
On-line Collision Avoidance for Multiple Robots Using B-Splines

Eric Paulos
�

paulos@cs.berkeley.edu

Department of Electrical Engineering and Computer Science

University of California

Berkeley, CA 94720

Abstract

Real world assembly sequences consists of multiple

assembly steps, many of which can be performed in

parallel. In practice this parallelism is often not ex-

ploited because of the complexity involved in avoiding

collisions between all of the robots. In this paper we

describe a simpli�ed method of achieving smooth col-

lision free paths for multiple robots within a single as-

sembly workcell. Our method is simple because we ex-

ploit properties of B-splines to reduce the problem to

path planning without moving robots. We develop a

path planner to compute an initial linear path. Using

that path as input, a trajectory generation tool creates

a collision free path of any desired continuity. We ex-

ploit three properties of B-splines: (i) continuity for

smooth paths, (ii) convex-hull for collision avoidance,

and (iii) locality for dynamic course alteration with-

out loss of continuity. In addition, our system runs in

real-time, easily accommodating multiple robots. Fi-

nally, we describe a user level visualization tool for

this system.

1 Introduction

Typical assembly tasks exhibit locality. An action

in a local region is followed by a transport to a new

local region where the next operation is performed.

We exploit this locality of assembly operations (See

x5.1) and observe that we can categorize every robot

into one of three possible states: (1) idle, (2) trans-

port, or (3) task. In addition we claim that this is a

correct state model for almost any robot workspace,

particularly in an assembly workcell. The two states:

idle, robot not involved in any motion or task, and

�Financial support provided by National Science Foundation

Presidential Young Investigator Award #IRI-8958577 and Na-

tional Science Foundation Grand #IRI-9114446.

transport, robot in motion between a start and goal

position, are rather clearly de�ned concepts. The task

state includes local motions that require full control of

the robot, not simply satis�ability of start and goal po-

sitions. Typical tasks are end-e�ector compliance and

damping, search strategies, tactile sensing, line scan-

ning, probing, and any other approach that relies on

some form of specialized feedback control. The advan-

tage of our technique is that we can ignore motions of

other robots, reducing the problem to path planning

without moving robots.

In this paper we investigate the development of four

tools, a workcell free-space path generation tool, a

general trajectory generation tool, a workcell manage-

ment agent, and a user workcell visualization tool. We

demonstrate how these tools combine into one pow-

erful utility for managing the interactions of multiple

robots. The application platform that this system was

actually designed for is an assembly workcell robot.

However, it can be applied to any multi-robot system

that can maintain relative position information.

1.1 Previous and Related Work

The importance of planning and generating colli-

sion free paths for multiple robots has led several oth-

ers to propose methods for solving this problem. One

approach is to add time to the dimension of the con�g-

uration space. In general a k-dimensional changing en-

vironment can be represented as (k + 1)-dimensional

space-time. Collision free path planning then oc-

curs in this higher-dimensional space-time. Reif and

Sharir [17] prove the existence of collision free paths

in this, monatomic time, higher-dimensional space.

Prioritizing the order in which to plan the individ-

ual robot paths is explored by Erdmann and Lozano-

P�erez [7] and later by Buckley [4]. Aggarwal and

Fujimura [1] describe a specialized use of the cell-

decomposition approach in space-time to handle ro-



tations of planar robots. When objects are moving

non-deterministicly, Tsubouchi and Arimoto [21] show

that it is sometimes possible to track and forecast

the motions of these other moving obstacles and plan

paths based on those results. The development of path

planning for multiple robots that are tethered is stud-

ied by Parsons and Canny [15] and later by Hert and

Lumelsky [11].

The use of splines in trajectory generation has been

proposed by Lin et al. [12], and more recently by Yi

and Kim [22] who demonstrate methods to optimize

trajectories using cubic splines. Simon and Isik [19]

present the use of trigonometric splines to compute

minimal jerk trajectories on a 6R robot. Choi et al. [5]

examine how the tension parameters of Catmull{Rom

splines can be used for building trajectories for in-

�nitely 
exible snake-like robots. However, the appli-

cation of B-splines for multiple robot path planning

and trajectory generation is rather new. Thompson

and Patel [20] characterize a technique that uses mul-

tiple knots for interpolation of joint angles on a single

6R robot. They gain interpolation at the cost of lo-

cality. Our approach di�ers signi�cantly in that we

exploit the B-spline properties of locality, continuity,

and convex-hull for collision avoidance, and dynamic

course alteration in a multi-robot system.

1.2 Overview

In our system a workcell management agent orches-

trates the high-level actions within the workcell (See

Figure 1). One duty of the workcell management agent

is to grant robots permission to traverse the workcell.

When a robot desires to travel to a new area of the

workcell, the workcell management agent grants the

request and uses the path generation tool to provide

the robot with a 1-dimensional C0 path to follow to

the goal. The robot in turn hands this path o� to

the trajectory generation tool to be converted to a 1-

dimensional Ck�2 curve, where k is the order of the

B-spline (see x3.1). We also compute the derivatives

of the curve so that they can be used for passing raw

motion commands down to the low-level robot con-

troller.

The B-spline trajectory will also be used to per-

form collision avoidance for the robot. This is done by

broadcasting its current B-spline interval to all of the

other robots. From that information the other robots

can determine the k control vertices with non-zero B-

spline basis functions that form the convex hull of the

moving robot's location. The changing convex-hull of

a robot as it traverses various intervals of the B-spline

path is shown in Figure 2. The other robots enter this

TOOL

GENERATION

PATH

TOOL

GENERATION

TOOL

TRAJECTORY

WORKCELL

MANAGEMENT

AGENT

WORKCELL

VISUALIZATION

ROBOT

CONTROLLER

Figure 1: The interactions of the di�erent tools in-

volved in the collision avoidance framework

convex obstacle into their obstacles list. If any of the

other robots need to perform a motion, the �rst level

path planner will handle the moving robot correctly.

This can be observed since even though the robot is in

motion, it appears as a �xed obstacle. When the robot

moves to the next interval, it broadcasts this so that

the other robots can change their view of the workcell

obstacles, removing one vertex and adding one vertex

to the moving robot's convex-hull obstacle. This tech-

nique is applicable to any number of moving robots.

The only condition is that the robots go through a

mutually agreed upon arbitrator for disputes. This is

the job of the workcell management agent.

2 Path Generation Tool

Each robot maintains its own version of the workcell

state. The state is represented by the robot's current

con�guration, the boundaries of the �xed obstacles,

and the convex regions containing other robots. From

the vantage of each robot, idle robots appear as �xed

obstacles. Task robots appear as �xed obstacles de-

�ned by the particular convex region allocated for that

operation. All of the remaining robots are transport

robots and appear as �xed obstacles de�ned by the k,

where k is the order of the B-spline (See x3.1), control

vertices of the current B-spline interval.

Each robot performs its own Minkowski sum op-

erations on the various robots and �xed obstacles in

the workspace, reducing itself to a point. As a re-

2



V1

V2

V3
V5

V6
V7

V1

V2

V3

V4

V5
V6

V7

V1

V2

V3

V4

V5
V6

V7

V8 V8

V8

V1

V2

V3

V4

V5

V6
V7

V8

V1

V2

V3

V4

V5
V6

V7

V8

Convex Hull

Con
tro

l V
er

te
x

B−Spline Curve

V1

V2

V3

V4

V5
V6

V7

V8

V4
(1) (2)

(3) (4)

(5)

Figure 2: A B-spline robot path with continuously

updated (k = 4) control vertices forming the convex

hull of each C2 curve segment

sult, each robot has a geometrically di�erent yet phys-

ically consistent view of the workspace. Each robot

also, computes a visibility graph for its version of the

workcell. These visibility graphs can be constructed

in O(n2 logn) where n is the number of vertices in the

original graph. More e�cient algorithms have been

proposed that bring this down to O(m+n logn) where

m is the number of edges in the visibility graph. In

the worst case m is in O(n2) but in better cases it can

be as small as O(n).

Eventually, the workcell management agent will

make a request to the path generation tool to �nd

a path between two points for a particular robot. The

path generation tool, using the previously computed

visibility graph, calculates the shortest path using Eu-

clidean distance as an edge weighting metric. Search-

ing a visibility graph for its shortest path can be done

using various techniques. Dijkstra's or the A� algo-

rithm can �nd the path or return failure in O(n2), or

if the list of vertices is pre-sorted, in O(m logn) where

m is the number of vertices in the visibility graph.

The resulting list of vertices in the path is passed on

to the trajectory generation tool for conversion into a

smooth trajectory. We have chosen visibility graphs

and shortest paths because they are straightforward

to compute and are complete.

Figure 3: A B-Spline curve and its basis functions

3 Trajectory Generation Tool

The trajectory generation tool ignores the location

of obstacles in the workcell. The path planner has al-

ready handled the generation of a collision free path

between the start and the goal con�guration. This is

an important concept to remember, since this decou-

pling of path planning from trajectory generation has

the a�ect of simplifying both the path generation and

trajectory generation tools.

3.1 B-Splines

A B-Spline is composed of multiple B-spline basis

functions denoted by Bi;k(�u) where i is the interval

number and k is the order of the B-spline basis func-

tion. Since in this paper we concern ourselves with

uniform B-splines, the intervals are de�ned by a uni-

formly spaced parametric knot sequence. The form of

the basis function is dependent upon its order, where

order k B-spline basis functions are curves of degree

k�1. A single B-spline basis function is constructed as

k piecewise curve segments, all of degree k� 1. These

segments are constrained to connect to one another

with Ck�2 continuity and have unit area beneath the

basis function.

The entire B-spline curve, Q(�u), is composed of a

vertex weighted sum of the basis functions and can be

written as

Q(�u) =
X
i

ViBi;k(�u)

where the Vi's are the control vertices. In Figure 3 we

have a cubic, fourth order, B-spline, with seven control

3



vertices denoted by yi. It requires four basis functions

to properly de�ne each cubic curve segment. Hence

there are three more basis functions (and three more

control vertices) than there are curve segments. Each

basis function is nonzero over exactly four parametric

intervals. The leftmost basis function extends three

additional intervals to the left of the curve, and the

rightmost three to the right. Summarizing: there are

m + 1 control vertices, m + 1 basis functions, m � 2

curve segments bounded by m� 1 knots, and m� 1+

3+3 = m+5 knots altogether. The curve is generated

as �u runs from �u3 to �um+1. For lack of space, we direct

the reader to several other sources [3, 6, 8, 9, 18] for

further discussions of B-splines.

3.2 Forming a B-Spline Trajectory

Continuity is the most important property of the

path generation tool. By using a B-splines of the ap-

propriate degree/order, the continuity of the �nal path

can be adjust higher or lower depending upon the con-

straint parameters of the individual robotic system.

However, we propose the use of a continuous jerk path

since it strongly relates to the impact characteristic of

the loading of the system [13] as well as the rate of

change of force producing acceleration [10].

Since we desire C3 continuity (continuous jerk), we

adopt the use of �fth order (k = 5) B-splines. The

basis function is of fourth degree and composed of �ve

piecewise segments denoted by bi. We use a set of 25

equations and 25 unknowns that represent the conti-

nuity and unit area constraints of the basis function to

solve for its �ve segments. Notice that each segment

of the basis function is of degree four.

b
�0 = 1

24u
4

b
�1 = 1

24(1 + 4u+ 6u2 + 4u3 � 4u4)

b
�2 = 1

24(11 + 12u� 6u2 � 12u3 + 6u4)

b
�3 = 1

24(11� 12u� 6u2 + 12u3 � 4u4)

b
�4 = 1

24(u� 1)4

9>>>>=
>>>>;

(1)

We do not use these equation in the actual evalua-

tion of B-splines. Instead we use the Cox-DeBoor re-

currence relation [6]. This recurrence, shown in Equa-

tions 2 and 3, can be generalized to compute a B-spline

basis of any order and derivative.

dj

dju
ViBi;k =

X
i

�i;j+1Bi;k�j (2)

where

�r;j+1 =

(
Vi for j = 0

�r;j��r�1;j
(Ur+k�j�Ur)=(k�j)

for j > 0
(3)

Control Vertices

Shortest Path

Obstacle

B−Spline Trajectory

Convex Hull

Current
B−Spline Interval

(1) (2)

(3) (4)

Figure 4: The convex hull of each segment (shaded)

and the fourth order B-spline (k = 4) for a path round-

ing an obstacle

We develop two methods for transforming path ver-

tices into B-spline control vertices. First we concern

ourselves with the explosion of interior vertices along

the path and then the selection of end-condition con-

trol vertices.

3.2.1 Interior Control Vertices

We will explode each interior vertex along the path

provided by the path planing tool into O(k) B-spline

control vertices. This construction is done by adding

2(k�2)+1 control vertices along a line segment L and

two vertices at other calculated positions. The place-

ment of the line segment L and the other two points

allow us to insure that the resulting trajectory will

observe the physical limitations of the robotic system.

The reason for the placement of control vertices along

a line segment is that the convex hull of every series of

k consecutive vertices will lie outside of the obstacle.

This is shown for each interval in Figure 4.

We show the construction of the actual line segment

L in Figure 5. We �rst characterize the velocity and

acceleration limits of the physical robotic system with

a circle of radius r. This circle represents a conserva-

tive estimate of the minimumradius of curvature path

that the physical robot can traverse. Again B-splines

do not in general interpolate the actual vertices and

hence the radius of the circle must be conservative. To

optimize the shape of the B-spline, its curvature can

be calculated and matched to the minimum radius of

4



C

AB

r
s

t
L

O w

u v

m

Figure 5: Construction of line segment L and place-

ment of control vertices

curvature of the velocity and acceleration constraints.

We use the circle itself to construct a �rst order ap-

proximation of optimal curvature.

We place the circle C such that its center lies

equidistant from the two segments of the shortest

path, w, and coincident to the vertex m on the ob-

stacle, O. We form line segment A extending from

the previous vertex of the shortest path and tangent

to the circle C at point s. Similarly, we form the line

segment B as extending from the following shortest

path vertex and tangent to the circle C at point t. We

construct the line L as passing through the vertex m

and tangent to the circle C at that point. The place-

ment of control vertices is then as follows: one at point

s, 2(k�2) along L between points u and v, one at point

m, and one at point t. In this construction u is the

intersection point of segments A and L. Similarly v is

the intersection point of segments B and L.

Placing the control vertices such that we \hug" cor-

ners of obstacles is actually desirable. Many path

planning techniques result in paths which are \equidis-

tant" from all of the obstacles, essentially traversing

down the middle of the free space. While this is good

for a single robot system, it seriously degrades per-

formance in a multi-robot system. By \hugging" the

vertices of obstacles, we minimally clutter the workcell

transportation corridors, allowing room for passage of

other robots at the same time.

3.2.2 End Condition Control Vertices

Most trajectories ramp up from a complete stop and

come to a complete stop at their termination. This

necessitates the construction of the end conditions of

the B-spline to have position speci�cation (i.e. end ver-

tex interpolation), and some derivatives at zero. We

can achieve this by applying the technique of phan-

tom vertices developed by Barsky [2]. In essence this

is a method for determining the correct placement of

extra control vertices before the �rst vertex and after

the last vertex to achieve some speci�ed condition(s)

at the ends of the B-spline curve. For the �fth or-

der B-spline we have calculated the following phantom

vertex values for the beginning of the curve segment.

We do not explore the end conditions at the end of

the curve since they are symmetric to those at the

beginning.

� Start vertex interpolation:

V
�1 = 13V0 � 11V1 � V2

� Start vertex interpolation and zero velocity:

V
�1 =

�V1

4
V1 +

5

4
V0

V
�2 =

7

4
V1 �

3

4
V0

� Start vertex interpolation, zero velocity, and zero

acceleration (triple vertex):

V
�1 = V

�2 = V
�3 = V0

Based on the desired end conditions, the trajectory

generation tool transparently inserts these phantom

vertices into the list of control vertices, yielding the

desired e�ect at the ends of the B-spline curve. If we

make a path modi�cation while the robot is in motion,

these phantom vertices can be easily recomputed to

maintain the end-condition constraints.

3.3 Robot Controller

Robot controllers are typically quite diverse by na-

ture of their underlying hardware di�erences. Re-

cent approaches to standardize such controller inter-

faces [14] have yet to gain popularity. However, our

trajectory generation control tool provides a wealth of

output information, providing position, velocity, ac-

celeration, and jerk verses time. These are easy to

compute using the recurrence relation of Equations 2

5



and 3. Almost any commercially available robot sys-

tem can use one or more of these pieces of information

to drive its low level controller. This 
exibility makes

our system well suited for a variety of robots.

4 Multiple Robot Interactions

The complex interactions between all of the multi-

ple robots is handled automatically by the tools dis-

cussed in our approach. A particular property of B-

spline curves is local control, by which we mean that

altering the position of a single control vertex causes

only part of the curve to change. An added bene�t

of local control is that it minimizes the computational

overhead required to recompute a curve after a control

vertex has been moved since only a small portion of

the curve has changed.

For example if we have two moving robots, X and

Y, each traversing the workcell, it may be the case

that robot X's B-spline path moves into a new B-

spline interval. This means that one control vertex

is removed from its convex-hull and one vertex added.

This in turn changes the convex-hull of robot X. This

may result in an alteration to the shortest path of

robot Y. Robot X is guaranteed not to a�ect the po-

sitions of the control vertices that are currently being

used to evaluate the B-spline path for robot Y because

those vertices form the convex-hull for robot Y. These

vertices make robot Y appear as a �xed obstacle to

robot X. Clearly, robot X is not allowed to alter the

appearance of a �xed obstacle. Robot Y is currently

in transport across the workcell, but its future path

will collide with robot X. The path planner has made

the necessary changes along the future shortest path

to avoid such a collision. Since all of the future B-

spline basis functions for the original control vertices

are zero, we can remove those vertices and replace

them with new control vertices that avoid the colli-

sion. Robot Y will make the path correction when

it starts evaluating the B-spline basis functions over

those new control vertices. In addition we are guar-

anteed by the properties of B-splines that the path,

although altered, will continue to be Ck�2. This same

argument is applicable to any number of robots. This

ability to dynamically alter paths and maintain both

continuity and end-condition constraints is a major

bene�t of our system.

5 Workcell Management Agent

Use of a single agent to guide the actions within a

workcell can be compared to the actions of a memory

manager in a virtual memory system. In a computer

operating system, memory is allocated to various pro-

cesses. When the physical memory is exhausted, the

memory manager must choose a piece of memory to

reside in a less-desirable space, such as on a magnetic

medium. However, when the user process wishes to

access that piece of memory again, the manager must

be able to return it to its previous location and state.

In the case of the workcell management agent, the

resource is not memory, but workcell real-estate and

tools. This high-level management agent must be able

to deliver the various resources to a robot that requests

them and also retrieve them back if the robot gets

\greedy." In our system we are mainly concerned with

the allocation of space. In a workcell with �xed tools

this reduces to tool management since only the robot

that is in the area containing a tool can use that tool.

5.1 Locality of Assembly Operations

Typical assembly tasks exhibit locality. An action

in a local region is followed by a transport to a new

local region where the next operation is performed.

Common sites in a workcell are easy to identify from

an assembly sequence:

1. Part enters the workcell on a conveyor

2. Robot transports part through sensors to localize and identify
part

3. Part is transported to �xturing platform #1 to perform a sub-

assembly.

4. Sub-assembly is transported to a holding area until the rest

of the sub-assemblies are completed

5. Sub-assembly is moved to �xturing platform #2 for �nal as-

sembly

6. Final assembly is transported to sensors for inspection

7. Final inspected assembly is transported to conveyor and leaves

the workcell

Each of the operations above takes place in a rather

small area of the workcell. By giving exclusive rights

to each of these areas after a request is made, the

workcell manager maintains state information about

the progress of work. If a urgently needed part comes

into the workcell and requests to be transported to a

�xturing device that's in use, the robot currently us-

ing the device can be interrupted and priority given

to the robot associated with the higher-priority task,

6



in this case the urgent transport of a part to a �x-

turing device. Again, since operations are local, the

other robots in the workcell will be una�ected by this

operation.

5.2 Allocation of Space

The workcell management agent is, in essence, a

workcell space manager, maintaining robot ownership

rights over space within the workcell as well as per-

forming arbitration between robots over space. Any

time up until a robot releases ownership of its space,

it may move freely within that space. This is useful

because once a robot has been granted ownership of a

space, the collision avoidance problem has been solved

locally.

At some point in the assembly sequence, a robot

will desire to move to a new position in the workcell,

call it the goal for that robot. In order for that robot

to perform that movement it must be granted \free

passage" by the workcell management agent. It does

this by making a request to the workcell management

agent for passage to its goal. The agent will respond

with one of the following:

� Grant: There is a collision free path path for

the robot to move through. This is true if the

path planner returns with a non-empty path to

the goal.

� Fail In this case the path planner has returned

an empty path list. The robot may do another

task or wait and try its request later. The work-

cell management agent maintains a request ta-

ble so that repeated requests will eventually be

granted. This request table keeps a robot from

being starved out of all of the resources in the

workcell. In addition this will avoid most dead-

lock condition that may develop as a result of de-

pendencies within the assembly sequence. Some

deadlock conditions can only be avoided by ex-

tremely high-level task planning at the user level.

However, use of the workcell visualization tool is

extremely useful in identifying such problems in

the assembly sequence.

� Wait This is similar to the case above, in the

sense that the path planner has returned an

empty path list. However, the workcell manage-

ment agent has decided that one or more of the

obstacles preventing the completion of the path

are low-priority or idle robots. These are robots

that the workcell management agent can send an

Multiple Robot Workcell

Robot 1

Robot 2

Robot 3

X

Y

Robot 4

Robot 4 (GOAL)

Robot

Robot’s

S
ho

rt
es

t P
at

h

Locally Owned Space

Figure 6: A typical multiple robot workcell depicting

allocated space

irrefutable request to move to a clear of the work-

cell. A Grant signal is sent when the path has

been cleared. This is essentially a page swap.

We have a resource, memory (space), owned by a

stale, non-accessed process (robot), and a request

to use the resource by another process (robot).

The wait signal is just the page-fault until we can

swap out the old memory (clear the robots from

the path).

A typical state of workcell space during an assembly

sequence is depicted in Figure 6. In this �gure there

are four robots, three of which are performing par-

ticular sub-assembly tasks in a locally owned region

(shown shaded). These qualify as task robots. The

fourth is invoking the help of the workcell manage-

ment agent to plan a trajectory from its own space to

another. This robot is an idle robot, however, once it

begins moving it will be a transport robot. We com-

bine two of the previous techniques. First the path

planner will return the shortest path to the goal. Then

the trajectory generation tool will produce a collision

free smooth path that will also provide convex regions

of containment for the moving robot to help the other

robots reduce it to a �xed obstacle. The workcell man-

agement agent arbitrates disputes and monitors all of

the space management to insure consistency with the

other robots.

7



6 Workcell Visualization Tool

The visualization tool provides a graphical repre-

sentation of the robot and workcell state. This tool

allows a user to display any of the visibility graphs

for each of the robots along with its shortest path,

convex hull, location, B-spline interval, B-spline path

and other useful information for debugging parallel

assembly sequences. The power of this tool is in al-

lowing a user to watch the various interactions within

the workcell during an assembly task, and as a result

make better decisions about workcell tool placement

and assembly sequencing.

7 Conclusion and Results

We have developed a generalized tool for high-

level on-line collision avoidance exploiting the conti-

nuity, locality, and convex-hull properties of B-splines.

Throughput with such a system is dramatically in-

creased by allowing robots to perform operations in

parallel while freeing the user from the tedium of

handling the highly complex interactions between the

various robots. In addition our approach exhibits

the ability to dynamically alter paths in real-time

and maintain both continuity and end-condition con-

straints imposed by the system on each robot. We

have developed this within the framework of an in-

dustrial assembly robot and parallelized assembly se-

quences to increase production throughput. A typi-

cal pick-and-place/peg-in-hole assembly technique [16]

adopted this system and was parallelized, resulting in

a 40 percent reduction in assembly time. Finally, we

demonstrate a user visualization tool for our system.

References

[1] Neejraj Aggarwal and Kikuo Fujimura. Motion planning
amidst planar moving obstacles. In IEEE International Con-

ference on Robotics and Automation, pages 2153{2158, 1994.

[2] Brian Barsky. End conditions and boundry conditions for uni-
form B-spline curve and surface representations. In Computers
in Industry, volume 3(1&2), March 1982.

[3] Richard Bartels, John Beatty, and Brian Barsky. An Introduc-

tion to Splines for use in Computer Graphics and Geometric

Modeling. Morgan Kaufmann, 1987.

[4] Stephen J. Buckley. Fast motion planning for multiple moving
robots. In IEEE International Conference on Robotics and

Automation, pages 322{326, 1989.

[5] P.J. Choi, J.A. Rice, and J.C. Cesarone. Kinematics of an
in�nitely 
exible robot arm. In Journal of Robotics Systems,
volume 3, pages 407{425, 1993.

[6] Carl de Boor. A Practical Guide to Splines. Springer-Verlag,
1978.

[7] Michael Erdmann and T. Lozano-P�erez. On multiple moving
objects. In IEEE International Conference on Robotics and

Automation, pages 1419{1424, 1986.

[8] Gerald Farin. Curves and Surfaces for Computer Aided Ge-

ometric Design. Academic Press, 1988.

[9] James Foley and Andries van Dam. Introduction to Computer
Graphics. Addison-Wesley, 1990.

[10] C. W. Ham, E. J. Crane, and W.L. Rogers. Mechanics of

Machinery. McGraw-Hill, 1958.

[11] Susan Hert and Vladimir Lumelsky. The ties that bind: Motion
planning for multiple tethered robots. In IEEE International

Conference on Robotics and Automation, pages 2734{2741,
1994.

[12] Chun-Shin Lin, Po-Rong Chang, and J.Y.S. Luh. Formulation
and optimization of cubic polynomial joint trajectories for in-
dustrial robots. In IEEE Transations on Automation Control,
volume 28, December 1983.

[13] Hamilton Mabie and Fred Ocvirk. Mechanisms and Dynamics

of Machinery. John Wiley and Sons, 1975.

[14] Ed Nicolson. Standardizing I/O for mechatronic systems
(SIOMS) using real-time unix device drivers. In IEEE Inter-

national Conference on Robotics and Automation, May 1994.

[15] D. Parsons and J. Canny. Motion planning for multiple mobile
robots. In IEEE Conference on Robotics and Automation,
pages 8{13, 1990.

[16] Eric Paulos and John Canny. Accurate insertion strategies us-
ing simple optical sensors. In IEEE International Conference

on Robotics and Automation, pages 1656{1662, May 1994.

[17] J. Reif and M. Sharir. Motion planning in the presence of
moving obstacles. In IEEE Conference on Foundations of

Computer Science, pages 144{154, 1985.

[18] I.J. Schoenberg. Selected Papers Volume 2. Birkhauser, 1988.

[19] Dan Simon and Can Isik. Optimal trigonometric robot joint
trajectories. In Robotica, volume 9, pages 379{386, 1991.

[20] Stuart Thompson and Rajnikant Patel. Formulation of joint
trajectories for industrial robots using B-splines. In IEEE

Transations on Industrial Electronics, volume 34, May 1987.

[21] Takash Tsubouchi and Suguru Arimoto. Behavior of a mobile
robot navigated by an iterated forecast and planning scheme
in the presence of multiple moving obstacles. In IEEE In-

ternational Conference on Robotics and Automation, pages
2470{2475, 1994.

[22] Seung-Jong Yi and Kyuil Kim. E�ect of tension parameters
and intervals on splines-under tension based robot trajectory
planning. In Journal of Robotics System, volume 11, pages
91{102, 1994.

8


