
Virtual Network Transport Protocols for Myrinet

Brent N. Chun, Alan M. Mainwaring, and David E. Culler

University of California at Berkeley

Computer Science Division

fbnc,alanm,culler@cs.berkeley.edug

Abstract
This paper describes a protocol for a general-purpose

cluster communication system that supports multipro-

gramming with virtual networks, direct and protected

network access, reliable message delivery using mes-

sage timeouts and retransmissions, a powerful return-

to-send error model for applications, and automatic

network mapping. The protocols use simple, low-cost

mechanisms that exploit properties of our intercon-

nect without limiting exibility, usability or robust-

ness. We have implemented the protocols in an active

message communication system that runs a network

of 100+ Sun UltraSPARC workstations interconnected

with 40 Myrinet switches. A progression of microbench-

marks demonstrate good performance { 42 microsecond

round-trip times and 31 MB/s node to node bandwidth

{ as well as scalability under heavy load and graceful

performance degradation in the presence of high con-

tention.

1 Introduction

With microsecond switch latencies, gigabytes per
second of scalable bandwidth, and low trans-
mission error rates, cluster interconnection net-

This research is supported in part by ARPA grant F30602-

95-C-0014, generous contributions from Sun Microsystems, Inc.,

the California State Micro Program, Professor David E. Culler's

NSF Presidential Faculty Fellowship CCR-9253705, NSF Infras-

tructure Grant CDA-8722788, a NSF Graduate Research Fel-

lowship, and a National Seminconductor Corportation Graduate

Research Fellowship.

works such as Myrinet [BCF+95] can provide sub-
stantially more performance than conventional lo-
cal area networks. These properties stand in
marked contrast to the network environments for
which traditional network and internetwork pro-
tocols were designed. By exploiting these fea-
tures, previous e�orts in fast communication sys-
tems produced a number of portable communica-
tion interfaces and implementations. For exam-
ple, Generic Active Messages (GAM) [CLM+95],
Illinois Fast Messages (FM) [PKC97, PLC95], the
Real World Computing Partnerships's PM [THI96],
and BIP [PT97] provide fast communication lay-
ers. By constraining and specializing communi-
cation layers for an environment, for example by
only supporting single-program multiple-data par-
allel programs or by assuming a perfect, reliable
network, these systems achieved high-performance,
oftentimes on par with massively parallel proces-
sors.

Bringing this body of work into the main-
stream requires more general-purpose and more ro-
bust communication protocols than those used to
date. The communication interfaces should sup-
port client-server, parallel and distributed applica-
tions in a multi-threaded and multi-programmed
environment. Implementations should use pro-
cess scheduling as an optimization technique rather
than as a requirement for correctness. In a time-
shared system, implementations should provide
protection and the direct application access to net-
work resources that is critical for high-performance.
Finally, the protocols that enable these systems
should provide reliable message delivery, automat-
ically handle non-catastrophic network errors, and
support automatic network management tasks such
as topology acquisition and route distribution.

Section 2 presents a core set of requirements for
our cluster protocol and states our speci�c assump-
tions. Section 3 presents an overview of our system

1

architecture and briey describes the four layers of
our communication system. Then in section 4, we
examine the issues and design decisions for our pro-
tocols, realized in our system in network interface
card (NIC) �rmware. Section 5 analyses perfor-
mance results for several challenging microbench-
marks. We �nish with related work and conclu-
sions.

2 Requirements

Our cluster protocol must support multiprogram-
ming, direct access to the network for all applica-
tions, protection from errant programs in the sys-
tem, reliable message delivery with respect to bu�er
overruns as well as dropped or corrupted packets,
and mechanisms for automatically discovering the
network's topology and distributing valid routes.
Multiprogramming is essential for clusters to be-
come more than personal supercomputers. The
communication system must provide protection be-
tween applications and isolate their respective traf-
�c. Performance requires direct network access
and bypassing the operating system for all common
case operations. The system should be resilient to
transient network errors and faults { programmers
ought not be bothered with transient problems that
retransmission or other mechanisms can solve {
but catastrophic problems require handling at the
higher layers. Finally, the system should support
automatic network management, including the pe-
riodic discovery of the network's topology and dis-
tribution of mutually deadlock-free routes between
all pairs of functioning network interfaces.

Our protocol architecture makes a number of as-
sumptions about the interconnect and the system.
First, it assumes that the interconnect has net-
work latencies on the order of a microsecond, link
bandwidth of a gigabit or more and are relatively
error-free. Second, the interconnect and host inter-
faces are homogeneous, and the problem of interest
is communication within a single cluster network,
not a cluster internet. System homogeneity elim-
inates a number of issues such as the handling of
di�erent network maximum transmission units and
packet formats, probing for network operating pa-
rameters (e.g., as by TCP slow-start), and guaran-
tees that the network fabric and the protocols used
between its network interfaces are identical. This
does not preclude use of heterogeneous hosts at the
endpoints, such as hosts with di�erent endianness.
Lastly, the maximum number of nodes attached to
the cluster interconnect is limited. This enables

trading memory resources proportional to the num-
ber of network interfaces (NICs) in exchange for re-
duced computational costs on critical code paths.
(In our system, we limit the maximum number of
NICs to 256, though it would be straightforward to
change the compile-time constants and to scale to
a few thousand.)

3 Architecture

Our system has four layers: (1) an active message
applications programming interface, (2), a virtual
network system that abstracts network interfaces
and communication resources, (3), �rmware exe-
cuting on an embedded processor on the network
interface, and (4), processor and interconnection
hardware. This sections presents a brief overview
of each layer and highlights important properties
relevant for the NIC-to-NIC transport protocols de-
scribed thoroughly in Section 4.

3.1 AM-II API

The Active Messages 2.0 (AM-II) [MC96] provides
applications with the interface to the communica-
tions system. It allows an arbitrary number of ap-
plications to create multiple communications end-

points used to send and to receive messages using
a procedural interface to active messages primi-
tives. Three message types are supported: short
messages containing 4 to 8 word payloads, medium
messages carrying a minimum of 256 bytes, and
bulk messages providing large memory-to-memory
transfers. Medium and bulk message data can be
sent from anywhere in a sender's address space.
The communication layer provides pageable stor-
age for receiving medium messages. Upon receiv-
ing a medium message, its active message handler
is passed a pointer to the storage and can operate
directly on the data. Bulk message data are de-
posited into per-endpoint virtual memory regions.
These regions can be located anywhere in a re-
ceiver's address space. Receivers identify these re-
gions with a base address and length. Applications
can set and clear event masks to control whether
or not semaphores associated with endpoints are
posted when a message arrives into an empty re-
ceive queue in an endpoint. By setting the mask
and waiting on the semaphore, multi-threaded ap-
plications have the option of processing messages
in an event-driven way.
Isolating message tra�c for unrelated applica-

tions is done using per-endpoint message tags spec-
i�ed by the application. Each outgoing message

2

Figure 1: Processor/NIC node.

contains a message tag for its destination endpoint.
Messages are delivered if the tag in the message
matches the tag of the destination endpoint. The
AM-II API provides an integrated return-to-sender
error model for both application-level errors, such
as non-matching tags, and for catastrophic network
failures, such as losing connectivity with a remote
endpoints. Any message that cannot be delivered
to its destination is returned to its sender. Appli-
cations can register per-endpoint error handlers to
process undeliverable messages and to implement
recovery procedures if so desired. If the system re-
turns a message to an application, simply retrans-
mitting the message is highly unlikely to succeed.

3.2 Virtual Networks

Virtual networks are collections of endpoints with
mutual addressability and the requisite tags nec-
essary for communication. While AM-II provides
an abstract view of endpoints as virtualized net-
work interfaces, virtual networks view collections
of endpoints as virtualized interconnects. There is
a one-to-one correspondence between AM-II end-
points and virtual network endpoints.

The virtual networks layer provides direct net-
work access via endpoints, protection between un-
related applications, and on-demand binding of
endpoints to physical communication resources.
Figure 1 illustrates this idea. Applications cre-
ate one or more communications endpoints using
API functions that call the virtual network seg-
ment driver to create endpoint address space seg-
ments. Pages of network interface memory provide
the backing store for active endpoints, whereas host

Figure 2: Data paths for sending and receiv-

ing short, medium, and bulk active mes-

sages. Short messages are transferred using pro-
grammed I/O directly on endpoints in NIC mem-
ory. Medium messages are sent and received using
per-endpoint medium message staging areas in the
pageable kernel heap that are mapped into a pro-
cess's address space. A mediummessage is a single-
copy operation at the sending host and a zero-
copy operation at the receiving host. Bulk memory
transfers, currently built using medium messages,
are single-copy operations on the sender and single-
copy operations on the receiver.

3

memory acts as the backing store for less active or
endpoints from the on-NIC endpoint \cache". End-
points are mapped into a process's address space
where they are directly accessed by both the ap-
plication and the network interface, thus bypassing
the operating system. Because endpoint manage-
ment uses standard virtual memory mechanisms,
they leverage the inter-process protection enforced
between all processes running on a system.

Applications may create more endpoints than the
NIC can accommodate in its local memory. Pro-
viding that applications exhibit bursty communi-
cation behavior, a small fraction of these endpoints
may be active at any time. Our virtual network
system takes advantage of this when virtualizing
the physical interface resources. Speci�cally on our
Myrinet system, it uses NIC memory as a cache
of active endpoints and pages endpoints on and
o� the NIC on-demand, much like virtual mem-
ory systems do with memory pages and frames.
Analogous to pagefaults, endpoint faults can occur
when either an application writes a message into
a non-resident endpoint, or a message arrives for
a non-resident endpoint. Endpoint faults also oc-
cur whenever messages (sent or received) reference
host memory resources { medium message stag-
ing area, arbitrary user-speci�ed virtual memory
regions for sending messages, or endpoint virtual
memory segment for receiving messages { that are
not pinned, or for which there are no current DMA
mappings. Network interface virtualization, includ-
ing endpoint cache management and the paging of
endpoints, is handled using a custom virtual net-
work segment driver.

3.3 NIC Firmware

The �rmware implements a protocol that provides
reliable and unduplicated message delivery between
NICs. The protocols must address four core issues:
the scheduling of outgoing tra�c from a set of res-
ident endpoints, NIC to NIC ow control mecha-
nisms and policies, timer management to schedule
and perform packet retransmissions, and detecting
and recovering from errors. Details on the NIC pro-
tocols are given in Section 4.
The protocols implemented in �rmware deter-

mine the structure of an endpoint. Each endpoint
has four message queues: request send, reply send,
request receive, and reply receive. Each queue entry
holds an active message. Short messages are trans-
ferred directly into resident endpoints memory us-
ing programmed I/O. Medium and bulk messages
use programmed I/O for the active message por-

tion and DMA for the associated bulk data trans-
fer. Figure 2 illustrates the data ows for short,
medium, and bulk messages through the interface.
Medium messages require one copy on the sender
and zero copies on the receiver. (Bulk messages,
currently implemented using mediummessages, re-
quire one copy on the sender and one copy on the
receiver. The code for zero-copy bulk transfers ex-
ists but has not been su�ciently tested.)

Node1

Switch 258
 ID 258

0 1 2 3 4 5 6 7

Node2Node0Node3Node4Node103

Switch 257
 ID 257

0 1 2 3 4 5 6 7

Node102Node104Node101Node11

Switch 327
 ID 327

0 1 2 3 4 5 6 7

Node12Node10Node13Node14Node16

Switch 981
 ID 981

0 1 2 3 4 5 6 7

Node26

Switch 262
 ID 262

0 1 2 3 4 5 6 7

Node27Node25Node28Node29 Node21

Switch 256
 ID 256

0 1 2 3 4 5 6 7

Node22Node20Node23Node24Node6

Switch 259
 ID 259

0 1 2 3 4 5 6 7

Node7Node5Node8Node9Node17Node15Node18Node19Node56

Switch 164
 ID 164

0 1 2 3 4 5 6 7

Node51

Switch 162
 ID 162

0 1 2 3 4 5 6 7

Node52Node50Node53Node54Node31

Switch 165
 ID 165

0 1 2 3 4 5 6 7

Node32Node30Node33Node34Node36

Switch 166
 ID 166

0 1 2 3 4 5 6 7

Node57Node55Node91Node92Node37Node35Node38Node39 Node41

Switch 189
 ID 189

0 1 2 3 4 5 6 7

Node42Node40Node43Node44Node46

Switch 183
 ID 183

0 1 2 3 4 5 6 7

Node47Node45Node48Node49 Node63

Switch 32
 ID 32

0 1 2 3 4 5 6 7

Node62Node60Node61Node64Node192

Switch 401
 ID 401

0 1 2 3 4 5 6 7

Node194Node195Node193 Node110

Switch 36
 ID 36

0 1 2 3 4 5 6 7

Node111Node112Node113Node114Node86

Switch 442
 ID 442

0 1 2 3 4 5 6 7

Node87Node85Node88 Node66

Switch 31
 ID 31

0 1 2 3 4 5 6 7

Node67Node65Node68Node69Node81

Switch 26
 ID 26

0 1 2 3 4 5 6 7

Node82Node80Node83Node84 Node72

Switch 24
 ID 24

0 1 2 3 4 5 6 7

Node71Node70Node73Node74 Node76

Switch 33
 ID 33

0 1 2 3 4 5 6 7

Node77Node75Node78Node79

Switch 890
 ID 890

0 1 2 3 4 5 6 7
Switch 889

 ID 889
0 1 2 3 4 5 6 7

Switch 888
 ID 888

0 1 2 3 4 5 6 7
Switch 886

 ID 886
0 1 2 3 4 5 6 7

Switch 885
 ID 885

0 1 2 3 4 5 6 7
Switch 884

 ID 884
0 1 2 3 4 5 6 7

Switch 881
 ID 881

0 1 2 3 4 5 6 7
Switch 880

 ID 880
0 1 2 3 4 5 6 7

Switch 132
 ID 132

0 1 2 3 4 5 6 7
Switch 126

 ID 126
0 1 2 3 4 5 6 7

Switch 127
 ID 127

0 1 2 3 4 5 6 7

Switch 1473
 ID 1473

0 1 2 3 4 5 6 7
Switch 1476

 ID 1476
0 1 2 3 4 5 6 7

Switch 387
 ID 387

0 1 2 3 4 5 6 7
Switch 1478

 ID 1478
0 1 2 3 4 5 6 7

Switch 4
 ID 4

0 1 2 3 4 5 6 7

Switch 386
 ID 386

0 1 2 3 4 5 6 7

Switch 883
 ID 883

0 1 2 3 4 5 6 7
Switch 882

 ID 882
0 1 2 3 4 5 6 7

Switch 388
 ID 388

0 1 2 3 4 5 6 7

Figure 3: Berkeley NOW network topology as

discovered by the mapper. The network map-
ping daemons periodically explore and discover the
network's current topology, in this case a fat tree-
like network with 40 Myrinet switches. The three
sub-clusters are currently connected using through
two switches using only 11 cables.

3.4 Hardware

The system hardware consists of 100+ 167-Mhz
Sun UltraSPARC workstations interconnected with
Myrinet (Figure 3) [BCF+95], a high-speed local
area network with cut-through routing and link-
level back-pressure. The network uses 40 8-port
crossbar switches with 160 MB/s full-duplex links.
Each host contains a LANai 4.1 network interface
card on the SBus. Each NIC contains a 37.5 MHz
embedded processor, 256 KB of SRAM, a single
host SBus DMA engine but independent network
send and receive DMA engines.

4 NIC Protocols

This section describes a set of lightweight NIC
protocols that support the AM-II communications
API and virtual networks and also provide ba-
sic transport protocol functionality. The protocols

4

are implemented as �rmware running on Myricom
LANai4.1 cards.

4.1 Endpoint Scheduler

Because our system supports both direct network
access and multiprogramming, the NIC has a new
task of endpoint scheduling, i.e., sending messages
from the current set of cached endpoints. This sit-
uation is di�erent from that of traditional proto-
col stacks, such as TCP/IP, where messages from
applications pass through layers of protocol pro-
cessing and multiplexing before ever reaching the
network interface, so the NIC services shared out-
bound (and inbound) message queues. With virtual
networks, the queues are di�erentiated.
The endpoint scheduling policy chooses how long

to service any one endpoint and which endpoint
to service next. A simple round-robin algorithm
that gives each endpoint equal but minimal service
time is fair and is starvation free. If all endpoints
always have messages waiting to send, this algo-
rithm might be satisfactory. However, if applica-
tion communication is bursty [LTW+94], spending
equal time on each resident endpoint is not opti-
mal. Better strategies exist which minimize the use
of critical NIC resources examining empty queues.
The endpoint scheduling policy must balance op-

timizing the throughput and responsiveness of a
particular endpoint against aggregate throughput
and response time. Our current algorithm uses a
weighted round-robin policy that focuses resources
on active endpoints. Empty endpoints are skipped.
For an endpoint with pending messages, the NIC
makes 2k attempts to send, for some parameter k.
This holds even after the NIC empties a particular
endpoint { it loiters should the host enqueue addi-
tional messages. Loitering also allows �rmware to
cache state, such as packet headers and constants
while sending messages from an endpoint, lower-
ing per-packet overheads. While larger k's result in
better performance during bursts, too large a k de-
grades system responsiveness with multiple active
endpoints. Empirically, we have chosen a k of 8.

4.2 Lightweight Flow Control

In our system, a ow control mechanism has two
requirements. On one hand, it should allow an ad-
equate number of unacknowledged messages to be
in ight in order to �ll the communication pipe be-
tween a sender and a receiver. On the other, it
should limit the number of outstanding messages
and manage receiver bu�ering to make bu�er over-

runs infrequent. In steady state, a sender should
never wait for an acknowledgment in order to send
more data. Assuming the destination process is
scheduled and attentive to the network, given a
bandwidth B and a round trip time RTT , this re-
quires allowing at least B �RTT bytes of outstand-
ing data.
Our system addresses ow control at three lev-

els: (1) user-level active message credits for each
endpoint, (2) NIC-level stop-and-wait ow control
over multiple, independent logical channels, and (3)
network back-pressure.

4.2.1 User-level Credits

The user-level credits rely upon on the request-
reply nature of AM-II, allowing each endpoint to
have at most Kuser outstanding requests waiting
for responses. By choosing a Kuser large enough,
endpoint-to-endpoint communication proceeds at
the maximum rate. To prevent receive bu�er over-
ow, endpoint request receive queues are large
enough to accommodate several senders transmit-
ting at full speed. Because senders have at most a
small number, Kuser, of outstanding requests, set-
ting the request receive queue to a small multiple
of Kuser is feasible. Additional mechanisms, dis-
cussed shortly, engage when overruns do occur.
In our protocol, with 8 KB packets the band-

width delay product is 31MB=s � 349us = 11345
bytes { less than two 8 KB messages. For
short packets the bandwidth delay product is
62; 578msgs=s � 42us = 2.63 messages. To provide
slack at the receiver and to optimize arithmetic
computations, Kuser is rounded to 4. The NIC
must provide at least this number of logical chan-
nels to accommodate this number of outstanding
messages, as discussed next.

4.2.2 Stop-and-wait Over Logical Channels

To keep the communication pipe full in steady
state, the NIC, which is responsible for time-
out/retry, must allow at least Kuser outstand-
ing messages since Kuser is chosen to match the
bandwidth{delay product of the network. It ac-
complishes this by overlayingmultiple, independent
logical channels (Kuser channels for requests and
Kuser channels for replies) over each physical route
to each destination NIC. Kuser logical channels for
both requests and replies ensure that neither the
sender nor the receiver is a bottleneck in steady
state with respect to outstanding data. Having sep-
arate request and reply logical channels is necessary
in order to prevent deadlock.

5

Figure 4: NIC channel tables. The NIC chan-
nel tables provide easy-access to NIC ow con-
trol, timeout/retry, and error detection informa-
tion. The NIC uses stop-and-wait ow control on
each channel and manages communication state in-
formation in channel table entries. In the send table
(left), each entry includes timeout/retry informa-
tion (packet timestamp, pointer to an unacknowl-
edged packet, number of retries with no receiver
feedback), sequencing information (next sequence
number to use), and whether the entry is in use or
not. In the receive table (right), each entry con-
tains sequencing information for incoming packets
(expected sequence number). Half of the channels
are reserved for requests; the other half is reserved
for replies. This is necessary in order to prevent
deadlock.

Two simple data structures manage NIC-to-NIC
ow control information. These data structures
also record timeout/retry and error detection infor-
mation. Each row of the send channel control table
in Figure 4 holds the states of all channels to a par-
ticular destination interface. Each intersecting col-
umn holds the state for a particular logical channel.
This implicit bound on the number of outstanding
messages enables implementations to trade storage
for reduced arithmetic and address computation.
Two simple and easily-addressable data structures
with O(#NICs � #channels) entries are su�cient.

4.2.3 Link-level Back-pressure

Link-level back-pressure ensures that under heavy
load, the network does not drop packets. Credit-
based ow control in the AM-II library throttles
individual senders but cannot prevent high con-

tention for a common receiver. With link-level
back-pressure, end-to-end ow control remains ef-
fective and its overheads remain small. This trades
network utilization under load { allowing packets
to block and to consume link and switch resources
{ for simplicity. Section 5 shows that this hybrid
scheme performs very well.

4.2.4 Receiver Bu�ering

Some fast communication layers prevent bu�er
overruns by dedicating enough receiver bu�er space
to accommodate all messages potentially in ight.
With P processors, credits for K outstanding mes-
sages, and a single endpoint per host, this requires
O(K � P) storage. Small-scale systems with one
endpoint made allocating O(K � P) storage practi-
cal. However, large scale systems with a large num-
ber of communication endpoints requires O(K �E)
storage, where E is number of endpoints in a vir-
tual network. This has serious scaling and stor-
age utilization problems that makes pre-allocation
approaches impractical, as the storage grows pro-
portionally to virtualized resources and not phys-
ical ones. Furthermore, with negligible packet re-
transmission costs, alternative approaches involv-
ing modest pre-allocated bu�ers and packet re-
transmission become practical.

We provide request and response receive queues,
each with 16 entries (4 �Kuser), for each endpoint.
These are su�cient to absorb load from up to
four senders transmitting at their maximum rates.
When bu�er overow occurs, the protocol drops
packets and NACKs senders. The �rmware auto-
matically retransmits such messages. An important
consequence of sizing request and reply queues to
be 4 � Kuser entries deep is that our virtual net-
work segment driver can use a single virtual mem-
ory page per endpoint, simplifying its memoryman-
agement activities.

4.3 Timeout and Retry

To guarantee at-most-once delivery semantics and
address transient hardware errors (e.g. CRC er-
rors and truncated packets), a communication sys-
tem must perform timeout and retransmission of
packets. The timeout/retry algorithm determines
how packet retransmissions events are scheduled,
how they are deleted and how retransmission is
performed. Sending a packet schedules a timer
event, receiving an acknowledgment deletes the
event, and all send table entries are periodically
scanned for packets to retransmit. The per-packet

6

timeout/retry costs must be small. This requires
that the costs of scheduling a retransmission event
on each send operation and deleting a retransmis-
sion event on an acknowledgment reception to be
negligible. Depending on the granularity of the
timeout quantum and the frequency of time-out
events, di�erent trade-o�s exist that shift costs be-
tween per-packet operations and retransmissions.
For example, we use a larger timer quantum and
low per-packet costs at the price of more expensive
retransmissions. Section 5 shows that this hybrid
scheme has near zero amortized cost for workloads
where packets are not retransmitted.

Our transport protocol implements timeout and
retry with positive acknowledgments in the inter-
face �rmware. This provides e�cient acknowledge-
ments and minimizes expensive SBus transactions.
(We currently do not perform the obvious piggy-
backing of ACKs and NACKs on active message
reply messages). Channel management tables store
timeout and transmission state. Sending a packet
involves reading a sequence number from the appro-
priate entry in the send table indexed by the desti-
nation NIC and a free channel, saving a pointer
to the packet for potential retransmissions, and
recording the time the packet was sent. The re-
ceiving NIC then looks up sequencing information
for the incoming packet in the appropriate receive
table entry indexed with the sending NIC's id and
the channel on which the message was sent. If the
sequencing information matches, the receiver sends
an acknowledgment to the sender. Upon its receipt,
the sender which updates its sequencing informa-
tion and frees the channel for use by a new packet.

By using a simple and easily-addressable data
structures, each with O(#NICs � #channels) en-
tries, scheduling and deleting packet retransmission
events take constant time. For retransmissions,
though, the NIC perform O(#NICs � #channels)
work. Maintaining unacknowledged packet counts
for each destination NIC reduces this cost signi�-
cantly. Sending a packet increments a counter to
the packet's destination NIC and receiving the as-
sociated acknowledgement decrements the counter.
These counts reduce retransmission overheads to be
proportional to the total number of network inter-
faces.

4.3.1 Unavailable Resources

Virtual networks introduce new issues for at-most-
once delivery semantics in the presence of hardware
errors. Because endpoints may be non-resident or
may not have DMA resources (e.g. medium mes-

sage staging areas) set up a packet may need to be
retried because of unavailable resources.
Our system sends NACKs to senders when des-

tination endpoint resources are unavailable. Upon
receiving such a NACK, a sender notes that the re-
ceiving interface is still reachable. The packet will
be retried by the same timeout/retry mechanism
used to deal with hardware errors. Like hardware
errors, resource unavailability is expected to be in-
frequent. Therefore, using the same timeout/retry
mechanism, which may use coarse-grain timeouts,
should add very little overhead.

4.4 Error handling

Our system addresses packet delivery problems
at three levels: NIC-to-NIC transport protocols,
the AM-II API return-to-sender error model, and
the user-level network management daemons. The
transport protocols are the building blocks on
which the higher-level API error models and the
network management daemons depend. The trans-
port protocols handle transient network errors by
detecting and dropping each erroneous packet and
relying upon timeouts and retransmissions for re-
covery. After 255 retransmission, for which no
ACKs or NACKs were received, the protocol de-
clares a message as undeliverable and returns it to
the AM-II layer. (Timeout/retransmission mecha-
nisms require that sending interfaces have a copy of
each unacknowledged message anyway.) The AM-II
library invokes a per-endpoint error handler func-
tion so that applications may take appropriate re-
covery actions.

4.4.1 Transient Errors

Positive acknowledgement with timeout and re-
transmission ensures the delivery of packets with
valid routes. Not only can data packets be dropped
or corrupted but protocol control messages can be
as well. To ensure that data packets are never de-
livered more than once to a destination despite re-
transmissions, they are tagged with sequence num-
bers and timestamps. With a maximum of 2k

outstanding messages, detecting duplicates requires
2k+1 sequence numbers. For our alternating-bit
protocol on independent logical channels, k = 0.

4.4.2 Return-to-Sender

The NIC determines that destination endpoints
are unreachable by relying upon its timeout and
retransmission mechanisms. If after 255 retries
(i.e., several seconds) the NIC receives no ACKs or

7

NACKs from the receiver, the protocol deems the
destination endpoint as unreachable. When this
happens, the protocols marks the sequence number
of the channel as uninitialized and returns the orig-
inal message back to user-level via the endpoint's
reply receive queue. The application handles un-
deliverable message as it would any other active
message, with a user-speci�able handler function.
Should no route to a destination NIC exist, all of
its endpoints are trivially unreachable.

4.4.3 Network Management Errors

The system uses privileged mapper daemons, one
for each interface on each node of the system, to
probe and to discover the current network topol-
ogy. Given the current topology, the daemons
elect a leader that derives and distributes a set of
mutually deadlock-free routes to all NICs in the
system [MCS+97]. Discovering the topology of
a source-routed, cut-through network with anony-
mous switches like Myrinet requires use of net-
work probe packets that may potentially deadlock
on themselves or on other messages in the net-
work. Hence online mapping daemons can cause
truncated and corrupted packets to be received by
interfaces (as a result of switch hardware detect-
ing and breaking deadlocks) even when the hard-
ware is working perfectly. From the transport
protocol's perspective, mapper daemons perform
two specialized functions: (1) sending and receiv-
ing probe packets with application-speci�ed source-
based routes to discover links, switches, and hosts
and (2) reading and writing entries in NIC routing
tables. These special functions can be performed
using privileged endpoints available to privileged
processes.

5 Performance Results

This section presents performance measurements
and analysis. The �rst microbenchmarks charac-
terize the system using the LogP communication
model and lead to a comparison with a previous
generation of an active message system and to an
understanding of the costs of the added function-
ality. The next benchmarks examine performance
between hosts under varying degrees of destination
endpoint contention. It concludes with an examina-
tion of system performance as the number of active
virtual networks increases. All programs were run
on the Berkeley Network of Workstations system
in a stand-alone environment. Topology acquisi-
tion and routing daemons were disabled, eliminat-

ing background communication activity normally
present.

5.1 LogP Characterization

The LogP communications model uses four param-
eters to characterize the performance of communi-
cation layers. This parameterization enables the
fair comparison of di�erent communication layers.
The microbenchmarks of [CLM+95] automatically
derive the model parameters of L (latency), over-
head (o) and gap (g). Each parameter has a sim-
ple interpretation. The number of processors (P)
is given. The overhead has two components, the
sending overhead (Os) and the receiving overhead
(Or). These measure the host processor time spent
writing a message to and reading a message from
an endpoint, respectively. The gap measures the
time through the rate-limiting stage in the system
and the latency is the remaining time unaccounted
for by the overheads.

0

5

10

15

20

25

30

35

40

45

LogP Parameter Comparison

T
im

e
(m

ic
ro

se
co

nd
s)

 GAM 1.90 4.00 5.80 5.50 21.00

 AM-II 4.09 4.28 15.98 12.60 41.94

Os Or g L RTT

Figure 5: Performance characterization using

the LogP model. LogP parameters for two ac-
tive message systems on identical hardware: AM-
II, our new general-purpose active message system
with virtual networks and the return-to-sender er-
ror model, and GAM, an earlier active message sys-
tem for SPMD parallel programs without virtual
networks, an error model and other features.

Figure 5 shows the LogP parameters for AM-II
and GAM. It shows the measured AM-II round-
trip time of 41.94 microseconds as compared with
GAM's round-trip time of 21 microseconds. Of
the 17.37 microsecond one-way time, the system
spends 5 microseconds writing the message into
the sender's endpoint and 3.3 microseconds read-
ing the messages from the receiver's endpoint. The
two network interfaces spend 13.82 microseconds

8

transmitting the data message as well as transmit-
ting its acknowledgement. For AM-II, the gap is
larger than (Os + Or) because the network inter-
face �rmware limits the message rate. For GAM,
the gap is smaller than its (Os + Or) indicating
that the active message library code executing on
the host processors limits the message rate.
Although in both cases, the microbenchmark use

active messages with 4-word payloads, the AM-II
send overhead is larger because additional informa-
tion such as a tag is stored to the network inter-
face across the SBus. The AM-II gap is also larger
because the �rmware constructs a private header
for each message, untouchable by any application,
that is sent using a separate DMA operation. This
requires additional �rmware instructions and mem-
ory accesses.

0

5

10

15

20

25

30

35

1 1024 2048 3072 4096 5120 6144 7168 8192

Message size (bytes)

B
an

dw
id

th
 (

M
B

/s
)

Consistent DMA
Streaming DMA

Figure 6: Sending bandwidth as a function of
message size in bytes. Consistent host-to-NIC
DMA operations across the SBus have higher per-
formance for small transfers. Streaming transfers
obtain higher performance once the data transfer
times swamp the cost of ushing a hardware stream
bu�er in the SBus bridge chip.

5.2 Contention-Free Performance

Figure 6 shows the endpoint-to-endpoint band-
width between two machines. Because the NIC
can only DMA messages between the network and
its local memory, a store-and-forward delay is in-
troduced for large messages moving data between
host memory and the interface. Although the cur-
rent network interface �rmware does not pipeline
bulk data transfers to eliminate this delay, stream-
ing transfers nevertheless reach 31 MB/s with 4KB
messages. (With GAM, pipelining of DMA oper-
ations to receive messages from the network with

DMA operations to move bu�ers to host memory
increased bulk transfer performance to 38 MB/s.)

Perm Avg BW Agg BW Avg RTT

Cshift 25.42 MB/s 2.33 GB/s 67.8 us

Neighbor 30.97 MB/s 2.85 GB/s 47.5 us

Bisection 5.65 MB/s 0.52 GB/s 50.8 us

Table 1: This table shows aggregate bandwidth and
average round trip times for 92 nodes with di�er-
ent message permutations. In the cshift permuta-
tion, each node sends requests to its right neighbor
and replies to requests received from its left neigh-
bor. With neighbor, adjacent nodes perform pair-
wise exchanges. In bisection, pairs of nodes sep-
arated by the network bisection perform pairwise
exchanges. Bandwidth measurements used medium
messages, whereas RTTmeasurements used 4-word
active messages. (More recent work has con-
siderably improved upon this performance. See
http://now.cs.berkeley.edu)

Table 1 presents three permutations and their
resulting average per-host sending bandwidths,
aggregate sending bandwidths, and per-message
round-trip times when run on 92 machines of the
NOW. Each column shows that the bandwidth
scales as the system reaches a non-trivial size. The
�rst two permutations, circular shift and neighbor
exchange, are communication patterns with sub-
stantial network locality. As expected, these cases
perform well, with bandwidths near their peaks and
per-message round-trip times within a factor of 2
of optimal. The bisection exchange pattern shows
that a large number of machines can saturate the
network bisection bandwidth. Refer to �gure 3 to
see the network topology and the small number of
bisection cables.

5.3 Single Virtual Network

The next three �gures show the performance of the
communication subsystem in the presence of con-
tention, speci�cally when all hosts send to a com-
mon destination host. All tra�c destined for the
commonhost is also destined for the same endpoint.
For reasons that will become clear, the host with
the common destination is referred to as the server
and all other hosts are referred to as the clients.
Figure 7 shows the aggregate message rate of

the server (top line) as the number of clients send-
ing 4-word requests to it and receiving 4-word re-
sponse messages increases. Additionally it shows

9

0

10000

20000

30000

40000

50000

60000

70000

80000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91
of senders

M
es

sa
ge

 r
at

e
(m

sg
s/

se
c)

Aggregate Msg Rate
Avg Sender Rate

Figure 7: Active Message rates with destination
endpoint contention within a single virtual network.

0

5

10

15

20

25

30

35

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

of senders

B
an

dw
id

th
 (

M
B

/s
)

Aggregate BW
Avg Sender BW

Figure 8: Delivered bandwidths with destination
endpoint contention within a single virtual network.

the average per-client message rate (bottom line)
as the number of clients increases to 92. Figure
8 presents similar results, showing the sustained
bandwidth with bulk transfers to the server as the
number of clients sending 1KB messages to it and
receiving 4-word replies. The average per-client
bandwidth gracefully and fairly degrades. We con-
jecture that the uctuation in the server's aggre-
gate message rates and bandwidths arises from ac-
knowledgements for reply messages encountering
congestion (namely other requests also destined for
the server). The variation in per-sender rates and
bandwidths are too small to be observable on the
printed page. Figure 9 shows the average per-client
round-trip time as the number of clients grows to
92 hosts. The slope of the line is exactly the gap
measured in the LogP microbenchmarks.

0

200

400

600

800

1000

1200

1400

1600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

of senders

A
ve

ra
ge

 r
ou

nd
 tr

ip
 ti

m
e

(u
s)

Figure 9: Round-trip times with destination end-
point contention within a single virtual network.

5.4 Multiple Virtual Networks

We can extend the previous benchmark to stress
virtual networks. First, by increasing the number
of server endpoints up to the maximum of 7 that
can be cached in the interface memory, and then
continuing to incrementally add endpoints to in-
creasingly overcommit the resources. Thus, rather
than clients sharing a common destination end-
point, each client endpoint now has its own ded-
icated server endpoint. With N clients, the server
process has N di�erent endpoints where each one is
paired with a di�erent client, resulting in N di�er-
ent virtual networks. This contains client messages
within their virtual network and guarantees that
messages in other virtual networks make forward
progress.

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7

Number of Clients

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

Server
Client

Figure 10: Aggregate server and per-client message
rates with small numbers of virtual networks.

Figure 10 shows the average server message rate
10

and per-client message rates (with error bars) over
a �ve minute interval. The number of clients con-
tinuously making requests of the server varies from
one to seven. In this range, the network interface's
seven endpoint frames can accommodate all server
endpoints. This scenario stresses both the schedul-
ing of outgoing replies and the multiplexing of in-
coming requests on the server. The results show
server message rates within 11% of their theoreti-
cal peak of 62; 578 messages per second given the
measured LogP gap of 15:98 microseconds. The
per-client message rates with within 16% of their
ideal fair share of 1=N th of the server's through-
put. Steady server performance and the graceful
response of the system to increasing load demon-
strate the e�ective operation of the ow-control,
endpoint scheduling, and multiplexing mechanisms
throughout the system.

0

10000

20000

30000

40000

50000

60000

70000

80000

1 4 7 10 13 16 19 22 25 28 31

Number of Clients

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

Server
Client

Figure 11: Aggregate server and per-client message
rates with large numbers of virtual networks.

Figure 11 extends the scenario shown in Fig-
ure 10. Previously, the server host was a single-
threaded process, polling its endpoints in a round-
robin fashion. When the number of busy end-
points exceeds the network interface capacity, the
virtual network system actively loads and unloads
endpoints into and out of interface memory in an
on-demand fashion. When the server attempts to
write a reply message into a non-resident endpoint
(or when a request arrives for a non-resident end-
point), a pagefault occurs and the virtual network
driver moves the backing storage and re-mapped
the endpoint pages as necessary. However, during
this time the server process is suspended and thus
it neither sends nor receives additional messages.
Messages arriving for non-resident endpoints and
for endpoints being relocated are NACKed. This
would result in a signi�cant performance drop when

interface endpoint frames become overcommitted.

To extend this scenario and to avoid the pitfalls
of blocking, the server spawns a separate thread
(and Solaris LWP) per client endpoint. Each server
thread waits on a binary semaphore posted by the
communication subsystem upon a message arrival
that causes an endpoint receive queue to become
non-empty. Additional messages may be delivered
to the endpoint while the server thread is sched-
uled. Once running, the server thread disables fur-
ther message arrival events and processes a batch
of requests before re-enabling arrival events and
again waiting on the semaphore. Apart from be-
ing a natural way to write the server, this approach
allows a large number of server threads to be sus-
pended pending resolution of their endpoint page-
faults while server threads with resident endpoints
remain runnable and actively send and receive mes-
sages.

The results show that event mechanisms and
thread overheads degrade peak server message rates
by 15% to 53; 488 messages per second. While vari-
ation in average per-client message rates across the
�ve minute sampling interval remains small, the
variation in message rates between clients increases
with load, with some clients rates 40% higher than
average while others are 36% lower than average.
A �ner-grain time series analysis (not shown) of
client communication rates reveals the expected be-
havior: clients with resident server endpoints burst
messages at rates as shown in Figure 10 while oth-
ers wait until both their endpoints become resident
and the appropriate server thread is scheduled.

6 Related Work

Recent communication systems can be categorized
by their support for virtualization of network inter-
faces and communication resources and their posi-
tions on multiprogramming and error handling.

GAM, PM, and FM use message-based APIs
with little to no support for multiprogramming.
GAM is the canonical fast active message layer.
PM and FM add support for gang-scheduling of
parallel programs. These systems are driven pri-
marily by the needs of SPMD parallel comput-
ing, such as support for MPI and portability to
MPPs. FM handles receive bu�er overruns but ig-
nores other types of network errors. None of these
systems have explicit error models which hinders
the implementation of highly-available and non-
scienti�c applications.

SHRIMP, U-Net [vEBB+95] and Hamlyn are
11

closer to our system. These systems provide di-
rect, protected access to network interfaces using
techniques similar to those found in application
device channels [DPD94]. The SHRIMP project,
which uses virtual memory mapped communica-
tion model, has run multiple applications and has
preliminary multiprogramming results. U-Net and
U-Net/MM can support multiprogramming. Ham-
lyn presented a vision of sender-based communica-
tion that should have been able to support multi-
programming, but demonstrated results using only
ping-pong style benchmarks.

The most important distinction between previ-
ous work and our own lies in the virtualization of
network interfaces and communication resources.
In SHRIMP, the level of indirection used to couple
virtual memory to communication e�ectively vir-
tualizes the network. U-Net provides virtualized
interfaces, but leaves routing, bu�er management,
reliable message delivery and other protocol issues
to higher-layers. Hamlyn allows a process to map
contiguous regions of NIC-addressable host mem-
ory into its address space. These \messages areas"
a�ord a level of indirection that allows the system
to virtualize the network interface. The position
taken on virtualization has direct impact on the er-
ror model. In the event of an error, SHRIMP and
Hamlyn deliver signals to processes. U-Net dele-
gates responsibility for providing adequate bu�er
resources and conditioning tra�c to higher-level
protocols, and drops packets when resources are un-
available.

7 Conclusions

Bringing direct, protected communication into
mainstream computing requires a general-purpose
and robust communication protocol. The AM-II
API and virtual networks abstraction extends tra-
ditional active messages with reliable message de-
livery, a simple yet powerful error model and sup-
ports use in arbitrary sequential and parallel pro-
grams. We have presented the design of the NIC-
to-NIC transport protocols required by this more
general system. For our Myrinet implementation,
we have measured the costs of the generality rel-
ative to GAM, a minimal active message layer, on
the same hardware. In particular, we have explored
the costs associated with endpoint scheduling, ow
control, timer management, reliable message deliv-
ery and error handling.

The implementation achieves end-to-end laten-
cies of 21 microseconds for short active messages

with a peak bandwidth of 31 MB/s. These num-
bers represent twice the end to end latency and 77%
of the bandwidth provided by GAM. The cost of re-
liable message delivery makes the most signi�cant
contribution above basic communication costs. Us-
ing additional benchmarks, we have demonstrated
that the protocols provide robust performance and
graceful degradation for the virtual networks ab-
straction, even when physical network interface re-
sources are overcommitted by factors of 12 or more.
These benchmarks demonstrate the feasibility of
truly virtualizing network interfaces and their re-
sources and show the importance of supporting
multi-threaded applications.
The NIC-to-NIC protocols discussed in this pa-

per perform well, and, enable a diverse set of timely
research e�orts. Other researchers at Berkeley
are actively using this system to investigate ex-
plicit and implicit techniques for the co-scheduling
of communicating processes [DAC96], an essential
part of high-performance communication in mul-
tiprogrammed clusters of uni and multiprocessor
servers. Related work on clusters of SMPs [LMC97]
investigates the use of multiple network interfaces
and multiprotocol active message layers. The im-
pact of packet switched networks, such as gigabit
ethernet, on cluster interconnect protocols is an
open question. We are eager to examine the ex-
tent to which our existing protocol mechanisms and
policies apply in this new regime.

8 Acknowledgments

We thank Rich Martin and Remzi Arpaci-Dusseau
for providing valuable feedback on earlier versions
of this paper. Bob Felderman provided valuable
information on Myrinet at all hours of the night.
We thank Alec Woo for his debugging e�orts as
well as his port of the software to Pentium-based
platforms, and Eric Anderson for discussions on
specializations, and improvements to the API er-
ror model. We especially thank Andrea Arpaci-
Dusseau for comments and suggestions for improv-
ing this paper.

References

[BDF+95] M. Blumrich, C. Dubnicki, E. Felton, and K. Li.

Virtual-Memory Mapped Network Interfaces. In IEEE

Micro Magazine, Feb. 1995, pp. 21-28.

[BCF+95] N. Boden, D. Cohen, R. Felderman, A. Kulawik.
C. Seitz, J. Seizovic, andW. Su.Myrinet: A Gigabit per

Second Local Area Network. In IEEE Micro Magazine,
February 1995, pp. 29-36.

12

[CLM+95] D. Culler, L. Liu, R. Martin, and C. Yoshikawa.
Assessing Fast Network Interfaces. In IEEE Micro

Magazine, Feb. 1996, pp. 35-43.

[DAC96] A. Dusseau, R. Arpaci, D. Culler. E�ective Dis-
tributed Scheduling of Parallel Workloads. In Proceed-

ings of 1996 ACM Sigmetrics International Conference

on Measurement and Modeling of Computer Systems,
1996.

[DPD94] P. Druschel, L. Peterson, and B. Davie. Experi-
ences with a High-speed Network Adaptor: A Software
Perspective. In Proceedings of ACM SIGCOMM '94

Symposium, August, 1994, pp. 2-13.

[LMC97] S. Lumetta, A. Mainwaring, D. Culler. Multi-
Protocol Active Messages on a Cluster of SMP's. In
Proceedings of SC97, November 1997.

[LTW+94] W. Leland, M. Taqqu.W. Willinger, and D. Wil-
son. On the Self-SimilarNature of Ethernet Tra�c (Ex-
tendedVersion). IEEE/ACM Transactions on Network-
ing, 2(1):1-15, Feb. 1994.

[MC96] A. Mainwaring and D. Culler. Active Message Ap-
plication Programming Interface and Communication

Subsystem Organization. Technical Report CSD-96-
918, University of California at Berkeley, October 1996.

[MCS+97] A. Mainwaring, B. Chun, S. Schleimer, and D.

Wilkerson. SystemArea Network Mapping.Proceedings
of 9th ACM Symposium on Parallel Algorithms and

Architectures, June 1997, pp. 116-126.

[PKC97] S. Pakin, Karacheti, and A. Chien. Fast Messages

(FM): E�cient, Portable Communication for Worksta-
tion Clusters and Massively-Parallel Processors. IEEE

Parallel and Distributed Technology, Vol. 5, No. 2, Apr-
June 1997.

[PLC95] S. Pakin, M. Lauria, and A. Chien. High Perfor-

mance Messaging on Workstations: Illinois Fast Mes-
sages (FM) for Myrinet. In Proceedings on Supercom-

puting '95, December 1995.

[PT97] L. Prylli and BernardTourancheau. ProtocolDesign
for High Performance Networking: a Myrinet Expe-
rience. Laboratoire de l'Informatique du Parallelisme,

Lyon, France, Research Report No. 97-22, July 1997.

[THI96] H. Tezuka, A. Hori, and Y. Ishikawa, PM: A High-
Performance Communication Library for Multi-user

Parallel Environments, RWC, Tsukuba, Japan, Tech-
nical Report TR-96015, 1996,

[vEBB+95] T. von Eicken, A. Basu, V. Buch, and W. Vo-

gels. U-Net: A User-level Network Interface for Parallel
and Distributed Computing. In Proceedings of the 15th

ACM Symposium on Operating System Principles, De-
cember 1995.

13

