
Online Association Rule Mining �

Christian Hidber

International Computer Science Institute, Berkeley

hidber@icsi.berkeley.edu

May 20, 1998

Abstract

We present a novel algorithm to compute large itemsets online. It

needs at most two scans of the transaction sequence. Any time during

the �rst scan, the user is free to change the support threshold. The

algorithm maintains a superset of all large itemsets and a deterministic

lower and upper bound on the support of each itemset. We continously

display the resulting association rules along with an interval on the

rule's support and con�dence. The algorithm can compute association

rules for a transaction sequence which is read from a network and is

too large to be stored locally for a rescan. During the second scan

we determine the precise support for each large itemset and prune all

small itemsets using a new forward-pruning technique.

1 Introduction

Mining for association rules is a form of data mining introduced in [AIS93].
The prototypical example is based on a list of purchases in a store. An
association rule for this list is a rule such as \85% of all customers who buy

product A and B also buy product C and D". Discovering such customer

buying patterns is useful for customer segmentation, cross-marketing, catalog

design and product placement.

�Technical Report, UCB//CSD-98-1004, Department of Electrical Engineering and

Computer Science, University of California at Berkeley

1

We give a problem description which follows [BMUT97]. The support

of an itemset (set of items) in a transaction sequence is the fraction of all

transactions containing the itemset. An itemset is called large if its support

is greater or equal to a user-speci�ed support threshold, otherwise it is called

small. An association rule is an expression X) Y where X and Y are

disjoint itemsets. The support of this rule is the support of X [Y . The

con�dence of this rule is the fraction of all transactions containing X that

also contain Y , i.e. the support of X [Y divided by the support of X. In the

example above, the \85%" is the con�dence of the rule fA;Bg) fC;Dg.

For an association rule to hold, it must have a support � a user-speci�ed
support threshold and a con�dence � a user-speci�ed con�dence threshold.

Existing algorithms proceed in 2 steps to compute association rules:

1. Find all large itemsets.

2. For each large itemset Z, �nd all subsets X, such that the con�dence
of X) ZnX is greater or equal to the con�dence threshold.

We address the �rst step, since the second step can already be computed
online, c.f. [AY97]. Existing large itemset computation algorithms have
an o�ine or batch behaviour: given the user-speci�ed support threshold,
the transaction sequence is scanned and rescanned, often several times, and
eventually all large itemsets are produced. However, the user does not know,

in general, an appropriate support threshold in advance. An inappropriate
choice yields, after a long wait, either too many or too few large itemsets,
which often results in useless or misleading association rules.

Inspired by online aggregation, c.f. [Hel96, HHW97], our goal is to over-
come these di�culties by bringing large itemset computation online. We

consider an algorithm to be online if: 1) it gives continuous feedback, 2) it
is user controllable during processing and 3) it yields a deterministic and ac-

curate result. Random sampling algorithms produce results which hold with
some probability < 1. Thus we do not view them as being online.

In order to bring large itemset computation online, we introduce a novel

algorithm called CARMA (Continuous Association Rule Mining Algorithm).

The algorithm needs, at most, two scans of the transaction sequence to pro-

duce all large itemsets.
During the �rst scan, the algorithm continuously constructs a lattice of

all potentially large itemsets (large with respect to the scanned part of the

2

transaction sequence). For each set in the lattice, CARMA provides a de-

terministic lower and upper bound for its support. We continuously display,

e.g. after each transaction processed, the resulting association rules to the

user along with bounds on each rule's support and con�dence. The user is

free to adjust the support and con�dence thresholds at any time. Adjusting

the support threshold may result in an increased threshold for which the

algorithm guarantees to include all large itemsets in the lattice. If satis�ed

with the rules and bounds produced so far, the user can stop the rule mining

early.

During the second scan, the algorithm determines the precise support of
each set in the lattice and continuously removes all small itemsets. While

requiring, at most, two scans of the transaction sequence, CARMA typically
needs less than two scans using a novel \forward pruning" technique.

Existing algorithms need to rescan the transaction sequence. Thus, they
can not be used on a sequence which is read from a network and cannot
feasably be stored locally, e.g. real-time sequences read from the internet. In

contrast, using CARMA's �rst-scan algorithm, we can read such a transac-
tion sequence from a network and continuously generate the resulting asso-
ciation rules online, not requiring a rescan.

2 Overview

The paper is structured as follows: In Section 3, we put our algorithm in
the context of related work. In Section 4, we give a sketch of CARMA. It
uses two distinct algorithms for the �rst and second scan, called PhaseI and

PhaseII respectively. In Section 5, we describe PhaseI in detail, illustrating

the algorithm in an example in Subsection 5.3 and discuss changing sup-
port thresholds in Subsection 5.4. We conclude the section with remarks on

pruning strategies in Subsection 5.5. In Section 6, we introduce the PhaseII

algorithm for the second scan. After a detailed description of our forward
pruning technique in Subsection 6.2, we give the formal de�nition of PhaseII

in Subsection 6.3. In Section 7, we put the PhaseI and PhaseII algorithms
together, yielding CARMA. In Appenix A and Appenix B we give the formal

proofs of correctness for PhaseI and PhaseII.

3

3 Related Work

Most large itemset computation algorithms are related to the Apriori algo-

rithm due to Agrawal & Srikant, c.f. [AS94]. See [AY98] for a survey of

large itemset computation algorithms. Apriori exploits the observation that

all subsets of a large itemset are large themselves. It is a multi-pass algo-

rithm, where in the k-th pass all large itemsets of cardinality k are computed.

Hence Apriori needs up to c+1 scans of the database where c is the maximal

cardinality of a large itemset.

In [SON95] a 2-pass algorithm called Partition is introduced. The gen-

eral idea is to partition the database into blocks such that each block �ts
into main-memory. In the �rst pass, each block is loaded into memory and
all large itemsets, with respect to that block, are computed using Apriori.
Merging all resulting sets of large itemsets then yields a superset of all large
itemsets. In the second pass, the actual support of each set in the superset
is computed. After removing all small itemsets, Partition produces the set

of all large itemsets.
In contrast to Apriori, the DIC (Dynamic Itemset Counting) algorithm

counts itemsets of di�erent cardinality simultaneously, c.f. [BMUT97]. The
transaction sequence is partioned into blocks. The itemsets are stored in a
lattice which is initialized by all singleton sets. While a block is scanned,

the count (number of occurences) of each itemset in the lattice is adjusted.
After a block is processed, an itemset is added to the lattice if and only if
all its subsets are potentially large, i.e. large with respect to the part of the
transaction sequence for which its count was maintained. At the end of the
sequence, the algorithm rewinds to the beginning. It terminates when the

count of each itemset in the lattice is determined. Thus after a �nite number

of scans, the lattice contains a superset of all large itemsets and their counts.
For suitable block sizes, DIC requires fewer scans than Apriori.

We note that all of the above algorithms: 1) require that the user speci�es

a �xed support threshold in advance, 2) do not give any feedback to the

user while they are running and 3) may need more than two scans (except
Partition). CARMA, in contrast: 1) allows the user to change the support

threshold at any time, 2) gives continuous feedback and 3) requires at most
two scans of the transaction sequence.

Random sampling algorithms have been suggested as well, c.f. [Toi96,
ZPLO96]. The general idea is to take a random sample of suitable size

4

from the transaction sequence and compute the large itemsets using Apriori

or Partition with respect to that sample. For each itemset, an interval is

computed such that the support lies within the interval with probability �

some threshold. CARMA, in contrast, deterministically computes all large

itemsets along with the precise support for each itemset.

Several algorithms based on Apriori were proposed to update a previously

computed set of large itemsets due to insertion or deletion of transactions, c.f.

[CHNW96, CLK97, TBAR97]. These algorithms require a rescan of the full

transaction sequence whenever an itemset becomes large due to an insertion.

CARMA, in contrast, requires a rescan only if the user needs, instead of the
supplied deterministic intervals, the precise support of the additional large

itemsets.
In [AY97] an Online Analytical Processing (OLAP)-style algorithm is

proposed to compute association rules. The general idea is to precompute
all large itemsets relative to some support threshold s using a traditional
algorithm. The association rules are then generated online relative to an

interactively speci�ed con�dence threshold and support threshold � s. We
note that: 1) the support threshold s must be speci�ed before the precom-
putation of the large itemsets, 2) the large itemset computation remains
o�ine and 3) only rules with support � s can be generated. CARMA over-
comes these di�culties by bringing the large itemset computation itself on-
line. Thus, combining CARMA's large itemset computation with the online

rule generation suggested in [AY97] brings both steps online, not requiring
any precomputation.

4 Sketch of the Algorithm

CARMA uses distinct algorithms, called PhaseI and PhaseII, for the �rst and

second scan of the transaction sequence. In this section, we give a sketch of

these algorithms. For a detailed description and formal de�nition see Section
5, Section 6 and Section 7.

During the �rst scan PhaseI continuously constructs a lattice of all po-
tentially large itemsets. After each transaction, it inserts and/or removes

some itemsets from the lattice. For each itemset v, PhaseI stores the follow-
ing three integers (see Figure 1 below, the itemset fa; bg was inserted in the

lattice while reading the j-th transaction, the current transaction index is i):

5

{ }

1 2 j

{ c }{ a } { b }

{ a, b }

t t tt t i n

maxMissed({ a,b })

firstTrans({ a,b })

count({ a,b })

current transactiontransactions scanned
lattice

Figure 1

count(v) the number of occurences of v since v was inserted in
the lattice.

�rstTrans(v) the index of the transaction at which v was inserted
in the lattice.

maxMissed(v) upper bound on the number of occurences of v before

v was inserted in the lattice.

For each transaction read, we increment the count of all itemsets con-
tained in the current transaction. Suppose we are reading transaction i. For
any itemset v in the lattice, we get a deterministic lower bound count(v)=i
and upper bound (maxMissed(v) + count(v))=i on its support in the �rst i
transactions. We denote these bounds byminSupport(v) andmaxSupport(v)

respectively. The computation of maxMissed(v) during the insertion of v in
the lattice is a central part of the algorithm. It not only depends on v and
the current transaction index but also on the previous values of the support
threshold, since the user may change the support threshold at any time. At

the end of the transaction sequence, the lattice contains a superset of all

large itemsets. We then rewind to the beginning and start PhaseII.
PhaseII initially removes all itemsets which are trivially small, i.e. item-

sets withmaxSupport below the current user-speci�ed support threshold. By
rescanning the transaction sequence, PhaseII determines the precise number

of occurences of each remaining itemset and continuously removes all small

itemsets using our forward-pruning technique. Eventually, we end up with
the set of all large itemsets along with their support.

6

5 PhaseI Algorithm

In this section, we fully describe the PhaseI algorithm, which constructs a

superset of all large itemsets. In Subsection 5.1, we introduce the concept of

a support lattice and of a support sequence, which we need to de�ne PhaseI

in Subsection 5.2. In Subsection 5.3 we illustrate the algorithm in a simple

example. In Subsection 5.4, we discuss changing support thresholds and in

Subsection 5.5, admissible pruning strategies.

5.1 Support Lattice & Support Sequence

For a given transaction sequence and an itemset v, we denote by supporti(v)
the support of v in the �rst i transactions. Let V be a lattice of itemsets
such that along with each itemset v 2 V we have the three associated integers
count(v), firstT rans(v) and maxMissed(v) as de�ned in Section 4. We call

V a support lattice (up to i and relative to the support threshold s) if and only
if V contains all itemsets v with supporti(v) � s. Hence, a support lattice is
a superset of all large itemsets in the �rst i transactions with respect to the
support threshold s.

For each transaction processed, the user can specify an arbitrary support
threshold. We get a sequence of support thresholds � = (�1; �2; : : :) where

�i denotes the support threshold for the i-th transaction. We call such a
sequence a support sequence. For a support sequence � and an integer i,
we denote by d�ei the least monotone decreasing sequence which is up to i

pointwise greater or equal to � and 0 otherwise (see Figure 2 below).

t t100 t100t 10t 10 t 7070

threshold
support

support sequence

transactions

ceiling up to 100

ceiling up to 10 ceiling up to 70

Figure 2

We call d�ei the ceiling of � up to i. By avgi(�) we denote the running

average of � up to i, i.e. avgi(�) =
1

i

Pi
j=1 �j.

7

5.2 PhaseI Algorithm

In this subsection, we give a full description and formal de�nition of the

PhaseI algorithm, which constructs a superset of all large itemsets. Since

a support lattice is a superset of all large itemsets, it su�ces for PhaseI to

maintain a support lattice V while scanning the transaction sequence:

We initialize V to f;g and set

count(;) = 0, firstT rans(;) = 0 and maxMissed(;) = 0.

Thus V is a support lattice for an empty transaction sequence. Suppose V is

a support lattice up to transaction i� 1, we are reading the i-th transaction
ti and we want to transform V into a support lattice up to i. Let �i be the

current user-speci�ed support threshold. To maintain the lattice we proceed
in three steps: 1) increment the count of all itemsets occuring in the current
transaction, 2) insert some itemsets in the lattice and 3) prune some itemsets
from the lattice.

1) Increment: We increment count(v) for all itemsets v 2 V that are

contained in ti, maintaining the correctness of all integers stored in V .
2) Insert: We insert a subset v of ti in V if and only if all subsets w of v are

already contained in V and are potentially large, i.e. maxSupport(w) � �i.
This corresponds to the observation that the set of all large itemsets is closed
under subsets. This condition also limits the growth of V , since only minimal
supersets of sets in V are added. Thus, the maximal cardinality of all sets

in V increases at most by 1 per transaction processed. Inserting v in V , we
set firstT rans(v) = i and count(v) = 1, since v is contained in the current
transaction ti. Since supporti(w) � supporti(v) for all subsets w of v and
w � ti we get

maxMissed(v) � maxMissed(w) + count(w)� 1.

In the following Theorem 1 we prove that

supporti�1(v) > maxf avgi�1(d�ei�1);
jvj�1

i�1
g implies v 2 V .

Since we are inserting v in V , the set v is not contained in V yet. Hence, we

get from Theorem 1
supporti�1(v) � maxf avgi�1(d�ei�1);

jvj�1

i�1
g.

For a real number x we denote by bxc the largest integer less or equal to x,

i.e. bxc = maxfi 2 Z jx � ig. Since maxMissed(v) is an integer we get
maxMissed(v) � maxf b(i� 1)avgi�1(d�ei�1)c; jvj � 1 g.

8

Thus we de�ne maxMissed(v) as

min f maxf b(i� 1)avgi�1(d�ei�1)c; jvj � 1 g;

maxMissed(w) + count(w)� 1 jw � v g: (1)

In particular we get maxMissed(v) � i�1, since the emptyset is a subset

of v, ; is an element of V and the count of ; equals i, the current transaction

index.

3) Prune: We do not prescribe a particular pruning strategy. However

we require that only small itemsets, i.e. maxSupport(v) < �i, are removed
from V and if a set is removed then all its supersets are removed as well. See
Subsection 5.5 for further remarks on pruning strategies.

We now have the following algorithm:

Function PhaseI(transaction sequence (t1; : : : ; tn),
support sequence � = (�1; : : : ; �n)) : support lattice;

support lattice V ;
begin
V := f;g, maxMissed(v) := 0, firstT rans(v) := 0 count(v) := 0.

for i from 1 to n do
Increment: for all v 2 V with v � ti do count(v) + +;
Insert: for all v � ti with v 62 V do

if 8w � v : w 2 V and maxSupport(w) � �i then
V := V [fvg;
maxMissed(v) :=

minf maxf b(i� 1)avgi�1(d�ei�1)c; jvj � 1 g;
maxMissed(w) + count(w) jw � v g;

firstT rans(v) := i;

count(v) := 1;
�; od;

Prune: remove v 2 V from V only if maxSupport(v) < �i.
if v 2 V is removed, remove all supersets as well.

od;

return V ;
end;

Figure 3

9

We omitted any optimization in the above de�nition of PhaseI. For exam-

ple, the incrementation and insertion step can be accomplished by traversing

the support lattice once. As another example, it su�ces for the if clause

as well as for maxMissed computation to check subsets of v of cardinality

jvj � 1 instead of all subsets.

The following theorem asserts the correctness of the algorithm:

Theorem 1 Let V be the lattice returned by PhaseI(T; �) for a transaction

sequence T of length n and support sequence �.

Then V is a support lattice relative to the suport threshold

maxf avgn(d�en);
c+ 1

n
g

with c the maximal cardinality of a large itemset in T . For any itemset v

supportn(v) � maxf avgn(d�en);
jvj � 1

n
g implies v 2 V:

Proof: see Theorem 4 in Appenix A. 2

For a disccussion of the involved support thresholds see Subsection 5.4.

5.3 Example

We illustrate in this subsection the PhaseI algorithm on a simple example,
namely on the transaction sequence T = (fa; b; cg; fa; bg; fb; dg) and the
support sequence � = (0:3; 0:5; 0:4) (see Figure 4 below).

{ }

[1,1]

{ a } { b }

[1,1] [1,1]

{ c }

[1,1]

[1,1]

{ }

{ a }

[1,1]

{ b }

[1,1]

{ c }

[0.5,0.5]

{ a }

[0.66,0.66]

{ b }

[1,1]

[1,1]

{ }

{ d }

{ a, b } { a, b }

[0.33,0.66]

(0,1,1) (0,1,1) (0,1,1) (0,1,2) (0,1,2) (0,1,1)

(1,2,1)
[0.5,1]

(0,1,2) (0,1,3)

(1,2,1)

{ }

t = { a, b, c } t = { a, b } t = { b, d }2 31

V V V

(maxMissed, firstTrans, count)
[minSupport, maxSupport]

(0,0,0)

[0,0]

V

σ σ σ = 0.31 2 3 = 0.5 = 0.4

(0,0,1)
(0,0,2) (0,0,3)

(1,3,1)

[0.33,0.66]

Figure 4

10

As indicated in �gure 4, we denote by the triple the three associated

integers for each set in the support lattice V and by the interval the bounds

on its support.

We initialize V to f;g and the associated integers of ; to (0; 0; 0).

Reading t1 = fa; b; cg we �rst increment the count of ;, since ; � t1.

Because the empty set is the only strict subset of a singleton set and 1 =

maxSupport(;) � �1, we add all singleton subsets of t1 to V . By equality

(1) in Subsection 5.2 we get maxMissed(v) = 0 for each singleton set v.

Hence we set the associated integers of v to (0; 1; 1). Since there is no set in

V with maxSupport < 1, we can not prune an itemset from V and the �rst
transaction is processed.

Reading t2 = fa; bg we increment the count of ;, fag and fbg but not
of fcg, since fcg 6� t2. Since fa; bg � t2 and all its subsets are in V with
maxSupport � �2 = 0:5, we insert fa; bg in V . Since d�e1 = (0:3; 0; 0; : : :)
we get

maxf b(2� 1)avg1(d�e1)c; 2 � 1 g = 1.

Hence maxMissed(fa; bg) = 1 by equality (1), since maxMissed(w) +
count(w) = 2 for all w � fa; bg. We set the associated integers to (1; 2; 1).
We note that maxSupport(fa; bg) = 1 is a sharp upper bound, since
support2(fa; bg) = 1. Since all v 2 V have support maxSupport(v) � �2 =
0:5, no set can be removed from V . The support interval for fcg dropped
from [1; 1] to [0:5; 0:5], since fcg was not contained in t2.

Reading t3 = fb; dg we increment the count of ; and fbg. Since the
singleton fdg � t3 is not contained in V , we include it as above. By d�e2 =
(0:5; 0:5; 0; 0; : : :) we get avg2(d�e2) = 0:5 and hence

maxf b(3 � 1) � 0:5c; 1� 1 g = 1.
Since maxMissed(;) + count(;) � 1 = 2 > 1 we initialize the associated

integers to (1; 3; 1). Because maxSupport(fcg) = 0:33 < 0:4 = �3 we are
free to remove fcg from V and choose to do so. Since for all sets remaining

in V the inequality maxMissed � �3 holds, there is no further set to prune.
Hence the transaction t3 is processed as well.

5.4 Support Thresholds

In this section we discuss the threshold given by Theorem 1, i.e. the support

threshold for which PhaseI guarantees to include all large itemsets.

11

Let V be the support lattice constructed by PhaseI after the i-th transac-

tion on a given transaction sequence and support sequence � = (�1; �2; : : :).

By Theorem 1 the support lattice V is a superset of all large itemsets relative

to the the support threshold

�i = maxf avgi(d�ei);
c+ 1

i
g (2)

where c is the maximal cardinality of a large itemset. If the user changed the

support threshold, then �i can be greater than �i, the current user-speci�ed

threshold. In this subsection, we discuss the relationship between �i and �i.

In particular:

1. �i = s for a constant support threshold s after the �rst 1

s
(c+ 1) trans-

actions.

2. The term c+1

i
is desirable.

3. The term avgi(d�ei) is a sharp lower bound relative to which V is a
support lattice.

4. �i ! �i for i!1 in typical scenarios.

5. Achieving �i = �i for changing support thresholds.

1) �i = s for a constant support threshold s after the �rst 1

s
(c+ 1) trans-

actions: Let � be a constant support sequence, i.e. � = (s; s; : : :). Thus the
ceiling d�ei is up to i also constant s, yielding avgi(d�ei) = s. We now have
�i = maxfs; c+1

i
g and for i > (c+ 1)=s we get �i = s. Thus V is a superset

of all large itemsets after the �rst 1

s
(c+ 1) transactions.

2) The term c+1

i
is desirable: Suppose �i = avgi(d�ei) would hold instead

of (2). Hence we get �1 = �1 for the �rst transaction. Every subset of t1
must be contained in V after the �rst transaction t1 is processed, since every

subset of t1 has support 1 in the initial transaction sequence (t1). If t1 consist

of 30 items, V must contain all 230 subsets, which is clearly not desirable.

Thus the term c+1

i
protects the support lattice constructed by PhaseI from

an exponential blow-up during the �rst few transactions processed.

3) The term avgi(d�ei) is a sharp lower bound relative to which V is a

support lattice. Let � be an arbitrary support sequence. Since d�ei is greater

or equal to �i up to i, we get avgi(d�ei) � �i and hence �i � �i. While V is

12

a superset of all large itemsets relative to the support threshold �i it is not

guaranteed to be a superset with respect to �i. By the following example we

show that �i is a sharp lower bound on the support threshold for which V is

a support lattice. Let T = (t1; : : : ; t100) and � = (�1; : : : ; �100) with

tj =

(
fag for j = 1; : : : ; 25

fbg for j = 26; : : : ; 100
and �j =

8><
>:

0:1 for j = 1; : : : ; 30

0:5 for j = 31; : : : ; 51

0:0 for j = 52; : : : ; 100

:

Hence
avg100(d�e100) = 0:25 + � > 0:0 = �100

with � = 0:005. Since support51(fag) < 0:5 = �51 the algorithm is free

to remove fag from V while processing transaction 51. Suppose fag is re-
moved from V . Since fag is not contained in any transaction after dropping
fag from V , the algorithm gets no indication to reinclude fag in V . Hence
fag 62 V and therefore

avg100(d�e100) = 0:25 + � > 0:25 = support100(fag)

is a sharp lower lower (by adapting the above example we can make � arbi-
trarily small).

4) �i ! �i for i ! 1 in typical scenarios: We envision as a typical
scenario, that the user initially changes the support threshold often, in reac-
tion to the continously generated association rules. After the user has found

a satisfactory threshold we do not expect further changes in the support
threshold, i.e. �j = �j+1 = : : : for some transaction index j. Hence

�i ! �i for i!1.
5) Achieving �i = �i for changing support thresholds: Instead of the

user-speci�ed support sequence �, we pass to PhaseI a sequence ~� which is

pointwise less or equal to �. We de�ne ~� as follows: Let ~�1 = �1 and for

i > 1 determine ~�i by solving the equation

maxf avgi(d~�ei);
c+ 1

i
g = �i: (3)

Since �i then equals maxf avgi(d~�ei);
c+1
i
g by Theorem 1 we get �i = �i by

equality (3). We note that the solution of (3) can be negative, e.g. because

�i � �i�1. In this case we de�ne ~�i by some small constant � > 0. If
�j � � > � for some � 2 [0; 1] then a non-negative solution for (3) exists after

a �nite number of transactions, yielding �i = �i.

13

5.5 Pruning Strategy

PhaseI does not prescribe a particular pruning strategy as long as all su-

persets of a pruned itemset are pruned as well. Hence besides a drop-all

(remove all small itemsets in V) or a no-drop strategy (do not remove any

itemset from V) a so called negative-border strategy is also admissible, c.f.

[Toi96, TBAR97].

PhaseI does not require that the support lattice is pruned after every

transaction processed. Since pruning can be an expensive operation, we can

prune the support lattice either in �xed intervals or decide while processing
when to prune. Of particular interest are pruning strategies which facilitate

PhaseII forward-pruning techniques. We introduce them in the following
Section 6.

6 PhaseII Algorithm

In this section, we fully describe the PhaseII algorithm for the second scan.
PhaseII computes the precise support of all large itemsets in the previously
computed support lattice and continuously removes all small itemsets. In
Subsection 6.1, we describe a preliminary PhaseII algorithm without forward
pruning. In Subsection 6.2, we describe our forward-pruning technique. In

Subsection 6.3, we give the formal de�nition of PhaseII, combining the pre-
liminary PhaseII algorithm with the forward pruning technique.

6.1 Overview

Let V be the support lattice computed by PhaseI. PhaseII uses the last
user-speci�ed support threshold �n as pruning threshold.

Initially PhaseII removes all trivially small itemsets, i.e. itemsets with

maxSupport < �n, from V .

Scanning the transaction sequence PhaseII increments count and decre-

ments maxMissed for each itemset contained in the current transaction, up

to the transaction at which the itemset was inserted. Setting maxMissed to
0 we get minSupport = maxSupport, the actual support of the itemset. We

remove the itemset if it is small. Setting maxMissed(v) = 0 for an itemset
v may yield maxSupport(w) > maxSupport(v) for some superset w of v.

14

Thus we set maxMissed(w) = count(v)� count(w) for all supersets w of v

with maxSupport(w) > maxSupport(v).

PhaseII stops as soon as the current transaction index is past firstT rans

for all itemsets in the lattice. The resulting lattice contains all large itemsets

along with the precise support for each itemset.

6.2 Forward Pruning

We extend the preliminary PhaseII algorithm described above by a \for-
ward pruning" technique, which allows us to remove some small singleton

set v and all its descendants from V , before we reach firstT rans(v) even if
maxSupport(v) � �n. The general idea is the following:

Let v be a singleton set in V and suppose supportn(v) � �n. Suppose
we are rescanning the i-th transaction. For a real number x we denote by
dxe the least integer greater or equal to x, i.e. dxe = minfi 2 Z jx � ig.

Thus there are at least dn � �ne � count(v) occurences of v in ti+1; : : : ; tft�1
with ft = firstT rans(v). Suppose that v was not contained in V after the
i-th transaction was processed by PhaseI. At the �rst occurence of v after
ti, PhaseI inserts v in V with maxMissed(v) � bi � avgi(d�ei)c, since v is a
singleton. The insertion of v in V is guaranteed to take place, since its only

subset is the emptyset which always has support 1. By an induction on ft�i

we get that if

dn � �e � count(v) + bi � avgi(d�ei)c > b(ft� 1)avgft�1(d�eft�1)c (4)

then v had to be in V while the ft-th transaction was processed by PhaseI,

c.f. Lemma 8. This is in contradiction to the insertion of v in V by PhaseI

during the ft-th transaction. Hence supportn(v) < �n and we prune v and
all its descendents from V while PhaseII processes the i-th transaction. Note
that this arguments requires that v 62 V at the i-th transaction in PhaseI and

that inequality (4) holds. The following Theorem 2 asserts the correctness

of our \forward pruning" technique:

Theorem 2 Let T be a transaction sequence of length n, � = (�1; : : : ; �n) a

support sequence and V the support lattice returned by PhaseI(T , �). Let

ft = firstT ransn(v) and i some index < ft. If v is a singelton set which

15

does not occur in the �rst i transactions and

dn � �ne � count(v) + bi � avgi(d�ei)c > b(ft� 1)avgft�1(d�eft�1)c

then

supportn(v) < �n.

Proof: see Theorem 5 in Appenix B. 2.

For a straight forward generalization of Theorem 2 to a set v of arbitrary
cardinality we need to know: 1) that v 62 V at the i-th transaction of PhaseI

and 2) that PhaseI inserts v in the support lattice before transaction ft if
the inequality holds. However, for non-singleton sets, this requires knowledge
about the PhaseI pruning strategy. Since we do not prescribe a particular
pruning strategy, this knowledge is, in general, not available.

6.3 PhaseII Algorithm

Adding the forward pruning technique to the preliminary PhaseII algorithm
described in Subsection 6.1 we get our PhaseII algorithm:

16

Function PhaseII(support lattice V , transaction sequence (t1; : : : ; tn),

support sequence �) : support lattice;

integer ft, i = 0;

begin

InitialPrune: V := V nfv 2 V jmaxSupport(v) < �n g;

Rescan: while 9v 2 V : i < firstT rans(v) do

i++;

for all v 2 V do

ft := �rstTrans(v);

Adjust: if v � ti and ft < i then
count(v)++, maxMissed(v)- -;

�;
if ft = i then
maxMissed(v) := 0;
for all w 2 V : v � w and

maxSupport(w) > maxSupport(v) do

maxSupport(w) := count(v)� count(w);
od; �;

Prune: if maxSupport(v) < �n then V := V nfvg; �;
Forward

Prune: if jvj = 1 and v does not occur in t1; : : : ; ti and
dn � �ne � count(v) + bi � avgi(d�ei)c

> b(ft� 1)avgft�1(d�eft�1)c then
V := V nfw 2 V j v � w g;

�; od; od;
return V ;

end;

Figure 5

7 CARMA

Combining PhaseI with PhaseII we get our CARMA algorithm:

17

Function CARMA(transaction sequence T , support sequence �) :

support lattice;

support lattice V ;

begin

V := PhaseI(T , �);

V := PhaseII(V , T , �);

return V ;

end;

Figure 6

We note that although we formally pass the support sequence � as a

parameter to PhaseI, � is actually determined by the user while PhaseI scans
the transaction sequence. The generation of the association rules from the
support lattice and the displaying of them to the user should also be placed
in PhaseI and PhaseII.

An implementation of CARMA is under way.

In the following theorem we state the correctness of CARMA:

Theorem 3 Let T be a transaction sequence of length n, � a support se-

quence, V the support lattice computed by CARMA(T , �) and c the max-

imal cardinality of an itemset in V . Then V is a support lattice relative to

the threshold

maxf avgn(d�en);
c+1

n
g.

For an itemset v we have in particular:

� If v � I satis�es supportn(v) > maxf avgn(d�en);
jvj�1

n
g then v 2 V .

� If v 2 V then supportn(v) � �n and

minSupport(v) = supportn(v) = maxSupport(v).

� If � is constant s and n � 1

s
(c+ 1) then V is a support lattice for the

support threshold s.

Proof: By Theorem 1, Subsection 6.1 and Theorem 2. 2

18

A Proof of Correctness for PhaseI

In this section we give a proof for the correctness of the PhaseI algorithm.

For convenience, we introduce the following conventions: Let I and K

be some sets. By K � I we denote set inclusion and by K � I strict set

inclusion, i.e. K � I if and only if K � I and K 6= I. By InK we denote set

exclusion, i.e. the set fx 2 I jx 62 Kg. By N we denote the natural numbers

including 0 and by Z the integers. For a real number x we denote by dxe

the least integer greater or equal to x, i.e. dxe = minfi 2 Z jx � ig and by

bxc the largest integer less or equal to x, i.e. bxc = maxfi 2 Z jx � ig. Let

Vi for some i 2 N be a sublattice of the subset lattice of I. For t � I let
subsetsi(t) := fv 2 Vi j v � t g and supersetsi(t) := fv 2 Vi j t � v g:

Note that t itself is neither contained in subsetsi(t) nor in supersetsi(t).
To facilitate the proof we state in the following de�nition the PhaseI

algorithm in its recursive form:

De�nition 1 Let T = (t1; t2; : : :) be a transaction sequence relative to some

set I and let � = (�1; �2; : : :) be a support sequence. We de�ne a sublattice Vi

of the subset lattice of I and functions maxMissedi, firstT ransi : Vi ! N

and counti by induction on i:

Let i = 0: Let V0 = f;g, maxMissed0(;) = 0, firstT rans0(;) = 0 and

count0(;) = 0.
Let i > 0 and suppose we have de�ned Vj for all j < i:

For all v 2 Vi�1 let

maxMissedi(v) = maxMissedi�1(v), firstT ransi(v) = firstT ransi�1(v)
and

counti(v) =

(
counti�1(v) if v 6� ti
counti�1(v) + 1 if v � ti

:

Let

Ci = f v � ti j v 62 Vi�1 and 8w � v : w 2 Vi�1;maxSupporti(w) � �i g

and

Di � fv 2 Vi�1 jmaxSupporti(v) < �ig

such that if v 2 Di then supersetsi�1(v) � Di.

Let Vi = (Vi�1 [Ci)nDi. For v 2 VinVi�1 let

maxMissedi(v) = minf maxf b(i� 1) � avgi�1(d�ei�1)c; jvj � 1 g;
maxMissedi�1(w) + counti�1(w) j

w 2 subsetsi�1(v) g,

19

counti(v) = 1 and firstT ransi(v) = i.

First, we assert the correctness of our recursive de�nition of PhaseI:

Lemma 1 Let T be a transaction sequence of length n and � a support se-

quence. Let V be the lattice computed by PhaseI(T; �) and de�ne Vn as in

De�nition 1. De�ne Di in De�nition 1 according to the pruning strategy

chosen for PhaseI.

Then V = Vn and for each v 2 V the corresponding associated inte-

gers are equal, i.e. maxMissed(v) = maxMissedn(v), firstT rans(v) =
firstT ransn(v) and count(v) = countn(v).

Proof: By induction on n. 2

By the following lemma we can easily compute ceilings of a support se-

quence.

Lemma 2 Let � = (�1; �2; : : :) be a support sequence. Then

d�e1;1 = �1 and d�e1;j = 0 for j � 2.
and for i > 1 we have

d�ei;j =

8><
>:
d�ei�1;j for j < i and d�ei�1;j > �i

�i for j � i and d�ei�1;j � �i

0 for j > i

:

Proof: By induction on i and the de�nition of support ceilings. 2

We summarize some observations on ceilings:

Lemma 3 Let � = (�1; �2; : : :) be a support sequence and i a positive integer.

Then

1. d�ei+1;j � d�ei;j for all j,

2. avgj(d�ei) � �j for all j � i,

3. avgj(d�ei) � avgj(d�ej) for all j � i,

20

Proof: By Lemma 2. 2

For a transaction sequence T and an itemset v we denote by countTi(v)

the number of occurences of v in the �rst i transactions of T .

Lemma 4 Let T be a transaction sequence, � a support sequence and i an

integer. De�ne Vi relative to T and � as in De�nition 1. Let v 2 Vi. Then

counti(v) = countTi(v)� countTfirstTransi(v)�1(v)

and v � tfirstTransi(v).

Proof: By induction on i. 2

Lemma 5 Let T be a transaction sequence, � a support sequence and i an

integer. De�ne Vi relative to T and � as in De�nition 1. Let v;w 2 Vi and

w � v. Then

maxMissedi(w) � maxMissedi(v),
firstT ransi(w) � firstT ransi(v),

counti(w) � counti(v),
maxMissedi(w) + counti(w) � maxMissedi(v) + counti(v).

Proof: By De�nition 1 and induction on i. 2

Lemma 6 Let T be a transaction sequence, � a support sequence and i an

integer. De�ne Vi relative to T and � as in De�nition 1. Suppose v 2 Vi and

w � v. Then

w 2 Vi.

Proof: Let T = (t1; t2; : : :) be a transaction sequence and � = (�1; �2; : : :)
a support sequence. Let v 2 Vi and w � v. We may assume, without loss of

generality, that w � v. We prove Lemma 6 by induction on i.

Let i = 0. Hence v = ; = w. Thus Lemma 6 holds trivially.

Let i � 1 and suppose Lemma 6 holds for all Vj with j < i.

1) Suppose v 2 Vi�1. Hence w 2 Vi�1 by the induction hypothesis.
Since v 2 Vi we have v 62 Di. Thus w is also not in Di because otherwise
v 2 supersetsi�1(w) � Di, in contradiction to v 2 Vi. Therefore w 2 Vi.

21

2) Suppose v 62 Vi�1 and w 2 Vi�1. By v 2 Vi we have v � ti and v 2 Ci.

Since w � v we have w 2 subsetsi�1(v) and therefore maxSupporti(w) � �i

since v 2 Ci. Thus w 62 Di and since w 2 Vi�1 we have w 2 Vi.

3) Suppose v 62 Vi�1 and w 62 Vi�1. By v 2 Vi we have v � ti and v 2 Ci.

Since w � v we get w 2 Vi�1 by De�nition 1, in contradiction to w 62 Vi�1.

Hence this case does not occur. 2

Lemma 7 Let T be a transaction sequence, � a support sequence and i an

integer. De�ne Vi relative to T and � as in De�nition 1. Then ; 2 Vi,

maxMissedi(;) = 0, firstT ransi(;) = 0 and counti(;) = i.

Proof: By induction on i since ; is a subset of all transactions in T . 2

Proposition 1 Let T be a transaction sequence relative to some set I, �

a support sequence and Vi a support lattice relative to T and � up to some

positive integer i. Let v be a subset of I.

1. If v 2 Vi then countTfirstTransi(v)�1(v) � maxMissedi(v)

2. If supporti(v) > maxf avgi(d�ei);
jvj�1

i
g then v 2 Vi.

Proof: Let T = (t1; t2; : : :) be a transaction sequence relative to some
set I, � = (�1; �2; : : :) a support sequence and v a subset of I. We prove
Proposition 1 by double induction on c = jvj and on i:

Let c = 0. Hence v = ;. Thus Proposition 1 holds for all i by Lemma 7.
Let c � 1. Suppose Proposition 1 holds for all subsets of I with less than

c elements and all i. Let v � I such that c = jvj. We show by induction on
i that 1. and 2. hold.

Let i = 1.

1. Let v 2 V1. By De�nition 1 we have V1 = f;g [
S

a2t1
fag and

maxMissed1(v) = 0 = countT0(v)

for all v 2 V1. Hence 1. holds for i = 1.
2. Let support1(v) > maxf avg1(d�e1);

jvj�1

1
g. Since c � 1 we have

1 � support1(v) > maxf avg1(d�e1); c� 1 g � 0.

Hence c = 1. Since support1(v) > 0 we get v � t1. Hence v 2 V1 =
f;g [

S
a2t1

fag.
Let i > 1. Suppose 1. and 2. hold for all i if v � I contains less than c

elements and up to i � 1 if v contains c elements. We show that 1. and 2.

hold for i as well if v contains c elements:

22

1. Let v 2 Vi and jvj = c.

i) Suppose v 2 Vi�1. Thus we get by the induction hypothesis and De�-

nition 1

countTfirstTransi(v)�1(v) � maxMissedi�1(v) = maxMissedi(v).

ii) Suppose v 62 Vi�1 and there exists a set w 2 subsetsi�1(v) such that

maxMissedi(v) = maxMissedi�1(w) + counti�1(w). Since w � v we have

by the induction hypothesis for 1. and Lemma 4

countTi�1(v) � countTi�1(w) � maxMissedi�1(w) + counti�1(w).

Since v 62 Vi�1 but v 2 Vi we have v � ti. By De�nition 1 we therefore get

countTi(v) = countTi�1(v) + 1 � countTi�1(w) + 1

� maxMissedi�1(w) + counti�1(w) + 1

= maxMissedi(v) + 1

= maxMissedi(v) + counti(v):

Hence 1. follows by Lemma 4 for this case.

iii) Suppose v 62 Vi�1 and no vertex w 2 subsetsi�1(v) exists such that
maxMissedi(v) = maxMissedi�1(w) + counti�1(w). Hence v 2 Ci,

maxMissedi(v) = maxf b(i� 1) � avgi�1(d�ei�1)c; c� 1 g,
and firstT ransi(v) = i. Suppose countTi�1(v) > maxMissedi(v). Since
countTi�1(v) 2 N we get by the equality above

supporti�1(v) > maxf avgi�1(d�ei�1);
c�1

i
g.

Thus v 2 Vi�1 by the induction hypothesis for 2., in contradiction to v 62 Vi�1.
Hence countTi�1(v) � maxMissedi(v).

2. Let v � I such that jvj = c and supporti(v) > maxf avgi(d�ei);
c�1
i
g.

i) Suppose v 6� ti. By Lemma 3 we get

countTi�1(v) = countTi(v) = i � supporti(v)

> maxf i � avgi(d�ei); c� 1 g = maxf
iX

j=1

d�ei;j; c� 1 g

� maxf
i�1X
j=1

d�ei�1;j; c� 1 g

= maxf (i� 1) � avgi�1(d�ei�1); c� 1 g:

Hence supporti�1(v) > maxf avgi�1(d�ei�1);
c�1
i�1

g. By the induction hypoth-

esis for 2. we get v 2 Vi�1. By the induction hypothesis for 1. and by v 6� ti

23

we get

maxMissedi�1(v) + counti�1(v) � countTi�1(v) = countTi(v)

> maxf i � avgi(d�ei); c� 1 g:

Also by v 6� ti we have

maxMissedi(v) + counti(v) = maxMissedi�1(v) + counti�1(v).

Hence

maxMissedi(v) + counti(v) > maxf i � avgi(d�ei); c� 1 g: (5)

Suppose v 2 Di. Hence i � �i > maxMissedi(v) + counti(v) and therefore
i � avgi(d�ei) > maxMissedi(v) + counti(v)

by Lemma 3, in contradiction to inequality (5). Hence v 62 Di and therefore
v 2 Vi.

ii) Suppose v � ti and v 2 Vi�1. Since v � ti we have counti(v) =
counti�1(v) + 1. Since v 2 Vi�1 we get by the induction hypothesis for 1.

and Lemma 4

maxMissedi(v) + counti(v) = maxMissedi�1(v) + counti�1(v) + 1

� countTi�1(v) + 1 = countTi(v)

> i � avgi(d�ei) > i � �i

Hence maxSupporti(v) > �i. If v 2 Di then maxSupporti(v) < �i, a contra-
diction. Thus v 62 Di and v 2 Vi.

iii) Suppose v � ti and v 62 Vi�1. Let w be a subset of v of cardinality

c� 1. By w � v � ti we have

countTi�1(w) + 1 = countTi(w) � countTi(v)

> maxf i � avgi(d�ei); c� 1 g

= maxf
iX

j=1

d�ei;j; c� 1 g

� maxf
i�1X
j=1

d�ei�1;j; c� 1 g

= maxf (i� 1) � avgi�1(d�ei�1); c� 1 g

24

Thus supporti�1(w) > maxf avgi�1(d�ei�1);
c�2

i�1
g and therefore w 2 Vi�1 by

the induction hypothesis for 2. By Lemma 6 all subsets u � v are therefore

elements of Vi�1. By the induction hypothesis for 1. we get

maxMissedi(u) + counti(u) � countTi(u) � countTi(v)

> i � avgi(d�ei) � i � �i

for all u � v. Hence v is an element of Ci and therefore of Vi. 2

Theorem 4 Let T be a transaction sequence of length n, � a support se-

quence and V the subset lattice computed by PhaseI(T; �). Then for any

itemset v

supportn(v) > maxf avgn(d�en);
jvj�1

n
g implies v 2 V .

Let c = maxfjvj for v 2 V with maxSupport(v) � �ng, i.e. the maximal

cardinality of all potentially large itemsets in V . Then V is a support lattice

up to n relative to T and support threshold

maxf avgn(d�en);
c+1

n
g.

Proof: Let T = (t1; : : : ; tn) be a transaction sequence relative to some
set I, � = (�1; : : : ; �n) a support sequence and let Vn be the lattice de�ned
by De�nition 1 with Di de�ned according to the pruning strategy chosen for
PhaseI. By Lemma 1 it su�ces to proof Theorem 4 for Vn. Let v be a subset
of I. By Proposition 1 we have v 2 Vn if

supportn(v) > maxf avgn(d�en);
jvj � 1

n
g: (6)

By Lemma 4 and Proposition 1 we get that Vn is a support lattice up to n

relative to T . Let c = maxfjvj : v 2 V;maxSupport(v) � �ng. By Lemma
7 we may assume, without loss of generality, that c � 1. We show that Vn is

a support lattice relative to the support threshold

maxf avgn(d�en);
c+1

n
g.

Let v be a subset of I such that supportn(v) � maxf avgn(d�en);
c+1

n
g.

Suppose jvj � c + 1. Thus v contains a subset w of cardinality c+ 1. Since
supportn(w) � supportn(v) inequality (6) holds for w and thereby w 2 Vn,
in contradiction to the de�nition of c. Hence jvj � c. Since inequality (6)

holds for this case we get v 2 Vn. Hence Vn is a support lattice relative to

the support threshold maxf avgn(d�en);
c+1

n
g. 2

25

B Proof of Correctness for PhaseII

Lemma 8 Let T be a transaction sequence, � a support sequence and Vj for

j � 1 a support lattice relative to T and � up to j. Suppose the singelton

itemset fag is not contained in Vi and

countTn(fag)� countTi(fag) + b

iX
k=1

d�ei;kc > b

nX
k=1

d�en;kc (7)

for some positive integers i and n with i � n. Then

fag 2 Vn.

Proof: We prove Lemma 8 by induction on d = n� i. Let T = (t1; t2; : : :)
and � = (�1; �2; : : :). Let n � i, a 2 I such that fag 62 Vi and suppose that
inequality (7) holds. For d = 0 the inequality is never satis�ed and thus

Lemma 8 holds trivially.
Let d = 1. Hence n = i + 1. Since

Pn
k=1 d�en;k �

Pi
k=1 d�ei;k we get by

inequality (7)
countTi+1(fag)� countTi(fag) � 1.

Thus a 2 ti+1. By fag 62 Vi and De�nition 1 we get fag 2 Vi+1 = Vn. Hence

Lemma 8 holds for this case.
Let d > 1 and suppose Lemma 8 holds if n � i < d.
Suppose a 62 ti+1. Hence countTi+1(fag) = countTi(fag). Thus Lemma 8

holds for this case by the induction hypothesis.
Suppose a 2 ti+1. Since fag 62 Vi we have fag 2 Vi+1 and

b

iX
k=1

d�ei;kc � maxMissedi+1(fag) (8)

by De�nition 1. If fag 2 Vj for all j = i + 2; : : : ; n then Lemma 8 holds

trivially. Suppose that there exists an index j such that fag 62 Vj . We may
assume, without loss of generality, that j is minimal. Hence fag 2 Dj with

Dj de�ned as in De�nition 1. Thus

countj(fag) +maxMissedj(fag) < j � �j.

Since j is minimal we have maxMissedi+1(fag) = maxMissedj(fag). To-

gether with the above inequality and (8) we have
countj(fag) + b

Pi
k=1 d�ei;kc < j � �j.

Hence we get by Lemma 3 and Lemma 4

26

countTj(fag)� countTi(fag) + b
Pi

k=1 d�ei;kc < bj � �jc � b
Pj

k=1 d�ej;kc.

By (7) we now have

countTn(fag)� countTi(fag) + b

iX
k=1

d�ei;kc

� countTj(fag) + countTi(fag)� b

iX
k=1

d�ei;kc

> b

nX
k=1

d�en;kc � b

jX
k=1

d�ej;kc

yielding countTn(fag)�countTj(fag)+b
Pj

k=1 d�ej;kc > b
Pn

k=1 d�en;kc. Since

j > i we get fag 2 Vn by the induction hypothesis. 2

Theorem 5 Let T be a transaction sequence, � a support sequence and V

the support lattice returned by PhaseI(T , �). Let v 2 V be a singleton

set, i.e. jvj = 1, ft = firstT ransn(v) and countTi(v) = 0 for some positive

integer i < ft. If

dn � �ne � count(v) + bi � avgi(d�ei)c > b(ft� 1)avgft�1(d�eft�1)c (9)

then

supportn(v) < �n.

Proof: Let fag 2 Vn, ft = firstT ransn(fag) > 1 and countTi(fag) = 0.
Suppose (9) holds and supportn(fag) � �n. Hence countTn(fag) � dn � �ne

and therefore countTft�1(fag) � dn � �ne � countn(fag) by Lemma 4. Since

countTi(fag) = 0 we get by inequality (9)

countTft�1(fag)� countTi(fag) + b
Pi

k=1 d�ei;kc > b
Pft�1

k=1 d�eft�1;kc.

Hence fag is an element of Vft�1 by Lemma 8. Since firstT ransn(fag) = ft

we have fag 2 VftnVft�1, in contradiction to fag 2 Vft�1. Thus

supportn(fag) < �n.
2

27

Acknowledgement: I would like to thank Joseph M. Hellerstein, UC

Berkeley, for his inspiration, guidance and support. I am thankful to Ron

Avnur for the many insightful discussions and to Retus Sgier, for his sugges-

tions and support. Also, I would like to thank the Stanford database group

for pointing out the applicability of CARMA to transaction sequences read

from a network.

Christian Hidber

International Computer Science Institute

1947 Center Street, Suite 600

Berkeley, California 94704-1198

References

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association
rules between sets of items in large databases. In Proc. of the

ACM SIGMOD Conference on Management of Data, pages 207{
216, Washington, D.C., May 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In Proc. of the 20th Int'l Conf. on Very Large

Databases, Santiago, Chile, Sept. 1994.

[AY97] Charu C. Aggarwal and Philip S. Yu. Online generation of asso-
ciation rules. Technical Report RC 20899 (92609), IBM Research
Division, T.J. Watson Research Center, Yorktown Heights, NY,
June 1997.

[AY98] Charu C. Aggarwal and Philip S. Yu. Mining large itemsets

for association rules. Bulletin of the IEEE Computer Society

Technical Comittee on Data Engineering, pages 23{31, March

1998.

[BMUT97] Sergey Brin, Rajeev Motwani, Je�rey D. Ullman, and Shalom

Tsur. Dynamic itemset counting and implication rules for market

basket data. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, volume 26,2 of SIGMOD

28

Record, pages 255{264, New York, May 13th{15th 1997. ACM

Press.

[CHNW96] D. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of

discovered association rules in large databases: An incremental

updating technique. In Proc. of 1996 Int'l Conf. on Data Engi-

neering (ICDE'96), New Orleans, Louisiana, USA, Feb. 1996.

[CLK97] David W. L. Cheung, S.D. Lee, and Benjamin Kao. A general in-

cremental technique for maintaining discovered association rules.
In Proceedings of the Fifth International Conference On Database

Systems For Advanced Applications, pages 185{194, Melbourne,
Australia, March 1997.

[Hel96] Joseph M. Hellerstein. The case for online aggregation. Technical
Report UCB//CSD-96-908, EECS Computer Science Divison,
University of California at Berkeley, 1996.

[HHW97] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online
aggregation. SIGMOD '97, 1997.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An e�cient algo-
rithm for mining association rules in large databases. In Proceed-
ings of the Very Large Data Base Conference, September 1995.

[TBAR97] Shiby Thomas, Sreenath Bodagala, Khaled Alsabti, and Sanjay
Ranka. An e�cient algorithm for the incremental updation of

association rules in large databases. In Proceedings of the 3rd In-

ternational conference on Knowledge Discovery and Data Mining

(KDD 97), New Port Beach, California, August 1997.

[Toi96] Hannu Toivonen. Sampling large databases for association rules.

In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and
Nandlal L. Sarda, editors, VLDB'96, Proceedings of 22th Inter-

national Conference on Very Large Data Bases, Mumbai (Bom-
bay), India, September 1996. Morgan Kaufmann.

[ZPLO96] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Wei Li, and
Mitsunori Ogihara. Evaluation of sampling for data mining of as-

29

sociation rules. Technical Report 617, Computer Science Dept.,

U. Rochester, May 1996.

30

