
Search Party:

Using Randomcast for Reliable Multicast

with Local Recovery

Adam M. Costello Steven McCanne

Report No. UCB//CSD-98-1011

August 1998

Computer Science Division (EECS)
University of California
Berkeley, California 94720



Search Party:

Using Randomcast for Reliable Multicast with Local Recovery

Adam M. Costello
http://www.cs.berkeley.edu/~amc/

Steven McCanne
http://www.cs.berkeley.edu/~mccanne/

26 Aug 1998

Abstract

IP multicast is an e�cient means of sending to a
group, but the packets are sent unreliably. Some
applications, like distributed whiteboard and news
articles, require detection and retransmission of lost
packets. In order to scale to large groups, local recov-
ery is necessary to avoid involving the entire group
in the repair process for packet losses a�ecting small
regions of the distribution tree. While many current
research e�orts have attempted to devise local re-
covery schemes that rely only on the existing service
model, we believe that extending the multicast for-
warding service could enable viable and highly scal-
able local recovery mechanisms. To investigate this
open issue, we propose a new randomized forward-
ing service called randomcast, and build upon it a
loss recovery protocol called Search Party. Starting
with the local recovery structure of the very scalable
LMS scheme [PPV98], we use randomized forward-
ing to greatly improve robustness at a modest cost
in overhead and/or retransmission delay (the trade-
o� between the two costs is �ne-tunable). Analysis
predicts that as the group size N increases, overhead
will increase by at most logN and retransmission
delay will be una�ected. Simulation experiments
show that both increase very little as N grows from
8 to 64, and con�rm the tunability of the trade-o�.

1 Introduction

The IP multicast service [DC90] allows a source
to send packets unreliably to a group of N mem-

This work is supported by the National Science Founda-
tion (ANI-9734515, CDA 94-01156), the Advanced Research

Projects Agency (N66001-96-C-8508) and CaliforniaMICRO.

bers much more e�ciently than sending N unicast
packets. Some applications, like real-time audio
and video broadcasting, are delay-sensitive and loss-
tolerant, and thus well-suited to IP multicast service.
But other applications that could bene�t from e�-
cient multicasting require reliable delivery. Some are
real-time, like distributed whiteboard [FJL+97] and
multiplayer games, while others are bulk transfers,
like software updates and news articles. To support
these applications, we need a reliable multicast pro-
tocol that performs loss recovery|the detection and
retransmission of lost packets. While a reliable mul-
ticast protocol should also perform congestion avoid-

ance [MRBP98], this paper restricts its attention to
loss recovery. A good summary of reliable multicast
work is included in [LLG96].

1.1 Model

In order to discuss multicast forwarding, we will re-
fer to the following model of the internet. An in-
ternet topology is a bipartite graph in which the
nodes are routers and networks, and the edges are
interfaces. Each interface connects a router to a net-
work. Packets originate and terminate at endpoints.
In reality an endpoint lies within a router (usually a
degenerate router called an \end host"), but we will
consider the endpoint to be adjacent to the router.
Multicast packets are forwarded from a source to
group members along a distribution tree. For each
source/group pair, there is a tree (a subgraph of the
internet topology) in which the source is the root1

and the members are the leaves (�gure 1). When
a packet arrives at a node, a copy of the packet is

1Some proposed multicast routing protocols like PIM
[DEF+94], CBT [BFC93], and BGMP [KRT+98] can use
shared trees, in which the source is not the root, but this

paper focuses on source-rooted trees. See section 7.2 for more
discussion of shared trees.

1



router endpointinterface

source & root

network

Figure 1: Example multicast distribution tree.

forwarded to each child. Whenever a packet is lost,
it fails to reach the members in the loss subtree|the
subtree below the point where the loss occurred.

1.2 Implosion

If a loss recovery scheme is to scale to arbitrarily
large groups, its �rst task is to avoid the well-known
implosion e�ect. Reliable protocols designed for a
single sender and receiver are often based on au-
tomatic repeat request (ARQ), where the receiver
sends feedback to the sender, so the sender knows
when it needs to send retransmissions. But if we ex-
tend ARQ to multicast, and multiple receivers send
feedback to a single sender, the resulting implosion
of packets can overwhelm the sender or the network
links near it.

Implosion has been successfully addressed in two
pioneering works on reliable multicast. Scalable
Reliable Multicast (SRM) [FJL+97] uses multicast

damping. Members multicast repair requests to the
entire group, but use random timers to ensure that
only about one request is sent at a time. Other
members waiting to send the same request see the
�rst one and suppress their own. Any member ca-
pable of responding to a request may do so, and
random timers are used again to limit the number
of responses to about one.

The Reliable Multicast Transport Protocol (RMTP)
[LP96] avoids implosion via ACK fusion. The mem-
bers are organized into a hierarchy. acks are sent
not to the source, but to the parent member, who
merges the acks before sending them to its own par-
ent.

1.3 Local Recovery

After implosion avoidance, another essential task is
local recovery. If a lost packet a�ecting a relatively
small subtree triggers a recovery e�ort involving the
sender, or involving too much of the tree, the proto-
col cannot scale to arbitrarily large trees.

SRM implementations do not yet provide local re-
covery, because every recovery involves the entire
tree. Section 7.2 of [FJL+97] sketches a few poten-
tial ideas for local recovery in SRM, but their e�cacy
is not evaluated.

In RMTP, internal nodes in the hierarchy (called
Designated Receivers) send retransmissions from
their data caches. RMTP therefore provides local
recovery if the hierarchy of members is closely corre-
lated to the multicast distribution tree. However, in-
formation about the topology is not available above
the routing layer, so it is not clear how the hierar-
chy can be constructed, nor how it can track routing
changes.

A mechanism proposed in RMTP to aid in local re-
covery is subtree multicast, which de�nes a new IP
packet type to let any host tunnel a multicast packet
to a router, allowing the host to send a packet to a
subtree rooted at any router in a multicast tree.

1.4 LMS

Lightweight Multicast Services (LMS) [PPV98] pro-
vides implosion avoidance and local recovery like
RMTP, but unlike RMTP it uses the multicast tree
itself rather than a separate hierarchy, and thereby
circumvents the need to construct and maintain the
hierarchy. To make this possible LMS extends the
routers with a new but simple forwarding service.
Each router in a multicast tree selects one of its
child links to be its replier link. (LMS is described
in terms of point-to-point links rather than networks
and interfaces.) A packet received from a non-replier
link is forwarded to the replier link, while a packet
received from the replier link is forwarded to the

2



Figure 2: The paths taken by three request pack-
ets after a packet loss in LMS. The replier links are
indicated by heavy lines.

parent. When a member detects a lost packet, it
uses this forwarding service to send a request for
a retransmission. The remarkable consequence of
the forwarding rule is that when every member in a
loss subtree issues a request for the missing packet,
exactly one request will escape the subtree, even
though no one (not even the routers) knows where
the loss occurred or how many requests were sent.
The other requests go to members inside the loss
subtree, who are unable to respond (�gure 2).

The router that bounces an upward-moving request
back downward is called the turning point (notice
that a request packet can reverse direction at most
once). The turning point router inserts into the re-
quest its own address and an identi�er for the link
on which the request arrived. This allows the re-
cipient of the escaping request to respond with a
directed multicast packet, which is very similar to a
subtree multicast packet, except that it also includes
the link ID, which is used by the turning point router
to further restrict the audience. Whereas the sub-
tree multicast service forwards a packet to a subtree
rooted at a router, directed multicast service for-
wards a packet to a subtree rooted at a link. When
the loss occurs on a non-replier link, the response
goes only to the loss subtree; when the loss occurs
on a replier link, the turning point is higher than
necessary and the response goes to a larger subtree.

Even though the LMS design introduces new net-
work functionality, the extensions in no way violate
clean layering principles|the routers do not see any
transport-layer information like sequence numbers,
nor do the endpoints know anything about topol-
ogy.

1.5 Robustness and Randomization

Although LMS does not construct an explicit hier-
archy like RMTP, there is still an implicit hierarchy:
every subtree has just one member who sends re-
quests on its behalf and one member who responds
to them. Therefore both schemes su�er from con-
centration of responsibility, because a single mem-
ber bears the entire burden of sending retransmis-
sions for a particular lossy link, and one malfunc-
tioning member can adversely a�ect a large number
of other members below it in the hierarchy. Also, in
LMS the locality of retransmissions depends heavily
on where losses occur and on which links are chosen
to be replier links.

Robustness can be improved through randomiza-
tion. If requests are directed to other members cho-
sen randomly rather than deterministically, respon-
sibility is di�used, and it becomes impossible for
one malfunctioningmember to have a signi�cant im-
pact on a large number of other members. Whereas
LMS uses a simple deterministic forwarding service,
we propose a simple randomized forwarding service
called randomcast, and show one approach that ex-
ploits randomcast to build a scalable, e�cient, and
robust multicast loss recovery protocol called Search

Party.

1.6 Search Party Overview

Search Party follows the structure of LMS: requests
for retransmissions are sent up the tree toward the
root and bounced back down with inserted informa-
tion about the turning point. Unlike LMS, Search
Party requests are forwarded randomly with ran-
domcast. As in LMS, responses are sent to the sub-
tree below the interface through which the request
arrived at the turning point node. Randomizing the
routing of requests trades o� performance (a con-
stant factor) for increased robustness. Because re-
sponsibility is di�used evenly throughout the group,
a malfunctioningmember has a limited impact on its
near neighbors, and a vanishing e�ect on the entire
group. Also, the burden of sending retransmissions
for a particular lossy link is shared among many
members, rather than a single replier or designated
receiver. The performance penalty takes the form of
increased retransmission delay and/or increased re-
covery overhead, and applications with varying delay
sensitivities can �ne-tune the trade-o� between the
two.

3



When a member detects a loss, it continually sends
requests until a retransmission arrives. In e�ect,
each member conducts a random search for the miss-
ing data. Because no one knows where the loss
occurred, no one knows how broad a search ought
to be conducted; however, because all and only
those members a�ected by the loss participate in
the search, they automatically form a search party

of just the right size and scope.

In the remainder of this paper, we present the details
of Search Party and randomcast. Sections 2 and 3
describe randomcast and subcast forwarding, and
section 4 explains the loss recovery protocol built
upon them. Results of analysis and simulation are
presented in sections 5 and 6. Plans for future work
appear in section 7, and conclusions in section 8.

2 Randomcast Forwarding

Randomcast is a proposed new service that for-
wards packets randomly inside a multicast distri-
bution tree. A regular multicast packet contains a
multicast group address and a source address, which
routers use to infer which distribution tree to use,
but the mapping from source/group to tree is pri-
vate to the routers (it may be a source-rooted tree
or a shared tree). A randomcast packet speci�es the
tree explicitly by including a root address. When
a randomcast packet arrives at a node, it may be
forwarded2 to any neighbor in the tree except the
one the packet came from. Whenever a node acts as
a turning point (receives a randomcast packet from
a child and forwards it to another child), it inserts
into the packet information su�cient to address the
subtree below the arrival interface (see section 3).

The probability distribution used to select the out-
going interface is critical to the behavior of systems
using the randomcast service. We evaluated two dis-
tributions: uniform, and weighted by subtree pop-
ulation. We found that the weighted distribution
is better for choosing between the parent and chil-
dren, while uniform distribution is better for choos-
ing among children.

2This is not a problem if the node is a router, but is slightly
tricky if the node is a network, because networks are generally
not intelligent. The best solution is to have routers adjacent
to the network perform the forwarding decisions on the net-

work's behalf. Alternatively, networks can be ignored, and
routers can be considered neighbors of each other.

0

10%

20%

30%

0 1 2 3 4 5 6 7

pr
ob

ab
ili

ty

number of escapees

Figure 3: Probability that k randomcast packets es-
cape a large subtree in which each leaf sends two
packets (Poisson distribution with mean 2).

2.1 Parent or Child?

When a randomcast packet arrives at a node X from
a child C, the node �rst decides whether to for-
ward the packet to the parent or to another child.
If the distribution is uniform, the probability that
the parent is selected is 1=c, where c is the number
of children of X. (The probability is not 1=(c + 1)
because the node is forbidden from returning the
packet to the child it came from.) If the distribution
is weighted by subtree population, the probability
that the parent is selected is L(C)=L(X), where L()
denotes the number of leaves descended from a node
(1 if the node is itself a leaf). An essential feature of
both distributions is that the sum of the probabili-
ties over all the children is 1.

Some multicast routing protocols already require
routers to be aware of their children in the tree, so
each router could occasionally communicate with its
children and obtain a count of the number of leaves
below each one, computing the sum for its own use
and its parent's. The EXPRESS multicast service
proposal [HC] suggests that routers keep track of
subtree populations. The uniform distribution does
not require knowledge of subtree populations, but
the weighted distribution has two attractive proper-
ties.

First, the probability that a randomcast packet orig-
inating at any leaf below node X reaches X's parent
is 1=L(X), regardless of the topology. This di�uses
responsibility for sending requests evenly among the
members, and also eases analysis: If m randomcast

4



0

10%

20%

30%

0 1 2 3 4 5 6 7

pr
ob

ab
ili

ty

number of escapees

Figure 4: Probability that k randomcast packets es-
cape a subtree of six leaves in which each leaf sends
two packets (binomial distribution with n = 12 and
p = 1=6). Compare this to �gure 3.

packets are sent from each of the L leaves in a sub-
tree, the number of packets that escape the subtree
has a binomial distribution with parameters n = mL

and p = 1=L, for which the expected value is np = m

[Str89]. It is well-known that as n increases while
np remains constant, the the binomial distribution
assymptotically approaches the Poisson distribution
with � = np. Therefore, as L increases, the proba-

bility that k packets escape approaches mk

k!em
(which

is independent of L). The Poisson distribution is
fairly narrow, as shown in �gure 3, meaning that
the number of escapees is fairly predictable. The bi-
nomial distribution is slightly narrower for smaller
subtrees, but even with only six leaves it has about
the same shape, as shown in �gure 4.

The second attractive property of the weighted dis-
tribution is locality. Consider the scenario of �g-
ure 5. With a uniform distribution, there is a 50%
chance that a request from the smaller subtree will
be forwarded to X's parent, causing the response
to be delivered to the members in both subtrees, of
which 99% are not interested. With a weighted dis-
tribution, there would be only a 1% chance of this
undesirable occurrence. If the loss occurs just above
the larger subtree, the weighted distribution will al-
most always forward the request to X's parent, but
the response will still be of interest to 99% of the
recipients.

Thus, for the choice between parent and children,
Search Party uses the weighted distribution.

leaves 990
leaves

10

X

Figure 5: A packet loss in an imbalanced tree.

2.2 Which Child?

When a packet is to be forwarded by a node X to one
of its children, either because it arrived from the par-
ent or because the node has already decided against
forwarding to the parent, there is again a choice
between uniform and weighted distributions. With
a uniform distribution, the probability of selecting
child C is 1=c or 1=(c � 1) depending on whether
the packet arrived from a child (and is therefore for-
bidden from being forwarded to that child). With a
weighted distribution, the probability is L(C)=L(X)
if the packet arrived from the parent. If the packet
arrived from child A, the probability that it gets for-
warded to child C is L(C)=[L(X)�L(A)]. It follows
that before the node has decided whether to forward
to the parent, if it is using a weighted distribution
for both choices, the probability that it forwards to
C is L(C)=L(X).

A node using the weighted distribution for selecting
children will tend to distribute randomcast packets
evenly among its descendent leaves, but packets from
many incoming edges can get concentrated onto one
outgoing edge. If that happens several times in a
succession of nodes, the downward tra�c on a sin-
gle edge could grow exponentially. With the uni-
form distribution, a node distributes packets evenly
among its downward edges, avoiding that hazard.
Because trees with more leaves tend to be deeper,
the weighted distribution will tend to route packets
to farther away leaves, whereas the uniform distri-

5



bution will tend to choose shorter paths, leading to
smaller round-trip times. For these reasons, Search
Party uses the uniform distribution for selecting chil-
dren.

3 Subcast Forwarding

Subtree multicast, proposed for use with RMTP, and
directed multicast, used by LMS, are similar ser-
vices. We use the generic term subcast to refer to any
forwarding service that allows packets to be sent to
a subtree. Recall from section 1.1 that the nodes of
an internet topology alternate between routers and
networks, so that either may be the root of a sub-
tree. Ideally, subcast would support both router-
rooted and network-rooted subtrees; if not, a loss
just above a non-addressable node X will have to
be treated as c losses, one above each of X's child
nodes.

The root node of the destination subtree is called the
exploder. There are at least two ways the sender of
a subcast packet could specify the desired exploder:
by address, or by distance. If addresses are used, a
member can subcast a packet to a subtree that it
does not belong to, as required by LMS and Search
Party. If distances are used, the exploder must be on
the path from the member to the root, so a member
can subcast only to subtrees that it belongs to. In
this case, there is a simple workaround: a response
can be sent indirectly via unicast to the requestor,
who then relays the response via subcast to the de-
sired subtree. Therefore, Search Party does not con-
strain the design of the subcast service.

4 Loss Recovery Protocol

4.1 Basic Operation

Search Party is an error recovery protocol built on
top of the randomcast and subcast forwarding ser-
vices. Each group member is responsible for detect-
ing missing packets and for obtaining retransmis-
sions by sending requests until a response arrives.

A member is able to detect losses because the source
multicasts updates that contain su�cient state in-
formation, like the greatest sequence number sent
so far. The updates can be piggybacked with data
except during lulls in the data stream.

Because the internet can reorder packets, each mem-
ber must estimate the delay variance, which it can
do if the source puts a timestamp in every update3.
Each member chooses as a loss detection threshhold

a multiple of the estimated standard deviation of the
delay. After observing a gap in the data, the member
waits for the threshhold to elapse before concluding
that a packet has been lost. The choice of multi-
plier is a trade-o� between delay and probability of
false detection. If the network layer were to provide
almost-always-in-order delivery, a threshhold of zero
would be sensible.

After a member detects a loss, it acts as a requestor,
emitting randomcast request packets as a Poisson
process with mean rate4 � until it gets a correspond-
ing response packet. Like the loss detection thresh-
hold, � is a trade-o� between overhead and delay. If
requests are sent more often, the expected time to
escape the loss subtree is lower, but more requests
are likely to escape unnecessarily and generate du-
plicate responses. Each member may choose its own
value of �. During a recovery, the e�ective � value
is the average over all members in the loss subtree.

Any member who receives a request acts as a re-

sponder. If the responder has the requested data, it
subcasts a response packet to the subtree indicated
in the request, otherwise it does nothing. When the
source receives a request, it behaves the same way a
member would, except that it uses multicast rather
than subcast (the request has no turning point).

The following sections provide more details of the
protocol, pertaining to response time estimation, re-
�ned requestor and responder behavior, and message
stability.

4.2 Response Time Estimation

If a request generates a response, the amount of time
between the emission of the request and the recep-
tion of the response by the requestor is called the re-
sponse time (r). Each member must estimate the ex-
pected response time (both the mean and variance)
for recoveries involving that member, for reasons to

3We need not assume that the source clock and the mem-
ber clocks all run at the same rate, because each member can

estimate its drift relative to the source as in NTP [Mil95], and
every time value appearing in a packet (except the timestamps
in the updates) can be converted to source clock ticks by the
sender and then to local clock ticks by the receiver.

4Packet emission rates are measured in inverse time units.
For example, 1=s means one packet emission per second.

6



be given. The best-guess estimate is called r̂, and
the estimate of the upper bound (at some con�dence
level) is called rhi. Suppose a requestor puts a times-
tamp in an outgoing request, and the timestamp is
copied into the response by the responder. This al-
lows the requestor, upon receiving the response, to
calculate the response time5. It does not, however,
allow the other recipients of the response to calcu-
late the response time. We could have the requestor
announce the response time via a subcast packet,
but we can avoid that extra tra�c by altering the
representation of the timestamp.

Let every update contain a unique ID, and every
request contain a time reference, which is a pair of
numbers: the ID of the most recently received up-
date, and an o�set, which is the time di�erence be-
tween the reception of that update and the sending
of the request. Every response contains a time ref-
erence copied from the request. The requestor can
calculate the response time r from the time tresp that
the response is received, the time tref that the refer-
enced update was received (if it was received), and
the o�set:

r = tresp � (tref + o�set)

Furthermore, every recipient of the response can per-
form the same calculation and get approximately
the same result, because the di�erence between the
times two members receive a packet is usually about
the same for any multicast or subcast packet, so the
variations in tresp and tref will cancel out.

4.3 Null Requests

If loss rates are low, there may be inadequate losses
to generate accurate response time estimates. To
allow adaptation to continue in the face of low loss
rates, members may send null requests as a Poisson
process with mean rate �. A null request always
generates a null response. If every member chooses
the same �, every member can expect to receive null
responses at a rate between � and � � (1 + lnN ),
where N is the number of members. The responses
will have turning points distributed evenly over the
balanced heights of the tree, so there will be sam-
ples representing the full range of possible response
times. The balanced height of a node X is lnL(X);

5It is not su�cient for the requestor to rememberwhen the

request was sent, rather than insert a timestamp, because it
sends multiple requests that must be disambiguated [KP91].

for any balanced tree, the balanced height is propor-
tional to the actual height. Like � values, � values
e�ectively get averaged: a member's choice of � af-
fects itself most, and other members decreasingly
with distance.

4.4 Request Burst

One use of the response time estimates is to re�ne
the request behavior. According to the earlier de-
scription, a requestor sends requests as a Poisson
process until a response arrives. Therefore, requests
scheduled to be sent after the response arrives will
not be sent, but requests scheduled to be sent before
the response arrives are destined to be sent, so they
might as well have been sent as soon as the loss was
detected, to reduce the recovery time. Of course,
the requestor does not know ahead of time when the
response will arrive, but it can take a reasonably
conservative guess that it will be at least r̂ after the
loss is detected. The requestor expects to send r̂�

requests during the �rst r̂, so it should send them a
burst when the loss is detected, then wait r̂ before
beginning the Poisson process. Note that r̂� is gen-
erally not an integer; the requestor issues trunc(r̂�)
requests, plus one more with probability frac(r̂�).
The request burst can decrease retransmission delay
and duplicate responses if the loss detections hap-
pen at about the same time, and the actual response
times are all about the same. If this is not the case,
the burst will not signi�cantly alter the aggregate
behavior of the members, compared to the original
Poisson-only strategy.

4.5 Internal Response Suppression

There is a problem with duplicate responses coming
from inside the loss subtree. Before any response ar-
rives, requests are circulating inside the loss subtree,
arriving at members who, being inside the loss sub-
tree and lacking the data, ignore the requests. But
when the �rst response arrives, there are requests
are already in 
ight, about to arrive at members
who just now received the same retransmission that
has already satis�ed the requestors. We do not wish
for these requests to generate responses.

To prevent these internal duplicate responses, each
member remembers the last time it received a re-
transmission of the data, and ignores requests that
predate the retransmission. If a responder has the

7



requested data, and has seen a retransmission of the
requested data, it maps the request's time reference
to a moment treq = tref+o�set , and compares treq to
the arrival time trtx of the most recent retransmis-
sion of the requested data6. If it were the requestor
performing the comparison, then obviously the re-
quest has already been satis�ed i� treq � trtx. It
is actually the responder who performs the compar-
ison, but because the di�erence between the times
two members receive a packet is usually about the
same for any multicast or subcast packet, the vari-
ations in trtx and tref will cancel out. To allow
for some noise, the responder compares treq � trtx
against a positive threshhold rather than zero. The
threshhold is a multiple of the combination of the
requestor's and responder's estimated standard de-
viations of data packet delay, so the requestor must
include its estimate in the request packet. Because
variances tend to be additive, standard deviations
are combined as follows:

� =
q
�21 + �22

4.6 Message Stability

When may the source and members delete old data
and associated state information? If the source
wishes to insure that all members receive the data,
there must be a group membership protocol and a
scheme for merging acks, problems not addressed by
Search Party. If it is left to each member to insure
that it has received all the data, a simple course-
grain timeout may su�ce. The source discards old
data when the deletion timeout expires, and includes
information in the updates so that members can dis-
card their old data also. If a member cannot recover
some lost data before it is discarded, it might mean
that the information is too old to be useful anyway,
or that something is so seriously broken that an en-
tirely di�erent avenue for obtaining the information
should be tried instead, like fetching froman archive.

6If the responder is unable to calculate treq because it
has not received the referenced update, it must use a default
guess. For example, it could use now if low delay is valued

more than low overhead, or now�rhi if low overhead is valued
more, or perhaps now � r̂=2.

5 Performance Analysis

An application using Search Party must choose the
rate at which it sends requests. The choice can be
a function of the response time estimates, but what
function? Before we can answer that question, we
need to understand the e�ects that these variables
(�, r̂, rhi) have on the performance of the system
after a loss. Sections 5.1 through 5.4 give analytic
results for four e�ects: response duplication, request
tra�c, response locality, and retransmission delay.
Section 5.5 then shows how the equations can be
used to tune �.

In order to make the analysis tractable, we make the
following simplifying assumptions:

� Every member in the loss subtree detects the
loss at the same time, called time 0.

� Every member in the loss subtree has the same
value for r̂.

� The response time r is the same for every es-

capee (request that escapes) from the loss sub-
tree.

� A response arrives simultaneously at all mem-
bers.

� Requests and responses are not lost.

These assumptions are approximations, so the re-
sults they imply are approximations. The results are
stated here without proof; the proofs and derivations
appear in appendix A.

5.1 Response Duplication

After a loss is detected, members in the loss subtree
send requests until the �rst response arrives. The
members then stop sending requests, but some of the
requests already in 
ight can escape the loss subtree
and generate duplicate responses. Let � denote the
average request rate among the members in the loss
subtree. If r � r̂, the expected number of escapees
(and hence, responses) is

x(r) = r̂�+ (1 + r�)e�r̂�

If r � r̂, the expected number of escapees is

x(r) = r�+ (1 + r̂�)e�r̂�

8



Our best guess is r = r̂, at which point the two
expressions are equal, yielding

x = r̂�+ (1 + r̂�)e�r̂�

A pessimistic prediction is r = rhi > r̂, yielding

x = rhi� + (1 + r̂�)e�r̂�

If the network is not working at time 0 (perhaps be-
cause the loss was caused by a persistent malfunc-
tion), all of the immediate requests will be lost, ren-
dering the request burst ine�ective. The expected
number of escapees is then

x(r) = 1 + r�

which is worse (greater) if r � r̂, though not nec-
essarily if r < r̂. Therefore, an extra-pessimistic
prediction is

x = 1 + rhi�

This prediction is an especially safe upper bound on
x, because it does not rely on the network working
at time 0, nor on the accuracy of r̂, and assumes that
the response time of every escapee is rhi, though in
actuality almost all will be less than rhi.

5.2 Request Tra�c

During a recovery, members inside the loss subtree
receive requests that they ignore. Let L be the num-
ber of leaves in the loss subtree. Since each request
has a 1=L chance of escaping, and the expected num-
ber of escapees is x, the expected number of requests
generated must be xL. The x � (L� 1) requests that
do not escape are redistributed among the L leaves.
Therefore, on average, a member in the loss subtree
expects to receive about the same number (x) of re-
quests as responses.

During the recovery each edge in the loss subtree car-
ries upward request tra�c with mean rate equal to
the average � value among the members below itself.
Above the loss point, the request tra�c dissipates|
this is the sense in which the search for the miss-
ing data automatically has the proper scope, even
though no one knows where the loss occurred. If
each member uses the same � value, the downward
request tra�c on each edge in the loss subtree must
be less than 2�. Although the � values are not nec-
essarily the same, this result shows that the ran-
domcast routing itself does not concentrate request
tra�c. As a corollary, the null request tra�c on
every edge is � upward and less than 2� downward.

5.3 Response Locality

[PPV98] de�nes exposure as the ratio of the number
of members who receive a response over the number
of members in the loss subtree. Exposure is thus a
measure of non-locality, and perfect locality corre-
sponds to an exposure of 1. For Search Party, the
expected exposure of a loss depends on the topology,
but cannot exceed 1 + ln N

L
.

For comparison with LMS, consider a balanced tree
with losses equally likely on all edges. In this sce-
nario, LMS gives upward-moving requests a 1=c
chance of continuing upward. Search Party also
gives a 1=c chance (regardless of how losses are
distributed), so the expected exposure is the same
(1 + c�1

c
logc

N
L
).

Response duplication (see above) and non-locality
are orthogonal phenomena that each cause more re-
sponse packets to be delivered than necessary. The
total expansion factor is the product of the individ-
ual factors.

5.4 Retransmission Delay

The probability that no retransmission has arrived
before time t is

p(t) =

(
1 for t < r

e�r̂� for r � t � r + r̂

e(r�t)� for t � r + r̂

The middle section of the distribution relies on the
e�ectiveness of the request burst, which is question-
able. Therefore, when choosing a � value, appli-
cations should consider the probability distribution
only for t � rhi + r̂. The best-guess prediction is
thus

p(t) = e(r̂�t)�

and the pessimistic prediction is

p(t) = e(rhi�t)�

The average retransmission delay (expected value of
t when the retransmission arrives) is

y(r) = r + (r̂ + 1
�
)e�r̂�

which is x
�
if r � r̂, which works for our best-guess

(r = r̂) and pessimistic (r = rhi) predictions. Of
course, the delay cannot be predicted at all if the
network is not working at time 0.

9



Notice that the delay is independent of N . To con-
sider the asymptotic behavior as r increases, we can
ignore the distinction between r, r̂, and rhi. Since
x is a function of r�, holding x constant makes r�
constant, so that the expected retransmission delay
is O(r), whereas it was simply r in LMS.

5.5 Examples of Tuning

To see how application programs can tune � to suit
their own needs, we consider three hypothetical ap-
plications.

News articles Suppose this application can toler-
ate long delays, but wants a probability of less than
one in a billion that a retransmission will take longer
than ten minutes (perhaps because the source will
discard the data by then). Round-trip times of more
than ten seconds are unheard-of in the internet, so
for simplicity the application could let rhi = 10 s and
not bother to estimate it. The request burst (send-
ing r̂� requests immediately and then waiting r̂) has
a negligible bene�t when � is small, as it will turn
out to be. Therefore, the application could forgo the
burst by letting r̂ = 0 and not bothering to estimate
it. The pessimistic delay requirement is

e(rhi�600s)� � 10�9

(10 s� 600 s)� � ln 10�9

� �
1

28:5s

The expected number of responses per loss is, extra-
pessimistically, x = 1 + rhi� = 1:35, but if r has a
more realistic value, say 1 s, then x = 1:04. The ex-
pected retransmission delay is, pessimistically, y =
rhi +

1
�
= 38:5 s.

Distributed whiteboard Suppose this applica-
tion wants retransmissions to take less than tmax =
2 s from the time the loss is detected, with a fail-
ure probability of p = 10%. The pessimistic delay
requirement is

e(rhi�tmax)� � p

� �
lnp

rhi � tmax

The applicationmust adjust � in response to changes
in rhi. Suppose the estimates r̂ and rhi are 0:2 s
and 0:8 s respectively. Then � = 1:92=s = 1

521ms
.

The expected number of responses per loss is x =

0

10%

20%

30%

40%

50%

r r + 0.5 r + 1 r + 1.5

p(
t)

t (seconds)

Figure 6: The probability p(t) that no retransmis-
sion has yet arrived at time t for the multiplayer
game application. Notice that the left edge of the
graph is time r, not time 0.

1 + rhi� = 2:54 (extra-pessimistic) or x = r̂�+ (1 +
r̂�)e�r̂� = 1:33 (best-guess). The expected retrans-
mission delay is y(r) = r+(r̂+ 1

�
)e�r̂� = r+0:49 s =

1:29 s (pessimistic) or 0:69 s (best-guess). If net-
work performance were to improve, causing rhi to
decrease, this application would respond by decreas-
ing � to decrease the overhead while maintaining the
delay constraint.

Multiplayer game The internet is already too
slow for this application. It wants to spend at most
xmax = 4 responses per loss, on average, to get
retransmissions as quickly as possible. The extra-
pessimistic response requirement is

x = 1 + rhi� � xmax

� �
xmax � 1

rhi

As with the whiteboard application, the game appli-
cation must adjust � in response to changes in rhi. If
we again suppose that r̂ and rhi are 0:2 s and 0:8 s re-
spectively, then � = 3:75=s = 1

267ms
. The expected

number of responses is 4.00 (extra-pessimistic) or
1.58 (best-guess). The expected retransmission de-
lay is r+0:22 s = 1:02 s (pessimistic) or 0:42 s (best-
guess). The probability that the response has not
arrived before time t is shown in �gure 6 in terms
of r. If network performance were to improve, caus-
ing rhi to decrease, this application would respond
by increasing � to decrease the delay while main-
taining the overhead constraint.

10



Uni�ed tuning algorithm The methods used by
the whiteboard and game applications for calculat-
ing � can be combined into a single algorithm. Let
the application choose a target retransmission de-
lay tmax, an acceptable failure probability p > 0,
and a maximum average number of responses per
loss, xmax > 1. The response constraint overrides
the delay constraint. The protocol library can then
calculate

� =

(
xmax�1

rhi
if rhi � tmax

min
�

ln p
rhi�tmax

; xmax�1
rhi

�
otherwise

If the application is required to choose p and xmax

such that
p � e1�xmax

then the library will always be obeying the admoni-
tion to use the p(t) distribution only for t � rhi + r̂,
because the response constraint will override the de-
lay constraint whenever tmax < 2rhi.

6 Simulation Results

6.1 Simulation Speci�cation

Simulations were run using ns [ns] on synthetic
topologies. Every link is identical and symmetric:

propagation delay 10ms
bandwidth 1:5Mbps
queue limit 10

Each link carries background tra�c in both direc-
tions that originates at one end and terminates at
the other:

rate 90% of capacity
packet size 1088 bytes

interarrival time exponential

The background tra�c causes an observed loss rate
of 2.2% of 1088-byte data packets, and an observed
queuing delay with mean 19:8ms and standard de-
viation 15:0ms.

The source sends a 1088-byte data packet (including
an update) every 100ms. Requests are 64 bytes and
responses are 1088 bytes.

The members use the following parameter values:

Loss detection threshhold multiplier: 0

AgentNode Link

Figure 7: Topologies used in the simulations: bal-
anced binary and square.

r̂: exponential weighted moving average with weight
1
8 for the mean and 1

4 for the variance (like
TCP).

rhi: r̂ mean plus 3.0 times r̂ standard deviation.

Response suppression threshhold multiplier: 3.0

Default treq: now � rhi

Null request rate: 0

Deletion timeout: in�nite

For tuning �, three behaviors were simulated, all
using the uni�ed tuning algorithm:

11



0

1

2

3

4

5

6

0 20 40 60 80 100

re
sp

on
se

s 
to

 th
e 

lo
ss

loss (percentile)

Game application response duplication

max mean, balanced (64)
median mean, balanced (64)

max mean, square (64)
median mean, square (64)

Figure 8: Duplicate response distribution.

application tmax p xmax

news 600 s 10�9 2.0
whiteboard 5 s 10% 4.0

game 0:2 s 1% 4.0

Two topologies were used, a balanced binary tree
and an unbalanced square tree (�gure 7), with sizes
varying between 8 and 64 members (ns could not
handle 128).

Every run lasts 15 minutes of simulated time, during
which 9000 data packets are sent.

6.2 Response Duplication

Each curve of �gure 8 shows, for the game appli-
cation with 64 members, the number of responses
received by one member for each loss it experienced.
The losses are situated along the horizontal axis,
sorted by number of responses. The number of re-
sponses per loss varies between 1 and 7, with a mean
of about 1.8, well below the xmax constraint of 4.0
(the application used the extra-pessimistic predic-
tion, which did not come true). There are two mem-
bers shown for each topology: the one with the max-
imummean responses per loss, and the one with the
median mean. The maximum and median are very
close, and topology makes very little di�erence. The
curves for the whiteboard and news applications (not
shown) are similar, but shifted to the right. The
whiteboard application got 1 to 4 responses per loss
with a mean of 1.2 to 1.3, while the news applica-
tion got 1 to 3 responses per loss with a mean of 1.1
to 1.2.

0

0.5

1

1.5

2

8 16 32 64

to
ta

l r
es

po
ns

es
 / 

lo
ca

l r
es

po
ns

es

group size

Non-locality vs. group size

news, balanced
whiteboard, balanced

game, balanced
news, square

whiteboard, square
game, square

Figure 9: Exposure, averaged over all losses by di-
viding the total number of responses received by all
members by the total number of local responses re-
ceived by all members.

6.3 Request Tra�c

The analysis predicts that members should receive,
on average, as many local requests as local responses
(where \local" means pertaining to a loss that the
member experienced), and that the requests should
not be concentrated at a few members. For the bal-
anced topology, the ratio of local requests to local
responses received by any single member (over all
losses) varied between 0.4 and 1.1, depending on the
application and group size. For the square topology,
the ratio varied between 0 and 1.4, depending on the
application, group size, and position in the tree.

6.4 Response Locality

The analysis predicts that exposure (non-locality)
depends on topology, but at worst grows as
O(logN ). Figure 9 shows exposure versus group
size for all three applications and both topologies.
The application makes little di�erence. The bal-
anced topology shows a modest increase with logN ,
while the square topology shows a decrease, possibly
because as it grows it becomes less balanced.

6.5 Retransmission Delay

The application with a delay constraint is the white-
board. Each curve of �gure 10 shows, for a group
size of 64, the retransmission delay for each loss ex-
perienced by one member. The losses are situated

12



0

5

10

15

20

0 20 40 60 80 100

re
tr

an
sm

is
si

on
 d

el
ay

 (
se

co
nd

s)

loss (percentile)

Whiteboard application retransmission delay

max 90th, balanced (64)
median 90th, balanced (64)

max 90th, square (64)
median 90th, square (64)

constraint (max 90th)

Figure 10: Retransmission delay distribution.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

8 16 32 64

rt
x-

de
la

y 
/ R

T
T

; a
ve

ra
ge

group size

Retransmission delay vs. group size

game, balanced
game, square

Figure 11: Normalized retransmission delay, aver-
aged over every loss experienced by every member.

along the horizontal axis, sorted by delay. The anal-
ysis predicts the shape of the curves (exponential)
and that they should all satisfy the delay constraint
(10% chance of exceeding 5 s) by passing through
the indicated point. There are two members shown
for each topology: the one with the maximumdelay
at the 90th percentile, and the one with the median.
The maximum and median are very close, and the
topology makes little di�erence. The small devia-
tion of the curves from the prediction is presumably
due to the simplifying assumptions, particularly the
neglect of the analysis to account for lost requests
and responses.

The analysis predicts that retransmission delay is
independent of N , but dependent on the response
time r. Because response time grows as the topology
scales up, let us normalize the retransmission delay

0

1

2

3

4

5

6

7

8

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

rt
x-

de
la

y 
/ R

T
T

; a
ve

ra
ge

mean responses per loss

Retransmission delay vs. duplication

game, balanced (32)
game, square (36)

Figure 12: Delay/overhead trade-o�.

by dividing by the mean round trip time between the
member and the source. Figure 11 shows normal-
ized retransmission delay versus group size for both
topologies for the game application, the only one
that attempts to maintain a constant overhead. The
analysis predicts horizontal curves. The balanced
topology shows a small increase with group size,
presumably because paths lengthen as the topol-
ogy grows, increasing the fraction of requests and
responses that are lost, which the analysis does not
account for. The square topology shows smaller de-
lays, presumably because the average distance be-
tween members is smaller compared to the height.

Figure 12 shows the trade-o� the game application
can make between delay and overhead by choosing
di�erent values of xmax. The third point from the
right on each curve corresponds to xmax = 4:0 as in
the other graphs. For the balanced tree, this oper-
ating point gets 1.7 responses per loss compared to
1 for LMS (by construction), and the normalized re-
transmission delay is about 1.8 compared to 0.9 for
LMS, so it is within a factor of 2 of LMS on both
axes simultaneously. The unbalanced topology per-
forms better than the balanced one on both axes,
but we lack results for LMS on this topology.

7 Future Work

7.1 More Simulations

In order to simulate large groups, ns must be used
more e�ciently, or another simulator must be used.

13



Also, simulations using real topologies should be
conducted.

7.2 Shared Trees

This paper has focused on source-rooted trees, but
in practice IP multicast will also use shared trees,
in which the source is not the root of the distribu-
tion tree, but is rather a leaf7. If we can arrange
for the root of the tree, when it decides to forward a
randomcast packet \upward", to tunnel the packet
to the source, then the search party approach should
still work. For all edges except those on the path be-
tween the source and root, \toward the source" and
\toward the root" are the same, so most recovery
behavior will be una�ected. When a loss occurs on
the way from the source to the root, there will not
be a loss subtree, but rather a non-loss subtree. If
the non-loss subtree is small compared to the whole
tree, a request will soon be tunneled from the root
to the source, who will send a response to the entire
tree. If the non-loss subtree accounts for much of the
tree, the recovery might involvemultiple requests en-
tering the non-loss subtree and generating responses
that carry the data out to various separate subtrees.
In either case, Search Party should work unmodi�ed
on shared trees, but simulations are needed to test
this hypothesis.

Alternately, if routers maintain positional labels as
proposed in [LLG96], they can \re-hang" the shared
tree to make any source appear to be the root for
packets carrying the positional label of the source.

7.3 Rumor Mill

Search Party is not the only way to use random-
ized forwarding for scalable multicast loss recovery.
Another new approach, called Rumor Mill, is much
simpler, though it has longer retransmission delays.
After detecting a loss, a member sends requests via
trivial randomcast (uniform distribution upward and
downward with nothing inserted into the packet, so
routers need not know subtree populations nor even
which way is \up") with mean rate � until a response
arrives. If a responder has the requested data, it uni-
casts a response to the requestor, so subcast is not

7This is the situation in core-based trees [BFC93]. In PIM
sparse-mode [DEF+94] the source still appears to be the root,

because packets go from the source to the rendezvous point
before entering the tree.

needed. The loss subtree does not get the retrans-
mission all at once; rather, the data spreads itera-
tively, with the repaired population doubling every
so often.

This approach has perfect locality because a member
will never get a response if it sends no requests. It
has a tunable trade-o� between duplicate responses
and retransmission delay like Search Party. The de-
lay is increased by a factor of O(logL). Rumor Mill
does not lend itself to analysis, so simulations are
needed.

One advantage of this approach that may appeal to
internet service providers is that only the source, not
the members, ever sends a packet to multiple hosts.
Subcast enables any member to send to the group
even if source-speci�c joins were used, but Rumor
Mill does not use subcast.

8 Conclusion

Some applications need a reliable multicast service,
which can be built on top of the unreliable IP multi-
cast service. Scalability requires local recovery, but
some approaches like RMTP have limited feasibility
because they attempt to mirror the topology above
the network layer without access to the routing in-
formation. LMS uses the actual topology, but has
limited robustness because responsibility is concen-
trated. Robustness can be improved using random-
ization. The Search Party approach uses randomized
forwarding to provide robust loss recovery while re-
taining scalability and performance.

Acknowledgments

Thanks go to Christos Papadopoulos and George
Varghese for discussing LMS.

This research began as part of a class project with
Eshwar Belani.

14



References

[BFC93] T. Ballardie, P. Francis, and
J. Crowcroft. Core based trees (CBT)
an architecture for scalable inter-domain
multicast routing. In Proceedings of

SIGCOMM '93, San Francisco, USA,
August 1993.

[DC90] S. Deering and D. Cheriton. Multi-
cast routing in datagram internetworks
and extended LANs. ACM Transactions

on Computer Systems (TOCS), 8(2):85{
110, May 1990.

[DEF+94] S. Deering, D. Estrin, D. Farinacci,
V. Jacobson, C.-G. Liu, and L. Wei.
An architecture for wide-area multicast
routing. In Proceedings of SIGCOMM

'94, London, U.K., September 1994.

[FJL+97] S. Floyd, V. Jacobson, C. Liu, S. Mc-
Canne, and L. Zhang. A reliable
multicast framework for light-weight
sessions and application level fram-
ing. IEEE/ACM Transactions on

Networking, 5(6):784{803, December
1997. http://www-nrg.ee.lbl.gov/
oyd/
srm-paper.html.

[HC] Hugh Holbrook and David Cheriton.
EXPRESS multicast: An extended ser-
vice model for globally scalable IP
multicast. http://gregorio.stanford.edu/
holbrook/express/.

[KP91] Phil Karn and Craig Partridge. Im-
proving round-trip time estimates in re-
liable transport protocols. ACM Trans-

actions on Computer Systems (TOCS),
9(4):364{373, November 1991.

[KRT+98] Satish Kumar, Pavlin Radoslavov,
David Thaler, Cengiz Alaettinoglu,
Deborah Estrin, and Mark Handley.
The MASC/BGMP architecture for
inter-domain multicast routing. In Pro-

ceedings of SIGCOMM '98, Vancouver,
Canada, September 1998.

[LLG96] B. Levine, D. Lavo, and J.J. Garcia-
Luna-Aceves. The case for concurrent
multicast using shared ack trees. In Pro-

ceedings of ACM Multimedia, pages 365{
376, November 1996.

[LP96] J. Lin and S. Paul. RMTP: A reliable
multicast transport protocol. In IEEE

INFOCOM '96, San Francisco, USA,
March 1996.

[Mil95] David L. Mills. Improved algorithms for
synchronizing computer network clocks.
IEEE/ACM Transactions on Network-

ing, 3(3):245{254, June 1995. See also
RFC 1305.

[MRBP98] A. Mankin, A. Romanow, S. Bradner,
and V. Paxson. RFC 2357: IETF

Criteria for Evaluating Reliable Multi-

cast Transport and Application Proto-

cols. http://www.rfc-editor.org/, June
1998.

[ns] UCB/LBNL/VINT network simulator
ns (version 2). http://www-mash.cs.
berkeley.edu/ns/.

[PPV98] Christos Papadopoulos, Guru Parulkar,
and George Varghese. An error con-
trol scheme for large-scale multicast
applications. In IEEE INFOCOM

'98, San Francisco, USA, March 1998.
http://www.ccrc.wustl.edu/~christos/
PostScriptDocs/Infocom98-�nal.ps.Z.

[Str89] Peggy Tang Strait. A First Course

in Probability and Statistics. Harcourt
Brace Javanovich, second edition, 1989.

15



A Proofs and Derivations

This section uses the notation introduced in sec-
tions 2 through 5, augmented by the use of Li as
an abbreviation for L(Xi).

A.1 Randomcast Forwarding Statis-

tics

Suppose there is one member M at node X0.
The probability that a randomcast packet sent
by M successfully travels upward through nodes
X1; X2; X3; : : : to emerge upward from node Xi, is

L0

L1

L1

L2

L2

L3

: : :
Li�1

Li
=

1

Li

(Recall that L0 = 1.)

If a subtree contains L leaves, and mL randomcast
packets are sent from its leaves, they constitute mL
independent Bernoulli trials, each with a 1=L prob-
ability of success (escaping). Therefore the proba-
bility of exactly k escapees is given by the binomial
probability function

b(x;n; p) = b(k;mL; 1=L)

=

�
mL

k

�
1

Lk

�
1�

1

L

�mL�k

By Poisson's limit law [Str89], as n increases while
np remains constant, b(x;n; p) approaches the Pois-
son probability function p(x;�) with � = np. There-
fore the probability of exactly k escapees is

b(k;mL; 1=L) � p(k;m) =
mk

k!em

If the number of randomcast packets sent by each
leaf has a Poisson distribution with mean m, then
the number of escapees has a true Poisson distribu-
tion p(k;m), not a binomial distribution.

A.2 Null Response Tra�c

The null responses received by M using Xk as ex-
ploder are the ones corresponding to null requests
that were forwarded upward from Xk then bounced
downward by Xk+1. If all members use the same
�, null request tra�c is � on every upward link, so
Xk+1 bounces null requests from Xk at the rate

�
1� Lk

Lk+1

�
�. The total null response tra�c re-

ceived by M is thus

� �

��
1�

L0

L1

�
+

�
1�

L1

L2

�
+

�
1�

L2

L3

�
+ : : :

+

�
1�

Ln�1

Ln

�
+ 1

�

(The last 1 is for the source, who never forwards
requests, but always responds to them.)

Consider the sum

S =
L0

L1

+
L1

L2

+
L2

L3

+ : : :+
Ln�1

Ln

The product of the terms is L0=Ln. It is well-known
that the geometric mean of a set of n positive num-
bers is less than or equal to the arithmetic mean,
which implies that the sum is greater than or equal
to n times the nth root of the product. Equality ob-
viously holds when all the terms are equal. In our
case, this implies that the minimum possible value
of S is

n �

�
L0

Ln

�1=n

This in turn implies that the maximumnull response
tra�c received by M is � � (n � S + 1) = �z where

z = n� n �

�
L0

Ln

�1=n

+ 1 = 1 + n �
�
1� e

1
n
ln

L0
Ln

�

let u =
1

n
ln

L0

Ln

dz

dn
= 1 + (u� 1)eu

Because u < 0, we have dz

dn
> 0, so z is maximized as

n approaches in�nity. Expanding z using the Taylor
series for the exponential function reveals that

lim
n!1

z = 1� ln
L0

Ln
= 1 + ln

Ln

L0
= 1 + lnN

(Recall that L0 = 1 and Ln = N .)

Using the same analysis to calculate response tra�c
using only Xi through Xj<n as exploder, we would

obtain � ln Lj

Li
= � � (lnLj � lnLi). That is, the null

response tra�c from an interval of a member's an-
cestry is proportional to the di�erence between the
balanced heights of the top and bottom of the inter-
val, or in other words, null responses are distributed
evenly over the balanced heights.

16



A.3 Recovery Performance

For analyzing performance during recovery, we as-
sume that all members in the loss subtree detect the
loss at time 0, that they all agree on r̂, that the re-
sponse time r is the same for every escapee, that a
response arrives simultaneously at all members, and
that requests and responses are not lost. Let � de-
note the average � value among the members of the
loss subtree.

A.3.1 Number of Escapees

If r � r̂, a member will know before r̂ has elapsed
whether any of the burst requests escaped, so the ex-
pected number of escapees is the expected number
of burst requests that escape (r̂�), plus the prob-
ability that none of them escape (e�r̂�) times the
expected number of non-burst requests that escape.
The �rst non-burst request to escape will produce
a response that causes the requests to cease, so an
average of r� requests per member get sent after
the one that escaped �rst, of which an expected r�

escape. Therefore the total expected number of es-
capees is

x(r) = r̂�+ (1 + r�)e�r̂�

If r � r̂, the story is the same, except that in the case
where one of the burst requests escapes (probability
1 � e�r̂�) an extra (r � r̂)� requests will be sent
before the response comes back at time r. Adding
this term to the previous result yields

x(r) = r̂� + e�r̂� + r�e�r̂�

+r� � r̂� � r�e�r̂� + r̂�e�r̂�

= r� + (1 + r̂�)e�r̂�

If the network is not working at time 0, none of the
burst requests can escape. There must be a �rst
escapee, which was sent at time t0, say. The corre-
sponding response is received at time t0 + r. In the
interim, an extra r�L requests are sent, of which an
expected r� escape. Therefore the expected number
of escapees is

x(r) = 1 + r�

Because (1 + u)e�u � 1 for u � 0, a network failure
at time 0 makes x(r) larger if r � r̂. If r � r̂,
then the network failure does not necessarily in-
crease x(r); for example, if r = 0, the network failure
always makes x(r) smaller.

A.3.2 Upward Request Tra�c

Let L be the number of members below any par-
ticular edge in the loss subtree. If a member Mi

below this edge is sending requests at a rate �i, it
contributes �i=L upward request tra�c to the edge
in question. The total upward request tra�c on the
edge is

�1

L
+
�2

L
+
�3

L
+ : : :+

�L

L
=

�1 + �2 + �3 + : : :+ �L

L

which is the average � value below the edge.

A.3.3 Downward Request Tra�c

If all members use the same �, we can prove by
induction that the downward request tra�c is less
than 2� on any edge. It is certainly true of the edge
where the loss occurred, since there is zero down-
ward request tra�c there. Any node with only one
child passes all packets straight through in both di-
rections, so the downward request tra�c on the edge
below is the same as that on the edge above. For a
node with c � 2 children, suppose the request traf-
�c arriving from above is less than 2�. That tra�c
will be split evenly among the children, contributing
less than � to each. In addition, a child can draw at
most �

c�1
request tra�c from each of the other c�1

children, so the total for each child is less than 2�.

A.3.4 Exposure

Suppose a loss occurs just above node Xi. For each
escapee, the number of members who receive the
response will be Li ifXi+1 is the turning point, Li+1

ifXi+2 is the turning point, and so on, up to Ln�1 if
Xn is the turning point, and Ln = N if the request
makes it all the way to the source (there is no turning
point). Therefore the expected number of response-
recipients per escapee is�

1�
Li

Li+1

�
Li +

Li

Li+1

�
1�

Li+1

Li+2

�
Li+1

+
Li

Li+1

Li+1

Li+2

�
1�

Li+2

Li+3

�
Li+2 + : : :

+
Li

Li+1

: : :
Ln�2

Ln�1

�
1�

Ln�1

Ln

�
Ln�1

+
Li

Li+1
: : :

Ln�1

Ln
Ln

17



which simpli�es to

Li �

�
1�

Li

Li+1

+ 1�
Li+1

Li+2

+ 1�
Li+2

Li+3

+ : : :

+1 �
Ln�1

Ln
+ 1

�

Using the same derivation as for null request traf-
�c, we see that this expression cannot exceed Li ��
1 + ln Ln

Li

�
= L �

�
1 + ln N

L

�
. Dividing by L yields

the expected exposure.

A.3.5 Retransmission Delay

The probability p(t) that no response has arrived
before time t is the probability that no request sent
before time t � r escaped. For t < r, no requests
were sent before time t � r < 0, so p(t) = 0. For
r � t � r + r̂, the number of requests sent before
time t � r � r̂ is r̂� per member, so p(t) = e�r̂�.
For t � r + r̂, the number of requests sent before
time t� r � r̂ is (t� r)� per member on average, so
p(t) = e(r�t)�.

The expected value of the retransmission delay isZ
1

0

t d (p(t))

= r � (1� e�r̂�) +

Z
1

r+r̂

t d
�
1� e(r�t)�

�
= r + (r̂ + 1

�
)e�r̂�

(Hint: integrate by parts.)

A.3.6 Request Rate Selection

The end of section 5.5 suggests an algorithm for
choosing � based on application-speci�ed parame-
ters tmax, p, and xmax, and asserts that if 0 < p �

e1�xmax and xmax > 1 and 0 < rhi < tmax < 2rhi,
then the response constraint overrides the delay con-
straint, which is to say

xmax � 1

rhi
�

ln p

rhi � tmax

The �rst two prerequisities imply

0 < xmax � 1 � � ln p

The third prerequisite implies

rhi > tmax � rhi > 0

We can divide to obtain the desired assertion.

18


