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Abstract

This paper highlights some of the lessons learned during the course of implementing xFS, a fully

distributed �le system. xFS is an interesting case study for two reasons. First, xFS's serverless

architecture leads to more complex distributed programming issues than are faced by traditional

client-server operating system services. Second, xFS implements a complex, multithreaded service

that is tightly coupled with the underlying operating system. This combination turned out to be quite

challenging. On one hand, the complexity of the system forced us to turn to distributed programming

tools based on formal methods to verify the correctness of our distributed algorithms; on the other

hand the complex interactions with the operating system on individual nodes violated some of the

tools' assumptions, making it di�cult to use them in this environment. Furthermore, the xFS system

tested the limits of abstractions such as threads, RPC, and vnodes that have traditionally been used

in building distributed �le systems. Based on our experience, we suggest several strategies that should

be followed by those wishing to build distributed operating systems services, and we also indicate

several areas where programming tools and operating system abstractions might be improved.

1 Introduction

The recent emergence of high-performance local area networks [4, 7] and cluster technology [2, 50]

has resulted in a renewed interest in distributed operating systems services. Relative to the client-

server programs of the previous generation, the new peer-to-peer distributed systems enabled by low

latency, high bandwidth communication are more complex due to their performance, scalability, and
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availability requirements. This growing complexity has outpaced our understanding of how to engineer

these systems.

xFS, a network �le system described in a previous paper [3], is an example of such a serverless

distributed system. It distributes its cache, secondary storage, and metadata management over closely

coupled workstations. The decentralized nature of the system, while o�ering superior performance, scal-

ability, and availability compared to traditional client-server �le systems, also increases its complexity.

Based on these observations, we have implemented a new version of xFS. We believe our experience may

o�er insight for future system builders and encourage the development of new tools and interfaces that

can ease their jobs. Speci�cally, implementors of future distributed operating systems services should

consider the following observations:

� Formal veri�cation tools can signi�cantly simplify the development and debugging of complex dis-

tributed algorithms. Although formal tools are becoming widely used in the distributed shared

memory (DSM) and network protocol design community, operating systems designers have been

less quick to adopt them. The increasing complexity needed to meet the performance, scalabil-

ity, and reliability demands of distributed operating systems services means that designers ignore

these tools at their own peril.

� Single-threaded event loops can reduce the di�culty of composing multithreaded subsystems. As

heavily multithreaded software becomes prevalent, designers of services that interact with multiple

multithreaded subsystems will �nd it increasingly di�cult to reason about the behavior of their

systems. Our experience bears out the hypothesis that the judicious use of single-threaded event

loops can be e�ective in managing this complexity [37].

Many of the di�culties we encountered were rooted in mismatches between the service we were

constructing and the tools and interfaces on which we built. Programmers should be aware of these

mismatches so that they can structure their applications to minimize this dissonance or avoid using

unsuitable interfaces. These mismatches also suggest areas where the tools and interfaces should be

improved. In particular, improvements in the following areas would greatly bene�t the development of

other services like xFS:

� Formal veri�cation tools should provide more support for multithreaded applications and appli-

cations that interact with complex or blocking operating system functions. A great deal of the

beauty and strength of these tools is that they abstract complex problems into a form that can be
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analyzed. Unfortunately, this often means assuming a simple environment that does not match

today's operating systems. In our case, we built the xFS coherence protocol using a tool that had

been designed for DSM coherence. Although the tool was invaluable for designing the protocol

itself, it was challenging to integrate the resulting protocol with multithreaded daemons and with

operating system calls (particularly those that might block).

� Although the RPC abstraction is useful, to better support distributed operating systems RPC should

be extended to support peer-to-peer communications patterns, and it should be reimplemented to

provide better performance. In particular, RPC's request-response paradigm does not match the

requirements of serverless designs that do not rely on centralized servers to satisfy client requests;

we found it unnatural to use RPC to synthesize the multi-party communication needed by xFS.

A continuation-passing extension to RPC | whereby one node can pass the right to respond

to an RPC to another node | would, for example, better match a serverless system's needs.

Furthermore, the overhead imposed by current RPC implementations' layered architectures result

in overheads that are unacceptable on new, low-latency networks. We found that programming

directly on top of Active Message [51, 33] provided acceptable semantics and excellent performance,

but a high-performance, continuation-passing RPC system would be simpler to program than raw

Active Messages.

� Kernel vnode layers should provide more support for cache coherence, and they should be reim-

plemented to reduce cache miss overhead. The weak consistency models provided by traditional

distributed �le systems such as NFS [43] and Andrew [23] do not satisfy the more strict con-

sistency models assumed by many distributed applications. The vnode layer should provide a

better coherence interface to allow �le systems to support the strong consistency needed by these

applications. Also, today's fast networks pressure the vnode layer to provide better performance;

these networks are su�ciently fast that the vnode layer can increase the latency of accessing data

from a cache on a remote node by an order of magnitude. To get correct behavior and acceptable

performance, xFS had to modify these aspects of the operating system that were not exported via

the vnode layer.

Many of these issues have been observed to varying degrees in other systems. We found them to

be particularly challenging in xFS because our system combined complex distributed algorithms arising

from the system's serverless architecture with complicated individual node behavior arising from the

system's interaction with the host operating system. Moreover, this style of interaction is becoming
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Figure 1: A sample xFS con�guration. Clients, managers, and storage servers provide a global memory

cache, a distributed metadata manager, and a striped network disk respectively.

more common; many experimental systems including Vesta [10], Zebra [20], Treadmarks [27], SAM [45],

GMS [15], CRL [25], Inktomi [53], and Petal [31] have elements similar to those found in xFS. Thus, we

believe these lessons are widely applicable to this new generation of peer-to-peer distributed systems.

After we provide a brief overview of xFS in section 2, section 3 describes the use of a formal

veri�cation system in the xFS cache coherence engine. Next, in section 4, we shift our focus to the

components on a single client. We report on our experience with threads. Then in section 5, we turn

our attention to communication; we discuss the use of RPC and Active Message in the context of

non-traditional communication patterns. And �nally in section 6, we focus on the lowest level of the

system. We describe kernel support (or lack thereof) for a high-performance distributed �le system.

We summarize the lessons in section 7. When applicable, we also draw on our experiences from other

systems.

2 xFS Overview

The main design philosophy of xFS is the elimination of any centralized bottleneck and the e�cient use

of all resources in a network of workstations. The three main components of the systems are the clients,

the managers, and the storage servers. Under the xFS architecture, any machine can be responsible for

caching, managing, or storing of any piece of data or metadata by instantiating one or more of these

subsystems. Figure 1 shows a sample xFS installation.

Each of the three subsystems implements a speci�c interface. A client accepts �le system requests

from users, sends data to storage servers on writes, forwards reads to managers on cache misses, and
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receives replies from storage servers or other clients. It also answers cooperative cache forwarding

requests from the manager by sending data to other clients. The job of the metadata manager is tracking

locations of �le data blocks, and forwarding requests from clients to the appropriate destinations. Its

functionality is similar to the directory in traditional DSM systems such as DASH [32] and Alewife [30].

Finally, the storage servers collectively provide the illusion of a striped network disk. They receive

striped writes from clients. They also react to requests from managers by supplying data to the clients

which have initiated the I/O operations.

Our prototype runs on Sun SPARC and UltraSPARC workstations connected by the Myrinet [7]

network. In order to ease development and take advantage of pre-existing user level software modules,

the bulk of the client code executes at user level. We use a loadable kernel module to implement

the Solaris kernel vnode interface and redirect I/O requests to the user level daemon. All network

communications occur at user level, using low overhead Active Messages [51, 33].

Although the architecture is fundamentally sound and has demonstrated excellent scalability, the

peer-to-peer serverless architecture entails many implementation challenges. For example, one I/O

request by a user can potentially involve �ve di�erent machines, demanding more formal approaches

when reasoning about the correctness of interactions in such a system. The communication pattern

among the components is richer than a simple client-server dialogue. At a lower level, concurrency

management in the various user-level components and the kernel module can be challenging, and the

demands placed on the vnode layer are non-traditional.

We will explore each of these areas in greater detail in the following sections. We start each section

with the xFS features or problems that complicate the implementation, proceed to the conventional

wisdom on how to approach these problems in traditional operating systems and explain why traditional

methods are inadequate, and conclude each section with the approach we have taken.

3 The Use of Formal Veri�cation in the Cache Coherence Engine

One of the most important features of xFS is its separation of data storage from data management.

This separation requires a more sophisticated cache coherence protocol. In addition, other aspects of

the cluster �le system | such as multi-level storage and reliability constraints | further complicate the

system compared to more traditional client-server and DSM coherence protocols. Due to these aspects

of the design, we found it di�cult to implement a correct protocol with traditional methods. Despite

our initial skepticism of formal methods, we have found that the use of a formal protocol speci�cation
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and veri�cation tool has resulted in clearer abstraction levels, increased system con�dence, and reduced

complexity in the implementation of cache coherence in xFS. At the same time, there are signi�cant

di�erences between xFS and the original applications which the tool was designed to support. These

di�erences have revealed some shortcomings of the tool.

3.1 Caching in xFS

xFS employs a directory-based invalidate cache coherence protocol. A client must obtain a read token

in order to read a �le block and must obtain a write token in order to overwrite or modify a block. The

managers maintain the lists of current cachers of a block, and in response to client token requests they

send invalidate messages or forwarding requests to other clients.

There are some important di�erences between the xFS protocol and previous cache coherence proto-

cols. These di�erences are the result of balancing performance, functionality, and complexity. To better

understand the design tradeo�s involved when we move from a traditional client-server architecture

to a peer-to-peer architecture, consider the di�erence between the Sprite �le system cache coherence

protocol [35] and that of xFS. In Sprite, the server acts as both the token manager and the home of

data and clients only exchange network messages with the server. Furthermore, consistency actions are

only invoked at �le open time, and clients are allowed to cache a �le only when the �le is not being con-

currently write shared. Although these design decisions simplify the implementation, they contribute

to limitations of the Sprite �le system in terms of scalability, performance, and availability.

As we address these limitations in the cache coherence mechanism of the xFS peer-to-peer archi-

tecture, we encounter issues that are not present in the client-server model. First, xFS separates data

management from data storage. Although this separation allows better locality and more 
exible con-

�guration, it splits atomic operations into di�erent phases that are more prone to races and deadlocks.

Second, more aggressive caching in xFS means that we cannot solve cache coherence problems by dis-

abling caching and must maintain coherence at a �ner grain than a per-�le basis. Finally, client-to-client

data transfers in xFS, while more e�cient than passing all data through the server, introduce potential

circular dependencies.

The cache coherence protocol in xFS is similar to those seen in hardware DSM systems such as

DASH [32] and Alewife [30]. But even minor modi�cations to these protocols can lead to subtle bugs [9].

Also, aspects of the cluster �le system require protocol modi�cations that do not apply to DSM systems.

For example, xFS must maintain reliable data storage in the face of node failures. A client must therefore

write its dirty data to storage servers before it can forward the data to another client. Another example

6



of the di�erences between xFS and DSM systems is that xFS manages more storage levels. It must

maintain the coherence of the kernel caches, write-ahead logs, and secondary storage. Recognizing

the error-prone nature of distributed state machines, many hardware designers have adopted formal

methods, but these methods have not been a common practice in the operating system community. We

will next examine some of the di�culties involved in protocol development that necessitate more formal

approaches.

3.2 Implementation Challenges

Cache coherence protocol designers often face issues of the proliferation of intermediate states and race

conditions. These issues are more challenging than usual for xFS because of the nature of the underlying

high speed switched network fabric and our peer-to-peer architecture.

3.2.1 Unexpected Messages and Network Reordering

In the course of executing the �nite state machine representing the coherence protocol, an xFS node can

receive messages that cannot be processed right away in its current state. For example, if a data block

is in the process of being modi�ed, then a read request for the block must wait until the modi�cation

�nishes. Disabling message reception is not an option because the Active Message layer demands that

the network must be constantly drained; otherwise deadlocks result in the network fabric. Although

this is also a problem in some DSM coherence systems, it is particularly pervasive in xFS because xFS

separates data storage and control and thereby makes it di�cult to serialize data transfer messages and

control messages with one another: data transfer messages pass between clients and storage servers or

between clients and clients while control messages pass between clients and managers or storage servers

and managers.

The possible solutions are queueing the unexpected message for later processing, sending a negative

acknowledgement, or encoding the unexpected message more more protocol states. Each of these

approaches has its own problems. Queueing can lead to deadlocks; negative acknowledgements can

lead to deadlocks or livelocks; and encoding the message with states leads to proliferation of states

and/or ad hoc modi�cation of book-keeping data structures.

Out-of-order message delivery also complicates distributed protocols. In a switched network or a

network that can lose and retransmit messages, messages sent by one host can be received out of order

by other hosts. Furthermore, in order to deliver the maximum possible performance, the low level

communication layers on these networks typically do not enforce message ordering, and many high
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performance �le systems, in their eagerness to take advantage of the fast networks, have chosen to pro-

gram directly on top of these communication layers. Compounding the problem, distributed operating

system designers often allow multiple outstanding messages in the network to improve performance.

For example, the Sprite �le system used a customized fast kernel RPC which did not guarantee in

order delivery. In an early version of that system, granting of a read token could be overtaken by a

subsequent revoke of the same token and this led to a subtle race condition [36]. Similarly, the Active

Message layer used by xFS does not enforce ordering between pairs of hosts, and the xFS protocol allows

multiple outstanding requests. For example, when an xFS manager instructs a client to forward data

to another client, the manager continues processing protocol requests immediately; thus a subsequent

invalidate message can potentially reach the same client out of order. A formal protocol veri�er can

be particularly valuable in these situations where it can uncover subtle race conditions resulting from

reordered messages, and furthermore, answer the more fundamental question of whether the amount of

complexity in the protocol can justify the decision of using a communication layer that does not enforce

message ordering.

3.2.2 Software Development Complexity

One engineering challenge we faced in building xFS was managing the large number of states needed

to implement the xFS state machine. Although intuitively, each block can be in one of only four

states { Read Shared, Private Clean, Private Dirty, or Invalid { the system must, in fact, use various

transient states to mark progress during communication with the operating system and the network.

The alternative, using blocking communication, can easily lead to deadlocks. This signi�cantly increases

the state space. Dealing with unexpected or out of order messages, handling the separation between

data storage and data management, maintaining multiple levels of storage hierarchy, and ordering events

to ensure reliable data storage all increase the number of transient states needed to handle xFS events.

Even a simpli�ed view of the xFS coherence engine contains twenty-two states. One needs a systematic

approach when dealing with this large state space.

We initially tried to engineer the cache coherence engine with traditional methods. As we were

implementing the cache protocol, it became clear that the C language was too general. Despite our

best intentions, aspects of implementations that were not related to protocol speci�cation were mixed

in. The result was less modular, less general, harder to debug, and harder to maintain than the version

that resulted from using a formal tool. Similarly, we have found that in CRL (a software DSM system),

protocol speci�cation is mixed with many low level details of communication. Although the xFS protocol
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is similar to many other DSM protocols (and we would have liked to have reused this earlier work), we

have found it non-trivial to reuse or modify existing codes due to their ties to their native environments.

Testing also presents challenges. Due to the timing-dependent nature of many of the bugs and the

complexity of the system, it was not practical to debug the system by running the xFS prototype on a

collection of nodes and then testing all combinations of states and events. Furthermore, when timing-

dependent errors do occur, it is extremely di�cult to reconstruct the sequence of events leading to the

error. The next subsection provides an example of such a case.

3.3 Implementing Cache Coherence with Formal Methods

After several unsuccessful attempts of completing the cache coherence protocol using traditional devel-

opment methods, we decided to rewrite the system using Teapot [9], a tool for writing memory coherence

protocols. Our experience with this more formal approach has been positive. In particular, the close

ties between Teapot and the Mur� veri�cation system have provided us with an e�ective testing tool for

attacking the problem of unexpected event ordering; many of the bugs we found and corrected would

have been di�cult to isolate through �eld testing alone. Furthermore, several aspects of the Teapot

language have simpli�ed some of the engineering complexity in our system.

3.3.1 Teapot Overview

Teapot provides three main components: a protocol speci�er, a protocol veri�er, and an implementation

generator. The protocol speci�er provides a concise language that allows one to construct abstract state

machines. A Teapot program consists of a set of states; each state speci�es a set of message types and

the actions to be taken on receipt of each message, should it arrive for a cache block in that state. The

language also provides a mechanism that is similar to a \call-with-current-continuation" of functional

programming languages. This mechanism is used to provide a blocking primitive inside a handler to

relinquish the processor while preserving its context. The use of such continuations allows us to avoid

having to manually decompose a handler into atomically executable pieces and then sequence them

with state transitions. The protocol veri�er is based on the Mur� system [13]. It systematically checks

for protocol bugs such as invariant violations and deadlocks by performing an exhaustive state space

exploration. E�ectively, Mur� generates an exhaustive test vector for the distributed protocol; it reduces

the length of this test vector by exploiting symmetries in the protocol. Finally, the implementation

generator outputs C++ code.
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Figure 2: A sample deadlock discovered by the protocol veri�er. The hosts labeled ClientA, ClientB, and

ClientC are xFS clients and the host labeled Manager is an xFS metadata manager. In Figure (a), arrows

denote the directions of the messages. The numbers denote the logical times at which messages are sent

and/or received. Shown to the left of each host is a message queue, which holds the requests that are waiting

to be processed. Messages that are not queued are processed immediately. In Figure (b), arrows denote the

wait-for relationship, and the presence of a cycle indicates a deadlock.

3.3.2 Testing for Unexpected Event Orderings

Although arriving at the correct protocol remains an iterative process, the ability to compile a protocol

speci�cation to both veri�cation code and implementation code dramatically shortens the turnaround

time. The veri�cation system can often provide the protocol designer with instant feedback that allows

her to progressively re�ne the protocol. Most of the bugs discovered by the veri�er are trivial ones.

Because brute force testing is no longer in the critical path, these simple bugs can be quickly identi�ed

and �xed.

The tool also found more subtle timing bugs. Figure 2 shows an example of a bug in an early version

of the xFS protocol that would have been di�cult to isolate with �eld testing alone but which Mur�

easily discovered. In this faulty version of the protocol, we saw no need for the manager to maintain

sequence numbers for its outgoing messages. If a node received a request from a manager but was

not ready to act upon it, the receiver simply queued it for later processing. Mur� found the following

deadlock bug in this approach:

Initially, ClientB is the sole cacher of a clean block. 1) ClientC sends a read request to the Manager.

2) The Manager detects that ClientB has a cached copy of the �le block; on a fast network, ClientB's

memory is faster to access than disk. Thus, the Manager forwards the request to ClientB. To indicate

that ClientB should send the data directly to ClientC, the Manager also updates its state to indicate
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that both ClientB and ClientC are caching the data. 3) Meanwhile, ClientA sends a write request to

the Manager. 4) The Manager sends a revoke request to ClientB, which arrives at ClientB before the

previous forwarding message, invalidating its data. 5) The Manager sends a second revoke request to

ClientC, which ClientC queues, because its requested data has not arrived. 6) ClientB sends a read

request to the Manager, which the Manager queues, because its earlier revoke message has not been

acknowledged. 7) The delayed message from step 2 �nally arrives, which ClientB queues, because its

earlier request to the Manager has not been satis�ed. Now we have �nally reached a deadlock: ClientA

is waiting for the Manager to complete the revoke operations for its write; the Manager is waiting for

ClientC to acknowledge the revoke request; ClientC is waiting for ClientB to supply the desired data;

and ClientB is waiting for the Manager to process its read request. We solved this problem by using

sequence numbers to order the outgoing messages from the manager, so the sequence of events seen by

any client is consistent with the view of the manager. More importantly, the exercise with the protocol

veri�er has led us to conclude that the initial decision of using a communication layer that enforces no

message ordering was unwise. Although in-order delivery can not eliminate all unexpected messages,

it can simplify the protocol by eliminating a class of bugs resulting from reordered messages, without

sacri�cing signi�cant performance.

3.3.3 Reduced Software Development Complexity

In addition to automatically uncovering protocol bugs, the use of Teapot also illustrates a number of

other advantages of using formal methods. First, it demonstrates the importance of using a suitable

notation. Teapot's continuations signi�cantly reduce the number of states needed by the xFS protocol

by combining each set of similar transient states into a single continuation state. Also, the language is

more restrictive and the speci�cations are written in a fairly stylized way; making the speci�cation easier

to read and understand. Second, formal methods force one to concentrate on the problem at hand and

separate it from other implementation details. In our case, the use of Teapot has resulted in modular

and general-purpose code that is well isolated from the rest of the �le system. Finally, formal methods

encourage software reuse by isolating features that are common to the class of problems that they are

designed to solve. In our case, we were able to inherit many support structures such as message queues

and state tables from other protocols supplied with the Teapot release, further reducing complexity and

the chance of errors.
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3.4 Teapot Shortcomings

Teapot was designed and is best suited for DSM environments in which the primitives available to

protocol handler writers are limited and simple. The xFS coherence engine, on the other hand, must

interact with other components of the system such as the kernel and the Active Message subsystem

using more powerful operations. Some examples are system calls and thread synchronizations. These

primitives frequently lead to blocking operations on the local node and recursive invocations of the state

machine. This di�erence in terms of power and expressiveness of the handler primitives have revealed

some shortcomings of Teapot that have not become apparent in its original application domain.

The �rst shortcoming is the lack of support for multithreading. In order to support concurrent users

and react to concurrent requests from the network, an xFS client is a heavily multithreaded system.

The cache coherence engine generated by Teapot, unfortunately, has a large amount of global state that

is di�cult to make thread-safe. Section 4 discusses in detail the alternatives we have explored to enable

the cache coherence engine to interact with other multithreaded components.

The second shortcoming concerns blocking operations on the local node, which occur frequently in

xFS coherence handlers. For example, when an xFS client needs to invalidate a �le data block it caches,

it must make a system call to invalidate the data cached in the kernel. The complication arises when

this system call might block, recursively waiting for some other event that requires the attention of the

coherence engine. Although Teapot provides good support for blocking operations that wait for remote

messages, using the same mechanism to handle local blocking operations is tedious. It also in
ates the

state space and prolongs the protocol veri�cation process. In the above example, one must split the

synchronous system call into asynchronous phases, invent a new node to represent the kernel, invent

new states for the kernel node, invent new messages that the kernel must accept and generate, and

write a number of handlers to tie all these elements together. Automating these mechanical chores and

doing so e�ciently can signi�cantly ease the xFS protocol implementation.

The third shortcoming concerns some restrictions of Teapot's programming model. One example

is Teapot's lack of support for operations that a�ect blocks other than the block on which the current

message arrives. The problem arises, for example, when servicing the read fault of one block by an xFS

client requires the eviction of a di�erent block. Other implementation details such as the inability to

add new arguments to handlers by a Teapot user also make the tool less 
exible.

In this section, we have seen that the use of a formal protocol speci�er has simpli�ed the task

of implementing the cache coherence engine. Unfortunately, the formal tool has been developed in
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isolation and does not compose well with the operating system and other complex subsystems. In the

next section, we examine in greater detail the issue of composing the multithreaded subsystems.

4 Experience with Threads

Because of concurrent user, kernel, and network events, many xFS subsystems are multithreaded. Our

�rst instinct was to compose these subsystems using threads. This appears natural because each thread

simply makes procedure calls to enter other subsystems. Our experience indicates that composing

complex multithreaded subsystems in this way leads to many concurrency control bugs, and that the

\natural" ordering of events frequently leads to races and deadlocks.

Ideally, we would like to use formal methods (such as the ones reported in [44]) to verify the

correctness of the synchronization behavior of our system. Unfortunately, the state of art of these

technologies has not advanced su�ciently for them to be applied to the kernel, or to modules or libraries

written in unsupported source languages (such as Teapot), or to subsystems for which we do not have

source code. In this section, we discuss some practical engineering heuristics.

The key observation is that the xFS client software architecture is analogous to that of a network

protocol stack [24] or a graphical user interface application [37]. Using events as the communication

mechanism among di�erent modules that are single-threaded event loops can eliminate the source of

many synchronization bugs. As thread programming is entering the mainstream [18], and support for

reusable software components matures [48], we believe our experience is applicable for a larger audience.

4.1 Client Software Architecture

I/O
Daemon

xFS vnodes Kernel

User

Cache
Coherence

State Messages

Active

Machine

Figure 3: Software architecture of an xFS client.

Figure 3 shows the software architecture of an xFS client. The kernel vnode module manages a directory

cache, interacts with the existing kernel �le cache, and initiates upcalls to the user space for cache

misses. The cache coherence state machine, as described in the previous section, reacts to events

generated by the local system or the network and calls into the other components on state transitions.
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The communication module implements the Active Message protocol. It accepts messages from the

local system for asynchronous transmission and invokes message handlers on incoming messages. The

I/O daemon coordinates all these components.

With the exception of the I/O daemon, the xFS development team has only limited in
uence over the

internals of the modules. The kernel module must adhere to the conventions and interfaces available to

the vnode layer. The cache coherence state machine is largely generated automatically by the protocol

speci�cation system. And the communication module is developed by yet another team. These modules

should appear as black boxes to the xFS development team.

Requests
User I/O

Incoming
Messages

xFS vnodes

I/O Daemon

Coherence State Machine

Active Messages

Figure 4: Opposite 
ow of events on an xFS client.

Events on an xFS client naturally 
ow in opposite directions through these black boxes, as shown

in Figure 4. When a user initiates an I/O operation on the client, the request is redirected by the

kernel module to the user space. The I/O daemon, which services the upcall, generates an event for

the coherence state machine. During the state transition, the state machine prepares a message for

the communication module, which eventually transmits the message. When an incoming message (not

necessarily a reply) reaches the client, the exact opposite sequence of events occur. As we shall see in

the next subsection, these opposite 
ow of events through software components, whose internals should

not be exposed, can become a fertile ground for subtle synchronization bugs in a multithreaded system.

4.2 Di�culty with Concurrency Control

A seemingly natural way of structuring xFS is using threads. Unfortunately, the di�erent sequence of

events as discussed in the previous subsection, force the threads through di�erent modules in di�erent
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Figure 5: Deadlock of multiple threads when responding to local and remote events on a single client. In

Figure (a), the thread that services client A's read fault holds a read lock in the vnode layer before sleeping

in the cache coherence state machine monitor. In Figure (b), client B supplies the requested data and

signals client A's sleeping thread. In Figure (c), client C steals the state machine monitor lock before client

A reacquires it. It enters into a deadlock when this third thread attempts to acquire the vnode lock in order

to invalidate the data.

orders. As we will see in a later example, this breaks abstractions and leads to deadlocks. The fact that

some of these modules are not under our development control exacerbates the problem. Figure 5 shows

one such case.

Figure 5 concerns two software modules, the kernel vnode module and the cache coherence state

machine. The kernel vnode module protects the state of a data block with a lock. The cache coherence

state machine is implemented as a monitor and is protected by a monitor lock. 1) Client A incurs a

read miss. It marks the vnode state as read-in-progress, e�ectively holding a vnode read lock on the

data block. Then the thread continues into the state machine monitor, releasing the state machine

monitor lock prior to going to sleep. 2) Client B supplies the data and signals the sleeping thread. 3)

Unfortunately, the waken thread does not reacquire the monitor lock immediately. Meanwhile, under

the assumption that client A has acquired a read copy of the data, client C steals the monitor lock

and proceeds to invalidate client A's data. The result is a deadlock. Client A is waiting to reacquire

the monitor lock (held by client C) so that it can �nish its read operation, while client C is waiting for

client A to �nish its read.

Deadlocks in a hierarchy of components that must support events 
owing in opposite directions

are by no means unique to xFS. In the JavaBeans Development Kit (BDK) [48], for example, events

normally 
ow bottom-up towards the enclosing beans, while normal program 
ow travels top-down

towards the enclosed beans. If the bean methods in question are protected by monitor locks, one runs

the risk of deadlocks when multiple threads execute concurrently in opposite directions. The BDK,

unfortunately, provides no satisfactory solution. (The BDK recommends not using locks at the risk of

inconsistency in certain situations to avoid deadlocks.)

15



4.3 Use of Event Loops

The client architecture shown in Figure 4 is analogous to a network protocol stack in which each

protocol component has a message interface that allows it to send packets to and receive packets from

an adjacent protocol [24]. In one possible implementation strategy of this architecture, the absence of

multiple threads executing concurrently in a protocol component eliminates the need for concurrency

control. Similarly, in [37], Ousterhout observes that single-threaded event loops have many advantages

over threads for most graphical user interface applications.

The same arguments can apply to several of the components in xFS. For example, instead of allowing

multiple threads to execute concurrently in the cache coherence state machine, we simply enqueue a

request event for the state machine. The state machine employs a single thread that continuously

services its event queue in a loop. When the state machine requires service from other modules, it

generates more events in a similar fashion.

The most important advantage of a single-threaded event loop over a multithreaded approach is that

it eliminates unnecessary synchronizations that can lead to bugs. Consider the example in Figure 5.

The two locks involved in the deadlock are actually quite di�erent. The read lock in the vnode layer

marks the �le block as being read. It is meaningful to the �le system implementor and she is responsible

for reasoning about it. The monitor lock on the cache coherence state machine, on the other hand, has

no meaning to the �le system. It is an implementation artifact that is used to protect the global state

of the state machine and the user of the state machine need not be aware of it. By turning the state

machine from a multithreaded monitor into a single-threaded event loop that interacts with the other

modules with asynchronous events, we eliminate the need for the monitor lock, and as a result, the

deadlock illustrated in Figure 5 is no longer possible. It is important to point out that we are not

declaring event loops to be a panacea for curing all synchronization woes. It is still possible for the user

of a state machine to deadlock herself if she creates circular dependencies at the interface level.

Several improvements can make the event loop approach even more useful. In a pure event loop,

since the event handler must run to completion, it is di�cult to carry local state from the handling of

one event to that of another. This, in turn, makes it di�cult to simulate a procedure call from one

module to another using events, since the request event and the reply event are decoupled, and the

execution context of the request event is not available while handling the reply event. One solution

to this problem is to use a continuation [14] which captures the execution context before sending the

request event and restores the execution context when the reply event arrives. Another useful extension
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is to allow multiple threads to interact with an event loop. It is not possible or even desirable to

eliminate all uses of multithreading. We have modi�ed the continuation mechanism provided by Teapot

so that when the event loop �nishes servicing a request, instead of generating a reply event, it wakes

up the blocked requesting thread.

A third improvement is increasing concurrency. A single-threaded event loop allows no CPU con-

currency, so it cannot take advantage of multiple processors. There are well-known solutions that

progressively incorporate more elements of multithreading to increase concurrency. A simple approach

is to run di�erent event loops on di�erent processors. Another is to split a single event loop into multiple

event loops that do not need to synchronize with each other. For example, one can split the coherence

state machine into multiple event loops that manage disjoint portions of the �le block space. These

event loops can run on di�erent processors without having to synchronize with each other. Even more

concurrency can be achieved by allowing multiple threads that execute in the same event loop and may

need to synchronize with each other. This is analogous to the thread-per-packet solution in a network

protocol stack. One can use static checkers to prove the correctness of these local synchronizations [34].

To summarize, we have found that managing concurrency with threads has been a di�cult problem

in the xFS implementation, especially when threads enter o�-the-shelf software modules over which

we do not have full control of the implementation. The judicious use of single-threaded event loops,

when applicable, can reduce the complexity. A di�erent approach to the thread deadlock problem

is to use wait-free synchronization [19]. While event loops reduce unnecessary concurrency, wait-free

synchronization preserves concurrency and retries the operations if con
icts are detected. One problem

with wait-free synchronization is that it is di�cult to achieve good performance without operating

system and hardware support.

5 Communication

The communication pattern in xFS represents a signi�cant departure from a traditional client-server

system. In this section, we �rst report our experience with traditional RPC. RPC, a popular com-

munication abstraction for traditional distributed systems, has never been adopted by DSM builders.

xFS's communication needs are more similar to those of DSM's than those of client-server systems. We

shall see that RPC can neither satisfy the performance demands of the serverless architecture, which

frequently use multiple small peer-to-peer control messages for each client request, nor does it match

the requirements of xFS's communication pattern. To cope with these issues, we reimplemented our
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communications layer using Active Messages, a communication layer originally designed for supercom-

puting applications [11] but which has been enhanced to support cluster applications [33]. We found

that Active Messages provided excellent performance, and by clearing away RPC's inappropriate ab-

stractions it provided better semantics for supporting our communications patterns. Nonetheless, the

Active Message interface exposes low-level details that we would prefer not to manage at the application

level. At the end of this section, we discuss the aspects of RPC and Active Messages that might be

combined to provide good support for high performance peer-to-peer distributed systems.

5.1 RPC

RPC communication [6] provides easy-to-understand semantics and has been the tool of choice for many

distributed operating system builders. By providing a communication facility which is almost as easy

to use as local procedure calls, the designers of RPC sought to remove the unnecessary di�culties of

network communication so that system builders can concentrate on the higher level issues. They were

largely successful in this goal for simple client-server systems.

However, traditional RPC provides neither the semantics nor the performance required by applica-

tions like xFS. First, the serverless architecture requires the use of many small control messages, whose

e�cient transmission is crucial to the performance of xFS. Traditional RPC implementations layered on

top of heavy weight protocols (such as TCP and UDP) [26] cannot satisfy this performance requirement.

Second, instead of using simple two-party request/reply exchanges, xFS transactions can require the

cooperation of several machines. Unfortunately, when we synthesize multi-party communication using

RPC, we cannot bene�t from the semantic advantages that RPC was designed to provide.

Manager

ClientA ClientB

Figure 6: A multi-party communication example. The hosts labeled ClientA and ClientB are xFS clients

and the host labeled Manager is an xFS metadata manager. This example illustrates a read miss on ClientA.

Thin arrows indicate control messages and the thicker arrow represents a large data transfer.

Figure 6 shows a simple example of a multi-party communication in xFS. ClientA incurs a read
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Figure 7: Implementing multi-party communication using simple RPC. The component labeled \S" on a

host is the RPC server and the component labeled \C" is the RPC client. The arrows denote the directions

of communications. The numbers represent the logical times at which the communications occur. The solid

lines are RPC requests and the dashed lines are RPC replies. The thicker arrow represents a large data

transfer. Figure (a) shows the traditional client-server approach. The reply data retraces the steps of the

RPC requests. Figure (b) shows the peer-to-peer approach. The reply data is sent from its source to the

destination in one network hop.

miss and sends a request to the Manager. The Manager consults its bit vector of current cachers,

and discovers that ClientB is caching the data. With a fast network and low overhead communication

protocol, fetching the block from ClientB's memory is faster than fetching it from disk, so the Manager

sends a forwarding request to ClientB, and updates its bit vector to include ClientA. ClientB sends

the data to ClientA, allowing ClientA to continue. In this example, the exchange of control messages

between the clients and the manager must be e�cient in order to realize the performance advantage of

satisfying cache misses with remote memory. Also, each machine in this example must interact with two

other machines in order to satisfy a single request. Such communication patterns are quite common in

xFS. Another example occurs when a client writes in parallel to a number of storage servers in a stripe

group.

Figure 7 shows two naive attempts to implement the example in Figure 6 using simple RPC. In

Figure 7 (a), the reply data is forced to retrace the steps of the RPC requests. The obvious disadvantage

is the extra cost of unnecessary data transfers between the clients and the manager. The approach shown

in Figure 7 (b) attempts to address this ine�ciency. In this case, because each host must initiate a

request to and receive a request from two di�erent hosts, each host is simultaneously an RPC client and

an RPC server. ClientA �rst sends a request to the RPC server on the Manager. The Manager RPC
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server, acting as an RPC client, sends a new request to the RPC server on host B. The RPC server on

ClientB, acting as an RPC client, supplies the requested data to the RPC server on ClientA via a third

request. Only then does the RPC reply propagate back, retracing the steps taken by the three RPC

requests.

When we used RPC layered on top of UDP for xFS communication in an early prototype, the

�rst problem was performance. Even on fast switched networks, the overhead imposed by the layered

protocols always reached milliseconds, defeating the bene�t of using peer resources over the network.

The contorted paths followed by some messages further hurt performance. The second problem was

semantic inconvenience. The main bene�t of RPC is that its semantics are close to those of a local

procedure call. The semantics of a procedure call are that when the caller regains control, the desired

operation has been performed exactly once and the caller has been given the call reply. In Figure 7

(b), however, the programmer is responsible for explicitly matching the data with the original request.

Furthermore, this approach is also ine�cient. The original requester has to wait for six network hops to

receive its RPC reply! Depending on the characteristics of the network, this might take longer than the

data transfer. To alleviate this ine�ciency, one might be tempted to make the RPC servers reply sooner

so that they can overlap the replies with other operations, thus further weakening the RPC semantics

and complicating the job of the programmer.

5.2 Active Messages

To satisfy the performance and semantic requirements of the serverless architecture, we switched to

Active Messages as the communication subsystem of xFS. We found that Active Messages provide

excellent performance, reducing communication latency to tens of microseconds. The requirements

of xFS also led to numerous modi�cations to Active Messages so that it can better support cluster

computing. However, the Active Message interface was designed to be an \assembly language" for

communications library writers rather than an interface to be used directly by applications. Indeed, we

found that Active Message exposed several low-level details that complicated the programming model.

Each Active Message speci�es a handler on the remote node and a set of arguments to the han-

dler. Messages are delivered reliably (barring persistent failure) but potentially out-of-order (to reduce

bu�er management overhead). When a message arrives, the handler is invoked directly, and it runs

to completion. This direct invocation is the source of much of Active Message's e�ciency, but it also

places restrictions on the programming model. Because handlers run at the priority of the network and

prevent delivery of other messages while they run, they must execute quickly and without blocking.
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To simplify deadlock-free management of switched networks, Active Message implementations typically

require request-reply models of communication in which request handlers must use the network to send

exactly one reply message, and reply handlers may not use the network.

The original Active Message system was suitable only for parallel applications, not for distributed

operating systems. The requirements of xFS and other similar softwares being written as part of

the Berkeley NOW project [2] led to many improvements to the Active Message interface to provide

better support for cluster computing. Since many of these new features may not be known to readers

familiar with the original Active Message system, and since these features are likely to be of use for

distributed operating systems applications that try to make use of supercomputer-class networks and

high-performance protocols originally designed for supercomputer applications, we brie
y discuss some

of the key new Active Message features here. More details can be found in [33].

� Naming. The original Active Message interface assumes a single program image (SPMD) model,

where the communicating parties are simply referenced by contiguous node numbers, and the

message handlers are referenced by absolute program counter addresses. In xFS, the di�erent

services, each of which can start and stop dynamically, no longer share a single program image,

and nodes can be added or deleted dynamically. The new Active Message interface removes all

the SPMD restrictions.

� Multiprogramming. The original Active Message interface assumes that the SPMD instances of

the parallel applications are gang-scheduled on di�erent nodes. To wait for an incoming messages,

the program simply polls the network interface in a busy loop. Also, the interface provides

no thread support. In a distributed environment such as xFS, there can be multiple processes

(some of whom are not necessarily part of xFS) time-sharing a node and the network. The new

interface accommodates this di�erence by providing virtual networks to communicating parties.

When there are other processes running on the host where an xFS server executes, polling the

network for incoming messages to the xFS server becomes ine�cient. To address this di�erence,

the new interface provides an event model that wakes up a server upon receipt of certain incoming

messages. Furthermore, the new interface is also thread-safe to accommodate multithreaded xFS

modules.

� Security. The original interface assumes that the communicating parties have exclusive use of

the network. Each instance of the program can communicate with any other instances; therefore

there are no protection issues involved. This is not acceptable in the multiprogramming environ-
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ment where xFS operates. The new interface uses capabilities to authenticate the communicating

parties.

� Fault Tolerance. The original Active Messages provide reliable message delivery. Communication

errors can only be attributed to catastrophic failures in the supercomputer network fabric and

this results in the termination of all instances of the SPMD program. A feature of xFS is high

availability | the ability to survive individual node and network link failures. The new interface

provides synchronous and asynchronous error detection for persistent network failures and the

user of the interface can react accordingly to the error events.

� Medium-sized Messages. The original interface only supports two 
avors of message: a \small

message" interface that is designed to pass procedure call arguments in registers, and a \bulk

message" interface for large transfers. These message sizes were devised to support the typical

procedure calls and large data transfers found in parallel programs. Communication in distributed

operating systems also consists of control messages and data transfers, but the control messages

tend to be larger than the \small messages" provided by the original Active Messages while still

being too small to e�ciently take advantage of the bulk message interface. In xFS, for instance,

most control messages are between 32 and 128 bytes. As a result, the new interface provides a

\medium message" interface that provides automatic storage management without the additional

network round trip that would be needed for a \bulk transfer."

� UDP Reference Implementation. The original Active Message implementations were custom built

for each supercomputer architecture, which limited portability. A reference implementation of the

new interface has been implemented on UDP. This reference implementation makes it palatable to

use Active Messages as xFS's only message substrate because it allows our system to run on any

network that supports UDP. Of course, to achieve good performance we still require a customized

native implementation of Active Messages for each high speed network.

Even with the new features, Active Messages are restrictive, but we found that it was su�cient for

our needs and, in fact, a better substrate on which to program than traditional RPC. There were four

reasons for this.

� Some aspects of Active Message mapped easily onto some aspects of our system. For example,

the asynchronous messaging model was a good �t with Teapot's protocol speci�cation tool.
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� Although neither RPC nor the Active Message interface was a particularly good match with

multi-party communications patterns, at least Active Message's asynchronous message arrival

abstraction was less misleading than the synchronous procedure call abstraction in RPC.

� Active Messages' speed advantage over RPC gives designers the freedom to focus on building a sim-

ple, correct protocol. If sending an extra message simpli�es the protocol or makes it more robust,

that might be a reasonable trade-o� under Active Messages, while it would seldom be acceptable

under RPC. Similarly, as the multi-party RPC example above illustrated, when using RPC we

found ourselves introducing asynchrony to improve performance at the cost of complicating the

protocol.

Even with these enhancements, Active Messages remain, by design, a low-level programming model.

Some of its limitations are:

� Active Messages only provide an asynchronous point-to-point request-reply communication model.

� Active Messages place severe restrictions on the types of operations that are allowed in message

handlers.

� Active Messages place restrictions on the size and contiguity of the data to be transferred.

� Active Messages may arrive out-of-order.

In the next subsection, we will discuss some of the desirable characteristics of a higher level abstrac-

tion.

5.3 Communications Support for New Operating Systems Services

Although we were successful in using Active Messages as our communications interface, we are not

advocating using low-level message passing to build distributed systems. Work is needed on a new

abstraction that supports this new generation of applications. We believe that this protocol should

have the following characteristics:

� The protocol should retain the RPC client's \procedure call" abstraction. The original motivation

for using RPC to structure distributed systems remains: procedure calls are a well-understood

and useful programming abstraction.
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� To support multi-party communication, the protocol must support a mechanism similar to continuation-

passing that allows an RPC service routine to delegate the duty to respond to an RPC request to

another RPC service routine on another node. Another useful extension is the support for scatter

to and gather from multiple machines.

� Asynchronous messages between pairs of hosts should be delivered in the order they are sent.

� For performance, the protocol should be built directly on a high-performance low-level message

abstraction like Active Messages. Empirical evidence suggests that it is di�cult to make layered

protocols fast. On the other hand, Active Messages have proven to be an excellent \assembly

language" for constructing high performance network abstractions including Split-C [12], Thinking

Machines message passing library [49], MPI [16], and Fast Sockets [41]. The Fast Sockets example

is particularly relevant since it demonstrated a high-performance implementation of the Unix

socket interface that, like RPC, has been widely used by distributed operating systems.

In the process of synthesizing this higher level communication abstraction using Active Messages,

one must pay close attention to performance optimizations that traditional networking protocols do not

address. For example, when gathering data from di�erent senders, it is important to coordinate the

communicating parties to prevent overrunning the bottleneck machine [8]. In xFS, we have seen the

importance of this \rate-matching" technique when a client is assembling multiple data fragments from

di�erent storage servers. Another example is the choice of the di�erent interfaces for di�erent message

sizes. The current Active Message interface provides three 
avors of message interfaces. Again, the

communication abstraction implementor's task here is analogous to that of a compiler writer who has a

choice of di�erent (combinations of) assembly language instructions. She must choose the appropriate

interface to maximize performance.

In summary, we have seen that the communication needs of the new peer-to-peer distributed systems

are signi�cantly di�erent from both the traditional client-server applications and the traditional super-

computing applications. One must combine the best of these two worlds to arrive at a new interface to

simplify the construction of these kinds of systems in the future.

6 Kernel Support

As described previously, one component of an xFS client is a kernel module that implements the kernel

vnode interface for a new �le system. We chose the vnode interface because this was the most straight-
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forward way to make a new �le system available to unmodi�ed applications. A much earlier version

of xFS was developed on Ultrix 4.2. The current version of xFS runs on Solaris 2.3-2.5. Although the

Solaris interface has evolved considerably from its predecessors and is far more complex, both Ultrix

and Solaris (and most other Unix operating systems) share an ancestral design that is not suited for

today's high-performance distributed �le systems. Some of the main issues are coherence, e�ciency,

and portability. Some of these problems have been noted in previous e�orts to extend the vnode inter-

face [40, 42, 46, 28, 21]. Unfortunately, few improvements have been made to the commercial operating

systems; and the performance and interface problems are exacerbated by new serverless distributed

systems.

6.1 Cache Coherence

The vnode interface was originally designed to integrate NFS into Unix based operating systems that

only supported local �le systems [29]. The local �le systems obviously need not consider coherence, and

NFS [43] only provides an ad hoc style of weak consistency. Some later research �le systems, such as

Andrew [23], had more sophisticated consistency semantics but consistency actions were only triggered

on �le open events. Once a �le is open, its content and attributes cannot be a�ected by remote machines.

This simpli�es vnode coherence management. Other systems such as Sprite [35] and Spritely NFS [47]

disable caching and fall back to a central server when a �le is opened for concurrent writing sharing.

This also simpli�es coherence management. Under these restrictions, it is still relatively easy to support

these �le systems within the vnode framework.

xFS must maintain coherence of �le attributes, directory contents, and �le data at block granularity,

without sacri�cing performance, and without resorting to a central server. The vnode interface starts to

show strain under these requirements. The biggest problem is maintaining consistency of the attributes.

In the vnode layers that we have studied, attributes are cached in the vnodes themselves and are freely

accessed by the kernel code; as a result, they cannot be easily invalidated. In the past, systems such

as Spritely NFS have approached this problem with an ad hoc combination of performing attribute

modi�cations on the server and periodic polling on the client for updates. xFS has no centralized

attribute storage and it demands a more strict attribute coherence semantics; maintaining attribute

coherence required extensive kernel modi�cations in Solaris. Another di�culty is maintaining �le data

coherence. In the past, �le servers, such as those under Andrew, need not be informed when client

memory cache evictions occur. This is because even when the data is no longer cached by the kernel

memory, the copy cached on the local disk still needs to be invalidated. Also, none of these systems
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requires injection of data that is not demanded by a client into its cache. The xFS cooperative caching

algorithm, on the other hand, requires the manager to have precise knowledge of the client cache contents

so it can intelligently use the global cluster memory cache to satisfy �le system requests. An xFS client

also needs to have the ability of injecting an evicted data block into a peer client's cache as its backing

store. Therefore a vnode interface that informs the managers of any changes in cache contents and

allows easy manipulations by other hosts would be useful. Although it is possible to synthesize such an

interface using the kernel cache interface in the operating systems we have studied, explicit support of

these operations in the vnode interface would provide a cleaner abstraction.

6.2 Implementation Overhead

The vnode interface was designed at a time when �le system performance was relatively poor. A

kernel cache miss in those days meant disk accesses, slow network accesses, or both. Consequently, not

much e�ort was devoted to bringing down the implementation overhead on cache misses. For example,

although Andrew has a client architecture that is very similar to that of xFS, the interface overhead of

the kernel is less of an issue because a kernel cache miss results in at least one access to the local disk

cache. In xFS, on the other hand, a cache miss can usually be handled by a much faster transfer from

another client's memory.

With the advent of high-performance network �le systems such as xFS, �le system performance

can approach network speeds, and as network performance continues to improve, the implementation

overhead of the vnode layer is becoming one of the limiting factors in improving �le system performance.

For example, the vnode layer under Solaris 2.5 on an UltraSPARC 170 imposes a minimum of 130 �s

of overhead for a small read operation on a local node, while a user-to-user remote memory operation

can complete a round trip with only 20 �s. A closer examination revealed that the bulk of the overhead

can be attributed to the ine�ciency in the virtual memory system. Similar problems were noted in the

OSF/1 kernel, whose high kernel miss overhead impacted the design of GMS [15].

6.3 Portability

The vnode layers of di�erent operating systems are considerably di�erent [52]. One needs arcane

knowledge of the kernel internals in order to port a �le system to a di�erent vnode layer. This is one

of the major obstacles to deploying xFS on a variety of di�erent platforms. For a cluster �le system

such as xFS, a portable operating system interface not only would allow us to more easily take full

advantage of the resources in a heterogeneous cluster, but it would also reduce the system complexity.
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To this end, the vnode interfaces have failed miserably. Despite many years of research in extensible

�le systems [39, 5, 40, 38, 42, 22, 1, 28, 52], the construction of portable �le systems has remained a

di�cult undertaking, especially for the commercial operating systems. We are currently investigating

portable and e�cient interposition agents as a means of distributing our code [17].

In this section, we have seen that the vnode layer has achieved the goal of making xFS available to

unmodi�ed applications, but at a considerable cost. Some of the disadvantages are the complexity due

to the lack of coherence support, interface overhead on cache misses, and poor portability. As high-

performance distributed �le systems become more popular, the kernel interface must evolve to cater to

their needs.

7 Conclusion

Emerging high performance networks and workstations can not only deliver performance competitive

with traditional supercomputers on highly parallel scienti�c applications, it has also enabled the de-

velopment of a new generation of distributed systems that o�er superior performance, availability, and

scalability. We have reported some of the lessons that we have learned during the implementation of

xFS, an example of a new peer-to-peer paradigm in distributed systems. We have seen a mismatch

between this new paradigm and the traditional tools and interfaces available to distributed system

builders. To address some of these inadequacies, we have successfully adopted a number of technologies

including formal methods, event loops, fast messaging layers, and new kernel interfaces. The use of

these technologies, however, has not been a straightforward transplantation. We believe our experience

is not only applicable to xFS, but also provides insights for future system builders and encourage the

development of new tools and interfaces that can make the construction of such systems easy.
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