
Enabling “Smart Spaces:” Entity Description and User Interface
Generation for a Heterogeneous Component-based Distributed System

Todd Hodes, Randy Katz
Computer Science Division

University of California, Berkeley

Berkeley, CA 94720-1776

fhodes,randyg@cs.berkeley.edu

July 17, 1998

Abstract

This paper motivates and describes a document-centric framework
for component-based distributed systems. In the framework, XML
documents are associated with programs that provide either static,
immutable interface descriptions as advertisements of functionality
at the server-side, or specification of manipulations of these server
descriptions to express their usage at clients. We illustrate how the
framework allows for 1) remapping of a portion of an existing user
interface to a new room control (for example, due to movement of
the terminal) 2) viewing of arbitrary subsets and combinations of the
functionality available, and 3) mixing dynamically-generated user
interfaces with existing user interfaces.

The use of a document-centric framework in addition to a conven-
tional object-oriented programming language provides a number of
key features. One of the most useful is that it exposes program/UI
to referent objects mappings, thereby providing a standard location
for manipulation of this indirection.

1 Introduction

Work in “smart spaces” overlaps a number of related research areas
— active networking [1], networking middleware [2, 3], advanced
user interfaces [4], mobile computing [5], and “ubiquitous comput-
ing” [6], to name a few — while at the same time focusing on a novel
new domain for integration and extension of such work. One of the
most challenging new issues is coping with the inherent application
heterogeneitycausedby the need for a location to adapt to individual
users rather than vice-versa. Specifically, the challenge is allowing
dynamic adaptation and reconfiguration of end-user applications in
response to changes in available functionality and modes of user
interaction. If users can only interact with “conventional” software,
they will be constrained in their ability to customize the space to
the extent in which the designers of the applications in it predicted
their needs and/or provided a programmatic interface. Most often,
the degree of freedom is limited by the user interface: application
state and application preferences can only be manipulated through
it, and the user interface itself is not highly configurable. Such is
the case with monolithic programs, which are notoriously deficient
in providing hooks into application state or in making it accessible
via a well-defined external protocol. (On the other hand, monolithic
user interfaces provide ease-of-use for well-understood functional-
ity.) Client/server programs fare better, in that they provide (by
definition) a exposed protocol, but suffer two problems: the speci-
fication of the interface is often ad hoc, and only a programmer can

make changes to their view of the functionality (by modifying the
client code).

One approach to addressing these problems is to allow appli-
cation programs to be downloaded on-the-fly to handheld devices
and uploaded to local computers [7]; for example, as Java applets.
The difficulty of this approach, though, is that it does not allow the
end-user to customize applications for interaction with a heteroge-
neous set of services as related entities. In other words, it cannot
overcome minor differences in protocol — even for functionally
identical services — because the applications are opaque. For ex-
ample, imagine needing to download a different application upon
encountering every new light switch in the world in order to use it.
Though the functionality is exposed, it is not in a form amenable to
manipulation.

Another approach is to standardize functional interfaces and re-
quire that applications (and spaces) support these standards, thereby
avoiding the above bullet. The difficulty here, though, is that en-
forcing a plethora of application-specific standards is impractical.

Clearly, a different model than either of the above is preferable,
one that balances the need to expose interfaces with the need to
agree on protocol standards. Herein, we propose such a new ap-
proach, leveraging a component-based application framework [8]
and pairing it with an architecturally-independent document model
for component descriptions. It hybridizes features of the two ba-
sic approaches discussed above, allowing downloading/uploading
of code fragments (as specified by the documents) and imposing
a standard for interface description and manipulation that is not
application-specific.

This paper describes our initial thoughts and work on this in-
frastructure, a novel prototype of a document-centric framework
for component-based distributed systems. In the framework, ap-
plication programs and user interface programs are associated with
documents that provide one of either

� static, immutable interface descriptions as advertisements of
functionality, or

� specification of manipulations of these server descriptions to
express their usage.

We describe the framework and illustrate how it allows for

� remapping of a portion of an existing user interface to a new
room control (for example, due to movement of the terminal)

� viewing of arbitrary subsets and combinations of the function-
ality available, and

� mixing dynamically-generated user interfaces with existing
user interfaces.

The use of a document-centric framework in addition to a conven-
tional object-oriented programming language provides a number of
key features, the most critical is that it exposes program/UI to ref-
erent objects mappings, thereby providing a standard location for
users (and their programs) to manipulate these mappings.

The rest of this paper is structured as follows. Section 2 intro-
duces our document-centric component framework design. Sec-
tion 3 describes the investigation approach. Section 4 introduces
XML and why we choose it as our syntax. Section 5 describes
the markup (tags) used in the documents and how they are used in
automatic user interface generation. Sections 7–8 give examples
of the software usage in example applications and show document
markup examples along with their related user interfaces. Section 9
describes continuing work, and, finally, Section 10 summarizes and
concludes.

2 Component Frameworks and the
Document-centric Approach

Component- and object-based middleware platforms for large-scale
heterogeneous environments are appearing at the fore of distributed
systems research. Such systems provide support for object instan-
tiation, discovery, naming, and communication based upon remote
method invocation mechanisms (c.f., CORBA [9] or Enterprise Java
Beans [10]). Continued evolution of such systems provides for a
wide-ranging set of extensions to the basic model. Example di-
rections include supporting 1) availability, fault-tolerance, and per-
sistence to object stores [11], 2) uniform, language-independent
“wrapping” around arbitrary data producers and consumers to make
them look like objects to the system [12], 3) group communication
primitives (i.e., tuple-spaces [13], reliable multicast [14], queued
event notification [15]), and 4) system facilities for dynamic, ad
hoc creation or extension of end-user applications from a set of
constituent distributed components.

Designing systems with such a plethora of components is difficult
even if it is simply considered a massive integration effort (i.e.,
even though many of the constituents exist); the more interesting
and challenging design issue is that of determining the syntax and
semantics used to describe components and how they are used. This
defines the programming model. A traditional approach is to expose
distributed components as objects that can be manipulated naturally
from within a object-oriented programming language, albeit in a
restricted fashion if the remote object isn’t native. Actions are
applied to data residing inside running applications using only well-
defined library APIs to manipulate system state. On the other hand,
a different approach is to externalize a portion of the system state in
the form of documents that describe components and interactions.
This allows state to be manipulated by editing documents in addition
to allowing for access via an API — basically, allowing system
manipulation via authoring in addition to programming. We call
this relatively novel second approach a document-centric approach,
and will focus on it for the rest of this paper.

Any Turing-complete languagepaired with a network can be used
to encode the specification of a program built from distributed com-
ponents — regardless of whether it is object-oriented, imperative,
functional, or whatever. Thus, a “document-centric” model does not
provide additional functionality (at least not fundamentally), but in-
stead only adds an additional layer of indirection. Documents are
written using a declarative style and used in addition to application
code. Their function is to focus on the specification of data and
elide (or greatly reduce the amount of) control flow information.
Using a document-centric framework to expose this control/data

separation (i.e., where documents are first-class entities rather than
productions) provides a number of advantages, including

� aligning with the needs of cross-enterprise data-sharing, where
the right thing to standardize is documents rather than APIs
[16]

� simplifying inter-object usage specification, separating it from
the programming chore and/or use of a particular monolithic
application (manipulating documents to affect change is often
simpler than editing and rebuilding programs, and less opaque
than figuring out how to do through an non-standardized ap-
plication user interfaces)

� providing for syntactic fault-tolerance ala HTML

� allowing clean incorporation of metadata, which can simply
be directly added to a document rather than added as a new
method or instance variable in an object

� providing for application-independent storage and manipula-
tion — e.g., to maintain consistent per-object preference prop-
agation, or to provide a single, concrete point for updates to a
user’s environment

This disassociation of programs/UIs from the objects they ref-
erence is similar to the Model/View/Controller architecture from
Smalltalk [17]. In the M/V/C architecture, data (the model) is sep-
arated from the presentation of the data (the view) and events that
manipulate the data (the controller). Similarly, documents in our
system act as the glue that associates data to user interfaces/programs
that manipulate and view that data. This strict delineation 1) pro-
vides client device independence, 2) provides program/UI language
independence, 3) exposes program/UI to referent objects mappings:
they become explicitly manipulable, 4) makes explicit what objects
to manipulate and how they can be manipulated, and 5) can be used
to generate user interfaces when custom ones are not available or
unacceptable.

This document-centric distributed object management frame-
work is illustrated in Figure 1.

This project investigates using a document-centric framework
for specifying interaction with and between a distributed set of
“services” available over a wide-area internetwork1, for example,
the set of services made available in a series of “smart spaces.” It
focuses on two aspects: description of the available services and
flexible association of user interfaces to these services. We limit the
scope of the discussion to a single (varying) collection of objects
being referenced by a single (varying) user interface. This limits
the problem domain so that we do not have to specify how the
markup indicates paths of object-to-object interaction. Instead, we
only have to describe interactions between the “endpoints:” users
manipulating widgets to interact with a set of independent services.
The focus, then, is on these two endpoints.

We proceed from the following observations:

� Services require concrete, immutable interface descriptions.

� Clients (or system proxies) need to manipulate and save col-
lections of these interfaces.

� We would like a single document format that provides both
functions.

From these observations, we establish our design. A single doc-
ument format is shared among all entities in the system. At the
“server-side,” documents act as static interface definitions, similar
to the use of IDL in CORBA. Elsewhere, documents act as a stable

1We call application components that use our framework “services” to
contrast with the more generic term “objects.”

2

specifies definition of

clientservice

specifies client’s use of

reference

advertise

a collection of interfaces

& adds meta-data
service’s interface

Figure 1: The Document-centric Model: Services are described by immutable, static documents that advertise the definition of their interface
(ala the CORBA IDL or a Java interface); Clients maintain documents that indicate how the a collection of interfaces are used and maintain
metadata about the collection

but manipulable (composable/decomposable) format for specify-
ing object collections and references, defining interactions between
objects in a collection, defining the object interfaces expected by
programs and user interfaces, and storing arbitrary metadata about
referents.

Specifically, there are two challenges. The first challenge is
defining a single document schema that:

� notates services’ available functionality, or interface,

� associates relevant programs and UIs to collections of services,
or, vice-versa, lists the service interfaces expected by particular
programs

� can flexibly compose and decompose based on constituent
elements, and

� allows for easy incorporation of service-specific meta-data
(i.e., without affecting existing functionality that does not ex-
pect it and in a self-describing manner).

The second challenge is providing software that can use documents
written in the schema to generate user interfaces when custom ones
are not available, mixes custom and generated user interfaces as
necessary, and implements the run-time environment.

3 Project Approach

Our approach to the problem is threefold. Leveraging the eXtensible
Markup Language (XML) [18] for syntax, we develop our schema
as an XML document type definition (DTD). The schema provides
markup tags for language-independent service descriptions and for
mapping UIs (programs) to referent objects and vice-versa. We then
build software that can heuristically generate UIs from these service
descriptions without associated custom UIs, and allows mix-and-
match use of custom and generated UIs. Additionally, we built an
index application that lists the collection of available UIs and ob-
jects, allowing a combination of them to be interactively selected
for presentation on the user’s machine. Finally, we prototype ap-
plications that use the model, manually construction and editing
documents to simulate how programs would automatically manip-
ulate them.

For our prototype application domain, we focus on a set of
location-based services [7] that provide software remote control

of room devices from a wirelessly-connected laptop computer. Ma-
nipulations of the applications’ documents allows the controls to
adapt as the environment changes around the user. Specifically, the
manipulations provide for

� the remapping of a portion of an existing user interface to
a new room control (for example, due to movement of the
terminal)

� viewing of arbitrary subsets and combinations of the function-
ality available in the space, and

� mixing generated user interfaces with custom user interfaces

This functionality is easily represented as operations on documents
containing the associations between between programs/UIs from
the objects they reference, exactly the model as described above.

4 XML

We have chosen to build atop the extensible markup language
(XML) for our schema design, leveraging its allowances for the
creation of custom, application-specific markup languages.

XML is an SGML subset providing self-describing custom
markup in the form of hierarchical named-values and advanced fa-
cilities for referencing other documents (ala the HTML <href> tag).
It is one protocol among a group that is touted as the successors
to HTML (The companion protocols are XSL for style sheets and
XLL for new linking mechanisms). XML includes ability to spec-
ify, discover, and combine a group of associateddocument schemata
— otherwise known as document type definitions or DTDs. Exam-
ples include a growing set of metadata markup proposals such as
Resource Description Format, the Dublin Core, XML-Data, and
others.

Unlike HTML, the set of tags in XML in flexible; the tag seman-
tics are defined by a document’s associated DTDs. A key property
of XML, then, is that it is dependent on these schema to be useful,
and dependent on agreements in schema to allow interoperability.
Thus, the problem is defining schema syntax (the tagset and their
relationship) and agreeing on how a schema’s associated“browsers”
(borrowing the HTML term) semantically interpret these tags.

We believe there is a natural synergy between XML’s need for
schemata and the specification requirements of distributed object
systems — the former provides a self-describing and extensible

3

syntax with a rapidly expanding set of metadata tags; the latter pro-
vides a programming model for “web objects” described in XML.

5 XML Tags for Object Description
We use six tags in our initial design. Other tags that appear in our
documents are assumed to be application-specific metadata, and
can be ignored by programs that do not understand them. We now
describe each tag in turn. The actual DTD specification is provided
in the Appendix A.

The <object> tag is a container tag. It has one optional at-
tribute, “name”, which is either a string or reference identifying the
type/class of the object interface being described. It can contain at
most a single <label> tag, zero or one <addrspec> tags, any number
of <ui> tags, and any number of <method> tags. When converted to
a user interface, an <object> is instantiated as a frame (a container
for other widgets).

The <label> tag provides a text description of the object which
contains it. It has no optional attributes. It can contain no addi-
tional internal tags except those providing text formatting. When
converted to a user interface, the <label> tag is used as a title for its
parent object’s frame.

The <addrspec> (address specification) tag indicates the address
and port number on which its parent object listens for method invo-
cations and events. An uninstantiated object will have no addrspec
tag. It can contain no additional internal tags and does not have any
optional attributes. When converted to a user interface, the <addr-
spec> tag is used as the location to which any method calls are sent
(currently via string-based UDP messages).

The <method> tag defines the name of a method that can be
invoked on the object in which it is contained. It has two optional
attributes: “name”,which is name of the method call, and “lexType”,
which indicated the lexical type of messages returned due to the
method call (the list of lexical types is described below). The
<method> tag can include (only) zero or more <param> tags. When
used in automatic user interface generation, each <method> tag is
mapped to a frame with contents. The name of the method is placed
on a button at the top of this frame; pressing this button invokes the
method call. At the bottom of the method frame, a label is appended
for textual representation of replies. Note that in our system, method
invocations and returns are asynchronous, event-based messages
(like active messages [19]) rather than blocking remote procedure
calls. Thus, update events (“replies”) can actually occur at any
time, independent of the manual invocations at the client. In this
manner, <method> tags can also be used as a means for subscribing
to updates from the object.

The <param> tag indicates a parameter to the <method> tag that
encloses it. It has two optional attributes, “lexType”, indicating
the lexical type of the parameter, and “optional”, a boolean tag
that indicates whether the parameter is required or optional. The
<param> tag may have no additional internal tags, and its contents
are assumed to be the name of the parameter. For UI generation,
parameters are mapped to individual user interface widget objects.
Each of these widget objects support a get val method that returns
the current widget setting. It is used to marshall the parameters for
method invocations. The mapping from lexical type to UI widgets
is described in Section 6.

The <ui> tag is used to associate a particular program to the
object in which it is specified. The contents of the tag is assumed
either to be a string indicating the name of an existing user interface
object that will reference the document object description (assumed
to be known or discoverable out-of-band), or the address and port
number where such a user interface object can be requested. Only

the former is currently implemented. It has one possible attribute,
“lang”, indicating the language of the indicated program.

In our framework, documents are used in addition to application
code, not instead of it. The documents act to specify what programs
are needed and how they are run (via the use of <ui> tags at various
levels in a hierarchical description of a service). The assumption
is that the indicated applications will reference the documents, re-
specting the indirection exposed by the document.

6 Automatic User Interface Generation

Many of the mechanics of generating user interfaces from interface
descriptions were described in the preceeding section. The remain-
ing features to be discussed are the heuristic mapping from lexical
types to user interface widgets, and how custom user interfaces in-
dicated by a <ui> tag can be intermingled with these custom user
interfaces.

We currently have implemented mappings from lexical types to
objects wrapped around Tk [20] UI widgets in the mash shell [3].
Permissable lexical types include int, real, boolean, enum, string.
The int and real type can have an optional range modifier. They are
mapped to widgets as follows: an int or real with a “range” modifier
is mapped to a scale widget (a slider). Without a range modifier,
they are mapped to an entry widget (a type-in box). A boolean is
mapped to a check-button widget (a toggle switch). An enum is
mapped to a list of radio-buttons (one-of-N list selection). A string
is mapped to an entry widget.

As for co-mingling these generated collections and existing UIs
referenced in <ui> tags, the granularity of reference is at the level of
individual objects. Thus, all objects receive a frame, and it is filled
with either the custom-generated contents mapped from <method>
and <param> tags, or the existing UI. The latter is handed a window
handle and is expected to instantiate itself as a child of that window
handle.

7 The Framework in Action: Examples

We now illustrate some examples. Each highlights a different ele-
ment of the design of the overall architecture.

The first example shows an XML document that describes the
interface to a portion of the functionality available in Soda Hall’s
“CoLab” (Collaboration Laboratory, borrowing Xerox PARC’s ter-
minology) and the resulting automatically generated user interface
to it, as shown in Figure 2. The document describes two objects,
one contained in the other. The outer object implements a method
for setting a preset for the entire room; the inner object is one of
the objects referenced by the outer object (i.e., one of the things set
by the preset) and implements its own interface independently —
an interface to a pair of power switches in the room. The <param>
tags contain various lexical types, illustrating our use of heuristic
mapping to widgets. This utility of this basic functionality is that it
allows users the possibility to interact with dynamically discovered
objects, not just programmatically, but also directly.

The second example illustrates the combination of a custom user
interface with a generated one. The document is identical to that
in the previous example except a single new tag is added: a <ui>
tag to the internal (power switch) object, as shown in Figure 3(a).
This causes that object’s interface to be replaced by the UI object
referenced in the tag rather than generated on-the-fly. The result-
ing difference is illustrated in Figure 3(b). This example illustrates
how dynamic extensions to existing applications can be seamlessly

4

<object name="326">
<label> Soda (CoLab) </label>
<addrspec>spade.cs.berkeley.edu/0001</addrspec>
<method name=’preset’>

<param lextype="string"> person </param>
<param lextype="int:range=1-8"> number </param>

</method>
<object name=’powerswitches’>

<label>powerswitches</label>
<addrspec>spade.cs.berkeley.edu/0002</addrspec>
<method name=’power’>

<param lextype="enum:on,off"> state </param>
<param lextype="int:range=0-1"> port </param>

</method>
</object>

</object>

(a) XML document (b) User interface

Figure 2: An example document and generated user interface.

incorporated using our architecture, a form of “plug-in” architec-
ture similar to that used in, say, Photoshop or with Visual Basic
extensions.

The third example illustrates use of the indirection exposed by
the use of the “document-centric” model by replacing a referent
under a multi-object <ui> tag. The document fragment shown in
Figure 4(a) is assumed to be used by an existing application. The
user interface for this application is a custom-designed monolithic
interface referenced in the topmost <ui> tag. In Figure 4(b), one
of the component objects in the container object has been replaced.
Because the type of the referenced object remains the same, only
the <addrspec> tag changes. The result of this change is that the
application looks the same, but a portion of it now references a
new service. This function illustrates the possibility for remapping
interfaces due to, e.g., terminal mobility or fault tolerance. Specif-
ically, the example takes a portion of the document describing the
interface to the 405 Soda Hall seminar room and remaps the light
switch portion of the interface to a new switch.

The fourth and final example illustrates the ability to use a subset
of presented functionality. The document in Figure 5(a) is the same
as that from Figure 4, except all the internal objects referenced from
the outermost container object have been ripped out. The resulting
user interface is presented in Figure 5(b). This example shows
how a user can easily elide material not considered relevant or not
frequently used. In this case, we leave only the interface to the light
switch exposed, simulating the case where the user has chosen to
save screen real estate because, e.g., controlling only the lights is
the most common usage.

8 Indices and the End-user Environ-
ment

In addition to building software to parse the particular XML DTD
and spit out interfaces, we need to provide the user with a way to
manage the set of documents and available interfaces. We provide
this functionality through use an “index” application, shown in Fig-
ure 6. One the left side of the application, all objects are listed
by type and address specification. Each type has an associated

document and an associated user interface. When one of the check-
buttons beside an object name is set, the associated user interface is
displayed for use by the user.

Figure 6: The Index application lists all available interfaces and
allow the user to interactively select which ones he or she wishes to
use. Illustrated here, the user has selected the user interface to the
power switches in the Berkeley CoLab.

9 Continuing Work

Another set of applications that would be useful for the end-user are
those that would allow easily manipulation of documents themselves
rather than simply the results of having documents. Design and
implementation of this piece is ongoing.

5

<object name="326">
<label> Soda (CoLab) </label>
<addrspec>spade.cs.berkeley.edu/0001</addrspec>
<method name=’preset’>

<param lextype="string"> person </param>
<param lextype="int:range=1-8"> number </param>

</method>
<object name=’powerswitches’>

<label>powerswitches</label>
<addrspec>spade.cs.berkeley.edu/0002</addrspec>
<ui lang=mash> PowerSwitchUI </addrspec>
<method name=’power’>

<param lextype="enum:on,off"> state </param>
<param lextype="int:range=0-1"> port </param>

</method>
</object>

</object>

(a) XML document (b) User interface

Figure 3: An example document and associated user interface, this time where a <ui> tag allows for the incorporation of a custom UI in
addition to the generated components.

Currently, the <ui> tag can only reference local objects. We are
in the process of implementing the remote retrieval protocol.

A logical next step of this work is dealing with mismatched types.
For example, assume a light switch in some locale implements a dif-
ferent interface than the one in the user’s home environment. Rather
than require the use of a dynamically-generated user interface, we’d
prefer to allow for the use of an existing user-interface. To do so, we
must transparently remap method invocations to the new location
and also remap the call parameters to match the new type. Incor-
porating such functionality allows far more flexibility in the reuse
of existing user interfaces and intermingling of existing interfaces
and discovered objects. The price is that it requires the use of
external transformational operators that provide type coercion for
method calls. Fortunately, such transformational operators could
be written once, reused, and shared among the community of users;
additionally, they could be chained together in order to provide new
type-to-type coercions. This functionality is a natural extension of
our framework. The difficulty of this approach is not in creating
these mapping operators and storing them in a shared repository,
but instead that of building the use of them into the end-user soft-
ware. Users should be able to visually manipulate object mappings
and the correct transformations should be done automatically. As a
concrete example, this means that when a new light switch is dis-
covered, the user should be able to indicate which program element
should manipulate it, and any required remapping of method calls
— i.e., document manipulations — should be done automatically,
though possibly heuristically. Additionally, users should then be
able to easily modify these mappings. Currently, this is all done via
manual manipulation of documents rather than automatically.

Another important extension of this work is designing how to
notate one object’s use of other objects so as to allow for, e.g.,
multiple interfaces. The transformational operators described above
are simple examples of such objects, in that they require separation
of input and output interface descriptions. This requires extension
or modification of our schema.

Finally, in order to allow for programmers to more easily use
this document-centric model — without having to manually create

interface description documents — we would like to automatically
generate the documents from Java objects and other distributed com-
ponent system pieces. To do so, we can leverage the CORBA Inter-
face Definition Language (IDL) [9], for which there are mappings
to C, Java, Ada, and other languages. We can integrate components
written in these languages by creating a mapping from IDL descrip-
tions to our XML schema and implementing it. Our object interface
schema will need to be extended to support structured types in order
to allow such a mapping.

10 Summary

We have described a document-centric framework for description
and interaction with entities in a distributed object system. We have
shown how the framework allows for:

� the remapping of a portion of an existing user interface to
a new room control (for example, due to movement of the
terminal)

� viewing of arbitrary subsets and combinations of the function-
ality available in a “plug-in”-style architecture, and

� mixing dynamically-generated user interfaces with existing
user interfaces.

The use of a document-centric framework in addition to a conven-
tional object-oriented programming language

� provides client device independence,

� provides program/UI language independence,

� exposes program/UI to referent objects mappings: they be-
come explicitly manipulable,

� makes explicit what objects to manipulate and how they can
be manipulated, and

� can be used to generate user interfaces when custom ones are
not available or unacceptable.

6

<object name="405">
<label> 405 Soda (HTSR) </label>
<addrspec>htsr.cs.berkeley.edu/0000</addrspec>
<ui lang=’tcl/tk’>htsr.cs.berkeley.edu/6903</ui>
<object name=’lights’>

<label>lights</label>
<addrspec>htsr.cs.berkeley.edu/6902</addrspec>
<method name=’power’>

<param lextype="enum:on,off,dim"> state </param>
</method>

</object>
<object name=’vcr’>

...
</object>
...

</object>

(a) Original XML document

<object name="405">
<label> 405 Soda (HTSR) </label>
<addrspec>htsr.cs.berkeley.edu/0000</addrspec>
<ui lang=’tcl/tk’>htsr.cs.berkeley.edu/6903</ui>
<object name=’lights’>

<label>lights</label>
<addrspec> 205south.sims.berkeley.edu/9999 </addrspec>
<method name=’power’>

<param lextype="enum:on,off,dim"> state </param>
</method>

</object>
<object name=’vcr’>

...
</object>
...

</object>

(b) Document with replaced referent

Figure 4: Remapping of function by replacing a referent under a multi-object <ui> tag. A fragment of the “original” document is show in (a);
the modified document is shown in (b), where the only difference is the new <addrspec> tag. (The <addrspec> tags are highlighted.)

<object name="405">
<label> 405 Soda (HTSR) </label>
<addrspec>htsr.cs.berkeley.edu/0000</addrspec>
<object name=’lights’>

<label>lights</label>
<addrspec>htsr.cs.berkeley.edu/0000</addrspec>
<method name=’power’>

<param lextype="enum:on,off,dim"> state </param>
</method>

</object>
</object>

(a) XML document (b) User interface

Figure 5: Subsetting functionality. The example illustrates how functionality can be aggregated or subsetted by modifying the document
associated with a program. The full description of the interface to 405 Soda has been cut down so that only a single object remains. The user
interface is updated accordingly.

7

To implement our scheme, we designed a XML schema and
accompanying software that

� notates services’ available functionality, or interface,

� associates relevant programs and UIs to collections of services,
or, vice-versa, lists the service interfaces expected by particular
programs

� can flexibly compose and decompose based on constituent
elements, and

� allows for easy incorporation of service-specific meta-data
(i.e., without affecting existing functionality that does not ex-
pect it) via the self-describing nature of XML.

Using a peer document or “description” alongside an application
to provide for much of the flexibility described here has been de-
scribed before [21], but only in the abstract. It is the advent and
growing popularity of XML and distributed object programming
that synergistically combine to give us a syntax for these descrip-
tions and a concrete framework for their use.

A Schema DTD
The document type definition for the XML files used by our system
is as follows:

<!ELEMENT object (label?, addrspec?, ui*,
method*, object*)>

<!ATTLIST object
name CDATA #REQUIRED>

<!ELEMENT method (param*)>
<!ATTLIST method

name CDATA #REQUIRED>
<!ELEMENT param (#PCDATA)>
<!ATTLIST param

name CDATA #REQUIRED
lexType (int | real | boolean | enum

| string | ...) ’string’
optional #BOOLEAN>

<!ELEMENT label (#PCDATA)>
<!ELEMENT addrspec (#PCDATA)>
<!ELEMENT ui (#PCDATA)>

References
[1] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Min-

den. A Survey of Active Network Research. IEEE Communications
Magazine, pages 80–86, January 1997.

[2] A. Fox, E. Brewer, S. Gribble, and E. Amir. Adapting to Network and
Client Variability via On-Demand Dynamic Transcoding. ASPLOS,
1996.

[3] Steven McCanne, Eric Brewer, Randy Katz, Lawrence Rowe, Elan
Amir, Yatin Chawathe, Alan Coopersmith, Ketan Mayer-Patel, Suchi-
tra Raman, Angela Schuett, David Simpson, Andrew Swan, Teck-Lee
Tung, David Wu, and Brian Smith. Toward a Common Infrastructure
for Multimedia-Networking Middleware. Proc. 7th Intl. Workshop on
Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV ’97), May 1997.

[4] B. MacIntyre and S. Feiner. Future Multimedia User Interfaces. Mul-
timedia Systems Journal, 4(5):250–268, October 1996.

[5] Brewer, Katz, et. al. A Network Architecture for HeterogeneousMobile
Computing. submitted for publication, IEEE Personal Communica-
tions.

[6] M. Weiser. Some Computer Science Issues in Ubiquitous Computing.
Communication of the ACM, 36(7), July 1993.

[7] Todd Hodes, Randy Katz, E. Servan-Schreiber, and Larry Rowe. Com-
posable Ad hoc Mobile Services for Universal Interaction.Proceedings
of the 3rd ACM International Conference on Mobile Computing and
Networking, pages 1–12, 1997.

[8] David Krieger and Richard Adler. The Emergence of Distributed Com-
ponent Platforms. IEEE Computer Magazine, pages 43–53, March
1998.

[9] Object Management Group. Common Object Request Broker Archi-
tecture. http://www.omg.org/.

[10] Sun Microsystems. Enterprise Java Beans. http://java.sun.com/ejb.

[11] J. Eliot, B. Moss, and Tony L. Hosking. Approaches to Adding Persis-
tence to Java. First International Workshop on Persistence and Java,
September 1996.

[12] Charles Axel Allen. Automating the Web with WIDL. World Wide
Web Journal, 2, 1997.

[13] IBM Almaden Research. TSpaces. http://www.almaden.ibm.com/cs/-
TSpaces.

[14] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A Reliable
Multicast Framework for Light-weight Sessions and Application Level
Framing. ACM SIGCOMM 95, pages 342–356, August 1995.

[15] A. Joseph, A. deLespinasse, J. Tauber, D. Gifford, and M. Frans
Kaashoek. Rover: A Toolkit for Mobile Information Access. Pro-
ceedings of the Fifteenth Symposium on Operating System Principles,
December 1995.

[16] Robert Glushko. The XML Revolution. UC Berkeley SIMS Sympo-
sium Presentation, April 1998.

[17] G. Krasner and S. T. Pope. A Cookbook for Using the Model View
Controller User Interface Paradigmin Smalltalk-80. Journalof Object-
Oriented Programming, August/September 1988.

[18] World Wide Web Consortium. eXtensible Markup Language.
http://w3c.org/XML/.

[19] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Mes-
sages: a Mechanism for Integrated Communication and Computation.
International Symposium on Computer Architecture, May 1992.

[20] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing
Company, Reading, MA, 1994.

[21] T. Hodes and R. Katz. Composable Ad hoc Location-based Services
for Heterogeneous Mobile Clients. ACM Wireless Networks, 1998.
Special issue on Mobile Computing, to appear.

8

