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Abstract

Design and Evaluation of Multi-Protocol Communication on a Cluster of SMP's

by

Steven Sam Lumetta

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor David E. Culler, Chair

Modern computers have deep and increasingly complex data hierarchies. The task of man-

aging the motion of data between the levels is of prime importance, particularly with regard

to communication. It requires a combination of automatic control and application-speci�c

knowledge. Automatic control handles the bulk of the work, applying heuristics grounded

in general principles and system parameters. Application-speci�c knowledge allows a pro-

gram to make more e�ective use of the system, integrating the application's needs with the

capabilities of the architecture. Striking a proper balance between these two approaches is

not easy, and e�ective abstractions are a necessary aid in �nding appropriate solutions.

This thesis addresses the management of data motion in the context of a cluster

of symmetric multiprocessors, or SMP's. The shift from uniprocessors to multiprocessors

as the basic unit of cluster computing re
ects the trend toward deeper hierarchies of data,

extending the hierarchy in a cluster of workstations with an intermediate level|the memory

interconnect|at which processors communicate and share physical resources. The resulting

systems, known as Clumps, o�er potentially superior performance to applications capable

of exploiting the tight coupling within each SMP. For some applications, however, resource

contention and other interactions degrade performance relative to a cluster of uniprocessors.

We address interprocess communication on a Clump through a uniform message-

passing interface that exposes the performance of the underlying hardware. The interface

transparently routes messages through the appropriate medium, providing the necessary

automatic control to allow a programmer to obtain reasonable performance with minimal
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e�ort, yet provides the locality information necessary to support the incremental use of

application-speci�c knowledge.

In constructing our uniform interface, we carefully engineer and tune a transport

protocol for passing messages across a cache-coherent interconnect, introducing in the pro-

cess a new concurrent queue algorithm that obtains good performance on both dedicated

and multiprogrammed machines. We integrate this protocol with a similarly well-engineered

network protocol to present a uniform interface to programmers. We expose the problems

involved with coupling protocols of disparate speed and present a solution that dynamically

tunes our communication layer to the underlying architecture. Using both applications and

benchmarks derived from the message-passing literature, we measure the performance of

our system and highlight the phenomena that counteract the advantages of faster com-

munication. Through a model of shared communication resources, we explain these same

phenomena analytically.

The communication layer developed in this thesis demonstrates the value of a

uniform interface in abstracting a hierarchy below the level addressed by an application

programmer. The concurrent queue algorithm illustrates a good approach to the devel-

opment of concurrent data structures, backed up by a wealth of performance comparisons.

The dynamic adaptation solution also proves very e�ective, enabling applications to address

a general Clump architecture, from an SMP to a NOW, with only a single binary. Similar

solutions might be used to address a range of other problems. Taken in part, the shared

memory protocol is also a powerful building block for higher-level interfaces within an SMP.

Through the work described in this thesis, we develop an understanding of the

issues for fast, user-level communication between processes in a Clump and for the broader

problem of coupling levels of a hierarchical system within a single abstraction.

Professor David E. Culler
Dissertation Committee Chair
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Chapter 1

Introduction

The last few years have brought fruition to cluster-based computing, enabling the

construction of scalable systems that simultaneously support both interactive and batch

use by sequential and parallel jobs. A combination of engineering and economy has pushed

the basic computing unit in these clusters from a uniprocessor workstation to a symmetric

multiprocessor, or SMP. These newer systems, known as Clumps, o�er potentially superior

performance to applications capable of exploiting the tight coupling of resources within

each SMP. For some applications, however, resource contention may degrade performance

relative to a cluster of uniprocessors.

In this thesis, we develop an understanding of the issues for fast, user-level com-

munication between processes in a Clump and for the broader problem of coupling levels

of a hierarchical system within a single abstraction. We carefully engineer and tune a

transport protocol for passing messages through shared memory, introducing in the process

a new concurrent queue algorithm that obtains good performance on both dedicated and

multiprogrammed machines. We then encapsulate this protocol in a uniform communica-

tion interface that transparently routes messages through the appropriate medium: a fast

network between SMP's or a cache-coherent interconnect inside an SMP. We expose the

problems involved with coupling protocols of disparate speed and present a solution that

dynamically tunes our communication layer to the underlying architecture. Using both

applications and benchmarks derived from the message-passing literature, we then measure

the performance of our system. Finally, we construct a model of shared communication

resources to explain our results. Through our communication layer, we illustrate the com-
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Figure 1.1: Clumps as a convergence of architectures.

plexity involved in managing multiple protocols in a hierarchical system, demonstrating the

value of abstracting the hierarchy below the level addressed by application programmers.

1.1 Convergence of System Architectures

Clumps are the product of a convergence in high-performance computer archi-

tecture over the last two decades. The traditional classes of computers|supercomputers,

mainframes, and personal computers|have gradually converged into Clumps. A diagram of

these trends appears in Figure 1.1; the nodes represent architectures, and the arcs represent

the transitions of applications and user communities over time.

The initial phase of the convergence, in which architectures converge to their

microprocessor-based counterparts, is nearly complete. The growth of microprocessor per-

formance has far exceeded those of mainframes and supercomputers, and the performance

gap between these systems has been closing steadily for many years. With feature sizes con-

stantly shrinking, microprocessors have been able to adopt features of their more powerful

counterparts, such as wide, general-purpose register �les and multi-level caches. The result

has been an explosive growth in performance. In the same time frame, rapidly expanding
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and highly competitive markets have driven microprocessor costs lower and lower. Despite

the existence of substantial bodies of legacy code, the attractiveness of the cost-performance

ratio for microprocessors has drawn an ever-growing portion of the supercomputer and

mainframe markets to their microprocessor-based counterparts.

A shift from vector machines onto massively parallel processors (MPP's) de�ned

this transition for supercomputers. MPP's replaced the high-performance processors and

shared memory systems designed speci�cally for the vector supercomputers with micropro-

cessors and individual DRAM memories borrowed directly from workstations. MPP's then

coupled these components through high-performance, custom interconnection networks. Al-

though unable to compete on a per-processor basis, MPP's leveraged their low cost compo-

nents to obtain supercomputer performance on a wide range of problems. The bankruptcy

of Seymour Cray's last company, Cray Computer Corporation, in 1995, heralded the end

of this phase of the convergence for supercomputers.1

While vector computers dwindled in number, a fairly large market for mainframes

allowed them to remain an active part of many businesses. For newcomers to the mainframe

market, however, symmetric multiprocessors (SMP's) became an increasingly attractive al-

ternative. An SMP couples microprocessors to memory banks through a fast interconnect.

Access times are uniform, or symmetric, between any processor and any memory location,

and the interconnection hardware helps to maintain coherence between the processors' in-

dividual caches. SMP's typically run a single copy of an operating system and maintain a

single system image, exposing an interface very similar to that of a workstation. By the

early 1990's, SMP technology had matured to the point that IBM decided to shut down

its bipolar work in favor of CMOS technology. Today, IBM's high-end platform, the S/390

Parallel Enterprise Server [IBM98b], is an SMP [IBM98a], although some marketing litera-

ture still touts it as a mainframe. Legacy codes thus represent the only remaining market

for the original mainframes.

In the same time frame, research groups began to pool microprocessors into clus-

ters, as indicated by the upper right arc in Figure 1.1. Linking computers together into a

cluster has been a popular notion since the early days of mainframes, and clusters supporting

job-level parallelism were o�ered as commercial products as early as the mid-1970's [P�98].

1Vector supercomputers have meanwhile become a hot architectural trend in Japan, with recent o�erings

from NEC, Fujitsu, and Hitachi. Vector computing may also be resurrected inside of microprocessors through
recent processor-in-memory research [PAC+97].
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By the late 1980's, workstations had become fairly common in research communities, and

their owners began to build their own clusters. The �rst of these e�orts were perhaps

Sprite [DO87] and Condor [LLM88], which allowed the remote execution of UNIX jobs to

reclaim idle cycles.

When the high cost and small market of supercomputing �nally brought many of

the MPP companies to bankruptcy in the mid-1990's, the choice of a replacement architec-

ture divided the user community. One group, shown to the right in the �gure, moved to

networks of uniprocessor workstations, or NOW's. Spurred by the revolution in network

technologies in the early 1990's, researchers had retargeted the advances in interconnec-

tion hardware on MPP's such as the Thinking Machines CM-5 and the Intel Paragon

to the microprocessor pools [BLA+94, RLW94, BCF+95, BDF+95]. Coupled with simi-

lar advances in software [vECGS92, RLW94, LC95, SS95, Mar94, vEABB95], NOW's cre-

ated the possibility of e�cient medium- and �ne-grained sharing amongst the nodes and

promised a scalable supercomputer. The ensuing 
urry of research activity [ACPtNT95]

brought signi�cant progress to cluster computing. Lightweight, user-level communication

systems [PLC95, WBvE97] exposed the high performance available with the new net-

works. Background batch-processing [LL92] and gang-scheduling [Ous82] matured into

job management systems capable of balancing both interactive and batch jobs across a

cluster with a high degree of transparency [GPR+98]. Novel forms of decentralized job

scheduling allowed clusters to maintain high-performance while time-sharing individual

nodes [ADCM98]. Minor extensions to network hardware allowed support for �ne-grained

distributed shared memory [RLW94], and compilers began to address optimizing commu-

nication operations [KY96, YSP+98]. Tools for automatic network con�guration were de-

veloped [MCSW97], and tools for system monitoring and fault detection are on the hori-

zon [AP97]. With these advances, clusters became an attractive design point, both for

pooled sequential demands and for parallel processing.

A second portion of the supercomputing community moved onto SMP's, as shown

on the left in the �gure. SMP's are an attractive platform for many applications, but they

cannot scale quickly enough to keep up with the needs of high-performance computing.

As Yeung argues, the cost of an SMP scales more rapidly than the number of processors,

and the increased development costs must be amortized over a smaller market [Yeu98].

Early experience with SMP architectures had demonstrated their lack of scalability, leading

researchers to explore more scalable approaches while retaining the notions of a single system
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image and a uniform address space. The result was a cache-coherent, non-uniform memory

access (CC-NUMA) architecture, perhaps best illustrated by the Stanford DASH [LLG+90].

Like SMP's, CC-NUMA architectures provide hardware-based cache-coherence support for

all memory locations. Unlike SMP's, however, the access time to a particular location can

depend on the physical location of the memory in the machine. Accesses to memory close to

a processor take less time than accesses to memory far from the processor. Industry quickly

accepted the CC-NUMA approach, introducing a range of new platforms, including the

Convex Exemplar [BA97], the Sequent Sting [LC96], the SGI Origin [LL97]. The remaining

portion of the supercomputer community has moved to these systems, as shown in the

center of the �gure.

These three architectures|NOW's, SMP's, and CC-NUMA machines|currently

dominate high-performance computing, but are slowly converging into Clumps. The driving

force behind this �nal transition is the need for highly available systems. Today's global

economy creates expectations of instantaneous service, and enterprise computing systems

must remain available at all times. But the single system image that attracts users to SMP's

and CC-NUMA architectures also presents a single point of failure: the operating system.

Recent research [CRD+95, TBG+97] allows CC-NUMA architectures like the SGI Origin to

partition themselves into independent sets of processors, but applications that make use of

the cache-coherence hardware across partition boundaries are little more tolerant to faults

than are applications on an unpartitioned machine [GC98]. The need for partitioning makes

recent advances in clusters very attractive targets for integration. IBM recognized this fact

when it started the move to CMOS technology and simultaneously began development

of cluster technology. The result was the S/390 Parallel Sysplex, a Clump [NMCB97].

Thus, although the hardware of the future may be CC-NUMA, the lack of global cohesion

produced by partitioning will require a programming style closer to that of Clumps than

that of SMP's.

For cluster computing, Clumps o�er several advantages over NOW's. First, they

reduce management overheads for both software and hardware by reducing the number of

boxes and external connections. Second, software costs may be less as well, since many

packages are sold per-box rather than per-processor. Finally, Clumps couple processors

above the level typically available with NOW's, allowing communication over the memory

interconnect rather than the slower I/O bus. As we show in this thesis, realizing the

performance improvement implied by this last feature requires some thought.
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1.2 Signi�cance of the Convergence

The convergence to Clumps re
ects a broader trend towards complex hierarchies of

data. Processors interconnect at many levels, and each level supports shared resources and

provides a data path for communication. In terms of processor speed, the latency between

the levels increases steadily, threatening to degrade application-level performance. The task

of managing the motion of data through the hierarchy thus becomes more important over

time. As this trend continues, we must expect to address issues of data a�nity and motion

explicitly, overriding the usual heuristics with platform- or application-speci�c strategies. In

this section, we expand upon this argument and discuss our general strategy for addressing

the problem.

A data hierarchy deepens in response to diverging performance amongst the levels.

Individual processors must continue to track the exponential performance growth predicted

by Joy's Law (2year�1987 MIPS) to remain competitive, and must do so in spite of their

interactions with system components that improve at much slower rates. Due to these

di�erences in growth, the performance gap between two adjacent levels of the data hierarchy

widens constantly. When a gap grows too wide, a new level is inserted to bridge the gap,

providing faster access to a smaller data set than that provided by the level below. The

memory hierarchy for microprocessors, for example, has grown from a simple memory and

a few registers to a model that includes a large register set, an on-chip cache, an o�-chip

cache, and main memory.

Extending a hierarchy improves performance by taking advantage of spatial and

temporal locality of access. Programs commonly access only a subset of their data at any

point in time, and use the data in the subset many times before moving on to another

subset. Each time the hierarchy expands, we rely on a program to exhibit locality at the

new level, but no program does so perfectly. These imperfections in locality couple with

unpredictability in access patterns to reduce performance across each level of the hierarchy.

As these levels grow further apart, the losses grow.

A programmer can often improve performance by addressing the hierarchy in a

program, changing the algorithms and data access patterns to improve locality and to give

hints about future requirements. Programmers have traditionally exercised a great degree of

explicit control over the lower levels of the data hierarchy|tapes, disks, and to some extent

main memory. The upper levels, however, are managed implicitly by heuristics in both
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the hardware and the operating system: caching policies, coherence protocols, and virtual

memory. Addressing these levels requires that a programmer understand the governing

heuristics well enough to predict the outcome of changes to the program. The tradeo�

between implicit and explicit methods of control generates some tension for programmers.

No programmer wants to manage all data motion explicitly; even if the dynamic overhead

of such management were eliminated, the cost in human e�ort would override the bene�t

to performance. Similarly, no programmer wants an inappropriate heuristic to prevent a

program from obtaining satisfying performance. The proper balance between these extremes

is debatable, and is further complicated by the possibility of control by intermediate agents

such as a compiler or a runtime system. Growing latencies between levels of the data

hierarchy, however, tend to shift the balance toward more explicit control.

Multiprocessing further tips the balance towards explicit management. Sequential

programs executing on a multiprocessor compete with other programs at lower levels of

the data hierarchy, and programs with multiple processes or threads must break the notion

of locality when communicating. Although the appearance of low-end SMP's may shift

this focus, current data hierarchies and management heuristics are tuned for sequential

performance, favoring e�cient access by a single processor over the e�cient transmission of

data between processors required for communication.

Despite the increasing importance of applying application-speci�c knowledge to

data access, the notion of automatic control remains very attractive. We can compromise

by retaining the heuristics for managing data in the default case yet allowing these defaults

to be overridden when necessary. Ideally, this solution combines straightforward initial re-

sults with the possibility of incremental tuning. After completing an initial version of a pro-

gram, the programmer|or compiler, or runtime system|can apply semantic information

to eliminate performance bottlenecks by overriding heuristic decisions. This combination of

methods requires a clear set of control abstractions that allows the introduction of explicit

control at a fairly �ne granularity.

Broadly speaking, the work in this thesis is not limited to Clumps, but rather

attempts to address some of the issues involved in designing software environments on

hierarchical systems. We build a thin abstraction that implicitly manages communication

across two levels of the hierarchy and provides fast paths through each level; this abstraction

is easily bypassed when a programmer wants explicit control. We examine the impact of

bringing multiple levels of a hierarchy together in the context of a single interface|one
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Figure 1.2: A prototypical Clump.

that is likely to be useful on the machines of the future. We establish the utility of explicit

control over the movement of data between levels of the hierarchy. Finally, we study the

issues involved in sharing multiple resources among user-level processes.

1.3 Addressing the Hierarchy

A Clump supports two communication paths through the data hierarchy, across a

cache-coherent memory interconnect or through a fast network. In this section, we discuss

the question central to the thesis: what abstraction best combines these two architectures for

communication? In the previous section, we reasoned about the goals for such abstractions:

to provide simple but e�ective default behavior and to establish clear methods for overriding

the default to improve performance. We begin this section with a de�nition of the Clump

architecture, then discuss previous systems in light of our requirements. We follow with a

description of the approach used in this work, di�erentiating it at a high-level from past

e�orts and explaining how it meets the stated goals. We close with an explanation of the

importance of our solution.

A prototypical Clump consists of a group of symmetric multiprocessors connected

with a fast network, as shown in Figure 1.2. In each SMP, a backplane connects the proces-

sors to memory banks, disks, fast network connections, and traditional network connections.
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All resources in the SMP are shared between the processors. The memory interconnect|a

bus in most small to mid-range SMP's, or a switched or partially switched network in

high-end models|helps to provide coherence between cached data. The fast network con-

nections, each on a separate I/O bus, handle communication within the Clump. If present,

the traditional network connections link the Clump to the outside world and provide a

backup to the fast network within the Clump.

E�ectively addressing the hierarchical nature of communication in a Clump re-

quires a substantial e�ort. Clearly, many applications will require that a programmer

recognize the hierarchy to some extent to obtain optimal performance, but an e�ective ab-

straction can relieve the programmer of the bulk of the workload. Several systems from the

literature provide only a thin veil of synchronization and control functions. These systems

leave nearly the full burden of complexity to the programmer, who must write threaded,

shared memory code within each SMP and message-passing code between the SMP's.

A better approach abstracts communication into a single interface. Ideally, the

abstraction produces reasonable performance for programs that ignore the hierarchy and

allows a programmer to tune performance by selectively recognizing and handling hierarchi-

cal aspects of the application. The di�culty of designing and tuning a uniform interface is

similar to that required to address the communication hierarchy directly in an application.

In either case, an e�ective abstraction requires careful engineering of the proto-

cols and mechanisms for intelligently combining them. Individual protocols must expose

the performance available at their level of the hierarchy, avoiding extraneous overhead and

unnecessary functionality. The protocol for the cache-coherent interconnect must tackle

problems of data layout and concurrent access to minimize the cost of coherence transac-

tions. The protocol for the network must strike a balance between the time spent sending

data across the relatively slow I/O bus and the time spent compressing or recovering data

sent across the bus. Each process in an application operates independently, and a hierar-

chical abstraction must support interaction via either protocol regardless of a local process'

decisions. Synchronization constraints imposed at a higher level, using another hierarchi-

cal abstraction, can simplify such support, but renders an abstraction less general and

more prone to incorrect use. An abstraction must encapsulate the protocols in a way that

maintains correct behavior under distributed control yet avoids adversely impacting the

performance of local operations based on either protocol. A uniform interface provides a

reusable hierarchical abstraction, reducing the necessary e�ort for every application that
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builds on it. In contrast, application-speci�c abstractions can be reused only with very

similar applications.

Two options present themselves: extend shared memory across the network, or

extend message-passing across the memory interconnect. The uniform interface commonly

studied in relation to Clumps is that of distributed shared memory, or DSM. A DSM

interface provides a single, global address space abstraction and manages cache-coherence

issues for the programmer. The DSM runtime layer performs all inter-SMP communication,

sending messages across the fast network as necessary to maintain data consistency. This

implicit communication can obscure the relationship between the performance of hardware

and that of software, and a programmer must have a reasonably deep understanding of the

runtime system in order to tune performance. Furthermore, the importance of data layout

to performance in a DSM system can couple the performance of otherwise only distantly

related portions of the code: an optimal layout in one phase of an application can result in

very poor performance in a second phase. We return to these comparative evaluations in

Chapter 10, after describing our own work in detail.

We instead focus on a user-level message-passing interface, and in particular on

an interface for function shipping. Such an interface provides methods to invoke functions

in other processes; blocks of data can be shipped along with an invocation. Two inter-

pretations of this approach are possible: active messages focus on the operations used for

data transport, while distributed objects focus on the ability to build high-level abstrac-

tions. The two interpretations are fundamentally equivalent, but the object model requires

additional compiler support. We provide only for active messages.

A message-passing interface closely couples the performance of an application to

that of the underlying hardware. Invoking a remote function takes a fair amount of time

regardless of the location of the receiving process. A programmer must attempt to hide

message latency by overlapping it with computation within the process. Improving the

performance of a program merely requires that the programmer re�ne this cost model,

recognizing that functions invoked in a process on another SMP take longer than functions

invoked in a process within the same SMP. Locality information is readily available, and

the programmer need tune only those portions of an application that result in performance

bottlenecks. The performance of any phase of an application depends more or less entirely on

the algorithmic form of that phase, allowing distinct phases to be optimized independently.

Building software to pass messages through cache-coherent shared memory may
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seem counterintuitive. Such systems are fairly common, however, and play an important

role on SMP's regardless of the view provided to an application programmer. Messages

are the standard mechanism for interprocess communication and have been central in this

regard to the development of modern operating systems such as Mach [YTR+87]. The

implicit synchronization encapsulated in the message abstraction simpli�es the construction

of otherwise asynchronous data transfers and provides an e�cient mechanism for serializing

operations on complex data structures. Messages are also a generally accepted tool for

parallel programming and often serve as a tool for building more complex abstractions.

Typical DSM systems make use of messages, for example, to support the single address space

abstraction between distributed memories [SGT96, SDH+97] and to optimize protocols

within an SMP [SGA98].

In summary, we address hierarchical communication by providing a simple, uni-

form interface for passing messages. The layer combines two highly optimized, user-level

protocols and exposes the performance of both with very little overhead. This layer pro-

vides a fundamental component of any runtime system for Clumps, but can also serve as the

programming interface to the system. An application can obtain a reasonable level of per-

formance without addressing the hierarchy, but the path to improved performance through

the use of locality information is clear. Finally, applications built with this interface migrate

readily between Clump con�gurations.

1.4 Technical Issues for Clumps

We now explore the relationship between the structure of a Clump and the per-

formance realized by programs running on such a machine. As with any modern computer,

issues of spatial and temporal locality in data access play important roles in performance.

In this section, we focus instead on issues speci�c to the Clump architecture, particularly

on the e�ects of sharing resources between processors within each SMP. By eliminating the

high overheads commonly associated with accessing a peripheral device, user-level commu-

nication exposes these underlying performance phenomena. In this section, we describe

the issues and discuss the utility of our communication layer in exposing their e�ect on

performance.

A Clump extends the environment from a cluster of uniprocessors in two important

ways for fast communication: by allowing multiple processors and by allowing multiple
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network devices. A uniprocessor can technically support multiple devices, but the idea of

installing more than one network card in a machine with only one I/O bus has prevented

the high-performance communication community from seriously considering this possibility.

As mentioned earlier, the processors in an SMP share attached devices. Tradi-

tionally, the operating system provides centralized management, scheduling the processors'

demands onto the available resources. The high-performance communication systems com-

monly used in clusters, however, bypass the operating system to improve performance.

Multiple processors can thus simultaneously access a network device, and we must virtual-

ize these devices to prevent processes from interfering with one another. The reduction in

overhead also highlights three issues speci�c to interactions between the processes. Each of

these phenomena presents bene�ts and penalties for performance, with the exact balance

depending both on the speci�cs of the Clump platform and on the application.

Tight coupling, the �rst issue, pertains to the merging of multiple processors'

data hierarchies at the level of the memory interconnect. This coupling acts e�ectively

as a crossbar linking all processors in an SMP to all devices, moving devices that might

otherwise reside across the fast network from a processor upwards in that processor's data

hierarchy. Processors hence perceive lower access latency and higher bandwidth to these

devices. Not all devices bene�t from this change, however; many devices still reside across

the network, in distinct SMP's. Determining the appropriate method by which to access a

particular resource incurs overhead unnecessary in a single-protocol system.

The second issue, pooling, addresses the aggregation of demands and of devices

within an SMP. Demand pooling refers to aggregation of the processors' resource demands.

Pooled demands can be less bursty than the individual demands, but contention among

processors can also reduce the e�ciency of the resources. Device pooling refers to the

aggregation of devices into a single virtual device, providing a view of multiple devices

within an SMP as a single resource. Pooled devices o�er potentially higher throughput, but

the overhead of spreading demands amongst devices may increase latency or even decrease

throughput in some cases.

Fractional scaling, the last issue, pertains to the incremental scalability of the ar-

chitecture. If we pool the devices of some type in an SMP into a single, more powerful

virtual device, we can improve upon the pooled power with better than integral precision.

We need not, for example, double the power of the pooled device, but might instead choose

to boost it by a fourth or a third. Of course, we must install an integral number of phys-



13

ical devices, but the pooled device permits a greater degree of freedom in matching the

capabilities of the system to the needs of a particular workload.

The Clumps architecture covers a broad spectrum of systems|everything between

a NOW and a single SMP|and a complex relationship links the issues just discussed to

performance within this space. In this thesis, we measure and model these phenomena to

provide a framework for understanding of the relationships between the underlying hard-

ware, the programming model, and application performance.

1.5 Contributions of the Thesis

In this section, we brie
y describe the contributions embodied in this thesis. They

include multi-protocol design, system construction, measurement techniques, performance

evaluation, hardware optimization, and application modeling.

We identify the important issues in the design of a uniform interface for commu-

nication across both cache-coherent interconnects and fast networks. These issues include

careful engineering of data structures and operations to minimize cache-coherence transac-

tions; addressing concurrent access to message queues with an algorithm that performs well

on both dedicated and multiprogrammed machines; and coupling the underlying protocols

in a way that exposes the performance available from each.

We construct a fully operational example of a uniform communication interface and

tune the system to the underlying architecture. We carefully engineer the data structures

and operations used to communicate across the cache-coherent interconnect and explain the

rationale behind them. Our e�ort to minimize cache-coherence transactions demonstrates

the level of e�ort required for e�ective shared memory design. We present a concurrent

message queue algorithm that obtains superior application performance on both dedicated

and multiprogrammed SMP's. Our algorithm is robust under contention yet incurs overhead

competitive with the fastest spin locks. We explain the machine-level interactions that lead

to superior performance and comment on the value of our design approach. Finally, we

develop and tune a parametrized, adaptive polling strategy that dynamically adjusts to

the underlying architecture without incurring signi�cant overhead. The adaptive strategy

allows a single application binary to perform well on any Clump architecture, from an SMP

to a NOW.

We outline a methodology for measuring the performance of a communication
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layer on a Clump, commenting on the di�culty of obtaining accurate results due to execu-

tion dependencies propagated through the hardware and the operating system. We explain

a range of microbenchmarks and tools for measuring those parameters of an architecture

critical to communication performance: memory latency and bandwidth, cache-to-cache

transfer cost, NIC memory access time, and synchronization primitive delay. Drawing on

the message-passing literature, we set forth a new suite of benchmarks for passing messages

through shared memory. This suite includes microbenchmarks for exploring performance

at the extremes of high and low contention, and a set of applications with distinct commu-

nication patterns for investigating performance at the application level. For each applica-

tion, we report both the memory and communication requirements. Finally, we outline a

methodology for measuring and reporting application performance in a multiprogrammed

environment that more accurately re
ects expected performance on a time-shared system

than do previous approaches.

We apply the microbenchmarks and benchmark suites to our experimental system,

consisting of Sun Enterprise 5000's connected with Myrinet. We �rst measure and report the

important parameters for this architecture. After tuning the shared memory protocol to the

experimental platform, we employ our benchmark suite to compare the performance of our

message queue algorithm with an array of alternative algorithms, demonstrating competitive

or superior performance on both dedicated and multiprogrammed SMP's. We measure

application execution times and compare them with times on similarly constructed NOW's.

We tune the polling strategy parameters using data from an SMP, a NOW, and a Clump,

then measure microbenchmark and application performance on the Clump to evaluate the

impact of transparent protocol integration. We compare application performance on a

Clump to performance on a comparable NOW, revealing the relationship between the Clump

architecture, the programming model, and the communication pattern.

We break down the costs of shared memory message-passing with our system and

explain those costs in terms of the cost of cache-coherence transactions in the underlying

hardware. We forecast the e�ect of current architectural trends on future message-passing

performance, then suggest an approach to improving that performance through minimal

changes to a commercial SMP's instruction set and interconnect hardware.

We analyze the tradeo�s involved with shared communication resources and pre-

sent a simple model that qualitatively predicts performance. Casting our experimental

platform into the abstract form used in the model, we explain the relationship between our
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empirical results and the phenomena predicted by the model. We comment on the limita-

tions of our model and on the di�culty of accurately predicting performance on Clumps.

1.6 Outline

The remainder of the thesis divides roughly into four parts: a description of the

uniform communication architecture, a presentation of the performance achieved with that

architecture, a construction of an analytic model to explain the observed performance, and

a discussion of this work in relation to past and future e�orts.

The �rst part includes three chapters. Chapter 2 introduces the uniform commu-

nication architecture, de�ning common terminology in a brief overview of the system, then

summarizes the Active Messages-II message-passing speci�cation and the relevant portions

of the interface. Within this framework, the chapter lays out the design challenges for multi-

protocol communication. Chapter 3 details the design of the shared memory protocol, our

implementation of active messages over a cache-coherent memory interconnect. The chapter

begins by illustrating the data layout and discussing the rationale behind the structures.

An example of ping-pong communication follows, de�ning the operations used by the pro-

tocol in initialization and communication. Next, the chapter describes a lock-free algorithm

that provides superior performance for managing concurrent message queues. After com-

menting on the hardware synchronization primitives necessary to support the algorithm,

we construct two proofs regarding its behavior. We conclude with a discussion of the queue

semantics supported by the algorithm and the advantages over alternative approaches. In

Chapter 4, we address the issues that arise when combining two protocols with disparate

costs. Due to the relatively high cost of checking for the arrival of network messages, our

multi-protocol layer dynamically adapts its polling strategy to observed tra�c patterns.

The chapter discusses this problem in more detail, then presents a mathematical framework

for managing the polling interactions.

The second part also consists of three chapters, and is analogous to the �rst in

construction. Chapter 5 introduces the methodology and experiments used to measure per-

formance, including an array of microbenchmarks and a set of applications. The chapter

also presents our experimental platform and reports parameters of the memory hierarchy

and synchronization primitive timings. Chapter 6 discusses the performance of the shared

memory protocol in isolation, �rst tuning the protocol for optimal performance on our



16

experimental platform. The chapter next describes an array of alternative algorithms for

managing concurrent queues, and the bulk of the chapter is devoted to measuring the per-

formance of these alternatives at the extremes of zero and maximal contention and with

a number of phase-structured (or bulk synchronous) applications. We follow with a com-

parison of the algorithms on multiprogrammed systems. These measurements demonstrate

the superiority of our lock-free algorithm. We conclude with a detailed breakdown of over-

head with the lock-free algorithm, which allows us to predict the impact of architectural

trends and to suggest hardware support for improving the performance of messages passed

through shared memory. In Chapter 7, we investigate the performance of the multi-protocol

layer across entire Clumps. We begin with an empirical investigation of polling strategies,

selecting parameter values to optimize performance across applications. We then report

both microbenchmark and application-level results for the �nal communication layer. The

chapter evaluates the impact of multi-protocol communication on performance and com-

pares performance on a Clump with performance on a NOW. The chapter concludes with a

discussion of the impact of aspects of the hardware and the programming model on overall

performance.

In the third part, comprised solely of Chapter 8, we present an analytical model of

shared resources, focusing on the use of multiple network interface cards within each SMP.

After explaining the underlying queueing theory, we extend the model to include aspects of

the phase-structured programming paradigm and qualitatively explain the results seen in

Chapter 7 and the performance issues discussed in this chapter. We close with a discussion

of the limitations of the model and comment on the di�culty of predicting quantitative

performance.

The fourth part combines a discussion of related work in Chapter 9 with our con-

clusions and suggestions for future study in Chapter 10. After a brief history of shared

memory message-passing and concurrent message queue algorithms, Chapter 9 describes

other multi-protocol systems. Programming models are covered next, beginning with the

large body of work on distributed shared memory and moving on to compiler-based and

non-uniform approaches. We last address other e�orts in concurrent algorithm performance

evaluation, focusing on the problem of developing a metric for multiprogramming. In de-

scribing other work, we relate it to the issues uncovered by this thesis and discuss how

the work complements our own. We conclude the chapter with descriptions of a few less

directly related e�orts. Chapter 10 starts with our conclusions from the thesis, advocating
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the uniform message-passing approach and the components that enable its success: the

lock-free algorithm and the adaptive polling strategy. The chapter then o�ers some ideas

about programming models for Clumps and closes with commentary on the importance of

cluster architectures.
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Chapter 2

A Uniform Communication

Architecture

In this chapter, we outline key aspects of our multi-protocol, active message com-

munication layer. We begin with an overview of the architecture, describing the basic

mechanisms for message transport. An introduction to the active message model of commu-

nication follows the overview. Within this framework, we then outline the design challenges

for multi-protocol communication. The following two chapters present our solution in full

detail: Chapter 3 focuses on the construction of the shared memory protocol, and Chapter 4

discusses the full, multi-protocol implementation.

2.1 Architecture Overview

The multi-protocol layer provides a uniform interface for communicating between

processes distributed across a Clump. A programmer views communication as a black box,

ignoring the relative locations of destination processes when developing an application. The

layer then transparently de-multiplexes outgoing messages to the appropriate protocols and

multiplexes incoming messages from the protocols at runtime, as depicted in Figure 2.1.

Each protocol is highly tuned to the characteristics of its transport medium, and the layer

further optimizes the multiplexing and demultiplexing functionality. The programmer thus

avoids the need to directly address the hierarchical nature of the Clump with multiple mech-

anisms, runtime support, and tuning for each distributed concept used in an application.

In building the multi-protocol layer, we incorporated an existing active message
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Figure 2.1: Abstract message-passing communication layer. The communication software

transparently routes messages through either shared memory or through the network and

pulls messages from both protocols when polled.

implementation [CMC98] as the primary component of the network protocol, extending the

implementation with a shared memory protocol and with support for combining the two

protocols. Messages destined for other SMP's, or remote messages, travel via the network

protocol. A sending process, or sender, deposits the message into an outgoing queue, and

the processor on the network interface card (NIC) pushes the message onto the wire. When

a NIC on the destination SMP receives the message, the NIC deposits the message into an

incoming queue for the destination process. Localmessages|those destined for processes in

the same SMP as the sender|travel via the shared memory protocol. The sender deposits

the message directly into a shared memory queue associated with the destination process;

no external agent need handle the data in this case.

After a message arrives in one of the queues, it must wait for the destination

process to receive it. Reception is synchronous with respect to the application: a process

must call into the communication layer to receive messages. The interface includes an

explicit poll operation for this purpose, but the layer also checks for arrival when sending

a message. During a poll, the process receives any messages that have arrived at either the

incoming network queue or the shared memory queue. If several messages are present in

the queues, the process accepts as many as possible, bounded by a prede�ned limit. When

a process receives a local message, the SMP's cache-coherence mechanism moves the data

across the memory interconnect.
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2.2 Introduction to Active Messages

The active message model of communication is well-known in the parallel program-

ming community and is commonly among the fastest methods of communication available

for a given platform [vECGS92, Mar94, TM94, PLC95, SS95, vEABB95, WBvE97]. Each

active message contains a reference to a handler routine. When a message is received, the

communication layer passes the data to the handler referenced by the message, typically

as formal parameters. The association between message arrival and the execution of a par-

ticular block of code is the origin of the term \active message." Our system implements a

relatively recent speci�cation of active messages known as AM-II [MC96].

2.2.1 Communication abstraction

The active message model de�ned by AM-II is similar to a remote procedure call

(RPC) mechanism in which each communication endpoint acts as both client and server to

other endpoints. Each request message sent from one endpoint to another must be matched

by a reply message sent in the opposite direction; AM-II guarantees that each message's

handler is executed at most once. Messages can be of two types: a short message carries

up to eight 32-bit arguments; a bulk data transfer extends a short message with a block of

up to 8 kB of data. A 32-bit tag governs access rights: a sender must know an endpoint's

tag before sending any messages to that endpoint. These tags provide a reasonable level of

protection against both inadvertently misdirected and malicious messages.

The main di�erences between active messages and RPC are twofold: asynchronous

execution and application-de�ned return semantics. RPC invocations execute synchronous-

ly: the calling process blocks at the point of invocation until remote execution completes

and the return value arrives. RPC admits only one interpretation for the data returned, as

a temporary object of the static procedure type. This object can then be cast or modi�ed as

desired. In contrast, active messages allow asynchronous execution: a remote procedure's

invocation can occur at a separate location in the code from its return. Both request and

reply messages are active, allowing a process to rede�ne return semantics.

As mentioned earlier, active messages are not fully asynchronous. Messages are

received only at certain points in a program, when sending a message or when polling for

message arrival. The reason for this approach is partly historical: obtaining acceptable per-

formance demanded that an implementation avoid the high cost of interrupting a processor
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and performing multiple context switches to receive a message. However, preventing the

invocation of handler functions at arbitrary points in a program substantially simpli�es a

program's data structures, which must otherwise permit concurrent operations. Isolating

concurrent access through synchronous reception is also an e�ective technique on SMP's.

If the low-cost interrupt solutions in the research literature ever migrate into commercial

hardware, their advantage for active message communication will be primarily to drain mes-

sages from network hardware into queues similar to those de�ned for our shared memory

protocol.

2.2.2 High-performance emphasis

The focus on high performance in active message implementations separates these

e�orts from many traditional communication layers. Towards this end, active messages

shift work out of the critical path for sending and receiving messages and into less common

operations such as initialization. Removing operating system involvement in communication

is the most important aspect of this shift. A process accesses hardware communication

resources directly when sending an active message, thereby avoiding context switches and

kernel traps. To permit such access, an implementation handles most protection and security

issues during initialization.

Active message layers use preprocessing and function splitting to further improve

performance. Before communicating, a process de�nes its handler functionality and noti�es

the active message layer of all potential message destinations. These steps, which typically

involve the operating system, allow an implementation to preprocess communication data

and to reduce the time required to send a message. Function splitting expands the commu-

nication interface to include distinct send operations for di�erent message lengths. For ex-

ample, long and variable-length messages require more overhead than do short, �xed-length

messages, hence active message implementations provide separate operations, optimized for

each type.

2.2.3 Network interface virtualization

In early active message implementations, direct access to the network hardware

implied dedicated use of the system by a single job. The Thinking Machines CM-5, a

commercial MPP with global operating system support, circumvented this implication by
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Figure 2.2: Block diagram of an AM-II endpoint. The control block resides in private main

memory, the network queue block resides on a network interface card (NIC), and the shared

memory queue block resides in shared main memory. Other processes access only the shared

memory queue block.

including network state as part of an application's context. During a global context switch,

the operating system drained the network of messages from the most recently scheduled

job and reinserted the next job's messages into the network before starting it. On modern

clusters, the software advances that allow simultaneous interactive and parallel execution

also eliminate the notion of a global scheduler and prohibit the view that a single job

occupies the entire system for a signi�cant period of time. High-performance communication

research has thus begun to address more general solutions.

The AM-II speci�cation targets time-shared, communicating processes spread over

a system area network (SAN)|a machine room, a building, or a campus. AM-II improves

on earlier e�orts by providing the functionality required for general-purpose distributed pro-

gramming while retaining the performance potential of the earlier work. The abstraction

central to this improvement is the communication endpoint mentioned earlier, a virtualiza-

tion of the physical NIC [CMC98]. Many endpoints can be associated with one NIC, with

each retaining simultaneous direct and protected access in the common case. The commu-

nication layer provides a reasonable degree of fairness between all actively communicating

endpoints that share a NIC. When an endpoint is idle, AM-II support in the operating

system reclaims its physical resources for use by other endpoints, moving any remaining

data into main memory. If main memory becomes scarce, the conventional virtual memory

system can then back the entire endpoint onto disk.

The multi-protocol representation of an endpoint is a natural extension of that

developed for the Myrinet implementation. As shown in Figure 2.2, an endpoint breaks

into three blocks, one for control information and one for each protocol's queues. The
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shared memory queue block, which contains the local message queue, resides in shared

main memory to allow access by other processes within the SMP. The virtual aspect of

an endpoint is thus maintained implicitly: the shared section represents a network device

operating within the SMP.

As a part of virtualization, an AM-II implementation assigns a unique, physical

name to each endpoint. This name provides enough information to locate the endpoint's

NIC within the SAN and to restore an idle endpoint's network queue block from main mem-

ory. In the multi-protocol implementation, we extend the name to identify the endpoint's

SMP, thereby enabling its use in protocol selection when sending a message.

2.2.4 Process structure

In this thesis, a parallel application creates one process per physical processor and

associates each process with a single communication endpoint. We use multiple processes

within each SMP rather than multiple threads to provide a closer match to the traditional

message-passing model and to maintain address space protection boundaries. The resulting

applications are also more easily ported between various Clump con�gurations, as they use

no thread-speci�c techniques.

A threaded model can provide fairly signi�cant advantages, however, including

reduced switching and copying overheads. When competing with other programs, for ex-

ample, switching between threads is less expensive than switching between contexts. Data

sent between threads in the same address space might also permit fewer memory copy op-

erations. Technically, data can be transferred implicitly by synchronizing the exchange of

ownership with a short message. However, issues of data alignment and distribution reduce

the practical value of such transfers. Further, the application must be aware of the machine

hierarchy to take advantage of implicit transfer. Single-copy transfers are more promising,

but require that data sent to another thread be left untouched until received (i.e., copied).

In either case, short messages remain an important component of the system.

2.3 Multi-Protocol Issues

In this section, we describe the design challenges for multi-protocol communication

in terms of the framework de�ned in the previous sections. The thesis focuses on two aspects

of multi-protocol communication: the development of a high-performance message-passing
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protocol over a cache-coherent memory interconnect, and the integration of that protocol

with an optimized network protocol to provide an e�ective communication layer for Clumps.

This work is quite timely in raising the issues of integrating high-performance networks and

shared memory. Industry has recently begun to incorporate the ideas developed in the

last �ve years of high-performance communication research into their product lines. The

most visible of these e�orts is the Virtual Interface Architecture (VIA) Speci�cation [VIA97]

authored jointly by Compaq, Intel, and Microsoft. Using components from several academic

research e�orts, VIA attempts to standardize high-performance, user-level communication;

but in focusing on clusters of uniprocessor, personal computers, it neglects to consider the

integration of such an interface with communication between processes in an SMP.

Recall the abstract layer depicted in Figure 2.1. Given the existence of a network

protocol, the construction of a such a layer poses three interesting problems. The �rst

challenge, which occurs at the send side of the �gure, is to develop an e�cient send operation

for local messages. The endpoint data structures must be laid out and tuned to maximize

performance through the de-multiplexing switch and the shared memory protocol. Remote

messages also pass through the switch, but are less sensitive to added overhead. The second

challenge, developing an e�ective, concurrent queue algorithm, falls within the boundary

of the shared memory protocol. Local messages must perform well on a wide range of

platforms, from dedicated Clumps to multiprogrammed SMP's. The third challenge, which

occurs at the receive side of the �gure, is to develop a strategy that minimizes the impact of

polling each protocol upon messages passed through the other. We discuss these problems

in the order described.

2.3.1 Data layout

The data structures used in a multi-protocol active message layer must be designed

with several factors in mind. First, they must support a short critical path for communi-

cation. Second, they must minimize the number of memory transactions, as the cost of

such transactions can easily dominate the time to send a local message. Third, they must

employ design parameters that result in near-optimal performance on a range of Clumps.

Supporting a short critical path for communication requires that operations and

the data structures be developed concurrently. Such coordination is standard practice, but
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can imply additional e�ort for parallel systems due to the complex relationships between

concurrent access, data layout, and cache behavior.

Local messages pass through an endpoint's shared memory region and move be-

tween processors via cache-coherence transactions. As the cost of such transactions is fairly

high, the data structures in our implementation must be designed to eliminate them when-

ever possible. Reducing the impact of memory transactions for a parallel system requires a

fair amount of e�ort. If a structure stores too little data on a cache line, operations on the

structure may require many transactions to obtain the necessary data, an e�ect known as

fragmentation. On the other hand, if a structure merges too much rarely related data into

common cache lines, operations on the structure may cause the memory system to thrash

when another processor competes for unrelated data, an e�ect known as false sharing. A

programmer must strike the proper balance between the extremes of delivering too little

data with each transaction and causing thrashing by claiming unnecessary data. As shared

memory applications must often employ this type of optimization, many techniques already

exist. Application of these techniques, however, relies on experience and intuition, and

discovering the proper layout requires a process of trial and error.

In addition to cache alignment issues, we must tune the length of the shared

memory queue. A short queue may not adequately bu�er incoming messages between poll

operations, particularly when a process is descheduled on a multiprogrammed machine. A

long queue, on the other hand, may pollute a program's data cache with communication

data, or require an unacceptable amount of memory. The full queue timeout|the period

that a sender waits at a full queue before giving up and yielding its processor|is closely

related to queue length. A fast timeout yields too often and incurs extra switching penal-

ties. A slow timeout wastes valuable cycles waiting for a descheduled process to make space

in its queue. Appropriate values for these parameters depend to some degree on the par-

ticular application being considered, but are primarily de�ned by underlying hardware and

operating system parameters.

Although none of these tasks is particularly hard, they are all time-intensive.

Performing this tuning once for the communication layer is easier than evaluating the same

problems repeatedly for each new application, as is otherwise necessary.
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2.3.2 Concurrent access

An endpoint's local message queue is unique. Multiple processes can insert mes-

sages into this queue concurrently, and the enqueue operation must be carefully designed to

ensure that concurrent operations occur atomically with respect to one another. Concurrent

access also increases the importance of the queue block layout, as several processors' caches

may compete for the data at any point in time. Most shared memory message-passing sys-

tems in the literature sidestep the di�culty of e�cient concurrent access through the use

of separate resources for each sender-receiver pair, but such an approach can hurt perfor-

mance in a well-tuned, user-level communication layer. Concurrent queues provide superior

scalability in both time and space.

The overhead of polling additional queue structures is roughly the same as the

overhead of concurrent access on mid-range SMP's. As one adds processors, polling over-

head grows linearly, whereas the cost of concurrent access increases only slightly with most

communication patterns. If many-to-one communication is common, adding processors can

result in signi�cantly more contention, but the receiver's message handling rate dominates

the e�ect of the increased insertion contention in such a case.

In terms of memory requirements, concurrent queues scale linearly with the num-

ber of intercommunicating processes in an SMP, as one queue is created for each process.

Pairwise queues scale quadratically and hence require substantial amounts of memory for

larger SMP's. If we instead divide a �xed amount of memory among the necessary queues,

the resulting shortening of the queues leads to increased frequency of over
ows and reduces

performance on multiprogrammed systems. These problems become most apparent when

we report performance data in Chapter 6.

Developing a good concurrent queue algorithm is not easy, however. The literature

o�ers a myriad of possibilities, but little information as to the algorithms' performance with

message-passing. The challenge is to develop a concurrent queue algorithm that obtains

good multiprogramming performance yet is also competitive with the fastest algorithms on

a dedicated machine.

2.3.3 Adaptive polling

Fast communication layers typically poll for incoming messages when sending a

message in order to remain responsive to incoming tra�c. In our multi-protocol system,
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polling for remote messages requires roughly an order of magnitude longer than polling for

local messages. The di�erence lies in the location of the data. The shared memory queue

resides in main memory, and polling information can be cached close to the processor. The

network queue resides in uncacheable memory on the NIC, and each poll operation must pull

the information across the I/O bus. Due to the disparate access times, a straightforward

approach to polling results in unsatisfactory local message performance.

Previous systems have addressed this issue by polling the slower protocol less

frequently [FGKT97]. This approach allows a static tradeo� between the protocols. If

polling of the slower protocol is too frequent, the faster protocol continues to su�er a

performance penalty. However, if polling of the slower protocol is too infrequent, it su�ers

a similar penalty. As an application based on our multi-protocol layer may execute on a

NOW or an SMP, neither case is very attractive.

In our system, we employ a strategy that adapts dynamically in response to recent

tra�c. When local tra�c dominates incoming messages, the strategy examines the network

only rarely. When remote tra�c is common, the strategy checks the network during every

poll. Our strategy adapts naturally to the speci�cs of the underlying platform and can also

enhance the bene�t of separating local and remote tra�c when tuning an application.

2.4 Summary

The multi-protocol layer provides a uniform interface for communicating between

processes distributed across a Clump, rendering the hierarchical nature of the Clump trans-

parent to an application programmer. A multi-protocol layer poses three challenges to

development: an e�cient send operation, an e�ective concurrent queue algorithm, a low-

overhead integration approach. The shared memory protocol is particularly sensitive to

unnecessary overhead, demanding careful management of coherence transactions through

data layout and algorithmic manipulation of communication operations. A concurrent mes-

sage queue forms the central component of the shared memory protocol. The algorithms

used to control access to the queue must be robust enough to maintain high levels of perfor-

mance under multiprogramming but lean enough to be competitive on dedicated machines.

Integrating the two protocols with minimal overhead presents the last challenge, but low

overhead in an environment in which both protocols are active is not adequate. Merg-

ing the two protocols into a single interface must also avoid penalizing performance on a
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more general Clump architecture: the presence of multi-protocol support must degrade nei-

ther network communication performance on a NOW nor shared memory communication

performance on an SMP.

In the next chapter, we describe our solutions to the �rst two challenges, providing

detailed information on both the data structures and the operations used to optimize the

shared memory protocol. We also present a lock-free algorithm that o�ers a robust approach

to managing a concurrent message queue without the high overhead incurred by many

alternative algorithms. In Chapter 4, we address the �nal challenge, integration of the

shared memory protocol and the network protocol, with an adaptive approach to polling.
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Chapter 3

The Shared Memory Protocol

In this chapter, we describe the design of the shared memory protocol, addressing

the challenges of data layout and concurrent queue management. We begin by de�ning

the data structures, which illustrate the optimization techniques discussed in the previous

chapter. An example of ping-pong-style communication follows, describing the operations

performed by the layer to construct, to use, and to destroy channels for communication. We

next introduce our solution for managing concurrent message queues|an algorithm that

provides performance superior to traditional approaches|and discuss the necessary hard-

ware synchronization primitives and expected performance. After proving a few properties

of our algorithm, we conclude with a few comments on the queue semantics that it provides

and a brief comparison with aspects of other approaches.

3.1 Data Structures

Local messages pass through an endpoint's shared memory region and move be-

tween processors via cache-coherence transactions. The data structures used in these

operations|the control and shared memory queue blocks in an endpoint|must hence pay

careful attention to how the data are laid out in relation to cache boundaries. At the same

time, the structures must re
ect the philosophy of �nding the minimal critical path for

sending and receiving messages through preprocessing of information and function split-

ting. This section describes the data structures used in our implementation, brie
y relating

their purpose and illustrating the techniques used to eliminate false sharing and to re-
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Figure 3.1: Block diagram of a control block. The control block de�nes an endpoint's

physical name, handler functionality, and message destinations. The block also maintains

tra�c statistics for adaptive polling.

duce the number of coherence transactions. The exact use of the individual �elds becomes

apparent in the next two sections on operations.

3.1.1 The control block

An endpoint's control block holds information used by the AM-II library functions,

as depicted in Figure 3.1. The control block also maintains information about network 
ow

control and caches for network data, but local message operations use only the parts shown.

The name structure represents the physical endpoint name assigned at creation

time by the Active Message layer. These names, which are opaque to higher levels of soft-

ware, provide enough information to �nd endpoints within the network. The �rst �eld

holds a machine identi�er that uniquely identi�es the computer on which the endpoint was

created and allows other endpoints to select the appropriate protocol for communication.

Our implementation uses the 32-bit value returned by gethostid() as the identi�er for a

given machine. The next two �elds locate an endpoint within the network. The NIC �eld

identi�es the NIC associated with the endpoint, and any NIC can translate this informa-

tion into a route. The endpoint number distinguishes between endpoints serviced by the
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destination NIC. The last �eld holds an identi�er for the segment in which an endpoint's

shared memory queue block resides and allows a process within the same computer to map

the queue block into its address space.

The tra�c structure maintains estimates of the frequency of local and remote

tra�c for adaptive polling purposes. Adaptive polling reduces the impact of remote message

poll operations on local message performance, as demonstrated in Chapter 7. Two of the

�elds, remote and local, maintain exponential moving averages of arrival frequency. The

skip �eld holds the total number of calls to the poll operation between remote polls, and

the last �eld, next, holds the actual number of calls remaining.

The table of handlers is simply an array of function pointers indexed by default

from 0 to 255. The value 0 is a special case and is used by the Active Message layer to

return messages to the sender in the case of a network failure or a security exception.

The table of destinations translates the short integer names used in communication

operations into an optimized form of the physical endpoint name. The NIC identi�er and

endpoint number are unmodi�ed, but the machine and segment identi�ers are replaced with

a pair of shared memory queue block pointers. For a remote endpoint, these pointers are

set to NULL. For a local endpoint, each pointer refers to the queue block of one endpoint

in the address space of the process that owns the other. Each destination structure also

contains a 
ag to indicate the validity of the other data in the structure and a copy of the

destination endpoint tag for checking access rights.

3.1.2 The shared memory queue block

The shared memory queue block, our extension to the endpoint abstraction, holds

local message queues in a System V shared memory segment to allow access by multiple

processes within an SMP.1 A diagram of the shared memory queue block appears in Fig-

ure 3.2. A copy of the endpoint tag is used for access control, while two queue structures

1The default parameters for System V IPC can be fairly restrictive. In the case of Solaris, for example,

a process can map only �ve segments of at most 1 MB simultaneously. Fortunately, these parameters are
readily changed (in Solaris) by appending the following magical lines to the /etc/system�le on each machine

and rebooting:

set shmsys:shminfo shmmax=268435456

set shmsys:shminfo shmmin=8192
set shmsys:shminfo shmmni=65536

set shmsys:shminfo shmseg=8192
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Figure 3.2: Block diagram of a shared memory queue block. Short messages use only the

packet queue. Bulk data transfers use the bulk data queue as well.

hold request and reply messages received by the endpoint. Each queue structure further

divides into three sections: queue tail information, accessed only by senders; queue head

information, accessed only by recipients; and two cyclic data queues, accessed by both

senders and recipients. The queues are the packet queue, which contains the handler index

and arguments, and the bulk data queue, which holds data for bulk data transfers. Short

messages use only the packet queue, while bulk data transfers use both queues.

To eliminate false sharing and thereby reduce the number of memory transactions,

the following data occupy distinct L2 cache lines:

� the endpoint tag

� the two queue tails (on one cache line)

� the packet queue head

� each packet

� each bulk data block claimed 
ag and size �eld

� each bulk data block payload
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In addition to the handler index and arguments, entries in the packet queue contain

four other �elds: a NIC number, a packet state, an inverse queue block mapping, a bulk

data index. The �rst of these, the NIC number, is used by the Active Message layer to

select the appropriate protocol for a reply message (see Section 3.2). The packet state

di�erentiates between short messages and bulk data transfers and serves as the handshake

state in transferring data from a sender to a recipient. A claimed 
ag serves the latter

purpose for the bulk data queue. The inverse queue block mapping points to the shared

memory queue block of the sending endpoint in the address space of the process that owns

the receiving endpoint, enabling reply messages to avoid a potentially expensive lookup

operation. The last �eld, the bulk index, records the association between a bulk data

transfer packet and the data itself.

Two factors govern the length of the queues: multiprogramming performance and

memory footprint. The long packet queue allows an application to receive a relatively large

number of short messages while descheduled. With medium messages, greater insertion

overhead makes queue length less important, and we select a shorter queue to keep the

memory requirement reasonable: 0.75 MB for the full block.

3.1.3 Queue structure rationale

The shared memory queue block di�ers signi�cantly from the network queue block

in its lack of send queues. The absence arises from a fundamental di�erence between the

methods used to transmit data over the network and within an SMP. In the network case,

a sender cannot directly deposit data into memory located across the network, and must

instead rely on a third party, such as a Myrinet NIC, to move the data. Within an SMP,

the situation is just the opposite: direct access is possible through shared memory, and no

third party exists to perform the transfer.

The separation of the request and reply queues avoids a well-known deadlock

scenario [CSwAG98]. Consider two endpoints with single queues, each of which is �lled

with requests. If the endpoints simultaneously issue request messages to one another, both

must wait. Neither endpoint can make space in its own queue without handling a request

and issuing a reply, but the target queue for the reply may also be full, and a third endpoint

may �ll the newly created space, in which case the replying endpoint returns to its original



36

state with a deeper call stack. The stack is �nite, but failing to make space results in

deadlock.

The problem can also be solved by limiting the total number of requests (not the

number per processor) in the network to few enough that a process' stack can absorb them

all. This approach does not scale to large systems, however.

As shown in the �gure, only two queue structures are allocated for each endpoint.

Multiple endpoints can insert messages into these queues concurrently, and the enqueue

operation must be carefully designed to ensure that concurrent operations occur atomically

with respect to one another. Concurrent access also increases the importance of the queue

block layout, as several processors' caches may compete for the data at any point in time.

3.2 Ping-Pong Example

Communication protocols like active messages obtain high performance by opti-

mizing frequent operations, such as sending a message, at the expense of infrequent ones,

such as creating an endpoint. In this section, we illustrate the techniques used for this

optimization through an example of a two-process ping-pong communication. Given pro-

cesses A and B within a single SMP, we step through endpoint creation and naming, discuss

resource location and access control, cover the actual communication, and conclude with

comments on endpoint destruction. We focus in slightly more detail on the communica-

tion operations, but defer the most important operation|the insertion of a message into a

queue|until Section 3.3.

3.2.1 Endpoint creation

Process A begins by creating endpoint 1. In the creation process, the active

message layer allocates space for the three major components of the endpoint and initializes

all �elds to their default values. The control block is allocated from private host memory.

The endpoint is assigned a unique physical name by the NIC, and the tra�c statistics are

initialized to indicate no tra�c and no network skipping. Handler 0 is set to the default

error function. All other handlers are set to abort(), and all destination endpoint entries

are marked as invalid. A shared memory segment is allocated for the shared memory queue

block, and the segment identi�er is recorded as part of the endpoint's physical name in the

control block. The segment is mapped into process A's address space. The tag is set to
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a distinguished value that causes rejection of all messages. The queue structure head and

tail values are initialized, and the packets and the bulk data blocks are marked as FREE.

Backing storage for the network queue block, which contains information similar to that

found in the shared memory queue block, is allocated from kernel memory and mapped into

process A's address space. The block is dynamically paged onto the NIC when process A

inserts its �rst remote message or performs certain control operations.

After creating the endpoint, process A performs application-level endpoint initial-

ization, installing a reply handler for the ping-pong communication and setting the tag to

a value known by process B. AM-II does not specify the methods through which tags are

found. We typically preselect one value for each application for simplicity,2 but one can

construct many more complex and secure schemes with or without the use of active mes-

sages. As an alternative, process A can set the tag to accept all incoming messages using a

second distinguished tag value.

3.2.2 Resource location

Process A has completed the creation of its communication endpoint and is ready

to initiate contact with process B. As with tags, AM-II allows an application to de�ne its

own methods for the discovery of endpoint names. A simple hash table server suits the

purpose for our example. First, process A generates a virtual, application-level name for

endpoint 1, \A's endpoint," and declares the virtual-to-physical name translation publicly

through the hash table server. Process A then waits for the appearance of \B's endpoint,"

at which point it learns the physical name of endpoint 2.

3.2.3 Destination preparation

Process A is now prepared to map endpoint 2 into endpoint 1's table of destination

endpoints, bringing endpoint 2's shared memory queue block into its address space to permit

the direct insertion of messages. As the queue block might be accessible to a number of

endpoints, this mapping assumes a high level of trust between processes A and B. Mapping

an endpoint thus also implies making an access control decision. If this level of trust is not

acceptable, a process can sacri�ce performance in favor of security by allocating a separate

endpoint for each process with which it communicates.

2For reasons beyond the author's ken as a vegetarian, tags are commonly set to the value 0xDEADBEEF.
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Figure 3.3: Two processes ready to communicate. Each process owns one endpoint and

has mapped the shared memory queue block of the other process' endpoint into its address

space.

The use of System V shared memory segments as storage implicitly ties access

control to the model supported by System V interprocess communication (IPC). The IPC

model is identical to the one used by traditional Unix �le systems. Each segment has distinct

read and write access bits for the owner of the segment, for a Unix group associated with

the segment, and for all other users. In future operating systems, we expect shared memory

segments to bene�t from advances in �le system access methods. Access control lists are

on the horizon with commercial operating systems, and a more general capability system is

perhaps not much more distant. Extensions to the Myrinet NIC driver code o�ers another

alternative: process A might be required to present endpoint 2's tag before being allowed

to map endpoint 2's queue block into its address space.

The mapping operation takes as arguments a destination index, an endpoint name,

and a tag. The NIC and endpoint numbers from the endpoint name are simply copied

into the corresponding �elds in the destination entry, as is the tag. Using the name, the

active message layer decides whether the endpoint is local or remote. Process A �nds

that endpoint 2 is local and checks the shared segment identi�ed as a part of endpoint 2's

name. After checking a hash table for existing mappings of the segment, process A maps
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the segment, adds an entry to the hash table, and records the segment address in the

destination entry. The entry is then marked as valid. The last �eld of the destination entry,

the inverse mapping, must be assigned by process B. Process A sends a local message to

endpoint 2 requesting that process B map endpoint 1's shared memory queue block and

return the segment address to endpoint 1. When the reply arrives, the address is copied into

the destination entry, completing the mapping operation. Figure 3.3 shows the situation at

this point. Although unimportant to the example in this chapter, control operations such

as setting the tag have paged the network control blocks in the �gure onto the NIC's.

3.2.4 Ping-pong communication

The communication layer is fully initialized, and process A is ready to communicate

with process B. Sending a short request requires only three arguments: the source endpoint,

the destination endpoint index, and the handler index. Additional arguments are passed

with the message and delivered to the handler as formal parameters. As the �rst step in

sending a message, the active message layer validates the state of the system, checking that

all initializations are complete and that the source and destination endpoint are valid.

Once the arguments have been checked, the communication layer decides which

protocol to use. Through precomputation in the mapping operation described earlier, this

decision is reduced to a single comparison. The shared memory queue block pointer in the

destination entry is NULL for a remote endpoint, and non-NULL for a local endpoint.

A poll for incoming messages constitutes the next step. Checking for message

arrival on every send operation helps the layer to remain responsive to incoming tra�c.

The local poll operation need only check the state of the packet at the head of each packet

queue. When a message is available, the recipient advances the packet queue head and passes

the arguments and, for bulk data transfers, the associated data block, to the appropriate

handler routine. After this call returns, the packet and the data block are marked as FREE.

The two steps following the poll are speci�c to the shared memory protocol. The

inverse map �eld of the destination entry must be copied into a request message to optimize

the process of sending a reply. If this �eld is NULL, the send operation polls until the

arrival of the reply carrying the datum. Once a valid inverse mapping has been found,

the active message layer checks the tag in the destination entry against the tag in the

destination endpoint's shared memory queue block. Messages with invalid tags are returned
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immediately via the sending endpoint's handler 0. For the network protocol, the tag check

is performed by the NIC associated with the destination endpoint.

At this point, only message insertion remains. We defer the details of this operation

to Section 3.3, but note that, as an e�ect of the insertion, process A changes the state of

one of the packets in endpoint 2's request queue structure to indicate the presence of the

message. Successful insertion of the message into endpoint 2 marks the end of the send

operation, and process A enters a polling loop to await process B's reply.

Process B, which has also completed its initializations, has been waiting in a

similar loop and notices the request message when it appears in endpoint 2's queue. The

communication layer passes information about the message to the application's handler via

an opaque message token, and the application hands this token back to the layer as one of

the arguments to a reply operation. The second argument to the reply is a handler index,

and the remaining arguments are passed as formal parameters to the reply handler.

A reply requires only protocol selection, polling, and message insertion. Argument

checks are skipped|the token and its contents are assumed to be valid. Selecting the

appropriate protocol for a reply message again requires only a single comparison. The

message packet for remote messages contains the NIC number of the source endpoint; local

messages instead �ll this �eld with the NIC number of the destination endpoint. The reply

operation compares this value with the replying endpoint's NIC number: equality indicates

a local message, and inequality indicates a remote message. As messages from an endpoint

to itself are never remote, overloading the meaning of the NIC number �eld does not cause

any problems. After a poll, the reply operation �lls a packet in endpoint 1's reply queue

structure and returns.

3.2.5 Endpoint destruction

The ping-pong communication is complete, and the two processes are almost ready

to terminate. Process A �rst removes the translation of \A's endpoint" from the hash table

server, then destroys endpoint 1, unmapping endpoint 2's shared memory queue block and

freeing the memory associated with endpoint 1. The semantics of shared memory segments

delays the actual destruction of endpoint 1's segment until all other processes (in the case

of our example, process B) have unmapped the segment. Having freed these resources,

process A terminates.
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3.3 Lock-Free Algorithm

The shared memory message queues permit multiple processes to insert messages

concurrently, requiring atomic enqueue operations to prevent interference. Our many-to-

one approach distinguishes this thesis from much of the existing work on shared memory

message-passing. Managing concurrent access e�ciently is the aspect of the shared memory

protocol most critical to performance and presents a complex and challenging problem. In

this section, we focus on the algorithm used in our active message implementation and

provide a few basic notions about alternatives. A more detailed discussion of the latter

appears in Chapter 6.

Traditional concurrent access algorithms use critical sections to prevent interfer-

ence between processes: a process obtains a mutually exclusive lock to enter a critical

section, thereby preventing other processes from entering concurrently. A process that

stalls or completes its scheduling quantum while holding a lock can delay other processes

inde�nitely, and a process that waits busily to obtain a spin lock can waste processor cycles.

Numerous techniques for avoiding these problems appear in the literature, and together

are known as preemption-safe locking [MS97]. Such techniques generally require interac-

tion with the operating system and can thus incur signi�cant overhead. We avoid mutual

exclusion through the use of a lock-free algorithm. Our algorithm couples synchronization

tightly to the data structure and results in superior performance.

The section begins with a description of the algorithm, discussing logical synchro-

nization primitives and their speci�c use in message insertion. We then consider the ac-

tual requirements for hardware support of the algorithm, highlighting alternative primitive

implementations. We conclude with performance predictions relative to locking algorithms

based on the structure of our algorithm. In Chapter 6, we con�rm our predictions on an En-

terprise 5000, demonstrating results superior to those obtained with alternative algorithms

on both dedicated and multiprogrammed machines using a suite of microbenchmarks and

applications. We also compare performance on an SMP with performance on a comparable

NOW, illustrating the impact of the faster protocol at the application level.

3.3.1 Message insertion

The lock-free algorithm relies on two synchronization primitives, Fetch&Incre-

ment (F&I) and Compare&Swap (CAS), to ensure atomicity with respect to other mes-
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Fetch&Increment(^address)

value  address^

address^  value + 1

return value

Compare&Swap(^address; old; new)

if address^ = old

address^  new

return TRUE

return FALSE

Figure 3.4: Pseudo-code for synchronization primitives. Each operation is atomic with

respect to other memory accesses.

EMPTY CLAIMED

READY-BULK

READY
message received

message received

packet full

packet and block full

claim packet

(atomic)

Figure 3.5: State diagram for message packets. The FREE to CLAIMED transition requires

instruction-level atomicity for correctness. Unique threads of control perform all other

transitions, allowing for non-atomic operations.

sage insertions. The hardware must in turn guarantee that these primitive operations are

atomic with respect to all other memory accesses. Fetch&Increment(address) adds one

to the value at an address and returns the previous value. Compare&Swap(address, old,

new) compares the value at an address with an expected value, old. If the two values

are equal, the operation writes a third value, new, into the address and returns TRUE.

Otherwise, CAS returns FALSE. Pseudo-code for these primitives appears in Figure 3.4.

As a message moves through a message packet, the packet cycles through three

states, as depicted by Figure 3.5. To enqueue a short message, a sender claims a packet

in the destination queue structure with ClaimPacket, changing the state of the returned

packet from FREE to CLAIMED, then �lls in the packet. Claiming a packet involves

concurrent access to the queue and must be performed atomically with respect to other

claims, but only one sender accesses a packet while �lling it. Once a packet is full, the

sender changes its state to READY. For bulk data transfers, a sender uses ClaimBulk to
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ClaimPacket(^q)

index Fetch&Increment(q^:tail) mod Q LENGTH

while TRUE

if Compare&Swap(q^:packet[index]:state; FREE; CLAIMED)

return index

(back o� exponentially and poll)

ClaimBulk(^q)

block  Fetch&Increment(q^:bulk tail) mod BULK LENGTH

while TRUE

if Compare&Swap(q^:bulk[block]:claimed; FREE; CLAIMED)

index ClaimPacket(q)

q^:packet[index]:bulk index block

return index

(back o� exponentially and poll)

Figure 3.6: Pseudo-code for our lock-free approach to claiming a packet from a queue q.

ClaimBulk claims both a packet and a bulk data block.

claim both a packet and a bulk data block, �lls in both, and changes the packet state to

READY-BULK. As described earlier, the receiver's poll operation detects when a message

at the head of a packet queue is ready for delivery and invokes the appropriate handler.

After this call returns, both the packet and the data block are marked as FREE, completing

the cycle of states.

Pseudo-code for the claim operations appears in Figure 3.6. The analogue of the

critical section in ClaimPacket consists of two steps. First, a sender obtains a packet

assignment by atomically incrementing the queue tail using F&I. Next, the sender claims

the assigned packet by changing its state from FREE to CLAIMED with CAS. The number

of assigned packets may exceed the queue size, in which case multiple senders compete for

a single packet in the second step. ClaimBulk takes a similar approach, obtaining a bulk

data block and claiming that block before competing for a packet.

If a sender's claim fails, the queue is full, and the sender backs o� exponentially to

minimize memory transactions. The backo� strategy starts with a 1 microsecond delay and

doubles the delay with each failure to a limit of 255 microseconds. If the backo� strategy

reaches the delay limit and the claim continues to fail, the sending process relinquishes its

processor to allow another process|perhaps the queue's receiver|to make progress.

The backo� strategy can also bene�t from interaction with the operating system
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Test&Set(^address)

value address^

address^  LOCKED

return value

Fetch&Increment(^address)

repeat

value address^

next (value + 1)

until Compare&Swap(address^; index; next)

return value

Figure 3.7: Pseudo-code for Test&Set and for a version of Fetch&Increment based on

Compare&Swap. This form of Fetch&Increment admits starvation.

scheduler. Rather than simply yielding its processor, a process can sleep until an event

occurs. This approach informs the scheduler that the process currently has no useful work

and does not wish to compete with the processes responsible for providing it with work.

When signaling an event, a process must notify the sleeping process through the kernel.

In keeping with active message semantics, event noti�cation is synchronous with respect

to control 
ow within the program. As Arpaci-Dusseau et al. found for uniprocessor clus-

ters [ADCM98], an application must utilize this method at all levels in order for the strategy

to be fully e�ective. Due to subtle issues with AM-II kernel support, we did not integrate

event noti�cation between the protocols, and use it only with the shared memory protocol

in isolation. Events such as waiting for a concurrent queue to drain permitted no obvious

signaling criteria, hence we did not use events in the case of full queue backo�. As apparent

from the performance data in Chapters 6 and 7, events do improve multiprogramming per-

formance, but the overhead of the additional interaction with the kernel is also non-trivial

and can degrade performance on dedicated machines.

The code shown in the �gure requires that both Q LENGTH and BULK LENGTH

be powers of two, but removing this restriction requires only slight modi�cations.

3.3.2 Hardware support

The lock-free algorithm depends logically on the availability of the F&I and CAS

synchronization primitives, but can be implemented with others. Consider, for example,

the CAS-based version of F&I shown in Figure 3.7. As the Sparc instruction set lacks the
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state lock substate

FREE UNLOCKED FREE

CLAIMED LOCKED FREE

READY LOCKED READY

READY-BULK LOCKED READY-BULK

Table 3.1: Extended state requirements for a Test&Set-based variant of the lock-free

algorithm. Recall that only the transition from FREE to CLAIMED need be atomic.

F&I primitive, that architecture requires the use of this alternative solution. The approach

shown decouples the read and modify components of the F&I from the write component, yet

guarantees atomicity by performing the write only when the value remains unchanged. Such

constructions have an interesting theoretical history, culminating in Herlihy's de�nition of

universality for synchronization primitives in [Her88]. A universal primitive (e.g., CAS)

can be used to implement any other primitive in such a way that no process impedes the

progress of any other. Although based on CAS, the F&I shown in the �gure does not

prevent such interference. A successful F&I by one process can cause an F&I attempt by

a second process to fail, even to the point of starving the second process. In return for a

weaker guarantee, this version of F&I provides much better performance in the common

case. We present a version that prevents starvation in Chapter 9.

The speci�c requirements of the lock-free algorithm also admit replacement of the

CAS in the claim step with a simple Test&Set (T&S) primitive. Test&Set(address)

replaces the value at an address with a LOCKED value and returns the previous value,

and was perhaps the �rst synchronization primitive ever suggested. Pseudo-code for T&S

appears in Figure 3.7. Use of T&S with the lock-free algorithm requires that the packet

state be split into lock and substate values, as shown in Table 3.1. The table lists equivalent

values for each possible state. Using T&S, the EMPTY to CLAIMED transition remains

atomic: only one process can succeed. The sender implicitly hands the \lock" to the receiver

by setting the state to READY or READY-BULK, and the sender must clear the lock after

changing the substate to FREE to complete the transition back to the EMPTY state.

3.3.3 Performance notions

Careful scrutiny of the lock-free algorithm allows us to predict its performance

relative to locking algorithms for both high and low levels of contention. The key to both

predictions is the separation between assigning a packet and claiming it. This separation
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increases the number of synchronization primitives performed and results in slightly worse

performance in the absence of contention. The same separation, however, results in a much

shorter window of vulnerability to contention. The bottleneck step is packet assignment, for

which the Enterprise 5000 uses the CAS construction of F&I. This approach is vulnerable

to failure only between the completion of the queue tail load and the execution of the

CAS, a period covering roughly a tenth of a microsecond on that machine. In contrast, the

critical section in a locking algorithm spans at least two cache misses (the queue tail and the

packet state) and totals roughly a microsecond. Hence we expect the lock-free algorithm to

outperform locking algorithms under contention.

In practice, our lock-free algorithm demonstrates performance superior to both

spin locks and preemption-safe locks. The degree of robustness a�orded by eliminating

locks reduces the impact of interactions with the scheduler yet avoids the high overhead

inherent to operating system support. As shown in the detailed performance results in

Chapter 6, the lock-free algorithm outperforms other algorithms on both dedicated and

multi-programmed machines.

3.4 Theoretical Analysis

In this section, we address several theoretical aspects of our lock-free algorithm.

We begin with two proofs of correctness. After making a few basic assumptions about

the nature of the system and application program, we prove that the algorithm neither

loses messages nor admits deadlock. A discussion of the queue semantics provided by the

algorithm follows the proofs, and we conclude the section with commentary on the relative

disadvantages of pointer-based algorithms.

3.4.1 Message loss

We �rst prove that messages do not get lost in a queue|that the receiver cannot

wait inde�nitely for a message to arrive at the head of the queue while ready messages are

present elsewhere. Equivalently, a message inserted atomically into an empty queue must

always appear at the head of the queue. In order for this property to hold, the process

scheduler must not allow any process to starve. A process that claims the packet at the

head of a queue and is subsequently starved by the scheduler blocks all further message

reception from that queue.
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H
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Figure 3.8: Cyclic message queue illustration. Numbers of active packets are circled.

Before formally stating this theorem, we make two de�nitions. First, recall that

when a sender calls ClaimPacket, the algorithm assigns the sender one packet from the

queue. Such an assignment is outstanding from its time of inception until the receiver frees

the assigned packet after handling the message associated with the assignment. Note that

we use the term assignment as an abbreviation for packet assignment and do not mean to

include the assignment of bulk data blocks. We address bulk data transfers as a corollary to

the theorem for short messages. Second, a process scheduler is starvation-free if there exists

a time quantum � 2 R, � > 0 such that a process competing with P � 1 other processes

is guaranteed to execute at least one instruction in any time period of length P� . In these

terms, we state our theorem:

Theorem 3.1 If governed by a starvation-free scheduler, the packet at the head of a queue

with outstanding assignments becomes ready for delivery in bounded time.

Intuitively, we prove this theorem by establishing that the distribution of out-

standing assignments over the queue is fairly even and that the packet at the head of a

non-empty queue always has an outstanding assignment. The starvation-free property then

guarantees that the head packet becomes ready for delivery in bounded time. We prepare

for the formal proof by establishing three useful lemmas.

Consider a cyclic queue consisting of Qmessage packets numbered 0 through Q�1.
Let H be the number of the packet at the head of the queue, and de�ne T to be the number

of the packet at the tail. A packet i is termed active if it falls between the head and the tail

of the queue, as illustrated by Figure 3.8. In particular, packet i is active when it satis�es

the inequality

(i�H) mod Q < (T �H) mod Q (3.1)



48

Let A be the set of active packets:

A � fi 2Z; 0 � i < Q j packet i is activeg

and note that jAj = (T �H) mod Q. Our �rst lemma concerns properties of the set A.

Lemma 3.2 The head and tail of the queue have certain properties with respect to A. In

particular,

(i) T 62 A

(ii) H = T ! A = ;

(iii) H 6= T ! H 2 A

(iv) A 6= ; ! H 2 A

Proof of Lemma 3.2: Proof of the �rst three clauses requires only the replacement of

variables in (3.1). For (i), replace i with T . (ii) follows from replacement of H with T .

To see (iii), replace i with H and recognize that T can di�er from H by at most Q � 1.

(iv) follows directly from (ii) and (iii): A 6= ; ! H 6= T ! H 2 A.

Having established these properties, we are ready to state the lemma central to

the theorem. Let Ci be the number of outstanding assignments to packet i.

Lemma 3.3 Outstanding assignments are distributed evenly over a queue, with active pack-

ets assigned one time more than packets that are not active. In particular,

9n 2Z; n � 0 such that

8i 2Z; 0 � i < Q; (i 2 A ^ Ci = n+ 1) _ (i 62 A ^ Ci = n) (3.2)

Proof of Lemma 3.3: In a queue's initial state, the Ci are uniformly 0, and T = H = 0.

By clause (ii) of Lemma 3.2, A = ;, thus n = 0 satis�es (3.2). We prove the lemma by

showing that (3.2) remains true under the operations of packet assignment and message

reception. Let unprimed variables represent the state of the queue before an operation and

primed variables represent the state after the operation. Furthermore, let n satisfy (3.2)

before an operation. The proof then requires that we �nd a value of n0 that satis�es (3.2)

after the operation.
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First consider packet assignment. By de�nition, assignments are made to the tail

of the queue, advancing the tail cyclicly:

H 0 = H

T 0 = (T + 1) mod Q

C0
T = CT + 1

8i 2Z; 0 � i < Q; i 6= T; C0
i = Ci

Notice that by clause (i) of Lemma 3.2, T 62 A, thus CT = n and C0
T = n+ 1.

Two cases are possible. If the assignment does not bring the tail to the head,

T 0 6= H , and we can write

(T 0 �H) mod Q = [(T �H) mod Q] + 1

hence A0 = A [ fTg

In this case, packet T becomes active due to the assignment. C0
T = n+ 1 thus implies that

n0 = n satis�es (3.2).

Next consider the case in which the assignment brings the tail to the head, T 0 = H .

By clause (ii) of Lemma 3.2, A0 = ;, and all of the C0
i must equal n

0 to satisfy (3.2). A

choice of n0 = n + 1 results in C0
T = n0, but the same must also hold for the other Ci, i.e.,

all other packets must be active prior to the assignment. Replacing T with T 0 � 1 in (3.1),

we �nd:

(i�H) mod Q < (T 0 � 1�H) mod Q = (�1) mod Q = Q� 1

hence A = fi 2Z; 0 � i < Q j i 6= Tg
and 8i 2Z; 0 � i < Q; i 6= T; C0

i = Ci = n+ 1 = n0

as desired, proving that n0 satis�es (3.2) and thus that (3.2) remains true under packet

assignment.

The proof of invariance under message reception is analogous. By de�nition, mes-

sages are received from the head of the queue, advancing the head cyclicly:

H 0 = (H + 1) mod Q

T 0 = T

C0
H = CH � 1

8i 2Z; 0 � i < Q; i 6= H; C0
i = Ci
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Notice that (H � H 0) mod Q = Q � 1, which implies H 62 A0; a packet is never active

immediately after a message has been received from it.

Two cases are again possible. If the head does not match the tail prior to reception,

H 6= T , and clause (iii) of Lemma 3.2 implies that H 2 A. Thus CH = n + 1 and C0
H = n.

H 6= T also implies

(T �H 0) mod Q = [(T �H) mod Q]� 1

hence A0 = A n fHg

In this case, the head packet ceases to be active due to the reception. C0
H = n thus implies

that n0 = n satis�es (3.2).

Otherwise, the head and the tail match prior to reception, H = T , which by

clause (ii) of Lemma 3.2 implies that A = ;. Hence C0
H = n� 1 and all other C0

i are equal

to n. We require n > 0 for message reception to occur, as n = 0 in this case implies an

empty queue. As H 62 A0, a choice of n0 = n� 1 � 0 satis�es (3.2) provided that all packets

except H are active after the reception. Writing (3.1) in primed form and replacing H 0

with H + 1, we �nd:

(i�H � 1) mod Q < (T �H � 1) mod Q = (�1) mod Q = Q� 1

hence A0 = fi 2Z; 0 � i < Q j i 6= Hg

as desired, proving that n0 satis�es (3.2) and completing the proof of the lemma.

Given an even distribution, we need now merely show that messages appear at the

head of the queue �rst.

Lemma 3.4 If a queue has outstanding assignments, the packet at the head of the queue

has outstanding assignments. In particular,

8i 2Z; 0 � i < Q; Ci > 0 ! CH > 0

Proof of Lemma 3.4: Pick i 2 Z, 0 � i < Q such that Ci > 0. If i 2 A, H 2 A

by clause (iv) of Lemma 3.2 and CH = Ci > 0 by Lemma 3.3. Otherwise, i 62 A, and

Lemma 3.3 implies that CH � Ci > 0, completing the proof.
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We are now ready to prove the theorem. Two facts are essential to the �nal proof:

one process always wins the competition to claim a particular packet, and the code for

claiming and �lling a packet requires a �nite number of instructions when successful.

Proof of Theorem 3.1: Assume that a queue has outstanding assignments at some time t

and that the packet H at the head of the queue is not ready for delivery at that time. By

Lemma 3.4, we know that H has at least one outstanding assignment, CH > 0. Consider

the code path for inserting a message into H after the assignment step. At that point, bulk

data transfers have already obtained a bulk data block and are inside of ClaimPacket, as

are short messages. A sender must back o� from any previous claim failure, claim H , �ll H

and possibly a bulk data block, and change H 's state. If the packet claim succeeds, as it

must for exactly one sender when H is free, the code does not branch inde�nitely (recall

that the backo� period is bounded). Let N denote the maximum number of instructions

executed by the successful process. Let P be the maximum number of processes that the

system supports, and let P� be the length of the time period in which a process is guar-

anteed to execute at least one instruction. As the scheduler is starvation-free, P� is �nite.

The sender that succeeds in claiming H thus marks H as ready for delivery no later than

time t+NP� , proving the theorem.

Theorem 3.1 holds for all messages, including bulk data transfers, once they have

been assigned packets. Proving that a bulk data transfer waiting to claim a bulk data block

also implies the arrival of a message takes a small additional e�ort. A bulk data block

assignment is outstanding from its time of inception until the receiver frees the assigned

block after handling the message associated with the bulk data block assignment.

Corollary 3.5 If governed by a starvation-free scheduler, the packet at the head of a queue

with outstanding bulk data block assignments becomes ready for delivery in bounded time.

Proof of Corollary 3.5: Let p be a process with an outstanding bulk data block assign-

ment. If p has yet to claim its assigned bulk data block, it attempts to do so in bounded

time under a starvation-free scheduler. If the claim fails, let p0 be the process that last

successfully claimed the block assigned to p. Otherwise, let p0 = p. If p0 has already been

assigned a packet, the claim must be outstanding since the bulk data block associated with p0

has not been received (and hence neither has the assigned packet), and the proof is done.
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Otherwise, a packet is assigned to p0 in bounded time under a starvation-free scheduler,

and the packet at the head of the queue becomes ready in bounded time by Theorem 3.1,

completing the proof.

3.4.2 Communication deadlock

We next prove that the lock-free algorithm cannot result in deadlock within the

communication layer. Intuitively, deadlock implies that a program reaches a state in which

none of its processes is capable of making forward progress. A synchronous communication

layer, however, can guarantee only that the processes do not deadlock within the layer.

Avoiding deadlock in general also requires that each process remain responsive to commu-

nication. For the lock-free algorithm, we must demonstrate that processes can not all block

inde�nitely within the algorithm without sending or receiving messages. As processes only

block within the algorithm when waiting to insert into a full queue, we use the full queue

condition as the basis for a more formal construction.

Let F (t) be the set of processes waiting to insert messages into full queues at

time t, and let Tf(t) be the target process for f 2 F|the process that receives messages

from the full queue on which f is blocked trying to insert a message. De�ne the insertion

graph G(V (t); E(t)) to be the directed graph with vertices consisting of F (t) and the set of

target processes T (t) and with edges from each member of F (t) to its target process:

T (t) � ff 2 F (t) j Tf(t)g
V (t) � F (t) [ T (t)

E(t) � f(f; g) 2 F (t) � T (t) j g = Tf (t)g

In light of this graph construction, we can provide a meaningful de�nition of deadlock within

the message layer: a deadlock occurs when no process in V (t) 6= ; can send or receive a

message in bounded time. We de�ne deadlock in terms of G(V (t); E(t)) to avoid speculation

about higher levels of software; processes outside of V (t) may be capable of progress, but

we cannot assume that such progress is possible.

Processes must remain responsive to the communication layer. Formally, a process

is responsive if there exists a � 2 R, � > 0 such that the process sends a request or checks for

message arrival on each endpoint at least once during any time period in which execution

time outside of the communication layer totals at least � . The actual time required depends
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on the time allocated to the process by the scheduler, but is bounded under a starvation-

free scheduler. Note that sending a request causes the communication layer to check for

incoming messages. We are now ready to state our theorem.

Theorem 3.6 If all processes are responsive, the lock-free algorithm cannot result in dead-

lock.

Note that the theorem does not require that the scheduler be starvation-free. If

a scheduler starves a process and thereby prevents all processes from making progress, the

result is starvation, not deadlock. However, in proving this theorem, we �rst show that

some process does make progress under a starvation-free scheduler, which in turn implies

that the process can make progress, independent of whether or not it actually does so.

The lock-free algorithm avoids deadlock by polling while backing o� from a full

queue, polling for all messages when sending a request, but polling only for replies when

sending a reply. Although this additional splitting of the network substantially complicates

the proof, it is also necessary to avoid deadlock, as mentioned in Section 3.1.3. The added

di�culty revolves upon the case in which a process sending a request targets the full queue

of a process that blocked while sending a reply. The latter process polls only for replies, but

we cannot guarantee that a reply becomes available in bounded time without considering

longer chains of dependencies. We begin the proof by establishing an evolutionary property

of the target process relationship: a blocked process and its target process either make

progress or reach the send-request, poll-reply state in bounded time.

Lemma 3.7 Let f 2 F (t) be a process blocked on a full queue at time t, and let the

responsive process g = Tf (t) be f 's target process. If governed by a starvation-free scheduler,

one of the following holds:

(i) Some process in V (t) makes progress in bounded time by either sending or receiving a

message.

(ii) f is blocked on g's request queue at time t, and g blocks on a full reply queue in

bounded time.

Proof of Lemma 3.7: First consider the case in which g 62 F (t), and assume for now

that g does not block on a full queue before receiving a message. As f has an outstanding
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bulk data block or packet assignment to a queue owned by g and the scheduler is starvation-

free, Theorem 3.1 and Corollary 3.5 imply that a message becomes ready for g to receive

in bounded time. As g is responsive and the scheduler is starvation-free, g receives the

message within bounded time after it becomes ready, resulting in case (i). However, g can

block on a full queue before receiving a message, i.e., also in bounded time. If any other

process in V (t) sends or receives a message before g blocks, the result is case (i). We can

thus assume without loss of generality that G does not change until g blocks at a time t0

with V (t0) = V (t) [ fTg(t0)g and E(t0) = E(t)[ f(g; Tg(t0))g.
Next consider the case in which g is blocked (at either time t or time t0) on a full

request queue. Assume for now that g neither succeeds in inserting its request nor blocks

on a full reply queue (while handling a request) before receiving a message. Given the

assumptions, a message becomes ready for g to receive in bounded time. While blocked on

a full request queue, g polls for messages and hence receives the message within bounded

time after it becomes ready, resulting in case (i). If g succeeds in inserting its request before

receiving a message, the result is also case (i). Otherwise, g blocks on a full reply queue in

bounded time, and we make the same assumptions as before about the progress of other

processes.

Thus all cases evolve in bounded time to the one in which g is blocked on a full

reply queue. If f is blocked on g's request queue, case (ii) results immediately, hence assume

instead that f is blocked on g's reply queue. Also assume for now that g does not succeed in

inserting its reply before receiving a reply. Given the assumptions, a reply becomes ready

for g to receive in bounded time. While blocked on a full reply queue, g polls for replies and

hence receives the reply within bounded time after it becomes ready, resulting in case (i).

If g succeeds in inserting its reply before receiving a reply, the result is the same, thus

completing the proof.

The lemma is the framework for the rest of the proof, the essence of which lies in

applying the lemma twice to locate a pair of processes that cannot enter the send-request,

poll-reply relationship. We now prove the theorem.

Proof of Theorem 3.6: Assume without loss of generality that the scheduler is starvation-

free; a scheduler that starves processes does not change the fact that a process can make

progress (when scheduled). Let G(V (t); E(t)) be the insertion graph at some time t. If
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F (t) = ;, V (t) = ;, and we are done. Otherwise, pick f 2 F (t) and let g denote its target

process, g = Tf(t). If f is blocked on g's reply queue, Lemma 3.7 guarantees that some

process in V (t) makes progress in bounded time, and we are done. Thus assume that f is

blocked on g's request queue. Lemma 3.7 then guarantees either that some process in V (t)

makes progress or that g blocks on a full reply queue in bounded time. Assuming that

the latter occurs and that it occurs at a time t0, let h = Tg(t
0). As g is blocked on h's

reply queue at time t0, Lemma 3.7 guarantees that some process in V (t0) makes progress

in bounded time from t0, which in turn occurs in bounded time from t, completing the proof.

As a �nal comment on deadlock issues, we note that the order de�ned by Claim-

Bulk|reserving space in the bulk data queue before competing for space in the packet

queue|circumvents a deadlock scenario that arises with the reverse order. Consider a

process performing a bulk data transfer and holding the only outstanding assignment to

the packet at the head of a packet queue. If the associated bulk data queue is full, the

process cannot complete its message insertion, but neither can the queues' owner receive

any messages holding bulk data blocks until it receives the message at the head of the

packet queue. In terms of the proofs, this reversed order of operations violates the assertion

in the proof of Theorem 3.1 that a process with an outstanding assignment cannot delay

inde�nitely before marking its packet as ready; in this case, the process must wait for a

bulk data block to become available, but that event never happens. Once messages can be

lost in the queue, deadlock is straightforward.

3.4.3 Queue semantics

The lock-free algorithm gives rise to several subtle issues of semantics. The astute

reader may have noticed that we avoided a detailed discussion of starvation due to the

algorithm itself. In fact, the algorithm does not prevent such scenarios; rather it guarantees

only that some process makes progress. A process that consistently loses the competition for

its assigned packet, for example, may never insert its message into a queue. In practice, an

individual packet is rarely assigned to more than one process simultaneously, and starvation

does not occur.

Starvation is nevertheless an inherent aspect of all algorithms that compete for

central control information using synchronization primitives that provide no guarantee of
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fairness. The prevalence of universal primitives on modern machines thus has a subtle

drawback in that it has kept primitives that guarantee fairness from appearing in some

instruction set architectures (e.g., the Sparc). As with simpler non-universal primitives

such as T&S, the number of times that a process can fail a universal CAS operation is not

generally bounded by hardware. Whereas a primitive such as F&I typically guarantees fair-

ness, a version of F&I constructed from CAS admits starvation. Although not a signi�cant

problem for today's machines, the level of contention and the potential for starvation grow

with the number of processors in an SMP, and the problem might become signi�cant in the

future.

A second interesting aspect of the lock-free algorithm is its lack of a �rst-in, �rst-

out (FIFO) property as de�ned in the literature. According to Gottlieb et al. [GLR83], a

FIFO concurrent queue must ensure the following: \If insertion of a data item p is completed

before insertion of another data item q is started, then it must not be possible for a deletion

yielding q to complete before a deletion yielding p has started." Herlihy and Wing's notion

of linearizability [HW90] leads to a similar de�nition. Our lock-free algorithm does not obey

this rule. Consider processes A and B simultaneously inserting messages into a two-element

queue. Assign the �rst packet to process A and the second to process B, then assume that

process A is descheduled before claiming the packet. Process B �lls the second packet and

begins another insertion. The queue wraps and assigns the �rst packet again, and B �lls

this packet as well. At this point, the �rst packet contains B's second message and the

second packet contains B's �rst message. When the receiver looks for incoming messages,

the second message is delivered �rst, violating the FIFO property. As active messages do

not guarantee in-order delivery, the lack of a FIFO property does not make the lock-free

algorithm incorrect. Nevertheless, a simple extension considered in Chapter 6 su�ces to

achieve FIFO semantics.

Finally, one might question whether the lock-free algorithm is truly free of locks.

The three-state handshake between sender and receiver can be viewed as a form of �ne-

grained locking on individual message packets. Despite this fact, we chose to use the

term \lock-free" to highlight the avoidance of explicit critical sections and the signi�cantly

reduced likelihood of contention between processes.
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3.4.4 Pointer-based comparison

The previous section discussed the subtleties of the lock-free algorithm. We now

discuss a few hazards that the lock-free algorithm avoids by design, in particular by ma-

nipulating values rather than names, i.e., pointers. Pointers can lead to problems with

improper success of operations, increased complexity for potentially interleaved operations,

and di�culties with reusing memory. The lock-free algorithm operates on a tail index and

on packet states, using no pointers or other indirect references to data. We discuss problems

with pointers and their solutions to highlight the advantages of the lock-free algorithm in

terms of programming complexity.

The ABA Problem

Pointer-based algorithms that make use of the CAS primitive must be aware of the

ABA problem, which arises because of a separation between the memory value manipulated

by CAS, often the name of a datum, and the object semantically intended for manipulation,

the datum itself or an entire data structure. In the ABA problem, a process reads the

name A and proceeds to operate on that value. Before the process can perform its CAS

operation, a second process replaces A with B, recycles the datum referenced by A, and

replaces B with A. The meaning of A at this point is clearly di�erent from its original

meaning, but the CAS operation recognizes only the name A and the �rst process' CAS

operation \succeeds."

Figure 3.9 demonstrates the result for a linked list. In section (1), the list contains

the elements A and B. A process reads A and it's next pointer, B. In section (2), a second

process has removed A, leaving only B in the list. In section (3), further operations have

moved B from the list to a free list of cells, while A has been recycled and returned to the

list. At this point, the �rst process performs its CAS. The CAS compares the head of the

list with A and \succeeds," placing a long string of garbage beginning with B onto the list,

as shown in section (4).

Apart from avoiding the use of indirection, which is not always practical, two

solutions exist for the ABA problem. The more common of the two is an algorithmic

approach: each pointer is extended with an epoch number, and the CAS operation is

applied to both the pointer and the epoch number simultaneously, incrementing the epoch

with each successful CAS. If the hardware supports CAS on data signi�cantly wider than
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B

head: B (a very long free list)
(4)

Figure 3.9: Illustration of the ABA problem on a list. See the text for details.

a pointer, then this approach is very unlikely to fail in practice. On machines without

such support, however, an algorithm must make use of reduced pointers (either indices or

truncated pointers) while retaining enough bits in the epoch number to make the ABA

problem e�ectively impossible.

The second approach to the ABA problem makes use of a slightly di�erent set

of hardware primitives known as LoadLinked (LL) and StoreConditional (SC). The

initial read operation in an algorithm is replaced with an LL primitive, and the CAS op-

eration is replaced with an SC primitive. SC is guaranteed to fail if any other processor

has changed the value at the linked address, so that success of the SC operation is in many

cases equivalent to an absence of intervening changes to the data structure (and certainly

to the location being changed).

Inconsistent Versions

A second problem arises when a process holds a stale reference to an object that

is no longer an active part of the data structure. For correctness, pointer-based lock-

free algorithms generally avoid non-atomic changes to the data in a concurrent structure,

but such restrictions do not apply to objects once they have been retired from use. In

fact, keeping old objects around for reuse is a fairly common method of avoiding dynamic

memory overhead (and a signi�cant contributor to the likelihood of the ABA problem).
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Herlihy provides one solution to this problem in [Her93]. In his solution, algorithms maintain

consistency information with each object. Before using an object, an operation makes a

copy of the object, then checks the copy for consistency. Operation must also mark objects

as inconsistent before manipulating them. The object becomes consistent again after the

operation completes.

Typed Memory

The vagaries of schedulers and virtual memory can impose much more signi�cant

inconsistencies on a pointer-based algorithm. Once used in a concurrent data structure, a

pointer to an object X of type Y may persist inde�nitely in a register of some descheduled

process. If the memory used by X is later reclaimed and recast as an object of type Z,

the process can return to �nd the object Y completely incomprehensible. Dynamically-

typed objects provide one possible solution to this problem, although concurrent operations

must check the type very frequently in such a system, possibly after every memory read, and

must also verify the type atomically with each write. Alternatively, Greenwald and Cheriton

suggest in [GC96] that memory used for concurrent objects be \type-stable," meaning that

the memory used for object X can only be reclaimed if the program can guarantee that no

outstanding references to X exist.

Data Manipulation

None of the problems just discussed applies to our lock-free algorithm. The packet

queue remains �xed in a single memory location, allowing the lock-free algorithm to treat

packet assignments as data rather than pointers. The packet states also have a small

number of �xed values, and the lock-free algorithm merely performs transitions within

the state diagram. Many lock-free and non-blocking algorithms manipulate linked data

structures; the data structures move from point to point in memory, leading to problems

with detecting changes (the ABA problem), recognizing stale data (inconsistent versions),

and avoiding operations on random values (typed memory).
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Chapter 4

The Clump Polling Architecture

We now consider the third and �nal design challenge for multi-protocol commu-

nication, the development of a strategy to minimize the impact of polling each protocol

upon messages passed through the other. The abstraction of uniform communication sup-

ported by our multi-protocol system must extend to communication performance as well,

providing good results on a range of underlying platforms with only a single binary. Ob-

taining such results in general requires that we address the performance of the protocols

both in isolation and in combination. The possibility that a programmer has addressed

the hierarchy to improve performance by separating an application into phases of local and

remote communication strengthens the dynamic nature of the problem. Our layer must

tune communication to the Clump actually supporting the application.

In the previous chapter, we addressed the design of our shared memory protocol in

isolation, considering only those issues pertinent to use within a single SMP. Chun et al. ad-

dressed the design of the network protocol in [CMC98]. In this chapter, we investigate the

issues for a communication layer that supports both shared memory and network protocols.

The central problem arises from the disparate costs of polling for incoming messages on

the two protocols, and our solution takes the form of an adaptive strategy for polling. We

begin the chapter with a more detailed description of the problem and possible solutions,

then develop a parametrized framework for our adaptive strategy. The parameters allow

us to tune the strategy with application performance data across a range of Clumps. We

conclude the chapter with a discussion of the parameters and their impact on performance.
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4.1 Multi-Protocol Poll Overhead

Message polling operations are ubiquitous in active message layers. Responsiveness

demands that a layer poll for incoming messages when sending a message [BK94]. In

the multi-protocol implementation, the interaction between the lightweight shared memory

protocol and the more expensive network protocol can have a signi�cant impact on the

performance of the former. The problem stems from the cost of checking empty message

queues; only successful message receptions perform useful work. An empty packet at the

head of a shared memory queue remains cache-resident during periods of communication

and costs only a handful of cycles to read. Network packets, however, reside in uncacheable

NIC memory. Reads from this memory incur roughly a microsecond of overhead, leading

to an order of magnitude di�erence between polling costs for the two substrates. We must

carefully address this di�erence to obtain good performance for programs that send mostly

local messages.

The network polling overhead breaks into two components, the number of reads

from empty network queues and the cost of each read. One method for reducing the latter

component involves moving the network queues into main memory, as do several other fast

communication layers [WBvE97, PLC95, PT98, VIA97]. However, such a move requires

an extensive redesign of the network protocol to avoid penalizing remote messages. We

preferred to avoid making broad changes to the network protocol. Further, with the Myrinet

SBUS cards used in our Sparc-based Clump, the cost of moving data into main memory

with the NIC can be prohibitive for small transfers. We instead focus on reducing the �rst

component, the number of reads from empty network queues.

4.1.1 Acceptance counts

A poll operation typically ends after reading an empty packet, but can also end

after accepting a prede�ned number of messages. By reducing this number, we also reduce

the number of reads from empty queues. Accepting too few messages, however, allows

queues to over
ow frequently and incurs substantial 
ow control delays.

The acceptance count touches on fairly complex issues. A naive argument leads

one to believe that accepting a single message is su�cient. The communication layer pairs

requests and replies on a one-to-one basis|each request message generates one reply mes-

sage. A process receives one reply for each request that it sends. Similarly, a process sends
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one reply for each request that it receives. As an implicit poll operation occurs whenever

a process sends a message, these equalities imply that the process polls at least once for

every message received. In other words, a poll operation receives an average of at most one

message.

The average-case argument fails to account for potential di�erences between the

types of tra�c, however. A process checks only for incoming replies when sending a reply,

hence the number of polls for incoming requests does not necessarily exceed the number

of requests sent to a process. The poll operation must acknowledge the possibility of an

imbalance between messages sent by a process and messages sent to the process to avoid

starving the latter. Furthermore, messages sent to a process may arrive later or in di�erent

time distributions from those sent by the process, and extending the queue delay typically

degrades performance.

While providing for the possibility of tra�c imbalances, the poll operation must

also consider the issue of progress. If a poll accepts too many messages, it slows or halts

progress by forcing the process that owns the queue to focus constantly on the demands of

other processes.

We chose an acceptance count of four for our system. This value is large enough

to accommodate incoming tra�c but small enough to avoid starvation by other processes.

We address empty packet reads through our adaptive polling strategy, which maintains our

acceptance policy by increasing the number of messages accepted whenever it reduces the

e�ective number of polls.

4.1.2 Alternative data structures

Changes to the network data structures also reduce the number of empty remote

packet reads. Currently, a poll operation must walk through the packets in a network queue,

examining each packet's type. The simplest change involves using a non-modular queue tail,

which a process can then compare with the queue head to determine the number of messages

in the queue. This change results in only a single network read to check for available

messages. However, a substantial fraction of polls �nd their network queues completely

empty, and the change has no e�ect in this situation. The altered data structure might

improve network performance, but cannot solve the polling interaction problem completely.

A more substantial reworking of the network protocol to use pools of packets rather
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than queues has similar results for polling interaction. With pools, we dissolve the notion

of ordering inherent to a queue by using bit masks to indicate each packet's status. For the

network protocol, pools provide a much cleaner abstraction than queues, as they eliminate

head-of-line blocking and couple 
ow control to message reception. They also require only

a single network read, a bit mask, to check for available messages, but again they do not

solve the problem completely.

As both of these options required changes to the network protocol, while neither

promised a satisfactory solution, we performed neither.

4.1.3 Fractional strategies

Another approach to eliminating empty remote reads is to poll for remote messages

less frequently, perhaps on every other poll operation, or on every tenth poll operation. We

call this approach a fractional strategy. In order to remain responsive to remote tra�c, a

fractional strategy must accept more messages when checking the network. A fractional

strategy that checks the network on every fourth poll operation and yet only receives four

messages, for example, e�ectively limits remote message reception to one message per poll

operation, with the same potential for starving incoming tra�c as discussed earlier. To

balance the reduced polling frequency, a fractional strategy accepts a correspondingly larger

number of messages when checking for remote messages. A strategy that polls the network

only once in every four calls to poll then accepts up to four times as many network messages

in a single network poll as it does shared memory messages in a shared memory poll.

Although fractional strategies are fairly e�ective in reducing the performance im-

pact of multi-protocol polling, they require a compromise between performance on Clumps

at opposite extremes. An SMP, for example, works best with a very small fraction, perhaps

one in sixty-four or smaller. A NOW, on the other hand, requires a reasonably large fraction,

certainly no less than one in eight. No single fraction performs well on all platforms.

4.1.4 Adaptive strategies

An adaptive strategy overcomes the limitations of fractional strategies by adjusting

polling rates dynamically in response to tra�c patterns. A general adaptive strategy selects

a subset of protocols for examination by each poll operation, but we consider a slightly

simpler set of strategies that always poll for local messages. The cost of deciding whether
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to skip a queue in shared memory is comparable to the cost of polling the queue. Our

adaptive strategy thus varies a fractional polling rate for the network between minimum

and maximum values based on a history of recent remote message arrivals.

4.2 Adaptive Polling Framework

In this section, we develop a parametrized framework for adaptive polling strate-

gies. As the critical path for sending a message includes a poll, we must carefully optimize

any code necessary to the strategy. Our goal is thus to construct cheaply calculated esti-

mates of message tra�c based upon the number of messages received during each poll, and

then to use those estimates to make polling decisions. Our construction includes a num-

ber of parameters that allow us to explore tradeo�s for which solutions are not intuitively

obvious. We examine empirical data for selecting parameter values in Chapter 7.

We begin the section with a simple form of tra�c estimation: given counts ni of

the number of messages received by the ith poll operation, produce an estimate ti of the

number of messages that the (i+1)th poll will receive. The subscripts serve to di�erentiate

between the individual poll operations, which we number beginning with 1 from the start

of program execution. Similarly, superscripts di�erentiate between local and remote tra�c.

The text describes all other symbols, and in particular the parameters of the adaptive

strategy. After addressing the simple form, we extend the equations to handle the case in

which the nremote
i have been arti�cially altered by ignoring remote messages during some

polls. We close the section with a formulation of our poll skipping strategy in terms of the

tra�c estimates.

4.2.1 Single-poll estimation

We estimate tra�c for each protocol using an exponential moving average (EMA)

of the number of message arrivals during each poll operation. An EMA smooths discrete

sequences of values by balancing each new value with all previous values, weighted with

a decreasing geometric series. The resulting function decays exponentially in response to

a step function in its input, giving the EMA its name. The factor used for weighting the

values determines the degree of damping, or the rate at which the EMA tracks changes in

the measured tra�c. A high damping factor|one close to unity|works well for sparse but
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uniform arrival rates, while a low damping factor allows the EMA to respond quickly to

changes. Formally, we de�ne ti as follows:

ti � �ti�1 + (1� �)ni (4.1)

or ti = (1� �)

�
�i

t0

1� �
+ �i�1n1 + � � �+ �ni�1 + ni

�

where � 2 R is a damping factor in the interval [0; 1). The second form illustrates the

geometric series of weights.

Two aspects of (4.1) help to reduce the time necessary to compute tra�c estimates.

First, an endpoint need maintain only a single datum, the tra�c estimate for the current

poll, in order to calculate a new estimate after the next poll operation. Second, we base

the EMA on message arrivals at discrete poll operations rather than on actual arrival rates

(messages per second, for example). Incorporating time into the EMA entails calculating

powers of the damping factor and hence requires at least an additional table lookup. Clock

routine calls can also be quite expensive. Except at points of synchronization, we expect

the impact of ignoring time to be minimal. Polls occur reasonably uniformly in time,

particularly at the scale implied by a high damping factor.

We further optimize the estimate calculation by restricting the damping factor �

to be a rational number, and in particular to take the form (d� 1)=d for some c 2Z, c � 0,

d = 2c. Rewriting (4.1) with the damping parameter d, and assuming standard integer

arithmetic, we �nd:

ti =

�
(d� 1)ti�1 + ni

d

�
(4.2)

The multiplication by (d� 1) requires only a shift and a subtraction, and the division by d

requires only a shift. However, the loss of accuracy due to the integer operations in (4.2) is

unacceptably severe. A single poll operation rarely receives more than a few messages, yet

some ni must exceed d in order to raise the estimate above zero. We thus maintain a �xed-

point rather than an integral value for tra�c estimates. For b-bit precision, we increase ni

in (4.2) by a factor of a = 2b (with d < a) to obtain the �xed-point form:

ti =

�
(d� 1)ti�1 + ani

d

�
(4.3)

The multiplication by the accuracy parameter a again requires only a shift. In the text,

we continue to discuss the actual, integral values of tra�c estimates rather than the values

represented; although rarely relevant to the discussion, the values represented are a factor
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of a smaller. Using (4.3), we expect our tra�c estimate to settle near a�n when each poll

receives, on average, �n messages.

4.2.2 Multiple-poll estimation

The tra�c estimate calculated by (4.3) relies on the availability of n, the number

of messages received by each poll operation. However, by skipping the check for remote

messages during some polls, we arti�cially shift messages to the poll that next checks the

network, forcing the nremote to zero for skipped polls. We must hence extend our de�nitions

to handle the case in which the number of message arrivals is known only as an average

over many polls. Consider the reception of n messages during the ith poll, and assume that

the previous s� 1 polls did not check for arrival. If we assume that messages arrived at a

uniform rate of n=s with respect to the poll operations, we can replace � with (d � 1)=d

in (4.1) and apply the result s times to obtain:

ti =
1

d

n

s
+
d� 1

d

�
1

d

n

s
+ � � �+ d� 1

d
ti�s

�

or ti =

�
d� 1

d

�s
ti�s +

�
1�

�
d� 1

d

�s� n
s

The result has the same form as the original equation, but the damping factor has been

raised to the sth power. A similar form arises with time-based EMA's.

A table lookup can approximate the s-poll damping factor fairly well, but such

precision is unnecessary. We avoid adding indexing and a memory reference to the critical

path by approximating the damping factor with a linear function of s: 1�s=(2d). For large d,
the linear approximation is greater than the exact function in the interval (0; 1:5936d). Our

system skips at most d polls, e�ectively increasing damping for the network protocol. As

the time scale of remote tra�c is longer than that of local tra�c, the additional smoothing

has little adverse e�ect.

Applying optimizations similar to those used for the single-poll case, we arrive at

the following equation for tra�c estimates:

ti =

�
(2d� s)ti�s + ani

2d

�
(4.4)

This equation requires an integer multiplication, but need be performed only after a poll

operation that checked for remote messages.
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4.2.3 Poll skip selection

We have now de�ned the tra�c estimate equations for each protocol and can turn

to the heart of the adaptive strategy, determining the number of polls s to skip between

checks for remote messages. As a �rst attempt, we choose s such that the system polls when

the tra�c estimates predict the arrival of a message. Recall that the number of messages

accepted cannot exceed the number of polls. The use of two protocols does not change

this fact, hence tlocal + tremote � a. After checking the network for messages, the expected

number of polls before another remote message arrives is thus a=tremote, and we write:

s =
a

tremote
(4.5)

Calculation of (4.5) requires an integer division after each poll that examines the

network. We can elide a check for division by 0 in calculating s if we ensure that tremote

converges to a small but non-zero value when the network remains quiescent for an extended

period. Let t1 be a value of t that remains stable across iterations of (4.4) when no messages

arrive. Then t1 must satisfy:

t1 =

�
(2d� s)t1

2d

�
2d t1 � t1(2d� s) < 2d(t1 + 1)

�2d

s
< t1 � 0

t is thus stable in the interval (�2d=s; 0] when no messages arrive. If s � 2d, all terms in the

numerator on the right hand side of (4.4) are positive, and t stops at 0 when approaching

from above. By adding s to the numerator, we shift this point of convergence to 1. Thus,

we obtain as the �nal form of the network tra�c estimate:

tremote
i =

$
(2d� s)tremote

i�s + s + anremote
i

2d

%
(4.6)

The strategy de�ned by (4.5) ignores the estimate of local tra�c, an approach that

works well when local tra�c is frequent. When both protocols are quiescent, however, the

strategy still selects large values for s, unnecessarily penalizing responsiveness to remote

tra�c. We adjust the approach by adding a factor of tlocal=a, with the result:

s =
tlocal

tremote
(4.7)
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This factor couples the aggressiveness of remote message polling to the local tra�c estimate.

When local tra�c is infrequent, the adjusted strategy polls the network aggressively. But

when local tra�c is frequent, the new strategy retains nearly the same character as the

original strategy, polling only when a message is expected. In the latter case, the remaining

di�erence between the two strategies, a minor reduction in the number of skips from the

old to the new, reduces the lag time when remote tra�c increases by checking for messages

before they might otherwise be expected.

As a �nal adjustment to the strategy, we might wish to poll the network less

frequently than shared memory even when tra�c levels are similar. This adjustment trades

overhead between the protocols, reducing overhead for local messages at the expense of

remote messages. Using an equality parameter k to de�ne the number of network polls

to skip when observing equal levels of tra�c, we write the �nal form of our local tra�c

estimate:

tlocali =

$
(d� 1)tlocali�1 + kanlocali

d

%
(4.8)

If we choose k to be a power of 2, we need merely shift ni by a di�erent amount when

estimating local tra�c.

4.2.4 Poll skip restriction

As the last step in de�ning an adaptive strategy, we bound the number of network

polls skipped at both ends:

smin � s � smax

The parameter smin must be small enough so as not to degrade performance on a NOW,

yet large enough to prevent overly frequent network polls from degrading local message

performance on a Clump. Analogously, the parameter smax must be large enough to so

as not to degrade performance on an SMP, yet small enough to prevent overly infrequent

network polls from degrading network performance on a Clump.

4.3 Parameter Tradeo�s

The adaptive polling framework optimizes the process of deciding when to poll for

remote messages but parametrizes values for which an intuitive choice might not be correct.
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Parameter Symbol Value Description

acceptance N/A 4 default number of messages accepted by a poll

count operation

accuracy a 4,096 fractional component of tra�c estimates (12 bits)

damping d 256 damping factor for inclusion of new message

arrival counts into tra�c estimates

equality k 4 number of network polls skipped when observing

equal levels of tra�c on the two protocols

minimum smin 4 lower bound on the number of polls skipped

skip before checking the network

maximum smax 64 upper bound on the number of polls skipped

skip before checking the network

Table 4.1: Polling strategy parameters and values. We chose the �rst two parameters

without measurement. We selected all others based on application performance data.

In this section, we discuss the tradeo�s associated with each parameter, establishing our

rationale for selecting the actual values through empirical performance studies.

An adaptive strategy extends the naive poll operation with tra�c calculations

and a remote polling decision. In particular, the revised poll operation begins by counting

down from the last skip count s to decide whether or not to check for remote messages.

The operation next handles up to four local messages, then either skips network polling or

handles up to 4s remote messages. The poll operation keeps track of the number of messages

received with each protocol for use in revising the tra�c estimates. At the end of the poll

operation, a process uses (4.8) to update the local tra�c estimate. If the poll checked the

network, the process also updates the remote tra�c estimate using (4.6) and selects a new

value of s with (4.7), adjusting the new value to fall in the interval [smin; smax].

Including the acceptance count, an adaptive strategy is determined by a total of

six parameters, as shown in Table 4.1. The �rst two parameters, acceptance count and

accuracy, admit reasonably intuitive choices, whereas the other four require measurement.

We discussed the issues for acceptance count in detail in Section 4.1.1 and mentioned our

choice of four messages per poll. Accuracy needs to be both large and small enough to

prevent the loss of information through roundo� and over
ow, respectively. We chose

12-bit accuracy for our system.

The damping parameter d determines the degree of smoothing in the tra�c esti-

mates. Equivalently, d determines the scale at which we estimate tra�c. At d = 16, for
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example, the last 35 polls contribute at least 10% as much to an estimate as does the current

poll. At d = 128, the last 293 polls meet this criterion. A high damping parameter thus

smooths bursty arrival rates and reduces the discrepancy between arrivals measured in time

and arrivals measured by the number of intervening poll operations. A overly large damp-

ing parameter, however, prevents the layer from reacting quickly to actual changes in the

communication pattern: when local tra�c transitions from quiescent to a uniform arrival

rate at d = 1024, the system requires 2; 357 poll operations to bring the tra�c estimate

to 90% of the arrival rate.

The equality parameter k determines the frequency of network polling when the

tra�c estimates are roughly equal. A low value of k is fair in the sense that the layer is

equally responsive to both protocols. However, equal levels of tra�c do not imply that

most polls receive messages, and a low value of k may still adversely a�ect performance

by checking the network too frequently. A high value of k circumvents this problem by

eliminating network polls, but may result in a layer that needlessly delays remote messages

whenever any tra�c uses the shared memory protocol.

The minimum skip parameter smin places an upper bound on the frequency of

network polling. In a manner similar to the equality parameter, a high value of smin

prevents the communication layer from performing too many empty network reads, but

does so without regard to estimated levels of tra�c. When smin is too high, however, this

insensitivity to tra�c degrades remote message performance.

The maximum skip parameter smax places a lower bound on the frequency of

network polling. A high value of smax allows the communication layer to ignore the network

under appropriate tra�c conditions. When smin is too high, however, the layer checks the

networks so rarely that it may fail to recognize changes in the tra�c patterns.

4.4 Summary

We have outlined an adaptive strategy that dynamically adapts the frequency

of polling within a communication layer to changing patterns of message tra�c. This

strategy allows our multi-protocol layer to provide high levels of performance on a range

of Clump architectures. Included in our explanation of the strategy are six parameters

designed to expose the e�ects of the underlying hardware and of the operating system on a

communication layer's performance. For a general Clump built from a common hardware
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and software base, the strategy need be tuned only once to provide adequate performance

on all platforms.

This chapter completes our description of the multi-protocol communication archi-

tecture. In the next few chapters, we address performance, beginning with our methodology

and hardware parameters in Chapter 5 and continuing with shared memory protocol per-

formance in Chapter 6. We return to the adaptive strategy and tuning its parameters for

Clump performance in Chapter 7.
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Chapter 5

Experimental Methodology

We have completed our description of the architecture of our multi-protocol com-

munication layer and now investigate its performance. In this chapter, we present our

methodology, including the details of each experiment, the strategy for collecting results,

and the style of reporting data. The common methodology provides a necessary framework

for interpreting the measurements reported in the next two chapters. This chapter begins

with an explanation of our approach for aggregating and reporting data, then introduces

the Clump architecture used to measure performance. We report the important hardware

parameters for our experimental platform, which aid in evaluating and interpreting the

level of performance delivered by our layer. We next describe our suite of performance

benchmarks for passing messages through shared memory. These benchmarks range from

simple pairwise exchanges of data between two dedicated processors to multiple copies of

full applications competing for cycles. A subset of these benchmarks also serves to measure

performance on a Clump.

The next two chapters present the results of our experiments and our interpretation

of the data. In Chapter 6, we focus on the shared memory protocol, comparing the lock-

free algorithm with alternatives and exploring the performance of communication across a

memory interconnect. Chapter 7 addresses performance on Clumps, including the tuning

of the adaptive polling strategy and a comparison with performance on a NOW.
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5.1 Standard Methodology

Measurements of computer systems are rarely precise. Seemingly random inter-

actions with complex hardware and software systems couple with synchronization races

to produce timings that vary widely between executions. Researchers often address this

problem by averaging over a few runs, but a simple mean is not in general adequate to

allow comparisons between experiments or to explain performance e�ects. Without some

knowledge of variability, the fact that the measured mean of A is greater than the measured

mean of B implies only that B is probably faster than A on average. The di�erence between

that implication and an unbiased coin 
ip may be vanishingly small, however. We employ

more e�ective approaches to gathering data and include measures of variability when re-

porting results. In the majority of our experiments, we employ a common methodology.

This section begins with a short discussion of interpreting units, then describes our standard

methodology and comments on its appropriateness for our measurements.

Nearly all of our results include units of time or data. All time measurements utilize

wall-clock time, as given by the Solaris gethrtime() call. This function has a granularity of

16 cycles on our machines and an overhead of roughly 0.7 microseconds when separated by

at least one 16-cycle tick. We report units of data in terms of bytes (B), kilobytes (kB), or

megabytes (MB), depending on the magnitude of the measurement. In all reported values,

the relationship between these units is de�ned in terms of standard computer notation, not

metric notation. For example, 1 MB is equivalent to 1,048,576 B, not 1,000,000 B.

When using our standard methodology, we repeat an experiment one hundred

times to minimize the impact of random error on our results, then report three values: the

arithmetic mean of the repeated experiments, the 95% con�dence interval on the reported

mean, and the standard deviation of the repeated experiments. For measurements of a

variable V , with experiments ranging from 1 to N = 100, we calculate the mean �V , the

standard deviation �V , and the con�dence interval �V as follows:

�V � 1

N

NX
i=1

Vi

�V �
"PN

i=1

�
Vi � �V

�2
N � 1

# 1

2

�V � 2�Vp
N

(5.1)
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We select a multiplier of 2 for simplicity, hence our con�dence intervals are slightly higher

than 95% when V is normally distributed. After calculating these values at the precision re-

turned by the experiment, we round the con�dence interval up to the nearest value with one

signi�cant digit. We then report the mean and standard deviation to the precision speci�ed

by the con�dence interval, rounding o� the values beyond that point. We do not report con-

�dence intervals on standard deviation. We typically present results in the following format:

V ��V

� = �V

3:065� 0:008

� = 0:036

Although our de�nitions re
ect methods typically employed in the statistical anal-

ysis of experimental data, we must be careful in interpreting our results in that fashion. The

traditional notion of a con�dence interval applies only when each measurement is indepen-

dent of all others and all measurements are drawn from identical probability distributions.

With computer systems, neither property necessarily holds.

Separate measurements often interact with common software subsystems, mak-

ing later measurements dependent on the state changes induced by earlier measurements.

Common sources of dependency include physical memory layout, �lesystem cache contents,

and other operating system resources. Hardware cache alignment and contents also play a

role for multiple measurements made within the context of a single job.

A measurement's probability distribution also depends fairly heavily on the state

of the machine. Certainly an unrelated process on the same machine can change the result,

either directly by claiming a processor for some amount of time or indirectly through cache

pollution or contention for memory or network access. Other computers can also a�ect the

results by interacting with the measured machine through the network or by generating

network tra�c that contends with measured tra�c inside the network.

Scrubbing the machine of unrelated processes and eliminating the possibility of ex-

ternal interference reduces or removes most of these e�ects, but some persist. In particular,

certain e�ects are random across reboots but persistent after any given boot. These e�ects

cannot be treated as random factors without rebooting the system for every measurement.

Their magnitudes|a few tens of cycles, or a fraction of a microsecond|tend to be smaller

than the magnitudes of random e�ects for many measurements, but their systematic nature

limits the accuracy of our results. We note the impact of these e�ects when discussing our

data in Chapters 6 and 7.
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5.2 Hardware Architecture

A prototypical Clump consists of symmetric multiprocessors (SMP's) connected

by a fast network. In studying communication, we focus on the interconnection hierarchy

between processors. Within each SMP, a backplane connects processors and main memory.

Between SMP's, processors communicate via fast network devices attached to I/O buses on

the SMP backplanes. We begin this section with a description of the Clump used in our

performance study, then introduce a useful tool for low-level measurements: a cycle-exact

timing loop. We next discuss the system parameters that play important roles in both

inter- and intra-SMP communication and present the values of these parameters for our

Clump architecture. The section concludes with a summary of the important aspects of the

architecture.

We obtained empirical results for a cluster of four a Sun Enterprise 5000 servers,

as shown in Figure 5.1. Each server contains eight 167 MHz UltraSPARC processors and

2 GB of main memory. Sun's Gigaplane Interconnect [SBC+96] connects the processors

and memory. This high-performance bus is representative of many modern cache-coherent

system interconnects; its most unusual characteristic is support for more than one out-

standing transaction on a single cache line, e�ectively pipelining concurrent memory tra�c

between processors. The Gigaplane implements an extended version of the MESI invalida-

tion protocol [PP84] to maintain coherence between processor caches and main memory.

For atomic transactions, the Sparc V9 instruction set supports both the universal [Her88]

Compare&Swap primitive (CAS) and the less powerful Test&Set (T&S) and Swap

primitives. The interconnection between SMP's consists of a Myrinet network [BCF+95]

with four independent links to each SMP. The links support 160 MB/sec of bidirectional

bandwidth, but the SBUS I/O bus and network communication software limit the band-

width realized by applications to around 31 MB/sec. Four Myricom Lanai 4.1 M2F eight-

way crossbar switches comprise the network fabric, which thus has a diameter of three hops

and a bisection bandwidth of 640 MB/sec.

For comparison, we also obtained a subset of our performance measurements on

a cluster of thirty-two UltraSPARC Model 170 workstations, each with 128 MB of main

memory. This NOW uses the same Myrinet network cards for interprocessor communica-

tion, but each workstation employs only one SBUS and one Myrinet network interface card.

The network fabric is also the same, but the topology is similar to a fat-tree [MCSW97].
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Figure 5.1: Target Clump architecture. Four Sun Enterprise 5000 servers with eight

167 MHz UltraSPARC processors. Each SMP uses four independent SBUS's to communi-

cate through a Myricom Myrinet network.
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1: cmp %0,0

nop

bg 1b

dec %0

Figure 5.2: Two cycle per iteration loop for Sparc V9. The C compiler selects a register, %0,

in which to pass the cycle count (divided by two) into the loop. The label, \1:," is local

to each instance of the loop, and the branch target, \1b," refers to the last instance of the

label 1 in the backwards direction.

5.2.1 Timing loops

As a convenient mechanism for generating accurate delays for benchmarks and

backo� operations, we developed a loop that executes in an exact number of machine cycles.

Although such a loop at �rst appears trivial to construct, we must recognize some subtle

e�ects of instruction cache alignment and superscalar issue.

The simplest approach involves a register decrement loop, and indeed these loops

can suit our purpose, as shown in Figure 5.2. On a Sparc, optimizing compilers produce

loops that usually execute in one cycle per iteration. However, if such a loop falls across

a cache line boundary, the instructions can not all be issued in the same cycle, and the

loop executes more slowly. We considered aligning the loop, but the Sparc assembler pads

intervening words with illegal trap instructions (opcode 0) and thus requires that we branch

to aligned code. By inserting an additional nop instruction, we create a loop that requires

two cycles per iteration regardless of cache alignment, as shown in the �gure.

The cycle count, or TICK, register presents an alternative approach, but the re-

lationship between the TICK register on distinct processors is unde�ned, and migrating

from one processor to another can produce odd and incorrect results, e.g., negative timings.

Also, TICK accesses are privileged by default, and user-level accesses generate exceptions.

These considerations make a TICK-based approach less attractive than our register-based

approach.

5.2.2 Cache parameters

Two aspects of hardware performance are critical to shared memory message-

passing: the memory hierarchy and the cost of synchronization primitives. The memory

hierarchy, and in particular the parameters of L2 cache, governs the rate at which data
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moves from one processor to another; synchronization primitives impose the basic overhead

for concurrent access to data by multiple processes. We �rst investigate three aspects of

the memory hierarchy: the access times for single processors, the cost of cache-to-cache

transfers, and the bandwidth achieved in copying memory between bu�ers. We time the

relevant synchronization primitives in Section 5.2.3.

Sequential access times

We measure the relevant aspects of the memory hierarchy with microbenchmark

techniques pioneered by Saavedra-Barrera [Saa93]. The approach is fairly simple: for an ar-

ray of a given size, we loop repeatedly through the array, reading elements at a given stride.

We time a total of sixteen million accesses and calculate the time per access to within a

cycle. We then graph these access times for a range of array sizes and strides, as shown in

Figures 5.3 and 5.4. The �rst of these �gures represents the results on an Enterprise 5000

server, while the second represents the results on an UltraSPARC Model 170 workstation.

Our main goal in presenting these results is to determine the L2 cache parameters that limit

the performance of the shared memory protocol. However, we present a more complete eval-

uation of the two memory hierarchies to illustrate the similarity between the architectures,

an aspect that lends weight to our use of the Model 170 as the building block for the NOW

against which we compare Clump performance.

The features of Figure 5.3 provide information about the memory hierarchy in

the Enterprise 5000. The lowest group of lines (8 and 16 kB arrays) lies at 2 cycles and

represents 1 cycle of L1 hit time and 1 cycle of overhead from the inner loop. Only for L1 hits

does this inner loop overhead appear; in all other data, it is hidden by the access time. The

lines begin to rise past 256 B due to overhead from the outer loop, which includes inner

loop initialization. The reduced access time when the stride equals the array size probably

represents a combination of better branch prediction for the inner loop and relaxation of

dynamic dependencies between accesses, which are all destined for the same register. The

separation between the lines for 16 and 32 kB arrays also indicates the size of the L1 cache:

16 kB.

The next group of lines includes arrays from 32 to 256 kB. The exponential rise

from 4 to 16 B strides re
ects the number of L1 cache misses; the access times stop rising at

16 B, when each access incurs a miss. The L1 line size is actually 32 B, but the cache uses
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Figure 5.3: Enterprise 5000 server memory access graph.

16 B subblocks. The Sparc V9 can pipeline data from the L2 cache into the L1 cache, but

our use of a single destination register in the loop prevents this capability from a�ecting the

graph. The plateau at 8 cycles thus re
ects the L2 cache hit time. Note again the e�ects

of outer loop overhead on the right side of the �gure.

Skipping the line representing a 512 kB array, we next consider the group of lines

for 1 to 4 MB arrays. In a manner similar to that displayed by the previous group, these

lines rise exponentially from 4 to 64 B as more accesses incur L2 cache misses. The times

stop rising at 64 B, the L2 line size, and we read the main memory access time as 51 cycles.

Past 64 B, the lines immediately begin a similar increase due to translation lookaside bu�er

(TLB) misses. The latter trend stops at a stride of 8 kB, the virtual memory page size,

incurring a 97 cycle delay to handle both misses. For very large strides, and in particular

when the loop accesses no more than 32 elements, the access times for these arrays drops

back down to the L2 miss time. Such a drop generally re
ects some kind of associativity,

probably in this case through a fully-associative, 32-entry victim cache. Both the L1 and

the L2 caches in this architecture are direct-mapped.

The last line, which represents a 512 kB array, mingles the character of the previous
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Figure 5.4: UltraSPARC Model 170 workstation memory access graph.

two groups to include TLB misses without L2 misses. Recalling the page size of 8 kB, we thus

conclude that the data TLB has 32 entries and that the L2 size is 512 kB. The processor's

data TLB actually has 64 entries [SME97], but the software TLB miss handler reserves

some of the entries for the operating system.

Now consider Figure 5.4, which presents the results of the same experiment on

an UltraSPARC Model 170 workstation. As re
ected by the lower portions of the �gures,

the upper levels of the hierarchy are identical to that of an Enterprise 5000 (with the

same processor). This similarity allows a more meaningful evaluation of the performance

of our Clump compared with a NOW than is possible with a more disparate workstation

architecture. Memory accesses are slightly faster, requiring only 44 cycles, and combined

L2/TLB misses require a total of 84 cycles.

Parallel access times

A similar benchmark enabled us to time the cost of moving a cache line between

caches. Two processors take turns walking through a shared array the size of the L2 cache

and writing one word to each cache line. The last word in the array serves as the handshake



82

Enterprise 5000 UltraSPARC Model 170

L2 size 512 kB 512 kB

L2 line size 64 B 64 B

L2 miss (memory) 51 cycles 44 cycles

L2 miss (other L2) 84 cycles N/A

memcpy bandwidth 184 MB/sec 168 MB/sec

Table 5.1: Level 2 cache parameters.

signal between the processors. One processor �lls the array with ones and waits for a 
ag

value of zero before beginning again, and the second processor �lls the array with zeroes

and waits for a 
ag value of one. We time ten thousand alternating array walks, subtract

the loop overhead, and calculate the cost of bringing a single cache line from a remote cache

into a modi�able state in the local cache. Two boundary e�ects arise|the latency-hiding

ability of the L2 write bu�er and the potential for extra coherence transactions on the 
ag

value|but these e�ects oppose each other and are amortized over the number of cache lines

(8,192 in our system). On the Enterprise 5000, the cache-to-cache transfer takes about half

of a microsecond, or 84 cycles of the 167 MHz processors.

Memory copy bandwidth

Lastly, we measured the memory copy bandwidth available on each platform.

Sparc V9 implementations provide a block-transfer engine to support multimedia appli-

cations through the VIS instruction set extension. This engine, which supports transfers

with arbitrary alignment, is also very useful for memory copy operations. We measured

individual 8 kB memory copies to re
ect the expected performance of memory copies for

bulk transfers within our communication layer. We carefully measured and subtracted

timer overhead to obtain more accurate results, but still observed variations of two to three

megabytes per second. The results appear in Table 5.1 along with a summary of the cache

hierarchy information relevant to interprocessor communication. The Enterprise 5000 deliv-

ers roughly 184 MB/sec of memory copy bandwidth, signi�cantly more than the 168 MB/sec

delivered by the workstation.
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Enterprise 5000 &

UltraSPARC Model 170

Primitive Completion Stall

Test&Set 15 cycles (90 nsec) 2 cycles (12 nsec)

Swap 15 cycles (90 nsec) 2 cycles (12 nsec)

Compare&Swap (success) 16 cycles (96 nsec) 3 cycles (18 nsec)

Compare&Swap (failure) 14 cycles (84 nsec) 3 cycles (18 nsec)

Table 5.2: In-cache synchronization primitive timings. Stall time cannot be overlapped with

other instructions. Data become available after the completion time.

5.2.3 Synchronization primitives

The cycle loop described earlier provides an e�ective mechanism for isolating the

execution time of single instructions, and in particular an architecture's synchronization

primitives. The Sparc V9 instruction set provides three synchronization primitives: CAS,

T&S, and Swap. We insert each primitive into a loop of ten million iterations, then time the

loop with high-resolution timers. Overhead from the timer call, scheduler interactions, and

other interrupts never comes close to ten million cycles (a one second loop incurs roughly

ten thousand cycles of overhead), hence this approach allows us to time loop iterations with

cycle accuracy. By adding nop's and timing the loop with and without the synchronization

primitive, we can further determine what portion of the completion time for a synchroniza-

tion primitive can be overlapped with other operations. The remaining time is the stall

time for the primitive. We report the measured values in Table 5.2. Completion times for

all primitives are roughly twice the L2 hit time; these instructions are likely processed in

the L2 cache. CAS requires two extra cycles (one bus cycle) when successful. Stall times

are two or three cycles.

5.2.4 NIC parameters

We also use the cycle loop to isolate the cost of loading from and storing to memory

on the network interface card. These parameters govern the cost of programmed I/O to

the NIC and are the base costs for the network protocol. In particular, the network poll

operation performs two reads when polling an empty queue. The techniques are the same

as those used for measuring the synchronization primitive timings. In an otherwise empty

loop, reads destined for the same register block at the next read until the data arrive.

Writes typically go into the write bu�er and do not delay the processor unless the write
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Operation Enterprise 5000 UltraSPARC Model 170

32-bit read 153 cycles (918 nsec) 114 cycles (684 nsec)

32-bit write 53 cycles (318 nsec) 33 cycles (198 nsec)

64-bit read 160 cycles (960 nsec) 122 cycles (732 nsec)

64-bit write 62 cycles (372 nsec) 40 cycles (240 nsec)

I/O bus bandwidth 4x31 MB/sec 31 MB/sec

Table 5.3: NIC memory access timings. Read latencies are typically exposed, while write

latencies are typically hidden by the write bu�er. Bandwidths re
ect transfer rates achieved

by AM-II.

Enterprise 5000 UltraSPARC Model 170

Number of processors 8 1

Clock speed 167 MHz 167 MHz

Processor type UltraSPARC V9 UltraSPARC V9

L2 size 512 kB 512 kB

L2 line size 64 B 64 B

L2 miss (memory) 51 cycles 44 cycles

L2 miss (other L2) 84 cycles N/A

memcpy bandwidth 184 MB/sec 168 MB/sec

NIC 32-bit read 153 cycles 114 cycles

NIC 32-bit write 53 cycles 33 cycles

SBUS bandwidth 4x31 MB/sec 31 MB/sec

Compare&Swap 15 cycles 15 cycles

Table 5.4: Summary of memory, network, and synchronization primitive parameters for our

Enterprise 5000 servers and UltraSPARC Model 170 workstations.

bu�er over
ows. To measure writes, we perform a write followed by a read, each dependent

on the other, then subtract the cost of the read alone.

Both the read and the write latency can be fully hidden by other work, so long as

that work does not introduce dependencies or access the memory system. Surprisingly, the

cost of traversing the more powerful interconnect is much more prominent in NIC access

times that it is for memory accesses. An Enterprise requires 153 cycles to complete a

32-bit read, whereas the Model 170 delivers the data in 114 cycles. The absolute di�erence

for 32-bit writes is about 20 cycles, and 64-bit operations have roughly the same absolute

di�erences, and shown in Table 5.3. Bus bandwidth, as measured in one direction with

AM-II, is roughly 31 MB/sec on both platforms.
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5.2.5 Summary

We have presented those parameters of our experimental platform that directly

impact issues of communication. Table 5.4 summarizes the important parameters. Both

the design and the performance of the shared memory protocol depend on the memory

hierarchy and synchronization primitives, and NIC memory access times play a major role

in network protocol performance. The Model 170 parameters in themselves provide an

interesting example of the impact of using a more powerful memory interconnect on access

times. One must be careful not to read too much into the numbers in this sense, however.

Temporal and spatial locality amortize the 16% increase in memory latency, and, in our

experience, application performance rarely re
ects this di�erence. More importantly, the

workstation parameters support our e�orts to compare the performance of Clumps and

NOW's by demonstrating the similarities between our experimental platforms.

5.3 Performance Benchmarks

We are now ready to discuss our metrics of performance, which we cast as a

benchmark suite for shared memory message-passing. Concurrent queue algorithms are

often tested in isolation, with enqueue-dequeue pairs in a tight loop, for example. Although

such microbenchmarks can be instructive for comparing the dynamic length of mutually

exclusive critical sections, they tend to arti�cially in
ate per-processor contention and fail

to capture the performance of the algorithms as used in practice. A queue serves abstractly

to move items from a group of producers to a group of consumers. These items typically

take time to produce and time to consume, whereas an enqueue-dequeue pair loop examines

only the limit in which both production and consumption times go to zero. Applications

intended to scale beyond a handful of processors neither use single, centralized queues

nor enqueue items that require trivial amounts of work to consume. Furthermore, higher-

level abstractions such as a message-passing system typically add work to the encapsulated

enqueue and dequeue operations without extending the length of critical sections.

In this section, we adapt notions from the literature to the problem of evaluating

the performance of message-passing based on concurrent queues in shared memory. We

develop a benchmark suite that covers the range of contention, from uncontended access

using a single sender-receiver pair to maximal contention using many-to-one communica-
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Figure 5.5: LogP communication model. Send overhead os and receive overhead or require

processor cycles, whereas latency L across the interconnect does not. Round-trip time

RTT is twice the sum of those three parameters. The gap g shown in the �gure represents

the per-message average for long bursts; in most actual systems, a burst of two messages

requires only 2os.

tion. We also present a small set of applications with varying communication patterns to

measure the performance of a queue algorithm in actual use. Finally, we describe tests

using the applications to measure the ability of a given algorithm to operate on a multipro-

grammed machine. In Chapter 6, we compare the performance of a variety of concurrent

queue algorithms with that achieved by our lock-free algorithm. We also utilize a subset

of these benchmarks to measure performance on a Clump, and present the results of those

experiments in Chapter 7.

5.3.1 Communication parameters

The simplest parametrization of a communication system describes the time re-

quired for communicating between a single sender-receiver pair. The LogP model [CKP+93]

and its successor, LogGP [AISS95], capture the components of fast, user-level communica-

tion quite e�ectively. Assuming a small, �xed message length, the LogP model characterizes

communication networks as a set of four parameters: L, an upper bound on the network

latency (wire time) between processors; o, the processor busy-time required to insert a mes-

sage into the network or to accept one; g, the minimum time between message insertions for

large numbers of messages; and P, the number of processors. Descriptions of actual commu-

nication systems often separate the overhead o into send and receive overheads, as depicted

in Figure 5.5. The send overhead, os, is the processor busy-time for message insertion, and
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the receive overhead, or, is the processor busy-time for message reception. LogGP extends

the LogP model with a characterization of long message performance, as captured by the G

parameter, which gives the cost per byte for very long messages (i.e., in the limit of in�nite

length).

We measure and report the LogP parameters for both communication protocols

using a microbenchmark suite developed by Culler et al. [CLMY96]. We modi�ed and ex-

tended this suite to improve the precision of the reported values and to measure the value

of G. In general, each microbenchmark makes use of a single sender-receiver pair and sends

bursts of varying length from sender to receiver. A burst is simply a set of messages sent

back-to-back from the application level. We apply multiple stages of averaging to provide

more accurate results by transforming the probability distribution for single measurements

into a normal distribution. Typically, each microbenchmark run averages times from 100

bursts of 16,384 messages. Individual burst results are calculated by subtracting out timer

overhead, as measured with an empty loop body, then dividing the resulting time by the

number of messages sent to �nd an average time per message. We then average 100 mi-

crobenchmark runs to obtain our reported mean and con�dence interval. We do not report

standard deviations for these measurements, as they represent only the variance of the

operations when aggregated into our fairly arbitrary loop lengths and averaging groups.
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Several of the LogGP parameters allow direct measurement: round-trip time, send

overhead, and gap. We measure the other parameters, including receive overhead and la-

tency, indirectly. We now describe the exact methodology used to perform these measure-

ments and comment on our rationale and on the accuracy achieved through our approach.

Figure 5.6 illustrates each microbenchmark graphically.

Round-trip time

Round-trip time RTT represents the best-case time to send a request and to re-

ceive the corresponding reply, or twice the end-to-end, application-level latency. Measuring

round-trip time is straightforward. We send 16,384 messages, waiting for the reply between

each send operation as shown in section (a) of the �gure, then apply two-stage averaging

to obtain our reported value and con�dence interval. After the �rst stage of averaging,

the distribution measured by this microbenchmark depends on the ordered pair of proces-

sors being used: the mean round-trip between A and B di�ered by roughly 1% from the

round-trip time between B and A, although each distribution appeared to be normal. The

distribution of the sum of these two times, however, also appears to be normal. We thus

average between the two directions and present results based on 50 trials rather than 100.

We use a multiplier of 2.01 in Equation (5.1) to adjust for the reduced number of trials.

Send overhead

The send overhead os represents the amount of time that a processor must spend

in the communication layer when sending a short message. For reasonably short bursts of

request messages, neither 
ow control nor acceptance of the implied reply messages play

a role in execution time for a sender: the total time is simply the number of messages in

the burst multiplied by the send overhead, as shown in section (b) of Figure 5.6. We can

thus determine send overhead by measuring the cost of inserting a relatively short burst of

messages. During the message send loop, we delay the receiver so as to prevent receipt of

replies by the sender.

To minimize the impact of errors in timer overhead measurement and random


uctuations, the sender enqueues as many messages as possible, generally bounded by the

size of the receive queue. For the shared memory protocol, we shorten the queue to 1,024

entries to avoid covering the L2 cache with communication data. With the standard length
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of 4,096 entries, delaying the receiver has the side e�ect of 
ushing signi�cant amounts

of communication data from the receiver's L2 cache between timed insertion loops. As

we desired to capture the di�erence between packets supplied from memory and packets

supplied from the receiver's L2 cache on the send overhead, we decided to reduce the impact

of this e�ect by using a shorter queue. The send overhead microbenchmark then �lls these

shorter queues using bursts of 1,024 messages. For the network protocol measurements, the

queues are by design much shorter, and we send bursts of only 16 messages.

Two-stage averaging proves ine�ective for send overhead with the shared memory

protocol. The distribution for microbenchmark runs is bimodal and clearly not independent,

as a sequence of timings within the same process shows a clear pattern of motion between

the two modes. The di�erence between these modes|roughly 6 cycles|can probably be

attributed to cache e�ects, but one must consider this non-independence in interpreting the

results.

Receive overhead

The receive overhead or measures the time that a processor must spend in the

communication layer when accepting a short message. We de�ne receive overhead to be

the cost of calling the poll function and receiving a single message. We measure this cost

indirectly by measuring the sum of send overhead, receive overhead, and a known delay,

then subtracting the two additional terms. As shown in section (c) of Figure 5.6, we measure

the sum as follows: the sender sends a single message, delays for some time longer than

the round-trip time, and calls poll. We then apply standard error propagation formulae

to obtain our reported values. Denoting the measured sum by S and the delay by D, we

calculate:

or = S �D � os

�or =
h
(�S)2 + (�os)

2
i1=2

(5.2)

We have assumed in (5.2) that the random error on the delay D is negligible

relative to the other terms. The cycle loop described earlier serves as the basis for the

delay, taking the form of an aligned function with a correction factor for call overhead.

Although the distribution of run timings appears normal, the delay incurred by the cycle

loop function call 
uctuates between two modes separated by 3 cycles for unknown reasons.
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As these 
uctuations tend to be correlated in time, we must treat them as systematic error,

which limits the accuracy of our results. We report the mean at the mid-point between the

modes and add 1.5 cycles into the con�dence interval quadratically. The non-independence

of the send overhead distribution must also be considered when interpreting the results of

this microbenchmark for the shared memory protocol.

Gap

The gap g represents the average time required to insert a message for a long burst

of messages, as shown in section (d) of Figure 5.6. It captures the di�erence between the cost

of sending a few messages and the cost of sending many messages in rapid succession. The

gap is generally at least as large as the maximum of the send and receive overheads. A sender

cannot begin inserting a message until it has �nished inserting the previous message, and the

�nite nature of a receiver's resources prevent a sender from exceeding the reception rate for

very long bursts. The gap can exceed both overheads for other reasons as well. If 
ow control

does not allow a sender to saturate the network, the gap rises. For communication systems

with request-reply semantics, such as AM-II, a sender must alternate between sending

requests and handling replies, and the gap is close to the sum of those two overheads. The

distribution of run times for this microbenchmark appears normal, as desired.

Gap per byte

The gap per byte G represents the average time required per byte to insert a long

message. G captures the e�ect of hardware support such as DMA for sending long messages;

short messages typically make use of programmed I/O to avoid DMA startup costs, but

long messages amortize these costs to achieve lower overheads and latencies than are usually

possible with programmed I/O. We calculate G as the inverse of realized bandwidth for long

messages. In particular, a sender fragments a 512 kB message into 8 kB blocks and passes

them to a receiver in pipelined fashion. The receiver copies the messages into a receive bu�er

and acknowledges receipt of each block. We time the sender from sending the �rst block

until receipt of the last acknowledgement and calculate realized bandwidth B by dividing

512 kB by the measured time. G is then given by:
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G =
1

B

�G =
�B

B2
(5.3)

The realized bandwidth distribution appears roughly normal, but we incur a sys-

tematic error of roughly 0.7 microseconds by not accounting for timer overhead, which limits

our accuracy for G to 0:7 �sec=512 kB, or, rounding up, 2 picoseconds/B. We add this error

quadratically into the con�dence interval before reporting results. For the shared memory

protocol, the new term is typically dominated by the e�ects of random error, but it has the

same magnitude as the random error for the network protocol.

For the shared memory protocol, we also present data on realized bandwidth as

a function of message length, generalizing the gap per byte microbenchmark to serve this

purpose. By varying the total message length, we measure the bandwidth achieved when

sending messages of a given size and waiting for acknowledgement of receipt.

Latency

The latency L is roughly the time spent on the \wire," including any protocol

processing overhead on a network interface card. In practice, we de�ne L as the di�erence

between half of the round-trip time and the sum of the send and receive overheads for a

system. This de�nition implies that overlap in time between send and receive overheads,

usually in the form of the poll operation on the receiver, reduces the e�ective value of L. We

calculate L from our previous measurements of round-trip time and the sum S of overhead

and known delay D:

L =
RTT

2
� os � or =

RTT

2
� (S �D)

�or =

"
(�RTT )2

4
+ (�S)2

#1=2
(5.4)

As with our calculation of receive overhead, we have assumed in (5.4) that the

random error on the delay D is negligible, and our accuracy is again limited by a systematic

error of 3 cycles in the delay loop, which is included in reported results.
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Send overhead breakdown

We gain a deeper understanding of the overhead required to send a message by

breaking that cost down into components, as advocated in [SC87]. By repeatedly elimi-

nating functionality through modi�cation of the library code, we are able to determine the

approximate cost of each piece that we remove. In particular, we iteratively remove a single

component of functionality and perform the send overhead measurement described earlier,

reporting the di�erence between two successive measurements as the cost of the component

eliminated between those measurements.

Our approach to measuring the component costs requires that we de�ne a canonical

order for the components. As a compiler optimizes these components in tandem, the cost

of two components A and C may not be the same as the cost of A plus the cost of ABC

minus the cost of AB. This transformation from source to object code is fairly complex

and hard to predict, and minor source modi�cations can result in signi�cant changes in

performance through the e�ects of architectural constraints. Register allocation heuristics

and the resulting memory accesses can lead to such e�ects, for example.

Another approach to determining the relative costs of the components is to sample

the program counter randomly and to compare the frequency of instructions associated with

each component. For a large enough sample, this approach is more e�ective than ours in

capturing the dynamic cost of each component in the actual system, and one is tempted to

argue that sampling is in some sense independent of the ordering of components. However,

sampling gives no more insight into the source to object translation than does a canonical

ordering, and therefore provides no more information as to the advantages of eliminating

some aspect of functionality. Also, with a superscalar architecture, program counter sam-

pling may not provide adequate information to obtain accurate frequency information at the

instruction level, particularly when instructions from separate source lines are interleaved

at granularities below the superscalar issue rate. Finally, sampling perturbs the system by

polluting the caches and altering the timing of operations. These perturbations can change

the balance between components. We chose our method over sampling because it allowed

a simple implementation and a clear interpretation of the results. Our canonical order and

rationale for that order appear with the results of these measurements in Chapter 6.
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Summary

We described in this section an array of microbenchmarks for measuring low-level

parameters of a communication system. These tests explore the performance of message-

passing based on concurrent queues in the absence of contention and allow us to investigate

the costs of individual components of functionality. However, they do not provide much

insight on the e�ects of contention. In the following sections, we extend our microbenchmark

suite with tests that help us to understand those e�ects.

5.3.2 Stress test

We next explore performance at the extreme of high contention through many-

to-one communication, a di�cult scenario for most message-passing systems. With one

process per physical processor, all but one process send a total of one million messages

to the remaining process. Although each process occupies a processor for the duration of

this communication stress test, the processes do not constantly contend for the queue, as

they must also perform a signi�cant amount of uncontended work. In particular, writing

data into message packets, accepting reply messages and invoking the appropriate handler

function, and polling for incoming messages operate on implicitly private data structures.

Performing a substantial amount of work between queue operations separates our approach

from the majority of concurrent algorithm literature, yet this functionality is simply a

part of the message-passing layer. The test described generates the highest contention

observable by an application using our Active Message layer, and may be representative of

more reasonable workloads on larger machines. The distribution of execution times for the

stress test appears normal, and we apply our standard methodology. We only run the stress

test on one SMP, as processors outside of an SMP do not use the shared memory protocol

and can only reduce contention by increasing the uncontended workload.

5.3.3 Application suite

Although performance at the extremes of contention is helpful for exploring the

possible behavior of a communication layer, contention in applications generally falls some-

where in the middle of the range. Applications are the natural metric for performance,

and their communication patterns are intrinsically interesting. In the previous sections,

we used two communication patterns to explore the extremes of contention. Few applica-
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tions adhere to either of those patterns, however; they typically utilize fairly complex and

data-dependent communication, often employing a variety of such patterns during their

execution.

We use several applications written in Split-C, which extends C with a global ad-

dress space abstraction, support for simple distributed arrays, and global communication

and synchronization operations. Issues of remote data consistency are left to the pro-

grammer. Split-C adopts an SPMD (single program, multiple data) style of programming,

assigning a virtual processor number to each process in a given execution. The programs

are written in a phase-structured style|processors proceed through a sequence of coarse-

grained phases, performing a global synchronization between each phase. They use a wide

variety of communication patterns, which also vary from phase to phase.

We perform one or more runs for each application, varying the input parameters to

cover the range of possibilities for the application. We also use multiple runs to highlight the

potential for improving performance by optimizing the layout of virtual processors into the

physical SMP's that make up a Clump. Our measurements include only the main sections

of the applications as outlined below, ignoring time and communication aspects of most

startup and initialization sequences.

Distributions of application execution times typically have one peak that is nearly

normal, but are truncated towards the low side and stretched towards the high side. We

nevertheless chose to apply our standard methodology for all application tests, keeping

total testing time to a reasonable value (approximately eight to ten days of dedicated

Clump access, with full utilization of the processors). Figure 5.7 shows the distribution

for SAMPLE on the Clump. In addition to the measured distribution, the �gure shows

two normal distributions, one calculated from the left peak of the measured data and the

second calculated from the full data set. The truncation on the left depends on the amount

of actual work that the application must perform. The long tail to the right illustrates the

combined e�ects of synchronization dependencies and race conditions in message acceptance.

Synchronization constraints can cause delays to accumulate, an e�ect well-known in the

parallel scheduling literature [ADV+95].

In the remainder of this section, we discuss the algorithms and implementations

for the applications, then cover the details of the individual runs and tra�c patterns.
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Figure 5.7: Sample sort execution time distribution on our Clump. The two Gaussians

shown are calculated from the main peak of the measured data and from the full data set.

Sample sort

SAMPLE sorts 32-bit integers using sample sort [BLM91]. A sample sort uses a

sorted random sample of splitter keys (integers) to distribute the full set of keys to proces-

sors; each processor receives the subset of keys that falls between two consecutive splitter

keys. By oversampling to obtain the set of splitters, sample sort ensures that each proces-

sor receives roughly the same number of keys, generally within a factor of two of all other

processors. The processors then sort their subsets independently and in parallel to obtain

the �nal sorted order.

Our implementation of sample sort is a variant of that described in [CDMS93].

The application uses one initialization phase and four main phases. In the initialization

phase, processors trade pointers to their local subsets to allow other processors to access

the arrays directly through the Split-C global address space abstraction. The four main

phases correspond to the description of the algorithm above. As certain portions of the

algorithm are performed sequentially, we distinguish one processor as the lead processor

for the sort; this term implies nothing beyond the fact that the lead processor performs
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the sequential portions. In the �rst phase, all processors sample their local key sets and

pass their samples to the lead processor. In the second phase, the lead processor sorts the

combined sample, selects the splitter set, and broadcasts that set to the other processors.

The processors distribute their local keys sets according to the splitter values in the third

phase, aggregating keys into groups of six to make full use of the short message payload

(Split-C claims the remaining two words). The processors simultaneously collect all keys

sent to them into a new local set. Finally, the processors sort their new local key sets,

completing the sort.

Although our sample sort implementation does perform some many-to-one and

some one-to-many communication, the dominant pattern by far is the all-to-all communi-

cation in the key distribution phase. SAMPLE thus represents applications that perform

�ne-grained, all-to-all communication.

Connected graph components

CON �nds the connected components of a distributed graph [KLCY97]. Given a

graph consisting of a set of nodes and an undirected set of edges between nodes, we say

that two nodes in the graph are connected if there exists a path between the two nodes

consisting only of edges in the graph. A connected component is then a maximal subset of

nodes in which every two nodes within the subset are connected. A connected components

algorithm identi�es all such subsets and labels them with unique identi�ers.

Our connected components implementation [LKC95] merges a simple sequential

algorithm with an e�cient parallel algorithm. We use graphs drawn from Monte Carlo

approaches to exploring phase transitions and other critical phenomena as the basis of our

study. Such graphs typically correspond to an underlying physical structure, which admits a

straightforward partitioning among processors. Processors �rst �nd connected components

within their local portion of the graph to produce a reduced graph, then apply an iterative,

multi-phase parallel algorithm to the reduced graph.

The balance between computation and communication in this application depends

strongly on the input parameters. We selected both a computation-bound run, labeled

CON/comp, and a second, communication-bound run, labeled CON/comm. Due to the

underlying physical structure of the graph, processors perform primarily �ne-grained com-

munication in a statistically well-de�ned pattern. However, most nodes in the graphs used
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in CON/comm merge into a single, very large connected component, resulting in high con-

tention and load imbalance near the end of the execution. These e�ects can dominate the

more regular communication pattern.

Fast Fourier transform

3-D FFT performs a fast Fourier transform (FFT) [PTVF93] in three dimensions.

A Fourier transform calculates the coe�cients of a given function in a dual basis de�ned as

sine waves with arbitrary phase and frequency over the original basis. Typically, they are

used to transform between spatial and frequency data. The FFT is a an e�cient algorithm

for calculating a discrete Fourier transform on a one-dimensional data set. For data with

multiple dimensions, this transformation can be applied independently in each dimension.

The implementation that we use performs FFT's on each dimension of a cubic

lattice. It distributes data to processors cyclically in one dimension, handing out two-

dimensional slices in round-robin fashion. The application proceeds through four major

phases. First, the processors perform FFT's on the cache-aligned dimension of their slices,

then transpose those slices locally to align a new dimension of the data with the cache.

The second phase breaks into many subphases to implement a parallel transpose of the

data. In the subphases, each processor performs FFT's on the second dimension and sends

the results to another processor. Processors synchronize globally between subphases to

improve communication performance by avoiding contention [BK94]. In the third phase,

the processors perform FFT's on the remaining dimension, which is again cache-aligned.

The fourth phase repeats the parallel transpose to return the data to their original locations,

breaking into subphases but not calculating further FFT's.

3-D FFT typi�es regular applications that rely primarily on bulk communication.

The communication pattern is all-to-all, but is scheduled into many one-to-one phases.

Electromagnetic wave propagation

EM3D, the last application, propagates electromagnetic radiation in three dimen-

sions on a static, irregular mesh [Mad92]. The algorithm maintains electric �eld values

along the edges of the mesh and magnetic �eld values along the edges of a dual mesh. Field

updates occur in leapfrog fashion, with half of one timestep between alternate electric and

magnetic �eld updates.
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naive good

Figure 5.8: EM3D data partitioning. Each small block represents one processors' portion

of the physical space. The shading represents the correlation of processors to SMP's. The

left distribution produces more inter-SMP tra�c than does the right.

Our implementation [CDG+93] generates a random mesh based on statistical char-

acteristics of real meshes, representing the mesh with a bipartite graph of electric and

magnetic �eld nodes. This graph corresponds to an underlying physical space partitioned

between processors. Updating the electric �eld involves sending any magnetic �eld nodes

coupled with electric �eld nodes on other processors to those processors and, once all data

have arrived locally, computing new electric �eld values. After this update, all processors

synchronize globally and begin an analogous update of the magnetic �eld nodes. We time

only the computation of the electric �eld.

EM3D represents the class of applications that perform irregular, �ne-grained

communication. We use two distinct runs to highlight the e�ect of the phase-structured

style and the advantage of intelligent virtual processor layout. As shown in Figure 5.8, both

runs partition the underlying coordinate space on 32 processors into 4x2x4 blocks. The �rst

run, EM3D/naive, uses a naive layout for virtual processors, placing processors within an

SMP into 2x1x4 blocks. In the second run, denoted EM3D/good in the tables, an SMP's

processors instead occupy 2x2x2 blocks, reducing the aggregate network tra�c.

Application runs

We use six application runs on Clumps and �ve on individual SMP's. Table 5.5 lists

the input parameters and memory requirements for each run. For each platform, memory

requirements separate into resident set size, or physical memory use, and the application

image size, or virtual memory use. The �gures in the table represent peak memory usage

over the lifetime of the application. None of the runs approaches the memory limitations on

our platforms|2 GB per SMP, 8 GB on the Clump, and half that much on the equivalent

NOW's|the parameters were instead tuned to result in roughly one second execution times
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Memory (MB)

Input Parameters SMP Clump

Resident Image Resident Image

SAMPLE 262,144 nodes/processor 64 105 272 417

CON/comp

2D underlying lattice

640,000 nodes/processor

40% edges present

316 356 1,264 1,421

CON/comm

3D underlying lattice

512,000 nodes/processor

25% edges present

272 291 1,095 1,162

3-D FFT 128x128x128 values 74 102 171 312

EM3D

2,500 nodes/processor

degree 20, 40% remote

one-SMP layout

63 95 |

EM3D/naive

2,500 nodes/processor

degree 20, 40% remote

naive Clump layout

| 268 383

EM3D/good

2,500 nodes/processor

degree 20, 40% remote

good Clump layout

| 265 382

Table 5.5: Input parameters and peak total memory usage for application runs on one SMP

and on the Clump. The CON runs di�er in the balance between communication and local

computation. The EM3D runs di�er in the layout of virtual processors.
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Short Messages

Mean Min. Max. Bulk Data

SAMPLE 76,517 72,749 81,063 5 x 29 B

CON/comp 11,900 11,518 12,383 18 x 16 B

CON/comm 106,925 102,511 127,227 365 x 16 B

3-D FFT 3,647 3,620 3,692 3,584 x 2 kB

EM3D 141,448 140,940 142,120 none

Table 5.6: Per-processor communication volume for the SMP. Only 3-D FFT uses a signif-

icant number of bulk transfers.

on one Enterprise 5000. The memory usage is much larger than the L2 cache, however. With

the exception of 3-D FFT, each application run scales with the number of processors.

The SAMPLE run sorts a quarter million integers per processor, for a total of two

million keys on our SMP and eight million on our Clump. As mentioned earlier, we perform

two distinct runs with the connected components application. CON/comp operates on a

weakly connected, two-dimensional lattice with �ve million nodes on our SMP and twenty

million nodes on our Clump. CON/comm does the same on a strongly connected, three-

dimensional lattice with four million nodes on our SMP and sixteen million on our Clump.

3-D FFT performs a three-dimensional FFT on a cubic lattice of two million nodes; the

problem is the same on both platforms. All EM3D runs propagate electromagnetic waves

on a simulated cubic mesh with forty percent of edges linking nodes on two processors.

The SMP run, EM3D, uses a total of twenty thousand nodes; the Clump runs use eighty

thousand. EM3D/naive distributes virtual processors to SMP's in a naive fashion, while

EM3D/good places them more carefully, transforming remote communication into local

communication.

Tra�c patterns

Communication tra�c volumes appear in Tables 5.6, 5.7, and 5.8. The �rst table

shows communication volume for applications on one SMP, relating the mean, minimum,

and maximum number of short messages as well as the average number and size of bulk data

transfers. All processors send within 6% of the mean number of short messages for every

run except CON/comm. For that run, the processor that owns the single, large component

sends roughly 19% more short messages than the mean.

Only 3-D FFT uses bulk data transfers for a signi�cant fraction of communication
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Short Messages

Mean Min. Max. Bulk Data % Remote

SAMPLE 65,608 52,852 76,458 4 x 96 B 77

CON/comp 5,991 5,601 6,500 10 x 16 B 50

CON/comm 67,588 52,491 199,747 290 x 16 B 57

3-D FFT 966 768 1164 768 x 2 kB 77

EM3D/naive 60,856 40,380 81,580 none 38

EM3D/good 40,560 0 81,750 none 25

Table 5.7: Per-processor remote communication volume on a Clump of four 8-processor

SMP's. 3-D FFT alone uses a signi�cant number of bulk transfers. The communication-

bound CON run su�ers from load imbalance. Di�erences in virtual processor layout result

in markedly di�erent tra�c distributions for the EM3D runs.

Short Messages

Mean Min. Max. Bulk Data % Local

SAMPLE 19,119 15,622 21,591 3 x 29 B 23

CON/comp 5,889 5,351 6,410 6 x 16 B 50

CON/comm 50,677 43,856 80,666 130 x 16 B 43

3-D FFT 282 224 620 224 x 2 kB 23

EM3D/naive 101,220 79,198 122,670 none 62

EM3D/good 121,432 120,170 122,210 none 75

Table 5.8: Per-processor local communication volume on a Clump of four 8-processor SMP's.

3-D FFT alone uses a signi�cant number of bulk transfers. The communication-bound CON

run su�ers from load imbalance. Di�erences in virtual processor layout result in markedly

di�erent tra�c distributions for the EM3D runs.
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tra�c; in fact, the majority of short messages sent in 3-D FFT are simply replies to bulk

transfer requests. SAMPLE uses a handful of bulk transfers to broadcast array pointers in

the initialization phase, and CON passes small structures via bulk transfers. EM3D uses

no bulk transfers at all.

Tables 5.7 and 5.8 break communication tra�c on the Clump into remote and

local components, respectively. The breakdown depends on the con�guration of the Clump;

the tables represent our experimental platform of four 8-processor SMP's. The tables also

include percentages of total tra�c sent using each protocol. The balance between processors

is poorer than for applications on one SMP, due to a combination of statistical e�ects (e.g.,

with SAMPLE) and tree-structured synchronizations (e.g., with 3-D FFT). For SAMPLE

and 3-D FFT, roughly three-quarters of the tra�c is remote, as we expect from an all-to-all

communication pattern on four SMP's with on average the same amount of data moving

between every pair of processors.

The underlying physical structures used by the applications further skew the dis-

tributions, as the fraction of local communication depends on the location of a processor's

neighbors in these structures. For the CON runs, the virtual processor layout is subopti-

mal, requiring an average of 50% of remote communication. The single, large component in

CON/comm raises that average slightly. The naive virtual processor layout in EM3D leads

to imbalanced remote and local tra�c. EM3D/good transforms some remote tra�c into

local tra�c, balancing the local tra�c but causing further imbalance for remote tra�c.

5.3.4 Multiprogrammed machines

The performance of a concurrent queue algorithm on a dedicated machine does

not provide much information as to its performance on a multiprogrammed machine. Most

algorithms choose between simplicity and speed, and limiting the impact of the operating

system scheduler on performance. Algorithms based on spin locks, for example, favor the

former, and perform well on dedicated machines. Algorithms based on preemption-safe

locks favor the latter, trading performance on dedicated machines for robustness under

multiprogramming.

We execute several copies of an application simultaneously to measure the per-

formance of an algorithm on a multiprogrammed machine. Each copy, or job, uses one

process per physical processor. Unlike many studies in multiprogramming, however, we
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do not pin processes to processors. Although such pinning can increase performance for

controlled environments, it can have the opposite e�ect when such control is absent. For a

statically-balanced parallel job pinned to processors, for example, a sequential job pinned

to a processor has the same performance impact as another parallel job, leaving all but one

processor idle for half of the execution. Pinning may thus improve benchmark performance

without improving real performance.

Neither do unpinned parallel jobs present the harshest environment, however.

Such jobs can add overhead through cache pollution, but a job's e�orts to coschedule itself

through yielding processors can interact positively with competing jobs' e�orts to do the

same. In contrast, sequential jobs do not cooperate in this manner; a sequential process

always has useful work to do, and always holds the processor until its time slice expires.

To address this di�erence, we also investigate the performance of a parallel job when com-

peting with groups of sequential processes. A group is simply one sequential process per

physical processor; each process operates independently of all others. We use a simulated

application for this purpose: in an in�nite loop, a process randomly increments values in

an array the size of the L2 cache. This simulation causes signi�cant cache pollution and a

fair amount of memory tra�c, allowing our measurements to explore the impact of more

realistic interactions.

Parallel jobs started with a command line or script interface tend to execute in a

very skewed fashion. The �rst job starts quickly, but the initialization code for a second

job competes with the application processes of the �rst job. The competition slows the

initialization, causing signi�cant skew between the jobs. The skew reduces the e�ects of

contention, cache pollution, and synchronization dependencies, producing arti�cially high

levels of performance. We addressed this problem by splitting a single parallel job into

multiple virtual jobs, synchronizing the jobs between initialization and execution of the

application. We extended the Split-C initialization code to allow a group of processes to

partition itself into subsets, each of which executes a Split-C application. After a barrier

synchronization to ensure that all processors in a given subset are ready, one process in the

subset broadcasts this fact through the �lesystem (by creating a �le). Each subset of pro-

cesses then waits for the other subsets' �les to appear, at which point the applications begin

normal execution. Our global execution layer spawns enough processes for all jobs from a

single command, creating twenty-four processes for three subsets of eight, for example.

We measure multiprogramming e�ects only on a single SMP, primarily due to
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a lack of integration between the network and shared memory event mechanisms. The

multiprogramming tests consist of four speci�c measurements. We �rst run two jobs si-

multaneously, recording the times from both jobs and repeating the experiment 50 times

to obtain 100 values. We next run three jobs simultaneously and record the times from all

three, repeating the experiment 40 times to obtain 120 values. For sequential competition,

we start one group of competing processes and time 100 runs of one parallel job, then start

a second group of competing processes and time another 100 runs of one parallel job.

We apply our standard methodology to all of these experiments. Although our

method of synchronizing the jobs does for the most part achieve the desired e�ect of forcing

the jobs to compete for the processors, the approach slightly skews the distribution of

execution time for multiple parallel jobs towards shorter runs. When the �rst job �nishes,

the remaining job or jobs need only compete amongst themselves, and can thus �nish the rest

of their work in less time. Although the �rst job is technically drawn from the appropriate

distribution, remember that it is in fact the minimum of several variables drawn from that

distribution. The job times are also not independent. These problems do not arise in

our measurements of a parallel job competing with sequential jobs, as the latter execute

continuously over the lifetime of the parallel job. A similar approach might better serve for

the measurement of multiple parallel jobs, constantly executing the competing parallel jobs

while measuring only the job that runs against such a workload, but we felt that the skew

e�ects were small enough to disregard, particularly since they should have roughly the same

impact on di�erent concurrent message queue algorithms and thus not a�ect comparisons

between them.

5.3.5 Summary

The suite of benchmarks described here provides a broad spectrum of measure-

ments for communication through shared memory. They cover the range of contention, yet

also highlight performance at more realistic levels and capture the e�ects of competition

between multiple jobs. The parameters for the LogGP model, a well-accepted model in the

user-level communication literature, investigate performance in the absence of contention.

The stress test uses many-to-one communication to complement these measurements, evalu-

ating performance at the extreme of high contention. A set of Split-C applications examines

performance at more reasonable levels and for a range of communication patterns. Lastly,
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multiple competing parallel and sequential jobs serve as a metric of performance on multi-

programmed machines.

We apply a subset of benchmarks to measure performance on a Clump. The stress

test does not serve the goal of maximal contention on a Clump, and our communication

layer does not integrate the network and shared memory multiprogramming mechanisms.

Thus we report Clump performance only in terms of LogGP parameters and application

execution times.
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Chapter 6

Shared Memory Protocol

Performance

In this chapter, we study the performance of the shared memory protocol in iso-

lation, i.e., used only within a single SMP, focusing on the performance of our lock-free

concurrent message queue algorithm. We begin by tuning the shared memory protocol to

our experimental platform, selecting appropriate backo� yield and queue length parameters.

We then introduce a variety of alternative concurrent queue algorithms and use our bench-

mark suite to compare their performance with that of our own lock-free algorithm. The

chapter then presents a detailed breakdown of the cost of message insertion using the shared

memory protocol, illustrating the overhead associated with each aspect of functionality. In

light of that breakdown, we forecast the impact of trends in architecture on message-passing

and suggest a strategy for improving performance with a small set of extensions to a typical

SMP architecture. The chapter concludes with a comparison of application performance

between an SMP and a comparable NOW, illustrating the impact of the faster protocol at

the application level. In the next chapter, we report performance on the Clump.

6.1 Backo� Yield Selection

The performance of our communication architecture depends on the proper selec-

tion of the parameters described in previous chapters: the time spent backing o� from a

full queue before yielding, the packet and bulk data queue lengths, and the parameters that

de�ne the adaptive polling strategy. We address the �rst two parameters in this chapter,
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delaying polling strategy tuning until we consider multi-protocol performance in Chapter 7.

We begin by selecting a good operating point for each parameter through a preliminary

study, then tune the communication layer by varying individual parameters around our

chosen operating point. A combination of dedicated and multiprogrammed application per-

formance, measured as described in the last chapter, serves as the metric for our studies.

Although the parameters may depend strongly on speci�c aspects of a platform, their de-

pendency on particular applications must be relatively weak for the communication layer

to serve as a general-purpose substrate. By reporting the performance of applications with

a variety of communication patterns, we establish a degree of independence between the

parameters and the speci�c nature of any application.

We �rst consider the selection of the backo� yield time. This parameter controls

the time that a process waits to insert a message into a full queue before yielding its

processor. The communication layer must balance the overhead associated with switching

between the processes with the time spent waiting for a descheduled or inattentive process

to drain messages from a queue. In this section, we expand on the sources of the switching

overhead, then examine the e�ect of varying backo� yield times on application performance.

As mentioned in Chapter 3, we use a backo� yield time of 255 microseconds with our system.

Yielding a processor potentially incurs overhead of three types. First, the process

must invoke the operating system scheduler to locate a new process for the processor. This

invocation results in at least two context switches and some minor pollution of the data and

instruction caches. If the scheduler selects a di�erent process to run, the cache pollution

is in general far more extensive, leading to the second type of overhead: reloading cached

data. Finally, if the original process migrates to a new processor in its next time quantum,

the process must pay the cost of restoring all cached state, including 
ushing dirty lines in

the new cache, moving remaining lines from the original cache, and reloading the remainder

of the working set.

We investigate the tradeo� between increased overhead and idle cycles by measur-

ing application performance for both dedicated and multiprogrammed SMP's. The multi-

programming experiments use only parallel jobs, as we expect competition with sequential

jobs to produce qualitatively similar results, and the smaller number of experiments sim-

pli�es the presentation of the measurements. We normalize the results for each application

to execution time in the absence of the processor yield code, then present normalized exe-

cution time per job. The bound on the exponential backo� is set to 255 microseconds for
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SAMPLE CON/comp CON/comm 3-D FFT EM3D

0:697� 0:007

� = 0:032

1:086� 0:006

� = 0:026

1:660� 0:006

� = 0:025

0:676� 0:005

� = 0:023

0:643� 0:005

� = 0:021

Table 6.1: Normalization times in seconds for backo� yield selection. These times re
ect

mean execution times on a dedicated SMP with a layer that spins rather than yielding the

processor.

the normalization executions, but processes merely enter another delay cycle rather than

yielding their processors after backing o� for that period.

The normalization time for each application, obtained and reported using our

standard methodology, appears in Table 6.1. Figures 6.1 through 6.5 present the results

of the tuning experiment using one �gure per application. We varied backo� yield time

from 7 to 2047 microseconds to cover an interesting range around our nominal value of

255 microseconds. The upper portion of each �gure provides a table of normalized execution

times in seconds per job for one, two, and three simultaneous parallel jobs, all reported

using our standard methodology. The lower portion of each �gure presents these results

graphically, using a single scale to simplify cross-application comparisons.

On a dedicated machine, only the context switches and the migration of cached

data contribute to the overhead, as the system has no other useful work to perform. For

the same reason, however, yielding the process does not convey any performance advantage.

The normalized time thus approaches 1 asymptotically as the yield time approaches in�nity.

This trend holds for all applications, as shown in the �gures, although the impact of overly

frequent yielding of processors varies from application to application. CON/comm (Fig-

ure 6.3) fares the worst in this regard due to the use of many-to-one communication near

the end of its execution. In this case, one process owns a giant connected component, and

all other processes switch in and out very rapidly while waiting to communicate with the

�rst process. CON/comp (Figure 6.2) and EM3D (Figure 6.5) also su�er fairly substantial

penalties as the yield time becomes smaller, perhaps due to dependency chains amongst

communicating neighbor processes. SAMPLE (Figure 6.1) and 3-D FFT (Figure 6.4) per-

formance, which use all-to-all communication, degrade slightly below a 255 microsecond

yield time, but are stable from that point down to 7 microseconds.

The penalty for including yielding at 255 microseconds ranges from 0 to 14% on

a dedicated machine, but yielding results in far superior performance on multiprogrammed
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Yield Time (usec) 1 Parallel Job 2 Parallel Jobs 3 Parallel Jobs

7
1:22� 0:02

� = 0:08

1:75� 0:06

� = 0:26

1:76� 0:05

� = 0:26

31
1:19� 0:02

� = 0:09

1:62� 0:05

� = 0:24

1:66� 0:05

� = 0:26

127
1:21� 0:02

� = 0:08

1:51� 0:05

� = 0:24

1:59� 0:05

� = 0:25

255
1:093� 0:005

� = 0:025

1:39� 0:04

� = 0:19

1:45� 0:04

� = 0:19

511
1:085� 0:007

� = 0:032

1:38� 0:05

� = 0:20

1:45� 0:04

� = 0:19
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1:072� 0:005

� = 0:024

1:37� 0:05

� = 0:22
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Figure 6.1: Normalized execution time in seconds per job for SAMPLE as a function of

backo� yield time in microseconds. Times are normalized to 0.697 seconds.
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Yield Time (usec) 1 Parallel Job 2 Parallel Jobs 3 Parallel Jobs

7
1:87� 0:02

� = 0:06

1:91� 0:03

� = 0:14

2:18� 0:04

� = 0:17

31
1:13� 0:02

� = 0:07

1:38� 0:03

� = 0:14

1:74� 0:04

� = 0:17

127
1:07� 0:02

� = 0:09

1:12� 0:03

� = 0:14

1:10� 0:03

� = 0:12

255
1:02� 0:02

� = 0:05

1:09� 0:03

� = 0:12

1:08� 0:03

� = 0:14

511
1:017� 0:008

� = 0:036

1:09� 0:03

� = 0:12

1:09� 0:03

� = 0:13
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1:013� 0:007

� = 0:035
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Figure 6.2: Normalized execution time in seconds per job for CON/comp as a function of

backo� yield time in microseconds. Reported times are normalized to 1.086 seconds.



112

Yield Time (usec) 1 Parallel Job 2 Parallel Jobs 3 Parallel Jobs

7
5:40� 0:03

� = 0:13

7:32� 0:04

� = 0:17

8:99� 0:05

� = 0:23

31
1:81� 0:03

� = 0:11

3:53� 0:04

� = 0:19

6:35� 0:04

� = 0:22

127
1:26� 0:03

� = 0:12

1:70� 0:03

� = 0:13

2:20� 0:03

� = 0:16

255
1:14� 0:03

� = 0:11

1:58� 0:03

� = 0:14

1:89� 0:03

� = 0:16

511
1:12� 0:02

� = 0:10

1:72� 0:04

� = 0:17
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Figure 6.3: Normalized execution time in seconds per job for CON/comm as a function of

backo� yield time in microseconds. Reported times are normalized to 1.660 seconds.
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Yield Time (usec) 1 Parallel Job 2 Parallel Jobs 3 Parallel Jobs

7
1:08� 0:02

� = 0:09

1:26� 0:04

� = 0:15

1:28� 0:04

� = 0:20

31
1:05� 0:02

� = 0:07

1:25� 0:03

� = 0:14

1:25� 0:04

� = 0:19

127
1:04� 0:02

� = 0:07

1:23� 0:03

� = 0:14

1:25� 0:04

� = 0:17
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1:00� 0:02

� = 0:05

1:23� 0:04

� = 0:16

1:22� 0:03

� = 0:15
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Figure 6.4: Normalized execution time in seconds per job for 3-D FFT as a function of

backo� yield time in microseconds. Times are normalized to 0.676 seconds.
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Yield Time (usec) 1 Parallel Job 2 Parallel Jobs 3 Parallel Jobs

7
1:47� 0:05

� = 0:21

1:60� 0:05

� = 0:21
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� = 0:23
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� = 0:16
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� = 0:13
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Figure 6.5: Normalized execution time in seconds per job for EM3D as a function of backo�

yield time in microseconds. Times are normalized to 0.643 seconds.
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machines. The multiple job data in the �gures is similar to the single job data with two

additional features arising from cache pollution and frequent yielding.

Cache pollution decreases overall performance under multiprogramming. The im-

pact of this problem varies from application to application, but for most applications is

the same with two or three simultaneous jobs, as we expect if a process' cached data are

completely removed or migrated when another process claims its processor. The exception

to this rule is CON/comm (Figure 6.8). The performance bottleneck in the �nal phase

of CON/comm is the process that owns the single, large connected component. The re-

maining processes leave much of the cache untouched as they attempt to communicate with

the bottleneck process. With more simultaneous jobs, however, more processes intervene

between two time slices of a single process, exacerbating the cache pollution and leading to

the performance shown in the �gure.

Multiprogrammed applications also su�er performance degradation when the yield

time grows too large, as processes spend more time waiting for their descheduled communi-

cation partners to accept messages. This e�ect is most prominent with COM/comm, again

due to the use of many-to-one communication.

In light of the data, we select 255 microseconds as our backo� yield time. Smaller

values unnecessarily penalize both dedicated and multiprogrammed performance by incur-

ring the overheads associated with yielding too frequently. Larger values penalize multi-

programmed performance for some applications by wasting cycles waiting for descheduled

processes.

6.2 Queue Length Selection

We now consider the selection of the queue lengths, the number of entries in the

packet and bulk data queues used by the shared memory protocol. The communication layer

must balance between the queues' ability to bu�er incoming messages and their memory

footprint. In this section, we discuss the tradeo� in slightly more detail, then present and

explain data on the impact of the queue lengths on performance.

The factors a�ecting queue length arise from the ability of a queue to bu�er in-

coming messages for a descheduled or unresponsive process. Consider a simple, two-stage

cyclic model of skewed processes. In the �rst stage, a receiver process occupies a processor,

drains its queue, and is eventually descheduled. In the second stage, a sender process occu-
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SAMPLE CON/comp CON/comm 3-D FFT EM3D

0:762� 0:004

� = 0:017

1:11� 0:02

� = 0:05

1:89� 0:04

� = 0:19

0:676� 0:008

� = 0:036

0:682� 0:009

� = 0:043

Table 6.2: Normalization times in seconds for packet queue length selection. These times

re
ect mean execution times on a dedicated SMP with a backo� yield time of 255 microsec-

onds, a queue length of 4,096, and a bulk data queue length of 16.

pies a processor, sends messages to the �rst until its queue is full, and immediately yields

the processor. The cycle then repeats. Filling the queue takes time, and can be consid-

ered progress for the sender, but such progress must be balanced against the corresponding

overhead, the cost of two context switches.

The model just described implicitly assumes that the processor yielded by the

sender has other useful work to perform. We might instead ask that a sender be allowed

to make progress for some fraction of a scheduling time-slice, a time typically four orders

of magnitude longer than a context switch overhead. Queues meeting that criterion can

withstand a reasonable amount of skew between communicating processes without incur-

ring signi�cant amounts of additional overhead. Long queues can adversely impact cache

performance, however, bumping application data out of the the data cache to make space

for communication data. The appropriate queue length depends on the relative importance

of these two factors on a particular system.

The application performance measurements used to investigate the backo� yield

parameter also serve for queue length. We again present execution time per job normalized

to the application execution time when using our �nal parameter values: 255 microsecond

backo� yield, 4,096-entry packet queues, and 16-entry bulk data queues. The normalization

time for each application, obtained and reported using our standard methodology, appears

in Table 6.2. Figures 6.6 through 6.10 present the results of the packet queue length

investigation using one �gure per application. We used only 3-D FFT in the bulk data

queue length investigation, as only that application makes signi�cant use of bulk transfer

messages; these data appear in Figure 6.11. We varied the packet queue length from 256 to

32,768 entries to cover an interesting range around our nominal value; towards the same end,

we varied the bulk data queue length from 2 to 128 entries. The �gure format is identical

to the format used in the previous section on backo� yield time. The upper portion of each

�gure provides a table of normalized execution times in seconds per job for one, two, and
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three simultaneous parallel jobs, all reported using our standard methodology. The lower

portion of each �gure presents these results graphically, using a single scale to simplify

cross-application comparisons.

The data on a dedicated machine have a similar character for all applications,

showing a slight rise for very long queues, presumably due to pollution of data caches and

TLB's with communication data. EM3D (Figure 6.10) also shows a decrease in performance

below queue lengths of 2,048, a side-e�ect of an optimization that allows processes that have

received any necessary remote magnetic �eld information to begin computing new electric

�eld values for their own nodes. During the computing portion of the phase, processes

ignore the communication layer, potentially allowing their queues to �ll and stalling other

processes. The EM3D programmer might reasonably expect this behavior not to occur, as

the program guarantees that a process has both sent and received all necessary data before

starting to compute. However, the reply messages required by the AM-II speci�cation can

exhibit the blocking behavior.

EM3D performance improves as the queue length decreases further, suggesting a

second factor such as L1 cache pollution. More likely, the shorter queues reduce the impact

of the blocking behavior by coupling the processes' progress; no process can get too far

ahead of another without stalling on a full queue.

Multiprogramming again imposes a penalty to performance due to the overhead

of switching between individual processes, and again this penalty is the same for two or

three parallel jobs except for CON/comm. The overhead incurred due to queue over
ow is

also prominent under multiprogramming, particularly for communication-intensive applica-

tions such as SAMPLE (Figure 6.6) and EM3D. CON/comm is also fairly communication-

intensive, but the many-to-one nature of the communication hides the overhead, as the

senders are limited by the receiver at all queue lengths studied.

The �nal feature of interest is the inversion of performance for long queues with

SAMPLE, in which multiprogrammed machines outperform dedicated ones. Many pos-

sibilities exist, including systematic error due to the skewed distributions measured with

multiple parallel jobs. Multiprogramming can improve performance for applications with

few interprocess dependencies, however. E�ectively, a multiprogrammed machine provides

only a fraction of its processors to a single job on average, thereby reducing the concur-

rent access contention and message arrival rates within that job. Process migration and

cache pollution can also have positive impact. A sender might �ll a processor's cache with
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Queue Length 1 Parallel Job 2 Parallel Jobs 3 Parallel Jobs

256
1:012� 0:009

� = 0:045

3:3� 0:3

� = 1:0

10:9� 0:4

� = 2:0

512
0:973� 0:006

� = 0:026

2:9� 0:2

� = 0:9

5:9� 0:3

� = 1:4

1,024
1:000� 0:009

� = 0:042

2:1� 0:2

� = 0:6

3:3� 0:2

� = 0:6

2,048
0:992� 0:005

� = 0:023

1:64� 0:08

� = 0:37

2:03� 0:07

� = 0:33
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1:03� 0:02

� = 0:08

1:29� 0:05

� = 0:23

1:34� 0:04

� = 0:21

8,192
1:050� 0:009

� = 0:043
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� = 0:14
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� = 0:16
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1:112� 0:007

� = 0:031
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� = 0:13
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Figure 6.6: Normalized execution time in seconds per job for SAMPLE as a function of

packet queue length. Times are normalized to 0.762 seconds.
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Queue Length 1 Parallel Job 2 Parallel Jobs 3 Parallel Jobs
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Figure 6.7: Normalized execution time in seconds per job for CON/comp as a function of

packet queue length. Times are normalized to 1.11 seconds.
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Queue Length 1 Parallel Job 2 Parallel Jobs 3 Parallel Jobs
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Figure 6.8: Normalized execution time in seconds per job for CON/comm as a function of

packet queue length. Times are normalized to 1.89 seconds.
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Queue Length 1 Parallel Job 2 Parallel Jobs 3 Parallel Jobs
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Figure 6.9: Normalized execution time in seconds per job for 3-D FFT as a function of

packet queue length. Times are normalized to 0.676 seconds.
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Queue Length 1 Parallel Job 2 Parallel Jobs 3 Parallel Jobs
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Figure 6.10: Normalized execution time in seconds per job for EM3D as a function of packet

queue length. Times are normalized to 0.682 seconds.
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Figure 6.11: Normalized execution time in seconds per job for 3-D FFT as a function of

bulk data queue length. Times are normalized to 0.676 seconds.
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communication data and then yield the processor to the receiver, \moving" the data with-

out actually crossing the memory interconnect. In a more limited form, a third process

might knock the communication data from the cache, speeding retrieval by the receiver

from another processor, as memory accesses are faster than cache-to-cache transfers.

We select a packet queue length of 4,096 entries based on these data. Smaller

values increase queue over
ows on multiprogrammed machines, while larger values increase

the impact of cache pollution within each process. Despite a slight performance disadvantage

for the multiprogrammed SAMPLE runs, we chose 4,096-entry rather than slightly longer

queues to limit the memory footprint of the endpoint to under a megabyte.

We select a bulk data queue length of 16 primarily based on memory footprint.

As is apparent from Figure 6.11, 3-D FFT does not provide much information for queue

length selection, presumably because the communication pattern is very structured, with

global barriers between each exchange of data.

Our selection of queue lengths completes the tuning necessary for the shared mem-

ory protocol. As demonstrated by this section and the previous one, tuning these two pa-

rameters requires a signi�cant amount of time and e�ort, and produces a substantial amount

of data for analysis. By expending this e�ort to develop the runtime system, however, we

free the application programmer from the fairly onerous task of repeating these experiments

for each new application or each new data abstraction developed. In the next sections, we

compare the performance of our lock-free algorithm with alternative algorithms from the

literature, then delve into our algorithm's performance in more detail.

6.3 Alternative Algorithms

We now compare the performance of our lock-free algorithm with a range of al-

ternatives using the benchmark suite described in Chapter 5. This section �rst outlines a

classi�cation scheme for concurrent access algorithms and introduces the algorithms against

which we compare our own. The remainder of the section presents and interprets results for

each component of the benchmark suite in turn, studying the extremes of access contention

with the LogGP parameters and the stress test, then investigating application performance

on both dedicated and multiprogrammed machines. Our algorithm demonstrates competi-

tive or superior performance in all of these trials.
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wait-free

non-blocking

lock-free

safe
locking

preemption-

Figure 6.12: Concurrent algorithm hierarchy. Lock-free algorithms avoid mutual exclusion;

non-blocking algorithms guarantee that some process makes progress; wait-free algorithms

guarantee that all processes make progress. Preemption-safe locking uses operating system

support to eliminate adverse interactions between locks and the scheduler.

6.3.1 Algorithm descriptions

The literature separates concurrent access algorithms into four categories. Tra-

ditional algorithms [RK79, And90, MCS91] are locking: a process must obtain a mutually

exclusive lock to enter a critical section, thereby preventing other processes from entering

concurrently. When such locks are used, a process stalled inside a critical section can delay

all others for an arbitrary amount of time, a behavior termed blocking. Non-blocking algo-

rithms [MP91, Her93, GC96, MS96] hence guarantee that some process makes progress in a

�nite amount of time, which implies that they do not enforce mutual exclusion. The third

category, known as wait-free, strengthens the guarantee: every process makes progress in a

�nite number of its own time steps. Machine-level instructions, for example, are generally

assumed to be wait-free. The remaining algorithms, such as our own, do not use locks but

can still result in blocking behavior [Val94, BCL+95, KC95]. We follow Valois [Val94] in

adopting the term lock-free for this fourth category. A diagram of this hierarchy appears

in Figure 6.12. The diagram further identi�es a division within locking algorithms, known

as preemption-safe locking, with operating system support for reducing or eliminating the

adverse a�ects of preemption [MS97]. Such support does not necessarily imply algorithmic

di�erences.

Non-blocking algorithms are advantageous on multiprogrammed systems, as locks

interact poorly with time-sharing. These algorithms follow a common design strategy and

are simpler than their optimized locking counterparts. A typical non-blocking operation

works as follows. A process reads a value from a data structure, performs all computation

based on the value read, and inserts the results atomically into the data structure. If an-
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other process has changed the original value during the computation phase, the computed

results are discarded and the operation starts again from the beginning. For many oper-

ations, the �rst steps of such an approach are the same as a sequential implementation,

making non-blocking algorithms straightforward to construct. However, most modern ar-

chitectures support only 64-bit synchronization primitives, and atomic insertion of results

often necessitates an extra level of indirection in data structures.

On a dedicated system, the overhead of additional indirection and the cost of

discarding optimistically completed work make generic non-blocking algorithms slower than

locking algorithms. To address this drawback, numerous e�orts apply problem-speci�c

information to build more e�cient solutions. This optimization process sometimes involves

sacri�cing true non-blocking behavior in favor of fast common-case performance. The result

is a lock-free algorithm. In practice, these algorithms provide many of the advantages of

non-blocking algorithms while avoiding most non-blocking overheads.

We compare our lock-free algorithm to a variety of spin locks, a preemption-safe

lock, and a FIFO variant of our algorithm. We do not directly compare against non-

blocking or wait-free algorithms, both because of the inherent overhead of these algorithms

and because of the nature of our system. The use of a request-response communication

paradigm makes true non-blocking behavior moot, as an endpoint that fails to respond

blocks application progress. Non-blocking behavior also requires dynamic storage to avoid

queue over
ow, a factor that does not mesh well with our model of pre-allocated shared

segments. In Chapter 9, we provide illustrative examples of non-blocking algorithms and

a wait-free implementation of Compare&Swap using Fetch&Increment, and outline

methods by which comparisons can be made using our system.

Locking algorithms

The concurrent access literature evaluates locking algorithms primarily in terms

of the number of coherence transactions generated. Precluding starvation and provid-

ing fair access are also attractive qualities. We consider four spin lock algorithms drawn

from [MCS91] and one preemption-safe locking algorithm based on the Solaris implemen-

tation of Posix mutexes.

We describe the spin lock algorithms in increasing order of complexity, comment-

ing on the tra�c generated with an invalidation-based coherence protocol. Each algo-
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Fetch&Increment(^address)

value  address^

address^  value + 1

return value

Fetch&Decrement(^address)

value  address^

address^  value � 1

return value

Test&Set(^address)

value address^

address^  LOCKED

return value

Figure 6.13: Pseudo-code for synchronization primitives. Each operation is atomic with

respect to other memory accesses.

rithm relies on either Test&Set (T&S) or Fetch&Increment (F&I), which are atomic

with respect to all other memory accesses. As mentioned earlier, Test&Set(address)

sets the value at an address to LOCKED and returns the previous value at the address.

Fetch&Increment(address) adds one to the value at an address and returns the previous

value at the address. Figure 6.13 provides pseudo-code for these primitives. For the Sparc

implementation, F&I is simulated with the non-blocking version of Compare&Swap shown

in Figure 3.7.

Message insertion with a locking algorithm is very similar to insertion with our

lock-free algorithm. Packets cycle through the same states, using the same transitions. A

sender transforms a packet from FREE to CLAIMED using ClaimPacket, which enforces

atomicity through mutual exclusion. The sender then �lls the packet and marks it as

READY. The receiver accepts the message, then returns the packet to the FREE state,

completing the cycle. For the locking algorithms, this three-state handshake shortens the

critical section by extracting packet-�lling.

Locking algorithms di�er from our lock-free algorithm within ClaimPacket and

ClaimBulk. Pseudo-code for the locking procedures appears in Figure 6.14; each algorithm

uses a distinct set of Lock and Unlock operations. Under the protection of a queue's lock,

ClaimPacket checks for a free packet at the tail of the queue. When available, the packet

is claimed, the queue tail is advanced, and the packet is returned. The tail packet may
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ClaimPacket(^q)

while TRUE

Lock(q^:mutex)

index q^:tail

if q^:packet[index]:state = FREE

q^:packet[index]:state CLAIMED

q^:tail (index+ 1) mod Q LENGTH

Unlock(q^:mutex)

return index

Unlock(q^:mutex)

(back o� exponentially and poll)

ClaimBulk(^q)

while TRUE

Lock(q^:mutex)

index q^:tail

block q^:bulk tail

if q^:packet[index]:state = FREE

if q^:bulk[block]:claimed = FREE

q^:packet[index]:state CLAIMED

q^:bulk[block]:claimed CLAIMED

q^:tail (index+ 1) mod Q LENGTH

q^:bulk tail  (block + 1) mod BULK LENGTH

Unlock(q^:mutex)

q^:packet[index]:bulk index block

return index

Unlock(q^:mutex)

(back o� exponentially and poll)

Figure 6.14: Pseudo-code for claiming a packet from a queue q using mutual exclusion.

ClaimBulk claims both a packet and a bulk data block.
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Lock(^mutex) (Test & Set)

repeat

until Test&Set(mutex) = UNLOCKED

Lock(^mutex) (Test & Test & Set)

while TRUE

if Test&Set(mutex) = UNLOCKED

return

repeat

untilmutex^= UNLOCKED

Unlock(^mutex)

mutex^ UNLOCKED

Figure 6.15: Pseudo-code for the Test & Set and Test & Test & Set algorithms.

Lock(^mutex)

number  Fetch&Increment(mutex^:ticket)

repeat

until mutex^:service = number

Unlock(^mutex)

mutex^:service mutex^:service + 1

Figure 6.16: Pseudo-code for the ticket lock algorithm.

already be claimed|when the queue is full, for example|and, in this case, the operation

stalls until it becomes available. ClaimBulk has the same form as ClaimPacket but

operates on both the packet and bulk data queues inside the critical section. ClaimBulk

also records the index of the associated data block in the packet. As with the lock-free

algorithm, the claim operations accept messages when a queue is full to avoid deadlock.

The �rst locking algorithm, Test & Set, uses a simple, one-bit lock, as shown in

Figure 6.15. Waiting processes continuously generate invalidation and read-request coher-

ence transactions. The second algorithm, Test & Test & Set, appears in the same �gure.

Test & Test & Set waits until a lock is released before making another attempt to obtain

it, generating coherence tra�c only when a lock is manipulated.

Third, the ticket lock [RK79], further reduces cache-coherence tra�c by ordering

the processes waiting on a lock. To obtain a lock, a process obtains a ticket and waits for
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Lock(^mutex)

number  Fetch&Increment(mutex^:index)mod NUM PROCESSES

repeat

until mutex^:held[number] = LOCKED

mutex^:slot[MY PROCESS] = number

Unlock(^mutex)

number mutex^:slot[MY PROCESS]

next (number + 1) mod NUM PROCESSES

mutex^:held[number] UNLOCKED

mutex^:held[next] LOCKED

Figure 6.17: Pseudo-code for the Anderson lock algorithm. MY PROCESS is a process

identi�er between 0 and (NUM PROCESSES�1).

a service counter to show its ticket number. The ticket counter is incremented atomically

to ensure that each process receives a di�erent ticket. When a process releases a lock, it

increments the service counter to allow the next process waiting on the lock to proceed. As

with previous algorithms, the release of a ticket lock incurs invalidation and read-request

coherence transactions for each waiting process. No further tra�c is necessary, however,

as the next process acquires the lock when it rereads the service counter. Pseudo-code

appears in Figure 6.16. Given hardware support for wait-free F&I, the ticket lock precludes

starvation and is strictly fair [MCS91]. Our Sparc implementation, based on a simulated,

non-blocking F&I, does not prevent starvation|it is fair only to processes that successfully

obtain tickets.

Fourth is the Anderson lock [And90], which improves on the ticket lock by dividing

the service counter into a separate 
ag for each process waiting on the lock, eliminating

contention when a lock moves from one process to the next. As shown in Figure 6.17,

the lock operation obtains a slot assignment (ticket) with F&I, then waits for the assigned

slot to contain a lock indicator. By retaining the form of the ticket counter, the Anderson

lock preserves the fairness property of the ticket lock. However, the maximum number of

processes must be known in advance to avoid multiple assignments to a slot in the divided

service counter. When releasing a lock, a process moves the lock indicator from its assigned

slot into the next. As only a single process watches the slot that next receives the lock,

Anderson locks generate fewer read-request transactions when a process releases a lock.

These four algorithms, together known as spin locks, have several drawbacks in
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practice. As the name implies, spin locks spin in a tight loop while waiting for a lock,

potentially wasting valuable cycles. Spin locks also interact poorly with the operating

system scheduler and admit deadlock when used with preemptive threads. A scheduler

can arti�cially extend the length of a critical section by descheduling a process during its

execution, thereby preventing progress by other processes for relatively long periods. A

high-priority thread that preempts a low-priority thread holding a lock then tries to obtain

the lock creates a deadlock. Preemption-safe locking addresses these problems [MS97].

Numerous preemption-safe solutions exist, and many are supported in modern

thread packages through integration with the operating system. The Solaris implementation

of Posix mutexes, our �nal locking algorithm, exempli�es these solutions. A process that

tries to obtain a lock held by another process enqueues itself on the lock and relinquishes its

processor. Priority inheritance allows a low priority process in a critical section to inherit

the priority of a high priority process waiting to enter that section. Unfortunately, the

same close coupling with the operating system results in performance disadvantages on

dedicated systems. For Posix mutexes, the Lock and Unlock calls translate directly into

their standard counterparts, pthread mutex lock and pthread mutex unlock.

A fair comparison between the locking algorithms and our lock-free algorithm

requires that we lay out the lock data in a way that delivers the best performance. We

achieve this end by placing the lock on a private cache line for the Test & Set and Test &

Test & Set algorithms. We found that the ticket lock delivers slightly better performance

when both counters occupy a single cache line, whereas the literature implies the use of

separate lines. For the Anderson lock, we placed the ticket counter and each slot on a

separate cache line, as the potential advantage of that algorithm lies in the separation of

the slots. Finally, we placed the Posix mutex structure on a line of its own.

Lock-free algorithms

A variety of lock-free, array-based queue algorithms appear in the literature, in-

cluding some very similar to our own. We describe several of those algorithms, then intro-

duce a modi�ed form of our lock-free algorithm that provides FIFO semantics.

One algorithm was developed independently by two groups working with the Cray

T3D, as described in Brewer et al. [BCL+95] and Karamcheti and Chien [KC95]. The

algorithm uses Fetch&Increment to claim queue entries from a static queue, but relies
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on the receiver to reset the queue after all entries have been claimed and processed. We

avoid this boundary condition through the use of an additional synchronization primitive.

A second algorithm, based on work with the NYU Ultracomputer [GLR83], was

designed for a many-to-many queue in which over
ow and under
ow must be detected

explicitly. Figure 6.18 presents pseudo-code for the Enqueue and Dequeue operations.

These operations maintain a count of full queue entries as a range of two values, upper and

lower. Enqueue begins with a check for queue over
ow. The second conditional attempts

to reserve one of the remaining queue entries, atomically decrementing the upper bound

on full entries if another process has already taken the last one. The �rst conditional is

necessary to prevent the system from entering a perpetual state of false over
ow, as might

occur if a number of processes repeatedly executed the second conditional on a nearly-

full queue. The rest of the Enqueue operation is practically equivalent to that used in

our algorithm, although it uses semaphores to manage contention for individual packets

and increments the lower bound on full entries after completing an insertion. The form

of Dequeue mirrors that of Enqueue. The explicit over
ow and under
ow support adds

overhead to the Ultracomputer algorithm, as does the ability to allow concurrent access for

multiple receivers. We needed neither of these features, hence our algorithm obtains higher

performance.

Valois [Val94] presents a third algorithm that uses explicit head and tail symbols

in the queue. A process enqueues a new element by atomically replacing adjacent array

elements, changing a (TAIL, EMPTY) pair to a (<new value>, TAIL) pair. This approach

limits queue entries to a size that can be manipulated with Compare&Swap primitives,

for our system requiring that the queue be an array of pointers. Locating the TAIL symbol

also incurs additional overhead, as the algorithm maintains only a hint as to its location in

the array. Most importantly, however, the algorithm requires unaligned Compare&Swap

primitives, making it \infeasible on a real machine."

The last lock-free algorithm to be discussed is a modi�ed form of our own. Provid-

ing FIFO semantics is not imperative for a correct implementation of the AM-II speci�ca-

tion, but might prove useful for higher-level software built to the AM-II interface. To obtain

such semantics, we take advantage of the total ordering on message insertions de�ned by

the atomic packet assignment operation. As shown in Figure 6.19, we interpret the upper

bits of the queue tail as an epoch number for insertions. Contention for individual packets

is then resolved in the order de�ned by the epoch numbers. After a receiver frees a message
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Enqueue(^q; ^data)

if q^:upper >= Q LENGTH

return OVERFLOW

if Fetch&Increment(q^:upper) >= Q LENGTH

Fetch&Decrement(q^:upper)

return OVERFLOW

index Fetch&Increment(q^:tail) mod Q LENGTH

while TRUE

if q^:packet[index]:enq sema) > 0

if Fetch&Decrement(q^:packet[index]:enq sema) > 0

q^:packet[index]:data data^

Fetch&Increment(q^:packet[index]:deq sema)

Fetch&Increment(q^:lower)

return SUCCESS

else

Fetch&Increment(q^:packet[index]:enq sema)

Dequeue(^q; ^data)

if q^:lower < 1

return UNDERFLOW

if Fetch&Decrement(q^:lower) < 1

Fetch&Increment(q^:lower)

return UNDERFLOW

index Fetch&Increment(q^:head)mod Q LENGTH

while TRUE

if q^:packet[index]:deq sema) > 0

if Fetch&Decrement(q^:packet[index]:deq sema) > 0

data^  q^:packet[index]:data

Fetch&Increment(q^:packet[index]:enq sema)

Fetch&Decrement(q^:upper)

return SUCCESS

else

Fetch&Increment(q^:packet[index]:deq sema)

Figure 6.18: Pseudo-code for Ultracomputer lock-free queue algorithm. The number of

items in the queue is in the range [lower; upper]. Contention for individual packets is

managed through enqueue and dequeue semaphores.
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ClaimPacket(^q)

assignment  Fetch&Increment(q^:tail)

epoch  assignment div Q LENGTH

index  assignment mod Q LENGTH

while TRUE

if q^:packet[index]:epoch= epoch

return index

(back o� exponentially and poll)

ClaimBulk(^q)

assignment  Fetch&Increment(q^:bulk tail)

epoch  assignment div BULK LENGTH

block  assignment mod BULK LENGTH

while TRUE

if q^:bulk[block]:epoch= epoch

index ClaimPacket(q)

q^:packet[index]:bulk index block

return index

(back o� exponentially and poll)

Figure 6.19: Pseudo-code for a FIFO lock-free queue. The epoch numbers guarantee the

FIFO property. The receiver must increment the epoch for each packet and each block

received.

packet, it increments the packet's epoch number, allowing the next sender to �ll the packet

again. The Ultracomputer work [GLR83] suggests a similar alternative for managing packet

contention.

6.3.2 Communication parameters

We now apply the benchmarking methodology developed in Chapter 5 to compare

the performance of the algorithms just described. We �rst measure point-to-point commu-

nication performance with our LogGP benchmarks. These benchmarks use one process as

an RPC server and a second as a client to illustrate performance in the absence of con-

tention. Parameter values and round-trip times in microseconds for all algorithms appear

in Table 6.3.

With the exception of the Posix mutex, the various algorithms are roughly equiv-

alent. A comparison between Test & Set and Test & Test & Set provides a reasonable

estimate of the actual accuracy of the measurements, as the two algorithms are nearly the

same in the absence of contention. The receive overhead provides a second estimate. None
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Parameter Test & Set Test & Test & Set Ticket Lock Anderson Lock

Latency (L) �0:59� 0:01 �0:53� 0:01 �0:58� 0:01 �0:61� 0:01

Send

Overhead (os)
1:824� 0:005 1:714� 0:005 1:764� 0:004 1:884� 0:005

Receive

Overhead (or)
1:49� 0:02 1:52� 0:02 1:68� 0:02 1:49� 0:02

Gap (g) 2:953� 0:003 2:937� 0:003 3:122� 0:003 2:988� 0:002

Gap per

Byte (G)

5:991� 0:008

nsec/B

5:992� 0:005

nsec/B

5:986� 0:009

nsec/B

6:20� 0:02

nsec/B

Bandwidth

(1=G)

159:2� 0:2

MB/sec

159:2� 0:2

MB/sec

159:3� 0:3

MB/sec

153:7� 0:3

MB/sec

Round-trip

Time (RTT)
5:439� 0:003 5:412� 0:002 5:737� 0:004 5:510� 0:003

Parameter Lock-Free Lock-Free FIFO Posix Mutex

Latency (L) �0:50� 0:01 �0:60� 0:01 �0:42� 0:01

Send

Overhead (os)
1:819� 0:005 1:883� 0:005 2:160� 0:005

Receive

Overhead (or)
1:47� 0:02 1:49� 0:02 1:57� 0:02

Gap (g) 3:005� 0:002 3:240� 0:004 3:418� 0:006

Gap per

Byte (G)

6:035� 0:006

nsec/B

5:98� 0:02

nsec/B

6:044� 0:005

nsec/B

Bandwidth

(1=G)

158:0� 0:2

MB/sec

159:5� 0:3

MB/sec

157:8� 0:2

MB/sec

Round-trip

Time (RTT)
5:588� 0:004 5:542� 0:003 6:634� 0:007

Table 6.3: LogGP parameters and round-trip times in microseconds. Negative latencies

indicate overlap in time between the send and receive overheads.

of the algorithms alters the code for message reception, thus the receive overhead for each

algorithm should be the same. The round-trip times for the more complex spin locks (the

ticket lock and the Anderson lock) and for the lock-free algorithms are a few percent larger

than those of the simpler locks, but the Posix mutex time is roughly 20% larger. Due to

interactions with the operating system, Posix mutex send overhead is also about 20% larger

than that of other algorithms, and gap is about 14% larger.

The negative values for latency indicate overlap in time between the send and re-

ceive overheads [LC95], in this instance due to the poll operation and to di�erences between

send overhead for request and reply messages. The benchmark that measures the sum of

send and receive overheads forcibly separates the two with a large delay. The round-trip
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Figure 6.20: Shared memory protocol bandwidth. The cusp occurs at the transition from

one- to two-packet messages. The receiver and the sender are not perfectly matched, thus

the half-power point occurs before the cusp, around 5.1 kB.

time benchmark allows overlap with both requests and replies; a message recipient can

initiate the poll operation before the sender changes the packet state, so long as the state

change occurs before the state check in the poll. In fact, a message recipient can even ini-

tiate a coherence transaction to bring the packet into its cache before the packet is ready;

again the only constraint is that the packet be marked as ready before the sender's cache

yields its exclusive access rights. Adding an 84-cycle cache-to-cache transfer to a 51-cycle

application-level poll operation (see Chapter 7) and assuming that on average half of each

poll is hidden in each direction, we predict an overlap of roughly 0.8 microseconds. Re-

ply send overhead is also likely to be smaller than request send overhead, as replies need

not check tags or arguments. Half of this di�erence, or roughly 0.15 microseconds (see

Section 6.4.1 below), appears as decreased latency. A third interaction damps the overlap

e�ect, however: when a recipient initiates the coherence transaction too early, the sender

must issue another invalidation before completing its message insertion. The likelihood of

this event depends on the time required to �nish claiming and �lling the packet, leading to

the slight di�erences in latency between the algorithms.
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Gap per byte and bandwidth have less variation than the other parameters, as the

cost to insert long messages amortizes the concurrent access overhead of the algorithms.

Peak realized bandwidths range from about 154 MB/sec (Anderson lock) to 160 MB/sec

(lock-free FIFO), or roughly 85% of the memory copy rate.

Figure 6.20 reports realized bandwidth with the lock-free algorithm as a func-

tion of message length. The graph assumes a shape typical of fragmented and pipelined

communication on a half-log scale: bandwidth �rst grows exponentially, then in
ects and

approaches a limit asymptotically, and �nally drops down discontinuously and increases

slope when the application must generate an additional fragment. For our communication

layer, these discontinuities occur at 8 kB intervals; the data points chosen for the �gure

reveal only the �rst discontinuity as a cusp. The half-power point occurs at 5.1 kB, before

the transition from one to two fragments per message.

The location of the half-power point relative to the �rst discontinuity depends on

the balance between the time spent on each fragment by the sender and the receiver. Denote

by ts the time spent by the sender in sending a single fragment, i.e., a bulk transfer message

of 8 kB. Similarly, denote by tr the time spent by the receiver in receiving a single fragment.

Finally, denote by tc the time spent returning the last acknowledgement, a short message,

to the sender. We can then write the realized bandwidth B for a message of N fragments

as follows:

B =
N 8 kB

N max(ts; tr) + min(ts; tr) + tc

or, in the limit of large N , Basymp =
8 kB

max(ts; tr)

A one-fragment message can then achieve more than half of the asymptotic limit whenever

ts di�ers from tr by at least tc. Assuming that jts � tr j � tc, we write

8 kB

max(ts; tr) + min(ts; tr) + tc
� 8 kB

2max(ts; tr)
=

1

2
Basymp

Using our lock-free algorithm, a sender incurs signi�cantly more overhead than a receiver

for bulk transfers, and the half-power point occurs before the �rst discontinuity. For the

network protocol, tc is much larger, and the half-power point occurs above 8 kB.

6.3.3 Stress test

We next report the performance of many-to-one communication using our con-

tention stress test. Numerical results for up to eight processors appear in Table 6.4, and
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Figure 6.21: Graph of communication stress test execution time in seconds. The values

can also be interpreted as microseconds per message. Execution times for the simpler spin

locks rise across the range reported. Other algorithms quickly 
atten out, with remaining

di�erences due to the number of cache lines that move between processors.

a graphical version appears in Figure 6.21. The vertical axis in the �gure represents exe-

cution time in seconds, but can equivalently be interpreted as microseconds per message.

The test with a single writer generates no contention and is equivalent to the LogP gap

measurement; again the algorithms are roughly equal except for the Posix mutex, which

incurs higher overhead.

Execution time for all algorithms jumps upward in moving to two writers, as each

algorithm moves at least one cache line between processors when multiple writers exist. For

larger numbers of writers, the character of stress test performance takes one of two basic

shapes. Execution times for Test & Set and Test & Test & Set rise roughly linearly as

contention increases due to data thrashing between caches. The other algorithms 
atten

out after their initial increases.

The ticket lock, for example, rises only slightly due to interference between the

ticket and service counters, which reside on the same cache line in our implementation. The

Anderson lock provides separate cache lines for each process queued on a lock, resulting in a
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Test & Set Test & Test & Set Ticket Lock Anderson Lock

1 writer
3:232� 0:005

� = 0:024

3:218� 0:006

� = 0:026

3:306� 0:004

� = 0:017

3:245� 0:006

� = 0:029

2 writers
3:602� 0:005

� = 0:023

3:744� 0:006

� = 0:026

3:711� 0:005

� = 0:023

4:169� 0:007

� = 0:032

3 writers
3:919� 0:006

� = 0:026

3:940� 0:005

� = 0:025

4:046� 0:005

� = 0:024

4:563� 0:008

� = 0:036

4 writers
4:242� 0:007

� = 0:030

4:033� 0:007

� = 0:034

4:193� 0:005

� = 0:021

4:665� 0:006

� = 0:028

5 writers
4:705� 0:006

� = 0:025

4:146� 0:007

� = 0:034

4:214� 0:005

� = 0:024

4:704� 0:006

� = 0:025

6 writers
5:019� 0:005

� = 0:023

4:317� 0:008

� = 0:036

4:251� 0:005

� = 0:020

4:765� 0:004

� = 0:019

7 writers
5:323� 0:007

� = 0:033

4:422� 0:007

� = 0:032

4:315� 0:005

� = 0:022

4:768� 0:007

� = 0:033

Lock-Free Lock-Free FIFO Posix Mutex

1 writer
3:26� 0:01

� = 0:05

3:268� 0:007

� = 0:030

3:612� 0:005

� = 0:022

2 writers
3:851� 0:004

� = 0:017

3:671� 0:004

� = 0:017

7:82� 0:06

� = 0:27

3 writers
3:866� 0:004

� = 0:016

3:681� 0:004

� = 0:017

10:55� 0:05

� = 0:22

4 writers
3:791� 0:003

� = 0:013

3:591� 0:004

� = 0:017

11:29� 0:04

� = 0:16

5 writers
3:762� 0:003

� = 0:013

3:565� 0:004

� = 0:017

11:22� 0:03

� = 0:12

6 writers
3:706� 0:004

� = 0:015

3:528� 0:004

� = 0:018

11:25� 0:02

� = 0:09

7 writers
3:746� 0:006

� = 0:028

3:560� 0:007

� = 0:033

11:33� 0:02

� = 0:08

Table 6.4: Communication stress test times in seconds.
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atter curve but incurring a larger penalty in the transition to multiple writers. Whereas the

other spin locks move only the lock and the queue tail between senders, the Anderson lock

must move the lock counter, a lock slot, and the queue tail. Posix mutex performance has

the same character as that of the Anderson lock, but context switches result in signi�cantly

higher absolute execution times. The line for Posix mutexes goes o� the scale in Figure 6.21

before reaching 2 writers.

Both forms of our lock-free algorithm 
atten out below the locking algorithm lines.

For our algorithms, only the queue tail need move between processor caches. We attribute

the gap in execution time between the FIFO and non-FIFO forms to the additional syn-

chronization primitive (CAS) used by the non-FIFO form. Execution time in fact decreases

slightly as the number of writers increases due to a gap reduction e�ect found in many

message-passing systems. The overhead of a poll operation is amortized over all messages

accepted by that poll, making the gap for many-to-one communication lower than that

for one-to-one communication. For both forms of our lock-free algorithm, gap reduction

dominates the small increase in execution time due to contention.

6.3.4 Application suite

The Split-C applications utilize a variety of communication patterns and generate

contention levels between the extremes investigated by the previous two benchmarks. Exe-

cution times for �ve application runs using only the shared memory protocol on one SMP

appear in Table 6.5.

Our lock-free algorithm generally demonstrates performance comparable or better

than that of the other algorithms. Applications with very structured communication such

as 3-D FFT or with nearest-neighbor communication such as CON/comp are independent

of the choice of concurrent access algorithm.

CON/comm illustrates minor distinctions due to the use of many-to-one commu-

nication. Three of the locking algorithms perform well enough for their con�dence intervals

to overlap with that of our lock-free algorithm at 1.89 seconds. CON/comm is 10% slower

when using the Anderson lock, however, executing in 2.08 seconds. The Posix mutex results

in an even slower execution: 2.16 seconds, or 15% slower than our lock-free algorithm.

EM3D, with many cross-processor dependencies, shows a more signi�cant sep-

aration. The performance of the algorithms under contention clearly interacts with the



141

SAMPLE CON/comp CON/comm 3-D FFT EM3D

Test &

Set

0:891� 0:005

� = 0:024

1:12� 0:02

� = 0:07

1:94� 0:04

� = 0:18

0:685� 0:008

� = 0:040

0:79� 0:02

� = 0:06

Test &

Test&Set

0:875� 0:006

� = 0:028

1:078� 0:008

� = 0:039

1:94� 0:04

� = 0:19

0:687� 0:007

� = 0:034

0:836� 0:009

� = 0:043

Ticket

Lock

0:893� 0:007

� = 0:034

1:12� 0:02

� = 0:06

1:93� 0:04

� = 0:17

0:685� 0:006

� = 0:030

0:817� 0:008

� = 0:037

Anderson

Lock

1:027� 0:007

� = 0:034

1:14� 0:02

� = 0:07

2:08� 0:05

� = 0:20

0:681� 0:007

� = 0:030

0:905� 0:009

� = 0:040

Lock-Free
0:762� 0:004

� = 0:017

1:11� 0:02

� = 0:05

1:89� 0:04

� = 0:19

0:677� 0:008

� = 0:037

0:682� 0:009

� = 0:043

FIFO

Lock-Free

0:791� 0:007

� = 0:032

1:09� 0:02

� = 0:07

1:86� 0:04

� = 0:17

0:69� 0:01

� = 0:05

0:68� 0:02

� = 0:05

Posix

Mutex

2:43� 0:07

� = 0:34

1:12� 0:02

� = 0:06

2:16� 0:04

� = 0:17

0:70� 0:02

� = 0:06

1:284� 0:009

� = 0:042

Table 6.5: Application execution times in seconds.

application-level blocking e�ect mentioned earlier, allowing some processes to begin �eld

computations before others receive all of their updates. EM3D executes in 0.682 seconds

using our lock-free algorithm. Execution times with the spin lock algorithms range from

0.79 seconds to 0.905 seconds, a slowdown of 16% to 33%. Posix mutexes again result in

the worst performance, requiring 1.284 seconds, or 88% more than our lock-free algorithm.

Although the contention for any single queue is necessarily less than that measured

by the stress test, the more complex communication patterns employed by applications can

result in greater di�erences in performance. The unstructured all-to-all communication

used in the last application run, SAMPLE, demonstrates this e�ect. The run executes in

0.762 seconds using the lock-free algorithm. Spin lock execution times range from 0.875 sec-

onds to 1.027 seconds, or 15% to 35% slower. SAMPLE requires 2.43 seconds when using

Posix mutexes, more than a factor of three slower than with our algorithm. The impact

of operating system support in this case goes beyond the overhead of the interaction itself.

The resulting context switches increase the potential for process migration and dramatically

increase the execution time.

6.3.5 Multiprogrammed machines

Our algorithm is clearly advantageous on a dedicated machine, providing compet-

itive or superior performance for applications with a range of communication patterns. We
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now conclude our investigation of alternative algorithms with a presentation of application

performance on multiprogrammed machines.

The data appear in Figures 6.22 through 6.26, with one �gure per application. The

upper portion of each �gure provides a table of execution times in seconds per job for four

combinations of parallel and sequential jobs. As detailed in our methodology in Chapter 5,

each parallel job is an eight-process application, and each sequential \job" is a set of eight

independent sequential processes designed to stress the memory system. The dedicated

data, labeled \1 Parallel Job," are also included for comparison. The lower portion of

each �gure presents the same data in graphical form. The order of algorithms from left

to right in each group of seven bars corresponds to the order used throughout the thesis

and replicated in the legend from top to bottom. Unfortunately, absolute execution times

between application runs varied too widely to allow the use of a single time scale for all of

the charts.

Applications with very structured communication again demonstrate little varia-

tion due to the choice of algorithm. 3-D FFT (Figure 6.25), for example, executes in the

same time within the con�dence intervals for each algorithm. As noted during our discussion

of parameter tuning earlier in this chapter, 3-D FFT execution time per job is about 23%

larger when multiple parallel jobs compete; execution time with the lock-free algorithm, for

example, rises from 0.677 seconds on a dedicated machine to 0.83 seconds on a multipro-

grammed one. Sequential jobs have signi�cantly more impact on parallel execution time,

as they do not cooperate in yielding processors. Adding one group of sequential processes

slows a parallel job using the lock-free algorithm by 49%, and two groups slows a parallel

job by 166%.

CON/comp (Figure 6.23) shows some variation across algorithms. In the presence

of two groups of sequential processes, execution times with the ticket lock and the Ander-

son lock are respectively 29% and 36% larger than with the lock-free algorithm. For the

other multiprogramming combinations measured, all algorithms are equivalent within the

con�dence intervals. Multiple parallel jobs have less impact than with 3-D FFT: multipro-

grammed execution time per job is 6% larger than the dedicated value. Sequential jobs also

have relatively little impact. The execution time of a parallel job increases by 39% when

competing with one group of sequential processes and by 26% when competing with two

groups.

The many-to-one communication in CON/comm (Figure 6.24) separates the al-
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1 Parallel

Job

2 Parallel

Jobs

1 Parallel,

1 Sequential

Job

3 Parallel

Jobs

1 Parallel,

2 Sequential

Jobs

Test & Set
0:891� 0:005

� = 0:024

1:46� 0:05

� = 0:21

1:58� 0:08

� = 0:36

1:52� 0:04

� = 0:20

1:75� 0:06

� = 0:27

Test &

Test & Set

0:875� 0:006

� = 0:028

1:42� 0:05

� = 0:22

1:55� 0:07

� = 0:34

1:54� 0:05

� = 0:23

1:73� 0:05

� = 0:25

Ticket

Lock

0:893� 0:007

� = 0:034
took too long to run

Anderson

Lock

1:027� 0:007

� = 0:034
took too long to run

Lock-Free
0:762� 0:004

� = 0:017

0:97� 0:03

� = 0:14

1:06� 0:06

� = 0:26

1:01� 0:03

� = 0:13

1:24� 0:05

� = 0:20

FIFO

Lock-Free

0:791� 0:007

� = 0:032

1:03� 0:04

� = 0:17

1:12� 0:07

� = 0:33

1:08� 0:04

� = 0:17

1:31� 0:05

� = 0:22

Posix

Mutex

2:43� 0:07

� = 0:34

1:61� 0:05

� = 0:23

2:42� 0:09

� = 0:43

1:04� 0:03

� = 0:14

1:92� 0:06

� = 0:27
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Lock-Free
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Posix Mutex

Figure 6.22: SAMPLE execution times in seconds per job.
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1 Parallel

Job

2 Parallel

Jobs

1 Parallel,

1 Sequential

Job

3 Parallel

Jobs

1 Parallel,

2 Sequential

Jobs

Test & Set
1:12� 0:02

� = 0:07

1:21� 0:03

� = 0:14

1:51� 0:07

� = 0:34

1:21� 0:03

� = 0:14

1:37� 0:04

� = 0:17

Test &

Test & Set

1:078� 0:008

� = 0:039

1:17� 0:03

� = 0:12

1:60� 0:08

� = 0:38

1:15� 0:03

� = 0:14

1:46� 0:04

� = 0:19

Ticket

Lock

1:12� 0:02

� = 0:06

1:21� 0:03

� = 0:14

1:67� 0:08

� = 0:39

1:21� 0:03

� = 0:15

1:8� 0:2

� = 0:6

Anderson

Lock

1:14� 0:02

� = 0:07

1:23� 0:03

� = 0:15

1:69� 0:08

� = 0:40

1:23� 0:03

� = 0:14

1:9� 0:2

� = 0:8

Lock-Free
1:11� 0:02

� = 0:05

1:18� 0:03

� = 0:13

1:54� 0:07

� = 0:34

1:18� 0:03

� = 0:15

1:40� 0:04

� = 0:16

FIFO

Lock-Free

1:09� 0:02

� = 0:07

1:18� 0:03

� = 0:13

1:56� 0:08

� = 0:36

1:13� 0:03

� = 0:12

1:34� 0:04

� = 0:17

Posix

Mutex

1:12� 0:02

� = 0:06

1:19� 0:03

� = 0:13

1:51� 0:07

� = 0:34

1:18� 0:03

� = 0:12

1:37� 0:04

� = 0:17
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Posix Mutex

Figure 6.23: CON/comp execution times in seconds per job.
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1 Parallel

Job

2 Parallel

Jobs

1 Parallel,

1 Sequential

Job

3 Parallel

Jobs

1 Parallel,

2 Sequential

Jobs

Test & Set
1:94� 0:04

� = 0:18

2:76� 0:05

� = 0:23

3:5� 0:2

� = 0:9

3:36� 0:06

� = 0:28

3:7� 0:1

� = 0:5

Test &

Test & Set

1:94� 0:04

� = 0:19

2:74� 0:05

� = 0:23

3:7� 0:2

� = 0:9

3:29� 0:06

� = 0:30

3:76� 0:09

� = 0:41

Ticket

Lock

1:93� 0:04

� = 0:17

2:81� 0:06

� = 0:27

5:1� 0:6

� = 2:5

3:62� 0:07

� = 0:34

8:0� 0:9

� = 4:4

Anderson

Lock

2:08� 0:05

� = 0:20

2:99� 0:06

� = 0:28

4:9� 0:4

� = 1:7

3:87� 0:08

� = 0:42
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Figure 6.24: CON/comm execution times in seconds per job.
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Figure 6.26: EM3D execution times in seconds per job.
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gorithms. Per-job execution times with two competing parallel jobs range from 2.74 to

2.99 seconds with the spin lock algorithms, from 5% to 14% larger than the 2.62 seconds

required with the lock-free algorithm. With three parallel jobs, spin lock execution times

range from 5% to 23% larger than that of the lock-free algorithm. Using the Posix mutes,

CON/comm executes in 3.01 seconds per job with two jobs and 3.62 seconds per job with

three jobs. Both times are 15% larger than that achieved with the lock-free algorithm.

Competition with groups of sequential processes leads to wide variations in execu-

tion time for CON/comm, allowing the simpler spin locks to deliver performance comparable

to that of the lock-free algorithm. Performance with both the ticket lock and the Anderson

lock was very erratic, and the distributions for two sequential processes were truncated by

timeouts in our global execution layer. Execution times are still well above those of the

other algorithms, however, requiring roughly 39% more time with one group of sequential

jobs and roughly 126% more time with two groups. Using the Posix mutex, execution time

is competitive with one group and roughly 13% larger with two groups.

As discussed earlier, a process in a CON/comm job does not eliminate all cached

data when it intervenes between two time slices of another process. The result is apparent

from the data: three competing parallel jobs require more execution time per job than

do two, as more cached data must be reread from memory. In particular, times rise from

39% to 66% larger than those on a dedicated machine. The sequential processes used in

these experiments stress the cache by design, however. A CON/comm job competing with

sequential processes loses nearly all cached data between time slices, incurring a large but

relatively constant performance penalty. Execution time per job is roughly the same when

competing with two groups as when competing with only one, about 87% larger than on a

dedicated machine.

In contrast, EM3D performance (Figure 6.26) remains stable between two and

three parallel jobs and between one and two sequential jobs. Compared with a dedicated

machine, execution time per job is about 11% slower when competing with parallel jobs

and about 73% slower when competing with sequential jobs. The mean values in fact

improve slightly for some algorithms, but are within the con�dence intervals for the lock-

free algorithm. We attribute these slight improvements to a reduction in the likelihood of

triggering the application-level blocking problem described earlier.

EM3D performance across algorithms demonstrates a clear separation between our

lock-free algorithm and the rest. Execution time using the spin lock algorithms generally



149

increases with the complexity of the lock. Performance with both the ticket lock and the

Anderson lock was very erratic, but the other algorithms delivered reasonably stable (and

faster) results. With two parallel jobs, execution times range from 0.84 to 1.00 seconds

per job, 11% to 32% larger than the 0.76 seconds required with our algorithm. With

three parallel jobs, the times range from 0.78 to 1.00 seconds, 8% to 39% larger than our

algorithm's time of 0.72 seconds. In both cases, performance with Posix mutexes falls

between that of the simpler and that of the more complex spin locks, at 21% slower with

two jobs and 18% slower with three.

When competing with sequential jobs, the ticket lock and the Anderson lock were

very slow. Executions with either of the simpler spin locks were 14% slower than with

the lock-free algorithm when competing against one group of sequential processes and 11%

slower when competing against two groups. In the same comparisons, executions with the

Posix mutex were 31% and 22% slower, respectively.

The last application run, SAMPLE (Figure 6.22), demonstrates the most signi�-

cant di�erences between the algorithms. We were unable to obtain reliable multiprogram-

ming data for the ticket lock or for the Anderson lock with this application, but a few

application runs returned extremely variable times more than an order of magnitude larger

than those of any other algorithm. SAMPLE executes roughly 50% slower with either of

the simpler spin locks than with our lock-free algorithm when competing with two or three

parallel jobs. Similar penalties arise for competition with sequential jobs, with 46% slower

execution times against one sequential job and 40% slower times against two.

The Posix mutex demonstrates the bene�ts of preemption-safe locking in moving

from two to three competing parallel jobs. With two jobs, execution time is 66% slower than

with our algorithm, but with three jobs, performance with the Posix mutex is competitive. A

similar improvement occurs for competition with sequential jobs, from 128% slower against

one job to 55% slower against two.

6.3.6 Summary

This section introduced a variety of alternative algorithms for managing the con-

current message queue in the shared memory protocol, then used a suite of benchmarks to

compare the performance of spin locks and preemption-safe locks with that of our lock-free

algorithm.
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The algorithms result in very similar LogGP parameters. Round-trip times for

the more complex spin locks, the ticket lock and the Anderson lock, and for our lock-free

algorithm, were slightly higher than those for the simpler spin locks, Test & Set and Test &

Test & Set. The Posix mutex was slowest due to the necessity of interacting with the

operating system in the lock and unlock operations.

The lock-free algorithm demonstrated the best results on the communication stress

test, which measures performance at the extreme of high contention. The algorithms'

performance separated primarily by the number of cache lines moved between processors.

Execution time with the simpler spin locks increased fairly rapidly with the number of

writers, whereas the ticket lock and the Anderson lock were less sensitive to contention.

The Posix mutex also tolerated contention, but at an absolute time of more than twice that

of all other algorithms. A gap reduction e�ect dominated the e�ect of contention on the

lock-free algorithm, allowing execution time to decrease slowly with an increasing number

of writers.

We next measured application performance on a single, dedicated SMP. For ap-

plications with very structured communication, the method used for concurrent access is

clearly irrelevant. The infrequency of added overheads or penalties makes them insigni�cant

compared with other sources of execution time variation. However, for applications with

more irregular communication, and particularly for unstructured, all-to-all communication,

the choice of algorithm is quite important.

A concurrent access algorithm must avoid unnecessary overheads to compete on a

dedicated machine. Performance on a multiprogrammed machine, however, depends more

on the ability of the algorithm to deliver performance in the presence of competing processes.

The Posix mutex algorithm is designed for such an environment, but sacri�ces performance

on a dedicated machine. The spin lock algorithms are designed for minimal execution

time, but can su�er performance degradation under the control of an oblivious scheduler.

Our lock-free algorithm balances the low overhead necessary to remain competitive with

the robustness necessary to handle multiprogramming. It provides competitive or superior

performance for applications with a range of communication patterns on both dedicated

and multiprogrammed machines.
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6.4 Future Performance

Previous sections in this chapter evaluate our communication layer and the lock-

free algorithm relative to other process-based approaches. In contrast, this section in-

vestigates performance in a more absolute sense by illustrating the relationship between

the memory hierarchy parameters and the cost of passing a message through that hierar-

chy. We begin the section by breaking the send overhead for our shared memory protocol

into components based on functionality and necessary coherence transactions. The section

next predicts the impact of current architectural trends on shared memory message-passing

performance and discusses the importance of these trends for future systems. These ob-

servations lead to a few suggestions for improving performance, with which the section

closes.

6.4.1 Overhead breakdown

As an aid to understanding the relationship between access times in the hardware

memory hierarchy and the cost of sending messages between processors, we next present

a detailed breakdown of short message send overhead in the shared memory protocol. To

obtain these data, we repeatedly eliminate single pieces of functionality from the commu-

nication layer and calculate the di�erence in overhead with and without each component.

As the time spent on a given component may depend to some degree on the presence or

absence of other components, our approach requires that we �rst de�ne a canonical order.

After describing that order and commenting on our rationale for selecting it, we present the

results of this experiment and discuss their signi�cance.

Canonical order

We break send overhead into seven main components as outlined below; the an-

notations explain our rationale.

1. Base cost for writing a message. This component represents the bare minimum possi-

ble for message-passing: call overhead, retrieving a cache line frommemory, depositing

the data into the cache line, and incrementing the queue tail to note that a message

has been sent.
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2. Cache-to-cache transfer. As we expect cache lines used for message-passing to remain

resident in the receiving process' cache until requested by another sender, we next

measure the additional overhead associated with a cache-to-cache transfer.

3. Over
ow check. Ensuring that a packet does not already contain a message can incur

an extra coherence transaction, but is necessary for correctness.

4. Shared memory poll. A poll for each message sent helps the communication layer

remain responsive to incoming messages.

5. Argument and tag checking. Although perhaps not absolutely necessary for research

prototypes, checking for errors at the interface to a communication layer aids in the

debugging and testing process for programs built on top of that layer.

6. Concurrency management. The cost of allowing multiple senders to access the message

queue concurrently. Placing this component after argument and tag checking provides

an estimate of the relative cost of one-to-one and many-to-one queues.

7. Multi-protocol overhead. The cost of supporting network messages on shared memory

send overhead. We add this component last to allow a meaningful breakdown of

performance within an SMP.

We further separate the �rst component|the base cost for writing a message|into

four subcomponents to expose the relationship between the necessary coherence transaction

and the message insertion. The subcomponents include the following:

1. Call overhead. The cost of argument marshaling, a call to a null function, and return.

2. Increment queue tail. The cost to manipulate a control variable in a queue to deposit

each message into a distinct packet. In our system, this manipulation requires only

incrementing the tail of a queue.

3. L2 cache miss. The cost to write the �rst word of data into a message. The associ-

ated coherence transaction should require very few cycles until the write bu�er �lls.

When the bu�er does �ll, as with the tight loop used in our benchmark, coherence

transaction latency hides the previous two components. Thus we can only measure

those components in the absence of the cache miss.



153

base cost
28

increment queue tail

fill packet 48

23

9

call overhead
108

33

49

39

49

33 pull from receiver’s L2 cache

overflow check

poll for incoming messages

concurrency management

argument and tag checking

multi-protocol extension45

L2 cache miss
(remainder hidden)

Figure 6.27: Breakdown of send overhead in cycles for the shared memory protocol. The left

bar shows the costs of each component for the base case, which performs no error checking

or concurrency management for the destination queue. The cost of the latter appears in the

right bar. The send overhead totals 311 cycles (1.9 microseconds) for the shared memory

protocol and 356 cycles (2.1 microseconds) for the multi-protocol layer.

4. Fill packet. The cost to write the remaining data into the message packet and to

signal completion by changing the packet state.

Results

A breakdown of the send overhead for short messages appears in Figure 6.27. The

left bar illustrates the base cost of a short message in the absence of error checking and

concurrency management for the destination queue. The total of 108 cycles (0.65 microsec-

onds) also assumes that the message packet is not resident in the receiver's cache. To reach

the base cost, the sender prepares eight arguments and calls the appropriate function in a

total of 28 cycles. Advancing the tail of the queue requires another 9 cycles.

The L2 cache miss incurred by the �rst write into the packet adds only 23 cycles. In

fact, the remainder of this coherence transaction hides most of the previous operations, as is

evident from a comparison with similar results from an earlier version of our communication

layer. To support multiplexing functionality not necessary in this thesis, our communication

layer stores function pointers in a table attached to each endpoint. A previous version of

the layer allowed direct calls and required only 11 cycles for call overhead and the same

9 cycles for advancing the queue tail. Including the coherence transaction brought the time

to within one cycle of the 60 required by the current layer, however, indicating that the
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additional overhead of the indirect function call is completely hidden by the cache miss.

Filling the remainder of the packet, enforcing a memory barrier on store ordering, and

changing the packet state requires the remaining 48 cycles.

The right bar in the �gure extends the base cost with measurements of the remain-

ing components. When queue packets are resident in a receiver's L2 cache, each message

incurs an additional 33 cycle penalty, the di�erence between a memory read and a cache-

to-cache transfer.

Retaining packets in the receiver's cache also increases the cost of the next com-

ponent, the check for queue over
ow. The check reads the packet state and immediately

uses the result, incurring a 49 cycle coherence transaction to bring the data into the cache.

The read operation does not invalidate the copy in the receiver's L2 cache, however, and

leaves the packet in a shared state. Filling the packet thus still requires an invalidation, the

second transaction. In contrast, the Gigaplane coherence protocol places lines read from

memory into an exclusive state, voiding the need for invalidation.

The sender can also eliminate the extra transaction by writing an unused part of

the packet before the over
ow check and using a memory barrier to prevent reordering.

This approach reduces send overhead by 40 cycles when measured in isolation, but has a

negative impact on other LogP parameters and on application results, presumably due to

cache line thrashing when a receiver polls its queue during the send operation.

The local poll operation performed before each send adds another 39 cycles. The

poll operation is responsible for the failure of our statistical averaging techniques with

send overhead. Measurements of prior components resulted in reasonably independent and

normally distributed data, whereas measurements including the poll operation su�er from

the non-independence and bimodality discussed in Chapter 5.

Function argument and endpoint tag checking by the communication layer intro-

duce another 49 cycles of overhead. The layer checks that it has been initialized, then

validates both the source and destination endpoints for the message. The layer also guaran-

tees that both the sending and receiving processes have mapped each other's shared memory

queue blocks. Finally, the layer veri�es that the correct endpoint tag has been provided by

the sender before allowing message insertion into the destination queue.

Concurrency management adds 33 cycles when both packet assignment and claim-

ing succeed on the �rst try, bringing the total for the shared memory protocol used in

isolation to 311 cycles (1.9 microseconds).
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The �nal component represents the overhead required to support the network pro-

tocol when using only the shared memory protocol. For this measurement, we forced the

local tra�c estimate to remain high to simulate actual use of the protocol. The send over-

head benchmark otherwise brings the estimate arti�cially low, as the benchmark prevents

the receiver from issuing reply messages. On average, inclusion of the network protocol more

than doubles the time spent in the poll operation, bringing the total for the multi-protocol

implementation to 356 cycles (2.1 microseconds).

6.4.2 Architectural trends

The detailed breakdown of send overhead sheds light on the relationship between

the message costs and the parameters of the memory hierarchy. Regrouping the overhead

breakdown data, we �nd that that coherence transactions make up only a third of the whole.

Another �ve-twelfths is spent on the basic mechanisms of the operation: call overhead, ar-

gument checks, queue advancement, and packet �lling. The �nal quarter of the time is split

between managing concurrent access between senders and polling for incoming local mes-

sages. Two current trends in computer architecture will signi�cantly shift this balance and

impact overall message performance: the diverging performance of processors and memory,

and the trading of latency for scalability in servers. We now explain these trends and apply

speci�c examples to our data in order to understand their impact.

The performance of memory systems relative to processors is constantly declining.

Rapidly climbing clock speeds and advances in instruction-level parallelism have dwarfed

improvements in memory latency. According to Patterson and Hennessy [PH98], clock rates

increased at an average of 40% per year after 1985, whereas memory increased at an average

of only 9% per year. Interleaved memories and pipelined misses have boosted memory

bandwidth to adequate levels in spite of this di�erence, but latency-critical operations do

not bene�t from these techniques.

A comparison of the UltraSPARC Model 170 workstation with the more recent

Ultra 10 workstation exempli�es this trend. The Model 170 features the �rst chipset based

on the UltraSPARC V9 processor, with a 6 nanosecond (167 MHz) clock. The Ultra 10

uses the UltraSPARC-IIi, with a 3.33 nanosecond (300 MHz) clock (a second con�guration

features a 3 nanosecond clock). Conservatively assuming that improvements in instruction-

level parallelism between the architectures are nulli�ed by dependencies, mispredictions,
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or other problems, the Ultra 10 should execute code that requires no o�-chip accesses in

about 56% of the time required by the Model 170. In contrast, the memory system has

improved very little between these architectures: memory read latency is 264 nanoseconds

on the Model 170 and 240 nanoseconds on the Ultra 10. Data are delivered faster on the

new machine|in 91% of the time required by the earlier machine|but the improvement

falls far short of the processor speed improvement. In terms of cycles, memory read latency

has risen from 44 to 72 cycles. O�-chip cache latency has tracked processor performance

more closely, but L2 cache hit time still rises from 8 cycles on the Model 170 to 10 cycles

on the Ultra 10.

We apply these numbers to the data by increasing the cycles required for memory

and coherence transactions. The �rst three subcomponents of the base message cost together

increase by 28 cycles, as the coherence transaction presumably still hides the costs of call

overhead and queue tail manipulation. Assuming the same relative slowdown for cache-to-

cache transfers as for memory accesses, the cache-to-cache transfer increases by 21 cycles

(33�28=44). With a similar assumption, the over
ow check increases by 31 cycles. Finally,

the concurrency management component increases by 8 cycles, corresponding to two CAS

operations, each of which travels to and from the L2 cache. Summing the increases, we

arrive at a total of 399 cycles (1.3 microseconds), or 68% of our system's time. Coherence

transactions rise from 34% of the total in our system to 46% in the prediction.

Server-class architectures have focused partially on scalability, but have at the

same time emphasized the performance of rarely- or non-communicating processes. Ap-

proximately a year after introducing the Gigaplane-based Enterprise systems, for example,

Sun Microsystems brought out a more scalable platform, the Enterprise 10000. Through

the Gigaplane-XB interconnect, the Enterprise 10000 scales to 64 processors, but sacri-

�ces memory latency. Compared with the Gigaplane, the Gigaplane-XB adds roughly

240 nanoseconds to each memory or coherence transaction [CPWG97]. Just as the 16%

increase in memory latency between the Model 170 and the Enterprise 5000 has little im-

pact on the performance of sequential applications, the extra cost due to the Gigaplane-XB

is unlikely to produce startling changes in that regime. For our communication layer, how-

ever, the increase translates to an additional 80 cycles of send overhead, changing the total

to 391 cycles (2.3 microseconds). Coherence transactions in this case account for 47% of

the overhead.

Coherence transactions have become a signi�cantly more important component of
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message-passing in SMP's in the roughly one to two years separating our example archi-

tectures. As we move forward into the future, we expect such transactions to become the

dominant component and to limit the performance of communication between processors.

6.4.3 Performance improvements

The trends just discussed increase the cost of passing messages through cache-

coherent shared memory on future architectures. Based on our detailed understanding of the

costs, we now suggest a few architectural changes to counteract the trends and to improve

performance. Our goal in describing these changes is to provide a small set of straightfor-

ward modi�cations to typical commercial architectures that will improve message-passing

performance without a�ecting the behavior of computations that make no use of these ca-

pabilities. We envision three complementary changes: one-sided caching, burst support,

and transfer optimization. One-sided caching allows a message-centric approach to memory

consistency. Burst support provides the ability to push a cache line of data into mem-

ory or another processor's cache in a single transaction. Transfer optimization focuses on

improving the latency of cache-to-cache transfers.

The extensions suggested here represent an explicit approach to improving the

performance of message-passing over cache-coherent interconnects; an application or library

must explicitly identify data as the target of these extensions. Implicit approaches to

automatically identifying a similar class of data within the coherence protocol itself have

been suggested by several studies [CF93, SBS93]. We defer a discussion of the relationship

between our approach and the implicit techniques until Chapter 9. COMA architectures

such as the KSR-1 also use similar techniques in both implicit and explicit forms.

The overhead breakdown suggests that a signi�cant fraction of the cost of a mes-

sage involves scenarios in which a processor stalls while waiting for a coherence transaction

to complete. One-sided caching caches message data only at a receiver and allows a sender

to write the data without �rst reading it. Using one-sided caching, the data can remain in a

receiver's cache, often eliminating the need to stall when accepting a message. A sender that

reads one word of a line using one-sided caching reads only that word, receives a possibly

inconsistent version, and does not cache the incoming data. Borrowing terminology from

the message-passing literature [KC95], we say that a sender pushes a message across the

interconnect rather than waiting for the receiver to pull it across. In coherence terminology,
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this approach is similar to a write-update protocol that updates only the cache belonging

to the message recipient. Unlike write-update, however, one-sided caching ensures that the

data are never cached outside of the receiver's local cache.

An implementation of one-sided caching requires three forms of support: minor

coherence protocol modi�cations, minor instruction set extensions, and correct use of the

new instructions by an application. None of these aspects are necessary for correct system

behavior; in their absence, the system operates as a typical commercial SMP. An application

that does not use the new instructions correctly may lose its own data, but cannot corrupt

other processes in the system. Before providing the details of these extensions, however,

we use our system to illustrate how one-sided caching coupled with burst support reduces

message-passing overhead. For simplicity, assume that all processes remain resident on

unique processors; we address the possibility of migration in describing the implementation

strategy.

Consider a process sending a short message. After packet assignment, a sender

reads the packet's state to test for queue over
ow, at which point the coherence protocol

brings the entire packet into the sender's cache. Regardless of the result of the test, however,

the additional data serve no useful purpose: the sender writes over the data in a free packet

and ignores the data in a claimed or ready packet. With one-sided caching, the sender

bypasses the cache in the queue over
ow check, recovering wasted data bus bandwidth and

possibly eliminating coherence transactions for contended access to the packet. Avoiding

the cache does have a drawback, however. When a sender detects an empty packet, the CAS

primitive in the claim operation must occur with exclusive access to the data. Normally,

the sender's cache places the cache line into an exclusive state, requiring that the cache line

be present. The alternative|supporting remote CAS primitives in the processors, caches,

and memory banks|seems overly complex. However, we can circumvent the need for an

atomic claim operation by using the FIFO form of our algorithm.

A sender need not incur a second coherence transaction with one-sided caching.

The state read con�rms the sender's claim and implicitly confers exclusive ownership of

the line despite the view of the machine's cache controllers. The sender can then �ll the

packet, using burst support to write the full cache line of data rather than pushing data

out of the processor one word at a time. Integrating burst support with the processor can

reduce packet �lling overhead and contention for write bu�er resources on the processor,

and contention for the cache line within the memory system. As we discuss below, burst
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support also simpli�es the implementation of one-sided caching. The data burst bypasses

the sender's cache and is deposited either into memory or directly into the receiver's cache

when it already contains the cache line. The hardware must guarantee either atomicity or

an ordering for the burst. A guaranteed ordering is su�cient for a communication layer

to ensure that a message packet only appears ready for delivery after all data have been

written.

Next consider a process receiving a message. Our system incurs two coherence

transactions after the sender �lls the packet. The �rst brings a packet into the receiver's

cache in a shared state to verify that the message is ready for delivery. The second invalidates

the sender's copy in order to free the packet. One-sided caching reduces the number of

transactions to zero or one. In the worst case, a receiver must load the cache line from

memory. If the receiver does so before the message is ready, the cache line remains in the

cache until kicked out by accesses to computation data. More frequently, a message packet

is already cache-resident, and the message has been pushed into the receiver's cache by the

sender. The receiver then incurs no coherence transactions.

A more abstract view of message-passing as a means of synchronizing concurrent

processes through memory also validates the advantages provided by one-sided caching and

burst support. In the general case, consider a process, the receiver, waiting for a signal


ag from a second process, the sender. The sender sets the 
ag only once, but the receiver

may check the 
ag many times, performing other useful work between checks. Allowing

the 
ag to migrate out of the receiver's cache potentially penalizes performance, but the

sender must be able to write the 
ag. When the sender does write the 
ag, however, the


ag's previous value, although known to be clear in this scenario, becomes irrelevant. With

one-sided caching and burst support, the data remain cached close to the receiver, yet the

sender can deliver not only the 
ag but a small amount of data atomically into the cache.

One-sided caching and burst support require three new instructions: specialized

loads for senders and receivers and a burst store instruction. We use the UltraSPARC-I

architecture [SME97], the processor used in our experimental platform, as a reference in

discussing the implementation details. The interconnect speci�cation for the UltraSPARC-I

processor is the Ultra Port Architecture, or UPA.

The �rst instruction, load-receiver, performs a standard load operation when

the target cache line resides in either the local cache or in memory. As with the protocol

used by the UPA, data cache lines read from memory enter the cache in an exclusive state.
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When a line resides in another cache, however, load-receiver causes the remote cache to

invalidate the line after providing the data to the local cache and places the line in an ex-

clusive state in the local cache. Many architectures already support this kind of transaction

on the interconnect; in the UPA, for example, the Sparc issues a read-to-own transaction

(P RDO REQ). A processor typically issues a read-to-own transaction in response to a store

or synchronization primitive cache miss. The load-receiver instruction requires that a

processor issue a read-to-own transaction for a load miss as well. In the absence of cache or

interconnect support, the memory system can safely treat load-receivermisses as normal

load misses.

A receiver process is not in practice uniquely linked to a processor. Instead, the

operating system can migrate a receiver process from processor to processor in the system.

When the scheduler removes a receiver process, message data remain in the processor's

cache. If the scheduler later reschedules the receiver on the same processor, the data

remain cached only by the receiver. However, if the scheduler places the receiver process

on a di�erent processor, it temporarily violates the semantics of one-sided caching. The

next load-receiver instruction issued by the receiver process restores the proper state of

a�airs, however, moving the data to the new processor and invalidating the old cache line.

Data updated in the wrong processor's cache eventually migrate to the new processor or

return to memory.

The second instruction, load-sender, reads a single word (32- or 64-bit) without

changing any coherence state. If the target cache line is in the local cache, load-sender

operates as a normal load. If the target cache line is in memory, load-sender obtains

the data but does not allocate the cache line. If the target cache line is in another cache,

load-sender obtains the data without a�ecting the state of the line in the remote cache.

The data returned from a load-sender may be inconsistent; the application|or in our

case the communication layer|is responsible for ensuring that the inconsistency does not

lead to incorrect behavior. The UPA provides two signals with behavior close to that

desired. A read-to-discard transaction (P RDD REQ) reads an entire cache line from a

remote cache without a�ecting the state. A processor can issue this signal in response to

a load-sender miss and discard the remainder of the cache line, but only at the expense

of wasted data interconnect bandwidth. A noncached read transaction (P NCRD REQ)

bypasses the cache to obtain up to 16 B of data, but cannot legally be delivered to another

processor in the current speci�cation. load-sender must also check the local cache before
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issuing the transaction, as a sender might be scheduled immediately after the receiver on

the same processor. In the absence of cache or interconnect support, the memory system

can safely treat load-sender misses as normal load misses.

The last instruction, store-burst, bypasses the cache and emits a full cache line

of data across the memory interconnect. The Sparc V9 Visual Instruction Set extension

already supports generation of store bursts to memory. However, the write invalidate UPA

transaction (P WRI REQ) issued in response to a store burst on the Sparc invalidates any

remote caches and delivers the data to memory. In contrast, store-burst must update

the receiver's cache, requiring that the cache snoop to identify store-burst transactions to

exclusively owned cache lines and replace the cached data with the burst coming across the

interconnect. After receiving a burst, a receiver changes a previously unmodi�ed cache line

to a modi�ed state. As cache controllers must already handle full lines of incoming data in

regular operation, accepting store-burst transactions should not be di�cult.

As an alternative to burst support in the processor, the cache controller can be

modi�ed to issue a burst when the processor writes to a speci�c location within a marked

cache line, a notion similar to the automatic signaling on write described in [CK96]. With

this approach, however, the sender's cache must hold the line in an exclusive state while

writing the message. Allowing a receiver to simultaneously maintain a stale copy of the line

to speed polling requires more signi�cant changes to the coherence protocol. The lines must

also be identi�ed as message data in some fashion, whereas burst support allows implicit

identi�cation by an application.

The ability of system architects to optionally support one-sided caching is an

important aspect of our design, allowing not only a smooth integration into future systems

but also, if necessary, a smooth removal. Although current trends indicate that the explicit

control of data transfer embodied by one-sided caching will become more important over

time, changes in computer architecture have never been easy to predict, and future architects

may decide to eliminate one-sided caching. In such an event, third-party software built to use

one-sided caching will continue to operate on machines that no longer support it, degrading

gracefully to the performance of an invalidation-based protocol. The same cannot be said

of burst support, as software simulation cannot inexpensively achieve multi-word atomic

transactions. However, a number of system architects have already chosen to include such

support in their architectures.

One-sided caching and burst support aim primarily at hiding coherence transac-
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tion latency rather than reducing it. Transfer optimization, the last improvement, addresses

reduction directly, but is the least constructive and most open-ended of the three. Com-

munication data tend to move between processors and their caches rather than down into

memory. Optimizing the transfer of data between processor caches thus reduces overhead

and application-to-application latency for most messages. The fact that cache-to-cache

transfers are slower than memory accesses on the Enterprise 5000 came as something of a

surprise to us, as a transfer involves no DRAM access latency. The di�erence most likely

re
ects an emphasis on memory system performance at the expense of the path between

caches rather than an intrinsic limitation of the hardware. As logic performance continues

to grow relative to memory performance, transfer latency improvement relative to memory

latency should come naturally on future architectures. We urge the architects of these sys-

tems to take a step further, however, and to actively reduce the time required to move data

across the memory hierarchy above the main memory.

6.5 Comparison with NOW's

A signi�cant body of literature documents the qualitative advantages of cache-

coherent shared memory systems over their less illustrious cousins, networks of workstations

or NOW's. We assumed in this thesis a model of multiple communicating processes rather

than a thread-based model, and in doing so have perhaps sacri�ced some of the performance

potential of the SMP. In return, we have gained simplicity and generality, allowing a direct

comparison using the same application code on very di�erent platforms. Within the pro-

cess model, the results presented in this chapter establish the e�ectiveness of our solution

compared with other possibilities and illustrate the relationship between the overhead of

the communication layer and the latencies in the memory system. From this perspective,

the di�erence between performance on a single SMP and performance on a NOW places

an upper bound on the advantages of using a hybrid system such as a Clump. In this

section, we report application performance data on a network of UltraSPARC Model 170

workstations, a system that di�ers from our Clump only in the memory hierarchy and in

the network topology; the main processors, the network fabric, and the application code

are all exactly the same. The next chapter reports performance on the Clump and explains

how the structure of an application a�ects that performance.

The execution times for �ve application runs on an 8-processor NOW appear in
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SAMPLE CON/comp CON/comm 3-D FFT EM3D

SMP
0:762� 0:004

� = 0:017

1:11� 0:02

� = 0:05

1:89� 0:04

� = 0:19

0:677� 0:008

� = 0:036

0:682� 0:009

� = 0:043

8-way

NOW

1:50� 0:02

� = 0:06

1:095� 0:003

� = 0:014

3:755� 0:006

� = 0:029

0:770� 0:003

� = 0:013

4:01� 0:02

� = 0:10

Table 6.6: Comparison between SMP and NOW performance. Each platform has eight

processors.

Table 6.6 alongside the times on one 8-processor SMP. The polling strategy brings NOW

execution times with the multi-protocol layer lower than those with only the network proto-

col, and we chose to present the faster runs in the table. The converse is true for the SMP,

hence the SMP executions used only the shared memory protocol. For the computation-

bound CON/comp run, the SMP has no advantage over the NOW; the increased memory

latency cancels the bene�t of faster communication. The computation and structured com-

munication in 3-D FFT attenuate the advantage of higher communication bandwidth, and

the execution time on the SMP is 0.677 seconds, or 88% of the 0.770 seconds required on

the NOW. The remaining applications perform substantially better on the SMP. SAMPLE

executes in 0.762 seconds, or 51% of the 1.50 second NOW execution time. CON/comm

executes in 1.89 seconds, or 50% of the 3.755 second NOW execution time. EM3D executes

in 0.682 seconds, or 17% of the 4.01 second NOW execution time.

The potential bene�t of the faster shared memory protocol depends to a large

extent on the amount and style of communication between the processors. Applications

that send many messages in a pipelined fashion reap a large bene�t. Applications that

employ more structured communication add dependencies between processes. Although

the benchmarked round-trip time of the shared memory protocol is lower than that of

the network protocol (as reported in the next chapter), the dominant portion of message

response latency in an application executing on a dedicated machine arises from the response

time of the application itself. Latency-dependent applications thus gain less from the faster

communication protocol.

6.6 Summary

This chapter reported the performance of our shared memory protocol: tuning

the protocol parameters, comparing the lock-free algorithm with alternatives, exploring the
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reasons behind the demonstrated performance, and comparing that performance with that

achieved by a NOW.

We showed that a backo� yield time of 255 microseconds provides good perfor-

mance on a range of applications, whether the machine be dedicated to a single job or

time-shared between multiple jobs. Using the same criteria, we selected a packet queue

length of 4,096 entries and a bulk data queue length of 16 entries.

We argued that our lock-free algorithm enjoys a performance advantage over alter-

native algorithms, and backed these arguments up with empirical data on both spin locks

and the preemption-safe Posix mutex. These data established our algorithm's superior per-

formance across a range of contention levels and for applications on both dedicated and

multiprogrammed machines

We presented a detailed breakdown of send overhead with our shared memory

protocol and noted that coherence transactions account for only a third of the time. Given

the current trends in architecture, we expect this fraction to increase in the future, requiring

more cycles to communicate a single message between processors. We suggested a variety of

means by which this additional time can be reduced or hidden, leaving the implementation

of these approaches for future work.

Finally, we compared the performance of our system running on a single SMP

with its performance running on a similar network of workstations. For some applications,

communication was not an important factor in execution time, and the two results were

nearly equal. For applications more dependent on communication latency and bandwidth,

the SMP executed the codes in between 17% and 88% of the time required by the NOW.

These improvements bound the performance potential of the Clump, as applications running

on such a system must use a combination of the slower and faster protocols. In the next

chapter, we continue to report the performance of our layer with details of performance on

the Clump.
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Chapter 7

Multi-Protocol Performance

The previous chapter focused on the performance of the shared memory proto-

col used as a single-protocol communication layer. This chapter reports the performance

of the full multi-protocol layer, exploring the impact of supporting multiple protocols and

investigating the potential performance advantage of a Clump architecture over a network

of workstations. The chapter begins by determining appropriate parameter values for the

adaptive polling strategy. Performance results follow, beginning with a study of the impact

of multi-protocol support on both microbenchmark and application performance, and fol-

lowed by a comparison between the Clump and a NOW. The chapter closes with a discussion

of the relationship between the architecture, the programming model, and performance.

7.1 Polling Strategy Selection

A multi-protocol communication layer that naively polls each protocol for incom-

ing messages on every message insertion can signi�cantly reduce the performance of the

individual protocols. Disparate protocol costs are the source of the problem; in our layer,

the high cost of polling the network signi�cantly increases the overhead of inserting and

accepting messages with the shared memory protocol. Network performance is also be af-

fected by inclusion of the shared memory protocol, but the e�ects are relatively minor. We

addressed this problem in Chapter 4 by developing a framework for an adaptive polling

strategy. This approach uses estimates of tra�c from previous poll operations to make pro-

tocol polling decisions, minimizing the impact of supporting multiple protocols and allowing

a single binary to obtain good performance on a range of platforms.
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Shared Memory Network

0:306� 0:002 �sec 2:604� 0:002 �sec

51 cycles 434 cycles

Table 7.1: Cost of polling an empty queue on an Enterprise 5000. The uncacheable NIC

memory makes remote messages queues roughly an order of magnitude slower than shared

memory queues.

This section reports our selection of appropriate parameter values for the adaptive

polling strategy. Four parameters arise in the model: the damping parameter d determines

the rate at which the tra�c estimates adjust to changes in message arrival rates; the equality

parameter k gives the number of network polls to skip when message tra�c on the two

protocols is roughly equal; and the minimum and maximum skip parameters, smin and

smax respectively, bound the number of poll operations between network polls. Our system

uses a damping parameter of 256, an equality parameter of 4, a minimum skip of 4, and a

maximum skip of 64. We study the impact of varying each parameter individually on the

performance of applications, holding the other parameters at their nominal values. After

highlighting the di�erences in the cost of the application-level poll operation with our two

protocols, we present data from an SMP and a NOW. As these platforms require only a

single protocol, they allow us to determine acceptable parameter values for environments

in which only a single protocol is used. The data for the full Clump follow.

7.1.1 Polling di�erences

The cost of an application-level poll operation for each single protocol appears in

Table 7.1. We obtained these values by timing a loop that polls an empty endpoint one

million times, then repeating the experiment 100 times and reporting the mean and 95%

con�dence interval for each measurement. The 51 cycle cost of the shared memory poll

consists primarily of call overhead and data structure manipulation; checking the queue

generally requires only a read from the L1 cache, as we expect this data to remain hot when

a process communicates. A message arrival, of course, requires that the receiver pull the

message packet across the interconnect. The network poll performs essentially the same

operations as does the shared memory poll, but reads packet states across the SBUS I/O

bus. The longer access times increase the poll time to 434 cycles, even when the message

queues are empty.
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The cost reported here for the shared memory poll di�ers from that reported in

the overhead breakdown of the previous chapter for two reasons. First, the application-

level poll uses an indirect function call, loading a function pointer from a table attached to

the endpoint. In contrast, the message send operation invokes the poll operation directly.

Second, the numbers reported here include a couple of cycles of loop overhead.

7.1.2 SMP data

An application using a multi-protocol communication layer on an SMP makes

use of only the shared memory protocol. With an adaptive polling strategy, the tra�c

estimate for remote tra�c remains at its minimum value, while the estimate for local tra�c

varies with communication frequency. The parameters of primary importance in this regime

are the maximum skip smax and the equality parameter k. The maximum skip bounds

the ability of the communication layer to ignore the existence of the network protocol by

requiring that an application check for remote messages. The equality parameter is less

important, but potentially governs behavior after a process idles at a barrier, reducing its

local tra�c estimate.

The data on one SMP appear in Figures 7.1 and 7.2. The upper section of each

�gure reports application execution times in seconds for �ve application runs on one Enter-

prise 5000. The lower section illustrates the same data graphically, with the order in the

legend selected to match the order of application runs in the graph. The vertical scales are

the same for the two SMP-based graphs, but are a factor of four smaller than those used

for the NOW- and Clump-based graphs presented later in this section.

The maximum skip parameter smax typically de�nes the network polling rate for

an application running on an SMP. As the value of smax increases, the amortized cost of

such polling decreases, allowing performance to asymptotically approach the performance

achieved with a single-protocol communication layer. Figure 7.1 presents data on the ef-

fect of the maximum skip parameter on application performance. We varied smax from

1 to 256 to capture a wide range around our nominal value of 64. The character of the

data obeys our predictions: for each application run, execution time decreases towards

an asymptotic limit as smax increases. CON/comp and 3-D FFT are relatively insensitive

to this parameter; execution times at a maximum skip of 1 are 5% and 2% longer than

their values for large smax. For the other applications, the parameter is more important:
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smax SAMPLE CON/comp CON/comm 3-D FFT EM3D

1
1:702� 0:006

� = 0:028

1:13� 0:02

� = 0:05

2:27� 0:02

� = 0:06

0:678� 0:004

� = 0:020

1:028� 0:008

� = 0:035

2
1:243� 0:005

� = 0:025

1:10� 0:02

� = 0:07

2:01� 0:02

� = 0:05

0:682� 0:008

� = 0:036

0:842� 0:007

� = 0:032

4
1:002� 0:006

� = 0:028

1:076� 0:006

� = 0:026

1:89� 0:06

� = 0:28

0:671� 0:006

� = 0:028

0:756� 0:007

� = 0:031

8
0:876� 0:005

� = 0:024

1:083� 0:007

� = 0:031

1:82� 0:01

� = 0:05

0:667� 0:006

� = 0:026

0:701� 0:005

� = 0:025

16
0:820� 0:006

� = 0:028

1:065� 0:006

� = 0:026

1:767� 0:009

� = 0:042

0:670� 0:007

� = 0:032

0:680� 0:006

� = 0:028

32
0:787� 0:005

� = 0:021

1:088� 0:006

� = 0:026

1:751� 0:009

� = 0:045

0:662� 0:004

� = 0:020

0:669� 0:006

� = 0:025

64
0:773� 0:005

� = 0:023

1:073� 0:007

� = 0:030

1:74� 0:01

� = 0:05

0:666� 0:006

� = 0:027

0:667� 0:007

� = 0:030

128
0:765� 0:005

� = 0:022

1:062� 0:006

� = 0:029

1:74� 0:01

� = 0:05

0:666� 0:006

� = 0:027

0:664� 0:006

� = 0:029

256
0:759� 0:005

� = 0:021

1:079� 0:007

� = 0:035

1:726� 0:008

� = 0:039

0:666� 0:007

� = 0:031

0:663� 0:007

� = 0:031

0
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1.5
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2.5
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E
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Figure 7.1: Maximum skip selection on an SMP.
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k SAMPLE CON/comp CON/comm 3-D FFT EM3D

1
0:773� 0:006

� = 0:026

1:081� 0:008

� = 0:040

1:736� 0:008

� = 0:039

0:670� 0:007

� = 0:032

0:665� 0:007

� = 0:031

2
0:774� 0:006

� = 0:026

1:061� 0:005

� = 0:021

1:731� 0:008

� = 0:037

0:663� 0:005

� = 0:020

0:667� 0:007

� = 0:030

4
0:773� 0:005

� = 0:023

1:073� 0:007

� = 0:030

1:74� 0:01

� = 0:05

0:666� 0:006

� = 0:027

0:667� 0:007

� = 0:030

8
0:772� 0:006

� = 0:026

1:090� 0:008

� = 0:037

1:731� 0:009

� = 0:042

0:668� 0:006

� = 0:029

0:668� 0:005

� = 0:022

16
0:775� 0:006

� = 0:029

1:066� 0:007

� = 0:032

1:733� 0:009

� = 0:041

0:666� 0:006

� = 0:026

0:669� 0:007

� = 0:033

32
0:778� 0:007

� = 0:034

1:085� 0:007

� = 0:031

1:734� 0:009

� = 0:044

0:669� 0:007

� = 0:035

0:665� 0:006

� = 0:028

64
0:774� 0:006

� = 0:025

1:058� 0:005

� = 0:021

1:733� 0:008

� = 0:040

0:667� 0:006

� = 0:029

0:671� 0:007

� = 0:033

0
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E
xe

cu
tio

n 
T
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e 
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Figure 7.2: Equality parameter selection on an SMP.
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CON/comp executes 32% more slowly at a maximum skip of 1 than at large smax, EM3D

executes 55% more slowly, and SAMPLE executes 124% more slowly. A value of 16 obtains

most of the potential bene�t, achieving execution times within 10% of the limits for all of

the application runs. Smaller values result in more signi�cant penalties.

The equality parameter k plays a more minor role on an SMP. Consider an im-

perfectly load-balanced phase. Idle processors wait at a barrier, repeatedly lowering their

local tra�c estimates and increasing the frequency with which they poll for remote mes-

sages. After such a synchronization operation terminates, normal communication begins to

push the estimate back into a regime in which smax determines the polling frequency. The

equality parameter k a�ects the network polling rate during the synchronization operation

and the subsequent recovery period. Figure 7.2 reports the results of varying k from 1 to 64

on one SMP. The data are essentially 
at, although CON/comp performance does change

by a few percent across the entire range studied. The phenomenon described does not play

a major role in these applications, and does not place any restrictions on our selection of

the parameter value.

7.1.3 NOW data

An application using a multi-protocol communication layer on a NOW makes use

of only the network protocol. The local tra�c estimate in the adaptive polling strategy

remains at its minimum value, while the remote estimate tracks the arrival rate of messages

from the network. The minimum skip rate smin plays almost the same role on the NOW

as the maximum skip rate plays on the SMP, bounding the impact of the shared memory

protocol on the remote message performance. The other parameters have less signi�cance

for a NOW.

The data on an 8-processor NOW appear in Figure 7.3. The �gure has the same

form as those used to present the SMP-based data, with tabular numerical data in the upper

section and a graphical equivalent in the lower section. The vertical scale in Figure 7.3 is

a factor of four larger than in the previous �gures, however, as execution times on a NOW

are typically larger than those on an SMP.

The minimum skip parameter smin typically de�nes the network polling rate for

an application running on a NOW. As the value of smin decreases, the average cost of inter-

vening shared memory polls for a network poll decreases. However, for small values of smin,
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smin SAMPLE CON/comp CON/comm 3-D FFT EM3D

1
2:05� 0:02

� = 0:08

1:090� 0:004

� = 0:019

3:686� 0:007

� = 0:031

0:775� 0:003

� = 0:013

3:98� 0:02

� = 0:08

2
1:69� 0:02

� = 0:06

1:100� 0:004

� = 0:020

3:698� 0:007

� = 0:033

0:773� 0:003

� = 0:013

3:99� 0:02

� = 0:10

4
1:50� 0:02

� = 0:06

1:095� 0:003

� = 0:014

3:755� 0:006

� = 0:029

0:770� 0:003

� = 0:013

4:01� 0:02

� = 0:10

8
1:410� 0:009

� = 0:041

1:112� 0:004

� = 0:019

4:0� 0:1

� = 0:5

0:769� 0:003

� = 0:014

4:03� 0:05

� = 0:22

16
1:400� 0:006

� = 0:027

1:141� 0:004

� = 0:016

4:149� 0:006

� = 0:027

0:765� 0:003

� = 0:012

4:00� 0:02

� = 0:10

32
1:381� 0:005

� = 0:021

1:204� 0:005

� = 0:022

4:738� 0:007

� = 0:035

0:766� 0:003

� = 0:013

3:99� 0:02

� = 0:08

64
1:373� 0:007

� = 0:033

1:294� 0:004

� = 0:019

5:65� 0:01

� = 0:05

0:767� 0:003

� = 0:013

4:02� 0:03

� = 0:11

128
1:369� 0:008

� = 0:037

1:545� 0:004

� = 0:018

8:1� 0:2

� = 0:6

0:771� 0:003

� = 0:014

4:10� 0:03

� = 0:11
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Figure 7.3: Minimum skip selection on an 8-way NOW.
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overly frequent polling of empty network queues can increase execution time. Figure 7.3

presents data on the e�ect of the minimum skip parameter on application performance. We

varied smin from 1 to 128 to capture a wide range around our nominal value of 4. The

performance character of the application runs varies in this measurement. 3-D FFT and

EM3D are essentially 
at, demonstrating performance independent of the minimum skip.

Due to some latency-critical sections in the implementation, both runs of the connected

components algorithm obtain the best performance at a minimum skip of 1. CON/comp

execution time increases by 42% across the range shown in the graph, and CON/comm

execution time increases by 120% across the same range. SAMPLE sort hides latency more

e�ectively, and performance improves as smin increases due to amortization of the network

polling cost in the message send overhead. For SAMPLE, execution time at a minimum

skip of 1 is 50% longer than at a minimum skip of 128. A value of 4 or 8 balances between

the two types of applications, achieving execution times within 10% of the limits for all

of the runs shown. Smaller values penalize applications that issue many messages before

requiring a reply, and larger values penalize applications that rely on immediate replies.

7.1.4 Clump data

Applications executing on a Clump depend on all polling strategy parameters, as

each plays a role in de�ning how the strategy adapts to the patterns of communication

within the application. The impact of the parameters on performance tends to be less

dramatic than with the platforms that require only a single protocol, however. As the

application runs do not explicitly recognize the hierarchy within the Clump, they switch

protocols frequently, and the network polling frequency generally remains in the middle of

the range rather than at either extreme.

The data on the Enterprise 5000 Clump appear in Tables 7.2 through 7.5 and

Figures 7.4 through 7.7. The tables present execution times for six application runs using

our standard reporting style, and the �gures present the same data graphically. The vertical

scale in the �gures is the same as that used for the NOW-based data. The horizontal ranges

for the individual parameters are subsets of those used for the SMP- and NOW-based data;

we chose to study narrower ranges in light of the previous data.

We varied the minimum skip parameter smin from 1 to 128. The numerical results

appear in Table 7.2, and a graphical form appears in Figure 7.4. The application behavior is
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Minimum

Skip

smin

SAMPLE CON/comp CON/comm

1
3:30� 0:07

� = 0:32

1:408� 0:006

� = 0:026

7:26� 0:08

� = 0:37

2
3:25� 0:03

� = 0:12

1:415� 0:007

� = 0:033

7:20� 0:03

� = 0:10

4
3:33� 0:07

� = 0:31

1:416� 0:007

� = 0:033

7:19� 0:03

� = 0:14

8
3:29� 0:04

� = 0:17

1:413� 0:006

� = 0:028

7:21� 0:03

� = 0:12

16
3:29� 0:04

� = 0:19

1:44� 0:02

� = 0:06

7:49� 0:03

� = 0:14

32
3:23� 0:03

� = 0:13

1:50� 0:04

� = 0:17

7:91� 0:02

� = 0:09

64
3:13� 0:03

� = 0:13

1:51� 0:02

� = 0:07

8:48� 0:02

� = 0:09

128
3:08� 0:04

� = 0:16

1:64� 0:03

� = 0:13

9:92� 0:03

� = 0:10

Minimum

Skip

smin

3-D FFT EM3D/naive EM3D/good

1
0:497� 0:008

� = 0:035

3:71� 0:01

� = 0:05

3:514� 0:009

� = 0:044

2
0:486� 0:006

� = 0:026

3:677� 0:008

� = 0:035

3:429� 0:008

� = 0:038

4
0:481� 0:006

� = 0:025

3:654� 0:008

� = 0:039

3:402� 0:007

� = 0:033

8
0:48� 0:02

� = 0:06

3:66� 0:02

� = 0:09

3:390� 0:008

� = 0:035

16
0:473� 0:006

� = 0:027

3:632� 0:008

� = 0:040

3:370� 0:007

� = 0:035

32
0:471� 0:004

� = 0:019

3:602� 0:008

� = 0:038

3:330� 0:008

� = 0:039

64
0:475� 0:006

� = 0:027

3:57� 0:01

� = 0:05

3:335� 0:007

� = 0:033

128
0:478� 0:008

� = 0:036

3:60� 0:01

� = 0:05

3:47� 0:02

� = 0:05

Table 7.2: Minimum skip selection on a Clump.
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Figure 7.4: Minimum skip selection on a Clump.
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Figure 7.5: Maximum skip selection on a Clump.
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Maximum

Skip

smax

SAMPLE CON/comp CON/comm

1
3:33� 0:04

� = 0:17

1:46� 0:02

� = 0:08

7:43� 0:04

� = 0:16

2
3:30� 0:03

� = 0:13

1:44� 0:02

� = 0:06

7:30� 0:04

� = 0:16

4
3:32� 0:05

� = 0:22

1:45� 0:02

� = 0:09

7:22� 0:04

� = 0:17

8
3:35� 0:04

� = 0:15

1:43� 0:01

� = 0:05

7:25� 0:04

� = 0:15

16
3:29� 0:03

� = 0:11

1:43� 0:02

� = 0:08

7:23� 0:04

� = 0:17

32
3:35� 0:05

� = 0:21

1:44� 0:02

� = 0:07

7:32� 0:04

� = 0:18

64
3:33� 0:07

� = 0:31

1:416� 0:007

� = 0:033

7:19� 0:03

� = 0:14

128
3:4� 0:1

� = 0:5

1:44� 0:02

� = 0:07

7:31� 0:04

� = 0:20

Maximum

Skip

smax

3-D FFT EM3D/naive EM3D/good

1
0:50� 0:02

� = 0:05

3:90� 0:02

� = 0:08

3:57� 0:02

� = 0:08

2
0:50� 0:02

� = 0:07

3:75� 0:02

� = 0:08

3:43� 0:02

� = 0:09

4
0:50� 0:02

� = 0:06

3:72� 0:02

� = 0:08

3:35� 0:02

� = 0:06

8
0:485� 0:009

� = 0:042

3:69� 0:02

� = 0:07

3:37� 0:03

� = 0:13

16
0:51� 0:02

� = 0:09

3:69� 0:02

� = 0:08

3:38� 0:02

� = 0:07

32
0:48� 0:02

� = 0:05

3:68� 0:02

� = 0:06

3:40� 0:02

� = 0:07

64
0:481� 0:006

� = 0:025

3:654� 0:008

� = 0:039

3:402� 0:007

� = 0:033

128
0:49� 0:02

� = 0:05

3:71� 0:02

� = 0:10

3:47� 0:03

� = 0:11

Table 7.3: Maximum skip selection on a Clump.
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Equality

Parameter

k

SAMPLE CON/comp CON/comm

1
3:38� 0:04

� = 0:20

1:44� 0:02

� = 0:09

7:35� 0:09

� = 0:44

2
3:34� 0:03

� = 0:14

1:44� 0:02

� = 0:07

7:25� 0:04

� = 0:16

4
3:33� 0:07

� = 0:31

1:416� 0:007

� = 0:033

7:19� 0:03

� = 0:14

8
3:30� 0:05

� = 0:20

1:43� 0:02

� = 0:06

7:33� 0:04

� = 0:15

16
3:32� 0:04

� = 0:17

1:43� 0:02

� = 0:06

7:45� 0:06

� = 0:25

32
3:32� 0:04

� = 0:17

1:44� 0:02

� = 0:08

7:50� 0:04

� = 0:18

Equality

Parameter

k

3-D FFT EM3D/naive EM3D/good

1
0:49� 0:02

� = 0:06

3:71� 0:03

� = 0:13

3:39� 0:02

� = 0:08

2
0:50� 0:04

� = 0:20

3:68� 0:02

� = 0:07

3:37� 0:02

� = 0:07

4
0:481� 0:006

� = 0:025

3:654� 0:008

� = 0:039

3:402� 0:007

� = 0:033

8
0:485� 0:008

� = 0:035

3:70� 0:02

� = 0:07

3:49� 0:02

� = 0:08

16
0:49� 0:02

� = 0:05

3:70� 0:02

� = 0:07

3:52� 0:03

� = 0:10

32
0:49� 0:02

� = 0:06

3:71� 0:02

� = 0:10

3:53� 0:03

� = 0:11

Table 7.4: Equality parameter selection on a Clump.
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Figure 7.6: Equality parameter selection on a Clump.
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Figure 7.7: Damping parameter selection on a Clump.
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Damping

Parameter

d

SAMPLE CON/comp CON/comm

64
3:35� 0:04

� = 0:17

1:45� 0:03

� = 0:10

7:29� 0:04

� = 0:16

128
3:34� 0:04

� = 0:16

1:43� 0:02

� = 0:06

7:37� 0:09

� = 0:45

256
3:33� 0:07

� = 0:31

1:416� 0:007

� = 0:033

7:19� 0:03

� = 0:14

512
3:31� 0:03

� = 0:11

1:45� 0:02

� = 0:10

7:32� 0:03

� = 0:14

1024
3:33� 0:04

� = 0:16

1:44� 0:02

� = 0:07

7:40� 0:08

� = 0:39

Damping

Parameter

d

3-D FFT EM3D/naive EM3D/good

64
0:50� 0:02

� = 0:06

3:69� 0:02

� = 0:07

3:48� 0:03

� = 0:12

128
0:480� 0:007

� = 0:032

3:69� 0:02

� = 0:07

3:45� 0:02

� = 0:09

256
0:481� 0:006

� = 0:025

3:654� 0:008

� = 0:039

3:402� 0:007

� = 0:033

512
0:50� 0:02

� = 0:06

3:71� 0:02

� = 0:08

3:44� 0:02

� = 0:08

1024
0:48� 0:02

� = 0:05

3:71� 0:02

� = 0:08

3:46� 0:02

� = 0:08

Table 7.5: Damping parameter selection on a Clump.
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dominated by the e�ect on remote messages, and the character of the individual lines is the

same as that observed on the NOW. The signi�cance of the underlying e�ects is muted by

the use of local communication, however. 3-D FFT and the EM3D runs, EM3D/naive and

EM3D/good, are again essentially 
at, executing only a few percent slower at a minimum

skip of 1 than at other values. CON/comp execution time increases by 16% across the range

measured, and CON/comm increases by 37%. SAMPLE execution time again decreases

with increasing smin, requiring 7% more time at a minimum skip of 1 than at a minimum

skip of 128. The satisfactory values for smin on the NOW|4 and 8|obtain equivalent

performance on the Clump, and we select a minimum skip of 4 as it allows a more 
exible

polling strategy.

The importance of the maximum skip parameter smax on the Clump extends

beyond its impact on local message performance. It also determines the response time

to remote messages after periods of network inactivity. If the maximum skip parameter

is too large, the polling strategy cannot respond quickly to a change in the balance of

tra�c. We varied smax from 1 to 128, a slightly narrower range than that measured on

an SMP. Table 7.3 presents the numerical results, and Figure 7.5 presents the same results

graphically. Although 3-D FFT and SAMPLE execution times were 
at across this range,

execution times for the other applications are a few percent longer at either end of the range

than in the middle. We select a maximum skip of 64 to minimize SMP execution times

without penalizing Clump execution times. This value results in minimal execution times

for all applications except EM3D/good on the Clump; EM3D/good executes in 2% more

time than is possible with a maximum skip of 4, but such a choice is clearly unacceptable

for applications executing on SMP's.

The equality parameter k determines the frequency of network polling when ob-

served tra�c levels are roughly equal. We varied k from 1 to 32, a slightly narrower range

than that explored on an SMP. Table 7.4 reports the results numerically, Figure 7.6 illus-

trates them graphically. SAMPLE, CON/comp, and 3-D FFT are not signi�cantly a�ected

by the value of k, and their execution times are 
at across the range measured. For the

remaining application runs, values of 2 and 4 result in optimal performance. Smaller val-

ues result in overly frequent network polling, and larger values result in overly infrequent

polling, in either case increasing execution time by a few percent. We choose an equality

parameter of 4.

The damping parameter d, which determines the degree of smoothing in the tra�c
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estimates, has roughly the same impact as the equality parameter on the Clump. We varied

d from 64 to 1,024 to cover a wide range around our nominal value of 256. Table 7.5 presents

numerical results, and Figure 7.7 presents the same results graphically. For SAMPLE and

3-D FFT, d plays no signi�cant role, and execution times remain 
at across the range

measured. For the other applications, execution times at either end of the range are a

few percent longer than those at a damping parameter of 256. We thus select 256 as our

damping parameter, completing the tuning of the adaptive polling strategy.

7.2 Multi-Protocol Overhead

The multi-protocol layer allows an application to take advantage of fast communi-

cation within each SMP without explicitly recognizing the hierarchy in the architecture, but

incurs unnecessary on platforms that require only a single protocol for communication. In

this section, we quantify the e�ects of this additional overhead at two levels, �rst in terms

of their LogGP parameters, then in terms of application performance. The results highlight

the success of the adaptive polling strategy in limiting the impact of multi-protocol support

on performance.

7.2.1 Communication parameters

LogGP parameters for the two protocols used in isolation and in a multi-protocol

layer appear in Table 7.6. The column at the left replicates the results reported in Chapter 6

for the shared memory protocol in isolation. The right column reports the parameters of

the network protocol in isolation, between two Enterprise 5000's. The two middle columns

present the parameters for each protocol in the multi-protocol layer. As with the mea-

surement of the average network polling cost, the local tra�c estimate is held high when

measuring the parameters of the shared memory protocol in the multi-protocol layer. Forc-

ing the estimate high prevents the benchmark from arti�cially reducing it by delaying the

receiver.

Compared with the network protocol, round-trip times for the shared memory

protocol are nearly nine times faster, requiring 5.588 microseconds for a local message and

48.2 microseconds for a remote message. The gap across the cache-coherent bus, 3.005 mi-

croseconds, is roughly �ve times faster than the 14.802 microseconds for the network. The
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Parameter Shared Memory
Multi-Protocol

Shared Memory

Multi-Protocol

Myrinet
Myrinet

Latency (L) �0:50� 0:01 �0:52� 0:02 12:56� 0:02 8:16� 0:08

Send

Overhead (os)
1:819� 0:005 2:135� 0:005 3:463� 0:003 5:424� 0:003

Receive

Overhead (or)
1:47� 0:02 1:73� 0:02 8:93� 0:01 10:51� 0:01

Gap (g) 3:005� 0:002 3:251� 0:002 14:51� 0:01 14:802� 0:007

Gap per

Byte (G)

6:035� 0:006

nanoseconds/B

6:30� 0:02

nanoseconds/B

31:208� 0:004

nanoseconds/B

30:962� 0:002

nanoseconds/B

Bandwidth

(1=G)

158:0� 0:2

MB/sec

151:3� 0:3

MB/sec

30:558� 0:003

MB/sec

30:801� 0:002

MB/sec

Round Trip

Time (RTT)
5:588� 0:004 6:675� 0:003 49:912� 0:007 48:2� 0:2

Table 7.6: E�ect of multi-protocol overhead on communication parameters. The table

presents LogGP parameters and round trip times in microseconds for single- and multi-

protocol layers running either within one SMP or between two SMP's.

158.0 MB/sec of peak realized bandwidth achieved by the shared memory protocol is more

than �ve times the 30.801 MB/sec achieved over the network.

The adaptive polling strategy prevents the multi-protocol support from signi�-

cantly a�ecting either protocol. Local message round-trip time increases by 19%, from

5.588 to 6.675 microseconds. Send overhead increases by 17%, from 1.819 to 2.135 microsec-

onds. Receive overhead also goes up, increasing by 18% from 1.47 to 1.73 microseconds.

Gap rises by 8%, from 3.005 to 3.251 microseconds. The overhead of network polling is

further amortized for bulk transfers, allowing the gap per byte to increase by only 4%, from

6.035 to 6.30 nanoseconds/B. For the network protocol, the adaptive polling strategy can

actually improve performance. Although round-trip time and gap per byte rise slightly, by

4% and 1% respectively, reducing network polling frequency also reduces overhead and gap.

Send overhead in the multi-protocol layer is 64% of overhead in the single-protocol layer,

or 3.463 microseconds compared to 5.424. Receive overhead is 85% of that required in the

single-protocol layer, or 8.93 microseconds compared to 10.51. Finally, gap is 98% of the

single-protocol value, 14.51 microseconds compared to 14.802.

The numbers presented in this section help to illuminate the performance of

message-passing across cache-coherent buses and the interactions between the two proto-

cols. Until the most recent generation of machines and interconnection technology, network



182

8-way SMP 8-way NOW

Shared

Memory Multi- Multi-

No Yield Sleep Yield Protocol Protocol

SAMPLE
0:697� 0:007

� = 0:032

0:762� 0:004

� = 0:017

0:773� 0:005

� = 0:023

1:50� 0:02

� = 0:06

CON/comp
1:086� 0:006

� = 0:026

1:11� 0:02

� = 0:05

1:073� 0:007

� = 0:030

1:095� 0:003

� = 0:014

CON/comm
1:660� 0:006

� = 0:025

1:89� 0:04

� = 0:19

1:74� 0:01

� = 0:05

3:755� 0:006

� = 0:029

3-D FFT
0:676� 0:005

� = 0:023

0:677� 0:008

� = 0:037

0:666� 0:006

� = 0:027

0:770� 0:003

� = 0:013

EM3D
0:643� 0:005

� = 0:021

0:682� 0:009

� = 0:043

0:667� 0:007

� = 0:030

4:01� 0:02

� = 0:10

Table 7.7: E�ect of multi-protocol overhead on application performance. The table reports

execution times in seconds for �ve application runs on one 8-processor SMP. Separate col-

umn present single-protocol timings with and without processor yielding, and multi-protocol

timings. Times for an 8-way NOW are included for comparison.

communication often provided greater bandwidth than that available from the memory sys-

tem. With our system, the converse is true: the end-to-end latency of local messages is

nearly an order of magnitude smaller than that of remote messages. The adaptive polling

strategy limits the impact of network polling on local message performance and reduces the

overheads associated with remote messages as well.

7.2.2 Application suite

The adaptive polling strategy is clearly successful in limiting multi-protocol over-

head in point-to-point communication, but a full evaluation requires that we also examine

its a�ect at the application level. Table 7.7 reports application execution times on one

8-processor SMP and on an 8-way NOW. The SMP-based data break into three columns:

the leftmost column reports execution times using a layer that supports only a shared mem-

ory protocol and does not yield processors; the second column reports execution times for

the same arrangement with processor-yielding and event-based wakeup; the third column

reports execution time on a multi-protocol communication layer, which does not yield pro-

cessors in our implementation. The right column in the table provides execution time data

for a NOW using a multi-protocol communication layer. Software bugs prevented the col-
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lection of accurate data for a NOW with a layer that supports only the network protocol,

but previous data [LMC97] indicate that the di�erence is inconsequential.

The use of a communication layer with multi-protocol support increases the appli-

cation execution times by at most 11%. CON/comp and 3-D FFT times are not a�ected.

EM3D increases by 4%, from 0.643 seconds with the single-protocol layer to 0.667 seconds

with the multi-protocol layer. CON/comm increase by 5%, from 1.660 to 1.74 seconds.

SAMPLE demonstrates the largest increase, rising 11% from 0.697 to 0.773 seconds. The

table also shows the application-level overhead of processor yielding, which improves mul-

tiprogrammed performance on an SMP at the cost of dedicated performance. Interestingly,

supporting the network protocol incurs overhead comparable and in some cases less than

that incurred by processor yielding.

7.3 Comparison with NOW's

The high-performance memory interconnect within each SMP promises Clumps a

signi�cant performance advantage with respect to a NOW. As demonstrated by the results

of the last chapter, most applications can easily reap the bene�ts o�ered by fast commu-

nication. The full potential of Clumps may be di�cult to achieve, however, as a variety

of hardware and software interactions tend to degrade overall performance. We begin this

section with a brief discussion of these interactions, then illustrate them with application

execution times on our cluster of four 8-processor Enterprise 5000's. In the next section,

we amplify our discussion of the interactions.

The phenomena that complicate the process of obtaining optimal performance on

a Clump take three forms: contention, load imbalance, and interconnect latency. Pro-

cesses within an SMP compete for resources at many levels|the memory interconnect, the

memory banks, and the network interface cards, for example|and the resulting contention

creates additional overhead that detracts from performance. Contention is particularly

important when capacity is inadequate to meet the demands of the processors. Load imbal-

ance refers both to the distribution of work between processors and to the distribution of

communication data between network interface cards. An imbalance in either case results

in some resources remaining idle while others complete their larger workloads. Interconnect

latency refers to the relatively long latency across an SMP interconnect compared with a

workstation interconnect; SMP interconnects generally trade performance for scalability to
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Enterprise 5000

Clump

32-way

UltraSPARC 170

NOW

SAMPLE
3:33� 0:07

� = 0:31

2:46� 0:02

� = 0:07

CON/comp
1:416� 0:007

� = 0:033

1:22� 0:06

� = 0:25

CON/comm
7:19� 0:03

� = 0:14

6:72� 0:08

� = 0:38

3-D FFT
0:481� 0:006

� = 0:025

0:31� 0:02

� = 0:07

EM3D/naive
3:654� 0:008

� = 0:039

4:93� 0:03

� = 0:10

EM3D/good
3:402� 0:007

� = 0:033

5:39� 0:03

� = 0:14

Table 7.8: Application execution times in seconds on a Clump and a NOW. Contention for

NIC access limits performance on the Clump, particularly for applications dominated by

remote communication.

avoid unacceptable increases in price. As many applications exhibit fairly high levels of lo-

cality in their data access patterns, interconnect latency is the least important of the three

phenomena.

Execution times for six application runs on our Clump and on a 32-processor

NOW appear in Table 7.8; both platforms use the multi-protocol communication layer in

these measurements. With the exception of EM3D, the NOW outperforms the Clump. The

di�erence is largest for the applications that use all-to-all communication: the Clump's

0.481 second 3-D FFT execution time is 55% longer than the 0.31 seconds required on

the NOW, and the Clump's 3.33 second SAMPLE execution time is 35% longer than the

2.46 seconds required on the NOW. The connected component runs are also faster on the

NOW. The Clump requires 7% longer to execute CON/comm, a total of 7.19 seconds

compared with 6.72 seconds on the NOW. For CON/comp, the di�erence is greater, the

Clump's time of 1.416 seconds is 16% greater than the NOW's time of 1.22 seconds. The

Clump does execute the EM3D runs in less time than does the NOW: EM3D/naive runs in

3.654 seconds on the Clump, or 74% of the 4.93 second NOW execution time; EM3D/good

runs in 3.402 seconds on the Clump, or 63% of the 5.39 second NOW execution time.

The data in Table 7.8 contain several surprises, of which the relative performance

between the Clump and the NOW is the most notable. The primary reason for the longer
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execution times on the Clump is contention for the NIC's. The Split-C implementation

statically assigns one NIC to each process in a parallel job. For the Clump, this approach

implies that each of the NIC's is shared between two processes, whereas each NIC in a

NOW supports only a single process. Although contention at the interconnect and memory

level may also play minor roles, the Gigaplane interconnect and the memory system on the

Enterprise 5000 are more than adequate to support concurrent execution on 8 processors.

The second surprise is that CON/comm has a smaller relative increase than does

CON/comp between the NOW and the Clump. Although communication contention has a

greater impact on CON/comm than on CON/comp, its importance is outweighed by another

factor. The connected components algorithm walks the full graph in multiple phases. The

�nal phase, for example, marks each graph node with the unique component identi�er of its

representative in the reduced graph. Examining each node in turn incurs a large number

of cache misses, and a combination of increased memory latency, interconnect contention,

and memory contention make this phase of the algorithm take substantially longer on the

Clump than on the NOW. The absolute increase is minor compared with the e�ect of

communication contention in CON/comm, but is signi�cant in the less communication-

intensive CON/comp.

The �nal surprise is the relationship between EM3D/naive and EM3D/good exe-

cution times on the NOW. Although the virtual processor layout should not be signi�cant

on a machine with a 
at communication structure, the results exhibit a clear di�erence. We

attribute the change to the speci�c fat-tree-like topology used to connect the NOW. Most

communication data sent in the EM3D/naive pattern traverse subclusters in the network.

In contrast, the EM3D/good communication pattern sends more data into the upper levels

of the network, resulting in increased contention and degrading performance.

A comparison of execution times using only 4 processors in each SMP with a

16-processor NOW illustrates relative performance in the absence of communication con-

tention. Each NIC in the Clump handles remote communication tra�c for only a single

process. The results for four of the six runs appear in Table 7.9. With equivalent network re-

sources, the availability of fast communication typically brings execution times below those

on the NOW. On the Clump, SAMPLE and CON/comm execute in 88% of their respective

execution times on the NOW, and 3-D FFT executes in 97% of its execution time on the

NOW. Each of the communication phases in 3-D FFT contains some remote communication,

preventing the shared memory protocol from signi�cantly bene�ting performance. Slower
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Enterprise 5000

Clump

16-way

UltraSPARC 170

NOW

SAMPLE
1:76� 0:02

� = 0:08

2:01� 0:02

� = 0:06

CON/comp
1:128� 0:002

� = 0:009

1:110� 0:004

� = 0:015

CON/comm
4:18� 0:02

� = 0:07

4:76� 0:02

� = 0:09

3-D FFT
0:504� 0:002

� = 0:006

0:518� 0:003

� = 0:013

Table 7.9: Application execution times in seconds on 4x4 Clump and 16-way NOW. Each

processor uses a private NIC, eliminating communication contention.

memory accesses also have a signi�cant e�ect on 3-D FFT and CON/comp performance.

For the CON/comp run, this e�ect slightly outweighs the bene�t of fast communication,

thus CON/comp requires 2% more time on the Clump than on the NOW.

Returning to Table 7.8, consider the e�ect of optimizing the layout of virtual

processors on the execution time of EM3D. The EM3D/naive run requires 3.654 seconds on

the Clump, while the EM3D/good run requires only 3.402 seconds, or 93% of the previous

time. The improvement is less dramatic than one might expect given that the layout in

EM3D/good transforms an average of one-third of the remote communication tra�c into

local tra�c. Two factors mitigate the e�ects of the improved layout: the static process to

NIC relationship and the phase structure of the application.

The static process to NIC relationship leads to communication contention, as dis-

cussed earlier. Although EM3D/good reduces the average amount of remote tra�c, the re-

duction perceived by individual NIC's is not uniform. In fact, due to the speci�c process-to-

NIC mapping employed, one NIC handles the same amount of remote tra�c in EM3D/good

as it does in EM3D/naive.

The use of a phase-structured style ampli�es the importance of the �rst factor by

negating uneven improvements across processes. After completing a phase, a process waits

for all other processes to �nish the phase before beginning the next phase. This global

synchronization implies that a phase executes at the speed of the slowest process. Processes

that perform no remote communication in EM3D/good wait idly for those that do. This

e�ect is apparent in the load balance between processes, the ratio of the slowest process'
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Enterprise 5000

Clump

32-way

UltraSPARC 170

NOW

EM3D/naive
2:36� 0:01

� = 0:05

1:73� 0:02

� = 0:07

EM3D/good
7:74� 0:03

� = 0:10

1:64� 0:02

� = 0:09

Table 7.10: Load imbalance in EM3D. The values in the table represent the ratio of execu-

tion time between the slowest and the fastest process in the communication phase.

execution time to that of the fastest. Table 7.10 reports the load balance in the two EM3D

runs on both the Clump and on the NOW. On the latter platform, the processes perform

roughly the same amount of work, and the load balance is within a factor of two; in fact,

the actual workloads are more closely matched, but the application-level blocking behavior

spreads them apart. EM3D/naive maintains a reasonable balance on the Clump as well,

with a factor of 2.36 separating the slowest from the fastest process. With the optimized

virtual processor layout, however, some processes perform no remote communication, and

the workloads are very skewed: the fastest process in EM3D/good �nishes 7.74 times as

fast as the slowest.

7.4 Discussion

The results just reported illustrate the e�ects of contention, interconnect latency,

and load imbalance on Clump application performance. In this section, we describe these

problems and their signi�cance in more detail, then touch on their interactions with a

phase-structured style of programming.

7.4.1 Contention

Contention occurs at all levels of the memory hierarchy below the L2 cache. Con-

tention for NIC resources dominates our application results, but contention for the memory

interconnect and for memory itself can also signi�cantly impact performance. Contention

within the network is addressed in [CC97].

NIC contention occurs when more than one process initiates or receives remote

communication simultaneously. The notion of simultaneity here refers to the presence of
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messages in multiple remote queues|each NIC processes only a single message at any time,

and must multiplex tra�c from multiple processes to and from the physical network. When

more than one process communicates through a NIC, the processes perceive lower through-

put and longer and more broadly distributed latencies. Total NIC throughput remains

roughly the same [CMC98]. The impact of NIC contention on performance depends both

on the balance between processors and NIC's in a system and on the communication de-

mands of the processes that make up an application. Numerous studies in the literature

assume either explicitly or implicitly that an SMP need support only one NIC. The recent

o�erings in low-end servers, in fact, support only one NIC for as many as four processors.

Clumps built with such SMP's are unlikely to compete e�ectively with NOW's using the

same NIC's on applications with non-negligible communication demands. Similarly, only

very communication-intensive applications require that each SMP provide a separate NIC

for each processor. The static mapping between processes and NIC's in our system slightly

exacerbates contention by dividing an Enterprise 5000 into four two-processor virtual ma-

chines with one NIC each. However, the dominant role of NIC contention in our system

arises from interactions with the phase structure of the programs, as we discuss later in this

section.

Neither memory nor interconnect connection contributes signi�cantly to our re-

sults. With respect to memory contention, the Enterprise 5000 design implicitly matches

memory performance to peak demands by adding memory bandwidth with processors. Each

processor board in the system bears two CPU's and two memory banks, scaling memory

bandwidth with the number of processors and minimizing the e�ects of memory contention.

As to contention at the interconnect, the Gigaplane is fully pipelined and allows multiple

outstanding transactions to individual cache lines. Peak bandwidth is 2.7 GB/sec, and

sustainable bandwidth is 2.5 GB/sec, an amount that easily satis�es the eight processors

in our system. In contrast, neither the memory bandwidth nor the interconnect bandwidth

are adequate for the processors in low-end SMP's. To illustrate the potential impact of in-

adequate memory bandwidth, we replicate results from [LMC97] in Table 7.11. The times

in the table were obtained on one of our SMP's with six of eight memory banks removed.

The aggregate memory bandwidth in the resulting system could support the peak memory

demands of only two processors, increasing application execution times.
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8-way SMP NOW (8 proc.)

Shared Memory Multi-Protocol Network

3-D FFT 8.7 9.0 7.0 6.76

CON/comm 1.96 2.1 4.01 4.01

CON/comp 1.40 1.44 1.18 1.19

EM3D 7.7 8.6 33.9 33.8

Table 7.11: Application execution times in seconds from [LMC97]. These results demon-

strate the e�ect of inadequate memory bandwidth on performance. The application input

parameters are not the same as those used in this thesis, however, thus the times are not

directly comparable with those presented in Table 7.7.

7.4.2 Interconnect latency

Interconnect latency also a�ects performance on Clumps. The complexity of multi-

processor support and higher peak demands in an SMP create a tradeo� between price and

performance. As price cannot be driven arbitrarily high in a commercial architecture,

performance must su�er to some degree. Compared with their workstation counterparts,

low-end SMP's penalize both throughput and latency. High-end SMP's attempt to retain or

even improve throughput at the expense of latency. Recalling the base parameters for the

Enterprise 5000 and Model 170 workstations as presented in Chapter 5, the SMP provides

184 MB/sec, or 10% higher memory copy bandwidth than the 168 MB/sec available on the

workstation. Realized bandwidth degrades when multiple processes perform memory copies

simultaneously, but requires four or more such processes before falling to the workstation

value. Memory access, in contrast, requires requires 51 cycles on the SMP, or 16% more time

than the 44 cycles required on the workstation. Latency to the NIC memory is also longer

on the SMP, requiring 153 cycles to read a 32-bit word, or 34% longer than the 114 cycles

required by the workstation. Contention for the SMP interconnect further in
ates latency

by stalling coherence transactions until the bus becomes available. The relative increases

are thus fairly large, but their impact on performance is typically mitigated by data access

locality in application programs. The e�ect of higher interconnect latency is clear only in

the CON/comp results, exposed by a combination of a limited amount of communication

and poor locality in performing simple operations on a graph.
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7.4.3 Load imbalance

The last performance problem, load imbalance, takes two forms in our system: un-

even improvements and uneven communication demands. Relative to a NOW, the Clump's

ability to route some communication tra�c across the SMP memory interconnects improves

performance. However, the bene�t to each process in a parallel job may be di�erent, as

some processes may send and receive only local messages while others use the network for

the bulk of their communication. Such uneven improvements result in load imbalance. The

results of the previous section examined the e�ect of optimizing the layout of virtual pro-

cessors for the EM3D application, demonstrating only a small improvement. In that case,

the improvement in layout exacerbated the uneven communication improvements, resulting

in further load imbalance. The second form of load imbalance occurs within the NIC's

themselves: the communication tra�c sent through a NIC depends on the processes that

make use of it. In our system, each process is statically mapped to a single NIC for the

lifetime of the parallel job. As the distribution of network communication demands among

processes is uneven, the resulting distribution of demands on each NIC is also uneven. More

heavily loaded NIC's deliver lower throughputs and longer messages latencies.

Neither form of load imbalance is necessarily detrimental to performance. An

application that allows su�cient overlap between communication and computation can hide

the higher latencies due to uneven communication demands. Alternatively, an intelligent

runtime system may schedule communication to minimize the impact of contention on

performance. Hiding latency and scheduling communication are not easy, however. The

applications studied in this thesis are designed to hide latency when possible, but are also

fairly communication intensive.

7.4.4 Programming model

The phase-structured style of programming used in our applications has achieved

some degree of popularity for parallel programming, particularly for message-passing codes

such as those written to the MPI speci�cation [MPI97]. A phase-structured approach can in-

teract with the e�ects just described to further reduce performance, however. One approach

to addressing computational load imbalance, for example, is to shift work to idle processes.

A programming model that allows such dynamic scheduling of computation e�ectively bal-

ances the load across the processes. Dynamic scheduling and the phase-structured approach
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are not often mixed in explicitly parallel languages, however. Although phase structure does

not prohibit dynamic scheduling within each phase, few programming environments provide

support for such a style. Programmers can build their own task schedulers, and a few do,

but many parallel applications apply a static schedule for each process in a job. The dif-

�culty of debugging dynamically scheduled applications, particularly without any support

in the programming environment, encourages programmers to pursue the static approach.

Static scheduling degrades performance on a Clump architecture, however, as im-

provements in the execution time of a phase re
ect only the minimum of the per-processor

improvements. When using a Clump, a programmer must put in a greater e�ort to balance

the load between processes. Balancing the load for an unknown architecture is di�cult|a

well-balanced code on a Clump with eight processors per SMP may be very poorly balanced

when run on a Clump with four processors per SMP. A programming model that incorpo-

rates dynamic scheduling provides such balance implicitly and is an attractive approach to

abstracting the complexity of scheduling.

The use of phase structure also a�ects NIC contention by constraining the pro-

cesses to communicate at the same time. Remote communication between two global syn-

chronizations is always fully correlated between the processors, resulting in increased levels

of contention for the NIC resources during communication phases of an application. In the

next chapter, we develop an analytic model that captures the e�ect of this correlation and

the other performance issues illustrated by our data.



192



193

Chapter 8

Performance Model

The last three chapters reported the performance of our multi-protocol communi-

cation layer in detail, comparing our software architecture with alternatives and exploring

the interactions between software performance and characteristics of the hardware. This

chapter approaches performance from the opposite extreme, applying a high-level model

of communication to illustrate the relationship between performance and an abstraction of

the Clump architecture. We begin the chapter with a brief overview of the model, then

introduce the queueing theory that forms the basis for our computations. After extending

the model to include more realistic phenomena, the chapter illustrates the resulting for-

mulae graphically, bridging the gap between the previous chapters on performance and the

technical issues discussed in the introduction. The chapter concludes with a discussion of

the limitations of the model.

8.1 Overview of the Model

The model developed in this chapter assumes a communication layer that abstracts

multiple physical network interface cards as a single virtual device. Although such an

abstraction presents several problems not solved by this thesis, a more general model results

from the assumption. Virtualizing multiple NIC's as a single device implies the existence

of a mechanism and protocol for dynamically balancing communication demands evenly

amongst the NIC's, allowing us to disregard the issue of uneven communication demands.

As we alluded earlier, our experimental system is a special case of the more general model:
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the static mapping between processes and NIC's makes each 8-processor SMP equivalent to

four distinct 2-processor SMP's for the purposes of balancing communication tra�c.

The model assumes a dedicated system, with one process executing concurrently

on each processor. To avoid confusion between the applications processes that make up a

parallel job and the stochastic processes used to develop the model, the remainder of the

chapter uses the term processor in place of the term process when referring to communi-

cating entities.

Using the model, we develop equations relating application performance on a

Clump constructed from P -processor SMP's with N NIC's each to performance on a NOW

with an equivalent number of processors. The model abstracts applications in terms of

NIC utilization on a NOW, a measure of the communication duty cycle. The model treats

communication within each process as an indivisible, independent, and continuous opera-

tion, ignoring computation overlaps, synchronization dependencies, and discrete messages.

These simpli�cations allow the model to focus on the relationship between application per-

formance and two aspects of the abstract machine: the balance between processors and

NIC's within each SMP and the degree of correlation in the communication demands. The

resulting equations capture the issues of pooling and fractional scaling of the NIC resources,

allowing us to explore some of the potential advantages of the Clump architecture and to

understand the e�ect of adding or removing NIC's from a Clump. Tight coupling a�ects the

NIC utilization of an application, and we incorporate this issue into the model by adjusting

that parameter appropriately.

8.2 Queueing Model

We begin with a model of communication as a closed network of queues. The

model introduced in this section is nearly identical to an example by Kelly [Kel79], who

also provides a good introduction to the underlying theory. Consider P processors num-

bered 1 through P with shared network interface resources. Each processor alternates

between communication and idle (non-communication) states. At any point in time, an

active processor|a processor in the communication state|receives a fair share of the com-

munication resources.

Model this system as a network of P + 1 queues: a private idle queue for each

processor and a shared communication queue, as depicted in Figure 8.1. To make the
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communication
queue

idle queues

Figure 8.1: Model of network interface sharing. Processors move between private idle queues

and a shared communication queue. The communication queue acts as a single-server queue

with a server-sharing discipline [Kel79].

model tractable, assume that each processor p operates independently, with a mean service

time of Rp in its idle queue and a mean service time of Sp in the communication queue.

Assume that both service time distributions are Poisson. Finally, treat the communication

queue as a single-server queue with a server-sharing discipline: when Q processors occupy

the queue, the transition rate for a processor p to leave the queue is (QSp)
�1. In terms

of a real system, server-sharing implies that all active processors receive their fair share of

service from the NIC.

Let �(t) � f1; : : : ; Pg be the set of active processors at time t. Denote by �(t) a

Markov process with the transition rate from a state � to a state � de�ned by

q(�; �) =

8>>><
>>>:

1

j�jSi
if 9p 2 � s.t. � = � n fpg

1

Ri
if 9p 62 � s.t. � = � [ fpg

0 otherwise

8.2.1 Process reversibility

We want to show that �(t) is reversible|that any evolution of the network has

the same probability when reversed in time. A reversible process is stationary (time-

independent) and has a unique equilibrium distribution, making a �rst-cut analysis sub-

stantially simpler. Kolmogorov's criteria for reversibility state that a Markov process is

reversible if, and only if, for any �nite sequence of states (�1,: : : ,�N), the products of the
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transition probabilities around the loop induced by the sequence are the same in either

direction. That is,

q(�1; �2) : : : q(�N�1; �N)q(�N ; �1) = q(�1; �N)q(�N ; �N�1) : : : q(�2; �1) (8.1)

In demonstrating that these equations hold for our network, we need only consider cycles

in which every transition consists of either the addition of a processor not already in the

communicating set or of the removal of a processor from the communicating set. Other

transition rates q(�; �) and their corresponding inverse rates q(�; �) are 0 and satisfy (8.1)

trivially.

The transition rates for our network consist of two components: the base rates R�1
p

and S�1p and the NIC sharing factor j�j�1. The base rates depend only on the processor

being added or removed from the set of communicating processors. For any directed cycle,

the restriction of transitions around the cycle to those that a�ect a processor p results in

an even-length sequence alternating between additions and removals of p. In the reversed

cycle, additions become removals and vice-versa, and the sequence of transitions is exactly

the same. The base rates hence contribute factors of the form (RpSp)
�np equally to each

side of (8.1), where np 2 f0; : : :g is the number of addition-removal pairs for processor p in
the cycle.

The second component of the transition rates, the NIC sharing factor, depends

only on the number of processors in the communication queue. Consider the reduced set of

states de�ned by the equivalence classes

Cq = f� � f1; : : : ; Pg j j�j = qg (8.2)

Call a transition from a state in Cq�1 to a state in Cq an upward transition to q. Similarly,

a downward transition from q is a transition from a state in Cq to a state in Cq�1. Each

downward transition from q contributes a factor of q�1 to the product of transition rates

around the cycle; upward transitions do not contribute. All transitions in a given cycle are

either upward transitions from q 2 f1; : : : ; Pg or downward transitions to such a q, and the

number of upward transitions to any q is equal to the number of downward transitions from

that q. An upward transition to q in the forward cycle becomes a downward transition from

q in the reversed cycle, and vice-versa. The number of downward transitions to q is thus

the same in the forward and reversed cycles, and the factor contributed to each side of (8.1)

is the same. Hence our network is reversible.
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8.2.2 Equilibrium distribution

The fact that our network is reversible implies the existence of an equilibrium

distribution �(�) satisfying the detailed balance equations:

8�; � �(�)q(�; �) = �(�)q(�; �)

which for our network are:

8�; 8p 2 �
�(�)

j�jSp
=
�(� n fpg)

Rp

The solution has the form:

�(�) = B j�j!
Y
p2�

Sp

Rp
(8.3)

where B is a normalization constant de�ned such that the probability over all states sums

to unity.

8.2.3 Utilization ratios

The equilibrium distribution given by (8.3) does not depend on the absolute values

of the Sp and Rp, but only on the ratios Sp=Rp. Characterize a processor p by its utilization

of the NIC resources: Up � Sp=(Sp +Rp). Up falls in the interval (0; 1) and corresponds to

the communication duty cycle of the processor p when using a private NIC. In terms of Up,

the equilibrium distribution becomes:

�(�) = B j�j!
Y
p2�

Up

1� Up

(8.4)

Processor utilizations of 0 and 1 can be handled through slight modi�cations to

the network of queues. Equivalently, the equations can be changed as follows. Denote the

set of processors with utilization 0 by �0 and the set of processors with utilization 1 by �1.

Restrict the state space to f� � f1; : : : ; Pg n �0 j �1 � �g and set all transition rates out

of this space to 0. Finally, replace the product over processors in � in the equilibrium

distribution with a product over processors in � n �1.

8.2.4 Service e�ciency

A real system incurs overhead when sharing a resource between multiple proces-

sors. In the model, we represent this overhead through the inclusion of an e�ciency factor
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E(j�j) in transition rates of the form q(�; � n fpg). Note that this change simply extends

the notion of the NIC sharing factor and does not a�ect the reversibility of the network.

De�ning

Eq �
qY

i=1

E(i)

we incorporate communication service e�ciency into (8.4) as

�(�) = B
j�j!
Ej�j

Y
p2�

Up

1� Up
(8.5)

8.3 Extensions to the Basic Model

In this section, we apply the model developed in the previous section to applica-

tions running on a Clump. We begin by studying the e�ect of using multiple NIC's in an

SMP, then improve the model by incorporating aspects of phase structure. Our metric for

these evaluations is the slowdown (the reciprocal of speedup) with respect to a system built

from 1-processor, 1-NIC machines, i.e., a network of workstations (NOW). For simplic-

ity, we assume in this section that 8 q 2 f1; : : : ; Pg; Eq = 1|that the system has e�cient

communication. Service e�ciency reappears in the discussion of the model's limitations.

8.3.1 Incorporating multiple NIC's

For an SPMD program, it is reasonable to assume that NIC utilization is roughly

the same for every processor: 8p; Up = U . The equilibrium distribution then simpli�es to:

�(�) = B j�j!
�

U

1� U

�j�j

which depends only on the number of active processors j�j. Recalling the equivalence

classes Cq de�ned by (8.2), we can write an equilibrium distribution �(Cq) as:

8q 2 f0; : : : ; Pg �(Cq) =
X
�2Cq

�(�) = B
P !

(P � q)!

�
U

1� U

�q
(8.6)

since jCqj =
0
@ P

q

1
A =

P !

q!(P � q)!

Suppose that we replace the NIC in an SMP with N NIC's of equal speed. Equiva-

lently, we might employ a single, more powerful NIC. In terms of the model, we increase all
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transition rates of the form q(�; �nfpg) by a factor of N , the number of NIC's. Propagating

this change through the equations, we rewrite (8.6) as:

�(Cq) = B
P !

(P � q)!

�
U

N(1� U)

�q
(8.7)

8.3.2 The slowdown metric

An alternative view of the queueing network is useful in understanding the e�ect of

the parameters N and P on application performance. When a processor arrives at a queue,

it requires a certain amount of service from that queue; the speci�c amount is a random

variable. Service time in the idle queue accumulates at a rate of 1, and service time in the

communication queue accumulates at a rate of N=q. When a processor accumulates enough

time to satisfy its requirement, it moves to the other queue. The quantity of interest is

then the average service rate [ �X(P;N; U)]�1. Given the accumulation rates just mentioned,

�X(1; 1; U) = 1, and �X represents the ratio of a program's execution time when competing

with P processors for N NIC's to its execution time with one private NIC. �X is hence the

slowdown of a program with utilization U on a P -processor, N -NIC con�guration.

Before we can write [ �X(P;N; U)]�1 as a sum over the Cq, we must calculate the

probability that a particular processor is active when the network is in a state � 2 Cq.

Without loss of generality, pick processor 1 and let Cq;comm be the subset of Cq in which

processor 1 is active and Cq;idle be the subset of Cq in which processor 1 is idle. Clearly,

Cq;comm and Cq;idle are disjoint, and their union is Cq. Each state in Cq is equally likely at

equilibrium, and

jCq;commj =
0
@ P � 1

q � 1

1
A =

q

P
jCqj

hence

8q 2 f0; : : : ; Pg �(Cq;comm) =
q

P
�(Cq)

�(Cq;idle) =
P � q

P
�(Cq)
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Using these results, we write:

[ �X(P;N; U)]�1 = �(C0) +
PX
q=1

�
�(Cq;comm)

N

q
+ �(Cq;idle)

�

= �(C0) +
PX
q=1

�(Cq)

�
q

P

N

q
+
P � q

P

�

= �(C0) +
PX
q=1

�(Cq)

�
1 +

N � q

P

�

= 1 +
PX
q=1

�(Cq)
N � q

P
(8.8)

8.3.3 Correlated and scheduled demands

The queueing model assumes that the processors' communication demands are in-

dependent. In real applications, and particularly in programs written in a phase-structured

style, communication demands are likely to be partially or even fully correlated. Similarly,

a communication-aware compiler or runtime system may avoid some contention through

scheduling. We now derive the forms of �X(P;N; U) for fully correlated and scheduled

demands to help illuminate the di�erences between these cases.

Fully correlated communication presents no di�culty: the processors move in and

out of the communication queue as a group, and the network is always in C0 or CP . The

detailed balance equation is:

N�(CP )

PU
=
�(C0)

1� U

so �(C0) =
N(1� U)

N(1� U) + PU
�(CP ) =

PU

N(1� U) + PU

and �Xcorrelated(P;N; U) = 1 +

�
P �N

N

�
U (8.9)

Note that the average slowdown caused by correlated communication is linear in U, as we

might expect, since all such communication is slowed by a factor of P=N .

Scheduled communication requires more thought. [ �X(P;N; U)]�1 is technically an

average over time, but can be written as an weighted average over states in a stationary

Markov process. However, transitions in a scheduled system are explicitly controlled, and
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the resulting process is not stationary, forcing us to retreat to an explicit time average.

Suppose that, in 1 time unit and with one private NIC, a processor communicates for U time

units and idles for the remaining 1� U time units. Moving to a system with P processors

and N NIC's a�ects only the time required for communication|the idle time remains a

constant 1 � U time units. If communication service time accumulates at a rate S�1, the

execution time is 1� U + SU , and we can write:

�Xscheduled(P;N; U) =
1� U + SU

(1� U)1 + SU 1

S

= 1+ (S � 1)U

We de�ne the execution time of a program to be the execution time of its slowest

processor; a scheduler gains obtains no bene�t by making some processors �nish before

others. Scheduled systems divide into two domains based on the value of U . For small U ,

all communication makes use of all NIC's, and communication service time accumulates at

a rate of N . For large U , the NIC's are saturated, and the total execution time is equal to

the total communication time, PU=N . The boundary value Us occurs when the idle time

for a process is equal to the time spent communicating for all other processes:

(P � 1)
Us

N
= 1� Us

or Us =
N

N + P � 1

This result allows us to write

�Xscheduled(P;N; U) =

8<
: 1�

�
N�1
N

�
U for U � Us

PU
N

for U � Us

(8.10)

For both domains, slowdown is linear in U . Notice that �X increases monotonically to either

side of Us. Writing

�Xmin(P;N) = Xscheduled(P;N; Us) =

�
1 +

N � 1

P

��1

we see that a system of P -processor SMP's with N NIC's gives at best a factor of 1 + N�1

P

speedup over a NOW due to sharing of communication resources.

8.3.4 Incorporating program structure

The degree of correlation between processors' communication demands may vary

as the processors execute di�erent sections of a program. For a phase-structured program,
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we can extend our model to include information on the phase structure of the program.

Recall that in a phase-structured program, processors move in tandem from one phase to

the next but operate independently in each phase.

A program consisting of F phases may present a distinct NIC utilization Uf for

each phase. We expect all processors to occupy the same phase at any point in time.

For simplicity, we also ignore the e�ects of transients as the system moves between the

equilibrium distributions for successive phases of the program. Such an assumption is

reasonable if a system settles into each new equilibrium in a time short compared with

the length of the phase. If we know the phase execution times when running on a NOW,

denoted by Tf for phase f , we can write

�X(P;N; (U1; : : : ; UF )) =

PF
f=1

�X(P;N; Uf)TfPF
f=1 Tf

8.4 Performance Example

The slowdown formulae quantify the impact of communication correlation due to

the phase-structured approach and bound the potential improvement possible with sched-

uled communication. The formulae provide insight on the issues of communication demand

pooling and fractional scaling in Clumps. Tight coupling of resources, demonstrated by the

bene�t of fast communication to SMP and Clump performance, requires a minor extension

to the model. This section presents the necessary extension and illustrates the three techni-

cal performance issues|tight coupling, pooling, and fractional scaling|graphically for our

experimental platform.

8.4.1 Tight coupling

The SMP memory interconnect serves as a fast path for data traveling between

processes within the SMP, coupling the processors with one another above the level of the

network. Compared with communication on a NOW, processors passing messages across

a cache-coherent interconnect perceive lower latency and higher bandwidth. The empiri-

cal results in Chapters 6 and 7 demonstrate this tight coupling e�ect, but our model of

performance has yet to capture the advantages.

We integrate tight coupling into the model by treating it as an independent factor

in application slowdown. E�ectively, the presence of a multi-protocol communication layer
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allows each process to transform a portion of its communication time into idle time. In a real

system, processes spend the additional \idle" time pulling data across the interconnect, but

the model distinguishes activity only on the basis of interactions with the network resources.

Recalling the explicit time-based approach used to derive scheduled communication

slowdown, we say that, in 1 time unit and with one private NIC, a processor communicates

for U time units and idles for the remaining 1 � U time units. De�ne the tight coupling

transformation in terms of two variables: f , the fraction of communication that must cross

the network; and V , the cost ratio between local and remote communication. Both of these

variables should fall in the interval [0; 1]. Tight coupling transforms the U time units of

communication into the following:

fU + (1� f)V U (8.11)

The �rst term represents the time spent on the remaining network communication, and the

second term represents the time spent on local communication. Adding 1�U time units of

computation to (8.11) brings the total to

(1� U) + fU + (1� f)V U

or 1� U(1� f)(1� V )

As processes spend less time communicating, we adjust their utilization to incorporate the

new timing as follows:

Uadj(f; V ) =
fU

1� U(1� f)(1� V )

Uadj(f; V ) is never greater than U . Including tight coupling into application slowdown

involves multiplication by a single factor and replacement of U with Uadj :

�Xtc(P;N; U; f; V ) = �X(P;N; Uadj(f; V )) [1� U(1� f)(1� V )]

8.4.2 Pooling

The ability to smooth communication resource demands by pooling the demands

of individual processes relies on the independence of those demands. As discussed earlier,

phase-structured programming creates interdependencies between the individual demands

by enforcing global synchronization before and after communication. These correlated com-

munication demands do not bene�t from aggregation. The pooled demands are as bursty as
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Figure 8.2: Impact of correlation on application slowdown. Each line reports application

slowdown on a Clump constructed from 8-processor SMP's with 4 NIC's relative to a NOW

for a distinct level of correlation between the processes' communication demands.

the individual demands, and the contention during communication bursts degrades overall

performance. The model developed in this chapter captures the e�ect of communication

correlation and further ampli�es our understanding with information on the performance

of anticorrelated, or scheduled, individual demands.

Figure 8.2 illustrates performance on a Clump similar to the experimental platform

used in this thesis. Each SMP contains eight processors and four NIC's. The vertical

axis reports application slowdown relative to a NOW. The upper line charts slowdown for

fully correlated communication demands, as expressed by (8.9). The middle line graphs

slowdown for independent communication demands as calculated with (8.8). The lower line

bounds the potential performance by reporting slowdown for scheduled communication, as

described by (8.10). Ignoring the advantage of tight coupling within each SMP, we expect

no application to execute in less than 73% of the execution time on a NOW. Applications
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Figure 8.3: Impact of static process to NIC mapping on application slowdown. The upper

line reports calculated application slowdown on our system; the lower line reports the same

value on a system that e�ciently virtualizes the four NIC's as a single device.

without support for communication scheduling can execute no faster than 86% of NOW

execution time, the minimum value on the independent line in the �gure.

The separation between the correlated and independent slowdown lines demon-

strates the advantages of both pooled demands and pooled resources. Resource pooling

allows the independent slowdown to drop below one at reasonably low communication uti-

lization. Applications with independent demands and utilization under 0.48 should perform

better on the Clump, even though the Clump has only half as many NIC's as an equivalent

NOW.

A comparison between our system and a system that virtualizes multiple NIC's

allows us to separate the bene�ts due to each type of pooling. Figure 8.3 graphs slowdown

for the two systems, which are both built from 8-processor SMP's with four NIC's each. The

lower line replicates the independent slowdown from the previous �gure, which assumed the
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virtualization of the four NIC's as a single device. Such a system pools both demands and

resources. The middle line presents independent slowdown for our system, in which the

communication demands of two processors are statically mapped to each NIC. The static

mapping does not allow resource pooling, and performance is always inferior to that of the

NOW, again ignoring the advantage of tight coupling. The upper line presents slowdown

for correlated demands on either system, in which neither type of pooling is e�ective. The

static mapping sacri�ces about half of the bene�t of demand independence by preventing

resource pooling.

8.4.3 Fractional scaling

Virtualization of the physical network resources also increases the precision of

communication resource scaling. Workstations in a NOW must utilize an integral number

of NIC's; many real workstations in fact o�er only a single I/O bus. An SMP must also

utilize an integral number, of course, but need not employ a multiple of the number of its

processors. We can thus take an alternate view of SMP's, allowing P -processor SMP's to

scale their network resources in units of 1=P per processor. We term this incremental view

fractional scaling.

The potential advantage of fractional scaling is illustrated by Figure 8.4. The

�gure graphs application slowdown for a Clump constructed from 8-processor SMP's with

one through nine NIC's, or one-eighth through one and one-eighth NIC's per processor. The

SMP can continue to scale in units of one-eighth of a NIC per processor, but a NOW must

jump to two NIC's per processor. Pooling allows an SMP with three-quarters of a NIC per

processor to perform better than a NOW with two NIC's per processor for applications with

utilizations below about 0.5. Considering tight coupling further improves the advantage of

the SMP.

8.5 Limitations of the Model

The model developed in this chapter makes a number of simplifying assumptions

about the nature of communication in a Clump. We now review those assumptions and

discuss their signi�cance for the accuracy of the model. We begin with two abstract issues,

variable utilizations between processors and transient states of the queueing model. We
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then address the assumptions of fairness and e�ciency in terms of our own communication

layer. The chapter concludes with a discussion of the predictive capacity of the model.

8.5.1 Variable utilization

Even in an SPMD code, processors executing a parallel job can perform di�erent

amounts of communication. Although dynamic scheduling can help to balance the commu-

nication workload as well as the computation workload, the processors retain some degree

of variability in their utilization of communication resources. For applications with static

scheduling, the e�ects are much more signi�cant. With static scheduling, multi-protocol

communication can magnify imbalances in the processors' network communication demands.

Unfortunately, although generalizing the solution to incorporate separate utiliza-

tion factors for each processor is not hard to do in terms of the state space, using the

resulting equations to calculate application slowdowns requires an e�ort exponential in the

number of processors. We can generate data for small SMP's, but large SMP's present a

problem.

A possible approach to the case of variable utilization with dynamic scheduling

is to assume that the utilization for each processor is drawn from the same distribution

and that utilizations are narrowly distributed around the mean value. Perturbation theory

might then allow calculation of a slowdown distribution.

8.5.2 Transient e�ects

Transient e�ects also lead to inaccuracy in the model. At the start of a parallel

job, no processor is communicating, and the system state is in C0 with probability 1. The

distribution of states eventually converges to the equilibrium distribution, but the time

required to reach that distribution was not discussed. Simulations indicate that the time is

fairly long, and some parallel jobs may not converge before they terminate. In such a case,

transients between the initial and equilibrium distributions dominate the job's behavior.

Phase structure creates additional transient e�ects by requiring that processors periodically

stop communicating to synchronize.

The assumption of Poisson service time distributions for the model does not have

much signi�cance for the equilibrium distribution. Any pair of distributions with ran-

domness in at least one of the service times results in similar behavior. Pairs of constant
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distributions tend to correlate communication by slowing the communicating processors

while allowing non-communicating processors to proceed at full speed until they begin to

communicate. For transient e�ects, service time distributions may play a larger role by

a�ecting the time required to converge to the equilibrium distribution.

8.5.3 Fairness and e�ciency

The server-sharing discipline used to model the communication queue assumes

that NIC's provide equal service to each processor actively communicating. At very small

time scales, this assumption cannot hold, as each NIC has only a single connection to the

network. At very large time scales, the behavior is easy to achieve. We measured fairness in

our layer with multiple pairs of processors to communicating between two SMP's using one

NIC in each SMP. Each pair of processors consists of a sender and a receiver split between

the SMP's; the sender sends a stream of short messages to the receiver and notes the time

at which it receives each reply. From the reply times, we calculate the distribution of times

required for successive bursts of a given length, then calculate fairness at that burst length as

twice the standard deviation over the mean of the distribution. For bursts of 100 messages

or more, fairness is within 10% for up to seven pairs of competing processors. Below

100 messages, fairness degrades quickly for many pairs and more slowly for fewer pairs.

None of the processor pairs is systematically favored over others, hence unfairness should

average out over the lifetime of the processors. Synchronization dependencies on short

bursts may translate unfairly long response times into longer execution times, however.

The bene�ts attributed to resource pooling implicitly assume that a processor can

employ more than one NIC with reasonable e�ciency. A straightforward calculation using

the LogGP parameters for the AM-II network protocol suggest a potential advantage for

up to �
g

os + or

�
=

�
14:51

3:46 + 8:93

�
= 2

NIC's. This equation assumes that a processor must send a message and receive a reply on

one NIC during each period of length g, but can spend the remaining time sending messages

through other NIC's. However, the additional cost of polling the second NIC brings the

overhead above the gap, eliminating the potential bene�t. Resource pooling cannot bene�t

applications that use primarily short messages with our layer, thus applications can only

perform better on the Clump than on the NOW due to the e�ect of tight coupling. This
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restriction does not a�ect applications that use bulk transfers, however, as DMA transfer

times are relatively long compared to send and receive overheads.

8.5.4 Predictive capacity

The most signi�cant barrier to the ability of the model to predict performance are

the assumptions that communication is indivisible, independent, and continuous. Network

communication with DMA and protocol processing support allows an application to hide

the bulk of communication latency with computation. Interprocess synchronization en-

capsulated in messages can lead to dependency chains that dominate overall performance.

Finally, the discrete nature of messages and queues can change a non-blocking scenario into

a blocking one as 
ow control code begins operation.

Although the model captures performance issues for Clumps in a qualitative sense,

a signi�cantly more complicated model may be necessary to provide a reasonable level

of quantitative accuracy. As an illustration of the di�culty of predicting performance

on a Clump in a quantitative fashion, compare the level of abstraction embodied by the

model developed in this chapter to the level of detail employed in relating the sources of

systematic error in Chapter 5. Synchronization interdependencies in a parallel application

often magnify the errors encountered at very low levels rather than averaging them into

negligible e�ects. As evidence for this claim, consider the number of references made to the

application-level blocking e�ect in EM3D in Chapters 6 and 7.
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Chapter 9

Related Work

We have investigated issues related to e�cient message-passing through both

shared memory and the network within a Clump. In this chapter, we discuss a range

of related work, beginning with studies on message-passing through shared memory and

concurrent message queues. After covering other multi-protocol message-passing e�orts,

we continue with a discussion of distributed shared memory and programming models for

Clumps. After a brief section on performance evaluation and metrics for multiprogramming,

the chapter closes with discussion of a few less closely related issues.

9.1 Shared Memory Message-Passing

The idea of passing messages through shared memory is not novel. Numerous

applications make use of these techniques, as do a number of operating systems. The

Mach operating system, for example, uses message-passing between processes to construct

a modular kernel [YTR+87]. Most systems, however, avoid placing concurrent access in

the critical path of communication by allocating separate data structures for each sender-

receiver pair during setup and teardown operations. Cheriton and Kutter [CK96] touches

brie
y on shared message segments, but only to mention their use in establishing a private

segment for client-server communication. Byrd [Byr93] builds optimistic high-level models

of non-concurrent shared memory communication to aid in the design of a system that min-

imizes end-to-end latency. A study by Lim et al. [LHPS97] uses shared memory to route

network tra�c between SMP's through a proxy process, but again the data structures are

duplicated for each communicating pair. In Chapter 2, we argued against such an approach,
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identifying issues of performance, scalability, and memory usage as key reasons for devel-

oping e�cient concurrent message queues. Our empirical results validate these arguments.

Separate queues deliver superior results for one-to-one communication, but can be detri-

mental for more complex communication patterns. The breakdown of send overhead shows

that polling a queue and managing concurrent access incur similar amounts of overhead.

Polling queues scales linearly with the number of queues, whereas the communication stress

test results demonstrate that concurrent access costs remain relatively constant with in-

creasing numbers of processors. The demonstrated e�ect of queue length on application

performance supports our argument against dividing total queue space between all possible

senders, making concurrent message queues more scalable in terms of memory as well. This

section discusses a broader cross-section of concurrent access algorithms than we explored

empirically and compares our approach to providing hardware support for message-passing

with other approaches.

Several studies have addressed both one-to-one and many-to-one queues in the

context of re
ective memory, which uses hardware such as DEC Memory Channel [GK97],

SCI, or Shrimp/VMMC [BLA+94] to establish simplex channels that re
ect the contents of

memory within one machine into the memory of a second.

9.1.1 Concurrent message queues

We outlined a variety of alternative algorithms for concurrent access in Chapter 6,

and the literature o�ers many more. The spin lock algorithms used in our work|Test &

Set, Test & Test & Set, the ticket lock, and the Anderson lock|are drawn from Mellor-

Crummey and Scott [MCS91]. Herlihy [Her93] is a good source for the theory of wait-free

and non-blocking behavior as well as general implementation strategies. More practical

implementations of non-blocking data structures are also abundant. Rudolph [Rud81] de-

scribes an implementation of a priority-based scheduler for the Ultracomputer operating

system. Michael and Scott [MS97] surveys a variety of algorithms and evaluates their perfor-

mance on an SGI Challenge. Massalin and Pu [MP91] provides evidence that non-blocking

approaches can be e�cient when tailored to operating system data structures, and Green-

wald and Cheriton [GC96] shows that more general approaches can also be successful in this

regime. Both kernel implementations made use of the double-compare-and-swap (DCAS)



213

instruction, which performs simultaneous CAS operations on two independent words and is

not generally available.

Lock-free algorithms provide the most competitive alternatives to our approach.

We introduced three other lock-free algorithms from the literature in Chapter 6. Two of

these algorithms are similar to our own. The �rst, based on work with the Cray T3D,

implicitly links claiming a packet to packet assignment [BCL+95, KC95]. A sender that

reaches the end of the queue must wait for the receiver to reset the queue after processing

all entries. Our use of an additional synchronization primitive allows us to avoid this

boundary condition. The second, based on work with the NYU Ultracomputer, provides a

many-to-many queue with explicit support for over
ow and under
ow [GLR83]. The more

general nature of the algorithm adds overhead unnecessary in our system, but the core

algorithms are essentially the same. The last algorithm takes a much di�erent approach to

managing the packet queue, but requires unaligned CAS primitives [Val94], a feature not

supported by any modern architecture.

The use of a request-response communication paradigm makes true non-blocking

behavior moot in our system; an endpoint that fails to respond blocks application progress.

Non-blocking behavior also requires dynamic storage, a factor that does not mesh well with

our model of pre-allocated shared segments. However, by increasing the size of the queue

block to the point that no blocking occurs, we can simulate the possibilities with known

applications to obtain reasonably accurate data on performance. We now discuss a few

non-blocking and wait-free algorithms to illustrate the range of complexity and overhead.

Non-blocking algorithm

Non-blocking operations on a double-ended queue (deque) form the basis of work-

stealing in the Cilk multithreaded language [ABP98]. Previous versions of the language

used locking constructs [FLR98], but an investigation of performance revealed that the

non-blocking algorithm was superior [BP98]. The non-blocking approach also plays a useful

role in addressing performance in the face of an adversarial scheduler [ABP98]. The deque

operations achieve non-blocking behavior by assuming an in�nitely deep queue; a push

operation that uses a bounded amount of memory and signals over
ow can retain the non-

blocking aspect provided that the runtime can handle the failure, perhaps by executing
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Swap(^address; new)

old  address^

address^  new

return old

Enqueue(^q; ^data)

message  AllocateMessage()

message^:next  NULL

message^:data  data^

old tail  Swap(q^:tail;message)

if old tail 6= NULL

old tail^:next message

Dequeue(^q; ^data)

head  q^:head

next  head^:next

if next = NULL

return UNDERFLOW

q^:head next

FreeMessage(head)

data^  next^:data

return SUCCESS

Figure 9.1: Pseudo-code for pull-based messaging [KC95]. The head element is an empty

message bu�er and is preserved until another message arrives. The Swap synchronization

primitive performs an unconditional exchange of one value for another.

the thread sequentially. Without such handling, the deque algorithm is lock-free, but not

non-blocking.

Karamcheti and Chien [KC95] describes a non-blocking many-to-one queue algo-

rithm based on the Swap primitive and assuming a single address space. Implemented in

the context of the Cray T3D, the algorithm uses dynamic allocation to support an interest-

ing \pull-based" approach on a link-based queue. Pseudo-code for the algorithm appears

in Figure 9.1. As shown in the �gure, Swap unconditionally exchanges the value at an

address with a new value. Each receiver maintains head and tail pointers to a linked list

of messages. A sender enqueues a message by allocating and �lling a new message block,

then placing it at the end of the receiver's list. The tail pointer is updated before the

link in the previous tail message, greatly simplifying the algorithm. A receiver maintains

a single empty message block as a sentinel at the head of the list. When dequeueing a

message, the receiver frees the previous sentinel block and accepts the message in the next



215

block, leaving the block itself to serve as a new sentinel. The term pull-based refers to

the fact that the message data remains cached with the sender until the receiver accepts

the message, providing implicit 
ow control for many-to-one communication patterns. This

algorithm may be competitive with ours in an environment based on threads, and may also

be a reasonable alternative when using multiple processes with our request-reply paradigm

of communication.

The simplifying order of the tail and link update makes the pull-based algorithm

non-linearizable [HW90]. Consider the following scenario. A slow sender swaps the tail of

an empty queue, then a fast sender inserts a message after that of the slow sender. After

the fast sender is done, the queue still appears empty to the receiver, and an attempted

message reception returns no message. In selecting a linear order for these events, the fast

sender's insertion must appear before the receiver's attempt to accept a message, as the

send operation completed before the receive operation. Such an order is incompatible with

the receiver's failure to receive the message, however. The FIFO property de�ned by Got-

tlieb et al. [GLR83] provides a more natural de�nition for queue semantics by ignoring the

e�ect of failures. In the scenario described above, the pull-based algorithm does guaran-

tee that the receiver accepts the slow sender's message before accepting the fast sender's

message.

Michael and Scott [MS96] describes a more complex concurrent queue designed

for multiple producers and multiple consumers. The data structures used by the algorithm

are almost exactly the same as those used with the pull-based algorithm, but message block

pointers include epoch numbers to avoid the ABA problem in practical use. Figure 9.2

presents pseudo-code for a simpli�ed version of the algorithm that supports only a single

receiver. The simpli�ed version of the algorithm performs the same operations as the

pull-based algorithm, but must verify the success of its modi�cations and attempt to help

previous operations complete their work. The complexity in this case arises primarily from

the algorithm's choosing to link in new messages before advancing the tail, the order opposite

to that used in the pull-based algorithm. This order was chosen based on correctness and

semantic failures (e.g., non-linearizability) in previous work and on an assertion that safety

requires that the tail always point to a message in the list. Both senders and the receiver

must check that the tail pointer in fact points to the end of the list and try to advance it

when it does not.
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Enqueue(^q; ^data)

message  AllocateMessage()

message^:data  data^

message^:next:ptr NULL

while TRUE

tail  q^:tail

next  tail:ptr^:next

if tail = q^:tail

if next:ptr = NULL

if Compare&Swap(tail:ptr^:next; next; hmessage; next:count + 1i)
Compare&Swap(q^.tail; tail; hmessage; tail:count + 1i)
return

else

Compare&Swap(q^.tail; tail; hnext:ptr; tail:count+ 1i)

Dequeue(^q; ^data)

while TRUE

head  q^:head

tail  q^:tail

next  head^:next

if head:ptr 6= tail:ptr

data^  next:ptr^:data

q^:head next

FreeMessage(head:ptr)

return SUCCESS

if next:ptr = NULL

return UNDERFLOW

Compare&Swap(q^:tail; tail; hnext:ptr; tail:count+ 1i)

Figure 9.2: Pseudo-code for the non-blocking queue from Michael and Scott [MS96]. The

dequeue operation shown is a simpli�ed, sequential form of that given in the paper.
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Fetch&Increment(^obj)

toggle  not obj^:announce[MY PROCESS]

obj^:announce[MY PROCESS]  toggle

for try  1 to 2

if obj^:cblock^:toggle[MY PROCESS] = toggle

if obj^:cblock^:toggle[MY PROCESS] = toggle

break

old cblock = obj^:cblock

Copy(new cblock:ptr; old cblock:ptr; CBLOCK LEN)

for i 0 to NUM PROCESSES�1
if obj^:announce[i] 6= new cblock^:toggle[i]

new cblock:ptr^:responses[i]  new cblock:ptr^:value

new cblock:ptr^:value  new cblock:ptr^:value+ 1

new cblock:ptr^:toggle[i]  obj^:announce[i]

if Compare&Swap(obj^:cblock; old cblock; hnew cblock:ptr; old cblock:count+ 1i)
new cblock  old cblock

break

return obj^:cblock^:response[MY PROCESS]

Figure 9.3: Pseudo-code for a wait-free Fetch&Increment with NUM PROCESSES pro-

cesses. The algorithm is a speci�c instance of a general approach outlined by Herlihy [Her93].

In theory, the use of Compare&Swap makes this version su�er from the ABA problem.

Wait-free algorithm

Wait-free algorithms guarantee that every process makes progress in a �nite num-

ber of their own time steps. The CAS operation is su�cient to construct wait-free imple-

mentations of arbitrary concurrent data types. These implementations avoid the possibility

of starvation inherent to competitive algorithms by having processes cooperate with one

another, completing each other's operations before performing their own. Naturally, coop-

eration incurs signi�cant overhead, a cost that grows linearly with the number of processes.

As an example of such an implementation, Figure 9.3 shows pseudo-code for a wait-free

version of F&I implemented with CAS.

The F&I data structure consists of a set of process announcement toggles and a

copy block pointer. The copy block contains the value of the emulated memory location,

a set of process completion toggles, and a set of process return values. As indicated by its

name, the copy block must be copied by every operation. The copy block pointer is also

extended with an epoch number to reduce the likelihood of the ABA problem.

A process begins the F&I operation by announcing its intent to perform the oper-

ation. One-bit serves the purpose, as each process can execute only a single operation at a
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time. After making an announcement by 
ipping its bit, the process enters a two-iteration

loop to attempt the change. If the change fails twice, another process is guaranteed to have

completed the operation, as explained later. At the start of the loop, the process checks

that no other process has completed the operation for it; two checks are required, as the

copy block pointer may change after being read, leaving the process' completion toggle in

the old copy block in a state that falsely con�rms the success of the operation. A false

positive in the second check implies that the copy block has changed twice, which again

implies that another process has completed the operation. If the announcement and com-

pletion toggles do not match, the process tries to perform the operation itself, �rst copying

the copy block, then performing all processes' outstanding operations on the new copy, and

�nally attempting to atomically replace the old copy block with the new copy. If the CAS

succeeds, the process' operation is complete, and it can return the response value from the

old copy block and reclaim the old block for its next operation. The swapping and reuse of

copy blocks keeps the process' response valid until it initiates a new operation, eliminating

the possibility of error through accessing an invalid block that has been reclaimed by the

memory system and �lled with random data.

Two changes to the copy block after a process' announcement guarantee that the

process' operation has completed. Let PA denote the process making the announcement,

and let P1 and P2 denote the processes that succeed in changing the copy block after a

process' announcement. The following four events must happen in order: PA announces

its operation, P1 changes the copy block pointer, P2 reads the copy block pointer, and P2

changes the copy block pointer. The ordering between the �rst two is assumed, and the

ordering between the last two is de�ned by the operation. P2's success in changing the

pointer implies that it reads the copy block pointer after P1 changes it. As P2 reads the

copy block pointer after PA's announcement, it applies PA's operation to its private copy,

implying by P2's success in changing the pointer that the operation is complete.

9.1.2 Hardware support

Most modern commercial SMP's employ a version of the MESI write-invalidate

cache coherence protocol [PP84], allowing users only limited and typically coarse-grained

control over coherence operations. Chapter 6 examined the cost of message-passing across

such interconnects in detail, predicting the e�ect of current trends on future performance
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and suggesting a set of instruction set and coherence protocol extensions to better support

message-passing. These extensions are designed to provide explicit control over cache co-

herence, allowing a programmer to override the implicit heuristics embodied by the MESI

protocol.

Cheriton and Kutter [CK96] suggested another explicit approach to support-

ing message-passing in the context of the ParaDiGM multiprocessor, a directory-based

CC-NUMA architecture. The work assumes a more traditional model of interprocess com-

munication in which the operating system plays a fairly substantial role in moderating

communication. Given the explicit support described by the paper, a sender writes a mes-

sage into a local cache line, changing a 
ag within the line last. Writing to the 
ag signals

the memory system to send the message, which moves the packet into one or more pre-

linked receiver cache lines. Messages are not guaranteed to arrive in the remote lines, nor

are they guaranteed to be delivered before another message overwrites them. Those mes-

sages that do arrive generate a signal, which may or may not reach the destination process.

Signals carry the virtual address of the delivered message, reducing the cost of handling

the message. The operating system manages retransmission of messages and regeneration

of signals.

Our approach is deterministic, allowing us to avoid operating system interven-

tion. Our techniques also integrate more readily into existing commercial SMP's, as they

require less extensive modi�cations to the memory hierarchy and avoid the need to support

timeout and retransmission for shared memory messages in the operating system. A direct

comparison of performance is questionable due to di�erences in the underlying technology.

ParaDiGM uses 25 MHz Motorola 68040 processors|a CISC architecture, whereas our re-

sults are based on a recent 167 MHz RISC design. Including all optimizations, an RPC

on the ParaDiGM system requires at least 47 microseconds, or 1,175 cycles. With none

of the optimizations that we suggest, an equivalent RPC on our system requires 5.588 mi-

croseconds, or 933 cycles. Although the suggested hardware extension supports concurrent

access, the work on ParaDiGM assumes allocation of separate communication memory for

each sender, presumably due to the lengthy timeouts and retransmission necessary when

senders contend. The operating system's signaling mechanism allows processes to avoid

polling multiple message queues, but implies that messages interact asynchronously with a

program. In such a model, handlers must either access data structures concurrently with

the main program or queue messages for later handling.
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The signal-on-write extension might serve as an alternative to burst support in

processors that lack large register sets from which to issue a burst. Signal-on-write requires

that the operating system and memory system manage the producer-consumer relationships

between cache lines, e�ectively removing them from the control of the usual coherence

protocol. Support for these relationships is more complex than that required to expose the

ability to generate a coherence transaction with data, a capability already supported by all

interconnects.

Other work in the literature examined implicit heuristics that complement our

approach. Two studies [CF93, SBS93] considered extending a coherence protocol to dy-

namically identify migratory data, i.e., data read and written by only one processor at any

time but read and written by multiple processors over the lifetime of a program. Data

manipulated within a critical section, for example, are often migratory. In the extended

protocol, a processor that incurs a read miss on a migratory cache line receives exclusive

access to that line with a single coherence transaction. A non-migratory cache line, or any

cache line in the unmodi�ed write-invalidate protocol, is �rst replicated into a shared state.

The processor must then incur a second transaction to invalidate the line before modifying

it. The utility of these extensions declines with longer cache lines, as the invalidation cost

becomes small compared with the cost to move a line, and false sharing between migratory

and read-shared data reduces the e�ectiveness of the dynamic identi�cation [CF93]. At

current cache line sizes, use of implicit strategies for identifying migratory data reduces

coherence transactions and improves performance.

The implicit techniques do not fully address message-passing, however, as the se-

mantics of message data di�er from those of migratory data. A strict producer-consumer

relationship governs message data: the producer always produces, and the consumer always

consumes. In contrast, the notion of migratory data focuses on ownership: each new owner

plays both roles, consuming some of the old data and producing some new data. Our ex-

plicit approach addresses message data, whereas the implicit approach addresses migratory

data. Our techniques eliminate pollution of a sender's data cache with communication data,

prevent the unnecessary transmission of old data, and push rather than pull the data across

the interconnect. These bene�ts are not appropriate or useful for migratory data.

Our approach also bene�ts from its explicit nature. Data evicted from all caches

must be reclassi�ed by an implicit approach, whereas separate instructions serve to classify

data in an explicit approach. Also, programmers that explicitly recognize message data
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also presumably act to eliminate false sharing with non-message data. Finally, an explicit

approach requires fewer modi�cations to the coherency protocol, adding only one signal and

no states. An implicit approach builds its knowledge in cache line states and requires that

knowledge be transferred between caches with additional signals.

An explicit approach has no bene�t unless a programmer makes use of it, however.

Although message-passing is generally abstracted in library code rather than rewritten

for each new application, the need for explicit recognition can be cumbersome. The two

approaches are complementary, however, and can be used in tandem, allowing a programmer

to obtain some of the performance bene�t implicitly and to optimize as necessary to obtain

the remaining performance potential.

Cooperative shared memory [HLRW92] (CSM) o�ers an explicit approach for iden-

tifying migratory and shared data with hints in the program. CSM transforms the notion

of reader-writer locks into coherence terms, allowing a programmer to insert directives in-

dicating an intent to read or an intent to modify a particular datum. Another directive

announces the completion of the access. The memory system can use these directives to

make decisions about migration and replication, and can hide latency through prefetching.

The directives are only hints, however; the coherence protocol ensures correct behavior in

the presence of con
icting directives. Like the implicit approaches to identifying migratory

data, CSM focuses on ownership rather than a producer-consumer model.

Tempest [RLW94] addresses support for e�cient shared memory on distributed

memory machines through software control and hardware-supported �ne-grained access.

Tempest treats a portion of each machine's local memory as an L3 cache. Software control

allows programmers to de�ne arbitrary consistency semantics on a cache line basis using a

complete set of explicit operations. A customized protocol described in [RLW94] is in many

ways similar to our explicit protocol extensions, but addresses neither process migration

nor pollution of a sender's cache with communication data. These issues are unimportant

in the Tempest approach, which o�ers a large and fully associative L3 cache and does not

support process migration.

9.2 Multi-Protocol Messages

The problems associated with integrating multiple communication protocols into

a single abstraction have rarely been addressed. The Nexus portable programming sys-
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tem [FKT96] presents a model of communication very similar to our own, but focuses

primarily on portability and on support for heterogeneity. It supports arbitrary sets of ma-

chines, processes (or contexts, in Nexus terminology) and threads. Nexus generally builds on

top of existing communication layers, resulting in somewhat higher overheads than those

obtained with active messages. The communication abstractions are similar to those of

AM-II, but the style of communication is di�erent. Like AM-II, Nexus has endpoints that

de�ne tables of handler routines, but Nexus does not require that communication obey

a request-reply paradigm. This 
exibility allows Nexus to use endpoint names, or start-

points, to initiate messages. A startpoint can be bound to multiple endpoints, allowing for

multicast communication.

Nexus platforms support multiple communication protocols between a startpoint

and an endpoint, thus Nexus has explored multi-protocol communication from a more gen-

eral perspective than have we [FGKT97]. Although shared memory is mentioned in the

work, numbers are provided only for more expensive underlying protocols, making a direct

comparison impossible. The Nexus multi-protocol paper also notes the wide variance be-

tween polling costs for di�erent protocols and presents data for fractional polling strategies.

We developed a parametrized, adaptive strategy that allows the communication layer to

tune itself dynamically to the underlying architecture.

Recent work on MPI-StarT [HH98] addresses multi-protocol communication in

MPI on a Clump of Enterprise 5000's with custom network interface hardware.

9.3 Distributed Shared Memory

Distributed shared memory, also known as shared virtual memory, was suggested

as an alternative to message-passing [LH86] long before researchers began to think about

the Clump architecture. DSM provides the abstraction of a coherent, shared address space

on a platform with physically distributed memories. In early work, the abstraction was

completely transparent to a programmer, but later e�orts to improve performance led to

explicit coherence directives to support new models of data consistency [GLL+90, KCZ92,

IDFL96, ISL96a, SB97]. Researcher have now begun to extend DSM notions to Clumps

architectures [SDH+97, SB98, SGA98] to take advantage of tight coupling within the SMP's.

Recent DSM projects include SVM [ISL96b, JSS97], MGS [YKA96, Yeu98], Brazos [SB97,

SB98], Cashmere [KHS+97, SDH+97], Shasta [SGT96, SGA98], and many others.
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DSM presents an alternative approach to providing a uniform interface for pro-

gramming a Clump. In this respect, DSM and this thesis both seek to optimize common

techniques in one medium to allow use of those techniques in both. The research com-

munity has long debated the relative merits of the shared memory and message-passing

models, to the point that many of the arguments have been reduced to zealous religious

beliefs rather than objectively substantive claims. Dogmatically speaking, shared memory

is easier to program and message-passing delivers better performance. Although at times

reluctant to admit it publicly, most researchers recognize that each approach has advantages

and disadvantages, and that each view proves more natural and e�ective than the other for

interesting classes of applications. That said, we now explain why we chose to investigate

a uniform message-passing model rather than DSM.

A uniform message-passing interface forces a programmer to address the motion

of data explicitly and to recognize that moving data is a costly operation. Programmers ac-

customed to dealing with high latencies will not have di�culty handling lower latencies for

some messages. In contrast, a coherent shared memory abstraction manages the motion of

data implicitly, in theory allowing a programmer to ignore such issues. Even across the low-

latency memory interconnects within SMP's, supporting such an abstraction transparently,

i.e., with sequential consistency, incurs very high overheads. Generalizing shared memory

to work e�ciently with higher latencies is a very hard problem. DSM attempts to tackle

this problem, providing coherent shared memory across a communication network, an inter-

connect with much higher latency. In most existing architectures, the network also presents

higher overhead and lower bandwidth than the memory interconnect, but increased latency

is the only fundamental di�erence. An artifact of implementation via the virtual memory

protection bits helps to amortize the resulting high cost of exchanging \lines" in the global

cache by increasing the line size to that of a virtual memory page. However, false sharing

and data fragmentation due to the larger line sizes can signi�cantly impact performance,

leading several groups to investigate �ne-grained DSM [RLW94, SGT96, KHS+97].

Irrespective of amortization, however, obtaining reasonable performance with high

latencies requires that DSM approaches adopt weaker models of data consistency, which in

turn require a level of explicit control by a programmer. Typically, programmers insert co-

herence directives requesting that a local copy of data be updated or that recent changes to

data be made globally visible. A few systems treat these directives as hints [HLRW92], us-

ing them to improve performance without risking program correctness. Incorrect hints can
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adversely a�ect performance, however, by causing memory to thrash between processors.

Most systems thus treat the directives as guarantees by the programmer that correct behav-

ior admits inconsistencies in the data [ISL96b]. We claim, and shared memory enthusiasts

deny, that once a programmer must explicitly and correctly control data motion within

an application, the task of writing that application is at least as di�cult with a shared

memory model as with a message-passing model. Explicit control renders the shared mem-

ory abstraction little more than a convenient aliasing mechanism between message bu�ers;

the added bene�t is the ability to dynamically determine and send only the modi�cations.

We view explicit data management within DSM systems as a convergence with the BSP

message-passing model [Val90], a phase-structured approach in which messages (shared

data) remain outstanding (inconsistent) until the end of a phase (synchronization direc-

tive). Like DSM, BSP dynamically tracks and sends only the changes, i.e., the messages

sent during a phase.

The central reason for our favoring message-passing over shared memory as a uni-

form interface, however, is the di�culty of obtaining good performance through shared

memory. Programming a 
at shared memory model for performance is not as easy as it

sounds: although all memory is equally close, the cache is much closer, and ensuring that

an application spends little time waiting for data to move between caches can be challeng-

ing. Shared data must be laid out very carefully, typically using hard-won experience, to

minimize coherence transactions. Algorithmic changes are not uncommon. Consider, for

example, that the shared memory protocol developed in this thesis is little more than a data

structure and supporting code in a shared memory program, then imagine expending an

equivalent e�ort for every data structure. The shared virtual memory literature [ISL96b]

is a good source of information on the necessary performance optimizations, as building

shared memory across relatively slow interconnects forces researchers to pay careful atten-

tion to performance issues. For DSM systems, the relative cost of the protocols makes data

layout even harder. Algorithmic changes are common.

The optimization process is even more di�cult. A programmer optimizing for a

DSM must not only understand the issues for the program, but must also be fairly knowl-

edgeable about the heuristics and decision-process employed by the DSM runtime in order

to invert those decisions when tuning a program for performance. Furthermore, false sharing

and data fragmentation tie shared memory performance to the arti�cial granularity of ac-

cess used to support the coherence mechanisms. In terms of optimization, this dependency
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couples otherwise unrelated portions of a program. Redistributing data to optimize one

procedure may degrade performance in another portion of the code that accesses the same

data in a di�erent fashion. Although such coupling is relatively unimportant for bench-

marks with only a few thousand lines of code, it can easily dominate the complexity of the

optimization process in applications with hundreds of thousands or millions of lines of code.

The explicit data management necessary with message-passing is indeed harder to construct

than the arbitrary schemes possible with shared memory, but such an investment is more

than worthwhile if in return a programmer gains the ability to perform local optimizations

using a simple cost model.

Returning to a more objective viewpoint, we might consider integrating the shared

memory and message-passing models. Combining the better aspects of the two may lead

to an e�ective programming model, but merely making both available is not adequate.

Support for both models is clearly useful in the hardware, and many architectural research

e�orts address simultaneous support for both message-passing and shared memory, includ-

ing Alewife [Kub98], FLASH [HGDG94], and StarT-Voyager [ACR+98]. Tempest [RLW94]

provides support for both models on a distributed memory machine with a small amount

of additional hardware. Both message-passing and shared memory are fairly di�cult to

use in isolation, however, and using them in tandem or incrementally switching subsets of

data between them is not a simple task. The hierarchical nature of future Clump archi-

tectures further complicates matters by introducing dynamic tradeo�s. One model may

deliver adequate performance for processors arranged in one hierarchy but not in a second

hierarchy.

Compiler and runtime support is necessary to handle the dynamic aspects, but

pushing the issues into these systems begs the question of what abstractions a programmer

actually uses to program a Clump. A compiler and runtime system capable of applying

a complex global analysis of source code based on a simple abstraction to obtain a high

fraction of available performance may not be able to maintain that level of performance as

the levels of the data hierarchy shift underneath it. Equally hopeless in such a case is the

notion that a programmer will unravel the transformation to optimize performance.

The programming model for these systems must thus embody both a reasonable

level of simplicity to allow a programmer to write correct code and a reasonable level of

clarity to allow the programmer to optimize that code. Neither message-passing nor shared

memory is particularly satisfying in this regard.
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9.4 Programming Model

A variety of programming models have been suggested for Clumps. Some extend

a combination of shared memory and message-passing with library routines for collective

communication, while others propose to extend models developed on SMP's or on NOW's

to Clumps. Several other models also look promising.

9.4.1 Clumps models

The p4 programming system [BL94] was probably one of the �rst systems to

recognize Clumps as a platform. It provides mechanisms start multiple threads on one or

more machines and to communicate between such threads using either message-passing or

shared memory constructs. The programmer must explicitly select the appropriate library

call. The library also provides a number of useful reduction operations.

SIMPLE [BJ97] provides functionality similar to p4, but extends the library with

broadcast operations and a variety of tuned, many-processor communication methods. SIM-

PLE also attempts to lighten the programmer's burden by o�ering functions that involve

all processors, all processors in an SMP, one processor in each SMP, and so forth.

A paper by Fink and Baden [FB] attacks the problem of load balance in phase-

structured algorithms by rebalancing computation and communication for a regular problem

within an SMP. Given a 2D domain partitioned in one dimension between SMP's in a Clump,

the paper calculates a non-uniform partitioning of the domain within each SMP such that

the time spent in a phase is roughly equal for each processor. The analysis gives processors

on boundaries less computation to balance the cost of communication.

KeLP, by the same authors, seeks to simplify the process of application develop-

ment. Recent extensions to KeLP [FB97] add new functionality to support applications on

Clumps. With KeLP, a programmer expresses data decomposition and motion in a block-

structured style. The runtime system then employs inspector-executor analysis to overlap

communication with computation. No global barriers are used; interprocessor synchroniza-

tion occurs only through communication dependencies.

9.4.2 SMP models

Bulk-synchronous programming, or BSP [Val90], is a phase-structured approach

in which messages sent during a phase do not arrive until the end of that phase, at the
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next global synchronization. BSP may be better than less restrictive phase-structured

approaches because it allows a runtime system to dynamically schedule communication

onto a virtual NIC. As illustrated by our model in Chapter 8, communication scheduling

has a large potential impact on performance. The di�culty lies in rewriting applications in a

way that exposes scheduling opportunities; a phase in which processors solely communicate,

for example, cannot be improved by scheduling.

Autoscheduling analyzes parallel loop dependencies to generate a hierarchical task

graph, allowing the runtime system to dynamically schedule loop iterations across proces-

sors [MP94]. This dynamic approach to load balancing aspect addresses the problem of the

uneven bene�ts of fast communication by rebalancing the workload based on the platform

architecture. Autoscheduling has been demonstrated on DSM platforms as well.

Cilk [FLR98] dynamically schedules compiler threads generated through fork-join

parallelism onto an SMP, using work-stealing to distribute the threads. Each process main-

tains a set of ready threads. A fork operation allows several new threads to execute in

parallel, and these threads are placed into the local set to be executed one at a time. When

a process runs out of threads, it steals work (threads) from another process, e�ectively

balancing the load. With e�cient implementation support for compiler threads [Gol97]

and e�ective thread scheduling [NB98], an extension of Cilk to a Clump architecture might

address the problems of correlated communication and uneven fast communication bene�ts

without introducing signi�cant overhead.

9.5 Performance Evaluation

We presented a suite of benchmarks for measuring the performance of shared mem-

ory message-passing. Our approach enables a more complete perspective on the problem

than do most approaches found in the literature, examining performance across the pos-

sible range of contention and highlighting a variety of applications. In this section, we

focus on developing a methodology for measuring the performance of applications under

multiprogramming, a metric that has remained elusive because of the complexity of the

general problem and the natural inconsistency of independent attempts at simpli�cation.

We compare two previous multiprogramming approaches with our own methodology and

suggest that a more detailed study is necessary to capture performance on a time-shared

system.
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Wisniewski et al. [WKS95] and Michael and Scott [MS97] simulate multiprogram-

ming to evaluate preemption-safe locking and to compare concurrent algorithms by using

one processor within an SMP as a scheduler and binding one process to each other proces-

sor. The scheduler periodically signals the application processes to stop and start executing

their local code. While stopped, the processors wait idly for the next start signal. Blumofe

and Papadopoulos [BP98] measure multiprogramming in the context of Cilk by allowing

the number of user-level threads in a program to exceed the number of physical processors.

On the experimental platform used in [BP98], a Sun Enterprise server running Solaris, all

thread scheduling in such an environment occurs at user-level, eliminating the need for

context switches. Both approaches outlined here allow for fractional multiprogramming,

an aspect that our own results lacked due to time constraints on the availability of the

machines. However, these methodologies produce overly optimistic results, as they neglect

several detrimental e�ects, including the motion of data between caches, context switches

between jobs, and variable levels of cooperation from competing jobs.

As outlined in Chapter 6, yielding a processor potentially incurs overhead of three

types: operating system scheduler invocation, including context switches; cache pollution by

an intervening process; and data transfer between caches. The approach taken in the con-

current algorithm work eliminates these costs, allowing performance to remain high as the

level of multiprogramming rises. In fact, in the absence of cache e�ects, reduced contention

under multiprogramming leads to improved performance for several of the algorithms stud-

ied. The Cilk methodology avoids the �rst cost by executing only a single process on the

machine, and reduces the e�ect of the second by executing the same code on all processors.

We do not mean to imply that multiprogramming need be measured using several processes

within a parallel job, only that competing jobs should not be in the same process.

The multiprogramming results in our work demonstrate the e�ect of variable levels

of cooperation: other parallel jobs try to coschedule themselves implicitly, and are likely

to yield processors unless their sibling processes are also running; sequential processes do

not yield, and reduce the performance of parallel jobs that must compete with them. The

concurrent algorithm work allows a simulated intervening process a randomized time slice

with a constant mean, corresponding more closely to the e�ect of competing with sequential

processes. The Cilk work competes with its own threads, which yield their processors when

they run out of work, corresponding to competition with parallel jobs.

A measure of multiprogramming performance should re
ect the performance avail-
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able from a time-shared system. Without a methodology that captures the e�ect of resource

interactions with competing jobs and operating system overheads, however, multiprogram-

ming results are hard to interpret in this manner. Our multiprogramming methodology

attempts to obtain a fair approximation of time-shared performance by evaluating ap-

plication in competition with a range of parallel and sequential jobs. A few simplifying

assumptions are necessary to limit the amount of data. A simple sequential program that

generates memory tra�c and pollutes the caches serves as the model of a sequential process.

Unrelated copies of a parallel application serve as the model of a parallel job. Extending

our methodology with fractional multiprogramming is also potentially interesting.

9.6 Other Issues

We conclude with two issues related less directly to the work described by this

thesis: integrating message-passing communication more tightly into the memory hierarchy

and routing network tra�c through a proxy process.

9.6.1 Integrating communication

A variety of work focuses on integrating network communication devices more

tightly into the memory hierarchy, placing them directly on the memory interconnect, in-

tegrating them into the processor board, or even exposing them as control registers in the

processor. Mukherjee and Hill [MH97] surveys the literature on the advantages of such

integration. Joerg and Henry [JH92] describes a network interface architecture and eval-

uates its performance at several levels of integration, including register-mapped and on-

and o�-chip cache implementations. The Alewife machine uses a modi�ed processor and

a custom \communications and memory management unit" to provide e�cient, user-level

message-passing and coherent shared memory support [Kub98]. The work demonstrates

the performance potential of systems built from the ground up to support e�cient commu-

nication. StarT-Voyager [ACR+98] also places a custom network interface device on the

memory interconnect, but is designed to support multiple processors. Four types of user-

level messages o�er a variety of tradeo�s between length and startup cost. A programmable

service processor and control message capability between the service processor and appli-

cation processors allows StarT-Voyager to readily support DSM protocols as well. As with
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the AM-II network layer, StarT-Voyager virtualizes communication queue resources, paging

them dynamically between the network interface memory and the host.

The empirical work in this thesis focuses on implementations based on current

commercial systems. Tighter levels of integration in the swiftly moving computer indus-

try require higher levels of trust between companies developing processors and individual

machines and companies developing network interfaces, but we are optimistic about the

possibilities demonstrated by the work mentioned above. For multi-protocol communica-

tion, a more balanced relationship between protocol overheads might eliminate the need

for an adaptive polling strategy, although variations in latency will maintain the value of

optimizing using locality information.

As with most modern SMP's, our experimental platform executes synchroniza-

tion primitives at the level of the L2 cache. Several architectures [Rud81, KDL+93] with

uncacheable portions of memory support atomic synchronization primitives at the memory

itself. Processors send messages to the memory to perform the primitives. For a general class

of read-modify-write operations, such messages can be combined in the network between

the processors and the memory to allow the architecture to scale to very large numbers of

processors [KRS86]. The latency across these networks represents a major drawback, but

approaches that explicitly recognize the operations that generate such messages might be

able to hide some or all of it.

9.6.2 Message proxies

A signi�cant body of Clumps-related literature addresses only platforms with a

single network device per SMP, perhaps as a simplifying assumption. Our results and model

suggest that the view of multiple network interface devices as a single virtual device can

improve performance on a Clump, but retaining message overheads close to those available

in hardware requires that the virtualization be done in a distributed fashion. An alterna-

tive approach directs network tra�c through a local proxy, often running on a dedicated

processor.

An interesting study by Lim et al. [LHPS97] investigates this approach as a means

to provide multiple users with protected access to a single network resource and provides a

breakdown of costs in the proxy approach. Our system sidesteps the question of protected

access by taking advantage of an SMP's virtual memory system to grant direct access to
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a subset of network resources. An intelligent NIC plays an essential role in our approach.

Falsa� and Hill [FW97] provides a more thorough survey of proxy-based approaches and

compares their performance with systems in which all processors communicate through the

network.
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Chapter 10

Conclusions

Lest this thesis become, like the world, too much with us, we now retreat to a

pleasant lea and survey our work from a distance. This chapter expresses our view of

the thesis against a background of mercurial progress, relating both its defenses and its

weaknesses against the lone and level sands of Time. In concrete terms, we outline our

philosophy.

10.1 Hierarchical Systems

Future architectures will present complex hierarchies of data to maintain the rate

of growth in processor power, requiring that applications carefully manage the motion of

data through the system. E�ectively addressing such a platform requires a combination of

automatic control and application-speci�c knowledge. Automatic control handles the bulk

of the work, applying heuristics grounded in general principles and system parameters.

Application-speci�c knowledge allows a program to make more e�ective use of the system,

integrating the application's needs with the capabilities of the architecture.

An ideal abstraction gives a programmer ready access to both techniques by pro-

viding both a straightforward initial approach and a clear optimization path. The initial

approach relies on the implicit heuristics, managed by the compiler and runtime and sup-

ported by the hardware, to obtain a reasonable level of performance. The optimization

path allows a programmer to explicitly override the heuristics, applying application-speci�c

knowledge to improve performance. The means of explicit control are incremental and
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require only local decisions, implying that the heuristics do not obscure the relationship

between a program and its performance.

A uniform interface is a good approach to developing such an abstraction. This

thesis describes a uniform message-passing interface that closely couples performance to

that of the underlying hardware, tackling the requirements outlined above for interprocess

communication. In a broader sense, it demonstrates the value of using such an interface.

Applications distributed across processors in a hierarchical system must at some level ad-

dress the variance in their ability to share data. Clearly no programmer wants to undertake

the wide-ranging and painstaking level of e�ort required to develop the individual proto-

cols and integration support described here for each new application. Our multi-protocol

communication layer demonstrates that runtime software can provide the automatic con-

trol necessary to address the Clump hierarchy in the common case, thereby reducing the

necessary e�ort for every application that builds on it. A programmer need consider only

a simple cost model in an initial approach to an application: invoking a remote function

is expensive, and should be overlapped with computation. Using the simple cost model,

a programmer can ignore the hierarchy and obtain reasonable performance. Improving

performance requires that a programmer re�ne the cost model to recognize that functions

invoked on another SMP take longer than functions invoked within the same SMP. Locality

information is readily available, and performance depends primarily on the algorithms em-

ployed in communication, allowing a programmer to handle hierarchical aspects selectively

and incrementally.

Two key components enable the success of the multi-protocol approach: the lock-

free concurrent queue algorithm and the adaptive polling strategy. Our original shared

memory protocol used Posix mutexes to protect access to the queue data. With little prior

shared memory experience, Posix mutexes seemed the concurrency mechanism of choice;

why else are they the standard? Compared with the more heavyweight network protocol,

microbenchmark timings with Posix mutexes looked very fast, painting a rosy picture for

the advantages of a Clump over a NOW. Selling SMP's is not our business, of course,

but we had hypothesized improved performance and felt that we might soon con�rm the

hypothesis, possibly even in a way that allowed quanti�cation. Success was not immediate,

however. Applications generated vast and widely varying numbers of context switches with

the original protocol, leading one member of our project to joke that SMP's made excellent

random number generators. The search for an algorithm that delivered good performance at
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all levels on both dedicated and multiprogrammed machines eventually led to the lock-free

algorithm.

Lock-free algorithms are in general a good way to approach the problem of design-

ing a concurrent data structure. The literature perhaps overemphasizes the importance of

contention. High levels of contention for individual instances of a data structure do not gen-

erally occur in well-written applications. Most programmers know that the average arrival

rate of processes at a data structure should not exceed the service rate of the operations.

Interactions with the operating system scheduler depend on the lengths of critical sections,

which are generally short, but the relative length of a time slice makes such interactions

important. Time slices are growing to amortize larger total cache reload costs; faster clock

times make critical sections shorter. As demonstrated by the performance of Posix mu-

texes on a dedicated machine, informing the operation system of every synchronized access

is also costly. A lock-free algorithm o�ers most of the advantages of the more costly non-

blocking property, avoiding both forms of operating system interactions. They trade a slight

possibility of blocking for reduced overhead in the common case.

The adaptive polling strategy enables a single binary built on our layer to perform

well on a wide range of Clump architectures, including the extremes of a NOW and a single

SMP. This component allows us to compile applications for a generic Clump rather than

a speci�c con�guration. The need for an adaptive polling strategy became apparent when

we put the two protocols together and found that our microbenchmark and application

performance on an SMP had dropped through the 
oor. We knew that we had to poll the

network, and we knew that reading from NIC memory is costly, but we did not understand

the implications until the numbers were in front of us. Fractional polling strategies seemed

like a fairly natural solution, and did provide adequate levels of performance, but we felt

that we should be able to do better. The �rst version [LMC97] employed a simple adaptive

heuristic that tracked only network tra�c. The adaptive bounds were selected by hand from

an exploration of application performance across the space of possible bounds. After some

thought, we developed a deeper understanding of both the approach and the important

constraints, allowing us to derive the more general approach described in this thesis. The

new strategy maintains the tra�c estimates with very little overhead, and the parameters

allowed us to fully automate the process of collecting performance data for tuning. The

resulting strategy is much more e�ective, obtaining superior levels of performance on all

forms of Clumps.
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Adaptive polling is as much an example of good engineering as it is one of research.

It corrects no errors, adds no functionality, and explains no mystery. It does provide a way

to address a performance problem in a very e�cient and 
exible manner, in a regime in

which a complex solution can easily incur as much overhead as the problem. Using simple

measures of past success as the basis for future decisions is a technique that might be

applied successfully to a wide range of problems, from selecting amongst several sources of

information to deciding on which disk to store a new block of data.

10.2 Programming Models

E�cient support for passing messages is an excellent building block for a myriad of

higher-level interfaces. In spite of our preference for message-passing over shared memory,

we recognize that passing messages is no panacea. Those of us who develop applications as

benchmarks secretly care more about getting fast results than about getting correct ones.1

Message-passing is great for speed and awful for correctness. The benchmark applications

used in our measurements rarely pass messages, however. Split-C provides a non-coherent

shared address space abstraction and explicit control for updates and visibility. The alias-

ing mechanism provided by explicitly controlled shared memory really is very convenient.

Unfortunately, it does little to eliminate the potential for incorrect behavior.

As does almost everyone writing message-passing or shared memory codes, the

authors of our applications simpli�ed their tasks by applying a phase structure. Phase-

structured programs are much easier to contemplate, much easier to design, and much

easier to understand. The phases provide a hierarchical framework that greatly reduces

the di�culty of informally verifying correctness. The phases themselves are essentially a

sequential program, and each phase is a small parallel program. People can manage small

parallel programs; they have a lot of trouble with large ones. The structure makes writing

applications easier.

On a Clump, that same structure hurts application performance. Forcing processes

to wait for other processes to catch up prevents an application from reaping the full bene�ts

of tight coupling within SMP's and pooling of network devices. Correlating processes'

communication demands within each phase eliminates any bene�t of pooling those demands.

1People who tell you that they enjoy writing irregular message-passing codes are pathological liars, bad

programmers, or computer scientists. A fourth possibility is one of those people who enjoys writing proofs
with hundreds of cases.
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Dynamic load balancing may o�er a solution, but brings problems of its own, including non-

deterministic scheduling and the possibility of thrashing the memory system by ignoring

issues of cache a�nity. Dynamic load balancing also addresses a third performance issue.

The variability of a workload distributed between processors can be reduced by dynamically

sharing that work, but moving a task between address spaces (or across the network in a

DSM) may take more time than executing the task locally. In a Clump, dynamic load

balancing reduces the variability by sharing tasks within each SMP.

More than a programming model is required to properly address Clumps. We

need a programming environment: a language, a compiler, a runtime, and strategies for

debugging. An object-based approach that provides fork-join parallelism with dynamic

scheduling, allows a programmer to reason about data a�nity, and admits e�ective ap-

proaches to debugging sounds attractive provided that all of these things can be done

without quadrupling execution time through self-analysis in the runtime.

10.3 Importance of Clusters

Looking at the big picture, one wonders whether cluster computing will have any

signi�cance in the future. Joy's law of processor performance scaling implies a similar re-

duction in the number of processors necessary for a given application. In fact, the reduction

is more rapid than the improvement, as parallelism is almost never e�cient. Decoding a

compressed video clip in real time may have required a cluster of several workstations several

years ago, but today a low-end laptop can decode several while recalculating a spreadsheet,

and in a few years only antique watches will lack video support. Pessimists might further

point out that the problem already exists today: universities and laboratories with large

cluster systems are having trouble �nding enough applications to keep the machines busy.

What can we possibly do with all of the cycles we will have in the future?

Few people in the history of computers have been able to answer that question

without the aid of retrospect. When cycles becomes available, people �nd ways to use them.

Clusters are complicated, and making them truly available requires an e�ective, general-

purpose software infrastructure. Large research clusters are currently underutilized because

that infrastructure still needs work. A great deal of progress has been made, however,

much of it based upon work with the large clusters, and this thesis represents another

contribution towards the end goal. To lend weight to this argument, consider the success
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of clusters designed to run only very speci�c applications. The largest internet service

providers use clusters to manage connectivity and to drive their virtual environments and

entertainment divisions. The entertainment industry makes heavy use of clusters to produce

special e�ects for �lms, sometimes even eliminating the actors completely. Any company

that runs critical business applications on a Sun Enterprise 10000, an IBM S/390 Parallel

Sysplex, an IBM SP-2, an SGI Challenge Array, an SGI Origin, or one of many other

commercial machines, makes use of cluster software technology in some form. Cast in a

more optimistic light, the question remains nearly the same: what can we do with all of the

cycles we will have in the future?

The appearance of low-end SMP's may fuel the e�ort to develop an e�ective in-

frastructure by placing parallelism in the path of the software industry. In the past, mul-

tiple processors were rarely available to a single application, or were coupled only through

high-latency, low-bandwidth interconnects and separate security domains that rendered

application-level parallelism di�cult to obtain. Once low-end SMP's �nd their way to the

desktop, application vendors will be forced to exploit all of the processors to remain compet-

itive with other vendors. This same phenomenon occurred many years ago with databases,

and today many commercial databases run on either SMP's or clusters, using all of the

processing power available and driving all of the disks. Some vendors might survive for a

while by improving sequential software, but �nding coarse-grain parallelism in the compu-

tationally intensive portions of a program is usually easier than obtaining the same speedup

from algorithmic improvements or cache-tuning. Expressing and debugging that parallelism

e�ciently, particularly as it becomes more �ne-grained, will require better abstractions.

This shift of focus may also force low-end SMP's to mimic their more expensive

counterparts. The design of the high-end server platforms has been driven to a large extent

by the needs of I/O-intensive applications, and the e�ect of this market on their architecture

becomes quite clear when one compares them with low-end systems. Current low-end

machines are little more than personal computers with an extra processor stuck on the

memory interconnect. Neither the interconnect nor the memory provides enough bandwidth

for applications with large working sets, and the I/O subsystem is typically restricted to a

single bus. Some point out that the I/O bus bandwidth in these systems is matched to the

memory bus bandwidth. In the same vein, one might consider slowing down a processor to

match the capabilities of an attached disk. The technology clearly exists to provide more
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e�ective coupling between processors and between boxes, but cost defers only to widespread

demand in architectures designed for the home and small business markets.

Clusters o�er a great deal of potential for scalability and availability, and Clumps

are a natural extension of the data hierarchy within a cluster. The question to what extent

that potential can be harnessed to our bene�t remains open.

10.4 Etymology

In closing, I o�er a bit of etymology. The term Clump began as an attempt at

humor. I had been thinking about clusters of SMP's and developing a few analytic notions

on performance. David Culler asked me to write up my thoughts to include in an initial

proposal that he and Horst Simon (of NERSC) were writing to Sun Microsystems, and I

jokingly labeled the platform \CLOMP's" for CLusters Of MultiProcessors. The name then

diverged: David named our platform and project \Clumps," while the project at NERSC

became \COMP's." I take credit for both terms, of course, although I've never veri�ed

either claim. A few months into the project, several of the members began to refer to the

individual machines as \Lumps." Fortunately, I was able to deliver the coup de grâce to

that term by publishing the project's �rst paper without it. I hope.
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