of X values as illustrated in Fig

ure 9.1. Circuits 9.1(a) and 9.1(b) are not 3-valued equivalent, but are exact 3-valued

equivalent.

In the nextsection wepresent our technique to derive a combinational representation

of the sequential circuits. In Sections 9.5 and 9.6 we apply it to sequential circuits
without and with feedback respectively.

9.4. FROMSEQUENTIAL TO CX)MBmATIONAL 239

(a) (b)

Figure9.1 Example ofcircuits which arenot3-valued equivalent butareexact 3-valued equiv
alent

9.4 From Sequential to Combinational

Wereduce theproblem of sequential verification to an extension of combinational veri

fication. Thegoalof our technique is to obtaina canonical acyclic combinational circuit

from a givensequential circuit. Towards that we introduce the following extensions of
regular Boolean functions.

t : r € Z Represents current time

T : {TGZ:T<t}

9.4.1 Clocked Boolean function

Definition 10 A clocked Boolean function (CBF) is definedfor circuits containing

combinational gates and regular latches. Given a circuit C, the CBFfor the circuit

represents thefunctionality of its outputs. Thisfunctionality is given in terms of input

values in multiple (butfinite) clock cycles. Formally, a CBFfor the output ofa circuit,

with n inputs and latch depth d isa Booleanfunction F : W*^ B. For a signal s in
the circuit, the CBF ofthe signal s(t) at time t is defined inductively asfollows:

• Ifs is the output ofa gate G, the corresponding CBF is thefunctional composi-

tionpfthe CBFs ofitsfaninsat the same time instant, i.e., s{t) = /g(yi(0>3'2(0»--- i>'n(0)'
where yi ,y2i ••• ijn tire thefanin signalsof G, and fg represents itsfunctionality.

• Ifs is the output ofa latch, then the CBF is the value ofitsfanin after one clock

cycle, i.e., s{t) = y(t —1), where y is the input ofthe latch.

240 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

w

(a) (b) (c)

Figure 9^ Functionality of AND gate and a latch.

w

Figure 9.3 Example of a sequential circuit: latchtrapped within a combinational block.

• Ifsis theprimary input ofthe circuit, its CBF is an independent inputvariable

s(t). Note thats{t) ands(t')fort t' are different independent variables.

We illustrate this concept using the following examples. The function fx for the

output of the AND gate is nothing but the logical AND of the functions at the input,

i.e., ;c(/) = y(02(0- The function for the latch is interpreted as the function of the latch

inputsignalat the previous clockcycle, i.e., w{t) = x(r —1). If we put the latchandthe

AND gate together as shown in Figure 9.2(c), the functionality of the latch output in

terms of the primary inputs is given by,

w(<) = -1) = y{t - l)z(r - 1)

Consider the circuit given in Figure 9.3. The output function is given as:

o(t) = c(t)d{t)

d{t) = c(»-l)

c{t) = b{t)®a{t)

b{t) = a(/-l)

o{t) = [a(»-l)ffia(t)] A[a(f-2)©a(t-1)]

9.4. FROM SEQUENTIAL TOCOMBINATIONAL 241

Essentially, the output function depends on the value of input a in three different
clock cycles and we have obtained the CBF for the output.

Unlike the regular Boolean functions which give the value of a signal based on the
assignment ofinput values for one time instant only, the CBF gives the value ofasignal
for input values delayed by a finite number of clock cycles. This notion is very sim
ilar to the notion of Timed Boolean Function given in [Lam93]. In [Lam93], similar
expressions are obtained for the signals which integrate both timing and logical func
tionality and generalize the conventional Boolean functions to the temporal domain.
These expressions were used in timing analysis, analysis and optimization of wave-
pipelined circuits, and performance validation ofcircuits and systems. However, their
usage in representing and verifying the functionality of sequential circuit has not been
done before.

9.4.2 Event driven Boolean function

First we define some notation.

Pi(x) : Boolean predicates over time
p = {p,(t)} Set of Boolean predicates

E = Set of events

where elements of aredenoted by [pi,P2) ••• ^Pk] sund an event £ € E is an ordered
set of timed Boolean predicates.

Next we establish the time instant defined by an event. We define the function t):

E T as follows:

^iU) = ^ empty event denotes the current time
-eoifA([pi,p2,...,Pn])=<t)Tl([PbP2,..-,P«]) I maxx{T€A([pi,p2,---iPfj])} Otherwise

where

A(\pi,P2,--,Pn]) = {t < •nto.K. •••,?/.]):Pi(t)}

(—oo ii

maxx

Intuitively, for an event £ e E, consisting of Boolean predicates over time, ri(£)
gives themost recent time instant after which alltheBoolean predicates inE have been

242 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED dRCUnS

active in the order in which they are listed. If the Boolean predicates in an event cannot

be active in the order they are listed, il(£) = —«> indicatingan undefined value.

Using theii notation, wenowdefine thenextextension to a regular Boolean function.

Definition 11 An event driven Boolean function (EDBF) is definedfor circuits con

tainingcombinational gates and enabledlatches. The EDBFfor theoutputofa circuit

C, with n inputs and kdistinct events, isa Booleanfunction f: W*^ B. Fora signal
s in C, and an event E, the functionality of s at time 'n(£) is defined inductively as

follows:

• If s is the output ofa gate G, the corresponding EDBF is thefunctional com

position of the EDBFs of itsfanins values associated with the same event, i.e.,

j(t((£)) = fg{y\(n(£)).y2(l(£)). •••,yn(r\(E))). wherey,,y2,... ,y„ arethefanin
signals ofG and fg represents itsfunctionality.

• Ifsis the output of a latch withfanin signal y and enable signal e, then it takes

the most recent value of y at which e was active. This is given as s{r\{E)) =

y(Ti(h£])).

* Ifs is the primary input of the circuit, it represents an independent input vari

able.

Intuitively, fora signal s andanassociated event £ € E, theEDBF s{Tf\(E)) gives the
value of s at the most recent time instant after which all the Boolean predicates in E

were active in the time order consistent with the listed order.

The following examples illustrate the concept. In'Figure 9.4, the value of signal y,
canbe represented asy(Tl([c])), sincethe value ofy is equal to the valueof x at the time
at which e was last active. In Figure 9.5, the functionality of signal z associated with

9.4. FROM SEQUENTIAL TO COMBINATIONAL

e

4-

243

Figure 9.4 Combinational functionality in thepresence ofenabled latches (illustration I).

e1 e2

u X w ^ y
^ HioL1 "1.2

e3

VAX-4L3

Figure 9.5 Combinational functionality in the presence of enabled latches (illustration II).

244 CHAPTER 9, VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

oo o

Figure 9.6 Anexample of acyclic sequential circuit: pipelined circuit.

an event E can be obtained as follows:

z(n(£)) = y(n(£))-xCn(£))

y(ii(£)) = »«'(ii([«2,£]))

w(Tl([e2,£'])) = «(n([ei.e2,£]))
x{r\(E)) = v(n([c3,£]))

z(ti(£)) = «(Tl([ei,e2,£]))-v(Ti([e3,£])) (9.1)

Equation 9.1 indicates that value of z is equal to the AND of value of u which has

been propagated through both latches L\ and L2 and of v which has been propagated

through L3.

In the next section we show how we make use of CBF and EDBF to obtain combi

national functions for sequential circuits.

9.5 Sequential Circuits without Feedback

We consider sequential circuits without feedback paths (also known as "acyclic se

quential circuits"). Thetypical circuits in thiscategory include: pipelined circuits (Fig
ure 9.6); and acyclic circuits with latches trapped within a combinationalblock (Fig

ure 9.3). Wefirstexplain our technique for circuitswith regularlatches(no load-enable

signal) and then describe the case with load-enabled latches.

9.5. SEQUENTIAL CIRCUITS WITHOUT FEEDBACK 245

9.5.1 Circuits with Regular Latches

In thisclass of circuits the latches update theircontents at eachclock cycle. Thefunc
tionality of the circuit depends on the input values possibly at multiple time instants.

We give themethod toobtain the CBF for a general circuit. Given anacyclic sequen
tialcircuit C, in general, thevalue of a signal canbe required formultiple timeinstants
corresponding to different delays (depending on the number of latches along different
paths between thesignal and theprimary outputs). Starting from primary outputs, we
recursively obtain the CBF for each signal as shown in the Figure 9.7. The result of
the CBF computation routine is a Boolean formula for each of the outputs in terms of
values of inputs in multiple cycles. By treating the input values at different time in
stants as independent variables, we obtain a combinational function representation for
the outputs of the circuit.

Definition 12 Foran acyclic sequential circuit C, thesequentialdepth d is equalto
the largest delayfor which an input affects the output. Note thatd can beless than the
topological latch depth (maximum number of latches along a path between an input-
output pair) due tofalse dependencies.

A

Lemma 1 Given an acyclic circuit C withsequentialdepth d, suppose C is sequen

tiallyequivalent to C. Then the sequentialdepthof C is d.

Proof: Suppose the depth ofC is d>d. Then there aresequences Ii and h of length
d and identical in the last d —I vectors such that some output of C differson /i and h

after applying the lastvector. However, the output of C will be the same. Hence C is
notequivalent to C,which leads to contradiction. Thecase when d>dis smular. •

Canonicity of the Formula

Theorem 7 Suppose C\ and C2 are two circuits and F\ and F2 their CBFs. Then
Fi = F2 <=> Ci = C2, where equivalence between thecircuits isexact 3-valuedas defined
in Section9.3.2, and equivalence between the CBFs is combinational.

Proof:

246 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

Compute.CBF(C){
foreach primary output x {

Compute.CBF_Recursively (x,0);

}
}
Compute.CBF_Recursively(jr,d){

if is a primary input, return x(t - d);
iff(x,d) is already computed, return f(x,dy,
ifXis output of a latch {

y = corresponding latch input;
f(x,d) = Compute-CBF_Recursively(y,</+1);

}
else{

Ox= Gate corresponding to signal x]
foreach fanin y of Gjf {

Compute.CBF-Recursively(y,d);

}
f(x,d) = Compose the fan-in functions appropriately;

}
Cache the result of f(x,d);
return f(x,dy,

}

Figure 9.7 Computing CBF for outputs of a feedback free circuit.

9.5. SEQUENTIAL CIRCUITS WTTHOUT FEEDBACK 247

Assume that F\ ^ F2. Then there exists a CBF minterm m on the input values up to

d clock cycles such that F\(m) ^ Fzim). Since the circuit has finite depth, using this
minterm m we can generate an input sequence of length d such that when applied to

thetwocircuits, will produce different simulation results. Thisimplies C\ ^ C2.

=>

Assume that Ci ^ C2. Then there exists an input sequence %such that C\ (tc) # C2(n).
Since the circuits are acyclic and have finite memory, n need not be longer than d.
Using this sequence wecangenerate a CBF minterm such thatwhen applied to thetwo
formulae, will produce different results implying F\ ^ F2. Hence contradiction. •

Note that the above result are stated for any two sequential equivalent circuits not

just those obtained by retiming andcombinational optimization.

9.5.2 Circuits with Load-enabled Latches

In the case where the latch output is controlled by an enable signal as well, the func
tionality is as follows: if the enable signal is high, the latch propagates the data value
to the output, else the latch retains itsold value. In [LVW97], a retiming technique was
proposed to handle latches with different enable signals and different clocks. In this
work, we propose a verification methodology where all the latches are driven by the
same clock but can have different enable signals. Extension to circuits with multiple

clocks is straightforward.
Weobtain a Boolean function along the lines of the previous case (regular latches).

However, in this case we make use of event driven Boolean functions (BDBF) as de

fined in Section 9.4.2. By instantiating separate Boolean variables for each unique
combination of primary input and event, we create a combinational representation of
the circuit.

Starting from primary outputs, we recursively obtain the EDBF for each signal as
shown in the Figure 9.8.

Canonicity of the Formula

Lemma 2 Given an acyclicsequentialcircuitwithload-enabledlatches, an input/output

pair a path between thepair, the number of latches and the event associated with the

248 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

Compute_EDBF(C){
foreach primary outputs

Compute.EDBF_Recursively (x,D)

}
Compute-EDBF-Recursively(j:,£){

ifXis a primary input, return {x,E).
ifF{x,E) is aiready computed, return F{x,E).
ifXis a latch output {

y = latch input
e = enable signal
F{x,E) = Compute-EDBF_Recursively(y,[e,£]).

}
else{

Ox= Gate corresponding to signal x.
foreach fanin y of Gjc {

Compute^DBF_Recursively(y,£)

}
F{x,E) = Compose the fan-in functions appropriately.

}
return F{x,E).

}

Figure 9.8 Computing EDBF for the outputs of a circuit.

9.5. SEQUENTIAL CIRCUITS WITHOUT FEEDBACK 249

C2 C3

x3

Figure 9.9 Topological arrangement of latches (black boxes) and combinational blocks
(ovals).

sequence ofenabling signals ofthe latches along the path is invariant during retiming
(ala [LVW97]) and synthesis optimization steps.

Proof: Let us first consider the retiming transformation.

Suppose is a path of gates between an input I and output O. As
sume that the latchescannotbe retimedacross input and outputports. Suppose,during

a retiming move, x latches move across gate G/. If the latches are moved in the for
ward direction, then x latches are moved from each fanin of G/ (including G|_i) to

each fanout of Gi (including G,+i). Hence the number of latches between G,_i and
G,+i along the path remains the same. Suppose ei,£2, ••• is the sequence ofenable
signals of the latches along a path between input I and output O. For the forward or
backward movement of load-enabled latches, the latches being moved must belong to

the same enable class. Also, since the circuit is acyclic, a latch cannot jump over an

other latch during retiming thereby changing theorder ofenable signals. It implies that
the sequence of the enable signals is preserved.

Since combinational synthesis keeps thelatch positions fixed, thelatch count and the
sequence ofenable signals along any path in the circuit does not change. To establish
that a path pertaining tothetrue dependency ispreserved during the transformation, we
make use of illustration in the Figure 9.9. Since the circuit is acychc, we can arrange

the combinational logic and the latches as shown (for simplicity, only two layers of
latches are shown in the figure). Now the path I xi X2 x^ X4 —¥ from

input I to output O is shown in the figure. For combinational optimization xi,X3 and
X2,X4 are treated as primary outputsandprimary inputsrespectively. Henceto preserve

250 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESLZED CIRCUITS

the functionality of combinational blocks, paths from 7 to from X2 to *3, and from
X4 to O, must be preserved. This implies that the numberof latches and the sequence

of enable signals along the path is also preserved. •

Theorem 8 Given two acyclicsequentialcircuitsCi and C2 with load-enabled latches,

such that C\ has been obtainedfrom C2 by retiming and combinational synthesis trans

formations. Suppose Fi and F2 are their EDBFs as computed by the algorithm of

Figure 9.8. ThenFi = F2 4=> Ci = C2.

Proof:

Assume C\ C2. Then there exists an input sequence 7C, such that Ci(7i) C2(n).

Without lossof generality, weassume that forsome output k, (tc) ^ ± andC\,^ (tc)
C2,^(n). Now, since Ci^(7c) ^ ±, it implies that for 7C, all the enable signals for the
output must be active in the sequence they appear in the circuit. Since the number

of latches and the enable sequence must be the same in Ci and C2 (from Lenuna 2),
C2jt(7c) ^ J_. Hence using tc, we can create an EDBF minterm m, such that F\(m) ^

Fiim).

<=

Assume Fi ^ F2. Since the number of latches and sequence of enable signals is same

for Ci and C2 (from Lenuna 2), the support variable set is identical for F\ and F2.

Consider an EDBF minterm m such that Fi (m) F2{m). The minterm m can be used

to generate a sequence ofevents and input values such that when applied to the circuits,

Ci and C2 will result in different outputs. •

Unlike the regular latch case, the result does not hold for any two sequentially equiv

alent circuits. This is illustrated by following two examples.

In Figure 9.10, two sequentially equivalent circuits are presented. However, their

EDBFs would be different since the enable signal of latch L\ is different in the two

circuits. The EDBF for the outputs 0\ and O2 can be given as following:

01 = c(Ti[a(x),a(x-l)6(T-l)]) (9.2)

02 = c(il[l,a(x-l)fc(x-l)])

= c(ll[a(x-l)&(x-l)]) (9.3)

9.5. SEQUENTIAL CIRCUITS WITHOUT FEEDBACK

-1
L1

(a)

L3

L2

01 %
L1

(b)

L3.

12

Figure 9.10 EDBF can lead to false negatives: illustration I.

251

02

Our technique will result in a falsenegative since the eventsdefining the timeinstant

for the value of c are syntactically different even though the definition is the same. We

can work around this problem by rewriting our events. For example, it can be proven

that,

=> 'n[/7(T),^(T-l)]=Tl[^(T-l)] (9.4)

Applying (9.4), on (9.2) (with p(i) = a{x) and^(t) = a(T)^(x)), we get,

O] = c('n[a(T-1)/7(t-1)]) From (9.4)

= O2

This rewriting rule extends the applicability of our technique. However, this rule is

not complete, as shown by the next example. In Figure 9.11, (a) and (b) are two se

quentially equivalent circuits. In thiscase, the enable signals to boththe latches are the
same. However, the data inputs to the latches are different. The EDBF representation

for these two circuits are following:

01 = b{r\(a+b))

02 = a('r\{d+b))-\-b{r\{d-\-b))

This results in a false negative. Essentially, in this example there is some interaction

between the enable and the data signals of the latch, resulting in equivalent sequential

functionality even though the EDBFs are different. To handle these cases, we need

252 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED aRCUTTS

a

o1

(a) (b)

Figure 9.11 EDBF can lead to false negatives: illustration n.

rL.

hi

Figure 9.12 Modeling feedback path for a latch with enable and data signals.

C2

to establish equivalence not only between different forms of events, but also between

different forms of event/data interaction. Until then, our methodology for circuits with

load enabled latches provides only a conservative check.

9.6 Sequential Circuits with Feedback

In these circuits there exists a feedback path for some latches. Our strategy is to model

a latch with feedback in the form of an enabled latch with appropriate enable and data

signals as shown in Figure 9.12. Next we derive the conditions under which this

modeling is feasible.

Lemma 3 Suppose the next-statefunction ofa latch x given as F{x). Then F(x) =
e• ex <=> Fi C Fc, i.e., F{x) can be decomposedin theform ofFigure 9.12 ifand only

9.6. SEQUENTIAL CIRCUITS WITH FEEDBACK 253

ifF(x) ispositive unate inx. Note thate andd are independent ofx.

Proof:

Fx = ed-\-e'Ded = Fx.

Let e = Fx-\-Fx andd = Fx. Then,

ed-hex = {Fx+Fx)Fx 4-xFxFx

= xFx+xFx+xFx

= F-{-xFx

= F (For a positive unate function)

•

As a matter of fact, any d, which satisfies.

Fx C dCFx (9.5)

can be used as the data signal. The value of e, on the otherhand, is unique as shown
below.

Since F is apositive unate function inx,we can represent F asF(x) = Ax+8.
Now,

ed + ex = Ax+B

Equating the cofactors with respect to x, we get.

e-{-d — A+F

ed = AB

e D AB (9.6)

e'd = B

e D B (9.7)

e D A-\-B Adding 9.6 and 9.7 (9.8)

254 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

out out

Figure 9.13 Modelingan enabled latch with extra logic.

Also, the flexibility in representing e is givenby the following equation,

ABC e CA + fi

=>ABC e CA+B (9.9)

e = A-\-B From 9.8 and 9.9

= Fx+Fjc

Thus for latches whose next-state function is positive unate in the latch variable,

the feedback can be modeled via a multiplexer. The advantage of the model shown in

Figure 9.12, is that a latch fed by a multiplexercan be thought of as an enabled latch

as shown in the Figure 9.13. This gets rid of the feedback path and for our purposes

the circuit becomes acyclic. Now we can apply the analysis techniques developed in

Section 9.5.2 for acyclic circuits with enabled latches. However, we need to be aware

of following issues:

1. The data-input and the enable signal both need to be independent of the latch

signal, else it will create a cycle.

2. The data value d obtained from the function F = ed +ex is not unique as shown

in (9.5) since has e as don't care. Hence for two circuits Ci and C2 we can

come up with different decompositions leading to false negatives. This is the

basis behind the counterexample in Figure 9.11, where the decomposition of the

next-state function ax+b is different for the two circuits. This can be handled in

following ways:

9.6. SEQUENTIAL CIRCUITS WITHFEEDBACK 255

(a) By fixing the latchmodeling in thecircuit,i.e.,oncewe model the feedback

path of a latch by an enabled latch, werestrict thelogic optimization of the
feedback logicby not using e as don*t care and also, we move the latch in
tandem with the logic for the enable signal. This will guarantee the event

correspondence in two circuits. However, by preserving the multiplexor
logic we incur some optimizationpenalty.

(b) Byusing the lower limit of thepossible datasignal, i.e., d = Fx. This guar
antees the matching of the enable signals, but an optimization penalty may

be incurred.

(c) Perform a canonical decomposition of the enable and data signals. Below
we givea sufficient condition for suchdecomposition.

Lemma 4 Given afunction F = Ax-{-B, suppose {e,d) and (e^d) are two
decompositions such that e and d have disjoint Boolean supports. Then
d = d, i.e., there is a unique decomposition of F such that d and e have
different supports (if such decomposition exists).

Proof: We have,

ed +ex = ed-\- ex
A

edx = edx

ed = ed (9.10)

Equation 9.10 follows from the fact that ed is independent ofx. Since e and
A A

d have different supports (and so have e and d), from (9.10) d andd must
A

have the same support. Suppose X and Yare thesupport sets fore and d^d
respectively.

Assume d / J. Then there exists a minterm y onthe T variables such that
d{y) ^ d{y). Choose an arbitrary minterm x on variables of X such that
e{x) = 1. Suppose (xUy) is theminterm onX andYvariables.

diy) =

iiy) = d(xUy)
e(x) — c(j:Uy) = 1

256 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

<S)~

el

83

e2 J

r^<£n
<Q-

en

hi

Figure 9.14 Conditional updating of the latch content.

(a) (b)

out

Figure 9.15 Making some latches observable to meet the feedback criterion.

Sinced{y) d{y)y thuse{x\Jy)d{xUy) ^ This contradicts

(9.10). •

The feedback modeling as derived in Figures 9.12 and 9.13 is best suited for the

class of circuits where latches update their values when a set of conditions is met, else

they keep their previous values. This is illustrated in Figure 9.14. The latches with

feedback paths, for which we cannot derive the enabled latch model, are handled in

the following way. We find a minimum number of latches that need to be exposed,

i.e., need to be made observable, in order to removethe feedbackpath for these latches.

This is illustrated in Figure 9.15. By exposing latches, we treat their outputs as primary

inputs and hence the feedbackpaths are broken, i.e., we cut the latches from the circuit.

9.7. EXPERIMENTAL SETUP 257

After finding the minimal setof latches to beexposed, weimpose constraints on the
synthesis stepsuchthat these latches cannot be moved during retiming.

9.7 Experimental Setup

9.7.1 Circuit Modification

Given a sequential circuit C, we create a directed graph G= (V,£) in the follow
ing manner. For each combinational gate, latch, primary input and primary output
we create a node. An edge from node v/ to vj is created if there is a fanout from
gate/latch/ptimary-input i to gate/latch/primary-output j. The graph ingeneral has cy
cles due to feedback paths to latches. In the current work we have not implemented
the technique to identify the latches with feedback paths that satisfy the criterion men
tioned in the previous section. Instead, we obtain a minimal set of latches to expose
such that the circuit becomes acyclic*. The problem of finding the minimum set of
vertices to make the circuit acyclic "minimum feedback vertex set problem" which is
NP-complete. We used a modified version of the heuristics given in [LR90].

9.7.2 Retiming

Retiming was done using Minaret [MS97]. This tool only supports the constant delay
model (we could not find any efficient public domain retiming tools, which supported
better delay models). Retiming was performed in two modes. First, the minimum
feasible period was obtained and the area of the circuit was opthnized for this period.
In the second mode, thedelay obtained through combinational optimization was used
as the timing constraint and then constrained minimum area retiming was performed.

We could not find a public domain retiming tool which could handle latches with
enable signals as proposed in [LVW97] andshown in Figure 9.16.

9.7.3 Combinational Optimization

We perform combinational optimization to obtain aminimum delay circuit. SIS [SSL''"92]
was used for synthesis purposes. A modified version of "script.delay" was used as

*Note that, inthe presence ofsuch a technique, we need toobtain the minimal setoflatches tobreak
cycles for only remaining set of latches.

258 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED dRCUTTS

® ® Forward

-i Retiming

Figure 9.16 Retiming enabled-latch across gates.

shown in Figure 9.17. The modifications were made because the original script was

not able to handle large designs (or took very long to complete).

As mentioned earlier, the unit delay model was used during retiming. Hence for

consistency we used the unit delay model during synthesis steps as well. To keep the

size of gates small, we created a library consisting of inverter, 2-input nand and 2-input

nor gates only. Also, for reasonable optimization results we limited the number of

fanouts for each gate to four. The delay models and the fanout limitation changes were

achieved by appropriately modifying the library.

9.7.4 Generating Equivalent Combinational Equivalence Problems

In order to leverage from the existing combinational equivalence tools, we mapped the

equivalence problem of CBF/EDBFs into combinational equivalence problems. This

was done by creating a combinational circuit with appropriate variables which repre

sents the CBF or EDBF. An illustration is shown in Figure 9.18. The combinational

circuit Figure 9.18(b) represents the CBF for the sequential circuit Figure 9.18(a). Es

sentially, if the circuit outputs depend on the value ofa signal at k different time instants

(for a circuit with regular latches) or with k different enable signal paths (for a circuit

with enabled latches), the cone of logic for the signal is replicated k times. The size

of these circuits could become large due to replications. Note, however, that this step

is performed only for convenience (to treat the combinational equivalence checker as a

black box). In practice, a modified combinational equivalence checker could be used

which would not require generation ofsuch circuits and hence no blow-up would occur.

The combinational verification was performed by an in-house tool similar to the ones

presented in [Mat96, KK97].

9.7. EXPERIMENTAL SETUP

sweep

decomp -q

tech_decoinp -o 2

resub -a -d

sweep

reduce__depth -b -r

eliminate -1 100 -1

simplify -1

sweep

decomp -q

fx -1

tech__decomp -o 2

rlib mylib2.genlib

rlib -a lib2_latch.genlib

map -s -n 1 -AFG -p -B -b 1000

print_delay -pi -a -m unit

Figure 9.17 Script for synthesizing minimumdelay circuit.

(a) (b)

Figure 9.18 Generatingequivalent combinational equivalence problems.

259

260 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

9.8 Experimental Results

Ourexperiment consisted of following steps (seealsoFigure9.19).

1. Given the sequential circuit(A), modify it appropriately to satisfy constraints on
all feedback paths to obtain a new circuit (B). This is done by creating a circuit
graph and finding a minimal feedback vertex set. Due to lackof a retiming tool
which could handle load-enabled latches, we did not model any latches with

feedback path as load-enabled latches (as shown in Figure9.12). In general, this

leads to fewer latches that need to be exposed.

2. Perform synthesis for delay optimization and min-period retiming on the modi

fied circuit (B) to obtain a new circuit (C).

3. To illustrate the advantage of combining retiming with combinational synthesis,

we also performed pure combinational optimization (using the same script) on

the original circuit (A) to obtain circuit (D).

4. We also compared the saving in area by performing constrained minimum area

retiming. This was done on circuit (B) with the delay value of circuit (D) to

obtain a new circuit (E).

5. To measure the loss in optimization due to modification in step 1, retiming and

synthesis optimization on the original circuit (A) was performed to obtain an

optimized circuit (F).

6. Step 5 was repeated to measure the loss of optimization in circuit (E). This was

done by performing constrained minimum area retiming on (A) with the delay

value of circuit (D) to obtain a new circuit (G).

7. Combinational circuits (H and J) were created (as described in Section 9.7.4) to

obtain circuits (B) and (C) respectively.

8. Perform combinational verification between (H) and (J). Verifying equivalence

of circuits (B) and (E) would be similar and is not done in the experiment.

9.8. EXPERIMENTAL RESULTS

INARET

Sequential Circuit

MINARET

script.delay
Optimization

Constrained _
min. area retiming

for delay in D

^ Retiming for
^minimum period

Technology
Mapping

MINARET

E02C0M

Our
Analysis^

261

Acyclic Circuit

MINARET

Our

COMB. EQV

CHECKER

<^2CO^

Figure 9.19 Flowchart indicating experimental set up.

262 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

Acyclic
Glue Logic V"' (FSM4

FSM3;^;
/

/

FSM2

Memory/Communication Layer

Figure 9^ Feedback paths due to interaction with memory and communication layer.

The active area and delay numbers are obtained by the "map" command. The verifica

tion was performed on an UltraSparc-1 with 256MB of memory.

In Table 9.1, we have given results comparing the optimization potential of our strat

egy and also the corresponding verification times.

All the industrial circuits we investigated contained load-enabled latches. Since we

did not have access to a retiming tool for circuits with load-enabled latches, we could

not perform retiming on these circuits and hence could not get optimization and veri

fication results. However, we did extensive analysis on them to understand the nature

of feedback paths to latches. After analyzing a set of circuits we observed that most

of the feedback paths exist due to interaction with memory and conununication layer

as shown in Figure 9.20. Typically, designers want to keep the boundary between the

design and conununication layer/memory preserved and they do not synthesize them

together. We can take advantage of this fact and can assume for our purposes that these

feedback paths do not exist. In Table 9.2, we have given the number of latches ex

posed in order to satisfy the feedback path constraint. Currently we do only structural

analysis which can detect the kind of circuits as shown in Figure 9.14. A more de
tailed functional analysis (based on the next-state function of the latches as explained

in Section 9.6) would lead to reduced number of exposed latches.

9.8. EXPERIMENTAL RESULTS 263

Circuit A F C D G E Time

#L #L Area 5 % #L Area 5 Area 5 #L Area #L Area HvsJ

mininaxlO 30 30 0.87 50 66 30 0.74 50 1.00 56 30 0.87 30 0.74 2

minmaxl2 36 36 0.87 54 66 36 0.75 54 1.00 57 36 0.87 36 0.75 2

ininmax20 60 60 0.83 55 66 60 0.80 64 1.00 94 60 0.83 60 0.80 3

minmax32 96 96 0.81 88 66 96 0.72 96 1.00 145 96 0.81 96 0.72 5

prolog 65 85 1.06 15 43 65 0.97 17 1.00 18 65 1.00 65 0.97 7

S1196 18 18 1.00 21 0 18 1.00 21 1.00 21 18 1.00 18 1.00 5

S1238 18 18 1.00 19 0 18 0.99 19 1.00 19 18 1.00 18 0.99 7

S1269 37 69 1.12 24 75 37 0.98 32 1.00 33 37 1.00 37 0.98 6

S1423 74 78 1.01 40 95 74 1.00 44 1.00 45 74 1.00 74 1.00 6

S3271 116 221 1.18 16 94 116 0.99 25 1.00 26 116 1.00 116 0.99 7

S3384 183 174 0.97 30 39 154 0.95 56 1.00 57 154 0.95 154 0.95 34

s400 21 32 1.17 11 71 21 0.98 13 1.00 14 18 0.95 21 0.98 1

21 32 1.17 10 71 21 0.99 13 1.00 14 18 0.95 21 0.99 1

S4863 88 146 1.05 32 18 142 1.04 32 1.00 58 78 0.99 83 0.99 4:25

s641 19 19 1.00 24 78 19 1.00 24 1.00 24 19 1.00 19 1.00 1

S6669 231 272 1.02 32 17 234 1.00 55 1.00 85 193 0.97 214 0.98 1:54

s713 19 19 1.00 25 78 19 0.96 24 1.00 25 19 1.00 19 0.96 1

S9234 135 169 1.05 21 66 144 1.00 27 1.00 30 128 0.98 135 0.98 22

s953 29 22 0.95 16 20 29 1.00 14 1.00 16 22 0.95 29 1.00 3

s967 29 22 0.95 15 20 29 1.00 14 1.00 15 22 0.95 29 1.00 3

S3330 65 78 1.04 15 43 65 0.96 17 1.00 19 65 1.00 65 0.96 7

si5850 515 537 1.01 34 72 515 1.00 46 1.00 46 495 0.99 515 1.00 11:24

S38417 1464 1285 0.96 33 70 1463 1.03 36 1.00 37 1248 0.95 1463 1.03 15:32

Table 9.1 Results on sequential optimizationand verification.

A: Original circuit

B: Modified circuit (not shown in the table)

C: Obtained from B after retiming(for minimumperiod) and synthesis

D: Obtained from A after Combinational optimization only

E: Obtained from B after retiming (for delay in D) and resynthesis

F: Obtained from A after retiming (for minimum period)and synthesis

G: Obtained from A after retiming (for delay in D) and resynthesis

H: Combinational circuit for the CBF for circuit B

J: Combinational circuit for the CBF for circuit C

L: Latches

%: Percentage of latches exposed in B

Area/5: Area (normalized against D) / Delay of the circuit

H vs J: CPU time (in minutes:seconds) for combinational verification between H and J

264 CHAPTER 9. VERIFYING RETIMED AND RESYNTHESIZED CIRCUITS

Example # Latches # Exposed

exl 2157 934

ex2 100 16

ex3 146 56

ex4 1437 835

ex5 672 305

ex6 412 250

ex7 453 81

ex8 968 470

ex9 783 15

exlO 634 174

exll 792 369

exl2 2206 691

Table 9.2 Number of latches exposed for some industrial circuits.

9.8.1 Analysis

By analyzing the data given in Tables 9.1 and 9.2 we make following observations:

1. Comparing 6 values in colunms C and D, for most of the circuits the delay val

ues obtained through our approach is better than that by purely combinational

optimization. In some cases delay values reduces by as much as 50%. The area

penalty incurred in the process is negligible.

2. Comparing area numbers in colunms D and £, for the same delay, retiming allows

us to reduce the area.

3. The verification times were quite reasonable. Most of the examples took less

than a minute to verify. The maximum time taken is fifteen minutes. Note that,

for only a few of these sequential circuits the state-space can be traversed, and

for fewer yet the state-space of the product machine can be traversed. This makes

the proposed technique quite attractive.

9.9. CONCLUSIONS, RELATED WORK, AND FUTURE DIRECTIONS 265

4. Comparing the area numbers in columns D and E, we observe that the penalty

paid in terms of reduced optimization capability was not significant in most of

the cases.

5. Looking at the data for industrial circuits from Table 9.2, we observe that even

though these circuits are highly control intensive implying a relatively tight in
teraction among latches, we did not need to expose more than 50% latches and
sometimes as few as 2% latches were exposed. As mentioned, these numbers

will decrease when positive unateness is used.

9.9 Conclusions, Related Work, and Future Directions

We proposed a practical verification technique for circuits which have undergone re
timing and combinational synthesis transformations. In particular, we show that the
corresponding sequential verification canbe reduced to an extension of combinational
verification. The proposed technique can deal with circuits withand without feedback
paths, and with regular and load-enabled latches. We impose a constraint on the feed
back path (if one exists) of latches. If these constraints are not met by the original
circuit, wefix theposition of some of the latches to cut thefeedback paths. Experimen
tal results indicate that imposing constraints does not result in significant optimization
penalty. Our strategy can be used to obtain faster circuits by allowing the retiming
transformations while performing fast verification as indicated by ourexperimental re

sults.

In [BBJR97], implementation verification of the bus interface unit for the Alpha
21264 microprocessor is performed. More specifically, gate-level extraction ofcustom-
designed transistor level schematics is verified against theRTL. They used a "retiming"
comparison algorithm forverifying acyclic sequential circuits. Inparticular, they gave a
similar algorithm as that inFigure 9.8forcomputing theoutputfunctionality. However,

no formal framework for such verification is presented and no technique to handle

circuits with feedback paths is presented (as given in Section 9.6). Nonetheless, their

work presents another applicationof our technique.

To make our approach exact for arbitrary sequential optimizations, we need to de
velop acomplete technique todistinguish events andcombination ofevents and signals.

266 CHAPTER 9. VERIFYJNG RETIMED AND RESYNTHESIZED CIRCUrrS

Also, a better technique could beused tofind the latches tobeexposed. The strategy of
finding the minimum latches may not always beoptimum for area/delay optimizations.
Theneed would be to identify latches, suchthatthe leastamount of area/delay penalty
is paid by exposing them.

Chapter 10

Conclusions and Future Directions

The design and implementation verification of digital circuits is becoming acrit
ical aspect of the design methodology. As the circuit complexity is growing the

needfor efficient verification algorithms has increased dramatically. Simulation, which

has traditionally been employed for verification purposes, cannot be reliedon by itself
dueto its poorcoverage of thesystem behavior. Formal verification, a technique which
usesmathematical analysis to establishrelationships betweenappropriate mathematical

models of a design and its desired properties, has been emerging as a complementary

altemative to simulation. However, the current state-of-the-art formal verification tech

niques are limitedin their applicability to only small designs.

In this thesis we have presented a spectrum of techniques to radically improve the
efficiency of various verification algorithms. This is critical to meet the performance
demand on verification techniques andin particular to make formal verification a viable
technology for practical applications. Below we summarize the key contributions of
this work.

BDDmanipulatioii For the underlying data-structure, binary decision diagram, we
have presented computer architecture based techniques for efficient manipula
tion. In particular, exploiting memory hierarchy is shown to be a promising di
rection to achieve high performance. Dueto the large difference in access times
betweenvarious levelsin memory hierarchy, the localityof accessplays a critical

role in the overall run time.

The basic idea is to reorganize the computation to achieve memory locality, in

particular by converting a recursive procedure into an iterative one. The depth-
first traversal of operand HDDs is replaced by the breadth-first traversal, which

when coupled with customized memory management shows improved locality.
Further performance improvements are obtained by identifying locality across

267

268 CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTIONS

several independent andseveral dependent BDDoperations using thenotions of
superscalarity andpipelining. Overall we observed a performance improvement

of up to 100for BDDsizes thatdo not fit the mainmemory. Evenfor the BDD
sizes that fit within the main memory, about 50% performance improvement was

observed.

We also demonstrated that it is possible to use a collection of main memoriesand

disks on a network of workstations to improve the performance and build BDDs

that do not fit in the memory of one workstation. We see a performance improve

ment by a factor of up to 6 on a Myrinet-connectedcluster of four workstations

by using remote memory as a paging device for the local memory.

We have argued that a multi-threaded breadth-based manipulation based BDD

package running on a shared-memory multiprocessor has the highest potential

for effectively utilizing the parallel architecture.

Since dynamic ordering constitutes an essential component of a BDD package,

we have investigated dynamic ordering schemes inside a breadth-first manipula

tion based package and shown its performance to be at par with reordering in a

depth-first manipulation based packges.

State space traversal State-traversal constitutes an important step in the verification

of sequential circuits. Towards that, we have presented techniques for compact

state-transition graph representation and traversal. We established that the core

computation in BDD-based formal verification is that of forming the image and

pre-image ofa set of states under the transition relation characterizing the system.

To make this step efficient, we addressed the use of clustered transition relations,

ordering of clusters for early variable quantification, network partitioning, use of

don*t cares, and removal of redundant latches.

Sequential circuit verification The high complexity of general sequential circuit ver

ification makes any sequential optimization in digital circuit unattractive. In this

work, we have shown that with appropriate constraints, the implementation ver

ification of circuits which have undergone iterative retiming and combinational

synthesis transformations can be reduced to an extension of the combinational

10.1. ANALYSIS AND FUTURE DIRECTIONS 269

verification problem. This enablesexploitation of the advancements made in the

field of combinational verification and use of its powerful techniques to perform

verification.

10.1 Analysis and Future Directions

Efficient BDD evaluation: The evaluation of a BDD for a particular input minterm

involves tracing one of the paths in BDD from the root node to the leaf. In

otherwords, performing simulation on a BDDrequires accesses to memory loca

tions holding BDD nodes. The ideas behindlocalizing memory accesses during
breadth-first BDD manipulation can be applied in this case as well. This can be

achieved in following two ways:

Evaluation of multiple input vectors: In many simulation environments, it is

required to simulate multiple input sequences. For a Boolean function on

n variables, simulating one vector requires n BDD node accesses. Suppose

we need to simulate k input sequences each of length m. If we simulate

each of k input sequences one after another one vector at a time, we need

to traverse paths in the BDDk•m many times. Each path traversal requires
accessing one node fi"om each level. If these accesses are non-local, there

will be order of 0{n -k-m) non-local accesses in the completesimulation.

The node allocation scheme of breadth-first BDD manipulation technique

combined with the simultaneous evaluation of all the input sequences will

lead to better locality. Essentially, the BDD nodes are laid out in the mem

ory such that nodes of an index are on the same page or set of pages. By

maintaining an array of lengthk, and keepingtrack of evaluation nodesfor

all k sequences, we can obtain simulation results of one vector for all k se

quences in one pass of the BDD. Assuming that we incur a non-local access

in going from one level to another, therewillbe orderof 0{n •m) non-local

accesses in complete simulation.

Note that, since there will be overheads associated with the book-keeping

of multiple vectors, the technique will be useful if the number of input se

quences to be simulated is large.

270 CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTIONS

Evaluation of single input vector: In those cases, where we need to simulate

one long input vector sequence,the aboveapproachwill lead to unnecessary

overhead. In this case we propose the following strategy.

The goal is to optimally layout the BDD nodes in the memory such that

some objectivefunction based on non-local accesses along various paths of

the BDD is optimized.

We can treat the optimal layout of BDD nodes in the memory as a graph

problem by considering the whole BDD as a directed acyclic graph G =

(V,£). In a simplistic view, we would like to assign each BDD node to

a physical page in the memory. This corresponds to assigning a number

to each node in the graph G. Assume the possible range of such numbers

(based on the number of pages in the main memory) is N. Suppose

N, is an onto function, mapping each node to a particular page. Since there

is a limit on number of nodes that can fit in a page, appropriate constraints

can be imposed on the mapping process.

Wedefine a distancemetricdii between two vertices v,- and Vj such that:

_ , , - Eaa.df{yi)i=f{yj)
ui. i — 1 OotherwiOtherwise

Apathinthegraphisdefined by anordered listof vertices (vq, vi, V2, •.., v„) ,
suchthatVf,i= l,...n,V| is thechild node ofv,_i. Suppose = (vi,v/+i,... ,vy)
is a path in the graph betweenvertices v,* and vj. We definethe path weight

as

Note that there can be multiple paths between two vertices in the graph.

The weight for a path indicates the number of times page change will occur

in traversing the nodes along that path.

One plausible objective function is to minimize the maximum weight along

any path, i.e..

I maxWpA 1Minimize (maxWpk
\ij,k ^Jj

10.1. ANALYSIS AND FUTURE DIRECTIONS 271

The superscript k denotes the existenceof multiplepaths between the ver

tices V| and Vj.

The otherobjective function (butnot so practical) couldbe to minimize the

weight along any path in the graph.

This paradigm of allocating nodes in the memory can be extended in two
ways.

1. Wecan attachprobabilistic attributes to the edges reflecting the proba

bility of traversing that path during simulation.

2. We can target various levels of memory hierarchy simultaneously. In

particular, we can formulate the node layout problem such that the

number of cache misses is minimized. We can also formulate a com

bined objectivefunction,which first tries to minimize the cache misses

and then targets the optimal page assignment. We can associatediffer

ent distance metrics to these assignments to reflect the large difference

in the miss penalties.

Minimizing cache misses: As we discussed in Section 1.2.3 on page 5 in Chapter 1,

the performance gap between the processor and the main memory is increasing
over the years. To deal with this gap, one can devise algorithms which lead

to fewer cache misses, reducing the need to access the main memory. In Sec

tion 3.8.5 on page 71 in Chapter 3, we discussed onepossible way to reduce the
cache misses during the REDUCE phase of the breadth-first BDD manipulation.

Some other possible avenues are using a different BDD node data structure and
unique table management.

KeepingBDDcomplexityunder control: The performance demand on verification
algorithms is growing at a rate that outpaces the improvements in the semicon
ductor technology. Roughly speaking, the complexity of BDD algorithms in

crease at least quadratically with increase in the number of variables. This is

based on a conservative assumption that the sizes of BDDs grow linearly with

the numberof variables and typicalBooleanoperationcomplexity is of the order

of the product of the sizes of the operands. The trend in the number of transis

tors has been that it quadruples every three years. This implies the number of

272 CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTIONS

variables for BDD representation also quadruples every three years. The BDD
complexity from a conservative estimation would grow at least sixteen times ev
ery three years. The performance of a microprocessor improves by a factor of
only about 3.37 every three years. This indicates that a BDD based technique
which does not scale with the size of the system, will run out of steam over

years.

Therefore, the need is tofind algorithmswhich apply the BDD-basedtechniques

after suitablyscalingdown theproblem size—either byabstractionor byappro

priate partitioning - such that the BDDsizeand hence the algorithm complexity

remains under control.

Complexity issues in retiming and synthesis transformations: A number of issues

are still uiu'esolved. In particular:

1. The exact optimization potential of arbitrary number of retiming and syn

thesis transformations is unknown.

2. The number of retiming and synthesis transformations required to obtain

the most optimum circuit possible is unknown. More precisely: suppose S

indicates the optimization space of retiming and synthesis transformations;

does there exist a finite number k, such that k transformations of retiming

and resyhthesis can explore all of S.

3. The complexity of establishing if a circuit C2 has been obtained from C\ us

ing only retiming and synthesis transformations is unknown. We conjecture

that this complexity will be dependent on the point 2.

Hybrid methods: One can take a hybrid approach in two directions. The first one

would be to combine theorem proving with automated techniques like model

checking. Thereby we can hope to take advantage of the best of both tech

niques. Some effort has been made in this direction in the past however it did

not gain mainstreamsuccess. For a successful integration of techniques the driv

ing paradigm should alwaysbe to keep the methodology as simple as possible.

Another useful observation is that formal verification and random simulation

present two extremes of the verification methodology. Both have serious draw-

10.1. ANALYSIS AND FUTURE DIRECTIONS 273

backs making them infeasible forverifying large designs. Another hybrid method
is to bring formal techniques into theworld of simulation. Some effort in this di
rection has been made by fewresearchers [HYHD95, YSAA97].

274 CHAPTER 10. CONCLUSIONS AND PUTURBDIKBCnONS

Part IV

Appendix

275

Appendix A

CAL BDD Package

The work on breadth-first BDD manipulation and dynamic ordering (described
in Chapters 3 and 6 respectively) has been successfully implemented inside a

comprehensive BDD package named CAL [RS97].

In the following we give brief descriptions of the functions which are unique to the

CAL BDD package.

• Cal_BddMultiwayAnd(Or/Xor): Given n functions ,/«» this function

computes Ylifi or S,/)- or 0 fi respectively.

• Cal_BddPairwiseAnd(Or/Xor): Given a two arrays of BDD operands /i, /2, •--, /n

andgi,g2,• •• ,8n, this function computes Ui(fi8i) or or ®{figi) respec
tively.

• Cal_PipelineInit(op): This function initializes the pipeline engine with the des

ignated operation. Until the current pipeline is executed and results are updated,

all the operations need to be of the "op" type.

• Cal_PipelineCreateProvisionalBdd: Given the operands, this function creates a

provisional BDD representing the result of performing the currentpipelineoper

ation on the operands.

• Cal_PipelineExecute: This function executes the current pipeline, evaluates all

the operations.

• Cal_PipelineUpdateProvisionalBdd: Given the provisional BDD, it retums the

actual resulting BDD. This function should be called after executing the pipeline

for the provisional BDDs of interest.

277

278 APPENDIX A. CAL BDD PACKAGE

• CalJ^ipelineQuit: This functiondestroysthe storageassociatedwith the pipeline.

Any un-updated provisional BDDs are freed.

So far three versions of the package have been released in the public domain. The

latest version (2.0) is available at:

http://vAtfw-cad.eecs.berkeley.edu/Research/cal_bdd

The latest release of the package includes the dynamic reordering routines. This pack

age has been successfully used inside a commercial FSM synthesis tool.

Appendix B

VIS: Verification Interacting with Synthesis

The work on efficient state space representation and traversal (Chapter 7) was in
tegrated inside a verification tool named VIS (Verification Interacting with Syn

thesis). * VISwasdeveloped as a joint effortby researchers at University of California

at Berkeley and University of Colorado at Boulder. This chapter gives a briefoverview
of this tool and discusses its features.

The motivating factors behind the creation of VIS were:

1. Toprovide an integrated environment for synthesis and verification.

2. To create a symbolicmodel checkerusing state-of-the-artalgorithms.

3. Toprovide a solidplatform for research in verification and synthesis.

The overview of the VIS architecture is given in Figure B.l. Roughly speaking, the

front end for VIS allows the traversal in the hierarchy. The verification and synthesis

parts respectively allow oneto perform verification andsynthesis onthesub-tree rooted
at the current node in the hierarchy.

VIS was designed to be modular with well defined packages to handle various fea

tures of the tool. In Figure B.2, we outline the flow of a work session insideVIS and

identify the corresponding packages (shown inside parentheses). The modularity al

lows a developer to integrate and investigate new ideas for various algorithms inside
VIS in a clean fashion.

The VIS tool has been integrated with three different BDD packages [Som97, RS97,

Lon93]. So far three releases of VIS have taken place. The latest release of VIS can be

obtained from

http: / /vTww-cad. eecs.berkeley. edu/~vis

'For a detailed description of VIS architecture please referto [BSA''"96b, BSA'*'96a].

279

280 APPENDIX B. VIS: VERIHCATION INTERACTING WITH SYNTHESIS

CTL
Formula

simulation
V J

Waveform

..... ...^

VERLOG

BLIF-MV

—^—' VIS

Hierarchical

Representation

1
Model

Checking

X

VHDL

Synthesis
(via SIS)

Implementation
Verification

Error Trace

Figure B.l VIS Overview.

Synthesis (via SIS)

Read in the design (io)

Hierarchy Traversal (hrc, rst)
Restructuring

281

Symbolic Synthesis
(synth)

Flattening of hierarchy sub-tree (ntk)

Other Packages:
Command utilities: cmd

Image computation: img
Variable management: var

OIL formula parsing: ctip
Multi-valued variables: mvf

Network to mdd's: ntm

Table management: tbi
Main package: vm

Ordering of network nodes (so)

Partition generation

FSM abstraction

(part)

(fsm)

Reachability (fsm)

Model checking (mc)

Equivalence checking (eqv)

Language emptiness (mc)

Simulation (sim)

Approximate model checking (amc)

Residue verification (res)

Figure B.2 Verification and Synthesis inside VIS.

282 APPENDIX B. VIS: VERIHCATION INTERACTING WITH SYNTHESIS

VIS has found world-widesuccess in both industry and academic worlds. It forms the

core engine for some conunercial verification tools. It is also used as part of the ver

ification courses at various universities. To date, there have been over 500 downloads

from all over the world.

Bibliography

[AC94] P. Asharand M. Cheong. Efficient Breadth-First Manipulation of Binary Decision Dia
grams. In Proc. lEEE/ACM International Conference on Computer-Aided Design^ pages
622-27, November 1994.

[ACM96] P. Arunachalam, C.Chase, andD.Moundanos. Distributed Binary Decision Diagrams for
Verification ofLargeCircuits. InProc. lEEE/ACM InternationalConference on Computer
Design^ pages 365-70,1996.

[ACP94] T.E. Anderson, D. E. Culler, and D. A. Patterson. A Casefor NOW: Network of Work
stations. Technical Report UCB/ERL M94/58, Electronics Research Lab, Univ. of Cali
fornia, Berkeley, CA 94720, November 1994.

[ADG91] P. Ashar, S. Devadas, and A. Ghosh. Boolean Satisfiability and Equivalence Checking
Using General Binary Decision Diagrams. In Proc. lEEE/ACM International Conference
on Computer Design, pages 259-64,1991.

[AG89] G. S. Almasi and A. Gottleib. Highly Parallel Computing. Benjamin/Cummings, Red
wood, CA, 1989.

[AGM96] P. Ashar, A. Gupta, andS. Malik. Using Complete-1-Distinguishability for FSM Equiv
alence Checking. In Pmc. lEEE/ACM International Conference on Computer-Aided De
sign, November 1996.

[Ake78] S.B.Akers. Binary Decision Diagrams. IEEETransactions on Computers, C-37:509-16,
June 1978.

[Amd67] G. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale Com
puting Capabilities. InAFIPS Spring JointComputer Conference, pages 483—85,1967.

[ASB93] A. Aziz, V. Singhal, and R. K. Brayton. Verifying Interacting Finite State Machines:
Complexity Issues. Technical Report UCB/ERL M93/68, Electronics Research Lab, Univ.
ofCalifornia, Berkeley, CA 94720, September 1993.

[ASS+94] A. Aziz, T. R. Shiple, V. Singhal, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Formula-Dependent Equivalence for Compositional CTLModelChecking. In Computer
Aided Verification, volume 818 of Lecture Notes in Computer Science, pages 324-337.
Springer-Verlag, 1994.

[Bai91] D.Bailey. Twelve Ways toFooltheMasses When Giving Performance Results onParallel
Computers. In SupercomputingReview, August 1991.

[BBDG"''94] I. Beer,S. Ben-David,D. Geist, R. Gewirtzman, and M. Yoeli. Methodologyand System
for Practical Formal Verification of Reactive Hardware. In Computer Aided Verification,
volume 818 of Lecture Notes in ComputerScience, pages 182-93. Springer-Verlag, 1994.

283

284 BIBLIOGRAPHY

[BBJR97] G. P. Bischoff, K. S. Brace, S. Jain, and R. Razdan. Formal Implementation Verifica
tionof the BusInterface Unit for the Alpha21164Microprocessor. In Prvc. lEEE/ACM
International Conference on Computer Design^1997.

[BC95] R. E. Bryantand Y.-A. Chen. Verification of Arithmetic Circuits with Binary Momemt
Diagrams. In Proc. of the lEEE/ACM Design Automation Conf.^ pages 535-41, June
1995.

[BCL91a] J. R. Burch, E. M. Clarke, and D. E. Long. Representing Circuits More Efficiently in
Symbolic Model Checking. In Proc. of the lEEE/ACM Design Automation Conf, June
1991.

[BCL91b] J. R. Burch, E. M. Clarke, and D. E. Long. SymbolicModel Checkingwith Partitioned
Transition Relations. In Proc. Intl. Conf. on VLSI, August 1991.

[BCMD90] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Verification
Using SymbolicModel Checking. In Proc. ofthe lEEE/ACM DesignAutomation Conf,
June 1990.

[BFG"*'93] R. I. Bahar,E. A. Frohm,C. M. Gaona,G. D. Hachtel,E. Macii,A. Pardo,andF.Somenzi.
AlgebraicDecision Diagramsand Their Applications. In Proc. lEEE/ACM International
Conferenceon Computer-AidedDesign, pages 188-91,1993.

[Bra93] D. Brand. Verification of Large Synthesized Designs. In Proc. lEEE/ACMInternational
Conference on Computer-Aided Design, pages 534-7, November 1993.

[BRB90] K. S. Brace, R. L. Rudell, and R. E. Bryant Efficient Implementation of a BDD Package.
In Proc. ofthe lEEE/ACMDesign Automation Conf, pages 40-45, June 1990.

[BRSW87] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R. Wang. MIS: A
Multiple-Level Logic Optimization System. IEEE Transactionson Computer-Aided De
sign ofIntegrated Circuits, CAD-6(6):1062-81, November 1987.

[Bry86] R. Bryant. Graph-basedAlgorithms for Boolean Function Manipulation. IEEE Transac
tions on Computers, C-35:677-91, August 1986.

[Bry87] R. E. Bryant.BooleanAnalysis of MOSCircuits. IEEE Transactions on Computer-Aided
Design ofIntegrated Circuits, pages 634-49, July 1987.

[Bry91] R. Bryant. A methodology for hardwareverification based on logic simulation. Journal
ofthe Associationfor ComputingMachinery,38(2):299-328, April 1991.

[Bry95] R. E. Bryant. Binary decision diagrams and beyond; enabling technologies for formal
verification. In Proc. lEEE/ACM International Conference on Computer-AidedDesign,
pages 236-43, November 1995.

[BSA+96a] R. K. Brayton, A. Sangiovanni-Vincentelli, A. Aziz, S.-T.Cheng, S. Edwards,S. Khatri,
Y. Kukimoto, S. Qadeer, R. K. Ranjan, T. R. Shiple, G. Swamy, T. Villa, G. D. Hachtel,
F. Somenzi, A. Pardo, and S. Sarwary. VIS: A System for Verification and Synthesis. In
Proc. of the 8th International Conference on ComputerAided Verification, volume 1102
ofLecture Notes in Computer Science, pages 428-432. Springer-Verlag, 1996.

[BSA'^96b] R. K. Brayton, A. Sangiovanni-\fincentelli, A. Aziz. S.-T. Cheng, S. Edwards, S. Kha
tri, Y. Kukimoto, S. Qadeer, R. K. Ranjan, T. R. Shiple, G. Swamy, T. Villa, G. D.
Hachtel, F. Somenzi, A. Pardo, and S. Sarwary. VIS: Tutorial. In Proc. Formal Method
in Computer-AidedDesign, volume 1166 of Lecture Notes in Computer Science, pages
248-56. Springer-Verlag,1996.

BIBLIOGRAPHY 285

(BW97] B.Bollig andI. Wegener. Partitioned BDDs vs.OtherBDD Models. In Prvc. lEEE/ACM
Intl. Workshop on LogicSynthesis, 1997.

[CBM89] O. Coudert, C. Berthet, andJ. C. Madre. Verification of Sequential Machines Based on
Symbolic Execution. InJ.Sifakis, editor, Proc. oftheWorkshop onAutomatic Verification
Methods for Finite State Systems, volume 407 of Lecture Notes in Computer Science,
pages 365-73, June 1989.

[CC93] G. Cabodi and P. Camurati. Exploiting Cofactoring forEfficient FSM Symbolic Traver
sal Based on the Transition Relation. In Proc. lEEE/ACM International Conference on
ComputerDesign, pages299-303, October 1993.

[CCQ94] G.Cabodi, P. Camurati, and S.Quer. Auxiliary Variables forExtending Symbolic Traver
sal Techniques toData Paths. InPrvc. ofthelEEE/ACM Design Automation Conf, pages
289-93, June 1994.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-Slate
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Pro
gramming Languages and Systems, 8(2):244-63,1986.

[CFZ95] E. Clarke, M. Fujita, and X. Zhao. Hybrid Decision Diagrams: Overcoming the Lim
itations of MTBDDs and BMDs. In Proc. lEEE/ACM International Conference on
Computer-Aided Design,November 1995.

[CGRR94] G. Cabodi, S. Gai, M. Rebaudengo, and M. S. Reordea. A Data Parallel Approach to
Boolean Function Manipulation using BDDs. InInternational Conference onMassively
Parallel Computer Systems, 1994.

[CHM+93] H. Cho, G. D. Hachtel, E.Macii, B. Plessier, and F. Somenzi. Algorithms for Approximate
FSM Traversal. In Proc. of thelEEE/ACM Design Automation Conf, pages 25-30, June
1993.

[CHM+94] H.Cho, G.D.Hachtel, E.Macii, M.Poncino, and F. Somenzi. A Structural Approach to
State Space Decomposition for Approximate Reachability Analysis. InProc. lEEE/ACM
International Conference on ComputerDesign,October 1994.

[CM90a] E. Cemy and C. Mauras. Tautology Checking Using Cross-Controllability and Cross-
Observability Relations. In Proc. lEEE/ACM International Conference on Computer-
AidedDesign, pages 34-37, November 1990.

[CM90b] O.Coudert and J.C.Madre. AUnified Framework forthe Formal Verification ofSequen
tial Circuits. In Proc. lEEE/ACM International Conference on Computer-Aided Design,
pages 126-9, November 1990.

[CM95] O.Coudert andJ. C. Madre. TheImplicit SetParadigm: A NewApproach toFinite State
System Verification. In R. K. Brayton, E. M.Clarke, andP. A. Subrahmanyam, editors.
Formal Methods in System Design, pages 133-145,1995.

[CMZ+93] E. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J.-Y. Yang. Spectral Transforms
forLarge Boolean Functions with Application to Technology Mapping. In Proc. of the
lEEE/ACMDesign AutomationConf, pages 54-60,1993.

(CSG97] D.Culler, J. P. Singh, andA.Gupta. Parallel ComputerArchitecture: AHarware/Software
Approach. Morgan Kaulmann, 1997.

286 BIBLIOGRAPHY

[CYF94] B. Chen, M. Yamazaki, and M. Fujita. Bug Identification of a RealChip Designby Sym
bolic Model Checking. In Pmc. Eumpean Conf. on Design Automation, Paris, France,
February 1994.

[DB97] R. Drechsler and B. Becker. Overview of Decision Diagrams. In lEE Proceedings-
Computersand Digital Techniques, pages 187-93, May 1997.

[DDHY92] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol Verification as a Hardware
Design Aid. In Proc. lEEE/ACM International Conference on Computer Design, pages
522-5, October 1992.

[DMNBB] S. Devadas, H.-K. T. Ma, and A. R. Newton. On the Verificationof Sequential Machines
at Differing Levels of Abstraction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits, pages 713-22, June 19BB.

[DST'"94] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski. Efficient Repre
sentation and Manipulation of Switching Functions Based on Ordered Kronecker Func
tional Decision Diagrams. In Proc. ofthe lEEE/ACM Design Automation Conf, 1994.

[Eic93] T. H. V. Eicken. Active Messages: An Efficient Communication Architecture for Multi
processors. PhDthesis,lIniversity of California Berkeley, 1993.

[ELB5] E. A. Emerson and C. L. Lei. Modalities for Model Checking: Branching Hme Strikes
Back. In Proc. ACMSymposiumon Principles ofProgramming Languages, pages B4-96,
19B5.

[Eme90] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor. Formal Models
and Semantics, volume B of Handbook of Theoretical Computer Science, pages 996-
1072. Elsevier Science, 1990.

[Eng95] S. D. Engineering. Solaris Porting Guide. Sunsoft Press, 1995.

[FFKBB] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and Improvements of Boolean Com
parison Method Based on Binary Decision Diagrams. In Proc. lEEE/ACM International
Conferenceon Computer-AidedDesign, pages 2-5, November 19BB.

[FMK91] M. Fujita, Y. Matsunaga, and T. Kakuda. On Variable Ordering of Binary Decision Di
agrams for the Application of Multi-level Logic Synthesis. In Proc. European Conf on
Design Automation, pages 50-54, March 1991.

[GB94] D. Geist and 1. Beer. Efficient Model Checking by Automated Ordering of Transition
Relation Partitions. In Computer Aided Verification, volume BIB of Lecture Notes in
Computer Science, pages 52-71. Springer-Verlag, 1994.

[GBD'*'94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3
User's Guide and R^erence Manual. Oak Ridge National Laboratory, September 1994.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Co.,
1979.

[GL91] O. Griimberg and D. E. Long. Model Checking and Modular Verification. In J. C. M.
Baeten and J. F. Groote, editors, Proc. of CONCUR '91: 2nd Inter. Conf. on Concur
rency Theory, volume 527 of Lecture Notes in Computer Science. Springer-Verlag, Au
gust 1991.

BIBLIOGRAPHY 287

[GM94] J. Gergov andC. Meinel. Efficient Boolean Manipulation withOBDDs can be Extended
to FBDDs. In IEEE Transactionson Computers,pages 1179-1209,1994.

[Gra94] S.Graf. Verification of a Distributed CacheMemory by UsingAbstractions. In Computer
Aided Verification, volume 818 of Lecture Notes in Computer Science, pages 207-219.
Springer-Verlag, 1994.

[Gup92] A. Gupta. Formal Hardware Verification Methods: A Survey. In Formal Methods in
System Design, pages 151-238. Kluwer Academic Publishers, New York, 1992.

[HBBM97] Y. Hong, P. A. Beerel, J. R. Burch, and K.L. McMillan. SafeBDD Minimization Using
Don't Cares. In Proc. of the lEEE/ACM Design Automation Conf, pages208-13, June
1997.

[HCC96a] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen. An ATPG-based Framework for Verifying
Sequential Equivalence. In Proc. Intl Test Conf, 1996.

IHCC96b] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen. On Verifying the Correctness of Retimed
Circuits. In Proceedings. The GreatLakes Symposium on VLSI, pages 277-80,1996.

[HCC97] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen. AQUILA: AnEquivalence Verifier forLarge
Sequential Circuits. InProc. ofAsian andSouth Pacific Design Automation Conf, 1997.

[HDB96] A. Hett, R. Drechsler, and B. Becker. MORE: An Alternative Implementation of BDD
Packages by Multi-Operand Synthesis. In Proc. European Design Automation Conf,
pages 164-9,1996.

[HK90] Z. Har'El and R. P. Kurshan. Software for Analytical Development of Communication
Protocols. AT&TTechnicalJournal, pages 45-59, January 1990.

[Hor96] S. Horeth. Compilation of Optimized OBDD-i^gorithms. In Proc. European Design
Automation Conf, pages 152-7,1996.

[HP90] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufman, 1990.

[HYD94] A. J. Hu, G. York, and D. L. Dill. New Techniques for Efficient Verification with Im
plicitly Conjoined BDD's. In Proc. of the lEEE/ACM Design Automation Conf, pages
276-282, June 1994.

[HYHD95] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architectural Validation for
Processors. In Proc. of the International Symposium on Computer Architecture, June
1995.

[ISY91] N.Ishiura, H. Sawada, andS.Yajima. Minimization of Binary Decision Diagrams Based
on Exchanges of Variables. In Proc. lEEE/ACM International Conference on Computer-
Aided Design, pages 472-5, November 1991.

[JMF97] J. Jain, R. Mukheijee, andM.Fujita. FLOVER: Filtering Oriented Combinational Verifi
cation Approach. In Proc. lEEE/ACM Intl. Workshop onLogic Synthesis, pages 263-68,
May 1997.

[JNC+96] J. Jain, A. Narayan, C. Coelho, S. Khatri, M. Fujita, and A. L. Sangiovanni-Vincentelli.
Decomposition Techniques forRfficient ROBDD Construction. In Proc. Formal Method
in Computer-AidedDesign, Paiges A\9-'iA, 1996.

288

[KC90]

[Keu96]

[KHB96]

[KK97]

[KOKD96]

[KR97]

[KSR92]

[Kuk89]

[Kur93]

[Kur97]

[Lam93]

[LE92]

[Lin91]

[Lon93]

[LR90]

[LRS83]

[LS91]

BIBLIOGRAPHY

S. Kimura and E. M. Clarke. A Parallel Algorithm for Constructing Binary Decision
Diagrams. In Pmc. lEEE/ACM International Conference on Computer Design, pages
220-223, November 1990.

K. Keutzer. TheNeedfor Formal Methods for Integrated CircuitDesign. In Proc.Formal
Method in Computer-Aided Design, November 1996.

S. Krishnan, R.Hojati, andR. K.Brayton. Early Quantification andPartitioned Transition
Relation. In Proc. lEEE/ACMInternational Conferenceon ComputerDesign, pages 12-
19, Austin, TX, October 1996.

A. Kuehlmann and P. Krohm. Equivalence CheckingUsing Cuts and Heaps. In Proc. of
the lEEE/ACMDesign AutomationConf, pages 263-8, June 1997.

M. Kumanoya, T. Ogawa, Y. Konishi, and K. Dosaka. Trends in High-Speed DRAM
Architectures. lEICE Transactionson Electronics,pages 472-81, April 1996.

N. Klarlund and T. Rauhe. BDD algorithms and Cache Misses. In Dagstuhl Seminar,
Computer-AidedDesign and Test, January 1997.

U. Kebschull, E. Schubert, and W. Rosentiel. Multilevel Logic Bsed on Functional Deci
sion Diagrams. In Proc. European Conf. on DesignAutomation, pages 608-13,1992.

J. H. Kukula. A Technique for VerifyingFinite-state Machines. Technical Report 3A,
IBM Technical Disclosure Bulletin, 1989.

R. P. Kurshan. Automata-Theoretic Verification of Coordinating Processes. Princeton
University Press, 1993.

R. P. Kurshan. Formal Verification in a Commercial Setting. In Proc. ofthe lEEE/ACM
Design Automation Conf, pages 258-62,1997.

W. Lam. AlgebraicMethodsfor Timing Analysisand Testing in High PerformanceDe
signs. PhD thesis. University of California Berkeley, April 1993. Memorandum No.
UCB/ERLM94/19.

B. Lockyearand C. Ebeling. Retiming of Multi-phase, Level-clocked Circuits. In Ad
vanced Research in VLSI and Parallel Systems: Proceedings of the 1992 Brown/MIT
Conference,pages 265-280, March 1992.

B. Lin. Synthesis of VLSI Design with Symbolic Techniques. PhD thesis. University of
California Berkeley, 1991.

D. E. Long. BDD Manipulation * Library,
ftp://emc.cs.emu.edu/pub/bdd/bddlib.tar.Z.

June 1993.

D. H. Lee and S. M. Reddy. On Determining Scan Flip-Flops in Partial-Scan Designs.
In Proc. lEEE/ACMInternational Conference on Computer-AidedDesign, pages 322-5,
1990.

C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing Synchronous Circuitry by Re
timing. In AdvancedResearch in VLSI: Proc. ofthe Third Caltech Conf, pages 86-116.
Computer Science Press, 1983.

C. E. Leiserson and J. B. Saxe. Retiming Synchronous Circuitry. In Algorithmica, pages
5-35,1991.

BIBLIOGRAPHY 289

(LS92] Y.-T. LaiandS. Sastry. Edge-valued Binaiy Decision Diagrams for Multi-level Hierar
chical Verification. In Pmc. of thelEEE/ACM Design Automation Conf, pages608—613,
1992.

(LVW97] C.Legl, P. Vanbekbergen, and A.Wang. Retiming ofEdge-Triggered Circuits with Mulit-
pleClocks and Load Enables. In Proc. lEEE/ACM Intl. Workshop onLogic Synthesis,
1997.

(Mal90] S. Malik. Combinational Logic Optimization Techniques in Sequential Logic Synthe
sis. PhD thesis. University of California Berkeley, November 1990. Memorandum No.
UCB/ERLM90/115.

[Mat96] Y. Matsunaga. An Efficient Equivalence Checker for Combinational Circuits. InPmc. of
thelEEE/ACM Design Automation Conf, pages629-34,June 1996.

[McM93] K. L.McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[McM94] K. L.McMillan. Fitting Formal Methods into the Design Cycle. InPmc. ofthe lEEE/ACM
DesignAutomation Conf, pages 316-19,1994.

[MGS97] S.Manne, D.C. Grunwald, and F. Somenzi. Remembrance ofThings Past: Locality and
Memory in BDDs. InPmc. ofthelEEE/ACM Design Automation Conf, pages 196-201,
June 1997.

[MQRK97] A. Mehrotra, S. Qadeer, R. K. Ranjan, and R. H. Katz. Benchmarking and Analysis
of Architectures for CAD Applications. In Pmc. lEEE/ACM Intl. Conf on Computer
Design,Austin,Texas, USA, October 1997.

[MS97] N. Maheshwari and S.S.Sapatnekar. AnImproved Algorithm for Minimum-Area Retim
ing. In Pmc. ofthelEEE/ACM Design Automation Conf, 1997.

[MSBS91] S.Malik, E. M. Sentovich, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Retiming
and Resynthesis: Optimization of Sequential Networks with Combinational Techniques.
IEEETransactions on Computer-Aided Design of Integrated Circuits, 10(l):74—84, Jan
uary 1991.

[MSSS95] P. McGeer, A. Saldanha, A. L. Sangiovanni-Vincentelli, and P. Scaglia. Fast Discrete
Function Evaluation Using Decision Diagrams. In Pmc. lEEE/ACM International Con
ference on Computer-Aided Design, 1995.

[Mur93] R.Murgai. Logic Synthesisfor Field Pmgrammable Gate Arrays. PhD thesis. University
of California Berkeley, December 1993. Memorandum No.UCB/ERL M93/98.

[MWBS88] S. Malik, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Logic Ver
ification using Binary Decision Diagrams in a Logic Synthesis Environment. In Pmc.
lEEE/ACM International Conference on Computer-Aided Design, pages 6-9, November
1988.

[NJFS96] A. Narayan, J. Jain, M.Fujita, andA. L. Sangiovanni-Vincentelli. Partitioned ROBDDs
- A Compact, Canonical andEfficiently Manipulable Representation for Boolean Func
tions. In Pmc. lEEE/ACM International Conference on Computer-Aided Design, 1996.

[0IY91] H. Ochi, N. Ishiura, and S. Yajima. Breadth-First Manipulation of SBDD of Boolean
Functionsfor Vector Processing. In Pmc. of the lEEE/ACM Design Automation Conf,
pages 413-416, June 1991.

290 BIBUOGRAPHY

[OYY93] H. Ochi, K. Yasuoka, and S. Yajima. Breadth-FirstManipulation of Very Large Binary-
Decision Diagrams. In Proc. lEEE/ACM International Conference on Computer-Aided
Design^pages 48-55, November 1993.

[Pix90] C. Pixley. A Computational Theory and Implementation of SequentialHardwareEquiv
alence. In E. M. Clarke and R. P. Kurshan, editors, Proc. ofthe Workshop on Computer-
Aided Verification^ volume 3 of DIMACS Series in Discrete Mathematicsand Theoretical
ComputerScience,pages 293-320. American MathematicalSociety,June 1990.

[Pix92] C. Pixley. A Theory and Implementation of Sequential Hardware Equivalence. IEEE
Transactions on Computer-AidedDesign ofIntegrated Circuits, 11(12):1469-1494, De
cember 1992.

[Pnu86] A. Pnueli. Applications of TemporalLogic to the Specification and Verification of Reac
tive Systems: A Survey ofCurrent Trends. In Lecture Notes in ComputerScience, volume
224, pages 510-84. Springer Verlag, 1986.

[PSAB94] C. Pixley, V.Singhal, A. Aziz, and R. K. Brayton. Multi-level Synthesis for Safe Replace-
ability. In Proc. lEEE/ACMInternational Conferenceon Computer-AidedDesign, pages
442-9, November 1994.

[PSC94] Y.Parasuram, E. Stabler, and S.-K. Chin. Parallel Implementation of BDD Algorithms us
ing a Distributed Shared Memory. In Hawaii Intemation Conference on System Sciences,
pages 16-25, January 1994.

[RAP'^95] R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Brayton. Efficient BDD Algo
rithms for FSM Synthesis and Verification. In Proc. lEEE/ACM Intl. Workshop on Logic
Synthesis, Lake Tahoe, California, USA, May 1995.

[RGBS97] R. K. Ranjan, W. Gosti, R. K. Brayton, and A. Sangiovanni-Vincentelli. Dynamic Variable
Reordering in a Breadth-First Based BDD Package: Challenges and Solutions. In Proc.
lEEE/ACM Intl. Conf. on Computer Design, Austin, Texas, USA, October 1997.

[RS95] K- Ravi and F. Somenzi. High-density Reachability Analysis. In Proc. lEEE/ACM Inter
national Conference on Computer-AidedDesign, pages 154-8, November 1995.

[RS97] R. K. Ranjan and J. Sanghavi. CAL-2.0: Breadth-first Manipulation Based BDD Library.
June 1997. http://www-cad.eecs.berkeley.edu/Research/calJ3dd.

[RSBS96] R. K. Ranjan, J. V. Sanghavi, R. K. Brayton, and A. Sangiovanni-Vincentelli. Using
Network of Workstations for Efficient Binary Decision Diagram Manipulation. In Proc.
lEEE/ACM Intl. Conf. on Computer Design, Austin, Texas, USA, October 1996.

[RSSB97] R. K. Ranjan, V. Singhal, F. Somenzi, and R. K. Brayton. Using Combinational Verifica
tion for Sequential Circuit. Technical Report UCB/ERL, Electronics Research Lab, Univ.
of California, Berkeley, CA 94720, October 1997.

[Rud93] R. Rudell. Dynamic Variable Ordering for Binary Decision Diagrams. In Proc.
lEEE/ACM International Conference on Computer-Aided Design, pages 42-47, Novem
ber 1993.

[RWK95] S. M. Reddy and D. K. P. Wolfgang Kunz. Novel Verification Framework Combining
Structural and OBDD Methods in a Synthesis Environment In Proc. of the lEEE/ACM
Design Automation Conf, pages 414-9, June 1995.

BIBLIOGRAPHY 291

[San96] J. Sanghavi. High Performance Verification Algorithms. PhD thesis. University of Cali
fornia Berkeley, December 1996.

[SB96] T.Stronetta andF.Brewer. Implementaion of anEfficient Parallel BDDPackage. InProc.
of the lEEE/ACM DesignAutomation Confix pages641-4, June 1996.

[SBS93a] N.Shenoy, R. K.Brayton, andA.L. Sangiovanni-Vincentelli. Minimum Padding to Sat
isfy Short Path Constraints. InProc. lEEE/ACM International Conference on Computer-
Aided Design, pages 156-61, November 1993.

ISBS93b] T.Shiple, R.K. Brayton, and A.L.Sangiovanni-Vincentelli. Computing Boolean Expres
sion with OBDDs. Technical Report UCB/ERL M93/84, Electronics Research Lab, Univ.
of California, Berkeley,CA 94720, December 1993.

[Sen96] E. M. Sentovich. ABrief Study ofBDD Package Performance. InProc. Formal Method
in Computer-AidedDesign,NoyemheT 1996.

[Shi97] T. R. Shiple. Privatecommunication, 1997.

[SHSB94] T. R. Shiple, R. Hojati, A. L. Sangiovanni-Vincentelli, and R. K. Brayton. Heuristic
Minimization ofBDDs Using Don'tCares. InProc. ofthelEEE/ACM Design Automation
Conf, June 1994.

[SK97] D. Stoffel and W. Kunz. A Structural Fixpoint Iteration for Sequential Logic Equiva
lence Checking Based On Retiming. In Proc. lEEE/ACM International Conference on
Computer-AidedDesign, 1997.

[SKMB90] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for Discrete Function
Manipulation. In Proc. lEEE/ACMInternational Conference on Computer-AidedDesign,
pages 92-95, November 1990.

[Smi97] D.J. Smith. HDL ChipDesign. Doone Publications, 1997.

[Som97] F. Somenzi. CUDD: CU Decision Diagram Package. University ofColorado atBoulder,
1997.

[SR94] N. Shenoy and R. Rudell. Efficient Implementation of Retiming. In Proc. lEEE/ACM
International Conference on Computer-Aided Design, pages 226-33,November 1994.

[SRBS96] J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and A.Sangiovanni-Vincentelli. High Per
formance BDD Package Based on Exploiting Memory Hierarchy. In Proc. of theDesign
Automation Conf, June 1996.

[SRSB97] T.R. Shiple, R. K. Ranjan, A.L. Sangiovanni-Vincentelli, and R. K.Brayton. Deciding
State Reachability for Large FSMs. Technical Report UCB/ERL, M97/73, Electronics
Research Lab, August 1997.

[SS94] M.Singhal and N. Shivaratri. Advanced Concepts in Operating Systems. McGraw-Hill,
1994.

[SSBS92] N. Shenoy, K. J. Singh, R. K.Brayton, andA. L. Sangiovanni-Vincentelli. On theTem
poral Equivalence of Sequential Circuits. In Proc. of thelEEE/ACM Design Automation
Conf, pages 405-9, June 1992.

292 BIBLIOGRAPHY

[SSL'''92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.Saldanha, H. Savoj,
R R. Stephan, R. K. Brayton, and A. L. Sangiovanni->^ncentelli. SIS: A System for
Sequential Circuit Synthesis. Technical Report UCB/ERL M92/41, Electronics Research
Lab, Univ. of California, Berkeley, CA 94720, May 1992.

[SW95] D. Sieling and I. Wegener. Graph-driven OBDDs - A New DataStructure for Boolean
Functions. Theoretical Computer Science^ 1995.

[Swa96] 0. M. Swamy. Incremental Techniquesfor Logic Synthesis and Verification. PhDthe
sis, University of California Berkeley, November 1996. Memorandum No. UCB/ERL
M96/115.

[TSL'̂ 90] H. Touati, H. Savoj, B. Lin, R. K. Brayton,and A. L. Sangiovanni-Vincentelli. Implicit
State Enumeration of Finite State Machines using BDD's. In Ptoc. lEEE/ACMInterna
tional Conference on Computer-Aided Design^ pages 130-133, November1990.

[TY93] Y. Takenaga and S. Yajima. NP-Completeness of Minimum Binary Decision Diagram
Identification. Technical Report COMP 92-99, Institute of Electronics, Information and
Communication Engineers (of Japan), March 1993.

[YCB097] B. Yang, Y.-A. Chen, R. E. Bryant, and D. R. O'Hallaron. Space- and Hme-Efficient
BDD Construction via Working Set Control. Technical Report CMU-CS-97, Department
of Computer Science, Carnegie Mellon University, 1997.

[Y097] B. Yang and D. O'Hallaron. Parallel Breadth-First BDD Construction. In Proc. of the
Sixth ACM SICPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), Las Vegas, NV,June 1997.

[YSAA97] J. Yuan, J. Shen, J. Abraham, and A. Aziz. On Combining Formal and Informal Verifica
tion. In Computer Aided Verification, volume 1254 of Lecture Notes in Computer Science,
pages 376-87. Springer-Verlag, 1997.

l-step equivalence, 206
1-step equivalent transformation, 212
2-way merge, 202
2-way split, 202

apply phase, 40,48,116
array and, 80
atomic propositions, 157

BDD, 25

canonical, 27

computed table, 28
else cofactor, 26
if-then-else, 28
isomorphic nodes, 26
ITE, see if-then-else
non-terminal node, 25

redundant nodes, 26

terminal node, 25
then cofactor, 25

unique table, 27
variable id, 28
variable index, 28

binary decision diagram, see BDD, 26
Boolean network, 29

breadth-first BDD manipulation, 40
apply phase, 40
reduce phase, 40
request, 40

CID, 230
cache locality, 70
characteristic function, 32

clocked Boolean function, 234

cluster ordering, 181
clustering, 178
collective disk space, 98
collective main memory, 97
combinational synthesis, 190
compose, 63

Index

293

constant propagation, 174
constrained area optimization, 192
conventional BDD manipulation, 36
CTL model checking pa^igm, 157
cycle preservingtransformation, 203

dependent BDD operations, 54
design verification, 10
disk, 5

distributed shared-memory, 107
don't care set, 170
DRAM, 4

dynamic ordering, 126
dynamic reordering, 127

early variable quantification, 163
event driven Boolean function, 237

exact 3-valued equivalence, 233
existential quantification, 60,78, 80

fair states, 158

finite state machine, 29

initial state, 30
input alphabet, 30
Mealy machine, 30
Moore machine, 30

output alphabet, 30
output function, 30
state, 29

transition relation, 30
floating latch, 214
forward image, 156
forwarding node, 130
FSM, see finite state machine

generalized cofactor, 164
graph isomorphism, 220

image, 156
implementation verification, 10

294

implicit set manipulation, 32
independent BDD operations, 51
intermediate variable, 167
iterative BDD manipulation, 40

kripke structure, 157

-main memoiy,4
massively parallel processors, 107
memory hierarchy, 4
memory management, 68
message passing machine, 107
microprocessors, 3
MIMD, 103
model checking, 13
monolithic transition relation, 160
multi-threading, 115
multiway AND, 58,83
multiway operations, 58

negative retiming, 215
network of workstations, 89
network partitioning, 167,181
node packing, 143
non-cycle preserving transformation, 203
non-uniform memory access, 107
NRAM, 98

parallel computer, 103
parallel virtual machine, 96
partitioned transition relation, 160
pipedepth, 57
pipelining, 34,53
pre-image, 156
process, 115
property verification,10
PVM, 96

QRBDD, 46

reachable states, 156
recursive BDD manipulation, 36
reduce phase, 40,49,116
redundant latch, 174,185
register transfer level, 10
repacking, 68
request, 40,116
retiming, 190
ROBDD, see BDD

INDEX

RTL, see register transfer level

scalable shared-memory, 107
secondary memory, 5
sequential depth, 240
shadow node, 93

shared memory multiprocessor, 104
sifting technique, 138
SIMD, 103

SISD, 103
state encoding, 195
state explosion problem, 159
state transition graph, 14,32
STG, see state transition graph
substitute, 59
substitution, 78

superscalarity, 34,51
swapping variables, 64
switch, 203

symbolic simulation, 13
synchronous circuits, 29

theorem provers, 13
thread, 115

transition relation, 30,32

uniform memory access, 104
utility ratio, 143

variable swapping, 128

window technique, 142

	Copyright notice 1997
	ERL-97-99

