
Virtual Log Based File Systems for

a Programmable Disk�

Randolph Y. Wangy Thomas E. Andersonz David A. Pattersony

Abstract

In this paper, we study how to minimize the la-
tency of small transactional writes to disks. The ba-
sic approach is to write to free sectors that are near
the current disk head location by leveraging the em-
bedded processor core inside the disk. We develop
a number of analytical models to demonstrate the
performance potential of this approach. We then
present the design of a variation of a log-structured
�le system based on the concept of a virtual log,
which supports fast small transactional writes with-
out extra hardware support. We compare our ap-
proach against traditional update-in-place and log-
ging systems by modifying the Solaris kernel to serve
as a simulation engine. Our evaluations show that
random updates on an unmodi�ed UFS execute up
to an order of magnitude faster on a virtual log
than on a conventional disk. The virtual log can
also signi�cantly improve LFS in cases where delay-
ing small writes is not an option or on-line cleaning
would degrade performance. If the current trends
of disk technology continue, we expect the perfor-
mance advantage of this approach to become even
more pronounced in the future.

1 Introduction

In this paper, we set out to answer a simple ques-
tion: how do we minimize the latency of small trans-
actional writes to disk?

The performance of small synchronous disk
writes impact the performance of important appli-

�This work was supported in part by the Defense Ad-
vanced Research Projects Agency (DABT63-96-C-0056), the
National Science Foundation (CDA 9401156), California MI-
CRO, the AT&T Foundation, Digital Equipment Corpora-
tion, Hewlett Packard, IBM, Intel, Sun Microsystems, and
Xerox Corporation. Anderson was also supported by a Na-
tional Science Foundation Presidential Faculty Fellowship.

yComputer Science Division, University of California,
Berkeley, frywang,pattrsng@cs.berkeley.edu

zDepartment of Computer Science and Engineering, Uni-
versity of Washington, Seattle, tom@cs.washington.edu

cations such as recoverable virtual memory [29], per-
sistent object stores [2, 19], and database applica-
tions [34, 35]. These systems have become more
complex in order to deal with the increasing rela-
tive cost of small writes [20].

Similarly, most existing �le systems are care-
fully structured to avoid small synchronous disk
writes. UFS by default delays data writes to the
disk. More recent research has shown that it is pos-
sible to delay metadata writes as well if they are
carefully ordered [10]. The Log-structured File
System (LFS) [27] claims to be write optimized, but
does so by batching small writes. While the struc-
tural integrity of �le systems can be maintained us-
ing these delayed write techniques, none of them
provides data reliability. Write-ahead logging sys-
tems [4, 7, 13, 33] accumulate small updates in a
log and replay the modi�cations later by updating
in place. Databases often place the log on a separate
disk to avoid having the small updates to the log
con
ict with reads to other parts of the disk. Our
interest is in the limits to small write performance
for a single disk. Understanding the single disk case
also may enable us to improve the performance of
log truncation.

Because of the limitations imposed by disks,
non-volatile RAM (NVRAM) or an uninterruptable
power supply (UPS) is often used to provide fast
transactional writes [3, 16, 17, 20]. However, when
write locality exceeds bu�er capacity, performance
degrades. There are also applications that demand
stricter guarantees of reliability and integrity than
that of either NVRAM or UPS. Fast small disk
writes can provide a cost e�ective complement to
NVRAM solutions in these respects.

Unlike most of the existing �le systems, we do
not seek to avoid small disk writes. Instead, our
basic approach is to write to a disk location that is
closest to the current head location, while retaining
transactional behavior. We call this eager writing.
Eager writing requires the �le system to be aware
of the precise disk head location and disk geometry.
One way to satisfy this requirement is to enhance
the disk interface to the host so that the host �le

system can have precise knowledge of the disk state.
A second solution is to migrate into the disk some of
the �le system responsibilities which are tradition-
ally executed on the host. In the rest of this paper,
we will assume this second approach, although the
techniques that we will describe do not necessarily
depend on the ability to run �le systems inside disks
and can work equally well using the �rst solution.

Several technology trends have simultaneously
enabled and necessitated the approach of migrat-
ing �le system responsibility into the disk. First,
Moore's Law has driven down the relative cost of
CPU power to disk bandwidth, enabling powerful
systems to be embedded on disk devices [1]. For
example, the 233 Mhz StrongARM 110 by Digital
costs under $20 [6]. As this trend continues, it will
soon be possible to run the entire �le system on the
disk.

Second, disk bandwidth has been scaling faster
than other aspects of the disk system. Disk band-
width has been growing at 40% per year [12]. I/O
bus performance has been scaling less quickly [22].
The ability of the �le system to communicate with
the disk (to reorganize the disk, for example) with-
out consuming valuable I/O bus bandwidth has
become increasingly important. Seek time, half-
rotation delay, head switch time, and track switch
time are improving at even slower rates. Typical
disk latency has improved at an annual rate of only
10% in the past decade [22]. A �le system whose
small write latency is largely decided by the disk
bandwidth instead of any other parameters will con-
tinue to perform well.

Third, the increasing complexity of the modern
disk drives and the fast product cycles make it in-
creasingly di�cult for operating system vendors to
incorporate useful device heuristics into their �le
systems to improve performance. The traditional
host �le system and the disk �rmware do not share
perfect knowledge of each other and the approach
of increasing complexity of the �le system to match
the complexity of the modern disks cannot work.
In contrast, by running �le system code inside the
disk, we can combine the precise knowledge of the
�le system semantics and detailed disk mechanism
to perform optimizations that are otherwise impos-
sible.

The basic concept of performing writes near the
current disk head position is by no means a new
one [5, 9, 11, 14, 24]. But these systems either do not
provide transactional behavior, or have poor failure
recovery times, or require NVRAM for transactions.
In this work, we present the design of a virtual log,
a logging strategy based on eager writing with these

unusual features:

� Virtual logging exploits fast writes to provide
transactions without special hardware support
by writing the commit record to the next free
block after the data write(s).

� The virtual log allows space occupied by obso-
lete entries to be reused without recopying live
entries.

� The virtual log boot straps its recovery from the
log tail pointer, which can be stored at a �xed
location on disk as part of the �rmware power
down sequence, allowing e�cient normal opera-
tions.

We discuss two designs in which the virtual log
can be used to improve �le system performance.
The �rst is to use it to implement a logical disk in-
terface. This design, called a VLD, does not alter
the existing disk interface and can deliver the perfor-
mance advantage of eager writing to an unmodi�ed
�le system. In the second approach, which we have
not implemented, we seek a tighter integration of
the virtual log into the �le system; we present the
design of a variation of LFS, called VLFS, which
should provide even better performance than the
VLD. While our work focuses on a traditional ar-
chitecture in which the user of the transactional �le
system executes on the host, the technique can also
be extended to move the transaction code itself into
the disk to speed up operations such as read-modify-
write [25]. We develop analytical models and algo-
rithms to answer a number of fundamental questions
about eager writing:

� What is the theoretical limit of the performance
of this approach?

� How should we re-engineer the host/disk inter-
face to take advantage of the knowledge of the
disk mechanism and �le system semantics?

� How can we ensure open space under the disk
head?

� How does this approach fare as di�erent compo-
nents of the disk mechanism improve at di�erent
rates?

We evaluate our approach against update-in-
place and logging by modifying the Solaris kernel to
serve as a simulation engine. Our evaluations show
that an unmodi�ed UFS on an eager writing disk
runs about ten times as fast as an update-in-place
system for random small updates. Eager writing's
economical use of bandwidth also allows it to signif-
icantly improve LFS in cases where delaying small
writes is not an option or on-line cleaning would
degrade performance. As disk bandwidth continues
to improve faster than disk latency, the performance
advantage of eager writing should become more pro-

found in the future.

Of course, these bene�ts may come at a price of
potentially reducing read performance. Like LFS,
the virtual log does not necessarily place data in
the optimal position for future reads. But as in-
creasingly large �le caches are employed, modern
�le systems such as the Network Appliance �le sys-
tem report predominantly write tra�c [17]. Large
caches also provide opportunity for read reorganiza-
tion before the reads happen [23].

Although our evaluations show signi�cant per-
formance promise of the virtual log, this paper
remains a preliminary study. A full evaluation of
the approach would require solutions to algorithmic
and policy questions of the data reorganizer as part
of a complete VLFS implementation. These issues,
as well as questions such as how to extend the vir-
tual logging technique to multiple disks are subjects
of our ongoing research.

The remainder of the paper is organized as fol-
lows. Section 2 presents the eager writing analytical
models. Section 3 presents the design of the vir-
tual log and the virtual log based LFS. Section 4
describes the experimental platform that is used
to evaluate the update-in-place, logging, and eager
writing strategies. Section 5 evaluates these alter-
natives with a series of experiments. Section 6 de-
scribes some of the related work. Section 7 con-
cludes.

2 Limits to Low Latency Writes

The principle of writing data near the current
disk head position is most e�ective when the disk
head is always on a free sector when a write re-
quest arrives. This is not always possible in reality.
In this section, we develop a number of analytical
models to estimate the amount of time needed to
locate free sectors under various utilizations. These
models will help us evaluate whether eager writing
is a sound strategy, set performance targets for real
implementations, and predict future improvements
as disks improve. We also use the models to moti-
vate new �le system allocation and reorganization
algorithms. Because we are interested in the the-
oretical limits of eager writing latency, the models
are for the smallest addressable unit: a disk sector
(although the validity of the formulas do not depend
on the actual sector size and can apply equally well
to larger blocks).

2.1 A Single Track Model

Suppose a disk track contains n sectors, its uti-
lization is (1 � p), and the free space is randomly
distributed. On average, the number of sectors the
disk head must skip before arriving at any free sec-
tor is:

(1� p)n

1 + pn
(1)

Proof. Suppose n is the track size, k is the num-
ber of free sectors in the track, and E(n; k) is the
expected number of used sectors we encounter be-
fore reaching the �rst free sector. With a probability
of k=n, the �rst sector is free and the number of sec-
tors the disk head must skip is 0. Otherwise, with a
probability of (n� k)=n, the �rst sector is used and
we must continue searching in the remaining (n�1)
sectors, of which k are free. Therefore, the expected
delay in this case is [1 + E(n � 1; k)]. This yields
the recurrence:

E(n; k) =
n� k

n
[1 +E(n� 1; k)] (2)

By induction on n, it is easy to prove that the fol-
lowing is the unique solution to (2):

E(n; k) =
n� k

1 + k
(3)

(1) follows if we substitute k in (3) with pn.
For example, when there is only one free sec-

tor left in the track (pn = 1), (1) degenerates to
a half rotation. More generally, (1) is roughly the
ratio between occupied sectors and free ones. This
is a promising result for the eager writing approach
because, for example, even at a relatively high uti-
lization of 80%, we can expect to incur only a four-
sector rotation delay to locate a free sector. For
today's disks, this translates to less than 100 �s.
In six to seven years, this delay should improve by
another order of magnitude because it scales with
platter bandwidth. In contrast, it is di�cult for
an update-in-place system to avoid at least a half-
rotation delay. With today's technology, this is at
best 3 ms, and it improves at a slower rate than
bandwidth. This di�erence is the fundamental rea-
son why eager writing has the potential to outper-
form update-in-place.

2.2 A Single Cylinder Model

We now extend (1) to cover a single cylinder. We
compare the time needed to locate the nearest sector
in the current track against the time needed to �nd
one in other tracks in the same cylinder and take

the minimum of the two. Therefore the expected
latency can be expressed as:

X

x

X

y

min(x; y) � fx(p; x) � fy(p; y) (4)

where x is the delay (in units of sectors) experienced
to locate the closest sector in the current track, y
is the delay experienced to locate the closest sector
in other tracks in the current cylinder, and fx(p; x)
and fy(p; y) are the probability functions of x and
y, respectively, under the assumption of a free space
percentage of p. Suppose a head switch costs s and
there are t tracks in a cylinder, then the probability
functions can be expressed as:

fx(p; x) = p(1� p)x (5)

fy(p; y) = fx(1� (1� p)t�1; y � s) (6)

In other words, fx is the probability that there are
x occupied sectors followed by a free sector in the
current track, and fy is the probability that the �rst
(y � s) rotational positions in all (t� 1) tracks are
occupied and there is one free sector at the next
rotational position in at least one of these tracks.

Figure 1 validates the model of (4) with a sim-
ulation of the HP97560 and the Seagate ST19101
disks whose relevant parameters are detailed in Ta-
ble 1. The HP97560 is a relatively old disk; we
chose it because its characteristics are well docu-
mented and its existing simulators are thoroughly
validated [18, 28]. The Seagate is state-of-art tech-
nology. It is more complex and the simulator is
at best a coarse approximation. For example, the
models are for a single density zone while the actual
disk has multiple density zones. The simulated ea-
ger writing algorithm in Figure 1 is not restricted to
the current cylinder and always seeks to the nearest
sector. (We will show a modi�ed eager writing algo-
rithm in the presence of a free space compactor in
the next section.) The �gure shows that the single
cylinder model is in fact a good approximation for
an entire zone. This is a simple consequence of the
relative seek cost { nearby cylinders are not much
more likely than the current cylinder to have a free
sector in a rotationally good position. This is also
because the head switch time and single cylinder
seek time are close to each other.

Compared to the half-rotation delays of 7 ms for
the HP and 3 ms for the Seagate that an update-
in-place system may incur, Figure 1 promises signif-
icant performance improvement, especially at lower
utilizations. Indeed, the �gure shows that the eager
writing latency has improved by nearly an order of
magnitude on the newer Seagate disk compared to

0

0.5

1.0

1.5

2.0

2.5

3.0

0 20 40 60 80 100A
ve

ra
ge

 T
im

e
to

 L
oc

at
e

a
F

re
e

S
ec

to
r

(m
s)

HP97560 Model
HP97560 Simulation

ST19101 Model
ST19101 Simulation

Free Disk Space (%)

Figure 1: Amount of time to locate the �rst free sector
as a function of the disk utilization. The model is for
a single cylinder while the simulation results are for the
entire zone.

HP97560 ST19101
Sectors per Track (n) 72 256
Tracks per Cylinder (t) 19 16

Head Switch (s) 2.5 ms 0.5 ms
Minimum Seek 3.6 ms 0.5 ms

Rotation Speed (RPM) 4002 10000
SCSI Overhead (o) 2.3 ms 0.1 ms

Table 1: Parameters of the HP97560 and the Seagate
ST19101 disks.

the HP disk. As the disk utilization increases, how-
ever, it takes longer for an eager writing disk head
to �nd a nearby free sector and the performance
degrades. When this occurs, one solution is to com-
pact the free space under the disk head to ensure
low latency. We next develop a model assuming the
presence of a compactor.

2.3 A Model Assuming a Compactor

Compacting free space and reorganizing data are
responsibilities of the storage subsystem and it is
natural to dedicate these tasks to the embedded
processor in the disk. A self-reorganizing disk can
take advantage of the \free" bandwidth between the
disk head and the platters during idle periods with-
out consuming valuable I/O bus bandwidth, pollut-
ing host cache and memory, or interfering with host
CPU operation.

We now develop a performance model of eager
writing assuming the existence of a free space com-
pactor that constantly generates empty tracks. We
start writing to an empty track and continue to �ll
the same track with newly arrived write requests
until the utilization of the current track reaches a

0

0.5

1.0

1.5

2.0

2.5

3.0

0 20 40 60 80 100A
ve

ra
ge

 T
im

e
to

 L
oc

at
e

a
F

re
e

S
ec

to
r

(m
s)

HP97560 Simulation
HP97560 Model

ST19101 Simulation
ST19101 Model

Track Switch Threshold (%)

Figure 2: Average latency to locate free sectors for all
writes performed to an initially empty track as a function
of the track switch threshold. The track switch threshold
is the percentage of free sectors reserved per track before
a switch occurs. A high threshold corresponds to frequent
switches.

threshold. Then we switch to the next empty track
and repeat the process. If writes arrive with no de-
lay, then it would be trivial to �ll the track. If writes
arrive randomly and we assume the free space dis-
tribution is random at the time of the arrivals, then
writes between successive track switches follow the
model of (1). Therefore, substituting pn in (1) with
i, the number of free sectors, the total number of
sectors to skip between track switches can be ex-
pressed as:

nX

i=k+1

n� i

1 + i
(7)

where n is the total number of sectors in a track and
k is the number of free sectors reserved per track
before switching tracks. Suppose each track switch
costs s and the rotation delay of one sector is r; be-
cause we pay one track switch cost per (n�k) writes,
the average latency per sector of this strategy can
be expressed as:

s+ r �
Pn

i=k+1
n�i
1+i

n� k
(8)

So far, we have assumed that the free space dis-
tribution is always random. This is not the case
with the approach of �lling the track up to a thresh-
old because, for example, the �rst free sector imme-
diately following a number of used sectors is more
likely to be selected for eager writing than one fol-
lowing a number of free sectors. In general, this non-
randomness increases latency. Although the pre-
cise modeling of the non-randomness is quite com-
plex, through approximations and empirical trials,
we have found that adding the following � function

to (7) works well for a wide range of disk parameters
in practice:

�(n; k) =
(n� k � 0:5)p+2

(8� n
96
) � (p+ 2) � np

(9)

where p = 1+n=36. By approximating the summa-
tion in (7) with an integral and adding the correc-
tion factor of (9) to account for the non-randomness,
we arrive at the �nal latency model:

s+ r � [(n+ 1) ln n+2
k+2

� (n� k) + �(n; k)]

n� k
(10)

Figure 2 validates the model of (10). When we
switch tracks too frequently, although the free sec-
tors in any particular track between switches are
plentiful, we are penalized by the high switch cost.
When we switch tracks too infrequently, it becomes
increasingly di�cult to locate free sectors in an in-
creasingly crowded track and the performance is
also non-optimal. In general, the model aids the se-
lection of an optimal threshold for a particular set of
disk parameters. More importantly, the model also
reassures us that we need not su�er the performance
degradation seen at high utilizations in Figure 1 if
we judiciously choose a track switch threshold. As
long as there is su�cient idle time to compact free
space, we can expect to stay comfortably at the
lower part of the curve in Figure 2, which again
promises signi�cant improvement over an update-
in-place approach. Figure 1 and Figure 2 also show
why the demands on the compactor are less than the
demands on the LFS cleaner. This is because the
models indicate that compacting is only necessary
for high utilizations and the compactor can move
data at small granularities.

3 A Virtual Log

Eager writing allows a high degree of location in-
dependence of data. It also presents two challenges:
how to locate data as its physical location can con-
stantly change, and how to recover this location in-
formation after a failure. In this section, we explain
the rationale behind the design of the virtual log
and the �le systems built on it.

3.1 The Indirection Map

To support location independence, we introduce
a level of indirection, similar to the technique found
in a number of existing �le systems [5, 8, 9]. The
host �le system manipulates logical addresses. The

obsolete entry

log tail

log tail

(a)

(b)

Figure 3: Maintaining the virtual log. (a) New map en-
try sectors are appended to a backward chain. (b) Im-
plementing the backward chain as a tree to support map
entry overwriting.

disk system maintains a logical-to-physical address

map. As new blocks are allocated, new map entries
are created; as blocks are overwritten, their map
entries are updated; as blocks are read, their map
entries are queried for their physical locations; and
as blocks are freed, so are their map entries. Most
modern disk drives already maintain a similar map
so that they can transparently remap failed sectors.
Updates to such a map, however, occur rarely. In
the rest of this section, we will describe how we keep
the map persistent, how we perform updates, how
we recover the map after a failure, and how �le sys-
tems can be built using these primitives. Our goal is
to avoid some of the ine�ciencies and in
exibilities
of the previous approaches. These pitfalls include:
� lengthy scanning of large portions of the disk to
recover the map,

� reliance on NVRAM, which is not always avail-
able (and even when it is, NVRAM can usually
be put to more productive uses than storing map
entries for recovery),

� excessive overhead in terms of space and extra
I/O's needed to maintain the map, and

� altering the physical block format on disks to
include, for example, a self-identifying header for
each disk block.

3.2 Maintaining and Recovering the
Virtual Log

We implement the indirection map as a table. To
keep the map persistent, we leverage the low latency
o�ered by eager writing. Whenever an update takes
place, we write the piece of the table that contains
the new map entry to a free sector near the disk
head. Suppose the �le system addresses the disk

at sector granularity and each map entry consumes
a word, the indirection map will consume a stor-
age overhead of less than 1% of the disk capacity.
We will discuss how to further reduce this storage
overhead to enable the entire indirection map to be
stored in disk memory in the next section. If the
transaction includes multiple data blocks and their
map entries do not fall in the same map sector, then
multiple map sectors may need written. Although
the alternative of logging the multiple map entries
using a single sector may better amortize the cost
of map entry updates, it requires garbage collect-
ing the obsolete map entries and is not used in our
current design. We will discuss the issues of how to
minimize map entry update I/O and how to avoid
garbage collection later in the paper.

To be able to recover the map after a failure, we
must be able to identify the locations of the map en-
try sectors which are scattered throughout the disk
due to eager writing. One way to accomplish this
is to thread all the map entry sectors together to
form a log. We term this a virtual log because the
components of the log are not necessarily physically
contiguous. Because eager writing prevents us from
predicting the location of the next on-disk map en-
try, we cannot maintain forward pointers in the map
entries. Instead, we chain the map entries backward
by appending new tail entries to the virtual log as
shown in Figure 3a. Note that we can adapt this
technique to a disk that supports a small writable
header per block, in which case a map entry in-
cluding the backward pointer will be placed in the
header. We do not assume this support in the rest
of the discussion.

As map entries are overwritten, if we continu-
ously append to the virtual log, the backward chain
will accumulate obsolete sectors over time. We can-
not simply reuse these obsolete sectors because do-
ing so will break the backward chain. Our solution
is to implement the backward linked list as a tree
as shown in Figure 3b. Whenever an existing map
entry is overwritten, a new log tail is introduced as
the new tree root. One branch of the root points to
the previous root; the other points to the map sec-
tor following the overwritten map entry. The over-
written sector can be recycled without breaking the
virtual log. As Section 3.3 will show, we can keep
the entire virtual log in disk memory during normal
operation. Consequently, overwriting a map entry
requires only one disk I/O to create the new log tail.

In order to be able to recover the virtual log with-
out scanning the disk, we must remember the loca-
tion of the log tail. Modern disk drives use residual
power left in the drive to park their heads in a land-

ing zone at the outer perimeter of the disks prior to
spinning down the drives. It is easy to modify the
�rmware so that the drive records the current log
tail location at a �xed location on the disk before it
parks the actuator[21, 32]. To be sure of the validity
of the content stored at this �xed location, we can
protect it with a checksum and clear it after recov-
ery. In the extremely rare case when the power
down mechanism fails, we can detect the failure by
computing the checksum and resort to scanning the
disk to retrieve the log tail.

With a stable log tail, recovering the virtual log
is straightforward. We start at the log tail as the
root and traverse the tree on the frontier based on
age. Obsolete log entries can be recognized as such
because their updated versions are younger and tra-
versed earlier.

3.3 Implementing LFS on the Virtual
Log

So far, we have described 1) a generic logging
strategy that can support transactional behavior,
and 2) an indirection map built on the log which
implements a logical disk interface that supports
location independence. One advantage of this ap-
proach is that we can implement eager writing be-
hind a logical disk interface and deliver its perfor-
mance advantage to an unmodi�ed �le system. We
now describe another application of the virtual log:
implementing a variant of the log-structured �le sys-
tem (VLFS). Unlike the logical disk approach of the
previous section, the VLFS requires modifying the
disk interface to the host �le system. As a result of
seeking a tighter integration between the �le system
and the programmable disk, however, this allows
a number of optimizations impossible with an un-
modi�ed UFS. Currently, we have not directly im-
plemented VLFS. Instead, the experiments in Sec-
tion 5 are based on �le systems running on the vir-
tual log via the logical disk interface as described
in the last section. We indirectly deduce the VLFS
performance by evaluating these �le systems.

One disadvantage of the indirection map as de-
scribed in Section 3.1 is the amount of storage space
and the extra I/O's needed to maintain and query
the map. To solve this ine�ciency, the �le system
can store physical addresses of the data blocks in
the inodes (and indirection blocks). This is the
same approach taken by LFS and is shown in Fig-
ure 4. As �le blocks are written, the data blocks, the
inode blocks that contain physical addresses of the
data blocks, and inode maps that contain physical
addresses of the inodes are all appended to the log.

log

data inode
inode map
(virtual log
 entry)

tail

Figure 4: Implementing LFS on the virtual log. VLFS
uses eager writing to write to the disk so the log is not
necessarily physically contiguous. The virtual log contains
only the inode map blocks.

What is di�erent in the virtual log based implemen-
tation (VLFS) is that the log need not be physically
contiguous, and only the inode map blocks logically
belong to the virtual log. This is essentially adding
a level of indirection to the indirection map. The
advantage is that the inode map, which is the sole
content of the virtual log, is now compact enough
to be stored in memory; it also reduces the number
of I/O's needed to maintain the indirection map be-
cause VLFS simply takes advantage of the existing
indirection data structures in the �le system with-
out introducing its own.

Another LFS optimization that can also be ap-
plied to VLFS is checkpointing for recovery. Peri-
odically, we write the entire inode map to the disk
contiguously and truncate the virtual log. At recov-
ery time, while LFS reads a checkpoint at a known
disk location and rolls forward, VLFS traverses the
virtual log backwards from the log tail towards the
checkpoint.

In order to support VLFS, the disk needs to ex-
port a new interface to the host. In deciding how
to partition the responsibility between the disk and
the host, we face at least two con
icting goals. On
the one hand, we need to move enough �le system
operations into the disk so that they can take advan-
tage of the knowledge of the disk mechanism which
is unavailable on the host. On the other hand, we
would like the host to retain certain operations so
that we do not place undue stress on the I/O bus.
Two key questions are where to place the data cache
and where to place the inode cache. To minimize
the crossing of the I/O bus, one design is to retain
both caches on the host. Under this design, on a
write, in addition to the data blocks, the disk is also
given the inode. The disk writes the data blocks, in-
serts their physical addresses into the inode, writes
the inode, writes the inode map blocks, and returns
the modi�ed inode to the host. This design compli-
cates the e�ort of keeping the inode cache coherent
if the disk is to modify the inodes later during the

process of free space compacting or data reorgani-
zation. A simpler alternative is to keep the inode
cache on the disk. This alternative drastically sim-
pli�es the interface and the cache coherence issue
at the expense of more communication across the
I/O bus. The precise placement of these caches and
the associated interfaces are subjects of our ongoing
research.

To support the VLFS free space compactor,
which is equivalent to an LFS-style cleaner, we
introduce the equivalent of the LFS segment sum-
mary, a track summary. The track summary details
the content of a track, recording the inode number
and block o�set of each block. Like all other data
structures of VLFS, the track summary has no per-
manent location and can be written anywhere in the
track. In fact, although the track summary is a logi-
cally distinct data structure, it can be piggy-backed
onto a log map entry to avoid extra disk writes1.

During VLFS compacting, a whole track is read
and its track summary is examined to determine the
locations of the inodes that point to the live blocks.
If the inodes in question are in the current track,
then we can simply copy the data to its destination
track, update the corresponding inodes, and rewrite
the inodes. If the inodes in question are not found in
the current track, then we have the choice of either
reading the inodes from other tracks and complet-
ing the cleaning or \cleaning around" these blocks
by leaving them where they are. Placing the only
copy of the inode cache on the disk instead of on the
host can simplify the implementation of the VLFS
compactor by making the disk the sole entity that
can read or write inodes. This can also allow con-
current write operations by both the host and the
compactor using techniques similar to LFS \opti-
mistic cleaning" [15, 30] that avoids expensive �le
locks..

3.4 Comparing VLFS with LFS

VLFS and LFS share a number of common ad-
vantages. Both can bene�t from an asynchronous
memory bu�er by preventing short-lived data from
ever reaching the disk. Both can bene�t from disk
reorganization during idle time: the LFS cleaner
can generate empty segments while the VLFS com-
pactor can compact free space under the disk head,
so that during busy time both �le systems can work
with large extents of free space to ensure good per-
formance.

1We can avoid inadvertent freeing of the the piggy-backed
track summaries by storing the track summary locations in
memory.

Due to eager writing, VLFS possesses a num-
ber of unique advantages. First, small synchronous
writes perform well on VLFS whereas the LFS per-
formance su�ers if an application requires frequent
\fsync" operations2. This is because LFS can only
e�ciently write large segments. Eager writing, how-
ever, can e�ciently perform small writes at the most
convenient disk locations. Second, while the free
space compactor is only an optimization for VLFS,
the cleaner is a necessity for LFS. In cases where idle
time is scarce or disk utilization is high, LFS per-
formance may degrade due to the repeated copying
of live data by the cleaner [23, 30, 31]. Eager writ-
ing avoids this bandwidth waste and �lls the avail-
able space in the most e�cient way possible. Third,
cleaning under LFS is a relatively heavy weight op-
eration because it must move data at segment gran-
ularity, typically 0.5 MB or larger. As a result, LFS
needs large idle intervals to mask the cleaning over-
head. The VLFS compactor has no restriction in
terms of the amount of data it can move so it can
take advantage of relatively short idle intervals. Fi-
nally, reads can interfere with LFS writes by forcing
the disk head away from free space and/or disturb-
ing the track bu�er (which can be sometimes used
to absorb writes without accessing the disk plat-
ters). VLFS can gracefully accommodate reads by
performing intervening writes near the data being
read.

VLFS and LFS also share some common disad-
vantages. For example, data written randomly may
have poor sequential read performance. In some of
these situations, reorganization techniques that can
improve LFS performance [23] should be equally ap-
plicable to VLFS. In some other situations, sequen-
tial reads after random updating is nothing more
than an artifact of the I/O interface. For exam-
ple, an application that streams through all the
records of a database usually does not particularly
care about the ordering of the records. An I/O in-
terface that hints to the storage system to deliver
the records in any order it deems convenient can
perform well for both read and write operations.
Indeed, an interface similar to that used by \In-
formed Prefetching" [26] can serve the virtual log
well.

4 Experimental Platform

To study the e�ectiveness of eager writing, we
evaluate the following four combinations of �le sys-

2\fsync" is the system call that forces dirty data to the
disk.

virtual
log

ramdisk

HP/Seagate
models

VLD

HP/Seagate
models

ramdisk

virtual
log

regular

Solaris
kernel

user LFS

benchmarks

MinixUFS

log-structured
logical disk

UFS raw disk

Figure 5: Architecture of the experimental platform.

tems and simulated disks: a UFS on a regular disk,
a UFS on a Virtual Log Disk (VLD), an LFS on a
regular disk, and an LFS on a VLD. These combi-
nations are illustrated in Figure 5. Although we do
recognize that a complete evaluation of the VLFS
would require a complete implementation of VLFS,
with its associated data reorganizer and free space
compactor, in this paper, we take the �rst step of
deducing the behavior of VLFS by examining the
�le systems running on the VLD.

Two host machines are used: one is a 50 Mhz
SUN SPARCstation-10 which is equipped with 64
MB of memory and runs Solaris 2.6; the other is
a similarly con�gured UltraSPARC-170 workstation
that runs at 167 Mhz. The SPARCstation-10 sup-
ports both 4 KB and 8 KB �le blocks while the
UltraSPARC-170 only supports 8 KB �le blocks.
Because our focus is small write performance, our
experiments are run on the SPARCstation-10 un-
less explicitly stated to be otherwise. We perform
some additional experiments on the UltraSPARC-
170 only to study the impact of host processing
speed. In the rest of this section, we brie
y describe
each of the disk modules and �le systems shown in
Figure 5.

4.1 The Regular Disk

The regular disk module simulates a portion of
the HP97560 disk or the Seagate ST19101 disk.
Their relevant parameters are shown in Table 1. A

ramdisk driver is used to store �le data using 24 MB
of kernel memory. The Dartmouth simulator [18]
is ported into the kernel to ensure realistic timing
behavior of the HP disk. We simply adjust the pa-
rameters of the Dartmouth model to coincide with
those of the Seagate disk to simulate the faster disk.
Although the Seagate simulator is not as precise as
the HP model, it gives a clear indication of how the
improvements in disk technology are a�ecting the
di�erent disk allocation strategies. We have run all
our experiments on both the the HP model and the
Seagate model. Unless stated otherwise, however,
the results presented are those obtained on the fast
Seagate model.

One advantage of the ramdisk simulator is that
it allows two possible modes of simulation. In one
mode, the simulator sleeps the right amount of time
reported by the Dartmouth model to imitate the
behavior of the physical disks and we can conduct
the evaluations by directly timing the application.
In the second mode, the simulator does not sleep in
the kernel; it runs at memory speed instead and only
reports statistics. This allows us to speed up certain
phases of the experiments whose actual elapsed time
is not important. The disadvantage of the ramdisk
simulator is its small size due to the limited avail-
able kernel memory. We only simulate 36 cylinders
of the HP97560 and 11 cylinders of the Seagate. The
results reported in Section 5, however, should be ap-
plicable to a much larger zone. We plan to use a real
disk to store the �le data in a future version of the
simulator, although this modi�cation would slightly
complicate timing measurements because the time
spent in the real disk will need to be carefully ac-
counted for in the �nal analysis.

4.2 The Virtual Log Disk

The VLD adds the virtual log to the disk sim-
ulator described above. It exports the same block
device driver interface so it can be used by any exist-
ing �le system. The VLD maintains an in memory
indirection map. As the map entries are updated,
the VLD appends new map entries to the virtual
log as described in Section 3.2. To avoid having the
disk head trapped in regions of high utilization dur-
ing eager writing, the VLD simply performs cylin-
der seeks only in one direction until it reaches the
last cylinder, at which point it starts from the �rst
cylinder again.

One challenge of implementing the VLD while
preserving the existing disk interface is handling
deletes, which are not visible at the block device
driver interface. This is a common problem faced by

logical disks. Our solution is to monitor overwrites:
when a logical address is re-used by a write, the
VLD detects that the old logical-to-physical map-
ping can be freed and a new one needs to be estab-
lished. The disadvantage of the approach is that it
does not capture the blocks that are freed by the
�le system but not yet overwritten.

Another question that arose during the imple-
mentation of the VLD is the choice of the physical
block size. For example, suppose the host �le system
writes 4 KB blocks. If the VLD chooses a physical
block size of 512 B, it may need to locate eight sep-
arate free sectors to complete eager writing one log-
ical block. If the VLD chooses a physical block size
of 4 KB instead, although it takes longer to locate
the �rst free 4 KB-aligned sector, it is guaranteed
to have eight consecutive free sectors afterwards. To
understand this tradeo�, we can extend the model
of (1) in Section 2.1. Suppose the �le system logical
block size is B and the VLD physical block size is
b (b � B), then the average amount of time (ex-
pressed in the numbers of sectors skipped) needed
to locate all the free sectors for a logical block is:

(1� p)n

b+ pn
� B (11)

(11) indicates that the latency is lowest when the
physical block size matches the logical block size. In
all our experiments, we have used a physical block
size of 4 KB. Each physical block requires one map
entry; so the entire map consumes 24 KB and is
stored in memory in our simulations.

The third issue concerns the interaction between
eager writing and the disk track bu�er read-ahead
algorithm. When reading, the HP97560 (or at least
the Dartmouth simulator) keeps in cache only the
sectors from the beginning of the current request
through the current read-ahead point and discards
the data whose addresses are lower than that of the
current request. This algorithm makes sense for se-
quential reads of data whose physical addresses in-
crease monotonically. This is the case for �le sys-
tems which directly manipulates physical addresses.
For VLD, however, the combination of eager writ-
ing and the logical-to-physical address translation
means that the sequentially read data may not nec-
essarily have monotonically increasing physical ad-
dresses. As a result, the HP97560 tends to purge
data prematurely from its read-ahead bu�er under
VLD. The solution is to aggressively prefetch the
entire track as soon as the head reaches the target
track and not discard data until it is delivered to
the host during sequential reads on the VLD. The
measurements of sequential reads on the VLD in

Section 5 were taken with this modi�cation.
Lastly, the VLD module also implements a free

space compactor. Although the eager writing strat-
egy should allow the compactor to take advantage
of idle intervals of arbitrary length, for simplicity,
our compactor compacts free space at the granular-
ity of tracks. During idle periods, the compactor
reads the current track and uses eager writing to
copy the live data to other tracks, in a way simi-
lar to hole-plugging under LFS [23, 36]. Currently,
we choose compaction targets randomly and plan
to investigate optimal VLD compaction algorithms
(e.g., ones that preserve or enhance read and write
locality) in the future. Applying the lessons learned
from the models in Section 2.3, the VLD �lls empty
tracks to a certain threshold (75% in the experi-
ments). After exhausting empty tracks generated
by the compactor, the VLD reverts to the greedy
algorithm modeled in Section 2.2.

4.3 UFS

Because both the regular disk and the VLD ex-
port the standard block device driver interface, we
can run the Solaris UFS (subsequently also labeled
as UFS) unmodi�ed on these disks. We con�gure
UFS on both disks with a block size of 4 KB and
a fragment size of 1 KB. Like most other Unix lo-
cal �le systems, the Solaris UFS updates metadata
synchronously while the user can specify whether
the data writes are synchronous. It also performs
aggressive prefetching after several sequential reads
are detected.

4.4 LFS

We have ported the MIT Log-Structured Logical
Disk [8], a user level implementation of LFS (sub-
sequently also labeled as LFS). It consists of two
modules: the MinixUFS and the log-structured log-
ical disk, both running at user level. MinixUFS ac-
cesses the logical disk with a block interface while
the logical disk interfaces with the raw disk using
segments. The block size is 4 KB and the segment
size is 0.5 MB. Read-ahead in MinixUFS is disabled.
A number of other issues also impact the LFS per-
formance. First, MinixUFS employs a �le bu�er
cache of 6.1 MB. Unless \sync" operations are is-
sued, all writes are asynchronous. In some of the
experiments in Section 5, we assume this bu�er to
be made of NVRAM so that the LFS con�guration
can have a similar reliability guarantee as that of
the synchronous systems. In this context, we will
examine the e�ectiveness of NVRAM.

Second, the logical disk's response to a \sync"
operation is determined by a tunable parameter
called partial segment threshold. If the current seg-
ment is �lled above the threshold at the time of the
\sync", the current segment is
ushed to the disk
as if it were full. If it is �lled below the thresh-
old, the current segment is written to the disk but
the memory copy is retained to receive more writes.
The partial segment threshold in the experiments is
set to 75%.

Third, the original version of the logical disk only
invokes the cleaner when it runs out of empty seg-
ments. We have modi�ed the cleaner so that it can
be invoked during idle periods before it runs out of
free space.

5 Experimental Results

In this section, we compare the performance of
eager writing against that of update-in-place and
logging with a variety of micro-benchmarks. We
�rst run the small �le and large �le benchmarks that
are commonly used by similar �le system studies.
Then we use a benchmark that best demonstrates
the strength of eager writing: small random syn-
chronous updates with no idle time. This bench-
mark also illustrates the e�ect of disk utilization.
Next we examine the e�ect of technology trends as
disks improve. Last, we examine how the availabil-
ity of idle time impacts the performance of eager
writing and logging. Unless explicitly stated to be
otherwise, the experimental platform is based on the
SPARCstation-10 running on the simulated Seagate
disk.

5.1 Small File Performance

We �rst examine two benchmarks similar to the
ones used by both the original LFS study [27] and
the Logical Disk study [8]. In the �rst benchmark,
we create 1500 1 KB �les, read them back after a
cache
ush, and delete them. The benchmark is
run on empty disks. The results of this benchmark
are shown in Figure 6. Under LFS, updates are

ushed to disk only if the memory bu�er is �lled.
(Otherwise, LFS pays a heavy price by continuously

ushing partial segments to the disk.) Under UFS,
updates are synchronous.

As expected, UFS on the VLD is able to sig-
ni�cantly outperform the same �le system on the
regular disk for the create and delete phases of the
benchmark. This is due to eager writing's ability
to complete small writes much faster than update-

0

2

4

6

8

10

12

41

Regular VLD Regular VLD
UFS UFS LFS LFS

Create
Read
Delete

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

1

Figure 6: Small �le performance. The benchmark cre-
ates, reads, and deletes 1 KB �les. All performance is
normalized to that of UFS running on a regular disk.

in-place. The performance improvement, however,
is not as great as the analytical models would sug-
gest. We will see why this is the case in Section 5.4.
The read performance on the VLD is slightly worse
than that on the regular disk because of the over-
head introduced by the indirection map and the fact
that read-ahead inside the disk is not as e�ective.
We will see the same pattern in read performance
of other experiments as well.

LFS comfortably out-performs UFS by batching
small writes and preventing overwritten directories
from reaching the disk. The performance of LFS
on the regular disk and the VLD are close because
eager writing can support large segment writes as
e�ciently as update-in-place does. If we do not
consider the cost of LFS cleaning (which is not trig-
gered in this experiment), the performance of a UFS
that employs delayed write techniques such as those
proposed in [10] should be between that of the un-
modi�ed UFS and that of LFS. Just like under LFS,
however, delayed writes under UFS do not o�er data
reliability.

From this benchmark, we speculate that by inte-
grating LFS with the virtual log, the VLFS (which
we have not implemented) should be able to approx-
imate the performance of UFS on the VLD when we
must write synchronously to the disk, while retain-
ing the bene�ts of LFS when asynchronous bu�ering
is acceptable.

5.2 Large File Performance

In the second benchmark, we write a 10 MB �le
sequentially, read it back sequentially, write 10 MB
of data randomly to the same �le, read it back se-
quentially again, and �nally read 10 MB of ran-

0

1

2

3

4

5

6

7

Regular VLD Regular VLD
UFS UFS LFS LFS

Sequential Write
Sequential Read
Random Write (Async.)
Random Write (Sync.)
Sequential Read Again
Random Read

B
a

nd
w

id
th

 (
M

B
/s

)

Figure 7: Large �le performance. The benchmark se-
quentially writes a 10 MB �le, reads it back sequentially,
writes it again randomly (both asynchronously and syn-
chronously for the UFS runs), reads it again sequentially,
and �nally reads it randomly.

dom data from the �le. The performance of random
I/O can also be an indication of the e�ect of inter-
leaving a large number of independent concurrent
workloads. The benchmark is again run on empty
disks. Figure 7 shows the results. The writes are
asynchronous with the exception of the two random
write runs on UFS that are labeled as \Sync". Nei-
ther the LFS cleaner nor the VLD compactor is run
in the benchmark.

We �rst point out a few characteristics that are
results of implementation artifacts. The �rst two
phases of the LFS performance are not as good as
those of UFS. This is because LFS relies on So-
laris for the raw disk interface and is less e�cient
than the native in-kernel UFS. Furthermore, LFS
disables prefetching, which explains its low sequen-
tial read bandwidth. The UFS sequential read per-
formance is signi�cantly better than its write per-
formance due to aggressive prefetching both at the
�le system level and inside the disk. With these
artifacts explained, we now examine a number of
interesting performance characteristics.

First, sequential read after random write per-
forms poorly in all LFS and VLD systems. This
is because both logging and eager writing destroy
spatial locality. This, fortunately, is a problem that
can be solved by caching, data reorganization [23],
or I/O interface changes as explained in Section 3.4.

Second, the LFS random write bandwidth is
higher than that of sequential write. This is because
during the random write phase, some of the blocks
are written multiple times and the overall number
of bytes that reach the disk is smaller than that of

the sequential case. This is an important bene�t of
delayed writes.

Third, on a UFS, while it is not surprising that
the synchronous random writes do well on the VLD,
it is interesting to note that even sequential writes
perform better on the VLD. This is because of the
occasional inadvertent miss of disk rotations on the
regular disk. Interestingly enough, this phenomenon
does not occur if we run the benchmark on the
slower HP97560 disk. This evidence supports our
earlier contention that tuning the host operating
system to match changing technologies in both the
disk and the host is indeed a di�cult and error-
prone task. The approach of running the �le sys-
tem inside the disk in general and the concept of a
virtual log in particular can simplify such e�orts.

Fourth, although our regular disk simulator does
not implement disk queue sorting, UFS does sort
the asynchronous random writes when
ushing to
disk. Therefore, the performance of this phase of
the benchmark, which is also worse on the regular
disk than on the VLD due to the reason described
above, is a best case scenario of what disk queue
sorting can accomplish. In general, disk queue sort-
ing is likely to be much less e�ective when the disk
queue length is short compared to the working set
size during random updates. Similarly, if the size of
a write-ahead log is small compared to the size of
the database, the throughput of log truncation will
be limited. The VLD based systems need not su�er
from these limitations.

Finally, LFS running on the VLD delivers
slightly better write bandwidth than LFS on the
regular disk. In addition to the potential occasional
miss of rotations on the regular disk, this is also
because even with large segment-sized writes, LFS
on a regular disk still needs to perform the occa-
sional long-distance seeks, which the VLD diligently
avoids with eager writing. In summary, the bench-
mark further demonstrates the power of combining
lazy writing by the �le system with eager writing by
the disk.

5.3 E�ect of Disk Utilization

There are a number of questions that are still
unanswered by the �rst two benchmarks. First, the
VLD always has plenty of free space to work with in
the previous benchmarks. How much performance
degradation can we expect when the disk is fuller?
Second, the LFS cleaner is not invoked under the
previous benchmarks. What then is the impact on
performance when the cleaner is forced to run under
various disk utilizations? Third, we know that LFS

performs poorly with frequent
ushes to the disk.
How much then can NVRAM help? We attempt to
answer these questions with the third benchmark.

In this benchmark, we create a single �le of cer-
tain size. Then we repeatedly choose a random 4
KB block to update. There is no idle time between
writes. For UFS, the �le is opened with the
ag
that indicates to the �le system that all writes are
to be performed synchronously. In other words, the
\write" system call does not return until the block
is written to the disk surface. For LFS, we do not

ush to the disk until the 6.1 MB �le bu�er cache
is full; we assume in this case that the bu�er cache
is made of NVRAM. We measure the steady state
bandwidth of UFS on the regular disk, UFS on the
VLD, and LFS on the regular disk. We repeat the
experiment under di�erent disk utilizations by vary-
ing the size of the �le we update.

Figure 8 plots the average latency experienced
per write. UFS on the regular disk su�ers from ex-
cessive disk head movement due to the update-in-
place policy. The latency increases slightly as the
updated �le grows because the disk head needs to
travel a greater distance between successive writes.
This increase may have been larger had we simu-
lated the entire disk.

LFS provides excellent performance when the en-
tire �le �ts in the NVRAM bu�er. As soon as the �le
outgrows the available NVRAM, writes are forced
to the disk; as this happens and as disk utilization
increases, the cleaner must run, quickly dominat-
ing performance. The plateau between roughly 60%
and 85% disk utilization is due to the fact that the
LFS cleaner tends to choose less utilized segments
to clean; with certain distribution patterns of free
space, the number of segments to clean in order to
generate the same amount of free segments may be
the same as (or even larger than) that that required
under a higher utilization.

With eager writing, the VLD su�ers from neither
the excessive disk head movements, nor the band-
width waste as a result of cleaning. As the disk uti-
lization increases, the VLD latency also rises. The
rise, however, is not signi�cant compared to the var-
ious overheads in the system. We examine the ef-
fects of system overheads on the VLD in the next
section.

5.4 E�ect of Technology Trends

Despite the advantage that eager writing has
demonstrated over update-in-place so far, the per-
formance di�erence is not as great as the analyti-
cal models might suggest. To see why this is the

0

5

10

15

20

25

30

0 20 40 60 80 100

La
te

nc
y

pe
r

4K
 B

lo
ck

 (
m

s)

Disk Utilization (%)

LFS with NVRAM on Regular Disk

UFS on VLD

UFS on Regular Disk

Figure 8: Performance of random small synchronous up-
dates under various disk utilizations. The disk utilization
is obtained from the Unix \df" utility and includes about
12% of reserved free space that is not usable. The arrow
on the x-axis points to the size of the NVRAM used by
LFS.

case, we now provide a more detailed breakdown of
the benchmark times reported in the last section.
We also examine how the technology trends impact
the relative ratios of the individual components that
make up the overall latency.

We repeat the experiment of the last section on
three di�erent platforms under the same disk uti-
lization (80%)3. Figure 9 shows the result. The �rst
two bars compare the performance of update-in-
place and virtual logging on a SPARCstation-10 and
HP disk combination. In the next run, we replace
the older HP disk with the new Seagate disk. In
the third run, we replace the older SPARCstation-
10 with the newer UltraSPARC-170. We see that
the performance gap between update-in-place and
virtual logging widens from less than three-fold to
almost an order of magnitude as both disks and host
processors improve.

Figure 10 reveals the underlying source of this
performance di�erence by providing the detailed
breakdown of the latencies shown in the preceding
�gure. The component labeled as \SCSI overhead"
is the �xed amount of time that the embedded pro-
cessor in the disk spends processing each SCSI com-
mand. The component labeled as \transfer" is the
time it takes to move the bits to or from the media
after the head has been positioned over the target
sector. The component labeled as \locate sectors"
is the amount of time the disk spends positioning
the disk head. It includes seek, rotation, and head
switch times. The component labeled as \other"
includes the operating system processing overhead,

3The VLD latency in this case is taken immediately after
running a compactor, as explained in Section 5.5.

0
2
4
6
8

10
12
14
16
18

UFS on

UFS on

HP
SPARC
Seagate

SPARC
Seagate

UltraSPARC

La
te

nc
y

pe
r

4K
 B

lo
ck

 (
m

s)

VLD

Regular
Disk

Figure 9: Performance gap between update-in-place and
virtual-logging widens as disks and host processors im-
prove.

0

20

40

60

80

100

SCSI
Overhead

Transfer

Locate
Sectors

Other

La
te

nc
y

B
re

ak
do

w
n

(%
)

HP
SPARC
Seagate

SPARC
Seagate

Ultra SPARC

Figure 10: Breaking down the total latency into SCSI
overhead, transfer time, time required to locate free sec-
tors, and other processing time. The latency breakdowns
show the underlying reason between the performance dif-
ference. Update-in-place performance becomes increas-
ingly dominated by mechanical delays of disk while virtual
logging achieves a balance between processor and disk im-
provements.

which includes the time to run the virtual log algo-
rithm because the disk simulator is part of the host
kernel. The time consumed by simulating the disk
mechanism itself, however, is less than 5% of this
component.

We see that the mechanical delay becomes a
dominant factor of update-in-place latency. We also
see that eager writing has indeed succeeded in sig-
ni�cantly reducing the disk head positioning times.
The overall performance improvement on the older
disk or on the older host, however, is low due to the
high overheads. After we replace the older disk, the
performance of virtual logging becomes host limited
as the component labeled as \other" dominates. Af-
ter we replace the older host, however, the latency
components again become more balanced. This in-

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

La
te

nc
y

pe
r

4K
 B

lo
ck

 (
m

s)

128K
256K
504K

1008K
2016K
4032K

Idle Interval Len gth (s)

1
2

4

5

6

3

1
2
3
4
5
6

 A

 D

 B
 C

Figure 11: Performance of LFS (with NVRAM) as a
function of available idle time.

dicates that the virtual log is able to ride the im-
pressive disk bandwidth growth, achieving a balance
between processor and disk improvements.

5.5 E�ect of Available Idle time

The benchmark in Section 5.3 assumes zero idle
time. This severely stresses LFS because the time
consumed by the cleaner is not masked by idle pe-
riods. It also penalizes the VLD by disallowing free
space compacting. In this section, we examine how
LFS on a regular disk and how UFS on a VLD be-
have as more idle time becomes available. We mod-
ify the benchmark of Section 5.3 to perform a burst
of random updates, pause, and repeat. The disk
utilization is kept at 80%.

Figure 11 shows how the LFS performance re-
sponds to the increase of idle interval length. Each
curve represents a di�erent burst size. At point
A, no idle time is available. LFS �lls up the
NVRAM with updates, and then proceeds to
ush
the bu�ered segments to the regular disk, invoking
the cleaner when necessary.

At point B, enough idle time is available to clean
one segment. If the burst size is less than or equal
to 1 MB, at the time when the NVRAM becomes
full, the cleaner has already generated the maxi-
mum number of empty segments possible. Conse-
quently, it takes a constant amount of time to
ush
the NVRAM. This is why the �rst four curves meet
at point B4. A similar latency is achieved at point
C where cleaning two segments per idle interval is
su�cient to compact all the free space.

4In this case, because the NVRAM size is larger than
the available free space, the cleaner still needs to run during

ushing to reclaim the free space created by the overwrites
bu�ered in the NVRAM.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6

La
te

nc
y

pe
r

4K
 B

lo
ck

 (
m

s)

128K
256K
512K

1024K
2048K
4096K

Idle Interval Len gth (s)

1 2 3 4

6

5

1
2
3
4
5
6

Figure 12: Performance of UFS on VLD as a function of
available idle time.

Point D corresponds to su�cient idle time to

ush the entire burst from NVRAM to the disk.
The benchmark is able to run at NVRAM speed
because the
ushing time, which includes occasional
cleaning, is entirely masked by the long idle periods.
The �rst three curves coincide at this point because
they correspond to burst sizes that can �t in a single
segment.

We do not pretend to know the optimal LFS
cleaning algorithm in the presence of NVRAM,
which is outside the scope of this paper. Never-
theless, this experiment reveals two characteristics
in terms of the impact of available idle time on
LFS performance. First, because the cleaner moves
segment-sized data, LFS can only bene�t from rel-
atively coarse-grained idle intervals. Second, unless
there is su�cient idle time to mask the
ushing of
the burst bu�ered in the NVRAM, the LFS perfor-
mance remains poor.

Figure 12 shows the result of repeating the same
benchmark on UFS running on a VLD. Unlike the
LFS cleaner, the VLD compactor has no restriction
in terms of the granularity of the data it moves. For
convenience, our implementation of the compactor
moves data at track granularity, which is still much
smaller than the LFS segment granularity. The per-
formance on the VLD improves along a continuum
of idle interval lengths. Also note the smaller scale
of the axes in Figure 12 than those of Figure 11. Fur-
thermore, the VLD performance is also more pre-
dictable, whereas LFS experiences large variances
in performance depending on an array of factors in-
cluding whether the NVRAM is full and whether
disk cleaning is necessary. The experiments of this
section run on the SPARCstation-10. As we have
seen in the last section, a more powerful host pro-
cessor such as the UltraSPARC-170 can easily cut
the latency in Figure 12 in half.

The disadvantage of UFS on the VLD compared
to LFS with NVRAM is the limiting performance
with in�nite amount of idle time. Because each
write is synchronously written to the disk surface,
the VLD experiences the overheads detailed in Sec-
tion 5.4. The overheads also render the impact of
the compactor less important. Fortunately, as ex-
plained in that section, as disks continue to improve
and operating system implementors pay more care-
ful attention to streamlining the I/O path, we ex-
pect this gap to narrow.

Furthermore, eager writing does not dictate the
use of a UFS, nor does it preclude the use of
NVRAM. A lazy writing �le system that employs
both an NVRAM and an eager writing VLD can
enjoy 1) the low latency of and the �ltering of the
short-lived data by the NVRAM, and 2) the e�ective
use of the available bandwidth by the eager writing
strategy when idle intervals are short or disk utiliza-
tion is high.

6 Related Work

The work presented in this paper builds upon
a number of existing techniques including reducing
latency by writing data near the disk head, a trans-
actional log, �le systems that support data location
independence, and log-structured �le systems. The
goal of this study is not to demonstrate the e�ec-
tiveness of any of these individual ideas. Rather, the
goals are 1) provide a theoretical foundation of ea-
ger writing with the analytical models, 2) show that
the integration of these ideas at the disk level can
provide a number of unique bene�ts to both UFS
and LFS, 3) demonstrate implementations that re-
alize the bene�ts of eager writing without the se-
mantic compromise of delayed writes or extra hard-
ware support such as NVRAM, and 4) conduct a
series of systematic experiments to quantify the dif-
ferences of the alternatives. We are not aware of
existing studies that aim for these goals.

Simply writing data near the disk head is not
a new idea. Many e�orts have focused on improv-
ing the performance of the write-ahead log. This
is motivated by the observation that appending to
the log may incur extra rotational delay even when
no seek is required. The IBM IMS Write Ahead
Data Set (WADS) system [11] addresses this issue
for drums (�xed-head disks) by keeping some tracks
completely empty. Once each track is �lled with a
single block, it is not re-used until the data is copied
out of the track into its normal location.

Likewise, Hagmann places the write-ahead log in

its own logging disk[14], where each log append can
�ll any open block in the cylinder until its utilization
reaches a threshold. Eager writing in our system,
while retaining good logging performance, assumes
no dedicated logging disk and does not require copy-
ing of data from the log into its permanent location.
The virtual log is the �le system.

A number of �le systems have also explored the
idea of lowering latency of small writes by writing
near the disk head location. In [24], Menon proposes
to use this technique to speed up parity updates in
disk arrays. This is similar to some write-ahead
logging systems in that it requires multiple disks
and rewriting of data.

Mime [5], the extension of Loge [9], is the closest
in spirit to our system. Using an indirection map,
it also writes near disk head locations to improve
small write performance. There are a number of dif-
ferences between Mime and the virtual log. First,
Mime relies on self-identifying disk blocks. Second,
Mime scans free segments to recover its indirec-
tion map. As disk capacity increases, potentially
reaching a terabyte by the year 2002 [22], this scan-
ning may become a time consuming process. Third,
the virtual log incorporates a free space compactor,
whose importance is shown in Section 2.3.

The Network Appliance �le system, WAFL [16,
17], checkpoints the disk to a consistent state pe-
riodically, uses NVRAM for fast writes between
checkpoints, and can write data and metadata any-
where on the disk. An exception of the write-
anywhere policy is the root inodes, which are writ-
ten for each checkpoint and must be at �xed loca-
tions. Unlike Mime, WAFL supports fast recovery
by rolling forward from a checkpoint using the log
in the NVRAM. One goal of the virtual log is to
support fast transactions and fast recovery without
NVRAM, with its capacity, reliability, and cost limi-
tations. Another di�erence between WAFL and the
virtual log is that the WAFL write allocation de-
cisions are made at the RAID controller level, so
the opportunity to optimize for rotational delay is
limited.

Our idea of fast transactional writes using the
virtual log originated as a generalization of the Au-
toRAID technique of hole-plugging [36], to improve
LFS performance at high disk utilizations with-
out AutoRAID hardware support for self-describing
disk sectors. In hole-plugging, partially empty seg-
ments are freed by writing their live blocks into
the holes found in other segments. This outper-
forms traditional cleaning at high disk utilizations
by avoiding reading and writing a large number of
nearly full segments just to produce a few empty

segments[23]. AutoRAID requires an initial log-
structured write of a physically contiguous segment,
after which it is free to copy the live data in a seg-
ment into any empty block on the disk. Compared
to AutoRAID, our approach eliminates the initial
segment write and more e�ciently schedules the in-
dividual writes.

7 Conclusion

In this paper, we have developed a number of
analytical models which show the theoretical perfor-
mance potential of eager writing, the technique of
performing small transactional writes near the disk
head position. We have presented the virtual log de-
sign which delivers fast transactional writes without
the semantic compromise of delayed writes or ex-
tra hardware support such as NVRAM. This design
requires careful log management for fast recovery.
By conducting a systematic comparison of this ap-
proach against traditional update-in-place and log-
ging approaches, we have demonstrated the bene-
�ts of applying the virtual log approach to both
UFS and LFS. The availability of fast transactions
can also simplify the design of �le systems and so-
phisticated applications. As the current technology
trends continue, we expect that the performance ad-
vantage of this approach will become increasingly
important.

Acknowledgements

We would like to thank Arvind Krishnamurthy
for many interesting discussions on the proofs of sev-
eral analytical models, Marvin Solomn for discov-
ering the simplest proof of the single track model,
Daniel Stodolsky and Chris Malakapalli for helping
us understand the working of Quantum and Sea-
gate disks, and Jeanna Neefe Matthews for ask-
ing the question of how hole-plugging could be e�-
ciently implemented without hardware support for
self-describing disk sectors.

References

[1] Adams, L., and Ou, M. Processor Integration in a Disk
Controller. IEEE Micro 17, 4 (July 1997).

[2] Atkinson, M., Chisholm, K., Cockshott, P., and
Marshall, R. Algorithms for a Persistent Heap. Soft-
ware - Practice and Experience 13, 3 (March 1983), 259{
271.

[3] Baker, M., Asami, S., Deprit, E., Ousterhout,

J., and Seltzer, M. Non-Volatile Memory for
Fast, Reliable File Systems. In Proceedings of the
Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS-V) (Sept. 1992), pp. 10{22.

[4] Birrell, A., Hisgen, A., Jerian, C., Mann, T., and
Swart, G. The Echo Distributed File System. Technical
Report 111, Digital Equipment Corp. Systems Research
Center, Sept. 1993.

[5] Chao, C., English, R., Jacobson, D., Stepanov, A.,
and Wilkes, J. Mime: a High Performance Parallel
Storage Device with Strong Recovery Guarantees. Tech.
Rep. HPL-CSP-92-9 rev 1, Hewlett-Packard Company,
Palo Alto, CA, March 1992.

[6] Chart Watch: Mobile Processors. Microprocessor Re-
port, June 1997.

[7] Chutani, S., Anderson, O., Kazar, M., Leverett,
B., Mason, W., and Siedbotham, R. The Episode File
System. In Proc. of the 1992 Winter USENIX (January
1992), pp. 43{60.

[8] de Jonge, W., Kaashoek, M. F., and Hsieh, W. C.

The Logical Disk: A New Approach to Improving File
Systems. In Proc. of the 14th ACM Symposium on Op-
erating Systems Principles (December 1993), pp. 15{28.

[9] English, R. M., and Stepanov, A. A. Loge: a Self-
Organizing Disk Controller. In Proc. of the 1992 Winter
USENIX (January 1992).

[10] Ganger, G. R., and Patt, Y. N. Metadata Update
Performance in File Systems. In Proc. of the First Sym-
posium on Operating Systems Design and Implementa-
tion (November 1994), pp. 49{60.

[11] Gawlick, D., Gray, J., Limura, W., and Obermarck,

R. Method and Apparatus for Logging Journal Data
Using a Log Write Ahead Data Set. U.S. Patent 4507751
issued to IBM, March 1985.

[12] Grochowski, E. G., and Hoyt, R. F. Future Trends
in Hard Disk Drives. IEEE Transactions on Magnetics
32, 3 (May 1996).

[13] Hagmann, R. Reimplementing the Cedar File System
Using Logging and Group Commit. In Proc. of the 11th
ACM Symposium on Operating Systems Principles (Oc-
tober 1987), pp. 155{162.

[14] Hagmann, R. Low Latency Logging. Tech. Rep. CSL-
91-1, Xerox Corporation, Palo Alto, CA, February 1991.

[15] Hartman, J., and Ousterhout, J. The Zebra Striped
Network File System. ACM Transactions on Computer
Systems (Aug. 1995).

[16] Hitz, D., Lau, J., and Malcolm, M. File System De-
sign for an NFS File Server Appliance. In Proc. of the
1994 Winter USENIX (January 1994).

[17] Hitz, D., Lau, J., and Malcolm, M. File System De-
sign for an NFS File Server Appliance. Tech. Rep. 3002,
Network Appliance, March 1995.

[18] Kotz, D., Toh, S., and Radhakrishnan, S. A De-
tailed Simulation Model of the HP 97560 Disk Drive.
Tech. Rep. PCS-TR91-220, Dept. of Computer Science,
Dartmouth College, July 1994.

[19] Lamb, C., Landis, G., Orenstein, J., and Weinreb,

D. The ObjectStore Database System. Communications
of the ACM 34, 10 (October 1991), 50{63.

[20] Lowell, D. E., and Chen, P. M. Free Transactions
with Rio Vista. In Proc. of the 16th ACM Symposium on
Operating Systems Principles (October 1997), pp. 92{
101.

[21] Malakapalli, C. Personal Communication, Seagate
Technology, Inc., July 1998.

[22] Mashey, J. R. Big Data and the Next Wave of InfraS-
tress. Computer Science Division Seminar, University
of California, Berkeley, October 1997.

[23] Matthews, J. N., Roselli, D. S., Costello, A. M.,
Wang, R. Y., and Anderson, T. E. Improving the
Performance of Log-Structured File Systems with Adap-
tive Methods. In Proc. of the 16th ACM Symposium on
Operating Systems Principles (October 1997), pp. 238{
251.

[24] Menon, J., Roche, J., and Kasson, J. Floating
parity and data disk arrays. Journal of Parallel and
Distributed Computing 17, 1 and 2 (January/February
1993), 129{139.

[25] O'Toole, J., and Shrira, L. Opportunistic Log: Ef-
�cient Installation Reads in a Reliable Storage Server.
In Proc. of the First Symposium on Operating Systems
Design and Implementation (November 1994), pp. 39{
48.

[26] Patterson, R. H., Gibson, G. A., Ginting, E.,

Stodolsky, D., and Zelenka, J. Informed Prefetch-
ing and Caching. In Proceedings of the ACM Fifteenth
Symposium on Operating Systems Principles (Decem-
ber 1995).

[27] Rosenblum, M., and Ousterhout, J. The Design
and Implementation of a Log-Structured File System.
In Proc. of the 13th Symposium on Operating Systems
Principles (Oct. 1991), pp. 1{15.

[28] Ruemmler, C., and Wilkes, J. An Introduction to
Disk Drive Modeling. IEEE Computer 27, 3 (March
1994), 17{28.

[29] Satyanarayanan, M., Mashburn, H. H., Kumar, P.,
Steere, D. C., and Kistler, J. J. Lightweight Re-
coverable Virtual Memory. In Proc. of the 14th ACM
Symposium on Operating Systems Principles (Decem-
ber 1993), pp. 146{160.

[30] Seltzer, M., Bostic, K., McKusick, M., and

Staelin, C. An Implementation of a Log-Structured
File System for UNIX. In Proc. of the 1993 Winter
USENIX (Jan. 1993), pp. 307{326.

[31] Seltzer, M., Smith, K., Balakrishnan, H., Chang,
J., McMains, S., and Padmanabhan, V. File System
Logging Versus Clustering: A Performance Comparison.
In Proc. of the 1995 Winter USENIX (Jan. 1995).

[32] Stodolsky, D. Personal Communication, Quantum
Corp., July 1998.

[33] Sweeney, A., Doucette, D., Hu, W., Anderson, C.,

Nishimoto, M., and Peck, G. Scalability in the XFS
File System. In Proc. of the 1996 Winter USENIX (Jan-
uary 1996), pp. 1{14.

[34] Transaction Processing Performance Council.
TPC Benchmark B Standard Speci�cation. Waterside
Associates, Fremont, CA, Aug. 1990.

[35] Transaction Processing Performance Council.
TPC Benchmark C Standard Speci�cation. Waterside
Associates, Fremont, CA, August 1996.

[36] Wilkes, J., Golding, R., Staelin, C., and Sullivan,

T. The HP AutoRAID Hierarchical Storage System. In
Proc. of the 15th ACM Symposium on Operating Sys-
tems Principles (December 1995), pp. 96{108.

